1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/nfs/dir.c 4 * 5 * Copyright (C) 1992 Rick Sladkey 6 * 7 * nfs directory handling functions 8 * 9 * 10 Apr 1996 Added silly rename for unlink --okir 10 * 28 Sep 1996 Improved directory cache --okir 11 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de 12 * Re-implemented silly rename for unlink, newly implemented 13 * silly rename for nfs_rename() following the suggestions 14 * of Olaf Kirch (okir) found in this file. 15 * Following Linus comments on my original hack, this version 16 * depends only on the dcache stuff and doesn't touch the inode 17 * layer (iput() and friends). 18 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM 19 */ 20 21 #include <linux/compat.h> 22 #include <linux/module.h> 23 #include <linux/time.h> 24 #include <linux/errno.h> 25 #include <linux/stat.h> 26 #include <linux/fcntl.h> 27 #include <linux/string.h> 28 #include <linux/kernel.h> 29 #include <linux/slab.h> 30 #include <linux/mm.h> 31 #include <linux/sunrpc/clnt.h> 32 #include <linux/nfs_fs.h> 33 #include <linux/nfs_mount.h> 34 #include <linux/pagemap.h> 35 #include <linux/pagevec.h> 36 #include <linux/namei.h> 37 #include <linux/mount.h> 38 #include <linux/swap.h> 39 #include <linux/sched.h> 40 #include <linux/kmemleak.h> 41 #include <linux/xattr.h> 42 #include <linux/hash.h> 43 44 #include "delegation.h" 45 #include "iostat.h" 46 #include "internal.h" 47 #include "fscache.h" 48 49 #include "nfstrace.h" 50 51 /* #define NFS_DEBUG_VERBOSE 1 */ 52 53 static int nfs_opendir(struct inode *, struct file *); 54 static int nfs_closedir(struct inode *, struct file *); 55 static int nfs_readdir(struct file *, struct dir_context *); 56 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int); 57 static loff_t nfs_llseek_dir(struct file *, loff_t, int); 58 static void nfs_readdir_clear_array(struct folio *); 59 60 const struct file_operations nfs_dir_operations = { 61 .llseek = nfs_llseek_dir, 62 .read = generic_read_dir, 63 .iterate_shared = nfs_readdir, 64 .open = nfs_opendir, 65 .release = nfs_closedir, 66 .fsync = nfs_fsync_dir, 67 }; 68 69 const struct address_space_operations nfs_dir_aops = { 70 .free_folio = nfs_readdir_clear_array, 71 }; 72 73 #define NFS_INIT_DTSIZE PAGE_SIZE 74 75 static struct nfs_open_dir_context * 76 alloc_nfs_open_dir_context(struct inode *dir) 77 { 78 struct nfs_inode *nfsi = NFS_I(dir); 79 struct nfs_open_dir_context *ctx; 80 81 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL_ACCOUNT); 82 if (ctx != NULL) { 83 ctx->attr_gencount = nfsi->attr_gencount; 84 ctx->dtsize = NFS_INIT_DTSIZE; 85 spin_lock(&dir->i_lock); 86 if (list_empty(&nfsi->open_files) && 87 (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER)) 88 nfs_set_cache_invalid(dir, 89 NFS_INO_INVALID_DATA | 90 NFS_INO_REVAL_FORCED); 91 list_add_tail_rcu(&ctx->list, &nfsi->open_files); 92 memcpy(ctx->verf, nfsi->cookieverf, sizeof(ctx->verf)); 93 spin_unlock(&dir->i_lock); 94 return ctx; 95 } 96 return ERR_PTR(-ENOMEM); 97 } 98 99 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx) 100 { 101 spin_lock(&dir->i_lock); 102 list_del_rcu(&ctx->list); 103 spin_unlock(&dir->i_lock); 104 kfree_rcu(ctx, rcu_head); 105 } 106 107 /* 108 * Open file 109 */ 110 static int 111 nfs_opendir(struct inode *inode, struct file *filp) 112 { 113 int res = 0; 114 struct nfs_open_dir_context *ctx; 115 116 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp); 117 118 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 119 120 ctx = alloc_nfs_open_dir_context(inode); 121 if (IS_ERR(ctx)) { 122 res = PTR_ERR(ctx); 123 goto out; 124 } 125 filp->private_data = ctx; 126 out: 127 return res; 128 } 129 130 static int 131 nfs_closedir(struct inode *inode, struct file *filp) 132 { 133 put_nfs_open_dir_context(file_inode(filp), filp->private_data); 134 return 0; 135 } 136 137 struct nfs_cache_array_entry { 138 u64 cookie; 139 u64 ino; 140 const char *name; 141 unsigned int name_len; 142 unsigned char d_type; 143 }; 144 145 struct nfs_cache_array { 146 u64 change_attr; 147 u64 last_cookie; 148 unsigned int size; 149 unsigned char folio_full : 1, 150 folio_is_eof : 1, 151 cookies_are_ordered : 1; 152 struct nfs_cache_array_entry array[]; 153 }; 154 155 struct nfs_readdir_descriptor { 156 struct file *file; 157 struct folio *folio; 158 struct dir_context *ctx; 159 pgoff_t folio_index; 160 pgoff_t folio_index_max; 161 u64 dir_cookie; 162 u64 last_cookie; 163 loff_t current_index; 164 165 __be32 verf[NFS_DIR_VERIFIER_SIZE]; 166 unsigned long dir_verifier; 167 unsigned long timestamp; 168 unsigned long gencount; 169 unsigned long attr_gencount; 170 unsigned int cache_entry_index; 171 unsigned int buffer_fills; 172 unsigned int dtsize; 173 bool clear_cache; 174 bool plus; 175 bool eob; 176 bool eof; 177 }; 178 179 static void nfs_set_dtsize(struct nfs_readdir_descriptor *desc, unsigned int sz) 180 { 181 struct nfs_server *server = NFS_SERVER(file_inode(desc->file)); 182 unsigned int maxsize = server->dtsize; 183 184 if (sz > maxsize) 185 sz = maxsize; 186 if (sz < NFS_MIN_FILE_IO_SIZE) 187 sz = NFS_MIN_FILE_IO_SIZE; 188 desc->dtsize = sz; 189 } 190 191 static void nfs_shrink_dtsize(struct nfs_readdir_descriptor *desc) 192 { 193 nfs_set_dtsize(desc, desc->dtsize >> 1); 194 } 195 196 static void nfs_grow_dtsize(struct nfs_readdir_descriptor *desc) 197 { 198 nfs_set_dtsize(desc, desc->dtsize << 1); 199 } 200 201 static void nfs_readdir_folio_init_array(struct folio *folio, u64 last_cookie, 202 u64 change_attr) 203 { 204 struct nfs_cache_array *array; 205 206 array = kmap_local_folio(folio, 0); 207 array->change_attr = change_attr; 208 array->last_cookie = last_cookie; 209 array->size = 0; 210 array->folio_full = 0; 211 array->folio_is_eof = 0; 212 array->cookies_are_ordered = 1; 213 kunmap_local(array); 214 } 215 216 /* 217 * we are freeing strings created by nfs_add_to_readdir_array() 218 */ 219 static void nfs_readdir_clear_array(struct folio *folio) 220 { 221 struct nfs_cache_array *array; 222 unsigned int i; 223 224 array = kmap_local_folio(folio, 0); 225 for (i = 0; i < array->size; i++) 226 kfree(array->array[i].name); 227 array->size = 0; 228 kunmap_local(array); 229 } 230 231 static void nfs_readdir_folio_reinit_array(struct folio *folio, u64 last_cookie, 232 u64 change_attr) 233 { 234 nfs_readdir_clear_array(folio); 235 nfs_readdir_folio_init_array(folio, last_cookie, change_attr); 236 } 237 238 static struct folio * 239 nfs_readdir_folio_array_alloc(u64 last_cookie, gfp_t gfp_flags) 240 { 241 struct folio *folio = folio_alloc(gfp_flags, 0); 242 if (folio) 243 nfs_readdir_folio_init_array(folio, last_cookie, 0); 244 return folio; 245 } 246 247 static void nfs_readdir_folio_array_free(struct folio *folio) 248 { 249 if (folio) { 250 nfs_readdir_clear_array(folio); 251 folio_put(folio); 252 } 253 } 254 255 static u64 nfs_readdir_array_index_cookie(struct nfs_cache_array *array) 256 { 257 return array->size == 0 ? array->last_cookie : array->array[0].cookie; 258 } 259 260 static void nfs_readdir_array_set_eof(struct nfs_cache_array *array) 261 { 262 array->folio_is_eof = 1; 263 array->folio_full = 1; 264 } 265 266 static bool nfs_readdir_array_is_full(struct nfs_cache_array *array) 267 { 268 return array->folio_full; 269 } 270 271 /* 272 * the caller is responsible for freeing qstr.name 273 * when called by nfs_readdir_add_to_array, the strings will be freed in 274 * nfs_clear_readdir_array() 275 */ 276 static const char *nfs_readdir_copy_name(const char *name, unsigned int len) 277 { 278 const char *ret = kmemdup_nul(name, len, GFP_KERNEL); 279 280 /* 281 * Avoid a kmemleak false positive. The pointer to the name is stored 282 * in a page cache page which kmemleak does not scan. 283 */ 284 if (ret != NULL) 285 kmemleak_not_leak(ret); 286 return ret; 287 } 288 289 static size_t nfs_readdir_array_maxentries(void) 290 { 291 return (PAGE_SIZE - sizeof(struct nfs_cache_array)) / 292 sizeof(struct nfs_cache_array_entry); 293 } 294 295 /* 296 * Check that the next array entry lies entirely within the page bounds 297 */ 298 static int nfs_readdir_array_can_expand(struct nfs_cache_array *array) 299 { 300 if (array->folio_full) 301 return -ENOSPC; 302 if (array->size == nfs_readdir_array_maxentries()) { 303 array->folio_full = 1; 304 return -ENOSPC; 305 } 306 return 0; 307 } 308 309 static int nfs_readdir_folio_array_append(struct folio *folio, 310 const struct nfs_entry *entry, 311 u64 *cookie) 312 { 313 struct nfs_cache_array *array; 314 struct nfs_cache_array_entry *cache_entry; 315 const char *name; 316 int ret = -ENOMEM; 317 318 name = nfs_readdir_copy_name(entry->name, entry->len); 319 320 array = kmap_local_folio(folio, 0); 321 if (!name) 322 goto out; 323 ret = nfs_readdir_array_can_expand(array); 324 if (ret) { 325 kfree(name); 326 goto out; 327 } 328 329 cache_entry = &array->array[array->size]; 330 cache_entry->cookie = array->last_cookie; 331 cache_entry->ino = entry->ino; 332 cache_entry->d_type = entry->d_type; 333 cache_entry->name_len = entry->len; 334 cache_entry->name = name; 335 array->last_cookie = entry->cookie; 336 if (array->last_cookie <= cache_entry->cookie) 337 array->cookies_are_ordered = 0; 338 array->size++; 339 if (entry->eof != 0) 340 nfs_readdir_array_set_eof(array); 341 out: 342 *cookie = array->last_cookie; 343 kunmap_local(array); 344 return ret; 345 } 346 347 #define NFS_READDIR_COOKIE_MASK (U32_MAX >> 14) 348 /* 349 * Hash algorithm allowing content addressible access to sequences 350 * of directory cookies. Content is addressed by the value of the 351 * cookie index of the first readdir entry in a page. 352 * 353 * We select only the first 18 bits to avoid issues with excessive 354 * memory use for the page cache XArray. 18 bits should allow the caching 355 * of 262144 pages of sequences of readdir entries. Since each page holds 356 * 127 readdir entries for a typical 64-bit system, that works out to a 357 * cache of ~ 33 million entries per directory. 358 */ 359 static pgoff_t nfs_readdir_folio_cookie_hash(u64 cookie) 360 { 361 if (cookie == 0) 362 return 0; 363 return hash_64(cookie, 18); 364 } 365 366 static bool nfs_readdir_folio_validate(struct folio *folio, u64 last_cookie, 367 u64 change_attr) 368 { 369 struct nfs_cache_array *array = kmap_local_folio(folio, 0); 370 int ret = true; 371 372 if (array->change_attr != change_attr) 373 ret = false; 374 if (nfs_readdir_array_index_cookie(array) != last_cookie) 375 ret = false; 376 kunmap_local(array); 377 return ret; 378 } 379 380 static void nfs_readdir_folio_unlock_and_put(struct folio *folio) 381 { 382 folio_unlock(folio); 383 folio_put(folio); 384 } 385 386 static void nfs_readdir_folio_init_and_validate(struct folio *folio, u64 cookie, 387 u64 change_attr) 388 { 389 if (folio_test_uptodate(folio)) { 390 if (nfs_readdir_folio_validate(folio, cookie, change_attr)) 391 return; 392 nfs_readdir_clear_array(folio); 393 } 394 nfs_readdir_folio_init_array(folio, cookie, change_attr); 395 folio_mark_uptodate(folio); 396 } 397 398 static struct folio *nfs_readdir_folio_get_locked(struct address_space *mapping, 399 u64 cookie, u64 change_attr) 400 { 401 pgoff_t index = nfs_readdir_folio_cookie_hash(cookie); 402 struct folio *folio; 403 404 folio = filemap_grab_folio(mapping, index); 405 if (IS_ERR(folio)) 406 return NULL; 407 nfs_readdir_folio_init_and_validate(folio, cookie, change_attr); 408 return folio; 409 } 410 411 static u64 nfs_readdir_folio_last_cookie(struct folio *folio) 412 { 413 struct nfs_cache_array *array; 414 u64 ret; 415 416 array = kmap_local_folio(folio, 0); 417 ret = array->last_cookie; 418 kunmap_local(array); 419 return ret; 420 } 421 422 static bool nfs_readdir_folio_needs_filling(struct folio *folio) 423 { 424 struct nfs_cache_array *array; 425 bool ret; 426 427 array = kmap_local_folio(folio, 0); 428 ret = !nfs_readdir_array_is_full(array); 429 kunmap_local(array); 430 return ret; 431 } 432 433 static void nfs_readdir_folio_set_eof(struct folio *folio) 434 { 435 struct nfs_cache_array *array; 436 437 array = kmap_local_folio(folio, 0); 438 nfs_readdir_array_set_eof(array); 439 kunmap_local(array); 440 } 441 442 static struct folio *nfs_readdir_folio_get_next(struct address_space *mapping, 443 u64 cookie, u64 change_attr) 444 { 445 pgoff_t index = nfs_readdir_folio_cookie_hash(cookie); 446 struct folio *folio; 447 448 folio = __filemap_get_folio(mapping, index, 449 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT, 450 mapping_gfp_mask(mapping)); 451 if (IS_ERR(folio)) 452 return NULL; 453 nfs_readdir_folio_init_and_validate(folio, cookie, change_attr); 454 if (nfs_readdir_folio_last_cookie(folio) != cookie) 455 nfs_readdir_folio_reinit_array(folio, cookie, change_attr); 456 return folio; 457 } 458 459 static inline 460 int is_32bit_api(void) 461 { 462 #ifdef CONFIG_COMPAT 463 return in_compat_syscall(); 464 #else 465 return (BITS_PER_LONG == 32); 466 #endif 467 } 468 469 static 470 bool nfs_readdir_use_cookie(const struct file *filp) 471 { 472 if ((filp->f_mode & FMODE_32BITHASH) || 473 (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api())) 474 return false; 475 return true; 476 } 477 478 static void nfs_readdir_seek_next_array(struct nfs_cache_array *array, 479 struct nfs_readdir_descriptor *desc) 480 { 481 if (array->folio_full) { 482 desc->last_cookie = array->last_cookie; 483 desc->current_index += array->size; 484 desc->cache_entry_index = 0; 485 desc->folio_index++; 486 } else 487 desc->last_cookie = nfs_readdir_array_index_cookie(array); 488 } 489 490 static void nfs_readdir_rewind_search(struct nfs_readdir_descriptor *desc) 491 { 492 desc->current_index = 0; 493 desc->last_cookie = 0; 494 desc->folio_index = 0; 495 } 496 497 static int nfs_readdir_search_for_pos(struct nfs_cache_array *array, 498 struct nfs_readdir_descriptor *desc) 499 { 500 loff_t diff = desc->ctx->pos - desc->current_index; 501 unsigned int index; 502 503 if (diff < 0) 504 goto out_eof; 505 if (diff >= array->size) { 506 if (array->folio_is_eof) 507 goto out_eof; 508 nfs_readdir_seek_next_array(array, desc); 509 return -EAGAIN; 510 } 511 512 index = (unsigned int)diff; 513 desc->dir_cookie = array->array[index].cookie; 514 desc->cache_entry_index = index; 515 return 0; 516 out_eof: 517 desc->eof = true; 518 return -EBADCOOKIE; 519 } 520 521 static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array, 522 u64 cookie) 523 { 524 if (!array->cookies_are_ordered) 525 return true; 526 /* Optimisation for monotonically increasing cookies */ 527 if (cookie >= array->last_cookie) 528 return false; 529 if (array->size && cookie < array->array[0].cookie) 530 return false; 531 return true; 532 } 533 534 static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, 535 struct nfs_readdir_descriptor *desc) 536 { 537 unsigned int i; 538 int status = -EAGAIN; 539 540 if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie)) 541 goto check_eof; 542 543 for (i = 0; i < array->size; i++) { 544 if (array->array[i].cookie == desc->dir_cookie) { 545 if (nfs_readdir_use_cookie(desc->file)) 546 desc->ctx->pos = desc->dir_cookie; 547 else 548 desc->ctx->pos = desc->current_index + i; 549 desc->cache_entry_index = i; 550 return 0; 551 } 552 } 553 check_eof: 554 if (array->folio_is_eof) { 555 status = -EBADCOOKIE; 556 if (desc->dir_cookie == array->last_cookie) 557 desc->eof = true; 558 } else 559 nfs_readdir_seek_next_array(array, desc); 560 return status; 561 } 562 563 static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc) 564 { 565 struct nfs_cache_array *array; 566 int status; 567 568 array = kmap_local_folio(desc->folio, 0); 569 570 if (desc->dir_cookie == 0) 571 status = nfs_readdir_search_for_pos(array, desc); 572 else 573 status = nfs_readdir_search_for_cookie(array, desc); 574 575 kunmap_local(array); 576 return status; 577 } 578 579 /* Fill a page with xdr information before transferring to the cache page */ 580 static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc, 581 __be32 *verf, u64 cookie, 582 struct page **pages, size_t bufsize, 583 __be32 *verf_res) 584 { 585 struct inode *inode = file_inode(desc->file); 586 struct nfs_readdir_arg arg = { 587 .dentry = file_dentry(desc->file), 588 .cred = desc->file->f_cred, 589 .verf = verf, 590 .cookie = cookie, 591 .pages = pages, 592 .page_len = bufsize, 593 .plus = desc->plus, 594 }; 595 struct nfs_readdir_res res = { 596 .verf = verf_res, 597 }; 598 unsigned long timestamp, gencount; 599 int error; 600 601 again: 602 timestamp = jiffies; 603 gencount = nfs_inc_attr_generation_counter(); 604 desc->dir_verifier = nfs_save_change_attribute(inode); 605 error = NFS_PROTO(inode)->readdir(&arg, &res); 606 if (error < 0) { 607 /* We requested READDIRPLUS, but the server doesn't grok it */ 608 if (error == -ENOTSUPP && desc->plus) { 609 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS; 610 desc->plus = arg.plus = false; 611 goto again; 612 } 613 goto error; 614 } 615 desc->timestamp = timestamp; 616 desc->gencount = gencount; 617 error: 618 return error; 619 } 620 621 static int xdr_decode(struct nfs_readdir_descriptor *desc, 622 struct nfs_entry *entry, struct xdr_stream *xdr) 623 { 624 struct inode *inode = file_inode(desc->file); 625 int error; 626 627 error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus); 628 if (error) 629 return error; 630 entry->fattr->time_start = desc->timestamp; 631 entry->fattr->gencount = desc->gencount; 632 return 0; 633 } 634 635 /* Match file and dirent using either filehandle or fileid 636 * Note: caller is responsible for checking the fsid 637 */ 638 static 639 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry) 640 { 641 struct inode *inode; 642 struct nfs_inode *nfsi; 643 644 if (d_really_is_negative(dentry)) 645 return 0; 646 647 inode = d_inode(dentry); 648 if (is_bad_inode(inode) || NFS_STALE(inode)) 649 return 0; 650 651 nfsi = NFS_I(inode); 652 if (entry->fattr->fileid != nfsi->fileid) 653 return 0; 654 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0) 655 return 0; 656 return 1; 657 } 658 659 #define NFS_READDIR_CACHE_USAGE_THRESHOLD (8UL) 660 661 static bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx, 662 unsigned int cache_hits, 663 unsigned int cache_misses) 664 { 665 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS)) 666 return false; 667 if (ctx->pos == 0 || 668 cache_hits + cache_misses > NFS_READDIR_CACHE_USAGE_THRESHOLD) 669 return true; 670 return false; 671 } 672 673 /* 674 * This function is called by the getattr code to request the 675 * use of readdirplus to accelerate any future lookups in the same 676 * directory. 677 */ 678 void nfs_readdir_record_entry_cache_hit(struct inode *dir) 679 { 680 struct nfs_inode *nfsi = NFS_I(dir); 681 struct nfs_open_dir_context *ctx; 682 683 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) && 684 S_ISDIR(dir->i_mode)) { 685 rcu_read_lock(); 686 list_for_each_entry_rcu (ctx, &nfsi->open_files, list) 687 atomic_inc(&ctx->cache_hits); 688 rcu_read_unlock(); 689 } 690 } 691 692 /* 693 * This function is mainly for use by nfs_getattr(). 694 * 695 * If this is an 'ls -l', we want to force use of readdirplus. 696 */ 697 void nfs_readdir_record_entry_cache_miss(struct inode *dir) 698 { 699 struct nfs_inode *nfsi = NFS_I(dir); 700 struct nfs_open_dir_context *ctx; 701 702 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) && 703 S_ISDIR(dir->i_mode)) { 704 rcu_read_lock(); 705 list_for_each_entry_rcu (ctx, &nfsi->open_files, list) 706 atomic_inc(&ctx->cache_misses); 707 rcu_read_unlock(); 708 } 709 } 710 711 static void nfs_lookup_advise_force_readdirplus(struct inode *dir, 712 unsigned int flags) 713 { 714 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE)) 715 return; 716 if (flags & (LOOKUP_EXCL | LOOKUP_PARENT | LOOKUP_REVAL)) 717 return; 718 nfs_readdir_record_entry_cache_miss(dir); 719 } 720 721 static 722 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry, 723 unsigned long dir_verifier) 724 { 725 struct qstr filename = QSTR_INIT(entry->name, entry->len); 726 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 727 struct dentry *dentry; 728 struct dentry *alias; 729 struct inode *inode; 730 int status; 731 732 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID)) 733 return; 734 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID)) 735 return; 736 if (filename.len == 0) 737 return; 738 /* Validate that the name doesn't contain any illegal '\0' */ 739 if (strnlen(filename.name, filename.len) != filename.len) 740 return; 741 /* ...or '/' */ 742 if (strnchr(filename.name, filename.len, '/')) 743 return; 744 if (filename.name[0] == '.') { 745 if (filename.len == 1) 746 return; 747 if (filename.len == 2 && filename.name[1] == '.') 748 return; 749 } 750 filename.hash = full_name_hash(parent, filename.name, filename.len); 751 752 dentry = d_lookup(parent, &filename); 753 again: 754 if (!dentry) { 755 dentry = d_alloc_parallel(parent, &filename, &wq); 756 if (IS_ERR(dentry)) 757 return; 758 } 759 if (!d_in_lookup(dentry)) { 760 /* Is there a mountpoint here? If so, just exit */ 761 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid, 762 &entry->fattr->fsid)) 763 goto out; 764 if (nfs_same_file(dentry, entry)) { 765 if (!entry->fh->size) 766 goto out; 767 nfs_set_verifier(dentry, dir_verifier); 768 status = nfs_refresh_inode(d_inode(dentry), entry->fattr); 769 if (!status) 770 nfs_setsecurity(d_inode(dentry), entry->fattr); 771 trace_nfs_readdir_lookup_revalidate(d_inode(parent), 772 dentry, 0, status); 773 goto out; 774 } else { 775 trace_nfs_readdir_lookup_revalidate_failed( 776 d_inode(parent), dentry, 0); 777 d_invalidate(dentry); 778 dput(dentry); 779 dentry = NULL; 780 goto again; 781 } 782 } 783 if (!entry->fh->size) { 784 d_lookup_done(dentry); 785 goto out; 786 } 787 788 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr); 789 alias = d_splice_alias(inode, dentry); 790 d_lookup_done(dentry); 791 if (alias) { 792 if (IS_ERR(alias)) 793 goto out; 794 dput(dentry); 795 dentry = alias; 796 } 797 nfs_set_verifier(dentry, dir_verifier); 798 trace_nfs_readdir_lookup(d_inode(parent), dentry, 0); 799 out: 800 dput(dentry); 801 } 802 803 static int nfs_readdir_entry_decode(struct nfs_readdir_descriptor *desc, 804 struct nfs_entry *entry, 805 struct xdr_stream *stream) 806 { 807 int ret; 808 809 if (entry->fattr->label) 810 entry->fattr->label->len = NFS4_MAXLABELLEN; 811 ret = xdr_decode(desc, entry, stream); 812 if (ret || !desc->plus) 813 return ret; 814 nfs_prime_dcache(file_dentry(desc->file), entry, desc->dir_verifier); 815 return 0; 816 } 817 818 /* Perform conversion from xdr to cache array */ 819 static int nfs_readdir_folio_filler(struct nfs_readdir_descriptor *desc, 820 struct nfs_entry *entry, 821 struct page **xdr_pages, unsigned int buflen, 822 struct folio **arrays, size_t narrays, 823 u64 change_attr) 824 { 825 struct address_space *mapping = desc->file->f_mapping; 826 struct folio *new, *folio = *arrays; 827 struct xdr_stream stream; 828 struct page *scratch; 829 struct xdr_buf buf; 830 u64 cookie; 831 int status; 832 833 scratch = alloc_page(GFP_KERNEL); 834 if (scratch == NULL) 835 return -ENOMEM; 836 837 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen); 838 xdr_set_scratch_page(&stream, scratch); 839 840 do { 841 status = nfs_readdir_entry_decode(desc, entry, &stream); 842 if (status != 0) 843 break; 844 845 status = nfs_readdir_folio_array_append(folio, entry, &cookie); 846 if (status != -ENOSPC) 847 continue; 848 849 if (folio->mapping != mapping) { 850 if (!--narrays) 851 break; 852 new = nfs_readdir_folio_array_alloc(cookie, GFP_KERNEL); 853 if (!new) 854 break; 855 arrays++; 856 *arrays = folio = new; 857 } else { 858 new = nfs_readdir_folio_get_next(mapping, cookie, 859 change_attr); 860 if (!new) 861 break; 862 if (folio != *arrays) 863 nfs_readdir_folio_unlock_and_put(folio); 864 folio = new; 865 } 866 desc->folio_index_max++; 867 status = nfs_readdir_folio_array_append(folio, entry, &cookie); 868 } while (!status && !entry->eof); 869 870 switch (status) { 871 case -EBADCOOKIE: 872 if (!entry->eof) 873 break; 874 nfs_readdir_folio_set_eof(folio); 875 fallthrough; 876 case -EAGAIN: 877 status = 0; 878 break; 879 case -ENOSPC: 880 status = 0; 881 if (!desc->plus) 882 break; 883 while (!nfs_readdir_entry_decode(desc, entry, &stream)) 884 ; 885 } 886 887 if (folio != *arrays) 888 nfs_readdir_folio_unlock_and_put(folio); 889 890 put_page(scratch); 891 return status; 892 } 893 894 static void nfs_readdir_free_pages(struct page **pages, size_t npages) 895 { 896 while (npages--) 897 put_page(pages[npages]); 898 kfree(pages); 899 } 900 901 /* 902 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call 903 * to nfs_readdir_free_pages() 904 */ 905 static struct page **nfs_readdir_alloc_pages(size_t npages) 906 { 907 struct page **pages; 908 size_t i; 909 910 pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL); 911 if (!pages) 912 return NULL; 913 for (i = 0; i < npages; i++) { 914 struct page *page = alloc_page(GFP_KERNEL); 915 if (page == NULL) 916 goto out_freepages; 917 pages[i] = page; 918 } 919 return pages; 920 921 out_freepages: 922 nfs_readdir_free_pages(pages, i); 923 return NULL; 924 } 925 926 static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc, 927 __be32 *verf_arg, __be32 *verf_res, 928 struct folio **arrays, size_t narrays) 929 { 930 u64 change_attr; 931 struct page **pages; 932 struct folio *folio = *arrays; 933 struct nfs_entry *entry; 934 size_t array_size; 935 struct inode *inode = file_inode(desc->file); 936 unsigned int dtsize = desc->dtsize; 937 unsigned int pglen; 938 int status = -ENOMEM; 939 940 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 941 if (!entry) 942 return -ENOMEM; 943 entry->cookie = nfs_readdir_folio_last_cookie(folio); 944 entry->fh = nfs_alloc_fhandle(); 945 entry->fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode)); 946 entry->server = NFS_SERVER(inode); 947 if (entry->fh == NULL || entry->fattr == NULL) 948 goto out; 949 950 array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT; 951 pages = nfs_readdir_alloc_pages(array_size); 952 if (!pages) 953 goto out; 954 955 change_attr = inode_peek_iversion_raw(inode); 956 status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie, pages, 957 dtsize, verf_res); 958 if (status < 0) 959 goto free_pages; 960 961 pglen = status; 962 if (pglen != 0) 963 status = nfs_readdir_folio_filler(desc, entry, pages, pglen, 964 arrays, narrays, change_attr); 965 else 966 nfs_readdir_folio_set_eof(folio); 967 desc->buffer_fills++; 968 969 free_pages: 970 nfs_readdir_free_pages(pages, array_size); 971 out: 972 nfs_free_fattr(entry->fattr); 973 nfs_free_fhandle(entry->fh); 974 kfree(entry); 975 return status; 976 } 977 978 static void nfs_readdir_folio_put(struct nfs_readdir_descriptor *desc) 979 { 980 folio_put(desc->folio); 981 desc->folio = NULL; 982 } 983 984 static void 985 nfs_readdir_folio_unlock_and_put_cached(struct nfs_readdir_descriptor *desc) 986 { 987 folio_unlock(desc->folio); 988 nfs_readdir_folio_put(desc); 989 } 990 991 static struct folio * 992 nfs_readdir_folio_get_cached(struct nfs_readdir_descriptor *desc) 993 { 994 struct address_space *mapping = desc->file->f_mapping; 995 u64 change_attr = inode_peek_iversion_raw(mapping->host); 996 u64 cookie = desc->last_cookie; 997 struct folio *folio; 998 999 folio = nfs_readdir_folio_get_locked(mapping, cookie, change_attr); 1000 if (!folio) 1001 return NULL; 1002 if (desc->clear_cache && !nfs_readdir_folio_needs_filling(folio)) 1003 nfs_readdir_folio_reinit_array(folio, cookie, change_attr); 1004 return folio; 1005 } 1006 1007 /* 1008 * Returns 0 if desc->dir_cookie was found on page desc->page_index 1009 * and locks the page to prevent removal from the page cache. 1010 */ 1011 static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc) 1012 { 1013 struct inode *inode = file_inode(desc->file); 1014 struct nfs_inode *nfsi = NFS_I(inode); 1015 __be32 verf[NFS_DIR_VERIFIER_SIZE]; 1016 int res; 1017 1018 desc->folio = nfs_readdir_folio_get_cached(desc); 1019 if (!desc->folio) 1020 return -ENOMEM; 1021 if (nfs_readdir_folio_needs_filling(desc->folio)) { 1022 /* Grow the dtsize if we had to go back for more pages */ 1023 if (desc->folio_index == desc->folio_index_max) 1024 nfs_grow_dtsize(desc); 1025 desc->folio_index_max = desc->folio_index; 1026 trace_nfs_readdir_cache_fill(desc->file, nfsi->cookieverf, 1027 desc->last_cookie, 1028 desc->folio->index, desc->dtsize); 1029 res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf, 1030 &desc->folio, 1); 1031 if (res < 0) { 1032 nfs_readdir_folio_unlock_and_put_cached(desc); 1033 trace_nfs_readdir_cache_fill_done(inode, res); 1034 if (res == -EBADCOOKIE || res == -ENOTSYNC) { 1035 invalidate_inode_pages2(desc->file->f_mapping); 1036 nfs_readdir_rewind_search(desc); 1037 trace_nfs_readdir_invalidate_cache_range( 1038 inode, 0, MAX_LFS_FILESIZE); 1039 return -EAGAIN; 1040 } 1041 return res; 1042 } 1043 /* 1044 * Set the cookie verifier if the page cache was empty 1045 */ 1046 if (desc->last_cookie == 0 && 1047 memcmp(nfsi->cookieverf, verf, sizeof(nfsi->cookieverf))) { 1048 memcpy(nfsi->cookieverf, verf, 1049 sizeof(nfsi->cookieverf)); 1050 invalidate_inode_pages2_range(desc->file->f_mapping, 1, 1051 -1); 1052 trace_nfs_readdir_invalidate_cache_range( 1053 inode, 1, MAX_LFS_FILESIZE); 1054 } 1055 desc->clear_cache = false; 1056 } 1057 res = nfs_readdir_search_array(desc); 1058 if (res == 0) 1059 return 0; 1060 nfs_readdir_folio_unlock_and_put_cached(desc); 1061 return res; 1062 } 1063 1064 /* Search for desc->dir_cookie from the beginning of the page cache */ 1065 static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc) 1066 { 1067 int res; 1068 1069 do { 1070 res = find_and_lock_cache_page(desc); 1071 } while (res == -EAGAIN); 1072 return res; 1073 } 1074 1075 #define NFS_READDIR_CACHE_MISS_THRESHOLD (16UL) 1076 1077 /* 1078 * Once we've found the start of the dirent within a page: fill 'er up... 1079 */ 1080 static void nfs_do_filldir(struct nfs_readdir_descriptor *desc, 1081 const __be32 *verf) 1082 { 1083 struct file *file = desc->file; 1084 struct nfs_cache_array *array; 1085 unsigned int i; 1086 bool first_emit = !desc->dir_cookie; 1087 1088 array = kmap_local_folio(desc->folio, 0); 1089 for (i = desc->cache_entry_index; i < array->size; i++) { 1090 struct nfs_cache_array_entry *ent; 1091 1092 ent = &array->array[i]; 1093 if (!dir_emit(desc->ctx, ent->name, ent->name_len, 1094 nfs_compat_user_ino64(ent->ino), ent->d_type)) { 1095 desc->eob = true; 1096 break; 1097 } 1098 memcpy(desc->verf, verf, sizeof(desc->verf)); 1099 if (i == array->size - 1) { 1100 desc->dir_cookie = array->last_cookie; 1101 nfs_readdir_seek_next_array(array, desc); 1102 } else { 1103 desc->dir_cookie = array->array[i + 1].cookie; 1104 desc->last_cookie = array->array[0].cookie; 1105 } 1106 if (nfs_readdir_use_cookie(file)) 1107 desc->ctx->pos = desc->dir_cookie; 1108 else 1109 desc->ctx->pos++; 1110 if (first_emit && i > NFS_READDIR_CACHE_MISS_THRESHOLD + 1) { 1111 desc->eob = true; 1112 break; 1113 } 1114 } 1115 if (array->folio_is_eof) 1116 desc->eof = !desc->eob; 1117 1118 kunmap_local(array); 1119 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n", 1120 (unsigned long long)desc->dir_cookie); 1121 } 1122 1123 /* 1124 * If we cannot find a cookie in our cache, we suspect that this is 1125 * because it points to a deleted file, so we ask the server to return 1126 * whatever it thinks is the next entry. We then feed this to filldir. 1127 * If all goes well, we should then be able to find our way round the 1128 * cache on the next call to readdir_search_pagecache(); 1129 * 1130 * NOTE: we cannot add the anonymous page to the pagecache because 1131 * the data it contains might not be page aligned. Besides, 1132 * we should already have a complete representation of the 1133 * directory in the page cache by the time we get here. 1134 */ 1135 static int uncached_readdir(struct nfs_readdir_descriptor *desc) 1136 { 1137 struct folio **arrays; 1138 size_t i, sz = 512; 1139 __be32 verf[NFS_DIR_VERIFIER_SIZE]; 1140 int status = -ENOMEM; 1141 1142 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n", 1143 (unsigned long long)desc->dir_cookie); 1144 1145 arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL); 1146 if (!arrays) 1147 goto out; 1148 arrays[0] = nfs_readdir_folio_array_alloc(desc->dir_cookie, GFP_KERNEL); 1149 if (!arrays[0]) 1150 goto out; 1151 1152 desc->folio_index = 0; 1153 desc->cache_entry_index = 0; 1154 desc->last_cookie = desc->dir_cookie; 1155 desc->folio_index_max = 0; 1156 1157 trace_nfs_readdir_uncached(desc->file, desc->verf, desc->last_cookie, 1158 -1, desc->dtsize); 1159 1160 status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz); 1161 if (status < 0) { 1162 trace_nfs_readdir_uncached_done(file_inode(desc->file), status); 1163 goto out_free; 1164 } 1165 1166 for (i = 0; !desc->eob && i < sz && arrays[i]; i++) { 1167 desc->folio = arrays[i]; 1168 nfs_do_filldir(desc, verf); 1169 } 1170 desc->folio = NULL; 1171 1172 /* 1173 * Grow the dtsize if we have to go back for more pages, 1174 * or shrink it if we're reading too many. 1175 */ 1176 if (!desc->eof) { 1177 if (!desc->eob) 1178 nfs_grow_dtsize(desc); 1179 else if (desc->buffer_fills == 1 && 1180 i < (desc->folio_index_max >> 1)) 1181 nfs_shrink_dtsize(desc); 1182 } 1183 out_free: 1184 for (i = 0; i < sz && arrays[i]; i++) 1185 nfs_readdir_folio_array_free(arrays[i]); 1186 out: 1187 if (!nfs_readdir_use_cookie(desc->file)) 1188 nfs_readdir_rewind_search(desc); 1189 desc->folio_index_max = -1; 1190 kfree(arrays); 1191 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status); 1192 return status; 1193 } 1194 1195 static bool nfs_readdir_handle_cache_misses(struct inode *inode, 1196 struct nfs_readdir_descriptor *desc, 1197 unsigned int cache_misses, 1198 bool force_clear) 1199 { 1200 if (desc->ctx->pos == 0 || !desc->plus) 1201 return false; 1202 if (cache_misses <= NFS_READDIR_CACHE_MISS_THRESHOLD && !force_clear) 1203 return false; 1204 trace_nfs_readdir_force_readdirplus(inode); 1205 return true; 1206 } 1207 1208 /* The file offset position represents the dirent entry number. A 1209 last cookie cache takes care of the common case of reading the 1210 whole directory. 1211 */ 1212 static int nfs_readdir(struct file *file, struct dir_context *ctx) 1213 { 1214 struct dentry *dentry = file_dentry(file); 1215 struct inode *inode = d_inode(dentry); 1216 struct nfs_inode *nfsi = NFS_I(inode); 1217 struct nfs_open_dir_context *dir_ctx = file->private_data; 1218 struct nfs_readdir_descriptor *desc; 1219 unsigned int cache_hits, cache_misses; 1220 bool force_clear; 1221 int res; 1222 1223 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n", 1224 file, (long long)ctx->pos); 1225 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS); 1226 1227 /* 1228 * ctx->pos points to the dirent entry number. 1229 * *desc->dir_cookie has the cookie for the next entry. We have 1230 * to either find the entry with the appropriate number or 1231 * revalidate the cookie. 1232 */ 1233 nfs_revalidate_mapping(inode, file->f_mapping); 1234 1235 res = -ENOMEM; 1236 desc = kzalloc(sizeof(*desc), GFP_KERNEL); 1237 if (!desc) 1238 goto out; 1239 desc->file = file; 1240 desc->ctx = ctx; 1241 desc->folio_index_max = -1; 1242 1243 spin_lock(&file->f_lock); 1244 desc->dir_cookie = dir_ctx->dir_cookie; 1245 desc->folio_index = dir_ctx->page_index; 1246 desc->last_cookie = dir_ctx->last_cookie; 1247 desc->attr_gencount = dir_ctx->attr_gencount; 1248 desc->eof = dir_ctx->eof; 1249 nfs_set_dtsize(desc, dir_ctx->dtsize); 1250 memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf)); 1251 cache_hits = atomic_xchg(&dir_ctx->cache_hits, 0); 1252 cache_misses = atomic_xchg(&dir_ctx->cache_misses, 0); 1253 force_clear = dir_ctx->force_clear; 1254 spin_unlock(&file->f_lock); 1255 1256 if (desc->eof) { 1257 res = 0; 1258 goto out_free; 1259 } 1260 1261 desc->plus = nfs_use_readdirplus(inode, ctx, cache_hits, cache_misses); 1262 force_clear = nfs_readdir_handle_cache_misses(inode, desc, cache_misses, 1263 force_clear); 1264 desc->clear_cache = force_clear; 1265 1266 do { 1267 res = readdir_search_pagecache(desc); 1268 1269 if (res == -EBADCOOKIE) { 1270 res = 0; 1271 /* This means either end of directory */ 1272 if (desc->dir_cookie && !desc->eof) { 1273 /* Or that the server has 'lost' a cookie */ 1274 res = uncached_readdir(desc); 1275 if (res == 0) 1276 continue; 1277 if (res == -EBADCOOKIE || res == -ENOTSYNC) 1278 res = 0; 1279 } 1280 break; 1281 } 1282 if (res == -ETOOSMALL && desc->plus) { 1283 nfs_zap_caches(inode); 1284 desc->plus = false; 1285 desc->eof = false; 1286 continue; 1287 } 1288 if (res < 0) 1289 break; 1290 1291 nfs_do_filldir(desc, nfsi->cookieverf); 1292 nfs_readdir_folio_unlock_and_put_cached(desc); 1293 if (desc->folio_index == desc->folio_index_max) 1294 desc->clear_cache = force_clear; 1295 } while (!desc->eob && !desc->eof); 1296 1297 spin_lock(&file->f_lock); 1298 dir_ctx->dir_cookie = desc->dir_cookie; 1299 dir_ctx->last_cookie = desc->last_cookie; 1300 dir_ctx->attr_gencount = desc->attr_gencount; 1301 dir_ctx->page_index = desc->folio_index; 1302 dir_ctx->force_clear = force_clear; 1303 dir_ctx->eof = desc->eof; 1304 dir_ctx->dtsize = desc->dtsize; 1305 memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf)); 1306 spin_unlock(&file->f_lock); 1307 out_free: 1308 kfree(desc); 1309 1310 out: 1311 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res); 1312 return res; 1313 } 1314 1315 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence) 1316 { 1317 struct nfs_open_dir_context *dir_ctx = filp->private_data; 1318 1319 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n", 1320 filp, offset, whence); 1321 1322 switch (whence) { 1323 default: 1324 return -EINVAL; 1325 case SEEK_SET: 1326 if (offset < 0) 1327 return -EINVAL; 1328 spin_lock(&filp->f_lock); 1329 break; 1330 case SEEK_CUR: 1331 if (offset == 0) 1332 return filp->f_pos; 1333 spin_lock(&filp->f_lock); 1334 offset += filp->f_pos; 1335 if (offset < 0) { 1336 spin_unlock(&filp->f_lock); 1337 return -EINVAL; 1338 } 1339 } 1340 if (offset != filp->f_pos) { 1341 filp->f_pos = offset; 1342 dir_ctx->page_index = 0; 1343 if (!nfs_readdir_use_cookie(filp)) { 1344 dir_ctx->dir_cookie = 0; 1345 dir_ctx->last_cookie = 0; 1346 } else { 1347 dir_ctx->dir_cookie = offset; 1348 dir_ctx->last_cookie = offset; 1349 } 1350 dir_ctx->eof = false; 1351 } 1352 spin_unlock(&filp->f_lock); 1353 return offset; 1354 } 1355 1356 /* 1357 * All directory operations under NFS are synchronous, so fsync() 1358 * is a dummy operation. 1359 */ 1360 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end, 1361 int datasync) 1362 { 1363 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync); 1364 1365 nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC); 1366 return 0; 1367 } 1368 1369 /** 1370 * nfs_force_lookup_revalidate - Mark the directory as having changed 1371 * @dir: pointer to directory inode 1372 * 1373 * This forces the revalidation code in nfs_lookup_revalidate() to do a 1374 * full lookup on all child dentries of 'dir' whenever a change occurs 1375 * on the server that might have invalidated our dcache. 1376 * 1377 * Note that we reserve bit '0' as a tag to let us know when a dentry 1378 * was revalidated while holding a delegation on its inode. 1379 * 1380 * The caller should be holding dir->i_lock 1381 */ 1382 void nfs_force_lookup_revalidate(struct inode *dir) 1383 { 1384 NFS_I(dir)->cache_change_attribute += 2; 1385 } 1386 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate); 1387 1388 /** 1389 * nfs_verify_change_attribute - Detects NFS remote directory changes 1390 * @dir: pointer to parent directory inode 1391 * @verf: previously saved change attribute 1392 * 1393 * Return "false" if the verifiers doesn't match the change attribute. 1394 * This would usually indicate that the directory contents have changed on 1395 * the server, and that any dentries need revalidating. 1396 */ 1397 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf) 1398 { 1399 return (verf & ~1UL) == nfs_save_change_attribute(dir); 1400 } 1401 1402 static void nfs_set_verifier_delegated(unsigned long *verf) 1403 { 1404 *verf |= 1UL; 1405 } 1406 1407 #if IS_ENABLED(CONFIG_NFS_V4) 1408 static void nfs_unset_verifier_delegated(unsigned long *verf) 1409 { 1410 *verf &= ~1UL; 1411 } 1412 #endif /* IS_ENABLED(CONFIG_NFS_V4) */ 1413 1414 static bool nfs_test_verifier_delegated(unsigned long verf) 1415 { 1416 return verf & 1; 1417 } 1418 1419 static bool nfs_verifier_is_delegated(struct dentry *dentry) 1420 { 1421 return nfs_test_verifier_delegated(dentry->d_time); 1422 } 1423 1424 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf) 1425 { 1426 struct inode *inode = d_inode(dentry); 1427 struct inode *dir = d_inode(dentry->d_parent); 1428 1429 if (!nfs_verify_change_attribute(dir, verf)) 1430 return; 1431 if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) 1432 nfs_set_verifier_delegated(&verf); 1433 dentry->d_time = verf; 1434 } 1435 1436 /** 1437 * nfs_set_verifier - save a parent directory verifier in the dentry 1438 * @dentry: pointer to dentry 1439 * @verf: verifier to save 1440 * 1441 * Saves the parent directory verifier in @dentry. If the inode has 1442 * a delegation, we also tag the dentry as having been revalidated 1443 * while holding a delegation so that we know we don't have to 1444 * look it up again after a directory change. 1445 */ 1446 void nfs_set_verifier(struct dentry *dentry, unsigned long verf) 1447 { 1448 1449 spin_lock(&dentry->d_lock); 1450 nfs_set_verifier_locked(dentry, verf); 1451 spin_unlock(&dentry->d_lock); 1452 } 1453 EXPORT_SYMBOL_GPL(nfs_set_verifier); 1454 1455 #if IS_ENABLED(CONFIG_NFS_V4) 1456 /** 1457 * nfs_clear_verifier_delegated - clear the dir verifier delegation tag 1458 * @inode: pointer to inode 1459 * 1460 * Iterates through the dentries in the inode alias list and clears 1461 * the tag used to indicate that the dentry has been revalidated 1462 * while holding a delegation. 1463 * This function is intended for use when the delegation is being 1464 * returned or revoked. 1465 */ 1466 void nfs_clear_verifier_delegated(struct inode *inode) 1467 { 1468 struct dentry *alias; 1469 1470 if (!inode) 1471 return; 1472 spin_lock(&inode->i_lock); 1473 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 1474 spin_lock(&alias->d_lock); 1475 nfs_unset_verifier_delegated(&alias->d_time); 1476 spin_unlock(&alias->d_lock); 1477 } 1478 spin_unlock(&inode->i_lock); 1479 } 1480 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated); 1481 #endif /* IS_ENABLED(CONFIG_NFS_V4) */ 1482 1483 static int nfs_dentry_verify_change(struct inode *dir, struct dentry *dentry) 1484 { 1485 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE) && 1486 d_really_is_negative(dentry)) 1487 return dentry->d_time == inode_peek_iversion_raw(dir); 1488 return nfs_verify_change_attribute(dir, dentry->d_time); 1489 } 1490 1491 /* 1492 * A check for whether or not the parent directory has changed. 1493 * In the case it has, we assume that the dentries are untrustworthy 1494 * and may need to be looked up again. 1495 * If rcu_walk prevents us from performing a full check, return 0. 1496 */ 1497 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry, 1498 int rcu_walk) 1499 { 1500 if (IS_ROOT(dentry)) 1501 return 1; 1502 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE) 1503 return 0; 1504 if (!nfs_dentry_verify_change(dir, dentry)) 1505 return 0; 1506 /* Revalidate nfsi->cache_change_attribute before we declare a match */ 1507 if (nfs_mapping_need_revalidate_inode(dir)) { 1508 if (rcu_walk) 1509 return 0; 1510 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0) 1511 return 0; 1512 } 1513 if (!nfs_dentry_verify_change(dir, dentry)) 1514 return 0; 1515 return 1; 1516 } 1517 1518 /* 1519 * Use intent information to check whether or not we're going to do 1520 * an O_EXCL create using this path component. 1521 */ 1522 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags) 1523 { 1524 if (NFS_PROTO(dir)->version == 2) 1525 return 0; 1526 return flags & LOOKUP_EXCL; 1527 } 1528 1529 /* 1530 * Inode and filehandle revalidation for lookups. 1531 * 1532 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL, 1533 * or if the intent information indicates that we're about to open this 1534 * particular file and the "nocto" mount flag is not set. 1535 * 1536 */ 1537 static 1538 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags) 1539 { 1540 struct nfs_server *server = NFS_SERVER(inode); 1541 int ret; 1542 1543 if (IS_AUTOMOUNT(inode)) 1544 return 0; 1545 1546 if (flags & LOOKUP_OPEN) { 1547 switch (inode->i_mode & S_IFMT) { 1548 case S_IFREG: 1549 /* A NFSv4 OPEN will revalidate later */ 1550 if (server->caps & NFS_CAP_ATOMIC_OPEN) 1551 goto out; 1552 fallthrough; 1553 case S_IFDIR: 1554 if (server->flags & NFS_MOUNT_NOCTO) 1555 break; 1556 /* NFS close-to-open cache consistency validation */ 1557 goto out_force; 1558 } 1559 } 1560 1561 /* VFS wants an on-the-wire revalidation */ 1562 if (flags & LOOKUP_REVAL) 1563 goto out_force; 1564 out: 1565 if (inode->i_nlink > 0 || 1566 (inode->i_nlink == 0 && 1567 test_bit(NFS_INO_PRESERVE_UNLINKED, &NFS_I(inode)->flags))) 1568 return 0; 1569 else 1570 return -ESTALE; 1571 out_force: 1572 if (flags & LOOKUP_RCU) 1573 return -ECHILD; 1574 ret = __nfs_revalidate_inode(server, inode); 1575 if (ret != 0) 1576 return ret; 1577 goto out; 1578 } 1579 1580 static void nfs_mark_dir_for_revalidate(struct inode *inode) 1581 { 1582 spin_lock(&inode->i_lock); 1583 nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE); 1584 spin_unlock(&inode->i_lock); 1585 } 1586 1587 /* 1588 * We judge how long we want to trust negative 1589 * dentries by looking at the parent inode mtime. 1590 * 1591 * If parent mtime has changed, we revalidate, else we wait for a 1592 * period corresponding to the parent's attribute cache timeout value. 1593 * 1594 * If LOOKUP_RCU prevents us from performing a full check, return 1 1595 * suggesting a reval is needed. 1596 * 1597 * Note that when creating a new file, or looking up a rename target, 1598 * then it shouldn't be necessary to revalidate a negative dentry. 1599 */ 1600 static inline 1601 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry, 1602 unsigned int flags) 1603 { 1604 if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET)) 1605 return 0; 1606 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG) 1607 return 1; 1608 /* Case insensitive server? Revalidate negative dentries */ 1609 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE)) 1610 return 1; 1611 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU); 1612 } 1613 1614 static int 1615 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry, 1616 struct inode *inode, int error) 1617 { 1618 switch (error) { 1619 case 1: 1620 break; 1621 case 0: 1622 /* 1623 * We can't d_drop the root of a disconnected tree: 1624 * its d_hash is on the s_anon list and d_drop() would hide 1625 * it from shrink_dcache_for_unmount(), leading to busy 1626 * inodes on unmount and further oopses. 1627 */ 1628 if (inode && IS_ROOT(dentry)) 1629 error = 1; 1630 break; 1631 } 1632 trace_nfs_lookup_revalidate_exit(dir, dentry, 0, error); 1633 return error; 1634 } 1635 1636 static int 1637 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry, 1638 unsigned int flags) 1639 { 1640 int ret = 1; 1641 if (nfs_neg_need_reval(dir, dentry, flags)) { 1642 if (flags & LOOKUP_RCU) 1643 return -ECHILD; 1644 ret = 0; 1645 } 1646 return nfs_lookup_revalidate_done(dir, dentry, NULL, ret); 1647 } 1648 1649 static int 1650 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry, 1651 struct inode *inode) 1652 { 1653 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1654 return nfs_lookup_revalidate_done(dir, dentry, inode, 1); 1655 } 1656 1657 static int nfs_lookup_revalidate_dentry(struct inode *dir, 1658 struct dentry *dentry, 1659 struct inode *inode, unsigned int flags) 1660 { 1661 struct nfs_fh *fhandle; 1662 struct nfs_fattr *fattr; 1663 unsigned long dir_verifier; 1664 int ret; 1665 1666 trace_nfs_lookup_revalidate_enter(dir, dentry, flags); 1667 1668 ret = -ENOMEM; 1669 fhandle = nfs_alloc_fhandle(); 1670 fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode)); 1671 if (fhandle == NULL || fattr == NULL) 1672 goto out; 1673 1674 dir_verifier = nfs_save_change_attribute(dir); 1675 ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr); 1676 if (ret < 0) { 1677 switch (ret) { 1678 case -ESTALE: 1679 case -ENOENT: 1680 ret = 0; 1681 break; 1682 case -ETIMEDOUT: 1683 if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL) 1684 ret = 1; 1685 } 1686 goto out; 1687 } 1688 1689 /* Request help from readdirplus */ 1690 nfs_lookup_advise_force_readdirplus(dir, flags); 1691 1692 ret = 0; 1693 if (nfs_compare_fh(NFS_FH(inode), fhandle)) 1694 goto out; 1695 if (nfs_refresh_inode(inode, fattr) < 0) 1696 goto out; 1697 1698 nfs_setsecurity(inode, fattr); 1699 nfs_set_verifier(dentry, dir_verifier); 1700 1701 ret = 1; 1702 out: 1703 nfs_free_fattr(fattr); 1704 nfs_free_fhandle(fhandle); 1705 1706 /* 1707 * If the lookup failed despite the dentry change attribute being 1708 * a match, then we should revalidate the directory cache. 1709 */ 1710 if (!ret && nfs_dentry_verify_change(dir, dentry)) 1711 nfs_mark_dir_for_revalidate(dir); 1712 return nfs_lookup_revalidate_done(dir, dentry, inode, ret); 1713 } 1714 1715 /* 1716 * This is called every time the dcache has a lookup hit, 1717 * and we should check whether we can really trust that 1718 * lookup. 1719 * 1720 * NOTE! The hit can be a negative hit too, don't assume 1721 * we have an inode! 1722 * 1723 * If the parent directory is seen to have changed, we throw out the 1724 * cached dentry and do a new lookup. 1725 */ 1726 static int 1727 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry, 1728 unsigned int flags) 1729 { 1730 struct inode *inode; 1731 int error; 1732 1733 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE); 1734 inode = d_inode(dentry); 1735 1736 if (!inode) 1737 return nfs_lookup_revalidate_negative(dir, dentry, flags); 1738 1739 if (is_bad_inode(inode)) { 1740 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1741 __func__, dentry); 1742 goto out_bad; 1743 } 1744 1745 if ((flags & LOOKUP_RENAME_TARGET) && d_count(dentry) < 2 && 1746 nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE)) 1747 goto out_bad; 1748 1749 if (nfs_verifier_is_delegated(dentry)) 1750 return nfs_lookup_revalidate_delegated(dir, dentry, inode); 1751 1752 /* Force a full look up iff the parent directory has changed */ 1753 if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) && 1754 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) { 1755 error = nfs_lookup_verify_inode(inode, flags); 1756 if (error) { 1757 if (error == -ESTALE) 1758 nfs_mark_dir_for_revalidate(dir); 1759 goto out_bad; 1760 } 1761 goto out_valid; 1762 } 1763 1764 if (flags & LOOKUP_RCU) 1765 return -ECHILD; 1766 1767 if (NFS_STALE(inode)) 1768 goto out_bad; 1769 1770 return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags); 1771 out_valid: 1772 return nfs_lookup_revalidate_done(dir, dentry, inode, 1); 1773 out_bad: 1774 if (flags & LOOKUP_RCU) 1775 return -ECHILD; 1776 return nfs_lookup_revalidate_done(dir, dentry, inode, 0); 1777 } 1778 1779 static int 1780 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags, 1781 int (*reval)(struct inode *, struct dentry *, unsigned int)) 1782 { 1783 struct dentry *parent; 1784 struct inode *dir; 1785 int ret; 1786 1787 if (flags & LOOKUP_RCU) { 1788 if (dentry->d_fsdata == NFS_FSDATA_BLOCKED) 1789 return -ECHILD; 1790 parent = READ_ONCE(dentry->d_parent); 1791 dir = d_inode_rcu(parent); 1792 if (!dir) 1793 return -ECHILD; 1794 ret = reval(dir, dentry, flags); 1795 if (parent != READ_ONCE(dentry->d_parent)) 1796 return -ECHILD; 1797 } else { 1798 /* Wait for unlink to complete */ 1799 wait_var_event(&dentry->d_fsdata, 1800 dentry->d_fsdata != NFS_FSDATA_BLOCKED); 1801 parent = dget_parent(dentry); 1802 ret = reval(d_inode(parent), dentry, flags); 1803 dput(parent); 1804 } 1805 return ret; 1806 } 1807 1808 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1809 { 1810 return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate); 1811 } 1812 1813 /* 1814 * A weaker form of d_revalidate for revalidating just the d_inode(dentry) 1815 * when we don't really care about the dentry name. This is called when a 1816 * pathwalk ends on a dentry that was not found via a normal lookup in the 1817 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals). 1818 * 1819 * In this situation, we just want to verify that the inode itself is OK 1820 * since the dentry might have changed on the server. 1821 */ 1822 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags) 1823 { 1824 struct inode *inode = d_inode(dentry); 1825 int error = 0; 1826 1827 /* 1828 * I believe we can only get a negative dentry here in the case of a 1829 * procfs-style symlink. Just assume it's correct for now, but we may 1830 * eventually need to do something more here. 1831 */ 1832 if (!inode) { 1833 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n", 1834 __func__, dentry); 1835 return 1; 1836 } 1837 1838 if (is_bad_inode(inode)) { 1839 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1840 __func__, dentry); 1841 return 0; 1842 } 1843 1844 error = nfs_lookup_verify_inode(inode, flags); 1845 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n", 1846 __func__, inode->i_ino, error ? "invalid" : "valid"); 1847 return !error; 1848 } 1849 1850 /* 1851 * This is called from dput() when d_count is going to 0. 1852 */ 1853 static int nfs_dentry_delete(const struct dentry *dentry) 1854 { 1855 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n", 1856 dentry, dentry->d_flags); 1857 1858 /* Unhash any dentry with a stale inode */ 1859 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry))) 1860 return 1; 1861 1862 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1863 /* Unhash it, so that ->d_iput() would be called */ 1864 return 1; 1865 } 1866 if (!(dentry->d_sb->s_flags & SB_ACTIVE)) { 1867 /* Unhash it, so that ancestors of killed async unlink 1868 * files will be cleaned up during umount */ 1869 return 1; 1870 } 1871 return 0; 1872 1873 } 1874 1875 /* Ensure that we revalidate inode->i_nlink */ 1876 static void nfs_drop_nlink(struct inode *inode) 1877 { 1878 spin_lock(&inode->i_lock); 1879 /* drop the inode if we're reasonably sure this is the last link */ 1880 if (inode->i_nlink > 0) 1881 drop_nlink(inode); 1882 NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter(); 1883 nfs_set_cache_invalid( 1884 inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME | 1885 NFS_INO_INVALID_NLINK); 1886 spin_unlock(&inode->i_lock); 1887 } 1888 1889 /* 1890 * Called when the dentry loses inode. 1891 * We use it to clean up silly-renamed files. 1892 */ 1893 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode) 1894 { 1895 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1896 nfs_complete_unlink(dentry, inode); 1897 nfs_drop_nlink(inode); 1898 } 1899 iput(inode); 1900 } 1901 1902 static void nfs_d_release(struct dentry *dentry) 1903 { 1904 /* free cached devname value, if it survived that far */ 1905 if (unlikely(dentry->d_fsdata)) { 1906 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1907 WARN_ON(1); 1908 else 1909 kfree(dentry->d_fsdata); 1910 } 1911 } 1912 1913 const struct dentry_operations nfs_dentry_operations = { 1914 .d_revalidate = nfs_lookup_revalidate, 1915 .d_weak_revalidate = nfs_weak_revalidate, 1916 .d_delete = nfs_dentry_delete, 1917 .d_iput = nfs_dentry_iput, 1918 .d_automount = nfs_d_automount, 1919 .d_release = nfs_d_release, 1920 }; 1921 EXPORT_SYMBOL_GPL(nfs_dentry_operations); 1922 1923 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 1924 { 1925 struct dentry *res; 1926 struct inode *inode = NULL; 1927 struct nfs_fh *fhandle = NULL; 1928 struct nfs_fattr *fattr = NULL; 1929 unsigned long dir_verifier; 1930 int error; 1931 1932 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry); 1933 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP); 1934 1935 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen)) 1936 return ERR_PTR(-ENAMETOOLONG); 1937 1938 /* 1939 * If we're doing an exclusive create, optimize away the lookup 1940 * but don't hash the dentry. 1941 */ 1942 if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET) 1943 return NULL; 1944 1945 res = ERR_PTR(-ENOMEM); 1946 fhandle = nfs_alloc_fhandle(); 1947 fattr = nfs_alloc_fattr_with_label(NFS_SERVER(dir)); 1948 if (fhandle == NULL || fattr == NULL) 1949 goto out; 1950 1951 dir_verifier = nfs_save_change_attribute(dir); 1952 trace_nfs_lookup_enter(dir, dentry, flags); 1953 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr); 1954 if (error == -ENOENT) { 1955 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE)) 1956 dir_verifier = inode_peek_iversion_raw(dir); 1957 goto no_entry; 1958 } 1959 if (error < 0) { 1960 res = ERR_PTR(error); 1961 goto out; 1962 } 1963 inode = nfs_fhget(dentry->d_sb, fhandle, fattr); 1964 res = ERR_CAST(inode); 1965 if (IS_ERR(res)) 1966 goto out; 1967 1968 /* Notify readdir to use READDIRPLUS */ 1969 nfs_lookup_advise_force_readdirplus(dir, flags); 1970 1971 no_entry: 1972 res = d_splice_alias(inode, dentry); 1973 if (res != NULL) { 1974 if (IS_ERR(res)) 1975 goto out; 1976 dentry = res; 1977 } 1978 nfs_set_verifier(dentry, dir_verifier); 1979 out: 1980 trace_nfs_lookup_exit(dir, dentry, flags, PTR_ERR_OR_ZERO(res)); 1981 nfs_free_fattr(fattr); 1982 nfs_free_fhandle(fhandle); 1983 return res; 1984 } 1985 EXPORT_SYMBOL_GPL(nfs_lookup); 1986 1987 void nfs_d_prune_case_insensitive_aliases(struct inode *inode) 1988 { 1989 /* Case insensitive server? Revalidate dentries */ 1990 if (inode && nfs_server_capable(inode, NFS_CAP_CASE_INSENSITIVE)) 1991 d_prune_aliases(inode); 1992 } 1993 EXPORT_SYMBOL_GPL(nfs_d_prune_case_insensitive_aliases); 1994 1995 #if IS_ENABLED(CONFIG_NFS_V4) 1996 static int nfs4_lookup_revalidate(struct dentry *, unsigned int); 1997 1998 const struct dentry_operations nfs4_dentry_operations = { 1999 .d_revalidate = nfs4_lookup_revalidate, 2000 .d_weak_revalidate = nfs_weak_revalidate, 2001 .d_delete = nfs_dentry_delete, 2002 .d_iput = nfs_dentry_iput, 2003 .d_automount = nfs_d_automount, 2004 .d_release = nfs_d_release, 2005 }; 2006 EXPORT_SYMBOL_GPL(nfs4_dentry_operations); 2007 2008 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp) 2009 { 2010 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp); 2011 } 2012 2013 static int do_open(struct inode *inode, struct file *filp) 2014 { 2015 nfs_fscache_open_file(inode, filp); 2016 return 0; 2017 } 2018 2019 static int nfs_finish_open(struct nfs_open_context *ctx, 2020 struct dentry *dentry, 2021 struct file *file, unsigned open_flags) 2022 { 2023 int err; 2024 2025 err = finish_open(file, dentry, do_open); 2026 if (err) 2027 goto out; 2028 if (S_ISREG(file_inode(file)->i_mode)) 2029 nfs_file_set_open_context(file, ctx); 2030 else 2031 err = -EOPENSTALE; 2032 out: 2033 return err; 2034 } 2035 2036 int nfs_atomic_open(struct inode *dir, struct dentry *dentry, 2037 struct file *file, unsigned open_flags, 2038 umode_t mode) 2039 { 2040 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 2041 struct nfs_open_context *ctx; 2042 struct dentry *res; 2043 struct iattr attr = { .ia_valid = ATTR_OPEN }; 2044 struct inode *inode; 2045 unsigned int lookup_flags = 0; 2046 unsigned long dir_verifier; 2047 bool switched = false; 2048 int created = 0; 2049 int err; 2050 2051 /* Expect a negative dentry */ 2052 BUG_ON(d_inode(dentry)); 2053 2054 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n", 2055 dir->i_sb->s_id, dir->i_ino, dentry); 2056 2057 err = nfs_check_flags(open_flags); 2058 if (err) 2059 return err; 2060 2061 /* NFS only supports OPEN on regular files */ 2062 if ((open_flags & O_DIRECTORY)) { 2063 if (!d_in_lookup(dentry)) { 2064 /* 2065 * Hashed negative dentry with O_DIRECTORY: dentry was 2066 * revalidated and is fine, no need to perform lookup 2067 * again 2068 */ 2069 return -ENOENT; 2070 } 2071 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY; 2072 goto no_open; 2073 } 2074 2075 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 2076 return -ENAMETOOLONG; 2077 2078 if (open_flags & O_CREAT) { 2079 struct nfs_server *server = NFS_SERVER(dir); 2080 2081 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK)) 2082 mode &= ~current_umask(); 2083 2084 attr.ia_valid |= ATTR_MODE; 2085 attr.ia_mode = mode; 2086 } 2087 if (open_flags & O_TRUNC) { 2088 attr.ia_valid |= ATTR_SIZE; 2089 attr.ia_size = 0; 2090 } 2091 2092 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) { 2093 d_drop(dentry); 2094 switched = true; 2095 dentry = d_alloc_parallel(dentry->d_parent, 2096 &dentry->d_name, &wq); 2097 if (IS_ERR(dentry)) 2098 return PTR_ERR(dentry); 2099 if (unlikely(!d_in_lookup(dentry))) 2100 return finish_no_open(file, dentry); 2101 } 2102 2103 ctx = create_nfs_open_context(dentry, open_flags, file); 2104 err = PTR_ERR(ctx); 2105 if (IS_ERR(ctx)) 2106 goto out; 2107 2108 trace_nfs_atomic_open_enter(dir, ctx, open_flags); 2109 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created); 2110 if (created) 2111 file->f_mode |= FMODE_CREATED; 2112 if (IS_ERR(inode)) { 2113 err = PTR_ERR(inode); 2114 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 2115 put_nfs_open_context(ctx); 2116 d_drop(dentry); 2117 switch (err) { 2118 case -ENOENT: 2119 d_splice_alias(NULL, dentry); 2120 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE)) 2121 dir_verifier = inode_peek_iversion_raw(dir); 2122 else 2123 dir_verifier = nfs_save_change_attribute(dir); 2124 nfs_set_verifier(dentry, dir_verifier); 2125 break; 2126 case -EISDIR: 2127 case -ENOTDIR: 2128 goto no_open; 2129 case -ELOOP: 2130 if (!(open_flags & O_NOFOLLOW)) 2131 goto no_open; 2132 break; 2133 /* case -EINVAL: */ 2134 default: 2135 break; 2136 } 2137 goto out; 2138 } 2139 file->f_mode |= FMODE_CAN_ODIRECT; 2140 2141 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags); 2142 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 2143 put_nfs_open_context(ctx); 2144 out: 2145 if (unlikely(switched)) { 2146 d_lookup_done(dentry); 2147 dput(dentry); 2148 } 2149 return err; 2150 2151 no_open: 2152 res = nfs_lookup(dir, dentry, lookup_flags); 2153 if (!res) { 2154 inode = d_inode(dentry); 2155 if ((lookup_flags & LOOKUP_DIRECTORY) && inode && 2156 !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) 2157 res = ERR_PTR(-ENOTDIR); 2158 else if (inode && S_ISREG(inode->i_mode)) 2159 res = ERR_PTR(-EOPENSTALE); 2160 } else if (!IS_ERR(res)) { 2161 inode = d_inode(res); 2162 if ((lookup_flags & LOOKUP_DIRECTORY) && inode && 2163 !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) { 2164 dput(res); 2165 res = ERR_PTR(-ENOTDIR); 2166 } else if (inode && S_ISREG(inode->i_mode)) { 2167 dput(res); 2168 res = ERR_PTR(-EOPENSTALE); 2169 } 2170 } 2171 if (switched) { 2172 d_lookup_done(dentry); 2173 if (!res) 2174 res = dentry; 2175 else 2176 dput(dentry); 2177 } 2178 if (IS_ERR(res)) 2179 return PTR_ERR(res); 2180 return finish_no_open(file, res); 2181 } 2182 EXPORT_SYMBOL_GPL(nfs_atomic_open); 2183 2184 static int 2185 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry, 2186 unsigned int flags) 2187 { 2188 struct inode *inode; 2189 2190 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY)) 2191 goto full_reval; 2192 if (d_mountpoint(dentry)) 2193 goto full_reval; 2194 2195 inode = d_inode(dentry); 2196 2197 /* We can't create new files in nfs_open_revalidate(), so we 2198 * optimize away revalidation of negative dentries. 2199 */ 2200 if (inode == NULL) 2201 goto full_reval; 2202 2203 if (nfs_verifier_is_delegated(dentry)) 2204 return nfs_lookup_revalidate_delegated(dir, dentry, inode); 2205 2206 /* NFS only supports OPEN on regular files */ 2207 if (!S_ISREG(inode->i_mode)) 2208 goto full_reval; 2209 2210 /* We cannot do exclusive creation on a positive dentry */ 2211 if (flags & (LOOKUP_EXCL | LOOKUP_REVAL)) 2212 goto reval_dentry; 2213 2214 /* Check if the directory changed */ 2215 if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) 2216 goto reval_dentry; 2217 2218 /* Let f_op->open() actually open (and revalidate) the file */ 2219 return 1; 2220 reval_dentry: 2221 if (flags & LOOKUP_RCU) 2222 return -ECHILD; 2223 return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags); 2224 2225 full_reval: 2226 return nfs_do_lookup_revalidate(dir, dentry, flags); 2227 } 2228 2229 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags) 2230 { 2231 return __nfs_lookup_revalidate(dentry, flags, 2232 nfs4_do_lookup_revalidate); 2233 } 2234 2235 #endif /* CONFIG_NFSV4 */ 2236 2237 struct dentry * 2238 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle, 2239 struct nfs_fattr *fattr) 2240 { 2241 struct dentry *parent = dget_parent(dentry); 2242 struct inode *dir = d_inode(parent); 2243 struct inode *inode; 2244 struct dentry *d; 2245 int error; 2246 2247 d_drop(dentry); 2248 2249 if (fhandle->size == 0) { 2250 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr); 2251 if (error) 2252 goto out_error; 2253 } 2254 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2255 if (!(fattr->valid & NFS_ATTR_FATTR)) { 2256 struct nfs_server *server = NFS_SB(dentry->d_sb); 2257 error = server->nfs_client->rpc_ops->getattr(server, fhandle, 2258 fattr, NULL); 2259 if (error < 0) 2260 goto out_error; 2261 } 2262 inode = nfs_fhget(dentry->d_sb, fhandle, fattr); 2263 d = d_splice_alias(inode, dentry); 2264 out: 2265 dput(parent); 2266 return d; 2267 out_error: 2268 d = ERR_PTR(error); 2269 goto out; 2270 } 2271 EXPORT_SYMBOL_GPL(nfs_add_or_obtain); 2272 2273 /* 2274 * Code common to create, mkdir, and mknod. 2275 */ 2276 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle, 2277 struct nfs_fattr *fattr) 2278 { 2279 struct dentry *d; 2280 2281 d = nfs_add_or_obtain(dentry, fhandle, fattr); 2282 if (IS_ERR(d)) 2283 return PTR_ERR(d); 2284 2285 /* Callers don't care */ 2286 dput(d); 2287 return 0; 2288 } 2289 EXPORT_SYMBOL_GPL(nfs_instantiate); 2290 2291 /* 2292 * Following a failed create operation, we drop the dentry rather 2293 * than retain a negative dentry. This avoids a problem in the event 2294 * that the operation succeeded on the server, but an error in the 2295 * reply path made it appear to have failed. 2296 */ 2297 int nfs_create(struct mnt_idmap *idmap, struct inode *dir, 2298 struct dentry *dentry, umode_t mode, bool excl) 2299 { 2300 struct iattr attr; 2301 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT; 2302 int error; 2303 2304 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n", 2305 dir->i_sb->s_id, dir->i_ino, dentry); 2306 2307 attr.ia_mode = mode; 2308 attr.ia_valid = ATTR_MODE; 2309 2310 trace_nfs_create_enter(dir, dentry, open_flags); 2311 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags); 2312 trace_nfs_create_exit(dir, dentry, open_flags, error); 2313 if (error != 0) 2314 goto out_err; 2315 return 0; 2316 out_err: 2317 d_drop(dentry); 2318 return error; 2319 } 2320 EXPORT_SYMBOL_GPL(nfs_create); 2321 2322 /* 2323 * See comments for nfs_proc_create regarding failed operations. 2324 */ 2325 int 2326 nfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 2327 struct dentry *dentry, umode_t mode, dev_t rdev) 2328 { 2329 struct iattr attr; 2330 int status; 2331 2332 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n", 2333 dir->i_sb->s_id, dir->i_ino, dentry); 2334 2335 attr.ia_mode = mode; 2336 attr.ia_valid = ATTR_MODE; 2337 2338 trace_nfs_mknod_enter(dir, dentry); 2339 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev); 2340 trace_nfs_mknod_exit(dir, dentry, status); 2341 if (status != 0) 2342 goto out_err; 2343 return 0; 2344 out_err: 2345 d_drop(dentry); 2346 return status; 2347 } 2348 EXPORT_SYMBOL_GPL(nfs_mknod); 2349 2350 /* 2351 * See comments for nfs_proc_create regarding failed operations. 2352 */ 2353 int nfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 2354 struct dentry *dentry, umode_t mode) 2355 { 2356 struct iattr attr; 2357 int error; 2358 2359 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n", 2360 dir->i_sb->s_id, dir->i_ino, dentry); 2361 2362 attr.ia_valid = ATTR_MODE; 2363 attr.ia_mode = mode | S_IFDIR; 2364 2365 trace_nfs_mkdir_enter(dir, dentry); 2366 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr); 2367 trace_nfs_mkdir_exit(dir, dentry, error); 2368 if (error != 0) 2369 goto out_err; 2370 return 0; 2371 out_err: 2372 d_drop(dentry); 2373 return error; 2374 } 2375 EXPORT_SYMBOL_GPL(nfs_mkdir); 2376 2377 static void nfs_dentry_handle_enoent(struct dentry *dentry) 2378 { 2379 if (simple_positive(dentry)) 2380 d_delete(dentry); 2381 } 2382 2383 static void nfs_dentry_remove_handle_error(struct inode *dir, 2384 struct dentry *dentry, int error) 2385 { 2386 switch (error) { 2387 case -ENOENT: 2388 if (d_really_is_positive(dentry)) 2389 d_delete(dentry); 2390 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2391 break; 2392 case 0: 2393 nfs_d_prune_case_insensitive_aliases(d_inode(dentry)); 2394 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2395 } 2396 } 2397 2398 int nfs_rmdir(struct inode *dir, struct dentry *dentry) 2399 { 2400 int error; 2401 2402 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n", 2403 dir->i_sb->s_id, dir->i_ino, dentry); 2404 2405 trace_nfs_rmdir_enter(dir, dentry); 2406 if (d_really_is_positive(dentry)) { 2407 down_write(&NFS_I(d_inode(dentry))->rmdir_sem); 2408 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 2409 /* Ensure the VFS deletes this inode */ 2410 switch (error) { 2411 case 0: 2412 clear_nlink(d_inode(dentry)); 2413 break; 2414 case -ENOENT: 2415 nfs_dentry_handle_enoent(dentry); 2416 } 2417 up_write(&NFS_I(d_inode(dentry))->rmdir_sem); 2418 } else 2419 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 2420 nfs_dentry_remove_handle_error(dir, dentry, error); 2421 trace_nfs_rmdir_exit(dir, dentry, error); 2422 2423 return error; 2424 } 2425 EXPORT_SYMBOL_GPL(nfs_rmdir); 2426 2427 /* 2428 * Remove a file after making sure there are no pending writes, 2429 * and after checking that the file has only one user. 2430 * 2431 * We invalidate the attribute cache and free the inode prior to the operation 2432 * to avoid possible races if the server reuses the inode. 2433 */ 2434 static int nfs_safe_remove(struct dentry *dentry) 2435 { 2436 struct inode *dir = d_inode(dentry->d_parent); 2437 struct inode *inode = d_inode(dentry); 2438 int error = -EBUSY; 2439 2440 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry); 2441 2442 /* If the dentry was sillyrenamed, we simply call d_delete() */ 2443 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 2444 error = 0; 2445 goto out; 2446 } 2447 2448 trace_nfs_remove_enter(dir, dentry); 2449 if (inode != NULL) { 2450 error = NFS_PROTO(dir)->remove(dir, dentry); 2451 if (error == 0) 2452 nfs_drop_nlink(inode); 2453 } else 2454 error = NFS_PROTO(dir)->remove(dir, dentry); 2455 if (error == -ENOENT) 2456 nfs_dentry_handle_enoent(dentry); 2457 trace_nfs_remove_exit(dir, dentry, error); 2458 out: 2459 return error; 2460 } 2461 2462 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode 2463 * belongs to an active ".nfs..." file and we return -EBUSY. 2464 * 2465 * If sillyrename() returns 0, we do nothing, otherwise we unlink. 2466 */ 2467 int nfs_unlink(struct inode *dir, struct dentry *dentry) 2468 { 2469 int error; 2470 2471 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id, 2472 dir->i_ino, dentry); 2473 2474 trace_nfs_unlink_enter(dir, dentry); 2475 spin_lock(&dentry->d_lock); 2476 if (d_count(dentry) > 1 && !test_bit(NFS_INO_PRESERVE_UNLINKED, 2477 &NFS_I(d_inode(dentry))->flags)) { 2478 spin_unlock(&dentry->d_lock); 2479 /* Start asynchronous writeout of the inode */ 2480 write_inode_now(d_inode(dentry), 0); 2481 error = nfs_sillyrename(dir, dentry); 2482 goto out; 2483 } 2484 /* We must prevent any concurrent open until the unlink 2485 * completes. ->d_revalidate will wait for ->d_fsdata 2486 * to clear. We set it here to ensure no lookup succeeds until 2487 * the unlink is complete on the server. 2488 */ 2489 error = -ETXTBSY; 2490 if (WARN_ON(dentry->d_flags & DCACHE_NFSFS_RENAMED) || 2491 WARN_ON(dentry->d_fsdata == NFS_FSDATA_BLOCKED)) { 2492 spin_unlock(&dentry->d_lock); 2493 goto out; 2494 } 2495 /* old devname */ 2496 kfree(dentry->d_fsdata); 2497 dentry->d_fsdata = NFS_FSDATA_BLOCKED; 2498 2499 spin_unlock(&dentry->d_lock); 2500 error = nfs_safe_remove(dentry); 2501 nfs_dentry_remove_handle_error(dir, dentry, error); 2502 dentry->d_fsdata = NULL; 2503 wake_up_var(&dentry->d_fsdata); 2504 out: 2505 trace_nfs_unlink_exit(dir, dentry, error); 2506 return error; 2507 } 2508 EXPORT_SYMBOL_GPL(nfs_unlink); 2509 2510 /* 2511 * To create a symbolic link, most file systems instantiate a new inode, 2512 * add a page to it containing the path, then write it out to the disk 2513 * using prepare_write/commit_write. 2514 * 2515 * Unfortunately the NFS client can't create the in-core inode first 2516 * because it needs a file handle to create an in-core inode (see 2517 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the 2518 * symlink request has completed on the server. 2519 * 2520 * So instead we allocate a raw page, copy the symname into it, then do 2521 * the SYMLINK request with the page as the buffer. If it succeeds, we 2522 * now have a new file handle and can instantiate an in-core NFS inode 2523 * and move the raw page into its mapping. 2524 */ 2525 int nfs_symlink(struct mnt_idmap *idmap, struct inode *dir, 2526 struct dentry *dentry, const char *symname) 2527 { 2528 struct page *page; 2529 char *kaddr; 2530 struct iattr attr; 2531 unsigned int pathlen = strlen(symname); 2532 int error; 2533 2534 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id, 2535 dir->i_ino, dentry, symname); 2536 2537 if (pathlen > PAGE_SIZE) 2538 return -ENAMETOOLONG; 2539 2540 attr.ia_mode = S_IFLNK | S_IRWXUGO; 2541 attr.ia_valid = ATTR_MODE; 2542 2543 page = alloc_page(GFP_USER); 2544 if (!page) 2545 return -ENOMEM; 2546 2547 kaddr = page_address(page); 2548 memcpy(kaddr, symname, pathlen); 2549 if (pathlen < PAGE_SIZE) 2550 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen); 2551 2552 trace_nfs_symlink_enter(dir, dentry); 2553 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr); 2554 trace_nfs_symlink_exit(dir, dentry, error); 2555 if (error != 0) { 2556 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n", 2557 dir->i_sb->s_id, dir->i_ino, 2558 dentry, symname, error); 2559 d_drop(dentry); 2560 __free_page(page); 2561 return error; 2562 } 2563 2564 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2565 2566 /* 2567 * No big deal if we can't add this page to the page cache here. 2568 * READLINK will get the missing page from the server if needed. 2569 */ 2570 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0, 2571 GFP_KERNEL)) { 2572 SetPageUptodate(page); 2573 unlock_page(page); 2574 /* 2575 * add_to_page_cache_lru() grabs an extra page refcount. 2576 * Drop it here to avoid leaking this page later. 2577 */ 2578 put_page(page); 2579 } else 2580 __free_page(page); 2581 2582 return 0; 2583 } 2584 EXPORT_SYMBOL_GPL(nfs_symlink); 2585 2586 int 2587 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2588 { 2589 struct inode *inode = d_inode(old_dentry); 2590 int error; 2591 2592 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n", 2593 old_dentry, dentry); 2594 2595 trace_nfs_link_enter(inode, dir, dentry); 2596 d_drop(dentry); 2597 if (S_ISREG(inode->i_mode)) 2598 nfs_sync_inode(inode); 2599 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name); 2600 if (error == 0) { 2601 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2602 ihold(inode); 2603 d_add(dentry, inode); 2604 } 2605 trace_nfs_link_exit(inode, dir, dentry, error); 2606 return error; 2607 } 2608 EXPORT_SYMBOL_GPL(nfs_link); 2609 2610 static void 2611 nfs_unblock_rename(struct rpc_task *task, struct nfs_renamedata *data) 2612 { 2613 struct dentry *new_dentry = data->new_dentry; 2614 2615 new_dentry->d_fsdata = NULL; 2616 wake_up_var(&new_dentry->d_fsdata); 2617 } 2618 2619 /* 2620 * RENAME 2621 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a 2622 * different file handle for the same inode after a rename (e.g. when 2623 * moving to a different directory). A fail-safe method to do so would 2624 * be to look up old_dir/old_name, create a link to new_dir/new_name and 2625 * rename the old file using the sillyrename stuff. This way, the original 2626 * file in old_dir will go away when the last process iput()s the inode. 2627 * 2628 * FIXED. 2629 * 2630 * It actually works quite well. One needs to have the possibility for 2631 * at least one ".nfs..." file in each directory the file ever gets 2632 * moved or linked to which happens automagically with the new 2633 * implementation that only depends on the dcache stuff instead of 2634 * using the inode layer 2635 * 2636 * Unfortunately, things are a little more complicated than indicated 2637 * above. For a cross-directory move, we want to make sure we can get 2638 * rid of the old inode after the operation. This means there must be 2639 * no pending writes (if it's a file), and the use count must be 1. 2640 * If these conditions are met, we can drop the dentries before doing 2641 * the rename. 2642 */ 2643 int nfs_rename(struct mnt_idmap *idmap, struct inode *old_dir, 2644 struct dentry *old_dentry, struct inode *new_dir, 2645 struct dentry *new_dentry, unsigned int flags) 2646 { 2647 struct inode *old_inode = d_inode(old_dentry); 2648 struct inode *new_inode = d_inode(new_dentry); 2649 struct dentry *dentry = NULL; 2650 struct rpc_task *task; 2651 bool must_unblock = false; 2652 int error = -EBUSY; 2653 2654 if (flags) 2655 return -EINVAL; 2656 2657 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n", 2658 old_dentry, new_dentry, 2659 d_count(new_dentry)); 2660 2661 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry); 2662 /* 2663 * For non-directories, check whether the target is busy and if so, 2664 * make a copy of the dentry and then do a silly-rename. If the 2665 * silly-rename succeeds, the copied dentry is hashed and becomes 2666 * the new target. 2667 */ 2668 if (new_inode && !S_ISDIR(new_inode->i_mode)) { 2669 /* We must prevent any concurrent open until the unlink 2670 * completes. ->d_revalidate will wait for ->d_fsdata 2671 * to clear. We set it here to ensure no lookup succeeds until 2672 * the unlink is complete on the server. 2673 */ 2674 error = -ETXTBSY; 2675 if (WARN_ON(new_dentry->d_flags & DCACHE_NFSFS_RENAMED) || 2676 WARN_ON(new_dentry->d_fsdata == NFS_FSDATA_BLOCKED)) 2677 goto out; 2678 if (new_dentry->d_fsdata) { 2679 /* old devname */ 2680 kfree(new_dentry->d_fsdata); 2681 new_dentry->d_fsdata = NULL; 2682 } 2683 2684 spin_lock(&new_dentry->d_lock); 2685 if (d_count(new_dentry) > 2) { 2686 int err; 2687 2688 spin_unlock(&new_dentry->d_lock); 2689 2690 /* copy the target dentry's name */ 2691 dentry = d_alloc(new_dentry->d_parent, 2692 &new_dentry->d_name); 2693 if (!dentry) 2694 goto out; 2695 2696 /* silly-rename the existing target ... */ 2697 err = nfs_sillyrename(new_dir, new_dentry); 2698 if (err) 2699 goto out; 2700 2701 new_dentry = dentry; 2702 new_inode = NULL; 2703 } else { 2704 new_dentry->d_fsdata = NFS_FSDATA_BLOCKED; 2705 must_unblock = true; 2706 spin_unlock(&new_dentry->d_lock); 2707 } 2708 2709 } 2710 2711 if (S_ISREG(old_inode->i_mode)) 2712 nfs_sync_inode(old_inode); 2713 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, 2714 must_unblock ? nfs_unblock_rename : NULL); 2715 if (IS_ERR(task)) { 2716 error = PTR_ERR(task); 2717 goto out; 2718 } 2719 2720 error = rpc_wait_for_completion_task(task); 2721 if (error != 0) { 2722 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1; 2723 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */ 2724 smp_wmb(); 2725 } else 2726 error = task->tk_status; 2727 rpc_put_task(task); 2728 /* Ensure the inode attributes are revalidated */ 2729 if (error == 0) { 2730 spin_lock(&old_inode->i_lock); 2731 NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter(); 2732 nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE | 2733 NFS_INO_INVALID_CTIME | 2734 NFS_INO_REVAL_FORCED); 2735 spin_unlock(&old_inode->i_lock); 2736 } 2737 out: 2738 trace_nfs_rename_exit(old_dir, old_dentry, 2739 new_dir, new_dentry, error); 2740 if (!error) { 2741 if (new_inode != NULL) 2742 nfs_drop_nlink(new_inode); 2743 /* 2744 * The d_move() should be here instead of in an async RPC completion 2745 * handler because we need the proper locks to move the dentry. If 2746 * we're interrupted by a signal, the async RPC completion handler 2747 * should mark the directories for revalidation. 2748 */ 2749 d_move(old_dentry, new_dentry); 2750 nfs_set_verifier(old_dentry, 2751 nfs_save_change_attribute(new_dir)); 2752 } else if (error == -ENOENT) 2753 nfs_dentry_handle_enoent(old_dentry); 2754 2755 /* new dentry created? */ 2756 if (dentry) 2757 dput(dentry); 2758 return error; 2759 } 2760 EXPORT_SYMBOL_GPL(nfs_rename); 2761 2762 static DEFINE_SPINLOCK(nfs_access_lru_lock); 2763 static LIST_HEAD(nfs_access_lru_list); 2764 static atomic_long_t nfs_access_nr_entries; 2765 2766 static unsigned long nfs_access_max_cachesize = 4*1024*1024; 2767 module_param(nfs_access_max_cachesize, ulong, 0644); 2768 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length"); 2769 2770 static void nfs_access_free_entry(struct nfs_access_entry *entry) 2771 { 2772 put_group_info(entry->group_info); 2773 kfree_rcu(entry, rcu_head); 2774 smp_mb__before_atomic(); 2775 atomic_long_dec(&nfs_access_nr_entries); 2776 smp_mb__after_atomic(); 2777 } 2778 2779 static void nfs_access_free_list(struct list_head *head) 2780 { 2781 struct nfs_access_entry *cache; 2782 2783 while (!list_empty(head)) { 2784 cache = list_entry(head->next, struct nfs_access_entry, lru); 2785 list_del(&cache->lru); 2786 nfs_access_free_entry(cache); 2787 } 2788 } 2789 2790 static unsigned long 2791 nfs_do_access_cache_scan(unsigned int nr_to_scan) 2792 { 2793 LIST_HEAD(head); 2794 struct nfs_inode *nfsi, *next; 2795 struct nfs_access_entry *cache; 2796 long freed = 0; 2797 2798 spin_lock(&nfs_access_lru_lock); 2799 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) { 2800 struct inode *inode; 2801 2802 if (nr_to_scan-- == 0) 2803 break; 2804 inode = &nfsi->vfs_inode; 2805 spin_lock(&inode->i_lock); 2806 if (list_empty(&nfsi->access_cache_entry_lru)) 2807 goto remove_lru_entry; 2808 cache = list_entry(nfsi->access_cache_entry_lru.next, 2809 struct nfs_access_entry, lru); 2810 list_move(&cache->lru, &head); 2811 rb_erase(&cache->rb_node, &nfsi->access_cache); 2812 freed++; 2813 if (!list_empty(&nfsi->access_cache_entry_lru)) 2814 list_move_tail(&nfsi->access_cache_inode_lru, 2815 &nfs_access_lru_list); 2816 else { 2817 remove_lru_entry: 2818 list_del_init(&nfsi->access_cache_inode_lru); 2819 smp_mb__before_atomic(); 2820 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags); 2821 smp_mb__after_atomic(); 2822 } 2823 spin_unlock(&inode->i_lock); 2824 } 2825 spin_unlock(&nfs_access_lru_lock); 2826 nfs_access_free_list(&head); 2827 return freed; 2828 } 2829 2830 unsigned long 2831 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc) 2832 { 2833 int nr_to_scan = sc->nr_to_scan; 2834 gfp_t gfp_mask = sc->gfp_mask; 2835 2836 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL) 2837 return SHRINK_STOP; 2838 return nfs_do_access_cache_scan(nr_to_scan); 2839 } 2840 2841 2842 unsigned long 2843 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc) 2844 { 2845 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries)); 2846 } 2847 2848 static void 2849 nfs_access_cache_enforce_limit(void) 2850 { 2851 long nr_entries = atomic_long_read(&nfs_access_nr_entries); 2852 unsigned long diff; 2853 unsigned int nr_to_scan; 2854 2855 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize) 2856 return; 2857 nr_to_scan = 100; 2858 diff = nr_entries - nfs_access_max_cachesize; 2859 if (diff < nr_to_scan) 2860 nr_to_scan = diff; 2861 nfs_do_access_cache_scan(nr_to_scan); 2862 } 2863 2864 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head) 2865 { 2866 struct rb_root *root_node = &nfsi->access_cache; 2867 struct rb_node *n; 2868 struct nfs_access_entry *entry; 2869 2870 /* Unhook entries from the cache */ 2871 while ((n = rb_first(root_node)) != NULL) { 2872 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2873 rb_erase(n, root_node); 2874 list_move(&entry->lru, head); 2875 } 2876 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS; 2877 } 2878 2879 void nfs_access_zap_cache(struct inode *inode) 2880 { 2881 LIST_HEAD(head); 2882 2883 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0) 2884 return; 2885 /* Remove from global LRU init */ 2886 spin_lock(&nfs_access_lru_lock); 2887 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2888 list_del_init(&NFS_I(inode)->access_cache_inode_lru); 2889 2890 spin_lock(&inode->i_lock); 2891 __nfs_access_zap_cache(NFS_I(inode), &head); 2892 spin_unlock(&inode->i_lock); 2893 spin_unlock(&nfs_access_lru_lock); 2894 nfs_access_free_list(&head); 2895 } 2896 EXPORT_SYMBOL_GPL(nfs_access_zap_cache); 2897 2898 static int access_cmp(const struct cred *a, const struct nfs_access_entry *b) 2899 { 2900 struct group_info *ga, *gb; 2901 int g; 2902 2903 if (uid_lt(a->fsuid, b->fsuid)) 2904 return -1; 2905 if (uid_gt(a->fsuid, b->fsuid)) 2906 return 1; 2907 2908 if (gid_lt(a->fsgid, b->fsgid)) 2909 return -1; 2910 if (gid_gt(a->fsgid, b->fsgid)) 2911 return 1; 2912 2913 ga = a->group_info; 2914 gb = b->group_info; 2915 if (ga == gb) 2916 return 0; 2917 if (ga == NULL) 2918 return -1; 2919 if (gb == NULL) 2920 return 1; 2921 if (ga->ngroups < gb->ngroups) 2922 return -1; 2923 if (ga->ngroups > gb->ngroups) 2924 return 1; 2925 2926 for (g = 0; g < ga->ngroups; g++) { 2927 if (gid_lt(ga->gid[g], gb->gid[g])) 2928 return -1; 2929 if (gid_gt(ga->gid[g], gb->gid[g])) 2930 return 1; 2931 } 2932 return 0; 2933 } 2934 2935 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred) 2936 { 2937 struct rb_node *n = NFS_I(inode)->access_cache.rb_node; 2938 2939 while (n != NULL) { 2940 struct nfs_access_entry *entry = 2941 rb_entry(n, struct nfs_access_entry, rb_node); 2942 int cmp = access_cmp(cred, entry); 2943 2944 if (cmp < 0) 2945 n = n->rb_left; 2946 else if (cmp > 0) 2947 n = n->rb_right; 2948 else 2949 return entry; 2950 } 2951 return NULL; 2952 } 2953 2954 static u64 nfs_access_login_time(const struct task_struct *task, 2955 const struct cred *cred) 2956 { 2957 const struct task_struct *parent; 2958 const struct cred *pcred; 2959 u64 ret; 2960 2961 rcu_read_lock(); 2962 for (;;) { 2963 parent = rcu_dereference(task->real_parent); 2964 pcred = rcu_dereference(parent->cred); 2965 if (parent == task || cred_fscmp(pcred, cred) != 0) 2966 break; 2967 task = parent; 2968 } 2969 ret = task->start_time; 2970 rcu_read_unlock(); 2971 return ret; 2972 } 2973 2974 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, u32 *mask, bool may_block) 2975 { 2976 struct nfs_inode *nfsi = NFS_I(inode); 2977 u64 login_time = nfs_access_login_time(current, cred); 2978 struct nfs_access_entry *cache; 2979 bool retry = true; 2980 int err; 2981 2982 spin_lock(&inode->i_lock); 2983 for(;;) { 2984 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2985 goto out_zap; 2986 cache = nfs_access_search_rbtree(inode, cred); 2987 err = -ENOENT; 2988 if (cache == NULL) 2989 goto out; 2990 /* Found an entry, is our attribute cache valid? */ 2991 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) 2992 break; 2993 if (!retry) 2994 break; 2995 err = -ECHILD; 2996 if (!may_block) 2997 goto out; 2998 spin_unlock(&inode->i_lock); 2999 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode); 3000 if (err) 3001 return err; 3002 spin_lock(&inode->i_lock); 3003 retry = false; 3004 } 3005 err = -ENOENT; 3006 if ((s64)(login_time - cache->timestamp) > 0) 3007 goto out; 3008 *mask = cache->mask; 3009 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru); 3010 err = 0; 3011 out: 3012 spin_unlock(&inode->i_lock); 3013 return err; 3014 out_zap: 3015 spin_unlock(&inode->i_lock); 3016 nfs_access_zap_cache(inode); 3017 return -ENOENT; 3018 } 3019 3020 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, u32 *mask) 3021 { 3022 /* Only check the most recently returned cache entry, 3023 * but do it without locking. 3024 */ 3025 struct nfs_inode *nfsi = NFS_I(inode); 3026 u64 login_time = nfs_access_login_time(current, cred); 3027 struct nfs_access_entry *cache; 3028 int err = -ECHILD; 3029 struct list_head *lh; 3030 3031 rcu_read_lock(); 3032 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 3033 goto out; 3034 lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru)); 3035 cache = list_entry(lh, struct nfs_access_entry, lru); 3036 if (lh == &nfsi->access_cache_entry_lru || 3037 access_cmp(cred, cache) != 0) 3038 cache = NULL; 3039 if (cache == NULL) 3040 goto out; 3041 if ((s64)(login_time - cache->timestamp) > 0) 3042 goto out; 3043 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) 3044 goto out; 3045 *mask = cache->mask; 3046 err = 0; 3047 out: 3048 rcu_read_unlock(); 3049 return err; 3050 } 3051 3052 int nfs_access_get_cached(struct inode *inode, const struct cred *cred, 3053 u32 *mask, bool may_block) 3054 { 3055 int status; 3056 3057 status = nfs_access_get_cached_rcu(inode, cred, mask); 3058 if (status != 0) 3059 status = nfs_access_get_cached_locked(inode, cred, mask, 3060 may_block); 3061 3062 return status; 3063 } 3064 EXPORT_SYMBOL_GPL(nfs_access_get_cached); 3065 3066 static void nfs_access_add_rbtree(struct inode *inode, 3067 struct nfs_access_entry *set, 3068 const struct cred *cred) 3069 { 3070 struct nfs_inode *nfsi = NFS_I(inode); 3071 struct rb_root *root_node = &nfsi->access_cache; 3072 struct rb_node **p = &root_node->rb_node; 3073 struct rb_node *parent = NULL; 3074 struct nfs_access_entry *entry; 3075 int cmp; 3076 3077 spin_lock(&inode->i_lock); 3078 while (*p != NULL) { 3079 parent = *p; 3080 entry = rb_entry(parent, struct nfs_access_entry, rb_node); 3081 cmp = access_cmp(cred, entry); 3082 3083 if (cmp < 0) 3084 p = &parent->rb_left; 3085 else if (cmp > 0) 3086 p = &parent->rb_right; 3087 else 3088 goto found; 3089 } 3090 rb_link_node(&set->rb_node, parent, p); 3091 rb_insert_color(&set->rb_node, root_node); 3092 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 3093 spin_unlock(&inode->i_lock); 3094 return; 3095 found: 3096 rb_replace_node(parent, &set->rb_node, root_node); 3097 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 3098 list_del(&entry->lru); 3099 spin_unlock(&inode->i_lock); 3100 nfs_access_free_entry(entry); 3101 } 3102 3103 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set, 3104 const struct cred *cred) 3105 { 3106 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL); 3107 if (cache == NULL) 3108 return; 3109 RB_CLEAR_NODE(&cache->rb_node); 3110 cache->fsuid = cred->fsuid; 3111 cache->fsgid = cred->fsgid; 3112 cache->group_info = get_group_info(cred->group_info); 3113 cache->mask = set->mask; 3114 cache->timestamp = ktime_get_ns(); 3115 3116 /* The above field assignments must be visible 3117 * before this item appears on the lru. We cannot easily 3118 * use rcu_assign_pointer, so just force the memory barrier. 3119 */ 3120 smp_wmb(); 3121 nfs_access_add_rbtree(inode, cache, cred); 3122 3123 /* Update accounting */ 3124 smp_mb__before_atomic(); 3125 atomic_long_inc(&nfs_access_nr_entries); 3126 smp_mb__after_atomic(); 3127 3128 /* Add inode to global LRU list */ 3129 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) { 3130 spin_lock(&nfs_access_lru_lock); 3131 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 3132 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, 3133 &nfs_access_lru_list); 3134 spin_unlock(&nfs_access_lru_lock); 3135 } 3136 nfs_access_cache_enforce_limit(); 3137 } 3138 EXPORT_SYMBOL_GPL(nfs_access_add_cache); 3139 3140 #define NFS_MAY_READ (NFS_ACCESS_READ) 3141 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \ 3142 NFS_ACCESS_EXTEND | \ 3143 NFS_ACCESS_DELETE) 3144 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \ 3145 NFS_ACCESS_EXTEND) 3146 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE 3147 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP) 3148 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE) 3149 static int 3150 nfs_access_calc_mask(u32 access_result, umode_t umode) 3151 { 3152 int mask = 0; 3153 3154 if (access_result & NFS_MAY_READ) 3155 mask |= MAY_READ; 3156 if (S_ISDIR(umode)) { 3157 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE) 3158 mask |= MAY_WRITE; 3159 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP) 3160 mask |= MAY_EXEC; 3161 } else if (S_ISREG(umode)) { 3162 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE) 3163 mask |= MAY_WRITE; 3164 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE) 3165 mask |= MAY_EXEC; 3166 } else if (access_result & NFS_MAY_WRITE) 3167 mask |= MAY_WRITE; 3168 return mask; 3169 } 3170 3171 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result) 3172 { 3173 entry->mask = access_result; 3174 } 3175 EXPORT_SYMBOL_GPL(nfs_access_set_mask); 3176 3177 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask) 3178 { 3179 struct nfs_access_entry cache; 3180 bool may_block = (mask & MAY_NOT_BLOCK) == 0; 3181 int cache_mask = -1; 3182 int status; 3183 3184 trace_nfs_access_enter(inode); 3185 3186 status = nfs_access_get_cached(inode, cred, &cache.mask, may_block); 3187 if (status == 0) 3188 goto out_cached; 3189 3190 status = -ECHILD; 3191 if (!may_block) 3192 goto out; 3193 3194 /* 3195 * Determine which access bits we want to ask for... 3196 */ 3197 cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND | 3198 nfs_access_xattr_mask(NFS_SERVER(inode)); 3199 if (S_ISDIR(inode->i_mode)) 3200 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP; 3201 else 3202 cache.mask |= NFS_ACCESS_EXECUTE; 3203 status = NFS_PROTO(inode)->access(inode, &cache, cred); 3204 if (status != 0) { 3205 if (status == -ESTALE) { 3206 if (!S_ISDIR(inode->i_mode)) 3207 nfs_set_inode_stale(inode); 3208 else 3209 nfs_zap_caches(inode); 3210 } 3211 goto out; 3212 } 3213 nfs_access_add_cache(inode, &cache, cred); 3214 out_cached: 3215 cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode); 3216 if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0) 3217 status = -EACCES; 3218 out: 3219 trace_nfs_access_exit(inode, mask, cache_mask, status); 3220 return status; 3221 } 3222 3223 static int nfs_open_permission_mask(int openflags) 3224 { 3225 int mask = 0; 3226 3227 if (openflags & __FMODE_EXEC) { 3228 /* ONLY check exec rights */ 3229 mask = MAY_EXEC; 3230 } else { 3231 if ((openflags & O_ACCMODE) != O_WRONLY) 3232 mask |= MAY_READ; 3233 if ((openflags & O_ACCMODE) != O_RDONLY) 3234 mask |= MAY_WRITE; 3235 } 3236 3237 return mask; 3238 } 3239 3240 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags) 3241 { 3242 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags)); 3243 } 3244 EXPORT_SYMBOL_GPL(nfs_may_open); 3245 3246 static int nfs_execute_ok(struct inode *inode, int mask) 3247 { 3248 struct nfs_server *server = NFS_SERVER(inode); 3249 int ret = 0; 3250 3251 if (S_ISDIR(inode->i_mode)) 3252 return 0; 3253 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) { 3254 if (mask & MAY_NOT_BLOCK) 3255 return -ECHILD; 3256 ret = __nfs_revalidate_inode(server, inode); 3257 } 3258 if (ret == 0 && !execute_ok(inode)) 3259 ret = -EACCES; 3260 return ret; 3261 } 3262 3263 int nfs_permission(struct mnt_idmap *idmap, 3264 struct inode *inode, 3265 int mask) 3266 { 3267 const struct cred *cred = current_cred(); 3268 int res = 0; 3269 3270 nfs_inc_stats(inode, NFSIOS_VFSACCESS); 3271 3272 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 3273 goto out; 3274 /* Is this sys_access() ? */ 3275 if (mask & (MAY_ACCESS | MAY_CHDIR)) 3276 goto force_lookup; 3277 3278 switch (inode->i_mode & S_IFMT) { 3279 case S_IFLNK: 3280 goto out; 3281 case S_IFREG: 3282 if ((mask & MAY_OPEN) && 3283 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)) 3284 return 0; 3285 break; 3286 case S_IFDIR: 3287 /* 3288 * Optimize away all write operations, since the server 3289 * will check permissions when we perform the op. 3290 */ 3291 if ((mask & MAY_WRITE) && !(mask & MAY_READ)) 3292 goto out; 3293 } 3294 3295 force_lookup: 3296 if (!NFS_PROTO(inode)->access) 3297 goto out_notsup; 3298 3299 res = nfs_do_access(inode, cred, mask); 3300 out: 3301 if (!res && (mask & MAY_EXEC)) 3302 res = nfs_execute_ok(inode, mask); 3303 3304 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n", 3305 inode->i_sb->s_id, inode->i_ino, mask, res); 3306 return res; 3307 out_notsup: 3308 if (mask & MAY_NOT_BLOCK) 3309 return -ECHILD; 3310 3311 res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE | 3312 NFS_INO_INVALID_OTHER); 3313 if (res == 0) 3314 res = generic_permission(&nop_mnt_idmap, inode, mask); 3315 goto out; 3316 } 3317 EXPORT_SYMBOL_GPL(nfs_permission); 3318