xref: /openbmc/linux/fs/nfs/dir.c (revision b044f645)
1 /*
2  *  linux/fs/nfs/dir.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  nfs directory handling functions
7  *
8  * 10 Apr 1996	Added silly rename for unlink	--okir
9  * 28 Sep 1996	Improved directory cache --okir
10  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
11  *              Re-implemented silly rename for unlink, newly implemented
12  *              silly rename for nfs_rename() following the suggestions
13  *              of Olaf Kirch (okir) found in this file.
14  *              Following Linus comments on my original hack, this version
15  *              depends only on the dcache stuff and doesn't touch the inode
16  *              layer (iput() and friends).
17  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
18  */
19 
20 #include <linux/module.h>
21 #include <linux/time.h>
22 #include <linux/errno.h>
23 #include <linux/stat.h>
24 #include <linux/fcntl.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/mm.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/nfs_fs.h>
31 #include <linux/nfs_mount.h>
32 #include <linux/pagemap.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/swap.h>
37 #include <linux/sched.h>
38 #include <linux/kmemleak.h>
39 #include <linux/xattr.h>
40 
41 #include "delegation.h"
42 #include "iostat.h"
43 #include "internal.h"
44 #include "fscache.h"
45 
46 #include "nfstrace.h"
47 
48 /* #define NFS_DEBUG_VERBOSE 1 */
49 
50 static int nfs_opendir(struct inode *, struct file *);
51 static int nfs_closedir(struct inode *, struct file *);
52 static int nfs_readdir(struct file *, struct dir_context *);
53 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
54 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
55 static void nfs_readdir_clear_array(struct page*);
56 
57 const struct file_operations nfs_dir_operations = {
58 	.llseek		= nfs_llseek_dir,
59 	.read		= generic_read_dir,
60 	.iterate	= nfs_readdir,
61 	.open		= nfs_opendir,
62 	.release	= nfs_closedir,
63 	.fsync		= nfs_fsync_dir,
64 };
65 
66 const struct address_space_operations nfs_dir_aops = {
67 	.freepage = nfs_readdir_clear_array,
68 };
69 
70 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
71 {
72 	struct nfs_inode *nfsi = NFS_I(dir);
73 	struct nfs_open_dir_context *ctx;
74 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
75 	if (ctx != NULL) {
76 		ctx->duped = 0;
77 		ctx->attr_gencount = nfsi->attr_gencount;
78 		ctx->dir_cookie = 0;
79 		ctx->dup_cookie = 0;
80 		ctx->cred = get_rpccred(cred);
81 		spin_lock(&dir->i_lock);
82 		list_add(&ctx->list, &nfsi->open_files);
83 		spin_unlock(&dir->i_lock);
84 		return ctx;
85 	}
86 	return  ERR_PTR(-ENOMEM);
87 }
88 
89 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
90 {
91 	spin_lock(&dir->i_lock);
92 	list_del(&ctx->list);
93 	spin_unlock(&dir->i_lock);
94 	put_rpccred(ctx->cred);
95 	kfree(ctx);
96 }
97 
98 /*
99  * Open file
100  */
101 static int
102 nfs_opendir(struct inode *inode, struct file *filp)
103 {
104 	int res = 0;
105 	struct nfs_open_dir_context *ctx;
106 	struct rpc_cred *cred;
107 
108 	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
109 
110 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
111 
112 	cred = rpc_lookup_cred();
113 	if (IS_ERR(cred))
114 		return PTR_ERR(cred);
115 	ctx = alloc_nfs_open_dir_context(inode, cred);
116 	if (IS_ERR(ctx)) {
117 		res = PTR_ERR(ctx);
118 		goto out;
119 	}
120 	filp->private_data = ctx;
121 	if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
122 		/* This is a mountpoint, so d_revalidate will never
123 		 * have been called, so we need to refresh the
124 		 * inode (for close-open consistency) ourselves.
125 		 */
126 		__nfs_revalidate_inode(NFS_SERVER(inode), inode);
127 	}
128 out:
129 	put_rpccred(cred);
130 	return res;
131 }
132 
133 static int
134 nfs_closedir(struct inode *inode, struct file *filp)
135 {
136 	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
137 	return 0;
138 }
139 
140 struct nfs_cache_array_entry {
141 	u64 cookie;
142 	u64 ino;
143 	struct qstr string;
144 	unsigned char d_type;
145 };
146 
147 struct nfs_cache_array {
148 	int size;
149 	int eof_index;
150 	u64 last_cookie;
151 	struct nfs_cache_array_entry array[0];
152 };
153 
154 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
155 typedef struct {
156 	struct file	*file;
157 	struct page	*page;
158 	struct dir_context *ctx;
159 	unsigned long	page_index;
160 	u64		*dir_cookie;
161 	u64		last_cookie;
162 	loff_t		current_index;
163 	decode_dirent_t	decode;
164 
165 	unsigned long	timestamp;
166 	unsigned long	gencount;
167 	unsigned int	cache_entry_index;
168 	unsigned int	plus:1;
169 	unsigned int	eof:1;
170 } nfs_readdir_descriptor_t;
171 
172 /*
173  * The caller is responsible for calling nfs_readdir_release_array(page)
174  */
175 static
176 struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
177 {
178 	void *ptr;
179 	if (page == NULL)
180 		return ERR_PTR(-EIO);
181 	ptr = kmap(page);
182 	if (ptr == NULL)
183 		return ERR_PTR(-ENOMEM);
184 	return ptr;
185 }
186 
187 static
188 void nfs_readdir_release_array(struct page *page)
189 {
190 	kunmap(page);
191 }
192 
193 /*
194  * we are freeing strings created by nfs_add_to_readdir_array()
195  */
196 static
197 void nfs_readdir_clear_array(struct page *page)
198 {
199 	struct nfs_cache_array *array;
200 	int i;
201 
202 	array = kmap_atomic(page);
203 	for (i = 0; i < array->size; i++)
204 		kfree(array->array[i].string.name);
205 	kunmap_atomic(array);
206 }
207 
208 /*
209  * the caller is responsible for freeing qstr.name
210  * when called by nfs_readdir_add_to_array, the strings will be freed in
211  * nfs_clear_readdir_array()
212  */
213 static
214 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
215 {
216 	string->len = len;
217 	string->name = kmemdup(name, len, GFP_KERNEL);
218 	if (string->name == NULL)
219 		return -ENOMEM;
220 	/*
221 	 * Avoid a kmemleak false positive. The pointer to the name is stored
222 	 * in a page cache page which kmemleak does not scan.
223 	 */
224 	kmemleak_not_leak(string->name);
225 	string->hash = full_name_hash(NULL, name, len);
226 	return 0;
227 }
228 
229 static
230 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
231 {
232 	struct nfs_cache_array *array = nfs_readdir_get_array(page);
233 	struct nfs_cache_array_entry *cache_entry;
234 	int ret;
235 
236 	if (IS_ERR(array))
237 		return PTR_ERR(array);
238 
239 	cache_entry = &array->array[array->size];
240 
241 	/* Check that this entry lies within the page bounds */
242 	ret = -ENOSPC;
243 	if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
244 		goto out;
245 
246 	cache_entry->cookie = entry->prev_cookie;
247 	cache_entry->ino = entry->ino;
248 	cache_entry->d_type = entry->d_type;
249 	ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
250 	if (ret)
251 		goto out;
252 	array->last_cookie = entry->cookie;
253 	array->size++;
254 	if (entry->eof != 0)
255 		array->eof_index = array->size;
256 out:
257 	nfs_readdir_release_array(page);
258 	return ret;
259 }
260 
261 static
262 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
263 {
264 	loff_t diff = desc->ctx->pos - desc->current_index;
265 	unsigned int index;
266 
267 	if (diff < 0)
268 		goto out_eof;
269 	if (diff >= array->size) {
270 		if (array->eof_index >= 0)
271 			goto out_eof;
272 		return -EAGAIN;
273 	}
274 
275 	index = (unsigned int)diff;
276 	*desc->dir_cookie = array->array[index].cookie;
277 	desc->cache_entry_index = index;
278 	return 0;
279 out_eof:
280 	desc->eof = 1;
281 	return -EBADCOOKIE;
282 }
283 
284 static bool
285 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
286 {
287 	if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
288 		return false;
289 	smp_rmb();
290 	return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
291 }
292 
293 static
294 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
295 {
296 	int i;
297 	loff_t new_pos;
298 	int status = -EAGAIN;
299 
300 	for (i = 0; i < array->size; i++) {
301 		if (array->array[i].cookie == *desc->dir_cookie) {
302 			struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
303 			struct nfs_open_dir_context *ctx = desc->file->private_data;
304 
305 			new_pos = desc->current_index + i;
306 			if (ctx->attr_gencount != nfsi->attr_gencount ||
307 			    !nfs_readdir_inode_mapping_valid(nfsi)) {
308 				ctx->duped = 0;
309 				ctx->attr_gencount = nfsi->attr_gencount;
310 			} else if (new_pos < desc->ctx->pos) {
311 				if (ctx->duped > 0
312 				    && ctx->dup_cookie == *desc->dir_cookie) {
313 					if (printk_ratelimit()) {
314 						pr_notice("NFS: directory %pD2 contains a readdir loop."
315 								"Please contact your server vendor.  "
316 								"The file: %.*s has duplicate cookie %llu\n",
317 								desc->file, array->array[i].string.len,
318 								array->array[i].string.name, *desc->dir_cookie);
319 					}
320 					status = -ELOOP;
321 					goto out;
322 				}
323 				ctx->dup_cookie = *desc->dir_cookie;
324 				ctx->duped = -1;
325 			}
326 			desc->ctx->pos = new_pos;
327 			desc->cache_entry_index = i;
328 			return 0;
329 		}
330 	}
331 	if (array->eof_index >= 0) {
332 		status = -EBADCOOKIE;
333 		if (*desc->dir_cookie == array->last_cookie)
334 			desc->eof = 1;
335 	}
336 out:
337 	return status;
338 }
339 
340 static
341 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
342 {
343 	struct nfs_cache_array *array;
344 	int status;
345 
346 	array = nfs_readdir_get_array(desc->page);
347 	if (IS_ERR(array)) {
348 		status = PTR_ERR(array);
349 		goto out;
350 	}
351 
352 	if (*desc->dir_cookie == 0)
353 		status = nfs_readdir_search_for_pos(array, desc);
354 	else
355 		status = nfs_readdir_search_for_cookie(array, desc);
356 
357 	if (status == -EAGAIN) {
358 		desc->last_cookie = array->last_cookie;
359 		desc->current_index += array->size;
360 		desc->page_index++;
361 	}
362 	nfs_readdir_release_array(desc->page);
363 out:
364 	return status;
365 }
366 
367 /* Fill a page with xdr information before transferring to the cache page */
368 static
369 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
370 			struct nfs_entry *entry, struct file *file, struct inode *inode)
371 {
372 	struct nfs_open_dir_context *ctx = file->private_data;
373 	struct rpc_cred	*cred = ctx->cred;
374 	unsigned long	timestamp, gencount;
375 	int		error;
376 
377  again:
378 	timestamp = jiffies;
379 	gencount = nfs_inc_attr_generation_counter();
380 	error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
381 					  NFS_SERVER(inode)->dtsize, desc->plus);
382 	if (error < 0) {
383 		/* We requested READDIRPLUS, but the server doesn't grok it */
384 		if (error == -ENOTSUPP && desc->plus) {
385 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
386 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
387 			desc->plus = 0;
388 			goto again;
389 		}
390 		goto error;
391 	}
392 	desc->timestamp = timestamp;
393 	desc->gencount = gencount;
394 error:
395 	return error;
396 }
397 
398 static int xdr_decode(nfs_readdir_descriptor_t *desc,
399 		      struct nfs_entry *entry, struct xdr_stream *xdr)
400 {
401 	int error;
402 
403 	error = desc->decode(xdr, entry, desc->plus);
404 	if (error)
405 		return error;
406 	entry->fattr->time_start = desc->timestamp;
407 	entry->fattr->gencount = desc->gencount;
408 	return 0;
409 }
410 
411 /* Match file and dirent using either filehandle or fileid
412  * Note: caller is responsible for checking the fsid
413  */
414 static
415 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
416 {
417 	struct inode *inode;
418 	struct nfs_inode *nfsi;
419 
420 	if (d_really_is_negative(dentry))
421 		return 0;
422 
423 	inode = d_inode(dentry);
424 	if (is_bad_inode(inode) || NFS_STALE(inode))
425 		return 0;
426 
427 	nfsi = NFS_I(inode);
428 	if (entry->fattr->fileid != nfsi->fileid)
429 		return 0;
430 	if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
431 		return 0;
432 	return 1;
433 }
434 
435 static
436 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
437 {
438 	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
439 		return false;
440 	if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
441 		return true;
442 	if (ctx->pos == 0)
443 		return true;
444 	return false;
445 }
446 
447 /*
448  * This function is called by the lookup and getattr code to request the
449  * use of readdirplus to accelerate any future lookups in the same
450  * directory.
451  */
452 void nfs_advise_use_readdirplus(struct inode *dir)
453 {
454 	struct nfs_inode *nfsi = NFS_I(dir);
455 
456 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
457 	    !list_empty(&nfsi->open_files))
458 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
459 }
460 
461 /*
462  * This function is mainly for use by nfs_getattr().
463  *
464  * If this is an 'ls -l', we want to force use of readdirplus.
465  * Do this by checking if there is an active file descriptor
466  * and calling nfs_advise_use_readdirplus, then forcing a
467  * cache flush.
468  */
469 void nfs_force_use_readdirplus(struct inode *dir)
470 {
471 	struct nfs_inode *nfsi = NFS_I(dir);
472 
473 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
474 	    !list_empty(&nfsi->open_files)) {
475 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
476 		invalidate_mapping_pages(dir->i_mapping, 0, -1);
477 	}
478 }
479 
480 static
481 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
482 {
483 	struct qstr filename = QSTR_INIT(entry->name, entry->len);
484 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
485 	struct dentry *dentry;
486 	struct dentry *alias;
487 	struct inode *dir = d_inode(parent);
488 	struct inode *inode;
489 	int status;
490 
491 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
492 		return;
493 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
494 		return;
495 	if (filename.len == 0)
496 		return;
497 	/* Validate that the name doesn't contain any illegal '\0' */
498 	if (strnlen(filename.name, filename.len) != filename.len)
499 		return;
500 	/* ...or '/' */
501 	if (strnchr(filename.name, filename.len, '/'))
502 		return;
503 	if (filename.name[0] == '.') {
504 		if (filename.len == 1)
505 			return;
506 		if (filename.len == 2 && filename.name[1] == '.')
507 			return;
508 	}
509 	filename.hash = full_name_hash(parent, filename.name, filename.len);
510 
511 	dentry = d_lookup(parent, &filename);
512 again:
513 	if (!dentry) {
514 		dentry = d_alloc_parallel(parent, &filename, &wq);
515 		if (IS_ERR(dentry))
516 			return;
517 	}
518 	if (!d_in_lookup(dentry)) {
519 		/* Is there a mountpoint here? If so, just exit */
520 		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
521 					&entry->fattr->fsid))
522 			goto out;
523 		if (nfs_same_file(dentry, entry)) {
524 			if (!entry->fh->size)
525 				goto out;
526 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
527 			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
528 			if (!status)
529 				nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
530 			goto out;
531 		} else {
532 			d_invalidate(dentry);
533 			dput(dentry);
534 			dentry = NULL;
535 			goto again;
536 		}
537 	}
538 	if (!entry->fh->size) {
539 		d_lookup_done(dentry);
540 		goto out;
541 	}
542 
543 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
544 	alias = d_splice_alias(inode, dentry);
545 	d_lookup_done(dentry);
546 	if (alias) {
547 		if (IS_ERR(alias))
548 			goto out;
549 		dput(dentry);
550 		dentry = alias;
551 	}
552 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
553 out:
554 	dput(dentry);
555 }
556 
557 /* Perform conversion from xdr to cache array */
558 static
559 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
560 				struct page **xdr_pages, struct page *page, unsigned int buflen)
561 {
562 	struct xdr_stream stream;
563 	struct xdr_buf buf;
564 	struct page *scratch;
565 	struct nfs_cache_array *array;
566 	unsigned int count = 0;
567 	int status;
568 
569 	scratch = alloc_page(GFP_KERNEL);
570 	if (scratch == NULL)
571 		return -ENOMEM;
572 
573 	if (buflen == 0)
574 		goto out_nopages;
575 
576 	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
577 	xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
578 
579 	do {
580 		status = xdr_decode(desc, entry, &stream);
581 		if (status != 0) {
582 			if (status == -EAGAIN)
583 				status = 0;
584 			break;
585 		}
586 
587 		count++;
588 
589 		if (desc->plus != 0)
590 			nfs_prime_dcache(file_dentry(desc->file), entry);
591 
592 		status = nfs_readdir_add_to_array(entry, page);
593 		if (status != 0)
594 			break;
595 	} while (!entry->eof);
596 
597 out_nopages:
598 	if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
599 		array = nfs_readdir_get_array(page);
600 		if (!IS_ERR(array)) {
601 			array->eof_index = array->size;
602 			status = 0;
603 			nfs_readdir_release_array(page);
604 		} else
605 			status = PTR_ERR(array);
606 	}
607 
608 	put_page(scratch);
609 	return status;
610 }
611 
612 static
613 void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
614 {
615 	unsigned int i;
616 	for (i = 0; i < npages; i++)
617 		put_page(pages[i]);
618 }
619 
620 /*
621  * nfs_readdir_large_page will allocate pages that must be freed with a call
622  * to nfs_readdir_free_pagearray
623  */
624 static
625 int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
626 {
627 	unsigned int i;
628 
629 	for (i = 0; i < npages; i++) {
630 		struct page *page = alloc_page(GFP_KERNEL);
631 		if (page == NULL)
632 			goto out_freepages;
633 		pages[i] = page;
634 	}
635 	return 0;
636 
637 out_freepages:
638 	nfs_readdir_free_pages(pages, i);
639 	return -ENOMEM;
640 }
641 
642 static
643 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
644 {
645 	struct page *pages[NFS_MAX_READDIR_PAGES];
646 	struct nfs_entry entry;
647 	struct file	*file = desc->file;
648 	struct nfs_cache_array *array;
649 	int status = -ENOMEM;
650 	unsigned int array_size = ARRAY_SIZE(pages);
651 
652 	entry.prev_cookie = 0;
653 	entry.cookie = desc->last_cookie;
654 	entry.eof = 0;
655 	entry.fh = nfs_alloc_fhandle();
656 	entry.fattr = nfs_alloc_fattr();
657 	entry.server = NFS_SERVER(inode);
658 	if (entry.fh == NULL || entry.fattr == NULL)
659 		goto out;
660 
661 	entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
662 	if (IS_ERR(entry.label)) {
663 		status = PTR_ERR(entry.label);
664 		goto out;
665 	}
666 
667 	array = nfs_readdir_get_array(page);
668 	if (IS_ERR(array)) {
669 		status = PTR_ERR(array);
670 		goto out_label_free;
671 	}
672 	memset(array, 0, sizeof(struct nfs_cache_array));
673 	array->eof_index = -1;
674 
675 	status = nfs_readdir_alloc_pages(pages, array_size);
676 	if (status < 0)
677 		goto out_release_array;
678 	do {
679 		unsigned int pglen;
680 		status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
681 
682 		if (status < 0)
683 			break;
684 		pglen = status;
685 		status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
686 		if (status < 0) {
687 			if (status == -ENOSPC)
688 				status = 0;
689 			break;
690 		}
691 	} while (array->eof_index < 0);
692 
693 	nfs_readdir_free_pages(pages, array_size);
694 out_release_array:
695 	nfs_readdir_release_array(page);
696 out_label_free:
697 	nfs4_label_free(entry.label);
698 out:
699 	nfs_free_fattr(entry.fattr);
700 	nfs_free_fhandle(entry.fh);
701 	return status;
702 }
703 
704 /*
705  * Now we cache directories properly, by converting xdr information
706  * to an array that can be used for lookups later.  This results in
707  * fewer cache pages, since we can store more information on each page.
708  * We only need to convert from xdr once so future lookups are much simpler
709  */
710 static
711 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
712 {
713 	struct inode	*inode = file_inode(desc->file);
714 	int ret;
715 
716 	ret = nfs_readdir_xdr_to_array(desc, page, inode);
717 	if (ret < 0)
718 		goto error;
719 	SetPageUptodate(page);
720 
721 	if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
722 		/* Should never happen */
723 		nfs_zap_mapping(inode, inode->i_mapping);
724 	}
725 	unlock_page(page);
726 	return 0;
727  error:
728 	unlock_page(page);
729 	return ret;
730 }
731 
732 static
733 void cache_page_release(nfs_readdir_descriptor_t *desc)
734 {
735 	if (!desc->page->mapping)
736 		nfs_readdir_clear_array(desc->page);
737 	put_page(desc->page);
738 	desc->page = NULL;
739 }
740 
741 static
742 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
743 {
744 	return read_cache_page(desc->file->f_mapping,
745 			desc->page_index, (filler_t *)nfs_readdir_filler, desc);
746 }
747 
748 /*
749  * Returns 0 if desc->dir_cookie was found on page desc->page_index
750  */
751 static
752 int find_cache_page(nfs_readdir_descriptor_t *desc)
753 {
754 	int res;
755 
756 	desc->page = get_cache_page(desc);
757 	if (IS_ERR(desc->page))
758 		return PTR_ERR(desc->page);
759 
760 	res = nfs_readdir_search_array(desc);
761 	if (res != 0)
762 		cache_page_release(desc);
763 	return res;
764 }
765 
766 /* Search for desc->dir_cookie from the beginning of the page cache */
767 static inline
768 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
769 {
770 	int res;
771 
772 	if (desc->page_index == 0) {
773 		desc->current_index = 0;
774 		desc->last_cookie = 0;
775 	}
776 	do {
777 		res = find_cache_page(desc);
778 	} while (res == -EAGAIN);
779 	return res;
780 }
781 
782 /*
783  * Once we've found the start of the dirent within a page: fill 'er up...
784  */
785 static
786 int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
787 {
788 	struct file	*file = desc->file;
789 	int i = 0;
790 	int res = 0;
791 	struct nfs_cache_array *array = NULL;
792 	struct nfs_open_dir_context *ctx = file->private_data;
793 
794 	array = nfs_readdir_get_array(desc->page);
795 	if (IS_ERR(array)) {
796 		res = PTR_ERR(array);
797 		goto out;
798 	}
799 
800 	for (i = desc->cache_entry_index; i < array->size; i++) {
801 		struct nfs_cache_array_entry *ent;
802 
803 		ent = &array->array[i];
804 		if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
805 		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
806 			desc->eof = 1;
807 			break;
808 		}
809 		desc->ctx->pos++;
810 		if (i < (array->size-1))
811 			*desc->dir_cookie = array->array[i+1].cookie;
812 		else
813 			*desc->dir_cookie = array->last_cookie;
814 		if (ctx->duped != 0)
815 			ctx->duped = 1;
816 	}
817 	if (array->eof_index >= 0)
818 		desc->eof = 1;
819 
820 	nfs_readdir_release_array(desc->page);
821 out:
822 	cache_page_release(desc);
823 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
824 			(unsigned long long)*desc->dir_cookie, res);
825 	return res;
826 }
827 
828 /*
829  * If we cannot find a cookie in our cache, we suspect that this is
830  * because it points to a deleted file, so we ask the server to return
831  * whatever it thinks is the next entry. We then feed this to filldir.
832  * If all goes well, we should then be able to find our way round the
833  * cache on the next call to readdir_search_pagecache();
834  *
835  * NOTE: we cannot add the anonymous page to the pagecache because
836  *	 the data it contains might not be page aligned. Besides,
837  *	 we should already have a complete representation of the
838  *	 directory in the page cache by the time we get here.
839  */
840 static inline
841 int uncached_readdir(nfs_readdir_descriptor_t *desc)
842 {
843 	struct page	*page = NULL;
844 	int		status;
845 	struct inode *inode = file_inode(desc->file);
846 	struct nfs_open_dir_context *ctx = desc->file->private_data;
847 
848 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
849 			(unsigned long long)*desc->dir_cookie);
850 
851 	page = alloc_page(GFP_HIGHUSER);
852 	if (!page) {
853 		status = -ENOMEM;
854 		goto out;
855 	}
856 
857 	desc->page_index = 0;
858 	desc->last_cookie = *desc->dir_cookie;
859 	desc->page = page;
860 	ctx->duped = 0;
861 
862 	status = nfs_readdir_xdr_to_array(desc, page, inode);
863 	if (status < 0)
864 		goto out_release;
865 
866 	status = nfs_do_filldir(desc);
867 
868  out:
869 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
870 			__func__, status);
871 	return status;
872  out_release:
873 	cache_page_release(desc);
874 	goto out;
875 }
876 
877 /* The file offset position represents the dirent entry number.  A
878    last cookie cache takes care of the common case of reading the
879    whole directory.
880  */
881 static int nfs_readdir(struct file *file, struct dir_context *ctx)
882 {
883 	struct dentry	*dentry = file_dentry(file);
884 	struct inode	*inode = d_inode(dentry);
885 	nfs_readdir_descriptor_t my_desc,
886 			*desc = &my_desc;
887 	struct nfs_open_dir_context *dir_ctx = file->private_data;
888 	int res = 0;
889 
890 	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
891 			file, (long long)ctx->pos);
892 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
893 
894 	/*
895 	 * ctx->pos points to the dirent entry number.
896 	 * *desc->dir_cookie has the cookie for the next entry. We have
897 	 * to either find the entry with the appropriate number or
898 	 * revalidate the cookie.
899 	 */
900 	memset(desc, 0, sizeof(*desc));
901 
902 	desc->file = file;
903 	desc->ctx = ctx;
904 	desc->dir_cookie = &dir_ctx->dir_cookie;
905 	desc->decode = NFS_PROTO(inode)->decode_dirent;
906 	desc->plus = nfs_use_readdirplus(inode, ctx) ? 1 : 0;
907 
908 	if (ctx->pos == 0 || nfs_attribute_cache_expired(inode))
909 		res = nfs_revalidate_mapping(inode, file->f_mapping);
910 	if (res < 0)
911 		goto out;
912 
913 	do {
914 		res = readdir_search_pagecache(desc);
915 
916 		if (res == -EBADCOOKIE) {
917 			res = 0;
918 			/* This means either end of directory */
919 			if (*desc->dir_cookie && desc->eof == 0) {
920 				/* Or that the server has 'lost' a cookie */
921 				res = uncached_readdir(desc);
922 				if (res == 0)
923 					continue;
924 			}
925 			break;
926 		}
927 		if (res == -ETOOSMALL && desc->plus) {
928 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
929 			nfs_zap_caches(inode);
930 			desc->page_index = 0;
931 			desc->plus = 0;
932 			desc->eof = 0;
933 			continue;
934 		}
935 		if (res < 0)
936 			break;
937 
938 		res = nfs_do_filldir(desc);
939 		if (res < 0)
940 			break;
941 	} while (!desc->eof);
942 out:
943 	if (res > 0)
944 		res = 0;
945 	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
946 	return res;
947 }
948 
949 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
950 {
951 	struct inode *inode = file_inode(filp);
952 	struct nfs_open_dir_context *dir_ctx = filp->private_data;
953 
954 	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
955 			filp, offset, whence);
956 
957 	inode_lock(inode);
958 	switch (whence) {
959 		case 1:
960 			offset += filp->f_pos;
961 		case 0:
962 			if (offset >= 0)
963 				break;
964 		default:
965 			offset = -EINVAL;
966 			goto out;
967 	}
968 	if (offset != filp->f_pos) {
969 		filp->f_pos = offset;
970 		dir_ctx->dir_cookie = 0;
971 		dir_ctx->duped = 0;
972 	}
973 out:
974 	inode_unlock(inode);
975 	return offset;
976 }
977 
978 /*
979  * All directory operations under NFS are synchronous, so fsync()
980  * is a dummy operation.
981  */
982 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
983 			 int datasync)
984 {
985 	struct inode *inode = file_inode(filp);
986 
987 	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
988 
989 	inode_lock(inode);
990 	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
991 	inode_unlock(inode);
992 	return 0;
993 }
994 
995 /**
996  * nfs_force_lookup_revalidate - Mark the directory as having changed
997  * @dir - pointer to directory inode
998  *
999  * This forces the revalidation code in nfs_lookup_revalidate() to do a
1000  * full lookup on all child dentries of 'dir' whenever a change occurs
1001  * on the server that might have invalidated our dcache.
1002  *
1003  * The caller should be holding dir->i_lock
1004  */
1005 void nfs_force_lookup_revalidate(struct inode *dir)
1006 {
1007 	NFS_I(dir)->cache_change_attribute++;
1008 }
1009 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1010 
1011 /*
1012  * A check for whether or not the parent directory has changed.
1013  * In the case it has, we assume that the dentries are untrustworthy
1014  * and may need to be looked up again.
1015  * If rcu_walk prevents us from performing a full check, return 0.
1016  */
1017 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1018 			      int rcu_walk)
1019 {
1020 	if (IS_ROOT(dentry))
1021 		return 1;
1022 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1023 		return 0;
1024 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1025 		return 0;
1026 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1027 	if (nfs_mapping_need_revalidate_inode(dir)) {
1028 		if (rcu_walk)
1029 			return 0;
1030 		if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1031 			return 0;
1032 	}
1033 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1034 		return 0;
1035 	return 1;
1036 }
1037 
1038 /*
1039  * Use intent information to check whether or not we're going to do
1040  * an O_EXCL create using this path component.
1041  */
1042 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1043 {
1044 	if (NFS_PROTO(dir)->version == 2)
1045 		return 0;
1046 	return flags & LOOKUP_EXCL;
1047 }
1048 
1049 /*
1050  * Inode and filehandle revalidation for lookups.
1051  *
1052  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1053  * or if the intent information indicates that we're about to open this
1054  * particular file and the "nocto" mount flag is not set.
1055  *
1056  */
1057 static
1058 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1059 {
1060 	struct nfs_server *server = NFS_SERVER(inode);
1061 	int ret;
1062 
1063 	if (IS_AUTOMOUNT(inode))
1064 		return 0;
1065 	/* VFS wants an on-the-wire revalidation */
1066 	if (flags & LOOKUP_REVAL)
1067 		goto out_force;
1068 	/* This is an open(2) */
1069 	if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) &&
1070 	    (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
1071 		goto out_force;
1072 out:
1073 	return (inode->i_nlink == 0) ? -ENOENT : 0;
1074 out_force:
1075 	if (flags & LOOKUP_RCU)
1076 		return -ECHILD;
1077 	ret = __nfs_revalidate_inode(server, inode);
1078 	if (ret != 0)
1079 		return ret;
1080 	goto out;
1081 }
1082 
1083 /*
1084  * We judge how long we want to trust negative
1085  * dentries by looking at the parent inode mtime.
1086  *
1087  * If parent mtime has changed, we revalidate, else we wait for a
1088  * period corresponding to the parent's attribute cache timeout value.
1089  *
1090  * If LOOKUP_RCU prevents us from performing a full check, return 1
1091  * suggesting a reval is needed.
1092  */
1093 static inline
1094 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1095 		       unsigned int flags)
1096 {
1097 	/* Don't revalidate a negative dentry if we're creating a new file */
1098 	if (flags & LOOKUP_CREATE)
1099 		return 0;
1100 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1101 		return 1;
1102 	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1103 }
1104 
1105 /*
1106  * This is called every time the dcache has a lookup hit,
1107  * and we should check whether we can really trust that
1108  * lookup.
1109  *
1110  * NOTE! The hit can be a negative hit too, don't assume
1111  * we have an inode!
1112  *
1113  * If the parent directory is seen to have changed, we throw out the
1114  * cached dentry and do a new lookup.
1115  */
1116 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1117 {
1118 	struct inode *dir;
1119 	struct inode *inode;
1120 	struct dentry *parent;
1121 	struct nfs_fh *fhandle = NULL;
1122 	struct nfs_fattr *fattr = NULL;
1123 	struct nfs4_label *label = NULL;
1124 	int error;
1125 
1126 	if (flags & LOOKUP_RCU) {
1127 		parent = ACCESS_ONCE(dentry->d_parent);
1128 		dir = d_inode_rcu(parent);
1129 		if (!dir)
1130 			return -ECHILD;
1131 	} else {
1132 		parent = dget_parent(dentry);
1133 		dir = d_inode(parent);
1134 	}
1135 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1136 	inode = d_inode(dentry);
1137 
1138 	if (!inode) {
1139 		if (nfs_neg_need_reval(dir, dentry, flags)) {
1140 			if (flags & LOOKUP_RCU)
1141 				return -ECHILD;
1142 			goto out_bad;
1143 		}
1144 		goto out_valid;
1145 	}
1146 
1147 	if (is_bad_inode(inode)) {
1148 		if (flags & LOOKUP_RCU)
1149 			return -ECHILD;
1150 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1151 				__func__, dentry);
1152 		goto out_bad;
1153 	}
1154 
1155 	if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1156 		goto out_set_verifier;
1157 
1158 	/* Force a full look up iff the parent directory has changed */
1159 	if (!nfs_is_exclusive_create(dir, flags) &&
1160 	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1161 
1162 		if (nfs_lookup_verify_inode(inode, flags)) {
1163 			if (flags & LOOKUP_RCU)
1164 				return -ECHILD;
1165 			goto out_zap_parent;
1166 		}
1167 		nfs_advise_use_readdirplus(dir);
1168 		goto out_valid;
1169 	}
1170 
1171 	if (flags & LOOKUP_RCU)
1172 		return -ECHILD;
1173 
1174 	if (NFS_STALE(inode))
1175 		goto out_bad;
1176 
1177 	error = -ENOMEM;
1178 	fhandle = nfs_alloc_fhandle();
1179 	fattr = nfs_alloc_fattr();
1180 	if (fhandle == NULL || fattr == NULL)
1181 		goto out_error;
1182 
1183 	label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
1184 	if (IS_ERR(label))
1185 		goto out_error;
1186 
1187 	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1188 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1189 	trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1190 	if (error)
1191 		goto out_bad;
1192 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1193 		goto out_bad;
1194 	if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1195 		goto out_bad;
1196 
1197 	nfs_setsecurity(inode, fattr, label);
1198 
1199 	nfs_free_fattr(fattr);
1200 	nfs_free_fhandle(fhandle);
1201 	nfs4_label_free(label);
1202 
1203 	/* set a readdirplus hint that we had a cache miss */
1204 	nfs_force_use_readdirplus(dir);
1205 
1206 out_set_verifier:
1207 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1208  out_valid:
1209 	if (flags & LOOKUP_RCU) {
1210 		if (parent != ACCESS_ONCE(dentry->d_parent))
1211 			return -ECHILD;
1212 	} else
1213 		dput(parent);
1214 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1215 			__func__, dentry);
1216 	return 1;
1217 out_zap_parent:
1218 	nfs_zap_caches(dir);
1219  out_bad:
1220 	WARN_ON(flags & LOOKUP_RCU);
1221 	nfs_free_fattr(fattr);
1222 	nfs_free_fhandle(fhandle);
1223 	nfs4_label_free(label);
1224 	nfs_mark_for_revalidate(dir);
1225 	if (inode && S_ISDIR(inode->i_mode)) {
1226 		/* Purge readdir caches. */
1227 		nfs_zap_caches(inode);
1228 		/*
1229 		 * We can't d_drop the root of a disconnected tree:
1230 		 * its d_hash is on the s_anon list and d_drop() would hide
1231 		 * it from shrink_dcache_for_unmount(), leading to busy
1232 		 * inodes on unmount and further oopses.
1233 		 */
1234 		if (IS_ROOT(dentry))
1235 			goto out_valid;
1236 	}
1237 	dput(parent);
1238 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1239 			__func__, dentry);
1240 	return 0;
1241 out_error:
1242 	WARN_ON(flags & LOOKUP_RCU);
1243 	nfs_free_fattr(fattr);
1244 	nfs_free_fhandle(fhandle);
1245 	nfs4_label_free(label);
1246 	dput(parent);
1247 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1248 			__func__, dentry, error);
1249 	return error;
1250 }
1251 
1252 /*
1253  * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1254  * when we don't really care about the dentry name. This is called when a
1255  * pathwalk ends on a dentry that was not found via a normal lookup in the
1256  * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1257  *
1258  * In this situation, we just want to verify that the inode itself is OK
1259  * since the dentry might have changed on the server.
1260  */
1261 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1262 {
1263 	struct inode *inode = d_inode(dentry);
1264 	int error = 0;
1265 
1266 	/*
1267 	 * I believe we can only get a negative dentry here in the case of a
1268 	 * procfs-style symlink. Just assume it's correct for now, but we may
1269 	 * eventually need to do something more here.
1270 	 */
1271 	if (!inode) {
1272 		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1273 				__func__, dentry);
1274 		return 1;
1275 	}
1276 
1277 	if (is_bad_inode(inode)) {
1278 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1279 				__func__, dentry);
1280 		return 0;
1281 	}
1282 
1283 	if (nfs_mapping_need_revalidate_inode(inode))
1284 		error = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
1285 	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1286 			__func__, inode->i_ino, error ? "invalid" : "valid");
1287 	return !error;
1288 }
1289 
1290 /*
1291  * This is called from dput() when d_count is going to 0.
1292  */
1293 static int nfs_dentry_delete(const struct dentry *dentry)
1294 {
1295 	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1296 		dentry, dentry->d_flags);
1297 
1298 	/* Unhash any dentry with a stale inode */
1299 	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1300 		return 1;
1301 
1302 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1303 		/* Unhash it, so that ->d_iput() would be called */
1304 		return 1;
1305 	}
1306 	if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1307 		/* Unhash it, so that ancestors of killed async unlink
1308 		 * files will be cleaned up during umount */
1309 		return 1;
1310 	}
1311 	return 0;
1312 
1313 }
1314 
1315 /* Ensure that we revalidate inode->i_nlink */
1316 static void nfs_drop_nlink(struct inode *inode)
1317 {
1318 	spin_lock(&inode->i_lock);
1319 	/* drop the inode if we're reasonably sure this is the last link */
1320 	if (inode->i_nlink == 1)
1321 		clear_nlink(inode);
1322 	NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR;
1323 	spin_unlock(&inode->i_lock);
1324 }
1325 
1326 /*
1327  * Called when the dentry loses inode.
1328  * We use it to clean up silly-renamed files.
1329  */
1330 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1331 {
1332 	if (S_ISDIR(inode->i_mode))
1333 		/* drop any readdir cache as it could easily be old */
1334 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1335 
1336 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1337 		nfs_complete_unlink(dentry, inode);
1338 		nfs_drop_nlink(inode);
1339 	}
1340 	iput(inode);
1341 }
1342 
1343 static void nfs_d_release(struct dentry *dentry)
1344 {
1345 	/* free cached devname value, if it survived that far */
1346 	if (unlikely(dentry->d_fsdata)) {
1347 		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1348 			WARN_ON(1);
1349 		else
1350 			kfree(dentry->d_fsdata);
1351 	}
1352 }
1353 
1354 const struct dentry_operations nfs_dentry_operations = {
1355 	.d_revalidate	= nfs_lookup_revalidate,
1356 	.d_weak_revalidate	= nfs_weak_revalidate,
1357 	.d_delete	= nfs_dentry_delete,
1358 	.d_iput		= nfs_dentry_iput,
1359 	.d_automount	= nfs_d_automount,
1360 	.d_release	= nfs_d_release,
1361 };
1362 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1363 
1364 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1365 {
1366 	struct dentry *res;
1367 	struct inode *inode = NULL;
1368 	struct nfs_fh *fhandle = NULL;
1369 	struct nfs_fattr *fattr = NULL;
1370 	struct nfs4_label *label = NULL;
1371 	int error;
1372 
1373 	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1374 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1375 
1376 	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1377 		return ERR_PTR(-ENAMETOOLONG);
1378 
1379 	/*
1380 	 * If we're doing an exclusive create, optimize away the lookup
1381 	 * but don't hash the dentry.
1382 	 */
1383 	if (nfs_is_exclusive_create(dir, flags))
1384 		return NULL;
1385 
1386 	res = ERR_PTR(-ENOMEM);
1387 	fhandle = nfs_alloc_fhandle();
1388 	fattr = nfs_alloc_fattr();
1389 	if (fhandle == NULL || fattr == NULL)
1390 		goto out;
1391 
1392 	label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1393 	if (IS_ERR(label))
1394 		goto out;
1395 
1396 	trace_nfs_lookup_enter(dir, dentry, flags);
1397 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1398 	if (error == -ENOENT)
1399 		goto no_entry;
1400 	if (error < 0) {
1401 		res = ERR_PTR(error);
1402 		goto out_label;
1403 	}
1404 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1405 	res = ERR_CAST(inode);
1406 	if (IS_ERR(res))
1407 		goto out_label;
1408 
1409 	/* Notify readdir to use READDIRPLUS */
1410 	nfs_force_use_readdirplus(dir);
1411 
1412 no_entry:
1413 	res = d_splice_alias(inode, dentry);
1414 	if (res != NULL) {
1415 		if (IS_ERR(res))
1416 			goto out_label;
1417 		dentry = res;
1418 	}
1419 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1420 out_label:
1421 	trace_nfs_lookup_exit(dir, dentry, flags, error);
1422 	nfs4_label_free(label);
1423 out:
1424 	nfs_free_fattr(fattr);
1425 	nfs_free_fhandle(fhandle);
1426 	return res;
1427 }
1428 EXPORT_SYMBOL_GPL(nfs_lookup);
1429 
1430 #if IS_ENABLED(CONFIG_NFS_V4)
1431 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1432 
1433 const struct dentry_operations nfs4_dentry_operations = {
1434 	.d_revalidate	= nfs4_lookup_revalidate,
1435 	.d_delete	= nfs_dentry_delete,
1436 	.d_iput		= nfs_dentry_iput,
1437 	.d_automount	= nfs_d_automount,
1438 	.d_release	= nfs_d_release,
1439 };
1440 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1441 
1442 static fmode_t flags_to_mode(int flags)
1443 {
1444 	fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1445 	if ((flags & O_ACCMODE) != O_WRONLY)
1446 		res |= FMODE_READ;
1447 	if ((flags & O_ACCMODE) != O_RDONLY)
1448 		res |= FMODE_WRITE;
1449 	return res;
1450 }
1451 
1452 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1453 {
1454 	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1455 }
1456 
1457 static int do_open(struct inode *inode, struct file *filp)
1458 {
1459 	nfs_fscache_open_file(inode, filp);
1460 	return 0;
1461 }
1462 
1463 static int nfs_finish_open(struct nfs_open_context *ctx,
1464 			   struct dentry *dentry,
1465 			   struct file *file, unsigned open_flags,
1466 			   int *opened)
1467 {
1468 	int err;
1469 
1470 	err = finish_open(file, dentry, do_open, opened);
1471 	if (err)
1472 		goto out;
1473 	nfs_file_set_open_context(file, ctx);
1474 
1475 out:
1476 	return err;
1477 }
1478 
1479 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1480 		    struct file *file, unsigned open_flags,
1481 		    umode_t mode, int *opened)
1482 {
1483 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1484 	struct nfs_open_context *ctx;
1485 	struct dentry *res;
1486 	struct iattr attr = { .ia_valid = ATTR_OPEN };
1487 	struct inode *inode;
1488 	unsigned int lookup_flags = 0;
1489 	bool switched = false;
1490 	int err;
1491 
1492 	/* Expect a negative dentry */
1493 	BUG_ON(d_inode(dentry));
1494 
1495 	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1496 			dir->i_sb->s_id, dir->i_ino, dentry);
1497 
1498 	err = nfs_check_flags(open_flags);
1499 	if (err)
1500 		return err;
1501 
1502 	/* NFS only supports OPEN on regular files */
1503 	if ((open_flags & O_DIRECTORY)) {
1504 		if (!d_in_lookup(dentry)) {
1505 			/*
1506 			 * Hashed negative dentry with O_DIRECTORY: dentry was
1507 			 * revalidated and is fine, no need to perform lookup
1508 			 * again
1509 			 */
1510 			return -ENOENT;
1511 		}
1512 		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1513 		goto no_open;
1514 	}
1515 
1516 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1517 		return -ENAMETOOLONG;
1518 
1519 	if (open_flags & O_CREAT) {
1520 		struct nfs_server *server = NFS_SERVER(dir);
1521 
1522 		if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1523 			mode &= ~current_umask();
1524 
1525 		attr.ia_valid |= ATTR_MODE;
1526 		attr.ia_mode = mode;
1527 	}
1528 	if (open_flags & O_TRUNC) {
1529 		attr.ia_valid |= ATTR_SIZE;
1530 		attr.ia_size = 0;
1531 	}
1532 
1533 	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1534 		d_drop(dentry);
1535 		switched = true;
1536 		dentry = d_alloc_parallel(dentry->d_parent,
1537 					  &dentry->d_name, &wq);
1538 		if (IS_ERR(dentry))
1539 			return PTR_ERR(dentry);
1540 		if (unlikely(!d_in_lookup(dentry)))
1541 			return finish_no_open(file, dentry);
1542 	}
1543 
1544 	ctx = create_nfs_open_context(dentry, open_flags, file);
1545 	err = PTR_ERR(ctx);
1546 	if (IS_ERR(ctx))
1547 		goto out;
1548 
1549 	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1550 	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, opened);
1551 	if (IS_ERR(inode)) {
1552 		err = PTR_ERR(inode);
1553 		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1554 		put_nfs_open_context(ctx);
1555 		d_drop(dentry);
1556 		switch (err) {
1557 		case -ENOENT:
1558 			d_add(dentry, NULL);
1559 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1560 			break;
1561 		case -EISDIR:
1562 		case -ENOTDIR:
1563 			goto no_open;
1564 		case -ELOOP:
1565 			if (!(open_flags & O_NOFOLLOW))
1566 				goto no_open;
1567 			break;
1568 			/* case -EINVAL: */
1569 		default:
1570 			break;
1571 		}
1572 		goto out;
1573 	}
1574 
1575 	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags, opened);
1576 	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1577 	put_nfs_open_context(ctx);
1578 out:
1579 	if (unlikely(switched)) {
1580 		d_lookup_done(dentry);
1581 		dput(dentry);
1582 	}
1583 	return err;
1584 
1585 no_open:
1586 	res = nfs_lookup(dir, dentry, lookup_flags);
1587 	if (switched) {
1588 		d_lookup_done(dentry);
1589 		if (!res)
1590 			res = dentry;
1591 		else
1592 			dput(dentry);
1593 	}
1594 	if (IS_ERR(res))
1595 		return PTR_ERR(res);
1596 	return finish_no_open(file, res);
1597 }
1598 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1599 
1600 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1601 {
1602 	struct inode *inode;
1603 	int ret = 0;
1604 
1605 	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1606 		goto no_open;
1607 	if (d_mountpoint(dentry))
1608 		goto no_open;
1609 	if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1)
1610 		goto no_open;
1611 
1612 	inode = d_inode(dentry);
1613 
1614 	/* We can't create new files in nfs_open_revalidate(), so we
1615 	 * optimize away revalidation of negative dentries.
1616 	 */
1617 	if (inode == NULL) {
1618 		struct dentry *parent;
1619 		struct inode *dir;
1620 
1621 		if (flags & LOOKUP_RCU) {
1622 			parent = ACCESS_ONCE(dentry->d_parent);
1623 			dir = d_inode_rcu(parent);
1624 			if (!dir)
1625 				return -ECHILD;
1626 		} else {
1627 			parent = dget_parent(dentry);
1628 			dir = d_inode(parent);
1629 		}
1630 		if (!nfs_neg_need_reval(dir, dentry, flags))
1631 			ret = 1;
1632 		else if (flags & LOOKUP_RCU)
1633 			ret = -ECHILD;
1634 		if (!(flags & LOOKUP_RCU))
1635 			dput(parent);
1636 		else if (parent != ACCESS_ONCE(dentry->d_parent))
1637 			return -ECHILD;
1638 		goto out;
1639 	}
1640 
1641 	/* NFS only supports OPEN on regular files */
1642 	if (!S_ISREG(inode->i_mode))
1643 		goto no_open;
1644 	/* We cannot do exclusive creation on a positive dentry */
1645 	if (flags & LOOKUP_EXCL)
1646 		goto no_open;
1647 
1648 	/* Let f_op->open() actually open (and revalidate) the file */
1649 	ret = 1;
1650 
1651 out:
1652 	return ret;
1653 
1654 no_open:
1655 	return nfs_lookup_revalidate(dentry, flags);
1656 }
1657 
1658 #endif /* CONFIG_NFSV4 */
1659 
1660 /*
1661  * Code common to create, mkdir, and mknod.
1662  */
1663 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1664 				struct nfs_fattr *fattr,
1665 				struct nfs4_label *label)
1666 {
1667 	struct dentry *parent = dget_parent(dentry);
1668 	struct inode *dir = d_inode(parent);
1669 	struct inode *inode;
1670 	int error = -EACCES;
1671 
1672 	d_drop(dentry);
1673 
1674 	/* We may have been initialized further down */
1675 	if (d_really_is_positive(dentry))
1676 		goto out;
1677 	if (fhandle->size == 0) {
1678 		error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1679 		if (error)
1680 			goto out_error;
1681 	}
1682 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1683 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1684 		struct nfs_server *server = NFS_SB(dentry->d_sb);
1685 		error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL);
1686 		if (error < 0)
1687 			goto out_error;
1688 	}
1689 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1690 	error = PTR_ERR(inode);
1691 	if (IS_ERR(inode))
1692 		goto out_error;
1693 	d_add(dentry, inode);
1694 out:
1695 	dput(parent);
1696 	return 0;
1697 out_error:
1698 	nfs_mark_for_revalidate(dir);
1699 	dput(parent);
1700 	return error;
1701 }
1702 EXPORT_SYMBOL_GPL(nfs_instantiate);
1703 
1704 /*
1705  * Following a failed create operation, we drop the dentry rather
1706  * than retain a negative dentry. This avoids a problem in the event
1707  * that the operation succeeded on the server, but an error in the
1708  * reply path made it appear to have failed.
1709  */
1710 int nfs_create(struct inode *dir, struct dentry *dentry,
1711 		umode_t mode, bool excl)
1712 {
1713 	struct iattr attr;
1714 	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1715 	int error;
1716 
1717 	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1718 			dir->i_sb->s_id, dir->i_ino, dentry);
1719 
1720 	attr.ia_mode = mode;
1721 	attr.ia_valid = ATTR_MODE;
1722 
1723 	trace_nfs_create_enter(dir, dentry, open_flags);
1724 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1725 	trace_nfs_create_exit(dir, dentry, open_flags, error);
1726 	if (error != 0)
1727 		goto out_err;
1728 	return 0;
1729 out_err:
1730 	d_drop(dentry);
1731 	return error;
1732 }
1733 EXPORT_SYMBOL_GPL(nfs_create);
1734 
1735 /*
1736  * See comments for nfs_proc_create regarding failed operations.
1737  */
1738 int
1739 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1740 {
1741 	struct iattr attr;
1742 	int status;
1743 
1744 	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1745 			dir->i_sb->s_id, dir->i_ino, dentry);
1746 
1747 	attr.ia_mode = mode;
1748 	attr.ia_valid = ATTR_MODE;
1749 
1750 	trace_nfs_mknod_enter(dir, dentry);
1751 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1752 	trace_nfs_mknod_exit(dir, dentry, status);
1753 	if (status != 0)
1754 		goto out_err;
1755 	return 0;
1756 out_err:
1757 	d_drop(dentry);
1758 	return status;
1759 }
1760 EXPORT_SYMBOL_GPL(nfs_mknod);
1761 
1762 /*
1763  * See comments for nfs_proc_create regarding failed operations.
1764  */
1765 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1766 {
1767 	struct iattr attr;
1768 	int error;
1769 
1770 	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1771 			dir->i_sb->s_id, dir->i_ino, dentry);
1772 
1773 	attr.ia_valid = ATTR_MODE;
1774 	attr.ia_mode = mode | S_IFDIR;
1775 
1776 	trace_nfs_mkdir_enter(dir, dentry);
1777 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1778 	trace_nfs_mkdir_exit(dir, dentry, error);
1779 	if (error != 0)
1780 		goto out_err;
1781 	return 0;
1782 out_err:
1783 	d_drop(dentry);
1784 	return error;
1785 }
1786 EXPORT_SYMBOL_GPL(nfs_mkdir);
1787 
1788 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1789 {
1790 	if (simple_positive(dentry))
1791 		d_delete(dentry);
1792 }
1793 
1794 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1795 {
1796 	int error;
1797 
1798 	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1799 			dir->i_sb->s_id, dir->i_ino, dentry);
1800 
1801 	trace_nfs_rmdir_enter(dir, dentry);
1802 	if (d_really_is_positive(dentry)) {
1803 		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1804 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1805 		/* Ensure the VFS deletes this inode */
1806 		switch (error) {
1807 		case 0:
1808 			clear_nlink(d_inode(dentry));
1809 			break;
1810 		case -ENOENT:
1811 			nfs_dentry_handle_enoent(dentry);
1812 		}
1813 		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1814 	} else
1815 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1816 	trace_nfs_rmdir_exit(dir, dentry, error);
1817 
1818 	return error;
1819 }
1820 EXPORT_SYMBOL_GPL(nfs_rmdir);
1821 
1822 /*
1823  * Remove a file after making sure there are no pending writes,
1824  * and after checking that the file has only one user.
1825  *
1826  * We invalidate the attribute cache and free the inode prior to the operation
1827  * to avoid possible races if the server reuses the inode.
1828  */
1829 static int nfs_safe_remove(struct dentry *dentry)
1830 {
1831 	struct inode *dir = d_inode(dentry->d_parent);
1832 	struct inode *inode = d_inode(dentry);
1833 	int error = -EBUSY;
1834 
1835 	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
1836 
1837 	/* If the dentry was sillyrenamed, we simply call d_delete() */
1838 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1839 		error = 0;
1840 		goto out;
1841 	}
1842 
1843 	trace_nfs_remove_enter(dir, dentry);
1844 	if (inode != NULL) {
1845 		NFS_PROTO(inode)->return_delegation(inode);
1846 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1847 		if (error == 0)
1848 			nfs_drop_nlink(inode);
1849 	} else
1850 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1851 	if (error == -ENOENT)
1852 		nfs_dentry_handle_enoent(dentry);
1853 	trace_nfs_remove_exit(dir, dentry, error);
1854 out:
1855 	return error;
1856 }
1857 
1858 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1859  *  belongs to an active ".nfs..." file and we return -EBUSY.
1860  *
1861  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1862  */
1863 int nfs_unlink(struct inode *dir, struct dentry *dentry)
1864 {
1865 	int error;
1866 	int need_rehash = 0;
1867 
1868 	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
1869 		dir->i_ino, dentry);
1870 
1871 	trace_nfs_unlink_enter(dir, dentry);
1872 	spin_lock(&dentry->d_lock);
1873 	if (d_count(dentry) > 1) {
1874 		spin_unlock(&dentry->d_lock);
1875 		/* Start asynchronous writeout of the inode */
1876 		write_inode_now(d_inode(dentry), 0);
1877 		error = nfs_sillyrename(dir, dentry);
1878 		goto out;
1879 	}
1880 	if (!d_unhashed(dentry)) {
1881 		__d_drop(dentry);
1882 		need_rehash = 1;
1883 	}
1884 	spin_unlock(&dentry->d_lock);
1885 	error = nfs_safe_remove(dentry);
1886 	if (!error || error == -ENOENT) {
1887 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1888 	} else if (need_rehash)
1889 		d_rehash(dentry);
1890 out:
1891 	trace_nfs_unlink_exit(dir, dentry, error);
1892 	return error;
1893 }
1894 EXPORT_SYMBOL_GPL(nfs_unlink);
1895 
1896 /*
1897  * To create a symbolic link, most file systems instantiate a new inode,
1898  * add a page to it containing the path, then write it out to the disk
1899  * using prepare_write/commit_write.
1900  *
1901  * Unfortunately the NFS client can't create the in-core inode first
1902  * because it needs a file handle to create an in-core inode (see
1903  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1904  * symlink request has completed on the server.
1905  *
1906  * So instead we allocate a raw page, copy the symname into it, then do
1907  * the SYMLINK request with the page as the buffer.  If it succeeds, we
1908  * now have a new file handle and can instantiate an in-core NFS inode
1909  * and move the raw page into its mapping.
1910  */
1911 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1912 {
1913 	struct page *page;
1914 	char *kaddr;
1915 	struct iattr attr;
1916 	unsigned int pathlen = strlen(symname);
1917 	int error;
1918 
1919 	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
1920 		dir->i_ino, dentry, symname);
1921 
1922 	if (pathlen > PAGE_SIZE)
1923 		return -ENAMETOOLONG;
1924 
1925 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
1926 	attr.ia_valid = ATTR_MODE;
1927 
1928 	page = alloc_page(GFP_USER);
1929 	if (!page)
1930 		return -ENOMEM;
1931 
1932 	kaddr = page_address(page);
1933 	memcpy(kaddr, symname, pathlen);
1934 	if (pathlen < PAGE_SIZE)
1935 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1936 
1937 	trace_nfs_symlink_enter(dir, dentry);
1938 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1939 	trace_nfs_symlink_exit(dir, dentry, error);
1940 	if (error != 0) {
1941 		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1942 			dir->i_sb->s_id, dir->i_ino,
1943 			dentry, symname, error);
1944 		d_drop(dentry);
1945 		__free_page(page);
1946 		return error;
1947 	}
1948 
1949 	/*
1950 	 * No big deal if we can't add this page to the page cache here.
1951 	 * READLINK will get the missing page from the server if needed.
1952 	 */
1953 	if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
1954 							GFP_KERNEL)) {
1955 		SetPageUptodate(page);
1956 		unlock_page(page);
1957 		/*
1958 		 * add_to_page_cache_lru() grabs an extra page refcount.
1959 		 * Drop it here to avoid leaking this page later.
1960 		 */
1961 		put_page(page);
1962 	} else
1963 		__free_page(page);
1964 
1965 	return 0;
1966 }
1967 EXPORT_SYMBOL_GPL(nfs_symlink);
1968 
1969 int
1970 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1971 {
1972 	struct inode *inode = d_inode(old_dentry);
1973 	int error;
1974 
1975 	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
1976 		old_dentry, dentry);
1977 
1978 	trace_nfs_link_enter(inode, dir, dentry);
1979 	NFS_PROTO(inode)->return_delegation(inode);
1980 
1981 	d_drop(dentry);
1982 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1983 	if (error == 0) {
1984 		ihold(inode);
1985 		d_add(dentry, inode);
1986 	}
1987 	trace_nfs_link_exit(inode, dir, dentry, error);
1988 	return error;
1989 }
1990 EXPORT_SYMBOL_GPL(nfs_link);
1991 
1992 static void
1993 nfs_complete_rename(struct rpc_task *task, struct nfs_renamedata *data)
1994 {
1995 	struct dentry *old_dentry = data->old_dentry;
1996 	struct dentry *new_dentry = data->new_dentry;
1997 	struct inode *old_inode = d_inode(old_dentry);
1998 	struct inode *new_inode = d_inode(new_dentry);
1999 
2000 	nfs_mark_for_revalidate(old_inode);
2001 
2002 	switch (task->tk_status) {
2003 	case 0:
2004 		if (new_inode != NULL)
2005 			nfs_drop_nlink(new_inode);
2006 		d_move(old_dentry, new_dentry);
2007 		nfs_set_verifier(new_dentry,
2008 					nfs_save_change_attribute(data->new_dir));
2009 		break;
2010 	case -ENOENT:
2011 		nfs_dentry_handle_enoent(old_dentry);
2012 	}
2013 }
2014 
2015 /*
2016  * RENAME
2017  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2018  * different file handle for the same inode after a rename (e.g. when
2019  * moving to a different directory). A fail-safe method to do so would
2020  * be to look up old_dir/old_name, create a link to new_dir/new_name and
2021  * rename the old file using the sillyrename stuff. This way, the original
2022  * file in old_dir will go away when the last process iput()s the inode.
2023  *
2024  * FIXED.
2025  *
2026  * It actually works quite well. One needs to have the possibility for
2027  * at least one ".nfs..." file in each directory the file ever gets
2028  * moved or linked to which happens automagically with the new
2029  * implementation that only depends on the dcache stuff instead of
2030  * using the inode layer
2031  *
2032  * Unfortunately, things are a little more complicated than indicated
2033  * above. For a cross-directory move, we want to make sure we can get
2034  * rid of the old inode after the operation.  This means there must be
2035  * no pending writes (if it's a file), and the use count must be 1.
2036  * If these conditions are met, we can drop the dentries before doing
2037  * the rename.
2038  */
2039 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2040 	       struct inode *new_dir, struct dentry *new_dentry,
2041 	       unsigned int flags)
2042 {
2043 	struct inode *old_inode = d_inode(old_dentry);
2044 	struct inode *new_inode = d_inode(new_dentry);
2045 	struct dentry *dentry = NULL;
2046 	struct rpc_task *task;
2047 	int error = -EBUSY;
2048 
2049 	if (flags)
2050 		return -EINVAL;
2051 
2052 	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2053 		 old_dentry, new_dentry,
2054 		 d_count(new_dentry));
2055 
2056 	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2057 	/*
2058 	 * For non-directories, check whether the target is busy and if so,
2059 	 * make a copy of the dentry and then do a silly-rename. If the
2060 	 * silly-rename succeeds, the copied dentry is hashed and becomes
2061 	 * the new target.
2062 	 */
2063 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2064 		/*
2065 		 * To prevent any new references to the target during the
2066 		 * rename, we unhash the dentry in advance.
2067 		 */
2068 		if (!d_unhashed(new_dentry))
2069 			d_drop(new_dentry);
2070 
2071 		if (d_count(new_dentry) > 2) {
2072 			int err;
2073 
2074 			/* copy the target dentry's name */
2075 			dentry = d_alloc(new_dentry->d_parent,
2076 					 &new_dentry->d_name);
2077 			if (!dentry)
2078 				goto out;
2079 
2080 			/* silly-rename the existing target ... */
2081 			err = nfs_sillyrename(new_dir, new_dentry);
2082 			if (err)
2083 				goto out;
2084 
2085 			new_dentry = dentry;
2086 			new_inode = NULL;
2087 		}
2088 	}
2089 
2090 	NFS_PROTO(old_inode)->return_delegation(old_inode);
2091 	if (new_inode != NULL)
2092 		NFS_PROTO(new_inode)->return_delegation(new_inode);
2093 
2094 	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry,
2095 					nfs_complete_rename);
2096 	if (IS_ERR(task)) {
2097 		error = PTR_ERR(task);
2098 		goto out;
2099 	}
2100 
2101 	error = rpc_wait_for_completion_task(task);
2102 	if (error == 0)
2103 		error = task->tk_status;
2104 	rpc_put_task(task);
2105 out:
2106 	trace_nfs_rename_exit(old_dir, old_dentry,
2107 			new_dir, new_dentry, error);
2108 	/* new dentry created? */
2109 	if (dentry)
2110 		dput(dentry);
2111 	return error;
2112 }
2113 EXPORT_SYMBOL_GPL(nfs_rename);
2114 
2115 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2116 static LIST_HEAD(nfs_access_lru_list);
2117 static atomic_long_t nfs_access_nr_entries;
2118 
2119 static unsigned long nfs_access_max_cachesize = ULONG_MAX;
2120 module_param(nfs_access_max_cachesize, ulong, 0644);
2121 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2122 
2123 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2124 {
2125 	put_rpccred(entry->cred);
2126 	kfree_rcu(entry, rcu_head);
2127 	smp_mb__before_atomic();
2128 	atomic_long_dec(&nfs_access_nr_entries);
2129 	smp_mb__after_atomic();
2130 }
2131 
2132 static void nfs_access_free_list(struct list_head *head)
2133 {
2134 	struct nfs_access_entry *cache;
2135 
2136 	while (!list_empty(head)) {
2137 		cache = list_entry(head->next, struct nfs_access_entry, lru);
2138 		list_del(&cache->lru);
2139 		nfs_access_free_entry(cache);
2140 	}
2141 }
2142 
2143 static unsigned long
2144 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2145 {
2146 	LIST_HEAD(head);
2147 	struct nfs_inode *nfsi, *next;
2148 	struct nfs_access_entry *cache;
2149 	long freed = 0;
2150 
2151 	spin_lock(&nfs_access_lru_lock);
2152 	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2153 		struct inode *inode;
2154 
2155 		if (nr_to_scan-- == 0)
2156 			break;
2157 		inode = &nfsi->vfs_inode;
2158 		spin_lock(&inode->i_lock);
2159 		if (list_empty(&nfsi->access_cache_entry_lru))
2160 			goto remove_lru_entry;
2161 		cache = list_entry(nfsi->access_cache_entry_lru.next,
2162 				struct nfs_access_entry, lru);
2163 		list_move(&cache->lru, &head);
2164 		rb_erase(&cache->rb_node, &nfsi->access_cache);
2165 		freed++;
2166 		if (!list_empty(&nfsi->access_cache_entry_lru))
2167 			list_move_tail(&nfsi->access_cache_inode_lru,
2168 					&nfs_access_lru_list);
2169 		else {
2170 remove_lru_entry:
2171 			list_del_init(&nfsi->access_cache_inode_lru);
2172 			smp_mb__before_atomic();
2173 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2174 			smp_mb__after_atomic();
2175 		}
2176 		spin_unlock(&inode->i_lock);
2177 	}
2178 	spin_unlock(&nfs_access_lru_lock);
2179 	nfs_access_free_list(&head);
2180 	return freed;
2181 }
2182 
2183 unsigned long
2184 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2185 {
2186 	int nr_to_scan = sc->nr_to_scan;
2187 	gfp_t gfp_mask = sc->gfp_mask;
2188 
2189 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2190 		return SHRINK_STOP;
2191 	return nfs_do_access_cache_scan(nr_to_scan);
2192 }
2193 
2194 
2195 unsigned long
2196 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2197 {
2198 	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2199 }
2200 
2201 static void
2202 nfs_access_cache_enforce_limit(void)
2203 {
2204 	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2205 	unsigned long diff;
2206 	unsigned int nr_to_scan;
2207 
2208 	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2209 		return;
2210 	nr_to_scan = 100;
2211 	diff = nr_entries - nfs_access_max_cachesize;
2212 	if (diff < nr_to_scan)
2213 		nr_to_scan = diff;
2214 	nfs_do_access_cache_scan(nr_to_scan);
2215 }
2216 
2217 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2218 {
2219 	struct rb_root *root_node = &nfsi->access_cache;
2220 	struct rb_node *n;
2221 	struct nfs_access_entry *entry;
2222 
2223 	/* Unhook entries from the cache */
2224 	while ((n = rb_first(root_node)) != NULL) {
2225 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2226 		rb_erase(n, root_node);
2227 		list_move(&entry->lru, head);
2228 	}
2229 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2230 }
2231 
2232 void nfs_access_zap_cache(struct inode *inode)
2233 {
2234 	LIST_HEAD(head);
2235 
2236 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2237 		return;
2238 	/* Remove from global LRU init */
2239 	spin_lock(&nfs_access_lru_lock);
2240 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2241 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2242 
2243 	spin_lock(&inode->i_lock);
2244 	__nfs_access_zap_cache(NFS_I(inode), &head);
2245 	spin_unlock(&inode->i_lock);
2246 	spin_unlock(&nfs_access_lru_lock);
2247 	nfs_access_free_list(&head);
2248 }
2249 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2250 
2251 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2252 {
2253 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2254 	struct nfs_access_entry *entry;
2255 
2256 	while (n != NULL) {
2257 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2258 
2259 		if (cred < entry->cred)
2260 			n = n->rb_left;
2261 		else if (cred > entry->cred)
2262 			n = n->rb_right;
2263 		else
2264 			return entry;
2265 	}
2266 	return NULL;
2267 }
2268 
2269 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res, bool may_block)
2270 {
2271 	struct nfs_inode *nfsi = NFS_I(inode);
2272 	struct nfs_access_entry *cache;
2273 	bool retry = true;
2274 	int err;
2275 
2276 	spin_lock(&inode->i_lock);
2277 	for(;;) {
2278 		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2279 			goto out_zap;
2280 		cache = nfs_access_search_rbtree(inode, cred);
2281 		err = -ENOENT;
2282 		if (cache == NULL)
2283 			goto out;
2284 		/* Found an entry, is our attribute cache valid? */
2285 		if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2286 			break;
2287 		err = -ECHILD;
2288 		if (!may_block)
2289 			goto out;
2290 		if (!retry)
2291 			goto out_zap;
2292 		spin_unlock(&inode->i_lock);
2293 		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2294 		if (err)
2295 			return err;
2296 		spin_lock(&inode->i_lock);
2297 		retry = false;
2298 	}
2299 	res->jiffies = cache->jiffies;
2300 	res->cred = cache->cred;
2301 	res->mask = cache->mask;
2302 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2303 	err = 0;
2304 out:
2305 	spin_unlock(&inode->i_lock);
2306 	return err;
2307 out_zap:
2308 	spin_unlock(&inode->i_lock);
2309 	nfs_access_zap_cache(inode);
2310 	return -ENOENT;
2311 }
2312 
2313 static int nfs_access_get_cached_rcu(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2314 {
2315 	/* Only check the most recently returned cache entry,
2316 	 * but do it without locking.
2317 	 */
2318 	struct nfs_inode *nfsi = NFS_I(inode);
2319 	struct nfs_access_entry *cache;
2320 	int err = -ECHILD;
2321 	struct list_head *lh;
2322 
2323 	rcu_read_lock();
2324 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2325 		goto out;
2326 	lh = rcu_dereference(nfsi->access_cache_entry_lru.prev);
2327 	cache = list_entry(lh, struct nfs_access_entry, lru);
2328 	if (lh == &nfsi->access_cache_entry_lru ||
2329 	    cred != cache->cred)
2330 		cache = NULL;
2331 	if (cache == NULL)
2332 		goto out;
2333 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2334 		goto out;
2335 	res->jiffies = cache->jiffies;
2336 	res->cred = cache->cred;
2337 	res->mask = cache->mask;
2338 	err = 0;
2339 out:
2340 	rcu_read_unlock();
2341 	return err;
2342 }
2343 
2344 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2345 {
2346 	struct nfs_inode *nfsi = NFS_I(inode);
2347 	struct rb_root *root_node = &nfsi->access_cache;
2348 	struct rb_node **p = &root_node->rb_node;
2349 	struct rb_node *parent = NULL;
2350 	struct nfs_access_entry *entry;
2351 
2352 	spin_lock(&inode->i_lock);
2353 	while (*p != NULL) {
2354 		parent = *p;
2355 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2356 
2357 		if (set->cred < entry->cred)
2358 			p = &parent->rb_left;
2359 		else if (set->cred > entry->cred)
2360 			p = &parent->rb_right;
2361 		else
2362 			goto found;
2363 	}
2364 	rb_link_node(&set->rb_node, parent, p);
2365 	rb_insert_color(&set->rb_node, root_node);
2366 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2367 	spin_unlock(&inode->i_lock);
2368 	return;
2369 found:
2370 	rb_replace_node(parent, &set->rb_node, root_node);
2371 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2372 	list_del(&entry->lru);
2373 	spin_unlock(&inode->i_lock);
2374 	nfs_access_free_entry(entry);
2375 }
2376 
2377 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2378 {
2379 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2380 	if (cache == NULL)
2381 		return;
2382 	RB_CLEAR_NODE(&cache->rb_node);
2383 	cache->jiffies = set->jiffies;
2384 	cache->cred = get_rpccred(set->cred);
2385 	cache->mask = set->mask;
2386 
2387 	/* The above field assignments must be visible
2388 	 * before this item appears on the lru.  We cannot easily
2389 	 * use rcu_assign_pointer, so just force the memory barrier.
2390 	 */
2391 	smp_wmb();
2392 	nfs_access_add_rbtree(inode, cache);
2393 
2394 	/* Update accounting */
2395 	smp_mb__before_atomic();
2396 	atomic_long_inc(&nfs_access_nr_entries);
2397 	smp_mb__after_atomic();
2398 
2399 	/* Add inode to global LRU list */
2400 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2401 		spin_lock(&nfs_access_lru_lock);
2402 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2403 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2404 					&nfs_access_lru_list);
2405 		spin_unlock(&nfs_access_lru_lock);
2406 	}
2407 	nfs_access_cache_enforce_limit();
2408 }
2409 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2410 
2411 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2412 {
2413 	entry->mask = 0;
2414 	if (access_result & NFS4_ACCESS_READ)
2415 		entry->mask |= MAY_READ;
2416 	if (access_result &
2417 	    (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
2418 		entry->mask |= MAY_WRITE;
2419 	if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
2420 		entry->mask |= MAY_EXEC;
2421 }
2422 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2423 
2424 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2425 {
2426 	struct nfs_access_entry cache;
2427 	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2428 	int status;
2429 
2430 	trace_nfs_access_enter(inode);
2431 
2432 	status = nfs_access_get_cached_rcu(inode, cred, &cache);
2433 	if (status != 0)
2434 		status = nfs_access_get_cached(inode, cred, &cache, may_block);
2435 	if (status == 0)
2436 		goto out_cached;
2437 
2438 	status = -ECHILD;
2439 	if (!may_block)
2440 		goto out;
2441 
2442 	/* Be clever: ask server to check for all possible rights */
2443 	cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2444 	cache.cred = cred;
2445 	cache.jiffies = jiffies;
2446 	status = NFS_PROTO(inode)->access(inode, &cache);
2447 	if (status != 0) {
2448 		if (status == -ESTALE) {
2449 			nfs_zap_caches(inode);
2450 			if (!S_ISDIR(inode->i_mode))
2451 				set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2452 		}
2453 		goto out;
2454 	}
2455 	nfs_access_add_cache(inode, &cache);
2456 out_cached:
2457 	if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2458 		status = -EACCES;
2459 out:
2460 	trace_nfs_access_exit(inode, status);
2461 	return status;
2462 }
2463 
2464 static int nfs_open_permission_mask(int openflags)
2465 {
2466 	int mask = 0;
2467 
2468 	if (openflags & __FMODE_EXEC) {
2469 		/* ONLY check exec rights */
2470 		mask = MAY_EXEC;
2471 	} else {
2472 		if ((openflags & O_ACCMODE) != O_WRONLY)
2473 			mask |= MAY_READ;
2474 		if ((openflags & O_ACCMODE) != O_RDONLY)
2475 			mask |= MAY_WRITE;
2476 	}
2477 
2478 	return mask;
2479 }
2480 
2481 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2482 {
2483 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2484 }
2485 EXPORT_SYMBOL_GPL(nfs_may_open);
2486 
2487 static int nfs_execute_ok(struct inode *inode, int mask)
2488 {
2489 	struct nfs_server *server = NFS_SERVER(inode);
2490 	int ret = 0;
2491 
2492 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) {
2493 		if (mask & MAY_NOT_BLOCK)
2494 			return -ECHILD;
2495 		ret = __nfs_revalidate_inode(server, inode);
2496 	}
2497 	if (ret == 0 && !execute_ok(inode))
2498 		ret = -EACCES;
2499 	return ret;
2500 }
2501 
2502 int nfs_permission(struct inode *inode, int mask)
2503 {
2504 	struct rpc_cred *cred;
2505 	int res = 0;
2506 
2507 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2508 
2509 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2510 		goto out;
2511 	/* Is this sys_access() ? */
2512 	if (mask & (MAY_ACCESS | MAY_CHDIR))
2513 		goto force_lookup;
2514 
2515 	switch (inode->i_mode & S_IFMT) {
2516 		case S_IFLNK:
2517 			goto out;
2518 		case S_IFREG:
2519 			if ((mask & MAY_OPEN) &&
2520 			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2521 				return 0;
2522 			break;
2523 		case S_IFDIR:
2524 			/*
2525 			 * Optimize away all write operations, since the server
2526 			 * will check permissions when we perform the op.
2527 			 */
2528 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2529 				goto out;
2530 	}
2531 
2532 force_lookup:
2533 	if (!NFS_PROTO(inode)->access)
2534 		goto out_notsup;
2535 
2536 	/* Always try fast lookups first */
2537 	rcu_read_lock();
2538 	cred = rpc_lookup_cred_nonblock();
2539 	if (!IS_ERR(cred))
2540 		res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK);
2541 	else
2542 		res = PTR_ERR(cred);
2543 	rcu_read_unlock();
2544 	if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) {
2545 		/* Fast lookup failed, try the slow way */
2546 		cred = rpc_lookup_cred();
2547 		if (!IS_ERR(cred)) {
2548 			res = nfs_do_access(inode, cred, mask);
2549 			put_rpccred(cred);
2550 		} else
2551 			res = PTR_ERR(cred);
2552 	}
2553 out:
2554 	if (!res && (mask & MAY_EXEC))
2555 		res = nfs_execute_ok(inode, mask);
2556 
2557 	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2558 		inode->i_sb->s_id, inode->i_ino, mask, res);
2559 	return res;
2560 out_notsup:
2561 	if (mask & MAY_NOT_BLOCK)
2562 		return -ECHILD;
2563 
2564 	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2565 	if (res == 0)
2566 		res = generic_permission(inode, mask);
2567 	goto out;
2568 }
2569 EXPORT_SYMBOL_GPL(nfs_permission);
2570 
2571 /*
2572  * Local variables:
2573  *  version-control: t
2574  *  kept-new-versions: 5
2575  * End:
2576  */
2577