xref: /openbmc/linux/fs/nfs/dir.c (revision b664e06d)
1 /*
2  *  linux/fs/nfs/dir.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  nfs directory handling functions
7  *
8  * 10 Apr 1996	Added silly rename for unlink	--okir
9  * 28 Sep 1996	Improved directory cache --okir
10  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
11  *              Re-implemented silly rename for unlink, newly implemented
12  *              silly rename for nfs_rename() following the suggestions
13  *              of Olaf Kirch (okir) found in this file.
14  *              Following Linus comments on my original hack, this version
15  *              depends only on the dcache stuff and doesn't touch the inode
16  *              layer (iput() and friends).
17  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
18  */
19 
20 #include <linux/module.h>
21 #include <linux/time.h>
22 #include <linux/errno.h>
23 #include <linux/stat.h>
24 #include <linux/fcntl.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/mm.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/nfs_fs.h>
31 #include <linux/nfs_mount.h>
32 #include <linux/pagemap.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/swap.h>
37 #include <linux/sched.h>
38 #include <linux/kmemleak.h>
39 #include <linux/xattr.h>
40 
41 #include "delegation.h"
42 #include "iostat.h"
43 #include "internal.h"
44 #include "fscache.h"
45 
46 #include "nfstrace.h"
47 
48 /* #define NFS_DEBUG_VERBOSE 1 */
49 
50 static int nfs_opendir(struct inode *, struct file *);
51 static int nfs_closedir(struct inode *, struct file *);
52 static int nfs_readdir(struct file *, struct dir_context *);
53 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
54 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
55 static void nfs_readdir_clear_array(struct page*);
56 
57 const struct file_operations nfs_dir_operations = {
58 	.llseek		= nfs_llseek_dir,
59 	.read		= generic_read_dir,
60 	.iterate	= nfs_readdir,
61 	.open		= nfs_opendir,
62 	.release	= nfs_closedir,
63 	.fsync		= nfs_fsync_dir,
64 };
65 
66 const struct address_space_operations nfs_dir_aops = {
67 	.freepage = nfs_readdir_clear_array,
68 };
69 
70 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, const struct cred *cred)
71 {
72 	struct nfs_inode *nfsi = NFS_I(dir);
73 	struct nfs_open_dir_context *ctx;
74 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
75 	if (ctx != NULL) {
76 		ctx->duped = 0;
77 		ctx->attr_gencount = nfsi->attr_gencount;
78 		ctx->dir_cookie = 0;
79 		ctx->dup_cookie = 0;
80 		ctx->cred = get_cred(cred);
81 		spin_lock(&dir->i_lock);
82 		list_add(&ctx->list, &nfsi->open_files);
83 		spin_unlock(&dir->i_lock);
84 		return ctx;
85 	}
86 	return  ERR_PTR(-ENOMEM);
87 }
88 
89 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
90 {
91 	spin_lock(&dir->i_lock);
92 	list_del(&ctx->list);
93 	spin_unlock(&dir->i_lock);
94 	put_cred(ctx->cred);
95 	kfree(ctx);
96 }
97 
98 /*
99  * Open file
100  */
101 static int
102 nfs_opendir(struct inode *inode, struct file *filp)
103 {
104 	int res = 0;
105 	struct nfs_open_dir_context *ctx;
106 
107 	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
108 
109 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
110 
111 	ctx = alloc_nfs_open_dir_context(inode, current_cred());
112 	if (IS_ERR(ctx)) {
113 		res = PTR_ERR(ctx);
114 		goto out;
115 	}
116 	filp->private_data = ctx;
117 out:
118 	return res;
119 }
120 
121 static int
122 nfs_closedir(struct inode *inode, struct file *filp)
123 {
124 	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
125 	return 0;
126 }
127 
128 struct nfs_cache_array_entry {
129 	u64 cookie;
130 	u64 ino;
131 	struct qstr string;
132 	unsigned char d_type;
133 };
134 
135 struct nfs_cache_array {
136 	int size;
137 	int eof_index;
138 	u64 last_cookie;
139 	struct nfs_cache_array_entry array[0];
140 };
141 
142 struct readdirvec {
143 	unsigned long nr;
144 	unsigned long index;
145 	struct page *pages[NFS_MAX_READDIR_RAPAGES];
146 };
147 
148 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, bool);
149 typedef struct {
150 	struct file	*file;
151 	struct page	*page;
152 	struct dir_context *ctx;
153 	unsigned long	page_index;
154 	struct readdirvec pvec;
155 	u64		*dir_cookie;
156 	u64		last_cookie;
157 	loff_t		current_index;
158 	decode_dirent_t	decode;
159 
160 	unsigned long	timestamp;
161 	unsigned long	gencount;
162 	unsigned int	cache_entry_index;
163 	bool plus;
164 	bool eof;
165 } nfs_readdir_descriptor_t;
166 
167 /*
168  * we are freeing strings created by nfs_add_to_readdir_array()
169  */
170 static
171 void nfs_readdir_clear_array(struct page *page)
172 {
173 	struct nfs_cache_array *array;
174 	int i;
175 
176 	array = kmap_atomic(page);
177 	for (i = 0; i < array->size; i++)
178 		kfree(array->array[i].string.name);
179 	kunmap_atomic(array);
180 }
181 
182 /*
183  * the caller is responsible for freeing qstr.name
184  * when called by nfs_readdir_add_to_array, the strings will be freed in
185  * nfs_clear_readdir_array()
186  */
187 static
188 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
189 {
190 	string->len = len;
191 	string->name = kmemdup(name, len, GFP_KERNEL);
192 	if (string->name == NULL)
193 		return -ENOMEM;
194 	/*
195 	 * Avoid a kmemleak false positive. The pointer to the name is stored
196 	 * in a page cache page which kmemleak does not scan.
197 	 */
198 	kmemleak_not_leak(string->name);
199 	string->hash = full_name_hash(NULL, name, len);
200 	return 0;
201 }
202 
203 static
204 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
205 {
206 	struct nfs_cache_array *array = kmap(page);
207 	struct nfs_cache_array_entry *cache_entry;
208 	int ret;
209 
210 	cache_entry = &array->array[array->size];
211 
212 	/* Check that this entry lies within the page bounds */
213 	ret = -ENOSPC;
214 	if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
215 		goto out;
216 
217 	cache_entry->cookie = entry->prev_cookie;
218 	cache_entry->ino = entry->ino;
219 	cache_entry->d_type = entry->d_type;
220 	ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
221 	if (ret)
222 		goto out;
223 	array->last_cookie = entry->cookie;
224 	array->size++;
225 	if (entry->eof != 0)
226 		array->eof_index = array->size;
227 out:
228 	kunmap(page);
229 	return ret;
230 }
231 
232 static
233 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
234 {
235 	loff_t diff = desc->ctx->pos - desc->current_index;
236 	unsigned int index;
237 
238 	if (diff < 0)
239 		goto out_eof;
240 	if (diff >= array->size) {
241 		if (array->eof_index >= 0)
242 			goto out_eof;
243 		return -EAGAIN;
244 	}
245 
246 	index = (unsigned int)diff;
247 	*desc->dir_cookie = array->array[index].cookie;
248 	desc->cache_entry_index = index;
249 	return 0;
250 out_eof:
251 	desc->eof = true;
252 	return -EBADCOOKIE;
253 }
254 
255 static bool
256 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
257 {
258 	if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
259 		return false;
260 	smp_rmb();
261 	return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
262 }
263 
264 static
265 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
266 {
267 	int i;
268 	loff_t new_pos;
269 	int status = -EAGAIN;
270 
271 	for (i = 0; i < array->size; i++) {
272 		if (array->array[i].cookie == *desc->dir_cookie) {
273 			struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
274 			struct nfs_open_dir_context *ctx = desc->file->private_data;
275 
276 			new_pos = desc->current_index + i;
277 			if (ctx->attr_gencount != nfsi->attr_gencount ||
278 			    !nfs_readdir_inode_mapping_valid(nfsi)) {
279 				ctx->duped = 0;
280 				ctx->attr_gencount = nfsi->attr_gencount;
281 			} else if (new_pos < desc->ctx->pos) {
282 				if (ctx->duped > 0
283 				    && ctx->dup_cookie == *desc->dir_cookie) {
284 					if (printk_ratelimit()) {
285 						pr_notice("NFS: directory %pD2 contains a readdir loop."
286 								"Please contact your server vendor.  "
287 								"The file: %.*s has duplicate cookie %llu\n",
288 								desc->file, array->array[i].string.len,
289 								array->array[i].string.name, *desc->dir_cookie);
290 					}
291 					status = -ELOOP;
292 					goto out;
293 				}
294 				ctx->dup_cookie = *desc->dir_cookie;
295 				ctx->duped = -1;
296 			}
297 			desc->ctx->pos = new_pos;
298 			desc->cache_entry_index = i;
299 			return 0;
300 		}
301 	}
302 	if (array->eof_index >= 0) {
303 		status = -EBADCOOKIE;
304 		if (*desc->dir_cookie == array->last_cookie)
305 			desc->eof = true;
306 	}
307 out:
308 	return status;
309 }
310 
311 static
312 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
313 {
314 	struct nfs_cache_array *array;
315 	int status;
316 
317 	array = kmap(desc->page);
318 
319 	if (*desc->dir_cookie == 0)
320 		status = nfs_readdir_search_for_pos(array, desc);
321 	else
322 		status = nfs_readdir_search_for_cookie(array, desc);
323 
324 	if (status == -EAGAIN) {
325 		desc->last_cookie = array->last_cookie;
326 		desc->current_index += array->size;
327 		desc->page_index++;
328 	}
329 	kunmap(desc->page);
330 	return status;
331 }
332 
333 /* Fill a page with xdr information before transferring to the cache page */
334 static
335 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
336 			struct nfs_entry *entry, struct file *file, struct inode *inode)
337 {
338 	struct nfs_open_dir_context *ctx = file->private_data;
339 	const struct cred *cred = ctx->cred;
340 	unsigned long	timestamp, gencount;
341 	int		error;
342 
343  again:
344 	timestamp = jiffies;
345 	gencount = nfs_inc_attr_generation_counter();
346 	error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
347 					  NFS_SERVER(inode)->dtsize, desc->plus);
348 	if (error < 0) {
349 		/* We requested READDIRPLUS, but the server doesn't grok it */
350 		if (error == -ENOTSUPP && desc->plus) {
351 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
352 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
353 			desc->plus = false;
354 			goto again;
355 		}
356 		goto error;
357 	}
358 	desc->timestamp = timestamp;
359 	desc->gencount = gencount;
360 error:
361 	return error;
362 }
363 
364 static int xdr_decode(nfs_readdir_descriptor_t *desc,
365 		      struct nfs_entry *entry, struct xdr_stream *xdr)
366 {
367 	int error;
368 
369 	error = desc->decode(xdr, entry, desc->plus);
370 	if (error)
371 		return error;
372 	entry->fattr->time_start = desc->timestamp;
373 	entry->fattr->gencount = desc->gencount;
374 	return 0;
375 }
376 
377 /* Match file and dirent using either filehandle or fileid
378  * Note: caller is responsible for checking the fsid
379  */
380 static
381 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
382 {
383 	struct inode *inode;
384 	struct nfs_inode *nfsi;
385 
386 	if (d_really_is_negative(dentry))
387 		return 0;
388 
389 	inode = d_inode(dentry);
390 	if (is_bad_inode(inode) || NFS_STALE(inode))
391 		return 0;
392 
393 	nfsi = NFS_I(inode);
394 	if (entry->fattr->fileid != nfsi->fileid)
395 		return 0;
396 	if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
397 		return 0;
398 	return 1;
399 }
400 
401 static
402 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
403 {
404 	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
405 		return false;
406 	if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
407 		return true;
408 	if (ctx->pos == 0)
409 		return true;
410 	return false;
411 }
412 
413 /*
414  * This function is called by the lookup and getattr code to request the
415  * use of readdirplus to accelerate any future lookups in the same
416  * directory.
417  */
418 void nfs_advise_use_readdirplus(struct inode *dir)
419 {
420 	struct nfs_inode *nfsi = NFS_I(dir);
421 
422 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
423 	    !list_empty(&nfsi->open_files))
424 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
425 }
426 
427 /*
428  * This function is mainly for use by nfs_getattr().
429  *
430  * If this is an 'ls -l', we want to force use of readdirplus.
431  * Do this by checking if there is an active file descriptor
432  * and calling nfs_advise_use_readdirplus, then forcing a
433  * cache flush.
434  */
435 void nfs_force_use_readdirplus(struct inode *dir)
436 {
437 	struct nfs_inode *nfsi = NFS_I(dir);
438 
439 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
440 	    !list_empty(&nfsi->open_files)) {
441 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
442 		invalidate_mapping_pages(dir->i_mapping, 0, -1);
443 	}
444 }
445 
446 static
447 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
448 {
449 	struct qstr filename = QSTR_INIT(entry->name, entry->len);
450 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
451 	struct dentry *dentry;
452 	struct dentry *alias;
453 	struct inode *dir = d_inode(parent);
454 	struct inode *inode;
455 	int status;
456 
457 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
458 		return;
459 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
460 		return;
461 	if (filename.len == 0)
462 		return;
463 	/* Validate that the name doesn't contain any illegal '\0' */
464 	if (strnlen(filename.name, filename.len) != filename.len)
465 		return;
466 	/* ...or '/' */
467 	if (strnchr(filename.name, filename.len, '/'))
468 		return;
469 	if (filename.name[0] == '.') {
470 		if (filename.len == 1)
471 			return;
472 		if (filename.len == 2 && filename.name[1] == '.')
473 			return;
474 	}
475 	filename.hash = full_name_hash(parent, filename.name, filename.len);
476 
477 	dentry = d_lookup(parent, &filename);
478 again:
479 	if (!dentry) {
480 		dentry = d_alloc_parallel(parent, &filename, &wq);
481 		if (IS_ERR(dentry))
482 			return;
483 	}
484 	if (!d_in_lookup(dentry)) {
485 		/* Is there a mountpoint here? If so, just exit */
486 		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
487 					&entry->fattr->fsid))
488 			goto out;
489 		if (nfs_same_file(dentry, entry)) {
490 			if (!entry->fh->size)
491 				goto out;
492 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
493 			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
494 			if (!status)
495 				nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
496 			goto out;
497 		} else {
498 			d_invalidate(dentry);
499 			dput(dentry);
500 			dentry = NULL;
501 			goto again;
502 		}
503 	}
504 	if (!entry->fh->size) {
505 		d_lookup_done(dentry);
506 		goto out;
507 	}
508 
509 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
510 	alias = d_splice_alias(inode, dentry);
511 	d_lookup_done(dentry);
512 	if (alias) {
513 		if (IS_ERR(alias))
514 			goto out;
515 		dput(dentry);
516 		dentry = alias;
517 	}
518 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
519 out:
520 	dput(dentry);
521 }
522 
523 /* Perform conversion from xdr to cache array */
524 static
525 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
526 				struct page **xdr_pages, struct page *page, unsigned int buflen)
527 {
528 	struct xdr_stream stream;
529 	struct xdr_buf buf;
530 	struct page *scratch;
531 	struct nfs_cache_array *array;
532 	unsigned int count = 0;
533 	int status;
534 	int max_rapages = NFS_MAX_READDIR_RAPAGES;
535 
536 	desc->pvec.index = desc->page_index;
537 	desc->pvec.nr = 0;
538 
539 	scratch = alloc_page(GFP_KERNEL);
540 	if (scratch == NULL)
541 		return -ENOMEM;
542 
543 	if (buflen == 0)
544 		goto out_nopages;
545 
546 	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
547 	xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
548 
549 	do {
550 		status = xdr_decode(desc, entry, &stream);
551 		if (status != 0) {
552 			if (status == -EAGAIN)
553 				status = 0;
554 			break;
555 		}
556 
557 		count++;
558 
559 		if (desc->plus)
560 			nfs_prime_dcache(file_dentry(desc->file), entry);
561 
562 		status = nfs_readdir_add_to_array(entry, desc->pvec.pages[desc->pvec.nr]);
563 		if (status == -ENOSPC) {
564 			desc->pvec.nr++;
565 			if (desc->pvec.nr == max_rapages)
566 				break;
567 			status = nfs_readdir_add_to_array(entry, desc->pvec.pages[desc->pvec.nr]);
568 		}
569 		if (status != 0)
570 			break;
571 	} while (!entry->eof);
572 
573 	/*
574 	 * page and desc->pvec.pages[0] are valid, don't need to check
575 	 * whether or not to be NULL.
576 	 */
577 	copy_highpage(page, desc->pvec.pages[0]);
578 
579 out_nopages:
580 	if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
581 		array = kmap_atomic(desc->pvec.pages[desc->pvec.nr]);
582 		array->eof_index = array->size;
583 		status = 0;
584 		kunmap_atomic(array);
585 	}
586 
587 	put_page(scratch);
588 
589 	/*
590 	 * desc->pvec.nr > 0 means at least one page was completely filled,
591 	 * we should return -ENOSPC. Otherwise function
592 	 * nfs_readdir_xdr_to_array will enter infinite loop.
593 	 */
594 	if (desc->pvec.nr > 0)
595 		return -ENOSPC;
596 	return status;
597 }
598 
599 static
600 void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
601 {
602 	unsigned int i;
603 	for (i = 0; i < npages; i++)
604 		put_page(pages[i]);
605 }
606 
607 /*
608  * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
609  * to nfs_readdir_free_pages()
610  */
611 static
612 int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
613 {
614 	unsigned int i;
615 
616 	for (i = 0; i < npages; i++) {
617 		struct page *page = alloc_page(GFP_KERNEL);
618 		if (page == NULL)
619 			goto out_freepages;
620 		pages[i] = page;
621 	}
622 	return 0;
623 
624 out_freepages:
625 	nfs_readdir_free_pages(pages, i);
626 	return -ENOMEM;
627 }
628 
629 /*
630  * nfs_readdir_rapages_init initialize rapages by nfs_cache_array structure.
631  */
632 static
633 void nfs_readdir_rapages_init(nfs_readdir_descriptor_t *desc)
634 {
635 	struct nfs_cache_array *array;
636 	int max_rapages = NFS_MAX_READDIR_RAPAGES;
637 	int index;
638 
639 	for (index = 0; index < max_rapages; index++) {
640 		array = kmap_atomic(desc->pvec.pages[index]);
641 		memset(array, 0, sizeof(struct nfs_cache_array));
642 		array->eof_index = -1;
643 		kunmap_atomic(array);
644 	}
645 }
646 
647 static
648 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
649 {
650 	struct page *pages[NFS_MAX_READDIR_PAGES];
651 	struct nfs_entry entry;
652 	struct file	*file = desc->file;
653 	struct nfs_cache_array *array;
654 	int status = -ENOMEM;
655 	unsigned int array_size = ARRAY_SIZE(pages);
656 
657 	/*
658 	 * This means we hit readdir rdpages miss, the preallocated rdpages
659 	 * are useless, the preallocate rdpages should be reinitialized.
660 	 */
661 	nfs_readdir_rapages_init(desc);
662 
663 	entry.prev_cookie = 0;
664 	entry.cookie = desc->last_cookie;
665 	entry.eof = 0;
666 	entry.fh = nfs_alloc_fhandle();
667 	entry.fattr = nfs_alloc_fattr();
668 	entry.server = NFS_SERVER(inode);
669 	if (entry.fh == NULL || entry.fattr == NULL)
670 		goto out;
671 
672 	entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
673 	if (IS_ERR(entry.label)) {
674 		status = PTR_ERR(entry.label);
675 		goto out;
676 	}
677 
678 	array = kmap(page);
679 	memset(array, 0, sizeof(struct nfs_cache_array));
680 	array->eof_index = -1;
681 
682 	status = nfs_readdir_alloc_pages(pages, array_size);
683 	if (status < 0)
684 		goto out_release_array;
685 	do {
686 		unsigned int pglen;
687 		status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
688 
689 		if (status < 0)
690 			break;
691 		pglen = status;
692 		status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
693 		if (status < 0) {
694 			if (status == -ENOSPC)
695 				status = 0;
696 			break;
697 		}
698 	} while (array->eof_index < 0);
699 
700 	nfs_readdir_free_pages(pages, array_size);
701 out_release_array:
702 	kunmap(page);
703 	nfs4_label_free(entry.label);
704 out:
705 	nfs_free_fattr(entry.fattr);
706 	nfs_free_fhandle(entry.fh);
707 	return status;
708 }
709 
710 /*
711  * Now we cache directories properly, by converting xdr information
712  * to an array that can be used for lookups later.  This results in
713  * fewer cache pages, since we can store more information on each page.
714  * We only need to convert from xdr once so future lookups are much simpler
715  */
716 static
717 int nfs_readdir_filler(void *data, struct page* page)
718 {
719 	nfs_readdir_descriptor_t *desc = data;
720 	struct inode	*inode = file_inode(desc->file);
721 	int ret;
722 
723 	/*
724 	 * If desc->page_index in range desc->pvec.index and
725 	 * desc->pvec.index + desc->pvec.nr, we get readdir cache hit.
726 	 */
727 	if (desc->page_index >= desc->pvec.index &&
728 		desc->page_index < (desc->pvec.index + desc->pvec.nr)) {
729 		/*
730 		 * page and desc->pvec.pages[x] are valid, don't need to check
731 		 * whether or not to be NULL.
732 		 */
733 		copy_highpage(page, desc->pvec.pages[desc->page_index - desc->pvec.index]);
734 		ret = 0;
735 	} else {
736 		ret = nfs_readdir_xdr_to_array(desc, page, inode);
737 		if (ret < 0)
738 			goto error;
739 	}
740 
741 	SetPageUptodate(page);
742 
743 	if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
744 		/* Should never happen */
745 		nfs_zap_mapping(inode, inode->i_mapping);
746 	}
747 	unlock_page(page);
748 	return 0;
749  error:
750 	unlock_page(page);
751 	return ret;
752 }
753 
754 static
755 void cache_page_release(nfs_readdir_descriptor_t *desc)
756 {
757 	if (!desc->page->mapping)
758 		nfs_readdir_clear_array(desc->page);
759 	put_page(desc->page);
760 	desc->page = NULL;
761 }
762 
763 static
764 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
765 {
766 	return read_cache_page(desc->file->f_mapping, desc->page_index,
767 			nfs_readdir_filler, desc);
768 }
769 
770 /*
771  * Returns 0 if desc->dir_cookie was found on page desc->page_index
772  */
773 static
774 int find_cache_page(nfs_readdir_descriptor_t *desc)
775 {
776 	int res;
777 
778 	desc->page = get_cache_page(desc);
779 	if (IS_ERR(desc->page))
780 		return PTR_ERR(desc->page);
781 
782 	res = nfs_readdir_search_array(desc);
783 	if (res != 0)
784 		cache_page_release(desc);
785 	return res;
786 }
787 
788 /* Search for desc->dir_cookie from the beginning of the page cache */
789 static inline
790 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
791 {
792 	int res;
793 
794 	if (desc->page_index == 0) {
795 		desc->current_index = 0;
796 		desc->last_cookie = 0;
797 	}
798 	do {
799 		res = find_cache_page(desc);
800 	} while (res == -EAGAIN);
801 	return res;
802 }
803 
804 /*
805  * Once we've found the start of the dirent within a page: fill 'er up...
806  */
807 static
808 int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
809 {
810 	struct file	*file = desc->file;
811 	int i = 0;
812 	int res = 0;
813 	struct nfs_cache_array *array = NULL;
814 	struct nfs_open_dir_context *ctx = file->private_data;
815 
816 	array = kmap(desc->page);
817 	for (i = desc->cache_entry_index; i < array->size; i++) {
818 		struct nfs_cache_array_entry *ent;
819 
820 		ent = &array->array[i];
821 		if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
822 		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
823 			desc->eof = true;
824 			break;
825 		}
826 		desc->ctx->pos++;
827 		if (i < (array->size-1))
828 			*desc->dir_cookie = array->array[i+1].cookie;
829 		else
830 			*desc->dir_cookie = array->last_cookie;
831 		if (ctx->duped != 0)
832 			ctx->duped = 1;
833 	}
834 	if (array->eof_index >= 0)
835 		desc->eof = true;
836 
837 	kunmap(desc->page);
838 	cache_page_release(desc);
839 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
840 			(unsigned long long)*desc->dir_cookie, res);
841 	return res;
842 }
843 
844 /*
845  * If we cannot find a cookie in our cache, we suspect that this is
846  * because it points to a deleted file, so we ask the server to return
847  * whatever it thinks is the next entry. We then feed this to filldir.
848  * If all goes well, we should then be able to find our way round the
849  * cache on the next call to readdir_search_pagecache();
850  *
851  * NOTE: we cannot add the anonymous page to the pagecache because
852  *	 the data it contains might not be page aligned. Besides,
853  *	 we should already have a complete representation of the
854  *	 directory in the page cache by the time we get here.
855  */
856 static inline
857 int uncached_readdir(nfs_readdir_descriptor_t *desc)
858 {
859 	struct page	*page = NULL;
860 	int		status;
861 	struct inode *inode = file_inode(desc->file);
862 	struct nfs_open_dir_context *ctx = desc->file->private_data;
863 
864 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
865 			(unsigned long long)*desc->dir_cookie);
866 
867 	page = alloc_page(GFP_HIGHUSER);
868 	if (!page) {
869 		status = -ENOMEM;
870 		goto out;
871 	}
872 
873 	desc->page_index = 0;
874 	desc->last_cookie = *desc->dir_cookie;
875 	desc->page = page;
876 	ctx->duped = 0;
877 
878 	status = nfs_readdir_xdr_to_array(desc, page, inode);
879 	if (status < 0)
880 		goto out_release;
881 
882 	status = nfs_do_filldir(desc);
883 
884  out:
885 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
886 			__func__, status);
887 	return status;
888  out_release:
889 	cache_page_release(desc);
890 	goto out;
891 }
892 
893 /* The file offset position represents the dirent entry number.  A
894    last cookie cache takes care of the common case of reading the
895    whole directory.
896  */
897 static int nfs_readdir(struct file *file, struct dir_context *ctx)
898 {
899 	struct dentry	*dentry = file_dentry(file);
900 	struct inode	*inode = d_inode(dentry);
901 	nfs_readdir_descriptor_t my_desc,
902 			*desc = &my_desc;
903 	struct nfs_open_dir_context *dir_ctx = file->private_data;
904 	int res = 0;
905 	int max_rapages = NFS_MAX_READDIR_RAPAGES;
906 
907 	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
908 			file, (long long)ctx->pos);
909 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
910 
911 	/*
912 	 * ctx->pos points to the dirent entry number.
913 	 * *desc->dir_cookie has the cookie for the next entry. We have
914 	 * to either find the entry with the appropriate number or
915 	 * revalidate the cookie.
916 	 */
917 	memset(desc, 0, sizeof(*desc));
918 
919 	desc->file = file;
920 	desc->ctx = ctx;
921 	desc->dir_cookie = &dir_ctx->dir_cookie;
922 	desc->decode = NFS_PROTO(inode)->decode_dirent;
923 	desc->plus = nfs_use_readdirplus(inode, ctx);
924 
925 	res = nfs_readdir_alloc_pages(desc->pvec.pages, max_rapages);
926 	if (res < 0)
927 		return -ENOMEM;
928 
929 	nfs_readdir_rapages_init(desc);
930 
931 	if (ctx->pos == 0 || nfs_attribute_cache_expired(inode))
932 		res = nfs_revalidate_mapping(inode, file->f_mapping);
933 	if (res < 0)
934 		goto out;
935 
936 	do {
937 		res = readdir_search_pagecache(desc);
938 
939 		if (res == -EBADCOOKIE) {
940 			res = 0;
941 			/* This means either end of directory */
942 			if (*desc->dir_cookie && !desc->eof) {
943 				/* Or that the server has 'lost' a cookie */
944 				res = uncached_readdir(desc);
945 				if (res == 0)
946 					continue;
947 			}
948 			break;
949 		}
950 		if (res == -ETOOSMALL && desc->plus) {
951 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
952 			nfs_zap_caches(inode);
953 			desc->page_index = 0;
954 			desc->plus = false;
955 			desc->eof = false;
956 			continue;
957 		}
958 		if (res < 0)
959 			break;
960 
961 		res = nfs_do_filldir(desc);
962 		if (res < 0)
963 			break;
964 	} while (!desc->eof);
965 out:
966 	nfs_readdir_free_pages(desc->pvec.pages, max_rapages);
967 	if (res > 0)
968 		res = 0;
969 	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
970 	return res;
971 }
972 
973 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
974 {
975 	struct inode *inode = file_inode(filp);
976 	struct nfs_open_dir_context *dir_ctx = filp->private_data;
977 
978 	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
979 			filp, offset, whence);
980 
981 	switch (whence) {
982 	default:
983 		return -EINVAL;
984 	case SEEK_SET:
985 		if (offset < 0)
986 			return -EINVAL;
987 		inode_lock(inode);
988 		break;
989 	case SEEK_CUR:
990 		if (offset == 0)
991 			return filp->f_pos;
992 		inode_lock(inode);
993 		offset += filp->f_pos;
994 		if (offset < 0) {
995 			inode_unlock(inode);
996 			return -EINVAL;
997 		}
998 	}
999 	if (offset != filp->f_pos) {
1000 		filp->f_pos = offset;
1001 		dir_ctx->dir_cookie = 0;
1002 		dir_ctx->duped = 0;
1003 	}
1004 	inode_unlock(inode);
1005 	return offset;
1006 }
1007 
1008 /*
1009  * All directory operations under NFS are synchronous, so fsync()
1010  * is a dummy operation.
1011  */
1012 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1013 			 int datasync)
1014 {
1015 	struct inode *inode = file_inode(filp);
1016 
1017 	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1018 
1019 	inode_lock(inode);
1020 	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
1021 	inode_unlock(inode);
1022 	return 0;
1023 }
1024 
1025 /**
1026  * nfs_force_lookup_revalidate - Mark the directory as having changed
1027  * @dir: pointer to directory inode
1028  *
1029  * This forces the revalidation code in nfs_lookup_revalidate() to do a
1030  * full lookup on all child dentries of 'dir' whenever a change occurs
1031  * on the server that might have invalidated our dcache.
1032  *
1033  * The caller should be holding dir->i_lock
1034  */
1035 void nfs_force_lookup_revalidate(struct inode *dir)
1036 {
1037 	NFS_I(dir)->cache_change_attribute++;
1038 }
1039 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1040 
1041 /*
1042  * A check for whether or not the parent directory has changed.
1043  * In the case it has, we assume that the dentries are untrustworthy
1044  * and may need to be looked up again.
1045  * If rcu_walk prevents us from performing a full check, return 0.
1046  */
1047 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1048 			      int rcu_walk)
1049 {
1050 	if (IS_ROOT(dentry))
1051 		return 1;
1052 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1053 		return 0;
1054 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1055 		return 0;
1056 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1057 	if (nfs_mapping_need_revalidate_inode(dir)) {
1058 		if (rcu_walk)
1059 			return 0;
1060 		if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1061 			return 0;
1062 	}
1063 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1064 		return 0;
1065 	return 1;
1066 }
1067 
1068 /*
1069  * Use intent information to check whether or not we're going to do
1070  * an O_EXCL create using this path component.
1071  */
1072 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1073 {
1074 	if (NFS_PROTO(dir)->version == 2)
1075 		return 0;
1076 	return flags & LOOKUP_EXCL;
1077 }
1078 
1079 /*
1080  * Inode and filehandle revalidation for lookups.
1081  *
1082  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1083  * or if the intent information indicates that we're about to open this
1084  * particular file and the "nocto" mount flag is not set.
1085  *
1086  */
1087 static
1088 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1089 {
1090 	struct nfs_server *server = NFS_SERVER(inode);
1091 	int ret;
1092 
1093 	if (IS_AUTOMOUNT(inode))
1094 		return 0;
1095 
1096 	if (flags & LOOKUP_OPEN) {
1097 		switch (inode->i_mode & S_IFMT) {
1098 		case S_IFREG:
1099 			/* A NFSv4 OPEN will revalidate later */
1100 			if (server->caps & NFS_CAP_ATOMIC_OPEN)
1101 				goto out;
1102 			/* Fallthrough */
1103 		case S_IFDIR:
1104 			if (server->flags & NFS_MOUNT_NOCTO)
1105 				break;
1106 			/* NFS close-to-open cache consistency validation */
1107 			goto out_force;
1108 		}
1109 	}
1110 
1111 	/* VFS wants an on-the-wire revalidation */
1112 	if (flags & LOOKUP_REVAL)
1113 		goto out_force;
1114 out:
1115 	return (inode->i_nlink == 0) ? -ESTALE : 0;
1116 out_force:
1117 	if (flags & LOOKUP_RCU)
1118 		return -ECHILD;
1119 	ret = __nfs_revalidate_inode(server, inode);
1120 	if (ret != 0)
1121 		return ret;
1122 	goto out;
1123 }
1124 
1125 /*
1126  * We judge how long we want to trust negative
1127  * dentries by looking at the parent inode mtime.
1128  *
1129  * If parent mtime has changed, we revalidate, else we wait for a
1130  * period corresponding to the parent's attribute cache timeout value.
1131  *
1132  * If LOOKUP_RCU prevents us from performing a full check, return 1
1133  * suggesting a reval is needed.
1134  *
1135  * Note that when creating a new file, or looking up a rename target,
1136  * then it shouldn't be necessary to revalidate a negative dentry.
1137  */
1138 static inline
1139 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1140 		       unsigned int flags)
1141 {
1142 	if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1143 		return 0;
1144 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1145 		return 1;
1146 	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1147 }
1148 
1149 static int
1150 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1151 			   struct inode *inode, int error)
1152 {
1153 	switch (error) {
1154 	case 1:
1155 		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1156 			__func__, dentry);
1157 		return 1;
1158 	case 0:
1159 		nfs_mark_for_revalidate(dir);
1160 		if (inode && S_ISDIR(inode->i_mode)) {
1161 			/* Purge readdir caches. */
1162 			nfs_zap_caches(inode);
1163 			/*
1164 			 * We can't d_drop the root of a disconnected tree:
1165 			 * its d_hash is on the s_anon list and d_drop() would hide
1166 			 * it from shrink_dcache_for_unmount(), leading to busy
1167 			 * inodes on unmount and further oopses.
1168 			 */
1169 			if (IS_ROOT(dentry))
1170 				return 1;
1171 		}
1172 		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1173 				__func__, dentry);
1174 		return 0;
1175 	}
1176 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1177 				__func__, dentry, error);
1178 	return error;
1179 }
1180 
1181 static int
1182 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1183 			       unsigned int flags)
1184 {
1185 	int ret = 1;
1186 	if (nfs_neg_need_reval(dir, dentry, flags)) {
1187 		if (flags & LOOKUP_RCU)
1188 			return -ECHILD;
1189 		ret = 0;
1190 	}
1191 	return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1192 }
1193 
1194 static int
1195 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1196 				struct inode *inode)
1197 {
1198 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1199 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1200 }
1201 
1202 static int
1203 nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry,
1204 			     struct inode *inode)
1205 {
1206 	struct nfs_fh *fhandle;
1207 	struct nfs_fattr *fattr;
1208 	struct nfs4_label *label;
1209 	int ret;
1210 
1211 	ret = -ENOMEM;
1212 	fhandle = nfs_alloc_fhandle();
1213 	fattr = nfs_alloc_fattr();
1214 	label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL);
1215 	if (fhandle == NULL || fattr == NULL || IS_ERR(label))
1216 		goto out;
1217 
1218 	ret = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1219 	if (ret < 0) {
1220 		if (ret == -ESTALE || ret == -ENOENT)
1221 			ret = 0;
1222 		goto out;
1223 	}
1224 	ret = 0;
1225 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1226 		goto out;
1227 	if (nfs_refresh_inode(inode, fattr) < 0)
1228 		goto out;
1229 
1230 	nfs_setsecurity(inode, fattr, label);
1231 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1232 
1233 	/* set a readdirplus hint that we had a cache miss */
1234 	nfs_force_use_readdirplus(dir);
1235 	ret = 1;
1236 out:
1237 	nfs_free_fattr(fattr);
1238 	nfs_free_fhandle(fhandle);
1239 	nfs4_label_free(label);
1240 	return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1241 }
1242 
1243 /*
1244  * This is called every time the dcache has a lookup hit,
1245  * and we should check whether we can really trust that
1246  * lookup.
1247  *
1248  * NOTE! The hit can be a negative hit too, don't assume
1249  * we have an inode!
1250  *
1251  * If the parent directory is seen to have changed, we throw out the
1252  * cached dentry and do a new lookup.
1253  */
1254 static int
1255 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1256 			 unsigned int flags)
1257 {
1258 	struct inode *inode;
1259 	int error;
1260 
1261 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1262 	inode = d_inode(dentry);
1263 
1264 	if (!inode)
1265 		return nfs_lookup_revalidate_negative(dir, dentry, flags);
1266 
1267 	if (is_bad_inode(inode)) {
1268 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1269 				__func__, dentry);
1270 		goto out_bad;
1271 	}
1272 
1273 	if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1274 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1275 
1276 	/* Force a full look up iff the parent directory has changed */
1277 	if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1278 	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1279 		error = nfs_lookup_verify_inode(inode, flags);
1280 		if (error) {
1281 			if (error == -ESTALE)
1282 				nfs_zap_caches(dir);
1283 			goto out_bad;
1284 		}
1285 		nfs_advise_use_readdirplus(dir);
1286 		goto out_valid;
1287 	}
1288 
1289 	if (flags & LOOKUP_RCU)
1290 		return -ECHILD;
1291 
1292 	if (NFS_STALE(inode))
1293 		goto out_bad;
1294 
1295 	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1296 	error = nfs_lookup_revalidate_dentry(dir, dentry, inode);
1297 	trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1298 	return error;
1299 out_valid:
1300 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1301 out_bad:
1302 	if (flags & LOOKUP_RCU)
1303 		return -ECHILD;
1304 	return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1305 }
1306 
1307 static int
1308 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1309 			int (*reval)(struct inode *, struct dentry *, unsigned int))
1310 {
1311 	struct dentry *parent;
1312 	struct inode *dir;
1313 	int ret;
1314 
1315 	if (flags & LOOKUP_RCU) {
1316 		parent = READ_ONCE(dentry->d_parent);
1317 		dir = d_inode_rcu(parent);
1318 		if (!dir)
1319 			return -ECHILD;
1320 		ret = reval(dir, dentry, flags);
1321 		if (parent != READ_ONCE(dentry->d_parent))
1322 			return -ECHILD;
1323 	} else {
1324 		parent = dget_parent(dentry);
1325 		ret = reval(d_inode(parent), dentry, flags);
1326 		dput(parent);
1327 	}
1328 	return ret;
1329 }
1330 
1331 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1332 {
1333 	return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1334 }
1335 
1336 /*
1337  * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1338  * when we don't really care about the dentry name. This is called when a
1339  * pathwalk ends on a dentry that was not found via a normal lookup in the
1340  * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1341  *
1342  * In this situation, we just want to verify that the inode itself is OK
1343  * since the dentry might have changed on the server.
1344  */
1345 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1346 {
1347 	struct inode *inode = d_inode(dentry);
1348 	int error = 0;
1349 
1350 	/*
1351 	 * I believe we can only get a negative dentry here in the case of a
1352 	 * procfs-style symlink. Just assume it's correct for now, but we may
1353 	 * eventually need to do something more here.
1354 	 */
1355 	if (!inode) {
1356 		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1357 				__func__, dentry);
1358 		return 1;
1359 	}
1360 
1361 	if (is_bad_inode(inode)) {
1362 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1363 				__func__, dentry);
1364 		return 0;
1365 	}
1366 
1367 	error = nfs_lookup_verify_inode(inode, flags);
1368 	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1369 			__func__, inode->i_ino, error ? "invalid" : "valid");
1370 	return !error;
1371 }
1372 
1373 /*
1374  * This is called from dput() when d_count is going to 0.
1375  */
1376 static int nfs_dentry_delete(const struct dentry *dentry)
1377 {
1378 	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1379 		dentry, dentry->d_flags);
1380 
1381 	/* Unhash any dentry with a stale inode */
1382 	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1383 		return 1;
1384 
1385 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1386 		/* Unhash it, so that ->d_iput() would be called */
1387 		return 1;
1388 	}
1389 	if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1390 		/* Unhash it, so that ancestors of killed async unlink
1391 		 * files will be cleaned up during umount */
1392 		return 1;
1393 	}
1394 	return 0;
1395 
1396 }
1397 
1398 /* Ensure that we revalidate inode->i_nlink */
1399 static void nfs_drop_nlink(struct inode *inode)
1400 {
1401 	spin_lock(&inode->i_lock);
1402 	/* drop the inode if we're reasonably sure this is the last link */
1403 	if (inode->i_nlink > 0)
1404 		drop_nlink(inode);
1405 	NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1406 	NFS_I(inode)->cache_validity |= NFS_INO_INVALID_CHANGE
1407 		| NFS_INO_INVALID_CTIME
1408 		| NFS_INO_INVALID_OTHER
1409 		| NFS_INO_REVAL_FORCED;
1410 	spin_unlock(&inode->i_lock);
1411 }
1412 
1413 /*
1414  * Called when the dentry loses inode.
1415  * We use it to clean up silly-renamed files.
1416  */
1417 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1418 {
1419 	if (S_ISDIR(inode->i_mode))
1420 		/* drop any readdir cache as it could easily be old */
1421 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1422 
1423 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1424 		nfs_complete_unlink(dentry, inode);
1425 		nfs_drop_nlink(inode);
1426 	}
1427 	iput(inode);
1428 }
1429 
1430 static void nfs_d_release(struct dentry *dentry)
1431 {
1432 	/* free cached devname value, if it survived that far */
1433 	if (unlikely(dentry->d_fsdata)) {
1434 		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1435 			WARN_ON(1);
1436 		else
1437 			kfree(dentry->d_fsdata);
1438 	}
1439 }
1440 
1441 const struct dentry_operations nfs_dentry_operations = {
1442 	.d_revalidate	= nfs_lookup_revalidate,
1443 	.d_weak_revalidate	= nfs_weak_revalidate,
1444 	.d_delete	= nfs_dentry_delete,
1445 	.d_iput		= nfs_dentry_iput,
1446 	.d_automount	= nfs_d_automount,
1447 	.d_release	= nfs_d_release,
1448 };
1449 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1450 
1451 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1452 {
1453 	struct dentry *res;
1454 	struct inode *inode = NULL;
1455 	struct nfs_fh *fhandle = NULL;
1456 	struct nfs_fattr *fattr = NULL;
1457 	struct nfs4_label *label = NULL;
1458 	int error;
1459 
1460 	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1461 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1462 
1463 	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1464 		return ERR_PTR(-ENAMETOOLONG);
1465 
1466 	/*
1467 	 * If we're doing an exclusive create, optimize away the lookup
1468 	 * but don't hash the dentry.
1469 	 */
1470 	if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1471 		return NULL;
1472 
1473 	res = ERR_PTR(-ENOMEM);
1474 	fhandle = nfs_alloc_fhandle();
1475 	fattr = nfs_alloc_fattr();
1476 	if (fhandle == NULL || fattr == NULL)
1477 		goto out;
1478 
1479 	label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1480 	if (IS_ERR(label))
1481 		goto out;
1482 
1483 	trace_nfs_lookup_enter(dir, dentry, flags);
1484 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1485 	if (error == -ENOENT)
1486 		goto no_entry;
1487 	if (error < 0) {
1488 		res = ERR_PTR(error);
1489 		goto out_label;
1490 	}
1491 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1492 	res = ERR_CAST(inode);
1493 	if (IS_ERR(res))
1494 		goto out_label;
1495 
1496 	/* Notify readdir to use READDIRPLUS */
1497 	nfs_force_use_readdirplus(dir);
1498 
1499 no_entry:
1500 	res = d_splice_alias(inode, dentry);
1501 	if (res != NULL) {
1502 		if (IS_ERR(res))
1503 			goto out_label;
1504 		dentry = res;
1505 	}
1506 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1507 out_label:
1508 	trace_nfs_lookup_exit(dir, dentry, flags, error);
1509 	nfs4_label_free(label);
1510 out:
1511 	nfs_free_fattr(fattr);
1512 	nfs_free_fhandle(fhandle);
1513 	return res;
1514 }
1515 EXPORT_SYMBOL_GPL(nfs_lookup);
1516 
1517 #if IS_ENABLED(CONFIG_NFS_V4)
1518 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1519 
1520 const struct dentry_operations nfs4_dentry_operations = {
1521 	.d_revalidate	= nfs4_lookup_revalidate,
1522 	.d_weak_revalidate	= nfs_weak_revalidate,
1523 	.d_delete	= nfs_dentry_delete,
1524 	.d_iput		= nfs_dentry_iput,
1525 	.d_automount	= nfs_d_automount,
1526 	.d_release	= nfs_d_release,
1527 };
1528 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1529 
1530 static fmode_t flags_to_mode(int flags)
1531 {
1532 	fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1533 	if ((flags & O_ACCMODE) != O_WRONLY)
1534 		res |= FMODE_READ;
1535 	if ((flags & O_ACCMODE) != O_RDONLY)
1536 		res |= FMODE_WRITE;
1537 	return res;
1538 }
1539 
1540 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1541 {
1542 	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1543 }
1544 
1545 static int do_open(struct inode *inode, struct file *filp)
1546 {
1547 	nfs_fscache_open_file(inode, filp);
1548 	return 0;
1549 }
1550 
1551 static int nfs_finish_open(struct nfs_open_context *ctx,
1552 			   struct dentry *dentry,
1553 			   struct file *file, unsigned open_flags)
1554 {
1555 	int err;
1556 
1557 	err = finish_open(file, dentry, do_open);
1558 	if (err)
1559 		goto out;
1560 	if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1561 		nfs_file_set_open_context(file, ctx);
1562 	else
1563 		err = -ESTALE;
1564 out:
1565 	return err;
1566 }
1567 
1568 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1569 		    struct file *file, unsigned open_flags,
1570 		    umode_t mode)
1571 {
1572 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1573 	struct nfs_open_context *ctx;
1574 	struct dentry *res;
1575 	struct iattr attr = { .ia_valid = ATTR_OPEN };
1576 	struct inode *inode;
1577 	unsigned int lookup_flags = 0;
1578 	bool switched = false;
1579 	int created = 0;
1580 	int err;
1581 
1582 	/* Expect a negative dentry */
1583 	BUG_ON(d_inode(dentry));
1584 
1585 	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1586 			dir->i_sb->s_id, dir->i_ino, dentry);
1587 
1588 	err = nfs_check_flags(open_flags);
1589 	if (err)
1590 		return err;
1591 
1592 	/* NFS only supports OPEN on regular files */
1593 	if ((open_flags & O_DIRECTORY)) {
1594 		if (!d_in_lookup(dentry)) {
1595 			/*
1596 			 * Hashed negative dentry with O_DIRECTORY: dentry was
1597 			 * revalidated and is fine, no need to perform lookup
1598 			 * again
1599 			 */
1600 			return -ENOENT;
1601 		}
1602 		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1603 		goto no_open;
1604 	}
1605 
1606 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1607 		return -ENAMETOOLONG;
1608 
1609 	if (open_flags & O_CREAT) {
1610 		struct nfs_server *server = NFS_SERVER(dir);
1611 
1612 		if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1613 			mode &= ~current_umask();
1614 
1615 		attr.ia_valid |= ATTR_MODE;
1616 		attr.ia_mode = mode;
1617 	}
1618 	if (open_flags & O_TRUNC) {
1619 		attr.ia_valid |= ATTR_SIZE;
1620 		attr.ia_size = 0;
1621 	}
1622 
1623 	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1624 		d_drop(dentry);
1625 		switched = true;
1626 		dentry = d_alloc_parallel(dentry->d_parent,
1627 					  &dentry->d_name, &wq);
1628 		if (IS_ERR(dentry))
1629 			return PTR_ERR(dentry);
1630 		if (unlikely(!d_in_lookup(dentry)))
1631 			return finish_no_open(file, dentry);
1632 	}
1633 
1634 	ctx = create_nfs_open_context(dentry, open_flags, file);
1635 	err = PTR_ERR(ctx);
1636 	if (IS_ERR(ctx))
1637 		goto out;
1638 
1639 	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1640 	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
1641 	if (created)
1642 		file->f_mode |= FMODE_CREATED;
1643 	if (IS_ERR(inode)) {
1644 		err = PTR_ERR(inode);
1645 		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1646 		put_nfs_open_context(ctx);
1647 		d_drop(dentry);
1648 		switch (err) {
1649 		case -ENOENT:
1650 			d_splice_alias(NULL, dentry);
1651 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1652 			break;
1653 		case -EISDIR:
1654 		case -ENOTDIR:
1655 			goto no_open;
1656 		case -ELOOP:
1657 			if (!(open_flags & O_NOFOLLOW))
1658 				goto no_open;
1659 			break;
1660 			/* case -EINVAL: */
1661 		default:
1662 			break;
1663 		}
1664 		goto out;
1665 	}
1666 
1667 	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
1668 	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1669 	put_nfs_open_context(ctx);
1670 out:
1671 	if (unlikely(switched)) {
1672 		d_lookup_done(dentry);
1673 		dput(dentry);
1674 	}
1675 	return err;
1676 
1677 no_open:
1678 	res = nfs_lookup(dir, dentry, lookup_flags);
1679 	if (switched) {
1680 		d_lookup_done(dentry);
1681 		if (!res)
1682 			res = dentry;
1683 		else
1684 			dput(dentry);
1685 	}
1686 	if (IS_ERR(res))
1687 		return PTR_ERR(res);
1688 	return finish_no_open(file, res);
1689 }
1690 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1691 
1692 static int
1693 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1694 			  unsigned int flags)
1695 {
1696 	struct inode *inode;
1697 
1698 	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1699 		goto full_reval;
1700 	if (d_mountpoint(dentry))
1701 		goto full_reval;
1702 
1703 	inode = d_inode(dentry);
1704 
1705 	/* We can't create new files in nfs_open_revalidate(), so we
1706 	 * optimize away revalidation of negative dentries.
1707 	 */
1708 	if (inode == NULL)
1709 		goto full_reval;
1710 
1711 	if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1712 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1713 
1714 	/* NFS only supports OPEN on regular files */
1715 	if (!S_ISREG(inode->i_mode))
1716 		goto full_reval;
1717 
1718 	/* We cannot do exclusive creation on a positive dentry */
1719 	if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
1720 		goto reval_dentry;
1721 
1722 	/* Check if the directory changed */
1723 	if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
1724 		goto reval_dentry;
1725 
1726 	/* Let f_op->open() actually open (and revalidate) the file */
1727 	return 1;
1728 reval_dentry:
1729 	if (flags & LOOKUP_RCU)
1730 		return -ECHILD;
1731 	return nfs_lookup_revalidate_dentry(dir, dentry, inode);
1732 
1733 full_reval:
1734 	return nfs_do_lookup_revalidate(dir, dentry, flags);
1735 }
1736 
1737 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1738 {
1739 	return __nfs_lookup_revalidate(dentry, flags,
1740 			nfs4_do_lookup_revalidate);
1741 }
1742 
1743 #endif /* CONFIG_NFSV4 */
1744 
1745 /*
1746  * Code common to create, mkdir, and mknod.
1747  */
1748 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1749 				struct nfs_fattr *fattr,
1750 				struct nfs4_label *label)
1751 {
1752 	struct dentry *parent = dget_parent(dentry);
1753 	struct inode *dir = d_inode(parent);
1754 	struct inode *inode;
1755 	struct dentry *d;
1756 	int error = -EACCES;
1757 
1758 	d_drop(dentry);
1759 
1760 	/* We may have been initialized further down */
1761 	if (d_really_is_positive(dentry))
1762 		goto out;
1763 	if (fhandle->size == 0) {
1764 		error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1765 		if (error)
1766 			goto out_error;
1767 	}
1768 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1769 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1770 		struct nfs_server *server = NFS_SB(dentry->d_sb);
1771 		error = server->nfs_client->rpc_ops->getattr(server, fhandle,
1772 				fattr, NULL, NULL);
1773 		if (error < 0)
1774 			goto out_error;
1775 	}
1776 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1777 	d = d_splice_alias(inode, dentry);
1778 	if (IS_ERR(d)) {
1779 		error = PTR_ERR(d);
1780 		goto out_error;
1781 	}
1782 	dput(d);
1783 out:
1784 	dput(parent);
1785 	return 0;
1786 out_error:
1787 	nfs_mark_for_revalidate(dir);
1788 	dput(parent);
1789 	return error;
1790 }
1791 EXPORT_SYMBOL_GPL(nfs_instantiate);
1792 
1793 /*
1794  * Following a failed create operation, we drop the dentry rather
1795  * than retain a negative dentry. This avoids a problem in the event
1796  * that the operation succeeded on the server, but an error in the
1797  * reply path made it appear to have failed.
1798  */
1799 int nfs_create(struct inode *dir, struct dentry *dentry,
1800 		umode_t mode, bool excl)
1801 {
1802 	struct iattr attr;
1803 	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1804 	int error;
1805 
1806 	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1807 			dir->i_sb->s_id, dir->i_ino, dentry);
1808 
1809 	attr.ia_mode = mode;
1810 	attr.ia_valid = ATTR_MODE;
1811 
1812 	trace_nfs_create_enter(dir, dentry, open_flags);
1813 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1814 	trace_nfs_create_exit(dir, dentry, open_flags, error);
1815 	if (error != 0)
1816 		goto out_err;
1817 	return 0;
1818 out_err:
1819 	d_drop(dentry);
1820 	return error;
1821 }
1822 EXPORT_SYMBOL_GPL(nfs_create);
1823 
1824 /*
1825  * See comments for nfs_proc_create regarding failed operations.
1826  */
1827 int
1828 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1829 {
1830 	struct iattr attr;
1831 	int status;
1832 
1833 	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1834 			dir->i_sb->s_id, dir->i_ino, dentry);
1835 
1836 	attr.ia_mode = mode;
1837 	attr.ia_valid = ATTR_MODE;
1838 
1839 	trace_nfs_mknod_enter(dir, dentry);
1840 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1841 	trace_nfs_mknod_exit(dir, dentry, status);
1842 	if (status != 0)
1843 		goto out_err;
1844 	return 0;
1845 out_err:
1846 	d_drop(dentry);
1847 	return status;
1848 }
1849 EXPORT_SYMBOL_GPL(nfs_mknod);
1850 
1851 /*
1852  * See comments for nfs_proc_create regarding failed operations.
1853  */
1854 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1855 {
1856 	struct iattr attr;
1857 	int error;
1858 
1859 	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1860 			dir->i_sb->s_id, dir->i_ino, dentry);
1861 
1862 	attr.ia_valid = ATTR_MODE;
1863 	attr.ia_mode = mode | S_IFDIR;
1864 
1865 	trace_nfs_mkdir_enter(dir, dentry);
1866 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1867 	trace_nfs_mkdir_exit(dir, dentry, error);
1868 	if (error != 0)
1869 		goto out_err;
1870 	return 0;
1871 out_err:
1872 	d_drop(dentry);
1873 	return error;
1874 }
1875 EXPORT_SYMBOL_GPL(nfs_mkdir);
1876 
1877 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1878 {
1879 	if (simple_positive(dentry))
1880 		d_delete(dentry);
1881 }
1882 
1883 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1884 {
1885 	int error;
1886 
1887 	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1888 			dir->i_sb->s_id, dir->i_ino, dentry);
1889 
1890 	trace_nfs_rmdir_enter(dir, dentry);
1891 	if (d_really_is_positive(dentry)) {
1892 		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1893 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1894 		/* Ensure the VFS deletes this inode */
1895 		switch (error) {
1896 		case 0:
1897 			clear_nlink(d_inode(dentry));
1898 			break;
1899 		case -ENOENT:
1900 			nfs_dentry_handle_enoent(dentry);
1901 		}
1902 		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1903 	} else
1904 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1905 	trace_nfs_rmdir_exit(dir, dentry, error);
1906 
1907 	return error;
1908 }
1909 EXPORT_SYMBOL_GPL(nfs_rmdir);
1910 
1911 /*
1912  * Remove a file after making sure there are no pending writes,
1913  * and after checking that the file has only one user.
1914  *
1915  * We invalidate the attribute cache and free the inode prior to the operation
1916  * to avoid possible races if the server reuses the inode.
1917  */
1918 static int nfs_safe_remove(struct dentry *dentry)
1919 {
1920 	struct inode *dir = d_inode(dentry->d_parent);
1921 	struct inode *inode = d_inode(dentry);
1922 	int error = -EBUSY;
1923 
1924 	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
1925 
1926 	/* If the dentry was sillyrenamed, we simply call d_delete() */
1927 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1928 		error = 0;
1929 		goto out;
1930 	}
1931 
1932 	trace_nfs_remove_enter(dir, dentry);
1933 	if (inode != NULL) {
1934 		error = NFS_PROTO(dir)->remove(dir, dentry);
1935 		if (error == 0)
1936 			nfs_drop_nlink(inode);
1937 	} else
1938 		error = NFS_PROTO(dir)->remove(dir, dentry);
1939 	if (error == -ENOENT)
1940 		nfs_dentry_handle_enoent(dentry);
1941 	trace_nfs_remove_exit(dir, dentry, error);
1942 out:
1943 	return error;
1944 }
1945 
1946 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1947  *  belongs to an active ".nfs..." file and we return -EBUSY.
1948  *
1949  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1950  */
1951 int nfs_unlink(struct inode *dir, struct dentry *dentry)
1952 {
1953 	int error;
1954 	int need_rehash = 0;
1955 
1956 	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
1957 		dir->i_ino, dentry);
1958 
1959 	trace_nfs_unlink_enter(dir, dentry);
1960 	spin_lock(&dentry->d_lock);
1961 	if (d_count(dentry) > 1) {
1962 		spin_unlock(&dentry->d_lock);
1963 		/* Start asynchronous writeout of the inode */
1964 		write_inode_now(d_inode(dentry), 0);
1965 		error = nfs_sillyrename(dir, dentry);
1966 		goto out;
1967 	}
1968 	if (!d_unhashed(dentry)) {
1969 		__d_drop(dentry);
1970 		need_rehash = 1;
1971 	}
1972 	spin_unlock(&dentry->d_lock);
1973 	error = nfs_safe_remove(dentry);
1974 	if (!error || error == -ENOENT) {
1975 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1976 	} else if (need_rehash)
1977 		d_rehash(dentry);
1978 out:
1979 	trace_nfs_unlink_exit(dir, dentry, error);
1980 	return error;
1981 }
1982 EXPORT_SYMBOL_GPL(nfs_unlink);
1983 
1984 /*
1985  * To create a symbolic link, most file systems instantiate a new inode,
1986  * add a page to it containing the path, then write it out to the disk
1987  * using prepare_write/commit_write.
1988  *
1989  * Unfortunately the NFS client can't create the in-core inode first
1990  * because it needs a file handle to create an in-core inode (see
1991  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1992  * symlink request has completed on the server.
1993  *
1994  * So instead we allocate a raw page, copy the symname into it, then do
1995  * the SYMLINK request with the page as the buffer.  If it succeeds, we
1996  * now have a new file handle and can instantiate an in-core NFS inode
1997  * and move the raw page into its mapping.
1998  */
1999 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2000 {
2001 	struct page *page;
2002 	char *kaddr;
2003 	struct iattr attr;
2004 	unsigned int pathlen = strlen(symname);
2005 	int error;
2006 
2007 	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2008 		dir->i_ino, dentry, symname);
2009 
2010 	if (pathlen > PAGE_SIZE)
2011 		return -ENAMETOOLONG;
2012 
2013 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
2014 	attr.ia_valid = ATTR_MODE;
2015 
2016 	page = alloc_page(GFP_USER);
2017 	if (!page)
2018 		return -ENOMEM;
2019 
2020 	kaddr = page_address(page);
2021 	memcpy(kaddr, symname, pathlen);
2022 	if (pathlen < PAGE_SIZE)
2023 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2024 
2025 	trace_nfs_symlink_enter(dir, dentry);
2026 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
2027 	trace_nfs_symlink_exit(dir, dentry, error);
2028 	if (error != 0) {
2029 		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2030 			dir->i_sb->s_id, dir->i_ino,
2031 			dentry, symname, error);
2032 		d_drop(dentry);
2033 		__free_page(page);
2034 		return error;
2035 	}
2036 
2037 	/*
2038 	 * No big deal if we can't add this page to the page cache here.
2039 	 * READLINK will get the missing page from the server if needed.
2040 	 */
2041 	if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2042 							GFP_KERNEL)) {
2043 		SetPageUptodate(page);
2044 		unlock_page(page);
2045 		/*
2046 		 * add_to_page_cache_lru() grabs an extra page refcount.
2047 		 * Drop it here to avoid leaking this page later.
2048 		 */
2049 		put_page(page);
2050 	} else
2051 		__free_page(page);
2052 
2053 	return 0;
2054 }
2055 EXPORT_SYMBOL_GPL(nfs_symlink);
2056 
2057 int
2058 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2059 {
2060 	struct inode *inode = d_inode(old_dentry);
2061 	int error;
2062 
2063 	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2064 		old_dentry, dentry);
2065 
2066 	trace_nfs_link_enter(inode, dir, dentry);
2067 	d_drop(dentry);
2068 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2069 	if (error == 0) {
2070 		ihold(inode);
2071 		d_add(dentry, inode);
2072 	}
2073 	trace_nfs_link_exit(inode, dir, dentry, error);
2074 	return error;
2075 }
2076 EXPORT_SYMBOL_GPL(nfs_link);
2077 
2078 /*
2079  * RENAME
2080  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2081  * different file handle for the same inode after a rename (e.g. when
2082  * moving to a different directory). A fail-safe method to do so would
2083  * be to look up old_dir/old_name, create a link to new_dir/new_name and
2084  * rename the old file using the sillyrename stuff. This way, the original
2085  * file in old_dir will go away when the last process iput()s the inode.
2086  *
2087  * FIXED.
2088  *
2089  * It actually works quite well. One needs to have the possibility for
2090  * at least one ".nfs..." file in each directory the file ever gets
2091  * moved or linked to which happens automagically with the new
2092  * implementation that only depends on the dcache stuff instead of
2093  * using the inode layer
2094  *
2095  * Unfortunately, things are a little more complicated than indicated
2096  * above. For a cross-directory move, we want to make sure we can get
2097  * rid of the old inode after the operation.  This means there must be
2098  * no pending writes (if it's a file), and the use count must be 1.
2099  * If these conditions are met, we can drop the dentries before doing
2100  * the rename.
2101  */
2102 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2103 	       struct inode *new_dir, struct dentry *new_dentry,
2104 	       unsigned int flags)
2105 {
2106 	struct inode *old_inode = d_inode(old_dentry);
2107 	struct inode *new_inode = d_inode(new_dentry);
2108 	struct dentry *dentry = NULL, *rehash = NULL;
2109 	struct rpc_task *task;
2110 	int error = -EBUSY;
2111 
2112 	if (flags)
2113 		return -EINVAL;
2114 
2115 	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2116 		 old_dentry, new_dentry,
2117 		 d_count(new_dentry));
2118 
2119 	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2120 	/*
2121 	 * For non-directories, check whether the target is busy and if so,
2122 	 * make a copy of the dentry and then do a silly-rename. If the
2123 	 * silly-rename succeeds, the copied dentry is hashed and becomes
2124 	 * the new target.
2125 	 */
2126 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2127 		/*
2128 		 * To prevent any new references to the target during the
2129 		 * rename, we unhash the dentry in advance.
2130 		 */
2131 		if (!d_unhashed(new_dentry)) {
2132 			d_drop(new_dentry);
2133 			rehash = new_dentry;
2134 		}
2135 
2136 		if (d_count(new_dentry) > 2) {
2137 			int err;
2138 
2139 			/* copy the target dentry's name */
2140 			dentry = d_alloc(new_dentry->d_parent,
2141 					 &new_dentry->d_name);
2142 			if (!dentry)
2143 				goto out;
2144 
2145 			/* silly-rename the existing target ... */
2146 			err = nfs_sillyrename(new_dir, new_dentry);
2147 			if (err)
2148 				goto out;
2149 
2150 			new_dentry = dentry;
2151 			rehash = NULL;
2152 			new_inode = NULL;
2153 		}
2154 	}
2155 
2156 	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2157 	if (IS_ERR(task)) {
2158 		error = PTR_ERR(task);
2159 		goto out;
2160 	}
2161 
2162 	error = rpc_wait_for_completion_task(task);
2163 	if (error != 0) {
2164 		((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2165 		/* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2166 		smp_wmb();
2167 	} else
2168 		error = task->tk_status;
2169 	rpc_put_task(task);
2170 	/* Ensure the inode attributes are revalidated */
2171 	if (error == 0) {
2172 		spin_lock(&old_inode->i_lock);
2173 		NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2174 		NFS_I(old_inode)->cache_validity |= NFS_INO_INVALID_CHANGE
2175 			| NFS_INO_INVALID_CTIME
2176 			| NFS_INO_REVAL_FORCED;
2177 		spin_unlock(&old_inode->i_lock);
2178 	}
2179 out:
2180 	if (rehash)
2181 		d_rehash(rehash);
2182 	trace_nfs_rename_exit(old_dir, old_dentry,
2183 			new_dir, new_dentry, error);
2184 	if (!error) {
2185 		if (new_inode != NULL)
2186 			nfs_drop_nlink(new_inode);
2187 		/*
2188 		 * The d_move() should be here instead of in an async RPC completion
2189 		 * handler because we need the proper locks to move the dentry.  If
2190 		 * we're interrupted by a signal, the async RPC completion handler
2191 		 * should mark the directories for revalidation.
2192 		 */
2193 		d_move(old_dentry, new_dentry);
2194 		nfs_set_verifier(old_dentry,
2195 					nfs_save_change_attribute(new_dir));
2196 	} else if (error == -ENOENT)
2197 		nfs_dentry_handle_enoent(old_dentry);
2198 
2199 	/* new dentry created? */
2200 	if (dentry)
2201 		dput(dentry);
2202 	return error;
2203 }
2204 EXPORT_SYMBOL_GPL(nfs_rename);
2205 
2206 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2207 static LIST_HEAD(nfs_access_lru_list);
2208 static atomic_long_t nfs_access_nr_entries;
2209 
2210 static unsigned long nfs_access_max_cachesize = ULONG_MAX;
2211 module_param(nfs_access_max_cachesize, ulong, 0644);
2212 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2213 
2214 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2215 {
2216 	put_cred(entry->cred);
2217 	kfree_rcu(entry, rcu_head);
2218 	smp_mb__before_atomic();
2219 	atomic_long_dec(&nfs_access_nr_entries);
2220 	smp_mb__after_atomic();
2221 }
2222 
2223 static void nfs_access_free_list(struct list_head *head)
2224 {
2225 	struct nfs_access_entry *cache;
2226 
2227 	while (!list_empty(head)) {
2228 		cache = list_entry(head->next, struct nfs_access_entry, lru);
2229 		list_del(&cache->lru);
2230 		nfs_access_free_entry(cache);
2231 	}
2232 }
2233 
2234 static unsigned long
2235 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2236 {
2237 	LIST_HEAD(head);
2238 	struct nfs_inode *nfsi, *next;
2239 	struct nfs_access_entry *cache;
2240 	long freed = 0;
2241 
2242 	spin_lock(&nfs_access_lru_lock);
2243 	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2244 		struct inode *inode;
2245 
2246 		if (nr_to_scan-- == 0)
2247 			break;
2248 		inode = &nfsi->vfs_inode;
2249 		spin_lock(&inode->i_lock);
2250 		if (list_empty(&nfsi->access_cache_entry_lru))
2251 			goto remove_lru_entry;
2252 		cache = list_entry(nfsi->access_cache_entry_lru.next,
2253 				struct nfs_access_entry, lru);
2254 		list_move(&cache->lru, &head);
2255 		rb_erase(&cache->rb_node, &nfsi->access_cache);
2256 		freed++;
2257 		if (!list_empty(&nfsi->access_cache_entry_lru))
2258 			list_move_tail(&nfsi->access_cache_inode_lru,
2259 					&nfs_access_lru_list);
2260 		else {
2261 remove_lru_entry:
2262 			list_del_init(&nfsi->access_cache_inode_lru);
2263 			smp_mb__before_atomic();
2264 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2265 			smp_mb__after_atomic();
2266 		}
2267 		spin_unlock(&inode->i_lock);
2268 	}
2269 	spin_unlock(&nfs_access_lru_lock);
2270 	nfs_access_free_list(&head);
2271 	return freed;
2272 }
2273 
2274 unsigned long
2275 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2276 {
2277 	int nr_to_scan = sc->nr_to_scan;
2278 	gfp_t gfp_mask = sc->gfp_mask;
2279 
2280 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2281 		return SHRINK_STOP;
2282 	return nfs_do_access_cache_scan(nr_to_scan);
2283 }
2284 
2285 
2286 unsigned long
2287 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2288 {
2289 	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2290 }
2291 
2292 static void
2293 nfs_access_cache_enforce_limit(void)
2294 {
2295 	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2296 	unsigned long diff;
2297 	unsigned int nr_to_scan;
2298 
2299 	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2300 		return;
2301 	nr_to_scan = 100;
2302 	diff = nr_entries - nfs_access_max_cachesize;
2303 	if (diff < nr_to_scan)
2304 		nr_to_scan = diff;
2305 	nfs_do_access_cache_scan(nr_to_scan);
2306 }
2307 
2308 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2309 {
2310 	struct rb_root *root_node = &nfsi->access_cache;
2311 	struct rb_node *n;
2312 	struct nfs_access_entry *entry;
2313 
2314 	/* Unhook entries from the cache */
2315 	while ((n = rb_first(root_node)) != NULL) {
2316 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2317 		rb_erase(n, root_node);
2318 		list_move(&entry->lru, head);
2319 	}
2320 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2321 }
2322 
2323 void nfs_access_zap_cache(struct inode *inode)
2324 {
2325 	LIST_HEAD(head);
2326 
2327 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2328 		return;
2329 	/* Remove from global LRU init */
2330 	spin_lock(&nfs_access_lru_lock);
2331 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2332 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2333 
2334 	spin_lock(&inode->i_lock);
2335 	__nfs_access_zap_cache(NFS_I(inode), &head);
2336 	spin_unlock(&inode->i_lock);
2337 	spin_unlock(&nfs_access_lru_lock);
2338 	nfs_access_free_list(&head);
2339 }
2340 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2341 
2342 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2343 {
2344 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2345 
2346 	while (n != NULL) {
2347 		struct nfs_access_entry *entry =
2348 			rb_entry(n, struct nfs_access_entry, rb_node);
2349 		int cmp = cred_fscmp(cred, entry->cred);
2350 
2351 		if (cmp < 0)
2352 			n = n->rb_left;
2353 		else if (cmp > 0)
2354 			n = n->rb_right;
2355 		else
2356 			return entry;
2357 	}
2358 	return NULL;
2359 }
2360 
2361 static int nfs_access_get_cached(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res, bool may_block)
2362 {
2363 	struct nfs_inode *nfsi = NFS_I(inode);
2364 	struct nfs_access_entry *cache;
2365 	bool retry = true;
2366 	int err;
2367 
2368 	spin_lock(&inode->i_lock);
2369 	for(;;) {
2370 		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2371 			goto out_zap;
2372 		cache = nfs_access_search_rbtree(inode, cred);
2373 		err = -ENOENT;
2374 		if (cache == NULL)
2375 			goto out;
2376 		/* Found an entry, is our attribute cache valid? */
2377 		if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2378 			break;
2379 		err = -ECHILD;
2380 		if (!may_block)
2381 			goto out;
2382 		if (!retry)
2383 			goto out_zap;
2384 		spin_unlock(&inode->i_lock);
2385 		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2386 		if (err)
2387 			return err;
2388 		spin_lock(&inode->i_lock);
2389 		retry = false;
2390 	}
2391 	res->cred = cache->cred;
2392 	res->mask = cache->mask;
2393 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2394 	err = 0;
2395 out:
2396 	spin_unlock(&inode->i_lock);
2397 	return err;
2398 out_zap:
2399 	spin_unlock(&inode->i_lock);
2400 	nfs_access_zap_cache(inode);
2401 	return -ENOENT;
2402 }
2403 
2404 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res)
2405 {
2406 	/* Only check the most recently returned cache entry,
2407 	 * but do it without locking.
2408 	 */
2409 	struct nfs_inode *nfsi = NFS_I(inode);
2410 	struct nfs_access_entry *cache;
2411 	int err = -ECHILD;
2412 	struct list_head *lh;
2413 
2414 	rcu_read_lock();
2415 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2416 		goto out;
2417 	lh = rcu_dereference(nfsi->access_cache_entry_lru.prev);
2418 	cache = list_entry(lh, struct nfs_access_entry, lru);
2419 	if (lh == &nfsi->access_cache_entry_lru ||
2420 	    cred != cache->cred)
2421 		cache = NULL;
2422 	if (cache == NULL)
2423 		goto out;
2424 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2425 		goto out;
2426 	res->cred = cache->cred;
2427 	res->mask = cache->mask;
2428 	err = 0;
2429 out:
2430 	rcu_read_unlock();
2431 	return err;
2432 }
2433 
2434 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2435 {
2436 	struct nfs_inode *nfsi = NFS_I(inode);
2437 	struct rb_root *root_node = &nfsi->access_cache;
2438 	struct rb_node **p = &root_node->rb_node;
2439 	struct rb_node *parent = NULL;
2440 	struct nfs_access_entry *entry;
2441 	int cmp;
2442 
2443 	spin_lock(&inode->i_lock);
2444 	while (*p != NULL) {
2445 		parent = *p;
2446 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2447 		cmp = cred_fscmp(set->cred, entry->cred);
2448 
2449 		if (cmp < 0)
2450 			p = &parent->rb_left;
2451 		else if (cmp > 0)
2452 			p = &parent->rb_right;
2453 		else
2454 			goto found;
2455 	}
2456 	rb_link_node(&set->rb_node, parent, p);
2457 	rb_insert_color(&set->rb_node, root_node);
2458 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2459 	spin_unlock(&inode->i_lock);
2460 	return;
2461 found:
2462 	rb_replace_node(parent, &set->rb_node, root_node);
2463 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2464 	list_del(&entry->lru);
2465 	spin_unlock(&inode->i_lock);
2466 	nfs_access_free_entry(entry);
2467 }
2468 
2469 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2470 {
2471 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2472 	if (cache == NULL)
2473 		return;
2474 	RB_CLEAR_NODE(&cache->rb_node);
2475 	cache->cred = get_cred(set->cred);
2476 	cache->mask = set->mask;
2477 
2478 	/* The above field assignments must be visible
2479 	 * before this item appears on the lru.  We cannot easily
2480 	 * use rcu_assign_pointer, so just force the memory barrier.
2481 	 */
2482 	smp_wmb();
2483 	nfs_access_add_rbtree(inode, cache);
2484 
2485 	/* Update accounting */
2486 	smp_mb__before_atomic();
2487 	atomic_long_inc(&nfs_access_nr_entries);
2488 	smp_mb__after_atomic();
2489 
2490 	/* Add inode to global LRU list */
2491 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2492 		spin_lock(&nfs_access_lru_lock);
2493 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2494 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2495 					&nfs_access_lru_list);
2496 		spin_unlock(&nfs_access_lru_lock);
2497 	}
2498 	nfs_access_cache_enforce_limit();
2499 }
2500 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2501 
2502 #define NFS_MAY_READ (NFS_ACCESS_READ)
2503 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2504 		NFS_ACCESS_EXTEND | \
2505 		NFS_ACCESS_DELETE)
2506 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2507 		NFS_ACCESS_EXTEND)
2508 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2509 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2510 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2511 static int
2512 nfs_access_calc_mask(u32 access_result, umode_t umode)
2513 {
2514 	int mask = 0;
2515 
2516 	if (access_result & NFS_MAY_READ)
2517 		mask |= MAY_READ;
2518 	if (S_ISDIR(umode)) {
2519 		if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2520 			mask |= MAY_WRITE;
2521 		if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2522 			mask |= MAY_EXEC;
2523 	} else if (S_ISREG(umode)) {
2524 		if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2525 			mask |= MAY_WRITE;
2526 		if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2527 			mask |= MAY_EXEC;
2528 	} else if (access_result & NFS_MAY_WRITE)
2529 			mask |= MAY_WRITE;
2530 	return mask;
2531 }
2532 
2533 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2534 {
2535 	entry->mask = access_result;
2536 }
2537 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2538 
2539 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
2540 {
2541 	struct nfs_access_entry cache;
2542 	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2543 	int cache_mask;
2544 	int status;
2545 
2546 	trace_nfs_access_enter(inode);
2547 
2548 	status = nfs_access_get_cached_rcu(inode, cred, &cache);
2549 	if (status != 0)
2550 		status = nfs_access_get_cached(inode, cred, &cache, may_block);
2551 	if (status == 0)
2552 		goto out_cached;
2553 
2554 	status = -ECHILD;
2555 	if (!may_block)
2556 		goto out;
2557 
2558 	/*
2559 	 * Determine which access bits we want to ask for...
2560 	 */
2561 	cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND;
2562 	if (S_ISDIR(inode->i_mode))
2563 		cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
2564 	else
2565 		cache.mask |= NFS_ACCESS_EXECUTE;
2566 	cache.cred = cred;
2567 	status = NFS_PROTO(inode)->access(inode, &cache);
2568 	if (status != 0) {
2569 		if (status == -ESTALE) {
2570 			nfs_zap_caches(inode);
2571 			if (!S_ISDIR(inode->i_mode))
2572 				set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2573 		}
2574 		goto out;
2575 	}
2576 	nfs_access_add_cache(inode, &cache);
2577 out_cached:
2578 	cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
2579 	if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2580 		status = -EACCES;
2581 out:
2582 	trace_nfs_access_exit(inode, status);
2583 	return status;
2584 }
2585 
2586 static int nfs_open_permission_mask(int openflags)
2587 {
2588 	int mask = 0;
2589 
2590 	if (openflags & __FMODE_EXEC) {
2591 		/* ONLY check exec rights */
2592 		mask = MAY_EXEC;
2593 	} else {
2594 		if ((openflags & O_ACCMODE) != O_WRONLY)
2595 			mask |= MAY_READ;
2596 		if ((openflags & O_ACCMODE) != O_RDONLY)
2597 			mask |= MAY_WRITE;
2598 	}
2599 
2600 	return mask;
2601 }
2602 
2603 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
2604 {
2605 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2606 }
2607 EXPORT_SYMBOL_GPL(nfs_may_open);
2608 
2609 static int nfs_execute_ok(struct inode *inode, int mask)
2610 {
2611 	struct nfs_server *server = NFS_SERVER(inode);
2612 	int ret = 0;
2613 
2614 	if (S_ISDIR(inode->i_mode))
2615 		return 0;
2616 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_OTHER)) {
2617 		if (mask & MAY_NOT_BLOCK)
2618 			return -ECHILD;
2619 		ret = __nfs_revalidate_inode(server, inode);
2620 	}
2621 	if (ret == 0 && !execute_ok(inode))
2622 		ret = -EACCES;
2623 	return ret;
2624 }
2625 
2626 int nfs_permission(struct inode *inode, int mask)
2627 {
2628 	const struct cred *cred = current_cred();
2629 	int res = 0;
2630 
2631 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2632 
2633 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2634 		goto out;
2635 	/* Is this sys_access() ? */
2636 	if (mask & (MAY_ACCESS | MAY_CHDIR))
2637 		goto force_lookup;
2638 
2639 	switch (inode->i_mode & S_IFMT) {
2640 		case S_IFLNK:
2641 			goto out;
2642 		case S_IFREG:
2643 			if ((mask & MAY_OPEN) &&
2644 			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2645 				return 0;
2646 			break;
2647 		case S_IFDIR:
2648 			/*
2649 			 * Optimize away all write operations, since the server
2650 			 * will check permissions when we perform the op.
2651 			 */
2652 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2653 				goto out;
2654 	}
2655 
2656 force_lookup:
2657 	if (!NFS_PROTO(inode)->access)
2658 		goto out_notsup;
2659 
2660 	/* Always try fast lookups first */
2661 	rcu_read_lock();
2662 	res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK);
2663 	rcu_read_unlock();
2664 	if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) {
2665 		/* Fast lookup failed, try the slow way */
2666 		res = nfs_do_access(inode, cred, mask);
2667 	}
2668 out:
2669 	if (!res && (mask & MAY_EXEC))
2670 		res = nfs_execute_ok(inode, mask);
2671 
2672 	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2673 		inode->i_sb->s_id, inode->i_ino, mask, res);
2674 	return res;
2675 out_notsup:
2676 	if (mask & MAY_NOT_BLOCK)
2677 		return -ECHILD;
2678 
2679 	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2680 	if (res == 0)
2681 		res = generic_permission(inode, mask);
2682 	goto out;
2683 }
2684 EXPORT_SYMBOL_GPL(nfs_permission);
2685 
2686 /*
2687  * Local variables:
2688  *  version-control: t
2689  *  kept-new-versions: 5
2690  * End:
2691  */
2692