1 /* 2 * linux/fs/nfs/dir.c 3 * 4 * Copyright (C) 1992 Rick Sladkey 5 * 6 * nfs directory handling functions 7 * 8 * 10 Apr 1996 Added silly rename for unlink --okir 9 * 28 Sep 1996 Improved directory cache --okir 10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de 11 * Re-implemented silly rename for unlink, newly implemented 12 * silly rename for nfs_rename() following the suggestions 13 * of Olaf Kirch (okir) found in this file. 14 * Following Linus comments on my original hack, this version 15 * depends only on the dcache stuff and doesn't touch the inode 16 * layer (iput() and friends). 17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM 18 */ 19 20 #include <linux/module.h> 21 #include <linux/time.h> 22 #include <linux/errno.h> 23 #include <linux/stat.h> 24 #include <linux/fcntl.h> 25 #include <linux/string.h> 26 #include <linux/kernel.h> 27 #include <linux/slab.h> 28 #include <linux/mm.h> 29 #include <linux/sunrpc/clnt.h> 30 #include <linux/nfs_fs.h> 31 #include <linux/nfs_mount.h> 32 #include <linux/pagemap.h> 33 #include <linux/pagevec.h> 34 #include <linux/namei.h> 35 #include <linux/mount.h> 36 #include <linux/swap.h> 37 #include <linux/sched.h> 38 #include <linux/kmemleak.h> 39 #include <linux/xattr.h> 40 41 #include "delegation.h" 42 #include "iostat.h" 43 #include "internal.h" 44 #include "fscache.h" 45 46 #include "nfstrace.h" 47 48 /* #define NFS_DEBUG_VERBOSE 1 */ 49 50 static int nfs_opendir(struct inode *, struct file *); 51 static int nfs_closedir(struct inode *, struct file *); 52 static int nfs_readdir(struct file *, struct dir_context *); 53 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int); 54 static loff_t nfs_llseek_dir(struct file *, loff_t, int); 55 static void nfs_readdir_clear_array(struct page*); 56 57 const struct file_operations nfs_dir_operations = { 58 .llseek = nfs_llseek_dir, 59 .read = generic_read_dir, 60 .iterate = nfs_readdir, 61 .open = nfs_opendir, 62 .release = nfs_closedir, 63 .fsync = nfs_fsync_dir, 64 }; 65 66 const struct address_space_operations nfs_dir_aops = { 67 .freepage = nfs_readdir_clear_array, 68 }; 69 70 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred) 71 { 72 struct nfs_inode *nfsi = NFS_I(dir); 73 struct nfs_open_dir_context *ctx; 74 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); 75 if (ctx != NULL) { 76 ctx->duped = 0; 77 ctx->attr_gencount = nfsi->attr_gencount; 78 ctx->dir_cookie = 0; 79 ctx->dup_cookie = 0; 80 ctx->cred = get_rpccred(cred); 81 spin_lock(&dir->i_lock); 82 list_add(&ctx->list, &nfsi->open_files); 83 spin_unlock(&dir->i_lock); 84 return ctx; 85 } 86 return ERR_PTR(-ENOMEM); 87 } 88 89 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx) 90 { 91 spin_lock(&dir->i_lock); 92 list_del(&ctx->list); 93 spin_unlock(&dir->i_lock); 94 put_rpccred(ctx->cred); 95 kfree(ctx); 96 } 97 98 /* 99 * Open file 100 */ 101 static int 102 nfs_opendir(struct inode *inode, struct file *filp) 103 { 104 int res = 0; 105 struct nfs_open_dir_context *ctx; 106 struct rpc_cred *cred; 107 108 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp); 109 110 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 111 112 cred = rpc_lookup_cred(); 113 if (IS_ERR(cred)) 114 return PTR_ERR(cred); 115 ctx = alloc_nfs_open_dir_context(inode, cred); 116 if (IS_ERR(ctx)) { 117 res = PTR_ERR(ctx); 118 goto out; 119 } 120 filp->private_data = ctx; 121 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) { 122 /* This is a mountpoint, so d_revalidate will never 123 * have been called, so we need to refresh the 124 * inode (for close-open consistency) ourselves. 125 */ 126 __nfs_revalidate_inode(NFS_SERVER(inode), inode); 127 } 128 out: 129 put_rpccred(cred); 130 return res; 131 } 132 133 static int 134 nfs_closedir(struct inode *inode, struct file *filp) 135 { 136 put_nfs_open_dir_context(filp->f_path.dentry->d_inode, filp->private_data); 137 return 0; 138 } 139 140 struct nfs_cache_array_entry { 141 u64 cookie; 142 u64 ino; 143 struct qstr string; 144 unsigned char d_type; 145 }; 146 147 struct nfs_cache_array { 148 int size; 149 int eof_index; 150 u64 last_cookie; 151 struct nfs_cache_array_entry array[0]; 152 }; 153 154 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int); 155 typedef struct { 156 struct file *file; 157 struct page *page; 158 struct dir_context *ctx; 159 unsigned long page_index; 160 u64 *dir_cookie; 161 u64 last_cookie; 162 loff_t current_index; 163 decode_dirent_t decode; 164 165 unsigned long timestamp; 166 unsigned long gencount; 167 unsigned int cache_entry_index; 168 unsigned int plus:1; 169 unsigned int eof:1; 170 } nfs_readdir_descriptor_t; 171 172 /* 173 * The caller is responsible for calling nfs_readdir_release_array(page) 174 */ 175 static 176 struct nfs_cache_array *nfs_readdir_get_array(struct page *page) 177 { 178 void *ptr; 179 if (page == NULL) 180 return ERR_PTR(-EIO); 181 ptr = kmap(page); 182 if (ptr == NULL) 183 return ERR_PTR(-ENOMEM); 184 return ptr; 185 } 186 187 static 188 void nfs_readdir_release_array(struct page *page) 189 { 190 kunmap(page); 191 } 192 193 /* 194 * we are freeing strings created by nfs_add_to_readdir_array() 195 */ 196 static 197 void nfs_readdir_clear_array(struct page *page) 198 { 199 struct nfs_cache_array *array; 200 int i; 201 202 array = kmap_atomic(page); 203 for (i = 0; i < array->size; i++) 204 kfree(array->array[i].string.name); 205 kunmap_atomic(array); 206 } 207 208 /* 209 * the caller is responsible for freeing qstr.name 210 * when called by nfs_readdir_add_to_array, the strings will be freed in 211 * nfs_clear_readdir_array() 212 */ 213 static 214 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len) 215 { 216 string->len = len; 217 string->name = kmemdup(name, len, GFP_KERNEL); 218 if (string->name == NULL) 219 return -ENOMEM; 220 /* 221 * Avoid a kmemleak false positive. The pointer to the name is stored 222 * in a page cache page which kmemleak does not scan. 223 */ 224 kmemleak_not_leak(string->name); 225 string->hash = full_name_hash(name, len); 226 return 0; 227 } 228 229 static 230 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page) 231 { 232 struct nfs_cache_array *array = nfs_readdir_get_array(page); 233 struct nfs_cache_array_entry *cache_entry; 234 int ret; 235 236 if (IS_ERR(array)) 237 return PTR_ERR(array); 238 239 cache_entry = &array->array[array->size]; 240 241 /* Check that this entry lies within the page bounds */ 242 ret = -ENOSPC; 243 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE) 244 goto out; 245 246 cache_entry->cookie = entry->prev_cookie; 247 cache_entry->ino = entry->ino; 248 cache_entry->d_type = entry->d_type; 249 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len); 250 if (ret) 251 goto out; 252 array->last_cookie = entry->cookie; 253 array->size++; 254 if (entry->eof != 0) 255 array->eof_index = array->size; 256 out: 257 nfs_readdir_release_array(page); 258 return ret; 259 } 260 261 static 262 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 263 { 264 loff_t diff = desc->ctx->pos - desc->current_index; 265 unsigned int index; 266 267 if (diff < 0) 268 goto out_eof; 269 if (diff >= array->size) { 270 if (array->eof_index >= 0) 271 goto out_eof; 272 return -EAGAIN; 273 } 274 275 index = (unsigned int)diff; 276 *desc->dir_cookie = array->array[index].cookie; 277 desc->cache_entry_index = index; 278 return 0; 279 out_eof: 280 desc->eof = 1; 281 return -EBADCOOKIE; 282 } 283 284 static bool 285 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi) 286 { 287 if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA)) 288 return false; 289 smp_rmb(); 290 return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags); 291 } 292 293 static 294 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 295 { 296 int i; 297 loff_t new_pos; 298 int status = -EAGAIN; 299 300 for (i = 0; i < array->size; i++) { 301 if (array->array[i].cookie == *desc->dir_cookie) { 302 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file)); 303 struct nfs_open_dir_context *ctx = desc->file->private_data; 304 305 new_pos = desc->current_index + i; 306 if (ctx->attr_gencount != nfsi->attr_gencount || 307 !nfs_readdir_inode_mapping_valid(nfsi)) { 308 ctx->duped = 0; 309 ctx->attr_gencount = nfsi->attr_gencount; 310 } else if (new_pos < desc->ctx->pos) { 311 if (ctx->duped > 0 312 && ctx->dup_cookie == *desc->dir_cookie) { 313 if (printk_ratelimit()) { 314 pr_notice("NFS: directory %pD2 contains a readdir loop." 315 "Please contact your server vendor. " 316 "The file: %.*s has duplicate cookie %llu\n", 317 desc->file, array->array[i].string.len, 318 array->array[i].string.name, *desc->dir_cookie); 319 } 320 status = -ELOOP; 321 goto out; 322 } 323 ctx->dup_cookie = *desc->dir_cookie; 324 ctx->duped = -1; 325 } 326 desc->ctx->pos = new_pos; 327 desc->cache_entry_index = i; 328 return 0; 329 } 330 } 331 if (array->eof_index >= 0) { 332 status = -EBADCOOKIE; 333 if (*desc->dir_cookie == array->last_cookie) 334 desc->eof = 1; 335 } 336 out: 337 return status; 338 } 339 340 static 341 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc) 342 { 343 struct nfs_cache_array *array; 344 int status; 345 346 array = nfs_readdir_get_array(desc->page); 347 if (IS_ERR(array)) { 348 status = PTR_ERR(array); 349 goto out; 350 } 351 352 if (*desc->dir_cookie == 0) 353 status = nfs_readdir_search_for_pos(array, desc); 354 else 355 status = nfs_readdir_search_for_cookie(array, desc); 356 357 if (status == -EAGAIN) { 358 desc->last_cookie = array->last_cookie; 359 desc->current_index += array->size; 360 desc->page_index++; 361 } 362 nfs_readdir_release_array(desc->page); 363 out: 364 return status; 365 } 366 367 /* Fill a page with xdr information before transferring to the cache page */ 368 static 369 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc, 370 struct nfs_entry *entry, struct file *file, struct inode *inode) 371 { 372 struct nfs_open_dir_context *ctx = file->private_data; 373 struct rpc_cred *cred = ctx->cred; 374 unsigned long timestamp, gencount; 375 int error; 376 377 again: 378 timestamp = jiffies; 379 gencount = nfs_inc_attr_generation_counter(); 380 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages, 381 NFS_SERVER(inode)->dtsize, desc->plus); 382 if (error < 0) { 383 /* We requested READDIRPLUS, but the server doesn't grok it */ 384 if (error == -ENOTSUPP && desc->plus) { 385 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS; 386 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 387 desc->plus = 0; 388 goto again; 389 } 390 goto error; 391 } 392 desc->timestamp = timestamp; 393 desc->gencount = gencount; 394 error: 395 return error; 396 } 397 398 static int xdr_decode(nfs_readdir_descriptor_t *desc, 399 struct nfs_entry *entry, struct xdr_stream *xdr) 400 { 401 int error; 402 403 error = desc->decode(xdr, entry, desc->plus); 404 if (error) 405 return error; 406 entry->fattr->time_start = desc->timestamp; 407 entry->fattr->gencount = desc->gencount; 408 return 0; 409 } 410 411 static 412 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry) 413 { 414 if (dentry->d_inode == NULL) 415 goto different; 416 if (nfs_compare_fh(entry->fh, NFS_FH(dentry->d_inode)) != 0) 417 goto different; 418 return 1; 419 different: 420 return 0; 421 } 422 423 static 424 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx) 425 { 426 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS)) 427 return false; 428 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags)) 429 return true; 430 if (ctx->pos == 0) 431 return true; 432 return false; 433 } 434 435 /* 436 * This function is called by the lookup code to request the use of 437 * readdirplus to accelerate any future lookups in the same 438 * directory. 439 */ 440 static 441 void nfs_advise_use_readdirplus(struct inode *dir) 442 { 443 set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags); 444 } 445 446 /* 447 * This function is mainly for use by nfs_getattr(). 448 * 449 * If this is an 'ls -l', we want to force use of readdirplus. 450 * Do this by checking if there is an active file descriptor 451 * and calling nfs_advise_use_readdirplus, then forcing a 452 * cache flush. 453 */ 454 void nfs_force_use_readdirplus(struct inode *dir) 455 { 456 if (!list_empty(&NFS_I(dir)->open_files)) { 457 nfs_advise_use_readdirplus(dir); 458 nfs_zap_mapping(dir, dir->i_mapping); 459 } 460 } 461 462 static 463 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry) 464 { 465 struct qstr filename = QSTR_INIT(entry->name, entry->len); 466 struct dentry *dentry; 467 struct dentry *alias; 468 struct inode *dir = parent->d_inode; 469 struct inode *inode; 470 int status; 471 472 if (filename.name[0] == '.') { 473 if (filename.len == 1) 474 return; 475 if (filename.len == 2 && filename.name[1] == '.') 476 return; 477 } 478 filename.hash = full_name_hash(filename.name, filename.len); 479 480 dentry = d_lookup(parent, &filename); 481 if (dentry != NULL) { 482 if (nfs_same_file(dentry, entry)) { 483 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 484 status = nfs_refresh_inode(dentry->d_inode, entry->fattr); 485 if (!status) 486 nfs_setsecurity(dentry->d_inode, entry->fattr, entry->label); 487 goto out; 488 } else { 489 if (d_invalidate(dentry) != 0) 490 goto out; 491 dput(dentry); 492 } 493 } 494 495 dentry = d_alloc(parent, &filename); 496 if (dentry == NULL) 497 return; 498 499 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label); 500 if (IS_ERR(inode)) 501 goto out; 502 503 alias = d_materialise_unique(dentry, inode); 504 if (IS_ERR(alias)) 505 goto out; 506 else if (alias) { 507 nfs_set_verifier(alias, nfs_save_change_attribute(dir)); 508 dput(alias); 509 } else 510 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 511 512 out: 513 dput(dentry); 514 } 515 516 /* Perform conversion from xdr to cache array */ 517 static 518 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry, 519 struct page **xdr_pages, struct page *page, unsigned int buflen) 520 { 521 struct xdr_stream stream; 522 struct xdr_buf buf; 523 struct page *scratch; 524 struct nfs_cache_array *array; 525 unsigned int count = 0; 526 int status; 527 528 scratch = alloc_page(GFP_KERNEL); 529 if (scratch == NULL) 530 return -ENOMEM; 531 532 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen); 533 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE); 534 535 do { 536 status = xdr_decode(desc, entry, &stream); 537 if (status != 0) { 538 if (status == -EAGAIN) 539 status = 0; 540 break; 541 } 542 543 count++; 544 545 if (desc->plus != 0) 546 nfs_prime_dcache(desc->file->f_path.dentry, entry); 547 548 status = nfs_readdir_add_to_array(entry, page); 549 if (status != 0) 550 break; 551 } while (!entry->eof); 552 553 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) { 554 array = nfs_readdir_get_array(page); 555 if (!IS_ERR(array)) { 556 array->eof_index = array->size; 557 status = 0; 558 nfs_readdir_release_array(page); 559 } else 560 status = PTR_ERR(array); 561 } 562 563 put_page(scratch); 564 return status; 565 } 566 567 static 568 void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages) 569 { 570 unsigned int i; 571 for (i = 0; i < npages; i++) 572 put_page(pages[i]); 573 } 574 575 static 576 void nfs_readdir_free_large_page(void *ptr, struct page **pages, 577 unsigned int npages) 578 { 579 nfs_readdir_free_pagearray(pages, npages); 580 } 581 582 /* 583 * nfs_readdir_large_page will allocate pages that must be freed with a call 584 * to nfs_readdir_free_large_page 585 */ 586 static 587 int nfs_readdir_large_page(struct page **pages, unsigned int npages) 588 { 589 unsigned int i; 590 591 for (i = 0; i < npages; i++) { 592 struct page *page = alloc_page(GFP_KERNEL); 593 if (page == NULL) 594 goto out_freepages; 595 pages[i] = page; 596 } 597 return 0; 598 599 out_freepages: 600 nfs_readdir_free_pagearray(pages, i); 601 return -ENOMEM; 602 } 603 604 static 605 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode) 606 { 607 struct page *pages[NFS_MAX_READDIR_PAGES]; 608 void *pages_ptr = NULL; 609 struct nfs_entry entry; 610 struct file *file = desc->file; 611 struct nfs_cache_array *array; 612 int status = -ENOMEM; 613 unsigned int array_size = ARRAY_SIZE(pages); 614 615 entry.prev_cookie = 0; 616 entry.cookie = desc->last_cookie; 617 entry.eof = 0; 618 entry.fh = nfs_alloc_fhandle(); 619 entry.fattr = nfs_alloc_fattr(); 620 entry.server = NFS_SERVER(inode); 621 if (entry.fh == NULL || entry.fattr == NULL) 622 goto out; 623 624 entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT); 625 if (IS_ERR(entry.label)) { 626 status = PTR_ERR(entry.label); 627 goto out; 628 } 629 630 array = nfs_readdir_get_array(page); 631 if (IS_ERR(array)) { 632 status = PTR_ERR(array); 633 goto out_label_free; 634 } 635 memset(array, 0, sizeof(struct nfs_cache_array)); 636 array->eof_index = -1; 637 638 status = nfs_readdir_large_page(pages, array_size); 639 if (status < 0) 640 goto out_release_array; 641 do { 642 unsigned int pglen; 643 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode); 644 645 if (status < 0) 646 break; 647 pglen = status; 648 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen); 649 if (status < 0) { 650 if (status == -ENOSPC) 651 status = 0; 652 break; 653 } 654 } while (array->eof_index < 0); 655 656 nfs_readdir_free_large_page(pages_ptr, pages, array_size); 657 out_release_array: 658 nfs_readdir_release_array(page); 659 out_label_free: 660 nfs4_label_free(entry.label); 661 out: 662 nfs_free_fattr(entry.fattr); 663 nfs_free_fhandle(entry.fh); 664 return status; 665 } 666 667 /* 668 * Now we cache directories properly, by converting xdr information 669 * to an array that can be used for lookups later. This results in 670 * fewer cache pages, since we can store more information on each page. 671 * We only need to convert from xdr once so future lookups are much simpler 672 */ 673 static 674 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page) 675 { 676 struct inode *inode = file_inode(desc->file); 677 int ret; 678 679 ret = nfs_readdir_xdr_to_array(desc, page, inode); 680 if (ret < 0) 681 goto error; 682 SetPageUptodate(page); 683 684 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) { 685 /* Should never happen */ 686 nfs_zap_mapping(inode, inode->i_mapping); 687 } 688 unlock_page(page); 689 return 0; 690 error: 691 unlock_page(page); 692 return ret; 693 } 694 695 static 696 void cache_page_release(nfs_readdir_descriptor_t *desc) 697 { 698 if (!desc->page->mapping) 699 nfs_readdir_clear_array(desc->page); 700 page_cache_release(desc->page); 701 desc->page = NULL; 702 } 703 704 static 705 struct page *get_cache_page(nfs_readdir_descriptor_t *desc) 706 { 707 return read_cache_page(file_inode(desc->file)->i_mapping, 708 desc->page_index, (filler_t *)nfs_readdir_filler, desc); 709 } 710 711 /* 712 * Returns 0 if desc->dir_cookie was found on page desc->page_index 713 */ 714 static 715 int find_cache_page(nfs_readdir_descriptor_t *desc) 716 { 717 int res; 718 719 desc->page = get_cache_page(desc); 720 if (IS_ERR(desc->page)) 721 return PTR_ERR(desc->page); 722 723 res = nfs_readdir_search_array(desc); 724 if (res != 0) 725 cache_page_release(desc); 726 return res; 727 } 728 729 /* Search for desc->dir_cookie from the beginning of the page cache */ 730 static inline 731 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc) 732 { 733 int res; 734 735 if (desc->page_index == 0) { 736 desc->current_index = 0; 737 desc->last_cookie = 0; 738 } 739 do { 740 res = find_cache_page(desc); 741 } while (res == -EAGAIN); 742 return res; 743 } 744 745 /* 746 * Once we've found the start of the dirent within a page: fill 'er up... 747 */ 748 static 749 int nfs_do_filldir(nfs_readdir_descriptor_t *desc) 750 { 751 struct file *file = desc->file; 752 int i = 0; 753 int res = 0; 754 struct nfs_cache_array *array = NULL; 755 struct nfs_open_dir_context *ctx = file->private_data; 756 757 array = nfs_readdir_get_array(desc->page); 758 if (IS_ERR(array)) { 759 res = PTR_ERR(array); 760 goto out; 761 } 762 763 for (i = desc->cache_entry_index; i < array->size; i++) { 764 struct nfs_cache_array_entry *ent; 765 766 ent = &array->array[i]; 767 if (!dir_emit(desc->ctx, ent->string.name, ent->string.len, 768 nfs_compat_user_ino64(ent->ino), ent->d_type)) { 769 desc->eof = 1; 770 break; 771 } 772 desc->ctx->pos++; 773 if (i < (array->size-1)) 774 *desc->dir_cookie = array->array[i+1].cookie; 775 else 776 *desc->dir_cookie = array->last_cookie; 777 if (ctx->duped != 0) 778 ctx->duped = 1; 779 } 780 if (array->eof_index >= 0) 781 desc->eof = 1; 782 783 nfs_readdir_release_array(desc->page); 784 out: 785 cache_page_release(desc); 786 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n", 787 (unsigned long long)*desc->dir_cookie, res); 788 return res; 789 } 790 791 /* 792 * If we cannot find a cookie in our cache, we suspect that this is 793 * because it points to a deleted file, so we ask the server to return 794 * whatever it thinks is the next entry. We then feed this to filldir. 795 * If all goes well, we should then be able to find our way round the 796 * cache on the next call to readdir_search_pagecache(); 797 * 798 * NOTE: we cannot add the anonymous page to the pagecache because 799 * the data it contains might not be page aligned. Besides, 800 * we should already have a complete representation of the 801 * directory in the page cache by the time we get here. 802 */ 803 static inline 804 int uncached_readdir(nfs_readdir_descriptor_t *desc) 805 { 806 struct page *page = NULL; 807 int status; 808 struct inode *inode = file_inode(desc->file); 809 struct nfs_open_dir_context *ctx = desc->file->private_data; 810 811 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n", 812 (unsigned long long)*desc->dir_cookie); 813 814 page = alloc_page(GFP_HIGHUSER); 815 if (!page) { 816 status = -ENOMEM; 817 goto out; 818 } 819 820 desc->page_index = 0; 821 desc->last_cookie = *desc->dir_cookie; 822 desc->page = page; 823 ctx->duped = 0; 824 825 status = nfs_readdir_xdr_to_array(desc, page, inode); 826 if (status < 0) 827 goto out_release; 828 829 status = nfs_do_filldir(desc); 830 831 out: 832 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", 833 __func__, status); 834 return status; 835 out_release: 836 cache_page_release(desc); 837 goto out; 838 } 839 840 static bool nfs_dir_mapping_need_revalidate(struct inode *dir) 841 { 842 struct nfs_inode *nfsi = NFS_I(dir); 843 844 if (nfs_attribute_cache_expired(dir)) 845 return true; 846 if (nfsi->cache_validity & NFS_INO_INVALID_DATA) 847 return true; 848 return false; 849 } 850 851 /* The file offset position represents the dirent entry number. A 852 last cookie cache takes care of the common case of reading the 853 whole directory. 854 */ 855 static int nfs_readdir(struct file *file, struct dir_context *ctx) 856 { 857 struct dentry *dentry = file->f_path.dentry; 858 struct inode *inode = dentry->d_inode; 859 nfs_readdir_descriptor_t my_desc, 860 *desc = &my_desc; 861 struct nfs_open_dir_context *dir_ctx = file->private_data; 862 int res = 0; 863 864 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n", 865 file, (long long)ctx->pos); 866 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS); 867 868 /* 869 * ctx->pos points to the dirent entry number. 870 * *desc->dir_cookie has the cookie for the next entry. We have 871 * to either find the entry with the appropriate number or 872 * revalidate the cookie. 873 */ 874 memset(desc, 0, sizeof(*desc)); 875 876 desc->file = file; 877 desc->ctx = ctx; 878 desc->dir_cookie = &dir_ctx->dir_cookie; 879 desc->decode = NFS_PROTO(inode)->decode_dirent; 880 desc->plus = nfs_use_readdirplus(inode, ctx) ? 1 : 0; 881 882 nfs_block_sillyrename(dentry); 883 if (ctx->pos == 0 || nfs_dir_mapping_need_revalidate(inode)) 884 res = nfs_revalidate_mapping(inode, file->f_mapping); 885 if (res < 0) 886 goto out; 887 888 do { 889 res = readdir_search_pagecache(desc); 890 891 if (res == -EBADCOOKIE) { 892 res = 0; 893 /* This means either end of directory */ 894 if (*desc->dir_cookie && desc->eof == 0) { 895 /* Or that the server has 'lost' a cookie */ 896 res = uncached_readdir(desc); 897 if (res == 0) 898 continue; 899 } 900 break; 901 } 902 if (res == -ETOOSMALL && desc->plus) { 903 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 904 nfs_zap_caches(inode); 905 desc->page_index = 0; 906 desc->plus = 0; 907 desc->eof = 0; 908 continue; 909 } 910 if (res < 0) 911 break; 912 913 res = nfs_do_filldir(desc); 914 if (res < 0) 915 break; 916 } while (!desc->eof); 917 out: 918 nfs_unblock_sillyrename(dentry); 919 if (res > 0) 920 res = 0; 921 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res); 922 return res; 923 } 924 925 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence) 926 { 927 struct inode *inode = file_inode(filp); 928 struct nfs_open_dir_context *dir_ctx = filp->private_data; 929 930 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n", 931 filp, offset, whence); 932 933 mutex_lock(&inode->i_mutex); 934 switch (whence) { 935 case 1: 936 offset += filp->f_pos; 937 case 0: 938 if (offset >= 0) 939 break; 940 default: 941 offset = -EINVAL; 942 goto out; 943 } 944 if (offset != filp->f_pos) { 945 filp->f_pos = offset; 946 dir_ctx->dir_cookie = 0; 947 dir_ctx->duped = 0; 948 } 949 out: 950 mutex_unlock(&inode->i_mutex); 951 return offset; 952 } 953 954 /* 955 * All directory operations under NFS are synchronous, so fsync() 956 * is a dummy operation. 957 */ 958 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end, 959 int datasync) 960 { 961 struct inode *inode = file_inode(filp); 962 963 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync); 964 965 mutex_lock(&inode->i_mutex); 966 nfs_inc_stats(inode, NFSIOS_VFSFSYNC); 967 mutex_unlock(&inode->i_mutex); 968 return 0; 969 } 970 971 /** 972 * nfs_force_lookup_revalidate - Mark the directory as having changed 973 * @dir - pointer to directory inode 974 * 975 * This forces the revalidation code in nfs_lookup_revalidate() to do a 976 * full lookup on all child dentries of 'dir' whenever a change occurs 977 * on the server that might have invalidated our dcache. 978 * 979 * The caller should be holding dir->i_lock 980 */ 981 void nfs_force_lookup_revalidate(struct inode *dir) 982 { 983 NFS_I(dir)->cache_change_attribute++; 984 } 985 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate); 986 987 /* 988 * A check for whether or not the parent directory has changed. 989 * In the case it has, we assume that the dentries are untrustworthy 990 * and may need to be looked up again. 991 */ 992 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry) 993 { 994 if (IS_ROOT(dentry)) 995 return 1; 996 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE) 997 return 0; 998 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 999 return 0; 1000 /* Revalidate nfsi->cache_change_attribute before we declare a match */ 1001 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0) 1002 return 0; 1003 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 1004 return 0; 1005 return 1; 1006 } 1007 1008 /* 1009 * Use intent information to check whether or not we're going to do 1010 * an O_EXCL create using this path component. 1011 */ 1012 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags) 1013 { 1014 if (NFS_PROTO(dir)->version == 2) 1015 return 0; 1016 return flags & LOOKUP_EXCL; 1017 } 1018 1019 /* 1020 * Inode and filehandle revalidation for lookups. 1021 * 1022 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL, 1023 * or if the intent information indicates that we're about to open this 1024 * particular file and the "nocto" mount flag is not set. 1025 * 1026 */ 1027 static 1028 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags) 1029 { 1030 struct nfs_server *server = NFS_SERVER(inode); 1031 int ret; 1032 1033 if (IS_AUTOMOUNT(inode)) 1034 return 0; 1035 /* VFS wants an on-the-wire revalidation */ 1036 if (flags & LOOKUP_REVAL) 1037 goto out_force; 1038 /* This is an open(2) */ 1039 if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) && 1040 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode))) 1041 goto out_force; 1042 out: 1043 return (inode->i_nlink == 0) ? -ENOENT : 0; 1044 out_force: 1045 ret = __nfs_revalidate_inode(server, inode); 1046 if (ret != 0) 1047 return ret; 1048 goto out; 1049 } 1050 1051 /* 1052 * We judge how long we want to trust negative 1053 * dentries by looking at the parent inode mtime. 1054 * 1055 * If parent mtime has changed, we revalidate, else we wait for a 1056 * period corresponding to the parent's attribute cache timeout value. 1057 */ 1058 static inline 1059 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry, 1060 unsigned int flags) 1061 { 1062 /* Don't revalidate a negative dentry if we're creating a new file */ 1063 if (flags & LOOKUP_CREATE) 1064 return 0; 1065 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG) 1066 return 1; 1067 return !nfs_check_verifier(dir, dentry); 1068 } 1069 1070 /* 1071 * This is called every time the dcache has a lookup hit, 1072 * and we should check whether we can really trust that 1073 * lookup. 1074 * 1075 * NOTE! The hit can be a negative hit too, don't assume 1076 * we have an inode! 1077 * 1078 * If the parent directory is seen to have changed, we throw out the 1079 * cached dentry and do a new lookup. 1080 */ 1081 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1082 { 1083 struct inode *dir; 1084 struct inode *inode; 1085 struct dentry *parent; 1086 struct nfs_fh *fhandle = NULL; 1087 struct nfs_fattr *fattr = NULL; 1088 struct nfs4_label *label = NULL; 1089 int error; 1090 1091 if (flags & LOOKUP_RCU) 1092 return -ECHILD; 1093 1094 parent = dget_parent(dentry); 1095 dir = parent->d_inode; 1096 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE); 1097 inode = dentry->d_inode; 1098 1099 if (!inode) { 1100 if (nfs_neg_need_reval(dir, dentry, flags)) 1101 goto out_bad; 1102 goto out_valid_noent; 1103 } 1104 1105 if (is_bad_inode(inode)) { 1106 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1107 __func__, dentry); 1108 goto out_bad; 1109 } 1110 1111 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ)) 1112 goto out_set_verifier; 1113 1114 /* Force a full look up iff the parent directory has changed */ 1115 if (!nfs_is_exclusive_create(dir, flags) && nfs_check_verifier(dir, dentry)) { 1116 if (nfs_lookup_verify_inode(inode, flags)) 1117 goto out_zap_parent; 1118 goto out_valid; 1119 } 1120 1121 if (NFS_STALE(inode)) 1122 goto out_bad; 1123 1124 error = -ENOMEM; 1125 fhandle = nfs_alloc_fhandle(); 1126 fattr = nfs_alloc_fattr(); 1127 if (fhandle == NULL || fattr == NULL) 1128 goto out_error; 1129 1130 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT); 1131 if (IS_ERR(label)) 1132 goto out_error; 1133 1134 trace_nfs_lookup_revalidate_enter(dir, dentry, flags); 1135 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label); 1136 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error); 1137 if (error) 1138 goto out_bad; 1139 if (nfs_compare_fh(NFS_FH(inode), fhandle)) 1140 goto out_bad; 1141 if ((error = nfs_refresh_inode(inode, fattr)) != 0) 1142 goto out_bad; 1143 1144 nfs_setsecurity(inode, fattr, label); 1145 1146 nfs_free_fattr(fattr); 1147 nfs_free_fhandle(fhandle); 1148 nfs4_label_free(label); 1149 1150 out_set_verifier: 1151 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1152 out_valid: 1153 /* Success: notify readdir to use READDIRPLUS */ 1154 nfs_advise_use_readdirplus(dir); 1155 out_valid_noent: 1156 dput(parent); 1157 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n", 1158 __func__, dentry); 1159 return 1; 1160 out_zap_parent: 1161 nfs_zap_caches(dir); 1162 out_bad: 1163 nfs_free_fattr(fattr); 1164 nfs_free_fhandle(fhandle); 1165 nfs4_label_free(label); 1166 nfs_mark_for_revalidate(dir); 1167 if (inode && S_ISDIR(inode->i_mode)) { 1168 /* Purge readdir caches. */ 1169 nfs_zap_caches(inode); 1170 /* 1171 * We can't d_drop the root of a disconnected tree: 1172 * its d_hash is on the s_anon list and d_drop() would hide 1173 * it from shrink_dcache_for_unmount(), leading to busy 1174 * inodes on unmount and further oopses. 1175 */ 1176 if (IS_ROOT(dentry)) 1177 goto out_valid; 1178 } 1179 /* If we have submounts, don't unhash ! */ 1180 if (check_submounts_and_drop(dentry) != 0) 1181 goto out_valid; 1182 1183 dput(parent); 1184 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n", 1185 __func__, dentry); 1186 return 0; 1187 out_error: 1188 nfs_free_fattr(fattr); 1189 nfs_free_fhandle(fhandle); 1190 nfs4_label_free(label); 1191 dput(parent); 1192 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n", 1193 __func__, dentry, error); 1194 return error; 1195 } 1196 1197 /* 1198 * A weaker form of d_revalidate for revalidating just the dentry->d_inode 1199 * when we don't really care about the dentry name. This is called when a 1200 * pathwalk ends on a dentry that was not found via a normal lookup in the 1201 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals). 1202 * 1203 * In this situation, we just want to verify that the inode itself is OK 1204 * since the dentry might have changed on the server. 1205 */ 1206 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags) 1207 { 1208 int error; 1209 struct inode *inode = dentry->d_inode; 1210 1211 /* 1212 * I believe we can only get a negative dentry here in the case of a 1213 * procfs-style symlink. Just assume it's correct for now, but we may 1214 * eventually need to do something more here. 1215 */ 1216 if (!inode) { 1217 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n", 1218 __func__, dentry); 1219 return 1; 1220 } 1221 1222 if (is_bad_inode(inode)) { 1223 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1224 __func__, dentry); 1225 return 0; 1226 } 1227 1228 error = nfs_revalidate_inode(NFS_SERVER(inode), inode); 1229 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n", 1230 __func__, inode->i_ino, error ? "invalid" : "valid"); 1231 return !error; 1232 } 1233 1234 /* 1235 * This is called from dput() when d_count is going to 0. 1236 */ 1237 static int nfs_dentry_delete(const struct dentry *dentry) 1238 { 1239 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n", 1240 dentry, dentry->d_flags); 1241 1242 /* Unhash any dentry with a stale inode */ 1243 if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode)) 1244 return 1; 1245 1246 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1247 /* Unhash it, so that ->d_iput() would be called */ 1248 return 1; 1249 } 1250 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) { 1251 /* Unhash it, so that ancestors of killed async unlink 1252 * files will be cleaned up during umount */ 1253 return 1; 1254 } 1255 return 0; 1256 1257 } 1258 1259 /* Ensure that we revalidate inode->i_nlink */ 1260 static void nfs_drop_nlink(struct inode *inode) 1261 { 1262 spin_lock(&inode->i_lock); 1263 /* drop the inode if we're reasonably sure this is the last link */ 1264 if (inode->i_nlink == 1) 1265 clear_nlink(inode); 1266 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR; 1267 spin_unlock(&inode->i_lock); 1268 } 1269 1270 /* 1271 * Called when the dentry loses inode. 1272 * We use it to clean up silly-renamed files. 1273 */ 1274 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode) 1275 { 1276 if (S_ISDIR(inode->i_mode)) 1277 /* drop any readdir cache as it could easily be old */ 1278 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA; 1279 1280 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1281 nfs_complete_unlink(dentry, inode); 1282 nfs_drop_nlink(inode); 1283 } 1284 iput(inode); 1285 } 1286 1287 static void nfs_d_release(struct dentry *dentry) 1288 { 1289 /* free cached devname value, if it survived that far */ 1290 if (unlikely(dentry->d_fsdata)) { 1291 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1292 WARN_ON(1); 1293 else 1294 kfree(dentry->d_fsdata); 1295 } 1296 } 1297 1298 const struct dentry_operations nfs_dentry_operations = { 1299 .d_revalidate = nfs_lookup_revalidate, 1300 .d_weak_revalidate = nfs_weak_revalidate, 1301 .d_delete = nfs_dentry_delete, 1302 .d_iput = nfs_dentry_iput, 1303 .d_automount = nfs_d_automount, 1304 .d_release = nfs_d_release, 1305 }; 1306 EXPORT_SYMBOL_GPL(nfs_dentry_operations); 1307 1308 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 1309 { 1310 struct dentry *res; 1311 struct dentry *parent; 1312 struct inode *inode = NULL; 1313 struct nfs_fh *fhandle = NULL; 1314 struct nfs_fattr *fattr = NULL; 1315 struct nfs4_label *label = NULL; 1316 int error; 1317 1318 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry); 1319 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP); 1320 1321 res = ERR_PTR(-ENAMETOOLONG); 1322 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 1323 goto out; 1324 1325 /* 1326 * If we're doing an exclusive create, optimize away the lookup 1327 * but don't hash the dentry. 1328 */ 1329 if (nfs_is_exclusive_create(dir, flags)) { 1330 d_instantiate(dentry, NULL); 1331 res = NULL; 1332 goto out; 1333 } 1334 1335 res = ERR_PTR(-ENOMEM); 1336 fhandle = nfs_alloc_fhandle(); 1337 fattr = nfs_alloc_fattr(); 1338 if (fhandle == NULL || fattr == NULL) 1339 goto out; 1340 1341 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT); 1342 if (IS_ERR(label)) 1343 goto out; 1344 1345 parent = dentry->d_parent; 1346 /* Protect against concurrent sillydeletes */ 1347 trace_nfs_lookup_enter(dir, dentry, flags); 1348 nfs_block_sillyrename(parent); 1349 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label); 1350 if (error == -ENOENT) 1351 goto no_entry; 1352 if (error < 0) { 1353 res = ERR_PTR(error); 1354 goto out_unblock_sillyrename; 1355 } 1356 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label); 1357 res = ERR_CAST(inode); 1358 if (IS_ERR(res)) 1359 goto out_unblock_sillyrename; 1360 1361 /* Success: notify readdir to use READDIRPLUS */ 1362 nfs_advise_use_readdirplus(dir); 1363 1364 no_entry: 1365 res = d_materialise_unique(dentry, inode); 1366 if (res != NULL) { 1367 if (IS_ERR(res)) 1368 goto out_unblock_sillyrename; 1369 dentry = res; 1370 } 1371 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1372 out_unblock_sillyrename: 1373 nfs_unblock_sillyrename(parent); 1374 trace_nfs_lookup_exit(dir, dentry, flags, error); 1375 nfs4_label_free(label); 1376 out: 1377 nfs_free_fattr(fattr); 1378 nfs_free_fhandle(fhandle); 1379 return res; 1380 } 1381 EXPORT_SYMBOL_GPL(nfs_lookup); 1382 1383 #if IS_ENABLED(CONFIG_NFS_V4) 1384 static int nfs4_lookup_revalidate(struct dentry *, unsigned int); 1385 1386 const struct dentry_operations nfs4_dentry_operations = { 1387 .d_revalidate = nfs4_lookup_revalidate, 1388 .d_delete = nfs_dentry_delete, 1389 .d_iput = nfs_dentry_iput, 1390 .d_automount = nfs_d_automount, 1391 .d_release = nfs_d_release, 1392 }; 1393 EXPORT_SYMBOL_GPL(nfs4_dentry_operations); 1394 1395 static fmode_t flags_to_mode(int flags) 1396 { 1397 fmode_t res = (__force fmode_t)flags & FMODE_EXEC; 1398 if ((flags & O_ACCMODE) != O_WRONLY) 1399 res |= FMODE_READ; 1400 if ((flags & O_ACCMODE) != O_RDONLY) 1401 res |= FMODE_WRITE; 1402 return res; 1403 } 1404 1405 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags) 1406 { 1407 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags)); 1408 } 1409 1410 static int do_open(struct inode *inode, struct file *filp) 1411 { 1412 nfs_fscache_open_file(inode, filp); 1413 return 0; 1414 } 1415 1416 static int nfs_finish_open(struct nfs_open_context *ctx, 1417 struct dentry *dentry, 1418 struct file *file, unsigned open_flags, 1419 int *opened) 1420 { 1421 int err; 1422 1423 if ((open_flags & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL)) 1424 *opened |= FILE_CREATED; 1425 1426 err = finish_open(file, dentry, do_open, opened); 1427 if (err) 1428 goto out; 1429 nfs_file_set_open_context(file, ctx); 1430 1431 out: 1432 return err; 1433 } 1434 1435 int nfs_atomic_open(struct inode *dir, struct dentry *dentry, 1436 struct file *file, unsigned open_flags, 1437 umode_t mode, int *opened) 1438 { 1439 struct nfs_open_context *ctx; 1440 struct dentry *res; 1441 struct iattr attr = { .ia_valid = ATTR_OPEN }; 1442 struct inode *inode; 1443 unsigned int lookup_flags = 0; 1444 int err; 1445 1446 /* Expect a negative dentry */ 1447 BUG_ON(dentry->d_inode); 1448 1449 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n", 1450 dir->i_sb->s_id, dir->i_ino, dentry); 1451 1452 err = nfs_check_flags(open_flags); 1453 if (err) 1454 return err; 1455 1456 /* NFS only supports OPEN on regular files */ 1457 if ((open_flags & O_DIRECTORY)) { 1458 if (!d_unhashed(dentry)) { 1459 /* 1460 * Hashed negative dentry with O_DIRECTORY: dentry was 1461 * revalidated and is fine, no need to perform lookup 1462 * again 1463 */ 1464 return -ENOENT; 1465 } 1466 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY; 1467 goto no_open; 1468 } 1469 1470 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 1471 return -ENAMETOOLONG; 1472 1473 if (open_flags & O_CREAT) { 1474 attr.ia_valid |= ATTR_MODE; 1475 attr.ia_mode = mode & ~current_umask(); 1476 } 1477 if (open_flags & O_TRUNC) { 1478 attr.ia_valid |= ATTR_SIZE; 1479 attr.ia_size = 0; 1480 } 1481 1482 ctx = create_nfs_open_context(dentry, open_flags); 1483 err = PTR_ERR(ctx); 1484 if (IS_ERR(ctx)) 1485 goto out; 1486 1487 trace_nfs_atomic_open_enter(dir, ctx, open_flags); 1488 nfs_block_sillyrename(dentry->d_parent); 1489 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, opened); 1490 nfs_unblock_sillyrename(dentry->d_parent); 1491 if (IS_ERR(inode)) { 1492 err = PTR_ERR(inode); 1493 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 1494 put_nfs_open_context(ctx); 1495 switch (err) { 1496 case -ENOENT: 1497 d_drop(dentry); 1498 d_add(dentry, NULL); 1499 break; 1500 case -EISDIR: 1501 case -ENOTDIR: 1502 goto no_open; 1503 case -ELOOP: 1504 if (!(open_flags & O_NOFOLLOW)) 1505 goto no_open; 1506 break; 1507 /* case -EINVAL: */ 1508 default: 1509 break; 1510 } 1511 goto out; 1512 } 1513 1514 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags, opened); 1515 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 1516 put_nfs_open_context(ctx); 1517 out: 1518 return err; 1519 1520 no_open: 1521 res = nfs_lookup(dir, dentry, lookup_flags); 1522 err = PTR_ERR(res); 1523 if (IS_ERR(res)) 1524 goto out; 1525 1526 return finish_no_open(file, res); 1527 } 1528 EXPORT_SYMBOL_GPL(nfs_atomic_open); 1529 1530 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1531 { 1532 struct dentry *parent = NULL; 1533 struct inode *inode; 1534 struct inode *dir; 1535 int ret = 0; 1536 1537 if (flags & LOOKUP_RCU) 1538 return -ECHILD; 1539 1540 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY)) 1541 goto no_open; 1542 if (d_mountpoint(dentry)) 1543 goto no_open; 1544 if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1) 1545 goto no_open; 1546 1547 inode = dentry->d_inode; 1548 parent = dget_parent(dentry); 1549 dir = parent->d_inode; 1550 1551 /* We can't create new files in nfs_open_revalidate(), so we 1552 * optimize away revalidation of negative dentries. 1553 */ 1554 if (inode == NULL) { 1555 if (!nfs_neg_need_reval(dir, dentry, flags)) 1556 ret = 1; 1557 goto out; 1558 } 1559 1560 /* NFS only supports OPEN on regular files */ 1561 if (!S_ISREG(inode->i_mode)) 1562 goto no_open_dput; 1563 /* We cannot do exclusive creation on a positive dentry */ 1564 if (flags & LOOKUP_EXCL) 1565 goto no_open_dput; 1566 1567 /* Let f_op->open() actually open (and revalidate) the file */ 1568 ret = 1; 1569 1570 out: 1571 dput(parent); 1572 return ret; 1573 1574 no_open_dput: 1575 dput(parent); 1576 no_open: 1577 return nfs_lookup_revalidate(dentry, flags); 1578 } 1579 1580 #endif /* CONFIG_NFSV4 */ 1581 1582 /* 1583 * Code common to create, mkdir, and mknod. 1584 */ 1585 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle, 1586 struct nfs_fattr *fattr, 1587 struct nfs4_label *label) 1588 { 1589 struct dentry *parent = dget_parent(dentry); 1590 struct inode *dir = parent->d_inode; 1591 struct inode *inode; 1592 int error = -EACCES; 1593 1594 d_drop(dentry); 1595 1596 /* We may have been initialized further down */ 1597 if (dentry->d_inode) 1598 goto out; 1599 if (fhandle->size == 0) { 1600 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL); 1601 if (error) 1602 goto out_error; 1603 } 1604 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1605 if (!(fattr->valid & NFS_ATTR_FATTR)) { 1606 struct nfs_server *server = NFS_SB(dentry->d_sb); 1607 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL); 1608 if (error < 0) 1609 goto out_error; 1610 } 1611 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label); 1612 error = PTR_ERR(inode); 1613 if (IS_ERR(inode)) 1614 goto out_error; 1615 d_add(dentry, inode); 1616 out: 1617 dput(parent); 1618 return 0; 1619 out_error: 1620 nfs_mark_for_revalidate(dir); 1621 dput(parent); 1622 return error; 1623 } 1624 EXPORT_SYMBOL_GPL(nfs_instantiate); 1625 1626 /* 1627 * Following a failed create operation, we drop the dentry rather 1628 * than retain a negative dentry. This avoids a problem in the event 1629 * that the operation succeeded on the server, but an error in the 1630 * reply path made it appear to have failed. 1631 */ 1632 int nfs_create(struct inode *dir, struct dentry *dentry, 1633 umode_t mode, bool excl) 1634 { 1635 struct iattr attr; 1636 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT; 1637 int error; 1638 1639 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n", 1640 dir->i_sb->s_id, dir->i_ino, dentry); 1641 1642 attr.ia_mode = mode; 1643 attr.ia_valid = ATTR_MODE; 1644 1645 trace_nfs_create_enter(dir, dentry, open_flags); 1646 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags); 1647 trace_nfs_create_exit(dir, dentry, open_flags, error); 1648 if (error != 0) 1649 goto out_err; 1650 return 0; 1651 out_err: 1652 d_drop(dentry); 1653 return error; 1654 } 1655 EXPORT_SYMBOL_GPL(nfs_create); 1656 1657 /* 1658 * See comments for nfs_proc_create regarding failed operations. 1659 */ 1660 int 1661 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev) 1662 { 1663 struct iattr attr; 1664 int status; 1665 1666 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n", 1667 dir->i_sb->s_id, dir->i_ino, dentry); 1668 1669 if (!new_valid_dev(rdev)) 1670 return -EINVAL; 1671 1672 attr.ia_mode = mode; 1673 attr.ia_valid = ATTR_MODE; 1674 1675 trace_nfs_mknod_enter(dir, dentry); 1676 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev); 1677 trace_nfs_mknod_exit(dir, dentry, status); 1678 if (status != 0) 1679 goto out_err; 1680 return 0; 1681 out_err: 1682 d_drop(dentry); 1683 return status; 1684 } 1685 EXPORT_SYMBOL_GPL(nfs_mknod); 1686 1687 /* 1688 * See comments for nfs_proc_create regarding failed operations. 1689 */ 1690 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1691 { 1692 struct iattr attr; 1693 int error; 1694 1695 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n", 1696 dir->i_sb->s_id, dir->i_ino, dentry); 1697 1698 attr.ia_valid = ATTR_MODE; 1699 attr.ia_mode = mode | S_IFDIR; 1700 1701 trace_nfs_mkdir_enter(dir, dentry); 1702 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr); 1703 trace_nfs_mkdir_exit(dir, dentry, error); 1704 if (error != 0) 1705 goto out_err; 1706 return 0; 1707 out_err: 1708 d_drop(dentry); 1709 return error; 1710 } 1711 EXPORT_SYMBOL_GPL(nfs_mkdir); 1712 1713 static void nfs_dentry_handle_enoent(struct dentry *dentry) 1714 { 1715 if (dentry->d_inode != NULL && !d_unhashed(dentry)) 1716 d_delete(dentry); 1717 } 1718 1719 int nfs_rmdir(struct inode *dir, struct dentry *dentry) 1720 { 1721 int error; 1722 1723 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n", 1724 dir->i_sb->s_id, dir->i_ino, dentry); 1725 1726 trace_nfs_rmdir_enter(dir, dentry); 1727 if (dentry->d_inode) { 1728 nfs_wait_on_sillyrename(dentry); 1729 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1730 /* Ensure the VFS deletes this inode */ 1731 switch (error) { 1732 case 0: 1733 clear_nlink(dentry->d_inode); 1734 break; 1735 case -ENOENT: 1736 nfs_dentry_handle_enoent(dentry); 1737 } 1738 } else 1739 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1740 trace_nfs_rmdir_exit(dir, dentry, error); 1741 1742 return error; 1743 } 1744 EXPORT_SYMBOL_GPL(nfs_rmdir); 1745 1746 /* 1747 * Remove a file after making sure there are no pending writes, 1748 * and after checking that the file has only one user. 1749 * 1750 * We invalidate the attribute cache and free the inode prior to the operation 1751 * to avoid possible races if the server reuses the inode. 1752 */ 1753 static int nfs_safe_remove(struct dentry *dentry) 1754 { 1755 struct inode *dir = dentry->d_parent->d_inode; 1756 struct inode *inode = dentry->d_inode; 1757 int error = -EBUSY; 1758 1759 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry); 1760 1761 /* If the dentry was sillyrenamed, we simply call d_delete() */ 1762 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1763 error = 0; 1764 goto out; 1765 } 1766 1767 trace_nfs_remove_enter(dir, dentry); 1768 if (inode != NULL) { 1769 NFS_PROTO(inode)->return_delegation(inode); 1770 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name); 1771 if (error == 0) 1772 nfs_drop_nlink(inode); 1773 } else 1774 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name); 1775 if (error == -ENOENT) 1776 nfs_dentry_handle_enoent(dentry); 1777 trace_nfs_remove_exit(dir, dentry, error); 1778 out: 1779 return error; 1780 } 1781 1782 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode 1783 * belongs to an active ".nfs..." file and we return -EBUSY. 1784 * 1785 * If sillyrename() returns 0, we do nothing, otherwise we unlink. 1786 */ 1787 int nfs_unlink(struct inode *dir, struct dentry *dentry) 1788 { 1789 int error; 1790 int need_rehash = 0; 1791 1792 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id, 1793 dir->i_ino, dentry); 1794 1795 trace_nfs_unlink_enter(dir, dentry); 1796 spin_lock(&dentry->d_lock); 1797 if (d_count(dentry) > 1) { 1798 spin_unlock(&dentry->d_lock); 1799 /* Start asynchronous writeout of the inode */ 1800 write_inode_now(dentry->d_inode, 0); 1801 error = nfs_sillyrename(dir, dentry); 1802 goto out; 1803 } 1804 if (!d_unhashed(dentry)) { 1805 __d_drop(dentry); 1806 need_rehash = 1; 1807 } 1808 spin_unlock(&dentry->d_lock); 1809 error = nfs_safe_remove(dentry); 1810 if (!error || error == -ENOENT) { 1811 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1812 } else if (need_rehash) 1813 d_rehash(dentry); 1814 out: 1815 trace_nfs_unlink_exit(dir, dentry, error); 1816 return error; 1817 } 1818 EXPORT_SYMBOL_GPL(nfs_unlink); 1819 1820 /* 1821 * To create a symbolic link, most file systems instantiate a new inode, 1822 * add a page to it containing the path, then write it out to the disk 1823 * using prepare_write/commit_write. 1824 * 1825 * Unfortunately the NFS client can't create the in-core inode first 1826 * because it needs a file handle to create an in-core inode (see 1827 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the 1828 * symlink request has completed on the server. 1829 * 1830 * So instead we allocate a raw page, copy the symname into it, then do 1831 * the SYMLINK request with the page as the buffer. If it succeeds, we 1832 * now have a new file handle and can instantiate an in-core NFS inode 1833 * and move the raw page into its mapping. 1834 */ 1835 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 1836 { 1837 struct page *page; 1838 char *kaddr; 1839 struct iattr attr; 1840 unsigned int pathlen = strlen(symname); 1841 int error; 1842 1843 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id, 1844 dir->i_ino, dentry, symname); 1845 1846 if (pathlen > PAGE_SIZE) 1847 return -ENAMETOOLONG; 1848 1849 attr.ia_mode = S_IFLNK | S_IRWXUGO; 1850 attr.ia_valid = ATTR_MODE; 1851 1852 page = alloc_page(GFP_HIGHUSER); 1853 if (!page) 1854 return -ENOMEM; 1855 1856 kaddr = kmap_atomic(page); 1857 memcpy(kaddr, symname, pathlen); 1858 if (pathlen < PAGE_SIZE) 1859 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen); 1860 kunmap_atomic(kaddr); 1861 1862 trace_nfs_symlink_enter(dir, dentry); 1863 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr); 1864 trace_nfs_symlink_exit(dir, dentry, error); 1865 if (error != 0) { 1866 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n", 1867 dir->i_sb->s_id, dir->i_ino, 1868 dentry, symname, error); 1869 d_drop(dentry); 1870 __free_page(page); 1871 return error; 1872 } 1873 1874 /* 1875 * No big deal if we can't add this page to the page cache here. 1876 * READLINK will get the missing page from the server if needed. 1877 */ 1878 if (!add_to_page_cache_lru(page, dentry->d_inode->i_mapping, 0, 1879 GFP_KERNEL)) { 1880 SetPageUptodate(page); 1881 unlock_page(page); 1882 /* 1883 * add_to_page_cache_lru() grabs an extra page refcount. 1884 * Drop it here to avoid leaking this page later. 1885 */ 1886 page_cache_release(page); 1887 } else 1888 __free_page(page); 1889 1890 return 0; 1891 } 1892 EXPORT_SYMBOL_GPL(nfs_symlink); 1893 1894 int 1895 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 1896 { 1897 struct inode *inode = old_dentry->d_inode; 1898 int error; 1899 1900 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n", 1901 old_dentry, dentry); 1902 1903 trace_nfs_link_enter(inode, dir, dentry); 1904 NFS_PROTO(inode)->return_delegation(inode); 1905 1906 d_drop(dentry); 1907 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name); 1908 if (error == 0) { 1909 ihold(inode); 1910 d_add(dentry, inode); 1911 } 1912 trace_nfs_link_exit(inode, dir, dentry, error); 1913 return error; 1914 } 1915 EXPORT_SYMBOL_GPL(nfs_link); 1916 1917 /* 1918 * RENAME 1919 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a 1920 * different file handle for the same inode after a rename (e.g. when 1921 * moving to a different directory). A fail-safe method to do so would 1922 * be to look up old_dir/old_name, create a link to new_dir/new_name and 1923 * rename the old file using the sillyrename stuff. This way, the original 1924 * file in old_dir will go away when the last process iput()s the inode. 1925 * 1926 * FIXED. 1927 * 1928 * It actually works quite well. One needs to have the possibility for 1929 * at least one ".nfs..." file in each directory the file ever gets 1930 * moved or linked to which happens automagically with the new 1931 * implementation that only depends on the dcache stuff instead of 1932 * using the inode layer 1933 * 1934 * Unfortunately, things are a little more complicated than indicated 1935 * above. For a cross-directory move, we want to make sure we can get 1936 * rid of the old inode after the operation. This means there must be 1937 * no pending writes (if it's a file), and the use count must be 1. 1938 * If these conditions are met, we can drop the dentries before doing 1939 * the rename. 1940 */ 1941 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry, 1942 struct inode *new_dir, struct dentry *new_dentry) 1943 { 1944 struct inode *old_inode = old_dentry->d_inode; 1945 struct inode *new_inode = new_dentry->d_inode; 1946 struct dentry *dentry = NULL, *rehash = NULL; 1947 struct rpc_task *task; 1948 int error = -EBUSY; 1949 1950 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n", 1951 old_dentry, new_dentry, 1952 d_count(new_dentry)); 1953 1954 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry); 1955 /* 1956 * For non-directories, check whether the target is busy and if so, 1957 * make a copy of the dentry and then do a silly-rename. If the 1958 * silly-rename succeeds, the copied dentry is hashed and becomes 1959 * the new target. 1960 */ 1961 if (new_inode && !S_ISDIR(new_inode->i_mode)) { 1962 /* 1963 * To prevent any new references to the target during the 1964 * rename, we unhash the dentry in advance. 1965 */ 1966 if (!d_unhashed(new_dentry)) { 1967 d_drop(new_dentry); 1968 rehash = new_dentry; 1969 } 1970 1971 if (d_count(new_dentry) > 2) { 1972 int err; 1973 1974 /* copy the target dentry's name */ 1975 dentry = d_alloc(new_dentry->d_parent, 1976 &new_dentry->d_name); 1977 if (!dentry) 1978 goto out; 1979 1980 /* silly-rename the existing target ... */ 1981 err = nfs_sillyrename(new_dir, new_dentry); 1982 if (err) 1983 goto out; 1984 1985 new_dentry = dentry; 1986 rehash = NULL; 1987 new_inode = NULL; 1988 } 1989 } 1990 1991 NFS_PROTO(old_inode)->return_delegation(old_inode); 1992 if (new_inode != NULL) 1993 NFS_PROTO(new_inode)->return_delegation(new_inode); 1994 1995 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL); 1996 if (IS_ERR(task)) { 1997 error = PTR_ERR(task); 1998 goto out; 1999 } 2000 2001 error = rpc_wait_for_completion_task(task); 2002 if (error == 0) 2003 error = task->tk_status; 2004 rpc_put_task(task); 2005 nfs_mark_for_revalidate(old_inode); 2006 out: 2007 if (rehash) 2008 d_rehash(rehash); 2009 trace_nfs_rename_exit(old_dir, old_dentry, 2010 new_dir, new_dentry, error); 2011 if (!error) { 2012 if (new_inode != NULL) 2013 nfs_drop_nlink(new_inode); 2014 d_move(old_dentry, new_dentry); 2015 nfs_set_verifier(new_dentry, 2016 nfs_save_change_attribute(new_dir)); 2017 } else if (error == -ENOENT) 2018 nfs_dentry_handle_enoent(old_dentry); 2019 2020 /* new dentry created? */ 2021 if (dentry) 2022 dput(dentry); 2023 return error; 2024 } 2025 EXPORT_SYMBOL_GPL(nfs_rename); 2026 2027 static DEFINE_SPINLOCK(nfs_access_lru_lock); 2028 static LIST_HEAD(nfs_access_lru_list); 2029 static atomic_long_t nfs_access_nr_entries; 2030 2031 static void nfs_access_free_entry(struct nfs_access_entry *entry) 2032 { 2033 put_rpccred(entry->cred); 2034 kfree(entry); 2035 smp_mb__before_atomic_dec(); 2036 atomic_long_dec(&nfs_access_nr_entries); 2037 smp_mb__after_atomic_dec(); 2038 } 2039 2040 static void nfs_access_free_list(struct list_head *head) 2041 { 2042 struct nfs_access_entry *cache; 2043 2044 while (!list_empty(head)) { 2045 cache = list_entry(head->next, struct nfs_access_entry, lru); 2046 list_del(&cache->lru); 2047 nfs_access_free_entry(cache); 2048 } 2049 } 2050 2051 unsigned long 2052 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc) 2053 { 2054 LIST_HEAD(head); 2055 struct nfs_inode *nfsi, *next; 2056 struct nfs_access_entry *cache; 2057 int nr_to_scan = sc->nr_to_scan; 2058 gfp_t gfp_mask = sc->gfp_mask; 2059 long freed = 0; 2060 2061 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL) 2062 return SHRINK_STOP; 2063 2064 spin_lock(&nfs_access_lru_lock); 2065 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) { 2066 struct inode *inode; 2067 2068 if (nr_to_scan-- == 0) 2069 break; 2070 inode = &nfsi->vfs_inode; 2071 spin_lock(&inode->i_lock); 2072 if (list_empty(&nfsi->access_cache_entry_lru)) 2073 goto remove_lru_entry; 2074 cache = list_entry(nfsi->access_cache_entry_lru.next, 2075 struct nfs_access_entry, lru); 2076 list_move(&cache->lru, &head); 2077 rb_erase(&cache->rb_node, &nfsi->access_cache); 2078 freed++; 2079 if (!list_empty(&nfsi->access_cache_entry_lru)) 2080 list_move_tail(&nfsi->access_cache_inode_lru, 2081 &nfs_access_lru_list); 2082 else { 2083 remove_lru_entry: 2084 list_del_init(&nfsi->access_cache_inode_lru); 2085 smp_mb__before_clear_bit(); 2086 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags); 2087 smp_mb__after_clear_bit(); 2088 } 2089 spin_unlock(&inode->i_lock); 2090 } 2091 spin_unlock(&nfs_access_lru_lock); 2092 nfs_access_free_list(&head); 2093 return freed; 2094 } 2095 2096 unsigned long 2097 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc) 2098 { 2099 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries)); 2100 } 2101 2102 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head) 2103 { 2104 struct rb_root *root_node = &nfsi->access_cache; 2105 struct rb_node *n; 2106 struct nfs_access_entry *entry; 2107 2108 /* Unhook entries from the cache */ 2109 while ((n = rb_first(root_node)) != NULL) { 2110 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2111 rb_erase(n, root_node); 2112 list_move(&entry->lru, head); 2113 } 2114 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS; 2115 } 2116 2117 void nfs_access_zap_cache(struct inode *inode) 2118 { 2119 LIST_HEAD(head); 2120 2121 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0) 2122 return; 2123 /* Remove from global LRU init */ 2124 spin_lock(&nfs_access_lru_lock); 2125 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2126 list_del_init(&NFS_I(inode)->access_cache_inode_lru); 2127 2128 spin_lock(&inode->i_lock); 2129 __nfs_access_zap_cache(NFS_I(inode), &head); 2130 spin_unlock(&inode->i_lock); 2131 spin_unlock(&nfs_access_lru_lock); 2132 nfs_access_free_list(&head); 2133 } 2134 EXPORT_SYMBOL_GPL(nfs_access_zap_cache); 2135 2136 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred) 2137 { 2138 struct rb_node *n = NFS_I(inode)->access_cache.rb_node; 2139 struct nfs_access_entry *entry; 2140 2141 while (n != NULL) { 2142 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2143 2144 if (cred < entry->cred) 2145 n = n->rb_left; 2146 else if (cred > entry->cred) 2147 n = n->rb_right; 2148 else 2149 return entry; 2150 } 2151 return NULL; 2152 } 2153 2154 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res) 2155 { 2156 struct nfs_inode *nfsi = NFS_I(inode); 2157 struct nfs_access_entry *cache; 2158 int err = -ENOENT; 2159 2160 spin_lock(&inode->i_lock); 2161 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2162 goto out_zap; 2163 cache = nfs_access_search_rbtree(inode, cred); 2164 if (cache == NULL) 2165 goto out; 2166 if (!nfs_have_delegated_attributes(inode) && 2167 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo)) 2168 goto out_stale; 2169 res->jiffies = cache->jiffies; 2170 res->cred = cache->cred; 2171 res->mask = cache->mask; 2172 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru); 2173 err = 0; 2174 out: 2175 spin_unlock(&inode->i_lock); 2176 return err; 2177 out_stale: 2178 rb_erase(&cache->rb_node, &nfsi->access_cache); 2179 list_del(&cache->lru); 2180 spin_unlock(&inode->i_lock); 2181 nfs_access_free_entry(cache); 2182 return -ENOENT; 2183 out_zap: 2184 spin_unlock(&inode->i_lock); 2185 nfs_access_zap_cache(inode); 2186 return -ENOENT; 2187 } 2188 2189 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set) 2190 { 2191 struct nfs_inode *nfsi = NFS_I(inode); 2192 struct rb_root *root_node = &nfsi->access_cache; 2193 struct rb_node **p = &root_node->rb_node; 2194 struct rb_node *parent = NULL; 2195 struct nfs_access_entry *entry; 2196 2197 spin_lock(&inode->i_lock); 2198 while (*p != NULL) { 2199 parent = *p; 2200 entry = rb_entry(parent, struct nfs_access_entry, rb_node); 2201 2202 if (set->cred < entry->cred) 2203 p = &parent->rb_left; 2204 else if (set->cred > entry->cred) 2205 p = &parent->rb_right; 2206 else 2207 goto found; 2208 } 2209 rb_link_node(&set->rb_node, parent, p); 2210 rb_insert_color(&set->rb_node, root_node); 2211 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2212 spin_unlock(&inode->i_lock); 2213 return; 2214 found: 2215 rb_replace_node(parent, &set->rb_node, root_node); 2216 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2217 list_del(&entry->lru); 2218 spin_unlock(&inode->i_lock); 2219 nfs_access_free_entry(entry); 2220 } 2221 2222 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set) 2223 { 2224 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL); 2225 if (cache == NULL) 2226 return; 2227 RB_CLEAR_NODE(&cache->rb_node); 2228 cache->jiffies = set->jiffies; 2229 cache->cred = get_rpccred(set->cred); 2230 cache->mask = set->mask; 2231 2232 nfs_access_add_rbtree(inode, cache); 2233 2234 /* Update accounting */ 2235 smp_mb__before_atomic_inc(); 2236 atomic_long_inc(&nfs_access_nr_entries); 2237 smp_mb__after_atomic_inc(); 2238 2239 /* Add inode to global LRU list */ 2240 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) { 2241 spin_lock(&nfs_access_lru_lock); 2242 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2243 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, 2244 &nfs_access_lru_list); 2245 spin_unlock(&nfs_access_lru_lock); 2246 } 2247 } 2248 EXPORT_SYMBOL_GPL(nfs_access_add_cache); 2249 2250 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result) 2251 { 2252 entry->mask = 0; 2253 if (access_result & NFS4_ACCESS_READ) 2254 entry->mask |= MAY_READ; 2255 if (access_result & 2256 (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE)) 2257 entry->mask |= MAY_WRITE; 2258 if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE)) 2259 entry->mask |= MAY_EXEC; 2260 } 2261 EXPORT_SYMBOL_GPL(nfs_access_set_mask); 2262 2263 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask) 2264 { 2265 struct nfs_access_entry cache; 2266 int status; 2267 2268 trace_nfs_access_enter(inode); 2269 2270 status = nfs_access_get_cached(inode, cred, &cache); 2271 if (status == 0) 2272 goto out_cached; 2273 2274 /* Be clever: ask server to check for all possible rights */ 2275 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ; 2276 cache.cred = cred; 2277 cache.jiffies = jiffies; 2278 status = NFS_PROTO(inode)->access(inode, &cache); 2279 if (status != 0) { 2280 if (status == -ESTALE) { 2281 nfs_zap_caches(inode); 2282 if (!S_ISDIR(inode->i_mode)) 2283 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags); 2284 } 2285 goto out; 2286 } 2287 nfs_access_add_cache(inode, &cache); 2288 out_cached: 2289 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0) 2290 status = -EACCES; 2291 out: 2292 trace_nfs_access_exit(inode, status); 2293 return status; 2294 } 2295 2296 static int nfs_open_permission_mask(int openflags) 2297 { 2298 int mask = 0; 2299 2300 if (openflags & __FMODE_EXEC) { 2301 /* ONLY check exec rights */ 2302 mask = MAY_EXEC; 2303 } else { 2304 if ((openflags & O_ACCMODE) != O_WRONLY) 2305 mask |= MAY_READ; 2306 if ((openflags & O_ACCMODE) != O_RDONLY) 2307 mask |= MAY_WRITE; 2308 } 2309 2310 return mask; 2311 } 2312 2313 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags) 2314 { 2315 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags)); 2316 } 2317 EXPORT_SYMBOL_GPL(nfs_may_open); 2318 2319 int nfs_permission(struct inode *inode, int mask) 2320 { 2321 struct rpc_cred *cred; 2322 int res = 0; 2323 2324 if (mask & MAY_NOT_BLOCK) 2325 return -ECHILD; 2326 2327 nfs_inc_stats(inode, NFSIOS_VFSACCESS); 2328 2329 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 2330 goto out; 2331 /* Is this sys_access() ? */ 2332 if (mask & (MAY_ACCESS | MAY_CHDIR)) 2333 goto force_lookup; 2334 2335 switch (inode->i_mode & S_IFMT) { 2336 case S_IFLNK: 2337 goto out; 2338 case S_IFREG: 2339 break; 2340 case S_IFDIR: 2341 /* 2342 * Optimize away all write operations, since the server 2343 * will check permissions when we perform the op. 2344 */ 2345 if ((mask & MAY_WRITE) && !(mask & MAY_READ)) 2346 goto out; 2347 } 2348 2349 force_lookup: 2350 if (!NFS_PROTO(inode)->access) 2351 goto out_notsup; 2352 2353 cred = rpc_lookup_cred(); 2354 if (!IS_ERR(cred)) { 2355 res = nfs_do_access(inode, cred, mask); 2356 put_rpccred(cred); 2357 } else 2358 res = PTR_ERR(cred); 2359 out: 2360 if (!res && (mask & MAY_EXEC) && !execute_ok(inode)) 2361 res = -EACCES; 2362 2363 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n", 2364 inode->i_sb->s_id, inode->i_ino, mask, res); 2365 return res; 2366 out_notsup: 2367 res = nfs_revalidate_inode(NFS_SERVER(inode), inode); 2368 if (res == 0) 2369 res = generic_permission(inode, mask); 2370 goto out; 2371 } 2372 EXPORT_SYMBOL_GPL(nfs_permission); 2373 2374 /* 2375 * Local variables: 2376 * version-control: t 2377 * kept-new-versions: 5 2378 * End: 2379 */ 2380