xref: /openbmc/linux/fs/nfs/dir.c (revision b0365ccb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/nfs/dir.c
4  *
5  *  Copyright (C) 1992  Rick Sladkey
6  *
7  *  nfs directory handling functions
8  *
9  * 10 Apr 1996	Added silly rename for unlink	--okir
10  * 28 Sep 1996	Improved directory cache --okir
11  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
12  *              Re-implemented silly rename for unlink, newly implemented
13  *              silly rename for nfs_rename() following the suggestions
14  *              of Olaf Kirch (okir) found in this file.
15  *              Following Linus comments on my original hack, this version
16  *              depends only on the dcache stuff and doesn't touch the inode
17  *              layer (iput() and friends).
18  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
19  */
20 
21 #include <linux/compat.h>
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/errno.h>
25 #include <linux/stat.h>
26 #include <linux/fcntl.h>
27 #include <linux/string.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/mm.h>
31 #include <linux/sunrpc/clnt.h>
32 #include <linux/nfs_fs.h>
33 #include <linux/nfs_mount.h>
34 #include <linux/pagemap.h>
35 #include <linux/pagevec.h>
36 #include <linux/namei.h>
37 #include <linux/mount.h>
38 #include <linux/swap.h>
39 #include <linux/sched.h>
40 #include <linux/kmemleak.h>
41 #include <linux/xattr.h>
42 #include <linux/xxhash.h>
43 
44 #include "delegation.h"
45 #include "iostat.h"
46 #include "internal.h"
47 #include "fscache.h"
48 
49 #include "nfstrace.h"
50 
51 /* #define NFS_DEBUG_VERBOSE 1 */
52 
53 static int nfs_opendir(struct inode *, struct file *);
54 static int nfs_closedir(struct inode *, struct file *);
55 static int nfs_readdir(struct file *, struct dir_context *);
56 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
57 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
58 static void nfs_readdir_clear_array(struct page*);
59 
60 const struct file_operations nfs_dir_operations = {
61 	.llseek		= nfs_llseek_dir,
62 	.read		= generic_read_dir,
63 	.iterate_shared	= nfs_readdir,
64 	.open		= nfs_opendir,
65 	.release	= nfs_closedir,
66 	.fsync		= nfs_fsync_dir,
67 };
68 
69 const struct address_space_operations nfs_dir_aops = {
70 	.freepage = nfs_readdir_clear_array,
71 };
72 
73 #define NFS_INIT_DTSIZE PAGE_SIZE
74 
75 static struct nfs_open_dir_context *
76 alloc_nfs_open_dir_context(struct inode *dir)
77 {
78 	struct nfs_inode *nfsi = NFS_I(dir);
79 	struct nfs_open_dir_context *ctx;
80 
81 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL_ACCOUNT);
82 	if (ctx != NULL) {
83 		ctx->attr_gencount = nfsi->attr_gencount;
84 		ctx->dtsize = NFS_INIT_DTSIZE;
85 		spin_lock(&dir->i_lock);
86 		if (list_empty(&nfsi->open_files) &&
87 		    (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
88 			nfs_set_cache_invalid(dir,
89 					      NFS_INO_INVALID_DATA |
90 						      NFS_INO_REVAL_FORCED);
91 		list_add_tail_rcu(&ctx->list, &nfsi->open_files);
92 		memcpy(ctx->verf, nfsi->cookieverf, sizeof(ctx->verf));
93 		spin_unlock(&dir->i_lock);
94 		return ctx;
95 	}
96 	return  ERR_PTR(-ENOMEM);
97 }
98 
99 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
100 {
101 	spin_lock(&dir->i_lock);
102 	list_del_rcu(&ctx->list);
103 	spin_unlock(&dir->i_lock);
104 	kfree_rcu(ctx, rcu_head);
105 }
106 
107 /*
108  * Open file
109  */
110 static int
111 nfs_opendir(struct inode *inode, struct file *filp)
112 {
113 	int res = 0;
114 	struct nfs_open_dir_context *ctx;
115 
116 	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
117 
118 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
119 
120 	ctx = alloc_nfs_open_dir_context(inode);
121 	if (IS_ERR(ctx)) {
122 		res = PTR_ERR(ctx);
123 		goto out;
124 	}
125 	filp->private_data = ctx;
126 out:
127 	return res;
128 }
129 
130 static int
131 nfs_closedir(struct inode *inode, struct file *filp)
132 {
133 	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
134 	return 0;
135 }
136 
137 struct nfs_cache_array_entry {
138 	u64 cookie;
139 	u64 ino;
140 	const char *name;
141 	unsigned int name_len;
142 	unsigned char d_type;
143 };
144 
145 struct nfs_cache_array {
146 	u64 change_attr;
147 	u64 last_cookie;
148 	unsigned int size;
149 	unsigned char page_full : 1,
150 		      page_is_eof : 1,
151 		      cookies_are_ordered : 1;
152 	struct nfs_cache_array_entry array[];
153 };
154 
155 struct nfs_readdir_descriptor {
156 	struct file	*file;
157 	struct page	*page;
158 	struct dir_context *ctx;
159 	pgoff_t		page_index;
160 	pgoff_t		page_index_max;
161 	u64		dir_cookie;
162 	u64		last_cookie;
163 	loff_t		current_index;
164 
165 	__be32		verf[NFS_DIR_VERIFIER_SIZE];
166 	unsigned long	dir_verifier;
167 	unsigned long	timestamp;
168 	unsigned long	gencount;
169 	unsigned long	attr_gencount;
170 	unsigned int	cache_entry_index;
171 	unsigned int	buffer_fills;
172 	unsigned int	dtsize;
173 	bool clear_cache;
174 	bool plus;
175 	bool eob;
176 	bool eof;
177 };
178 
179 static void nfs_set_dtsize(struct nfs_readdir_descriptor *desc, unsigned int sz)
180 {
181 	struct nfs_server *server = NFS_SERVER(file_inode(desc->file));
182 	unsigned int maxsize = server->dtsize;
183 
184 	if (sz > maxsize)
185 		sz = maxsize;
186 	if (sz < NFS_MIN_FILE_IO_SIZE)
187 		sz = NFS_MIN_FILE_IO_SIZE;
188 	desc->dtsize = sz;
189 }
190 
191 static void nfs_shrink_dtsize(struct nfs_readdir_descriptor *desc)
192 {
193 	nfs_set_dtsize(desc, desc->dtsize >> 1);
194 }
195 
196 static void nfs_grow_dtsize(struct nfs_readdir_descriptor *desc)
197 {
198 	nfs_set_dtsize(desc, desc->dtsize << 1);
199 }
200 
201 static void nfs_readdir_page_init_array(struct page *page, u64 last_cookie,
202 					u64 change_attr)
203 {
204 	struct nfs_cache_array *array;
205 
206 	array = kmap_atomic(page);
207 	array->change_attr = change_attr;
208 	array->last_cookie = last_cookie;
209 	array->size = 0;
210 	array->page_full = 0;
211 	array->page_is_eof = 0;
212 	array->cookies_are_ordered = 1;
213 	kunmap_atomic(array);
214 }
215 
216 /*
217  * we are freeing strings created by nfs_add_to_readdir_array()
218  */
219 static void nfs_readdir_clear_array(struct page *page)
220 {
221 	struct nfs_cache_array *array;
222 	unsigned int i;
223 
224 	array = kmap_atomic(page);
225 	for (i = 0; i < array->size; i++)
226 		kfree(array->array[i].name);
227 	array->size = 0;
228 	kunmap_atomic(array);
229 }
230 
231 static void nfs_readdir_page_reinit_array(struct page *page, u64 last_cookie,
232 					  u64 change_attr)
233 {
234 	nfs_readdir_clear_array(page);
235 	nfs_readdir_page_init_array(page, last_cookie, change_attr);
236 }
237 
238 static struct page *
239 nfs_readdir_page_array_alloc(u64 last_cookie, gfp_t gfp_flags)
240 {
241 	struct page *page = alloc_page(gfp_flags);
242 	if (page)
243 		nfs_readdir_page_init_array(page, last_cookie, 0);
244 	return page;
245 }
246 
247 static void nfs_readdir_page_array_free(struct page *page)
248 {
249 	if (page) {
250 		nfs_readdir_clear_array(page);
251 		put_page(page);
252 	}
253 }
254 
255 static void nfs_readdir_array_set_eof(struct nfs_cache_array *array)
256 {
257 	array->page_is_eof = 1;
258 	array->page_full = 1;
259 }
260 
261 static bool nfs_readdir_array_is_full(struct nfs_cache_array *array)
262 {
263 	return array->page_full;
264 }
265 
266 /*
267  * the caller is responsible for freeing qstr.name
268  * when called by nfs_readdir_add_to_array, the strings will be freed in
269  * nfs_clear_readdir_array()
270  */
271 static const char *nfs_readdir_copy_name(const char *name, unsigned int len)
272 {
273 	const char *ret = kmemdup_nul(name, len, GFP_KERNEL);
274 
275 	/*
276 	 * Avoid a kmemleak false positive. The pointer to the name is stored
277 	 * in a page cache page which kmemleak does not scan.
278 	 */
279 	if (ret != NULL)
280 		kmemleak_not_leak(ret);
281 	return ret;
282 }
283 
284 static size_t nfs_readdir_array_maxentries(void)
285 {
286 	return (PAGE_SIZE - sizeof(struct nfs_cache_array)) /
287 	       sizeof(struct nfs_cache_array_entry);
288 }
289 
290 /*
291  * Check that the next array entry lies entirely within the page bounds
292  */
293 static int nfs_readdir_array_can_expand(struct nfs_cache_array *array)
294 {
295 	if (array->page_full)
296 		return -ENOSPC;
297 	if (array->size == nfs_readdir_array_maxentries()) {
298 		array->page_full = 1;
299 		return -ENOSPC;
300 	}
301 	return 0;
302 }
303 
304 static
305 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
306 {
307 	struct nfs_cache_array *array;
308 	struct nfs_cache_array_entry *cache_entry;
309 	const char *name;
310 	int ret;
311 
312 	name = nfs_readdir_copy_name(entry->name, entry->len);
313 	if (!name)
314 		return -ENOMEM;
315 
316 	array = kmap_atomic(page);
317 	ret = nfs_readdir_array_can_expand(array);
318 	if (ret) {
319 		kfree(name);
320 		goto out;
321 	}
322 
323 	cache_entry = &array->array[array->size];
324 	cache_entry->cookie = entry->prev_cookie;
325 	cache_entry->ino = entry->ino;
326 	cache_entry->d_type = entry->d_type;
327 	cache_entry->name_len = entry->len;
328 	cache_entry->name = name;
329 	array->last_cookie = entry->cookie;
330 	if (array->last_cookie <= cache_entry->cookie)
331 		array->cookies_are_ordered = 0;
332 	array->size++;
333 	if (entry->eof != 0)
334 		nfs_readdir_array_set_eof(array);
335 out:
336 	kunmap_atomic(array);
337 	return ret;
338 }
339 
340 #define NFS_READDIR_COOKIE_MASK (U32_MAX >> 14)
341 /*
342  * Hash algorithm allowing content addressible access to sequences
343  * of directory cookies. Content is addressed by the value of the
344  * cookie index of the first readdir entry in a page.
345  *
346  * The xxhash algorithm is chosen because it is fast, and is supposed
347  * to result in a decent flat distribution of hashes.
348  *
349  * We then select only the first 18 bits to avoid issues with excessive
350  * memory use for the page cache XArray. 18 bits should allow the caching
351  * of 262144 pages of sequences of readdir entries. Since each page holds
352  * 127 readdir entries for a typical 64-bit system, that works out to a
353  * cache of ~ 33 million entries per directory.
354  */
355 static pgoff_t nfs_readdir_page_cookie_hash(u64 cookie)
356 {
357 	if (cookie == 0)
358 		return 0;
359 	return xxhash(&cookie, sizeof(cookie), 0) & NFS_READDIR_COOKIE_MASK;
360 }
361 
362 static bool nfs_readdir_page_validate(struct page *page, u64 last_cookie,
363 				      u64 change_attr)
364 {
365 	struct nfs_cache_array *array = kmap_atomic(page);
366 	int ret = true;
367 
368 	if (array->change_attr != change_attr)
369 		ret = false;
370 	if (array->size > 0 && array->array[0].cookie != last_cookie)
371 		ret = false;
372 	kunmap_atomic(array);
373 	return ret;
374 }
375 
376 static void nfs_readdir_page_unlock_and_put(struct page *page)
377 {
378 	unlock_page(page);
379 	put_page(page);
380 }
381 
382 static struct page *nfs_readdir_page_get_locked(struct address_space *mapping,
383 						u64 last_cookie,
384 						u64 change_attr)
385 {
386 	pgoff_t index = nfs_readdir_page_cookie_hash(last_cookie);
387 	struct page *page;
388 
389 	page = grab_cache_page(mapping, index);
390 	if (!page)
391 		return NULL;
392 	if (PageUptodate(page)) {
393 		if (nfs_readdir_page_validate(page, last_cookie, change_attr))
394 			return page;
395 		nfs_readdir_clear_array(page);
396 	}
397 	nfs_readdir_page_init_array(page, last_cookie, change_attr);
398 	SetPageUptodate(page);
399 	return page;
400 }
401 
402 static u64 nfs_readdir_page_last_cookie(struct page *page)
403 {
404 	struct nfs_cache_array *array;
405 	u64 ret;
406 
407 	array = kmap_atomic(page);
408 	ret = array->last_cookie;
409 	kunmap_atomic(array);
410 	return ret;
411 }
412 
413 static bool nfs_readdir_page_needs_filling(struct page *page)
414 {
415 	struct nfs_cache_array *array;
416 	bool ret;
417 
418 	array = kmap_atomic(page);
419 	ret = !nfs_readdir_array_is_full(array);
420 	kunmap_atomic(array);
421 	return ret;
422 }
423 
424 static void nfs_readdir_page_set_eof(struct page *page)
425 {
426 	struct nfs_cache_array *array;
427 
428 	array = kmap_atomic(page);
429 	nfs_readdir_array_set_eof(array);
430 	kunmap_atomic(array);
431 }
432 
433 static struct page *nfs_readdir_page_get_next(struct address_space *mapping,
434 					      u64 cookie, u64 change_attr)
435 {
436 	struct page *page;
437 
438 	page = nfs_readdir_page_get_locked(mapping, cookie, change_attr);
439 	if (!page)
440 		return NULL;
441 	if (nfs_readdir_page_last_cookie(page) != cookie)
442 		nfs_readdir_page_reinit_array(page, cookie, change_attr);
443 	return page;
444 }
445 
446 static inline
447 int is_32bit_api(void)
448 {
449 #ifdef CONFIG_COMPAT
450 	return in_compat_syscall();
451 #else
452 	return (BITS_PER_LONG == 32);
453 #endif
454 }
455 
456 static
457 bool nfs_readdir_use_cookie(const struct file *filp)
458 {
459 	if ((filp->f_mode & FMODE_32BITHASH) ||
460 	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
461 		return false;
462 	return true;
463 }
464 
465 static void nfs_readdir_seek_next_array(struct nfs_cache_array *array,
466 					struct nfs_readdir_descriptor *desc)
467 {
468 	if (array->page_full) {
469 		desc->last_cookie = array->last_cookie;
470 		desc->current_index += array->size;
471 		desc->cache_entry_index = 0;
472 		desc->page_index++;
473 	} else
474 		desc->last_cookie = array->array[0].cookie;
475 }
476 
477 static void nfs_readdir_rewind_search(struct nfs_readdir_descriptor *desc)
478 {
479 	desc->current_index = 0;
480 	desc->last_cookie = 0;
481 	desc->page_index = 0;
482 }
483 
484 static int nfs_readdir_search_for_pos(struct nfs_cache_array *array,
485 				      struct nfs_readdir_descriptor *desc)
486 {
487 	loff_t diff = desc->ctx->pos - desc->current_index;
488 	unsigned int index;
489 
490 	if (diff < 0)
491 		goto out_eof;
492 	if (diff >= array->size) {
493 		if (array->page_is_eof)
494 			goto out_eof;
495 		nfs_readdir_seek_next_array(array, desc);
496 		return -EAGAIN;
497 	}
498 
499 	index = (unsigned int)diff;
500 	desc->dir_cookie = array->array[index].cookie;
501 	desc->cache_entry_index = index;
502 	return 0;
503 out_eof:
504 	desc->eof = true;
505 	return -EBADCOOKIE;
506 }
507 
508 static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array,
509 					      u64 cookie)
510 {
511 	if (!array->cookies_are_ordered)
512 		return true;
513 	/* Optimisation for monotonically increasing cookies */
514 	if (cookie >= array->last_cookie)
515 		return false;
516 	if (array->size && cookie < array->array[0].cookie)
517 		return false;
518 	return true;
519 }
520 
521 static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array,
522 					 struct nfs_readdir_descriptor *desc)
523 {
524 	unsigned int i;
525 	int status = -EAGAIN;
526 
527 	if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie))
528 		goto check_eof;
529 
530 	for (i = 0; i < array->size; i++) {
531 		if (array->array[i].cookie == desc->dir_cookie) {
532 			if (nfs_readdir_use_cookie(desc->file))
533 				desc->ctx->pos = desc->dir_cookie;
534 			else
535 				desc->ctx->pos = desc->current_index + i;
536 			desc->cache_entry_index = i;
537 			return 0;
538 		}
539 	}
540 check_eof:
541 	if (array->page_is_eof) {
542 		status = -EBADCOOKIE;
543 		if (desc->dir_cookie == array->last_cookie)
544 			desc->eof = true;
545 	} else
546 		nfs_readdir_seek_next_array(array, desc);
547 	return status;
548 }
549 
550 static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc)
551 {
552 	struct nfs_cache_array *array;
553 	int status;
554 
555 	array = kmap_atomic(desc->page);
556 
557 	if (desc->dir_cookie == 0)
558 		status = nfs_readdir_search_for_pos(array, desc);
559 	else
560 		status = nfs_readdir_search_for_cookie(array, desc);
561 
562 	kunmap_atomic(array);
563 	return status;
564 }
565 
566 /* Fill a page with xdr information before transferring to the cache page */
567 static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc,
568 				  __be32 *verf, u64 cookie,
569 				  struct page **pages, size_t bufsize,
570 				  __be32 *verf_res)
571 {
572 	struct inode *inode = file_inode(desc->file);
573 	struct nfs_readdir_arg arg = {
574 		.dentry = file_dentry(desc->file),
575 		.cred = desc->file->f_cred,
576 		.verf = verf,
577 		.cookie = cookie,
578 		.pages = pages,
579 		.page_len = bufsize,
580 		.plus = desc->plus,
581 	};
582 	struct nfs_readdir_res res = {
583 		.verf = verf_res,
584 	};
585 	unsigned long	timestamp, gencount;
586 	int		error;
587 
588  again:
589 	timestamp = jiffies;
590 	gencount = nfs_inc_attr_generation_counter();
591 	desc->dir_verifier = nfs_save_change_attribute(inode);
592 	error = NFS_PROTO(inode)->readdir(&arg, &res);
593 	if (error < 0) {
594 		/* We requested READDIRPLUS, but the server doesn't grok it */
595 		if (error == -ENOTSUPP && desc->plus) {
596 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
597 			desc->plus = arg.plus = false;
598 			goto again;
599 		}
600 		goto error;
601 	}
602 	desc->timestamp = timestamp;
603 	desc->gencount = gencount;
604 error:
605 	return error;
606 }
607 
608 static int xdr_decode(struct nfs_readdir_descriptor *desc,
609 		      struct nfs_entry *entry, struct xdr_stream *xdr)
610 {
611 	struct inode *inode = file_inode(desc->file);
612 	int error;
613 
614 	error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
615 	if (error)
616 		return error;
617 	entry->fattr->time_start = desc->timestamp;
618 	entry->fattr->gencount = desc->gencount;
619 	return 0;
620 }
621 
622 /* Match file and dirent using either filehandle or fileid
623  * Note: caller is responsible for checking the fsid
624  */
625 static
626 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
627 {
628 	struct inode *inode;
629 	struct nfs_inode *nfsi;
630 
631 	if (d_really_is_negative(dentry))
632 		return 0;
633 
634 	inode = d_inode(dentry);
635 	if (is_bad_inode(inode) || NFS_STALE(inode))
636 		return 0;
637 
638 	nfsi = NFS_I(inode);
639 	if (entry->fattr->fileid != nfsi->fileid)
640 		return 0;
641 	if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
642 		return 0;
643 	return 1;
644 }
645 
646 #define NFS_READDIR_CACHE_USAGE_THRESHOLD (8UL)
647 
648 static bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx,
649 				unsigned int cache_hits,
650 				unsigned int cache_misses)
651 {
652 	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
653 		return false;
654 	if (ctx->pos == 0 ||
655 	    cache_hits + cache_misses > NFS_READDIR_CACHE_USAGE_THRESHOLD)
656 		return true;
657 	return false;
658 }
659 
660 /*
661  * This function is called by the getattr code to request the
662  * use of readdirplus to accelerate any future lookups in the same
663  * directory.
664  */
665 void nfs_readdir_record_entry_cache_hit(struct inode *dir)
666 {
667 	struct nfs_inode *nfsi = NFS_I(dir);
668 	struct nfs_open_dir_context *ctx;
669 
670 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
671 	    S_ISDIR(dir->i_mode)) {
672 		rcu_read_lock();
673 		list_for_each_entry_rcu (ctx, &nfsi->open_files, list)
674 			atomic_inc(&ctx->cache_hits);
675 		rcu_read_unlock();
676 	}
677 }
678 
679 /*
680  * This function is mainly for use by nfs_getattr().
681  *
682  * If this is an 'ls -l', we want to force use of readdirplus.
683  */
684 void nfs_readdir_record_entry_cache_miss(struct inode *dir)
685 {
686 	struct nfs_inode *nfsi = NFS_I(dir);
687 	struct nfs_open_dir_context *ctx;
688 
689 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
690 	    S_ISDIR(dir->i_mode)) {
691 		rcu_read_lock();
692 		list_for_each_entry_rcu (ctx, &nfsi->open_files, list)
693 			atomic_inc(&ctx->cache_misses);
694 		rcu_read_unlock();
695 	}
696 }
697 
698 static void nfs_lookup_advise_force_readdirplus(struct inode *dir,
699 						unsigned int flags)
700 {
701 	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
702 		return;
703 	if (flags & (LOOKUP_EXCL | LOOKUP_PARENT | LOOKUP_REVAL))
704 		return;
705 	nfs_readdir_record_entry_cache_miss(dir);
706 }
707 
708 static
709 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
710 		unsigned long dir_verifier)
711 {
712 	struct qstr filename = QSTR_INIT(entry->name, entry->len);
713 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
714 	struct dentry *dentry;
715 	struct dentry *alias;
716 	struct inode *inode;
717 	int status;
718 
719 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
720 		return;
721 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
722 		return;
723 	if (filename.len == 0)
724 		return;
725 	/* Validate that the name doesn't contain any illegal '\0' */
726 	if (strnlen(filename.name, filename.len) != filename.len)
727 		return;
728 	/* ...or '/' */
729 	if (strnchr(filename.name, filename.len, '/'))
730 		return;
731 	if (filename.name[0] == '.') {
732 		if (filename.len == 1)
733 			return;
734 		if (filename.len == 2 && filename.name[1] == '.')
735 			return;
736 	}
737 	filename.hash = full_name_hash(parent, filename.name, filename.len);
738 
739 	dentry = d_lookup(parent, &filename);
740 again:
741 	if (!dentry) {
742 		dentry = d_alloc_parallel(parent, &filename, &wq);
743 		if (IS_ERR(dentry))
744 			return;
745 	}
746 	if (!d_in_lookup(dentry)) {
747 		/* Is there a mountpoint here? If so, just exit */
748 		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
749 					&entry->fattr->fsid))
750 			goto out;
751 		if (nfs_same_file(dentry, entry)) {
752 			if (!entry->fh->size)
753 				goto out;
754 			nfs_set_verifier(dentry, dir_verifier);
755 			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
756 			if (!status)
757 				nfs_setsecurity(d_inode(dentry), entry->fattr);
758 			trace_nfs_readdir_lookup_revalidate(d_inode(parent),
759 							    dentry, 0, status);
760 			goto out;
761 		} else {
762 			trace_nfs_readdir_lookup_revalidate_failed(
763 				d_inode(parent), dentry, 0);
764 			d_invalidate(dentry);
765 			dput(dentry);
766 			dentry = NULL;
767 			goto again;
768 		}
769 	}
770 	if (!entry->fh->size) {
771 		d_lookup_done(dentry);
772 		goto out;
773 	}
774 
775 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
776 	alias = d_splice_alias(inode, dentry);
777 	d_lookup_done(dentry);
778 	if (alias) {
779 		if (IS_ERR(alias))
780 			goto out;
781 		dput(dentry);
782 		dentry = alias;
783 	}
784 	nfs_set_verifier(dentry, dir_verifier);
785 	trace_nfs_readdir_lookup(d_inode(parent), dentry, 0);
786 out:
787 	dput(dentry);
788 }
789 
790 /* Perform conversion from xdr to cache array */
791 static int nfs_readdir_page_filler(struct nfs_readdir_descriptor *desc,
792 				   struct nfs_entry *entry,
793 				   struct page **xdr_pages, unsigned int buflen,
794 				   struct page **arrays, size_t narrays,
795 				   u64 change_attr)
796 {
797 	struct address_space *mapping = desc->file->f_mapping;
798 	struct xdr_stream stream;
799 	struct xdr_buf buf;
800 	struct page *scratch, *new, *page = *arrays;
801 	int status;
802 
803 	scratch = alloc_page(GFP_KERNEL);
804 	if (scratch == NULL)
805 		return -ENOMEM;
806 
807 	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
808 	xdr_set_scratch_page(&stream, scratch);
809 
810 	do {
811 		if (entry->fattr->label)
812 			entry->fattr->label->len = NFS4_MAXLABELLEN;
813 
814 		status = xdr_decode(desc, entry, &stream);
815 		if (status != 0)
816 			break;
817 
818 		if (desc->plus)
819 			nfs_prime_dcache(file_dentry(desc->file), entry,
820 					desc->dir_verifier);
821 
822 		status = nfs_readdir_add_to_array(entry, page);
823 		if (status != -ENOSPC)
824 			continue;
825 
826 		if (page->mapping != mapping) {
827 			if (!--narrays)
828 				break;
829 			new = nfs_readdir_page_array_alloc(entry->prev_cookie,
830 							   GFP_KERNEL);
831 			if (!new)
832 				break;
833 			arrays++;
834 			*arrays = page = new;
835 		} else {
836 			new = nfs_readdir_page_get_next(
837 				mapping, entry->prev_cookie, change_attr);
838 			if (!new)
839 				break;
840 			if (page != *arrays)
841 				nfs_readdir_page_unlock_and_put(page);
842 			page = new;
843 		}
844 		desc->page_index_max++;
845 		status = nfs_readdir_add_to_array(entry, page);
846 	} while (!status && !entry->eof);
847 
848 	switch (status) {
849 	case -EBADCOOKIE:
850 		if (entry->eof) {
851 			nfs_readdir_page_set_eof(page);
852 			status = 0;
853 		}
854 		break;
855 	case -ENOSPC:
856 	case -EAGAIN:
857 		status = 0;
858 		break;
859 	}
860 
861 	if (page != *arrays)
862 		nfs_readdir_page_unlock_and_put(page);
863 
864 	put_page(scratch);
865 	return status;
866 }
867 
868 static void nfs_readdir_free_pages(struct page **pages, size_t npages)
869 {
870 	while (npages--)
871 		put_page(pages[npages]);
872 	kfree(pages);
873 }
874 
875 /*
876  * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
877  * to nfs_readdir_free_pages()
878  */
879 static struct page **nfs_readdir_alloc_pages(size_t npages)
880 {
881 	struct page **pages;
882 	size_t i;
883 
884 	pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL);
885 	if (!pages)
886 		return NULL;
887 	for (i = 0; i < npages; i++) {
888 		struct page *page = alloc_page(GFP_KERNEL);
889 		if (page == NULL)
890 			goto out_freepages;
891 		pages[i] = page;
892 	}
893 	return pages;
894 
895 out_freepages:
896 	nfs_readdir_free_pages(pages, i);
897 	return NULL;
898 }
899 
900 static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc,
901 				    __be32 *verf_arg, __be32 *verf_res,
902 				    struct page **arrays, size_t narrays)
903 {
904 	u64 change_attr;
905 	struct page **pages;
906 	struct page *page = *arrays;
907 	struct nfs_entry *entry;
908 	size_t array_size;
909 	struct inode *inode = file_inode(desc->file);
910 	unsigned int dtsize = desc->dtsize;
911 	unsigned int pglen;
912 	int status = -ENOMEM;
913 
914 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
915 	if (!entry)
916 		return -ENOMEM;
917 	entry->cookie = nfs_readdir_page_last_cookie(page);
918 	entry->fh = nfs_alloc_fhandle();
919 	entry->fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
920 	entry->server = NFS_SERVER(inode);
921 	if (entry->fh == NULL || entry->fattr == NULL)
922 		goto out;
923 
924 	array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT;
925 	pages = nfs_readdir_alloc_pages(array_size);
926 	if (!pages)
927 		goto out;
928 
929 	change_attr = inode_peek_iversion_raw(inode);
930 	status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie, pages,
931 					dtsize, verf_res);
932 	if (status < 0)
933 		goto free_pages;
934 
935 	pglen = status;
936 	if (pglen != 0)
937 		status = nfs_readdir_page_filler(desc, entry, pages, pglen,
938 						 arrays, narrays, change_attr);
939 	else
940 		nfs_readdir_page_set_eof(page);
941 	desc->buffer_fills++;
942 
943 free_pages:
944 	nfs_readdir_free_pages(pages, array_size);
945 out:
946 	nfs_free_fattr(entry->fattr);
947 	nfs_free_fhandle(entry->fh);
948 	kfree(entry);
949 	return status;
950 }
951 
952 static void nfs_readdir_page_put(struct nfs_readdir_descriptor *desc)
953 {
954 	put_page(desc->page);
955 	desc->page = NULL;
956 }
957 
958 static void
959 nfs_readdir_page_unlock_and_put_cached(struct nfs_readdir_descriptor *desc)
960 {
961 	unlock_page(desc->page);
962 	nfs_readdir_page_put(desc);
963 }
964 
965 static struct page *
966 nfs_readdir_page_get_cached(struct nfs_readdir_descriptor *desc)
967 {
968 	struct address_space *mapping = desc->file->f_mapping;
969 	u64 change_attr = inode_peek_iversion_raw(mapping->host);
970 	u64 cookie = desc->last_cookie;
971 	struct page *page;
972 
973 	page = nfs_readdir_page_get_locked(mapping, cookie, change_attr);
974 	if (!page)
975 		return NULL;
976 	if (desc->clear_cache && !nfs_readdir_page_needs_filling(page))
977 		nfs_readdir_page_reinit_array(page, cookie, change_attr);
978 	return page;
979 }
980 
981 /*
982  * Returns 0 if desc->dir_cookie was found on page desc->page_index
983  * and locks the page to prevent removal from the page cache.
984  */
985 static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc)
986 {
987 	struct inode *inode = file_inode(desc->file);
988 	struct nfs_inode *nfsi = NFS_I(inode);
989 	__be32 verf[NFS_DIR_VERIFIER_SIZE];
990 	int res;
991 
992 	desc->page = nfs_readdir_page_get_cached(desc);
993 	if (!desc->page)
994 		return -ENOMEM;
995 	if (nfs_readdir_page_needs_filling(desc->page)) {
996 		/* Grow the dtsize if we had to go back for more pages */
997 		if (desc->page_index == desc->page_index_max)
998 			nfs_grow_dtsize(desc);
999 		desc->page_index_max = desc->page_index;
1000 		trace_nfs_readdir_cache_fill(desc->file, nfsi->cookieverf,
1001 					     desc->last_cookie,
1002 					     desc->page->index, desc->dtsize);
1003 		res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf,
1004 					       &desc->page, 1);
1005 		if (res < 0) {
1006 			nfs_readdir_page_unlock_and_put_cached(desc);
1007 			trace_nfs_readdir_cache_fill_done(inode, res);
1008 			if (res == -EBADCOOKIE || res == -ENOTSYNC) {
1009 				invalidate_inode_pages2(desc->file->f_mapping);
1010 				nfs_readdir_rewind_search(desc);
1011 				trace_nfs_readdir_invalidate_cache_range(
1012 					inode, 0, MAX_LFS_FILESIZE);
1013 				return -EAGAIN;
1014 			}
1015 			return res;
1016 		}
1017 		/*
1018 		 * Set the cookie verifier if the page cache was empty
1019 		 */
1020 		if (desc->last_cookie == 0 &&
1021 		    memcmp(nfsi->cookieverf, verf, sizeof(nfsi->cookieverf))) {
1022 			memcpy(nfsi->cookieverf, verf,
1023 			       sizeof(nfsi->cookieverf));
1024 			invalidate_inode_pages2_range(desc->file->f_mapping, 1,
1025 						      -1);
1026 			trace_nfs_readdir_invalidate_cache_range(
1027 				inode, 1, MAX_LFS_FILESIZE);
1028 		}
1029 		desc->clear_cache = false;
1030 	}
1031 	res = nfs_readdir_search_array(desc);
1032 	if (res == 0)
1033 		return 0;
1034 	nfs_readdir_page_unlock_and_put_cached(desc);
1035 	return res;
1036 }
1037 
1038 /* Search for desc->dir_cookie from the beginning of the page cache */
1039 static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc)
1040 {
1041 	int res;
1042 
1043 	do {
1044 		res = find_and_lock_cache_page(desc);
1045 	} while (res == -EAGAIN);
1046 	return res;
1047 }
1048 
1049 /*
1050  * Once we've found the start of the dirent within a page: fill 'er up...
1051  */
1052 static void nfs_do_filldir(struct nfs_readdir_descriptor *desc,
1053 			   const __be32 *verf)
1054 {
1055 	struct file	*file = desc->file;
1056 	struct nfs_cache_array *array;
1057 	unsigned int i;
1058 
1059 	array = kmap(desc->page);
1060 	for (i = desc->cache_entry_index; i < array->size; i++) {
1061 		struct nfs_cache_array_entry *ent;
1062 
1063 		ent = &array->array[i];
1064 		if (!dir_emit(desc->ctx, ent->name, ent->name_len,
1065 		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
1066 			desc->eob = true;
1067 			break;
1068 		}
1069 		memcpy(desc->verf, verf, sizeof(desc->verf));
1070 		if (i == array->size - 1) {
1071 			desc->dir_cookie = array->last_cookie;
1072 			nfs_readdir_seek_next_array(array, desc);
1073 		} else {
1074 			desc->dir_cookie = array->array[i + 1].cookie;
1075 			desc->last_cookie = array->array[0].cookie;
1076 		}
1077 		if (nfs_readdir_use_cookie(file))
1078 			desc->ctx->pos = desc->dir_cookie;
1079 		else
1080 			desc->ctx->pos++;
1081 	}
1082 	if (array->page_is_eof)
1083 		desc->eof = !desc->eob;
1084 
1085 	kunmap(desc->page);
1086 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n",
1087 			(unsigned long long)desc->dir_cookie);
1088 }
1089 
1090 /*
1091  * If we cannot find a cookie in our cache, we suspect that this is
1092  * because it points to a deleted file, so we ask the server to return
1093  * whatever it thinks is the next entry. We then feed this to filldir.
1094  * If all goes well, we should then be able to find our way round the
1095  * cache on the next call to readdir_search_pagecache();
1096  *
1097  * NOTE: we cannot add the anonymous page to the pagecache because
1098  *	 the data it contains might not be page aligned. Besides,
1099  *	 we should already have a complete representation of the
1100  *	 directory in the page cache by the time we get here.
1101  */
1102 static int uncached_readdir(struct nfs_readdir_descriptor *desc)
1103 {
1104 	struct page	**arrays;
1105 	size_t		i, sz = 512;
1106 	__be32		verf[NFS_DIR_VERIFIER_SIZE];
1107 	int		status = -ENOMEM;
1108 
1109 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n",
1110 			(unsigned long long)desc->dir_cookie);
1111 
1112 	arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL);
1113 	if (!arrays)
1114 		goto out;
1115 	arrays[0] = nfs_readdir_page_array_alloc(desc->dir_cookie, GFP_KERNEL);
1116 	if (!arrays[0])
1117 		goto out;
1118 
1119 	desc->page_index = 0;
1120 	desc->cache_entry_index = 0;
1121 	desc->last_cookie = desc->dir_cookie;
1122 	desc->page_index_max = 0;
1123 
1124 	trace_nfs_readdir_uncached(desc->file, desc->verf, desc->last_cookie,
1125 				   -1, desc->dtsize);
1126 
1127 	status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz);
1128 	if (status < 0) {
1129 		trace_nfs_readdir_uncached_done(file_inode(desc->file), status);
1130 		goto out_free;
1131 	}
1132 
1133 	for (i = 0; !desc->eob && i < sz && arrays[i]; i++) {
1134 		desc->page = arrays[i];
1135 		nfs_do_filldir(desc, verf);
1136 	}
1137 	desc->page = NULL;
1138 
1139 	/*
1140 	 * Grow the dtsize if we have to go back for more pages,
1141 	 * or shrink it if we're reading too many.
1142 	 */
1143 	if (!desc->eof) {
1144 		if (!desc->eob)
1145 			nfs_grow_dtsize(desc);
1146 		else if (desc->buffer_fills == 1 &&
1147 			 i < (desc->page_index_max >> 1))
1148 			nfs_shrink_dtsize(desc);
1149 	}
1150 out_free:
1151 	for (i = 0; i < sz && arrays[i]; i++)
1152 		nfs_readdir_page_array_free(arrays[i]);
1153 out:
1154 	if (!nfs_readdir_use_cookie(desc->file))
1155 		nfs_readdir_rewind_search(desc);
1156 	desc->page_index_max = -1;
1157 	kfree(arrays);
1158 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
1159 	return status;
1160 }
1161 
1162 #define NFS_READDIR_CACHE_MISS_THRESHOLD (16UL)
1163 
1164 static bool nfs_readdir_handle_cache_misses(struct inode *inode,
1165 					    struct nfs_readdir_descriptor *desc,
1166 					    unsigned int cache_misses,
1167 					    bool force_clear)
1168 {
1169 	if (desc->ctx->pos == 0 || !desc->plus)
1170 		return false;
1171 	if (cache_misses <= NFS_READDIR_CACHE_MISS_THRESHOLD && !force_clear)
1172 		return false;
1173 	trace_nfs_readdir_force_readdirplus(inode);
1174 	return true;
1175 }
1176 
1177 /* The file offset position represents the dirent entry number.  A
1178    last cookie cache takes care of the common case of reading the
1179    whole directory.
1180  */
1181 static int nfs_readdir(struct file *file, struct dir_context *ctx)
1182 {
1183 	struct dentry	*dentry = file_dentry(file);
1184 	struct inode	*inode = d_inode(dentry);
1185 	struct nfs_inode *nfsi = NFS_I(inode);
1186 	struct nfs_open_dir_context *dir_ctx = file->private_data;
1187 	struct nfs_readdir_descriptor *desc;
1188 	unsigned int cache_hits, cache_misses;
1189 	bool force_clear;
1190 	int res;
1191 
1192 	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
1193 			file, (long long)ctx->pos);
1194 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
1195 
1196 	/*
1197 	 * ctx->pos points to the dirent entry number.
1198 	 * *desc->dir_cookie has the cookie for the next entry. We have
1199 	 * to either find the entry with the appropriate number or
1200 	 * revalidate the cookie.
1201 	 */
1202 	nfs_revalidate_mapping(inode, file->f_mapping);
1203 
1204 	res = -ENOMEM;
1205 	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
1206 	if (!desc)
1207 		goto out;
1208 	desc->file = file;
1209 	desc->ctx = ctx;
1210 	desc->page_index_max = -1;
1211 
1212 	spin_lock(&file->f_lock);
1213 	desc->dir_cookie = dir_ctx->dir_cookie;
1214 	desc->page_index = dir_ctx->page_index;
1215 	desc->last_cookie = dir_ctx->last_cookie;
1216 	desc->attr_gencount = dir_ctx->attr_gencount;
1217 	desc->eof = dir_ctx->eof;
1218 	nfs_set_dtsize(desc, dir_ctx->dtsize);
1219 	memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf));
1220 	cache_hits = atomic_xchg(&dir_ctx->cache_hits, 0);
1221 	cache_misses = atomic_xchg(&dir_ctx->cache_misses, 0);
1222 	force_clear = dir_ctx->force_clear;
1223 	spin_unlock(&file->f_lock);
1224 
1225 	if (desc->eof) {
1226 		res = 0;
1227 		goto out_free;
1228 	}
1229 
1230 	desc->plus = nfs_use_readdirplus(inode, ctx, cache_hits, cache_misses);
1231 	force_clear = nfs_readdir_handle_cache_misses(inode, desc, cache_misses,
1232 						      force_clear);
1233 	desc->clear_cache = force_clear;
1234 
1235 	do {
1236 		res = readdir_search_pagecache(desc);
1237 
1238 		if (res == -EBADCOOKIE) {
1239 			res = 0;
1240 			/* This means either end of directory */
1241 			if (desc->dir_cookie && !desc->eof) {
1242 				/* Or that the server has 'lost' a cookie */
1243 				res = uncached_readdir(desc);
1244 				if (res == 0)
1245 					continue;
1246 				if (res == -EBADCOOKIE || res == -ENOTSYNC)
1247 					res = 0;
1248 			}
1249 			break;
1250 		}
1251 		if (res == -ETOOSMALL && desc->plus) {
1252 			nfs_zap_caches(inode);
1253 			desc->plus = false;
1254 			desc->eof = false;
1255 			continue;
1256 		}
1257 		if (res < 0)
1258 			break;
1259 
1260 		nfs_do_filldir(desc, nfsi->cookieverf);
1261 		nfs_readdir_page_unlock_and_put_cached(desc);
1262 		if (desc->page_index == desc->page_index_max)
1263 			desc->clear_cache = force_clear;
1264 	} while (!desc->eob && !desc->eof);
1265 
1266 	spin_lock(&file->f_lock);
1267 	dir_ctx->dir_cookie = desc->dir_cookie;
1268 	dir_ctx->last_cookie = desc->last_cookie;
1269 	dir_ctx->attr_gencount = desc->attr_gencount;
1270 	dir_ctx->page_index = desc->page_index;
1271 	dir_ctx->force_clear = force_clear;
1272 	dir_ctx->eof = desc->eof;
1273 	dir_ctx->dtsize = desc->dtsize;
1274 	memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf));
1275 	spin_unlock(&file->f_lock);
1276 out_free:
1277 	kfree(desc);
1278 
1279 out:
1280 	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
1281 	return res;
1282 }
1283 
1284 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
1285 {
1286 	struct nfs_open_dir_context *dir_ctx = filp->private_data;
1287 
1288 	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
1289 			filp, offset, whence);
1290 
1291 	switch (whence) {
1292 	default:
1293 		return -EINVAL;
1294 	case SEEK_SET:
1295 		if (offset < 0)
1296 			return -EINVAL;
1297 		spin_lock(&filp->f_lock);
1298 		break;
1299 	case SEEK_CUR:
1300 		if (offset == 0)
1301 			return filp->f_pos;
1302 		spin_lock(&filp->f_lock);
1303 		offset += filp->f_pos;
1304 		if (offset < 0) {
1305 			spin_unlock(&filp->f_lock);
1306 			return -EINVAL;
1307 		}
1308 	}
1309 	if (offset != filp->f_pos) {
1310 		filp->f_pos = offset;
1311 		dir_ctx->page_index = 0;
1312 		if (!nfs_readdir_use_cookie(filp)) {
1313 			dir_ctx->dir_cookie = 0;
1314 			dir_ctx->last_cookie = 0;
1315 		} else {
1316 			dir_ctx->dir_cookie = offset;
1317 			dir_ctx->last_cookie = offset;
1318 		}
1319 		dir_ctx->eof = false;
1320 	}
1321 	spin_unlock(&filp->f_lock);
1322 	return offset;
1323 }
1324 
1325 /*
1326  * All directory operations under NFS are synchronous, so fsync()
1327  * is a dummy operation.
1328  */
1329 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1330 			 int datasync)
1331 {
1332 	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1333 
1334 	nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC);
1335 	return 0;
1336 }
1337 
1338 /**
1339  * nfs_force_lookup_revalidate - Mark the directory as having changed
1340  * @dir: pointer to directory inode
1341  *
1342  * This forces the revalidation code in nfs_lookup_revalidate() to do a
1343  * full lookup on all child dentries of 'dir' whenever a change occurs
1344  * on the server that might have invalidated our dcache.
1345  *
1346  * Note that we reserve bit '0' as a tag to let us know when a dentry
1347  * was revalidated while holding a delegation on its inode.
1348  *
1349  * The caller should be holding dir->i_lock
1350  */
1351 void nfs_force_lookup_revalidate(struct inode *dir)
1352 {
1353 	NFS_I(dir)->cache_change_attribute += 2;
1354 }
1355 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1356 
1357 /**
1358  * nfs_verify_change_attribute - Detects NFS remote directory changes
1359  * @dir: pointer to parent directory inode
1360  * @verf: previously saved change attribute
1361  *
1362  * Return "false" if the verifiers doesn't match the change attribute.
1363  * This would usually indicate that the directory contents have changed on
1364  * the server, and that any dentries need revalidating.
1365  */
1366 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1367 {
1368 	return (verf & ~1UL) == nfs_save_change_attribute(dir);
1369 }
1370 
1371 static void nfs_set_verifier_delegated(unsigned long *verf)
1372 {
1373 	*verf |= 1UL;
1374 }
1375 
1376 #if IS_ENABLED(CONFIG_NFS_V4)
1377 static void nfs_unset_verifier_delegated(unsigned long *verf)
1378 {
1379 	*verf &= ~1UL;
1380 }
1381 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1382 
1383 static bool nfs_test_verifier_delegated(unsigned long verf)
1384 {
1385 	return verf & 1;
1386 }
1387 
1388 static bool nfs_verifier_is_delegated(struct dentry *dentry)
1389 {
1390 	return nfs_test_verifier_delegated(dentry->d_time);
1391 }
1392 
1393 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1394 {
1395 	struct inode *inode = d_inode(dentry);
1396 	struct inode *dir = d_inode(dentry->d_parent);
1397 
1398 	if (!nfs_verify_change_attribute(dir, verf))
1399 		return;
1400 	if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
1401 		nfs_set_verifier_delegated(&verf);
1402 	dentry->d_time = verf;
1403 }
1404 
1405 /**
1406  * nfs_set_verifier - save a parent directory verifier in the dentry
1407  * @dentry: pointer to dentry
1408  * @verf: verifier to save
1409  *
1410  * Saves the parent directory verifier in @dentry. If the inode has
1411  * a delegation, we also tag the dentry as having been revalidated
1412  * while holding a delegation so that we know we don't have to
1413  * look it up again after a directory change.
1414  */
1415 void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1416 {
1417 
1418 	spin_lock(&dentry->d_lock);
1419 	nfs_set_verifier_locked(dentry, verf);
1420 	spin_unlock(&dentry->d_lock);
1421 }
1422 EXPORT_SYMBOL_GPL(nfs_set_verifier);
1423 
1424 #if IS_ENABLED(CONFIG_NFS_V4)
1425 /**
1426  * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1427  * @inode: pointer to inode
1428  *
1429  * Iterates through the dentries in the inode alias list and clears
1430  * the tag used to indicate that the dentry has been revalidated
1431  * while holding a delegation.
1432  * This function is intended for use when the delegation is being
1433  * returned or revoked.
1434  */
1435 void nfs_clear_verifier_delegated(struct inode *inode)
1436 {
1437 	struct dentry *alias;
1438 
1439 	if (!inode)
1440 		return;
1441 	spin_lock(&inode->i_lock);
1442 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1443 		spin_lock(&alias->d_lock);
1444 		nfs_unset_verifier_delegated(&alias->d_time);
1445 		spin_unlock(&alias->d_lock);
1446 	}
1447 	spin_unlock(&inode->i_lock);
1448 }
1449 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1450 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1451 
1452 static int nfs_dentry_verify_change(struct inode *dir, struct dentry *dentry)
1453 {
1454 	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE) &&
1455 	    d_really_is_negative(dentry))
1456 		return dentry->d_time == inode_peek_iversion_raw(dir);
1457 	return nfs_verify_change_attribute(dir, dentry->d_time);
1458 }
1459 
1460 /*
1461  * A check for whether or not the parent directory has changed.
1462  * In the case it has, we assume that the dentries are untrustworthy
1463  * and may need to be looked up again.
1464  * If rcu_walk prevents us from performing a full check, return 0.
1465  */
1466 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1467 			      int rcu_walk)
1468 {
1469 	if (IS_ROOT(dentry))
1470 		return 1;
1471 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1472 		return 0;
1473 	if (!nfs_dentry_verify_change(dir, dentry))
1474 		return 0;
1475 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1476 	if (nfs_mapping_need_revalidate_inode(dir)) {
1477 		if (rcu_walk)
1478 			return 0;
1479 		if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1480 			return 0;
1481 	}
1482 	if (!nfs_dentry_verify_change(dir, dentry))
1483 		return 0;
1484 	return 1;
1485 }
1486 
1487 /*
1488  * Use intent information to check whether or not we're going to do
1489  * an O_EXCL create using this path component.
1490  */
1491 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1492 {
1493 	if (NFS_PROTO(dir)->version == 2)
1494 		return 0;
1495 	return flags & LOOKUP_EXCL;
1496 }
1497 
1498 /*
1499  * Inode and filehandle revalidation for lookups.
1500  *
1501  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1502  * or if the intent information indicates that we're about to open this
1503  * particular file and the "nocto" mount flag is not set.
1504  *
1505  */
1506 static
1507 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1508 {
1509 	struct nfs_server *server = NFS_SERVER(inode);
1510 	int ret;
1511 
1512 	if (IS_AUTOMOUNT(inode))
1513 		return 0;
1514 
1515 	if (flags & LOOKUP_OPEN) {
1516 		switch (inode->i_mode & S_IFMT) {
1517 		case S_IFREG:
1518 			/* A NFSv4 OPEN will revalidate later */
1519 			if (server->caps & NFS_CAP_ATOMIC_OPEN)
1520 				goto out;
1521 			fallthrough;
1522 		case S_IFDIR:
1523 			if (server->flags & NFS_MOUNT_NOCTO)
1524 				break;
1525 			/* NFS close-to-open cache consistency validation */
1526 			goto out_force;
1527 		}
1528 	}
1529 
1530 	/* VFS wants an on-the-wire revalidation */
1531 	if (flags & LOOKUP_REVAL)
1532 		goto out_force;
1533 out:
1534 	if (inode->i_nlink > 0 ||
1535 	    (inode->i_nlink == 0 &&
1536 	     test_bit(NFS_INO_PRESERVE_UNLINKED, &NFS_I(inode)->flags)))
1537 		return 0;
1538 	else
1539 		return -ESTALE;
1540 out_force:
1541 	if (flags & LOOKUP_RCU)
1542 		return -ECHILD;
1543 	ret = __nfs_revalidate_inode(server, inode);
1544 	if (ret != 0)
1545 		return ret;
1546 	goto out;
1547 }
1548 
1549 static void nfs_mark_dir_for_revalidate(struct inode *inode)
1550 {
1551 	spin_lock(&inode->i_lock);
1552 	nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE);
1553 	spin_unlock(&inode->i_lock);
1554 }
1555 
1556 /*
1557  * We judge how long we want to trust negative
1558  * dentries by looking at the parent inode mtime.
1559  *
1560  * If parent mtime has changed, we revalidate, else we wait for a
1561  * period corresponding to the parent's attribute cache timeout value.
1562  *
1563  * If LOOKUP_RCU prevents us from performing a full check, return 1
1564  * suggesting a reval is needed.
1565  *
1566  * Note that when creating a new file, or looking up a rename target,
1567  * then it shouldn't be necessary to revalidate a negative dentry.
1568  */
1569 static inline
1570 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1571 		       unsigned int flags)
1572 {
1573 	if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1574 		return 0;
1575 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1576 		return 1;
1577 	/* Case insensitive server? Revalidate negative dentries */
1578 	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1579 		return 1;
1580 	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1581 }
1582 
1583 static int
1584 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1585 			   struct inode *inode, int error)
1586 {
1587 	switch (error) {
1588 	case 1:
1589 		break;
1590 	case 0:
1591 		/*
1592 		 * We can't d_drop the root of a disconnected tree:
1593 		 * its d_hash is on the s_anon list and d_drop() would hide
1594 		 * it from shrink_dcache_for_unmount(), leading to busy
1595 		 * inodes on unmount and further oopses.
1596 		 */
1597 		if (inode && IS_ROOT(dentry))
1598 			error = 1;
1599 		break;
1600 	}
1601 	trace_nfs_lookup_revalidate_exit(dir, dentry, 0, error);
1602 	return error;
1603 }
1604 
1605 static int
1606 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1607 			       unsigned int flags)
1608 {
1609 	int ret = 1;
1610 	if (nfs_neg_need_reval(dir, dentry, flags)) {
1611 		if (flags & LOOKUP_RCU)
1612 			return -ECHILD;
1613 		ret = 0;
1614 	}
1615 	return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1616 }
1617 
1618 static int
1619 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1620 				struct inode *inode)
1621 {
1622 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1623 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1624 }
1625 
1626 static int nfs_lookup_revalidate_dentry(struct inode *dir,
1627 					struct dentry *dentry,
1628 					struct inode *inode, unsigned int flags)
1629 {
1630 	struct nfs_fh *fhandle;
1631 	struct nfs_fattr *fattr;
1632 	unsigned long dir_verifier;
1633 	int ret;
1634 
1635 	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1636 
1637 	ret = -ENOMEM;
1638 	fhandle = nfs_alloc_fhandle();
1639 	fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
1640 	if (fhandle == NULL || fattr == NULL)
1641 		goto out;
1642 
1643 	dir_verifier = nfs_save_change_attribute(dir);
1644 	ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1645 	if (ret < 0) {
1646 		switch (ret) {
1647 		case -ESTALE:
1648 		case -ENOENT:
1649 			ret = 0;
1650 			break;
1651 		case -ETIMEDOUT:
1652 			if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1653 				ret = 1;
1654 		}
1655 		goto out;
1656 	}
1657 
1658 	/* Request help from readdirplus */
1659 	nfs_lookup_advise_force_readdirplus(dir, flags);
1660 
1661 	ret = 0;
1662 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1663 		goto out;
1664 	if (nfs_refresh_inode(inode, fattr) < 0)
1665 		goto out;
1666 
1667 	nfs_setsecurity(inode, fattr);
1668 	nfs_set_verifier(dentry, dir_verifier);
1669 
1670 	ret = 1;
1671 out:
1672 	nfs_free_fattr(fattr);
1673 	nfs_free_fhandle(fhandle);
1674 
1675 	/*
1676 	 * If the lookup failed despite the dentry change attribute being
1677 	 * a match, then we should revalidate the directory cache.
1678 	 */
1679 	if (!ret && nfs_dentry_verify_change(dir, dentry))
1680 		nfs_mark_dir_for_revalidate(dir);
1681 	return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1682 }
1683 
1684 /*
1685  * This is called every time the dcache has a lookup hit,
1686  * and we should check whether we can really trust that
1687  * lookup.
1688  *
1689  * NOTE! The hit can be a negative hit too, don't assume
1690  * we have an inode!
1691  *
1692  * If the parent directory is seen to have changed, we throw out the
1693  * cached dentry and do a new lookup.
1694  */
1695 static int
1696 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1697 			 unsigned int flags)
1698 {
1699 	struct inode *inode;
1700 	int error;
1701 
1702 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1703 	inode = d_inode(dentry);
1704 
1705 	if (!inode)
1706 		return nfs_lookup_revalidate_negative(dir, dentry, flags);
1707 
1708 	if (is_bad_inode(inode)) {
1709 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1710 				__func__, dentry);
1711 		goto out_bad;
1712 	}
1713 
1714 	if (nfs_verifier_is_delegated(dentry))
1715 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1716 
1717 	/* Force a full look up iff the parent directory has changed */
1718 	if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1719 	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1720 		error = nfs_lookup_verify_inode(inode, flags);
1721 		if (error) {
1722 			if (error == -ESTALE)
1723 				nfs_mark_dir_for_revalidate(dir);
1724 			goto out_bad;
1725 		}
1726 		goto out_valid;
1727 	}
1728 
1729 	if (flags & LOOKUP_RCU)
1730 		return -ECHILD;
1731 
1732 	if (NFS_STALE(inode))
1733 		goto out_bad;
1734 
1735 	return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags);
1736 out_valid:
1737 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1738 out_bad:
1739 	if (flags & LOOKUP_RCU)
1740 		return -ECHILD;
1741 	return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1742 }
1743 
1744 static int
1745 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1746 			int (*reval)(struct inode *, struct dentry *, unsigned int))
1747 {
1748 	struct dentry *parent;
1749 	struct inode *dir;
1750 	int ret;
1751 
1752 	if (flags & LOOKUP_RCU) {
1753 		parent = READ_ONCE(dentry->d_parent);
1754 		dir = d_inode_rcu(parent);
1755 		if (!dir)
1756 			return -ECHILD;
1757 		ret = reval(dir, dentry, flags);
1758 		if (parent != READ_ONCE(dentry->d_parent))
1759 			return -ECHILD;
1760 	} else {
1761 		parent = dget_parent(dentry);
1762 		ret = reval(d_inode(parent), dentry, flags);
1763 		dput(parent);
1764 	}
1765 	return ret;
1766 }
1767 
1768 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1769 {
1770 	return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1771 }
1772 
1773 /*
1774  * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1775  * when we don't really care about the dentry name. This is called when a
1776  * pathwalk ends on a dentry that was not found via a normal lookup in the
1777  * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1778  *
1779  * In this situation, we just want to verify that the inode itself is OK
1780  * since the dentry might have changed on the server.
1781  */
1782 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1783 {
1784 	struct inode *inode = d_inode(dentry);
1785 	int error = 0;
1786 
1787 	/*
1788 	 * I believe we can only get a negative dentry here in the case of a
1789 	 * procfs-style symlink. Just assume it's correct for now, but we may
1790 	 * eventually need to do something more here.
1791 	 */
1792 	if (!inode) {
1793 		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1794 				__func__, dentry);
1795 		return 1;
1796 	}
1797 
1798 	if (is_bad_inode(inode)) {
1799 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1800 				__func__, dentry);
1801 		return 0;
1802 	}
1803 
1804 	error = nfs_lookup_verify_inode(inode, flags);
1805 	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1806 			__func__, inode->i_ino, error ? "invalid" : "valid");
1807 	return !error;
1808 }
1809 
1810 /*
1811  * This is called from dput() when d_count is going to 0.
1812  */
1813 static int nfs_dentry_delete(const struct dentry *dentry)
1814 {
1815 	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1816 		dentry, dentry->d_flags);
1817 
1818 	/* Unhash any dentry with a stale inode */
1819 	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1820 		return 1;
1821 
1822 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1823 		/* Unhash it, so that ->d_iput() would be called */
1824 		return 1;
1825 	}
1826 	if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1827 		/* Unhash it, so that ancestors of killed async unlink
1828 		 * files will be cleaned up during umount */
1829 		return 1;
1830 	}
1831 	return 0;
1832 
1833 }
1834 
1835 /* Ensure that we revalidate inode->i_nlink */
1836 static void nfs_drop_nlink(struct inode *inode)
1837 {
1838 	spin_lock(&inode->i_lock);
1839 	/* drop the inode if we're reasonably sure this is the last link */
1840 	if (inode->i_nlink > 0)
1841 		drop_nlink(inode);
1842 	NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1843 	nfs_set_cache_invalid(
1844 		inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME |
1845 			       NFS_INO_INVALID_NLINK);
1846 	spin_unlock(&inode->i_lock);
1847 }
1848 
1849 /*
1850  * Called when the dentry loses inode.
1851  * We use it to clean up silly-renamed files.
1852  */
1853 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1854 {
1855 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1856 		nfs_complete_unlink(dentry, inode);
1857 		nfs_drop_nlink(inode);
1858 	}
1859 	iput(inode);
1860 }
1861 
1862 static void nfs_d_release(struct dentry *dentry)
1863 {
1864 	/* free cached devname value, if it survived that far */
1865 	if (unlikely(dentry->d_fsdata)) {
1866 		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1867 			WARN_ON(1);
1868 		else
1869 			kfree(dentry->d_fsdata);
1870 	}
1871 }
1872 
1873 const struct dentry_operations nfs_dentry_operations = {
1874 	.d_revalidate	= nfs_lookup_revalidate,
1875 	.d_weak_revalidate	= nfs_weak_revalidate,
1876 	.d_delete	= nfs_dentry_delete,
1877 	.d_iput		= nfs_dentry_iput,
1878 	.d_automount	= nfs_d_automount,
1879 	.d_release	= nfs_d_release,
1880 };
1881 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1882 
1883 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1884 {
1885 	struct dentry *res;
1886 	struct inode *inode = NULL;
1887 	struct nfs_fh *fhandle = NULL;
1888 	struct nfs_fattr *fattr = NULL;
1889 	unsigned long dir_verifier;
1890 	int error;
1891 
1892 	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1893 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1894 
1895 	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1896 		return ERR_PTR(-ENAMETOOLONG);
1897 
1898 	/*
1899 	 * If we're doing an exclusive create, optimize away the lookup
1900 	 * but don't hash the dentry.
1901 	 */
1902 	if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1903 		return NULL;
1904 
1905 	res = ERR_PTR(-ENOMEM);
1906 	fhandle = nfs_alloc_fhandle();
1907 	fattr = nfs_alloc_fattr_with_label(NFS_SERVER(dir));
1908 	if (fhandle == NULL || fattr == NULL)
1909 		goto out;
1910 
1911 	dir_verifier = nfs_save_change_attribute(dir);
1912 	trace_nfs_lookup_enter(dir, dentry, flags);
1913 	error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1914 	if (error == -ENOENT) {
1915 		if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1916 			dir_verifier = inode_peek_iversion_raw(dir);
1917 		goto no_entry;
1918 	}
1919 	if (error < 0) {
1920 		res = ERR_PTR(error);
1921 		goto out;
1922 	}
1923 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1924 	res = ERR_CAST(inode);
1925 	if (IS_ERR(res))
1926 		goto out;
1927 
1928 	/* Notify readdir to use READDIRPLUS */
1929 	nfs_lookup_advise_force_readdirplus(dir, flags);
1930 
1931 no_entry:
1932 	res = d_splice_alias(inode, dentry);
1933 	if (res != NULL) {
1934 		if (IS_ERR(res))
1935 			goto out;
1936 		dentry = res;
1937 	}
1938 	nfs_set_verifier(dentry, dir_verifier);
1939 out:
1940 	trace_nfs_lookup_exit(dir, dentry, flags, PTR_ERR_OR_ZERO(res));
1941 	nfs_free_fattr(fattr);
1942 	nfs_free_fhandle(fhandle);
1943 	return res;
1944 }
1945 EXPORT_SYMBOL_GPL(nfs_lookup);
1946 
1947 void nfs_d_prune_case_insensitive_aliases(struct inode *inode)
1948 {
1949 	/* Case insensitive server? Revalidate dentries */
1950 	if (inode && nfs_server_capable(inode, NFS_CAP_CASE_INSENSITIVE))
1951 		d_prune_aliases(inode);
1952 }
1953 EXPORT_SYMBOL_GPL(nfs_d_prune_case_insensitive_aliases);
1954 
1955 #if IS_ENABLED(CONFIG_NFS_V4)
1956 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1957 
1958 const struct dentry_operations nfs4_dentry_operations = {
1959 	.d_revalidate	= nfs4_lookup_revalidate,
1960 	.d_weak_revalidate	= nfs_weak_revalidate,
1961 	.d_delete	= nfs_dentry_delete,
1962 	.d_iput		= nfs_dentry_iput,
1963 	.d_automount	= nfs_d_automount,
1964 	.d_release	= nfs_d_release,
1965 };
1966 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1967 
1968 static fmode_t flags_to_mode(int flags)
1969 {
1970 	fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1971 	if ((flags & O_ACCMODE) != O_WRONLY)
1972 		res |= FMODE_READ;
1973 	if ((flags & O_ACCMODE) != O_RDONLY)
1974 		res |= FMODE_WRITE;
1975 	return res;
1976 }
1977 
1978 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1979 {
1980 	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1981 }
1982 
1983 static int do_open(struct inode *inode, struct file *filp)
1984 {
1985 	nfs_fscache_open_file(inode, filp);
1986 	return 0;
1987 }
1988 
1989 static int nfs_finish_open(struct nfs_open_context *ctx,
1990 			   struct dentry *dentry,
1991 			   struct file *file, unsigned open_flags)
1992 {
1993 	int err;
1994 
1995 	err = finish_open(file, dentry, do_open);
1996 	if (err)
1997 		goto out;
1998 	if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1999 		nfs_file_set_open_context(file, ctx);
2000 	else
2001 		err = -EOPENSTALE;
2002 out:
2003 	return err;
2004 }
2005 
2006 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
2007 		    struct file *file, unsigned open_flags,
2008 		    umode_t mode)
2009 {
2010 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2011 	struct nfs_open_context *ctx;
2012 	struct dentry *res;
2013 	struct iattr attr = { .ia_valid = ATTR_OPEN };
2014 	struct inode *inode;
2015 	unsigned int lookup_flags = 0;
2016 	unsigned long dir_verifier;
2017 	bool switched = false;
2018 	int created = 0;
2019 	int err;
2020 
2021 	/* Expect a negative dentry */
2022 	BUG_ON(d_inode(dentry));
2023 
2024 	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
2025 			dir->i_sb->s_id, dir->i_ino, dentry);
2026 
2027 	err = nfs_check_flags(open_flags);
2028 	if (err)
2029 		return err;
2030 
2031 	/* NFS only supports OPEN on regular files */
2032 	if ((open_flags & O_DIRECTORY)) {
2033 		if (!d_in_lookup(dentry)) {
2034 			/*
2035 			 * Hashed negative dentry with O_DIRECTORY: dentry was
2036 			 * revalidated and is fine, no need to perform lookup
2037 			 * again
2038 			 */
2039 			return -ENOENT;
2040 		}
2041 		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
2042 		goto no_open;
2043 	}
2044 
2045 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
2046 		return -ENAMETOOLONG;
2047 
2048 	if (open_flags & O_CREAT) {
2049 		struct nfs_server *server = NFS_SERVER(dir);
2050 
2051 		if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
2052 			mode &= ~current_umask();
2053 
2054 		attr.ia_valid |= ATTR_MODE;
2055 		attr.ia_mode = mode;
2056 	}
2057 	if (open_flags & O_TRUNC) {
2058 		attr.ia_valid |= ATTR_SIZE;
2059 		attr.ia_size = 0;
2060 	}
2061 
2062 	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
2063 		d_drop(dentry);
2064 		switched = true;
2065 		dentry = d_alloc_parallel(dentry->d_parent,
2066 					  &dentry->d_name, &wq);
2067 		if (IS_ERR(dentry))
2068 			return PTR_ERR(dentry);
2069 		if (unlikely(!d_in_lookup(dentry)))
2070 			return finish_no_open(file, dentry);
2071 	}
2072 
2073 	ctx = create_nfs_open_context(dentry, open_flags, file);
2074 	err = PTR_ERR(ctx);
2075 	if (IS_ERR(ctx))
2076 		goto out;
2077 
2078 	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
2079 	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
2080 	if (created)
2081 		file->f_mode |= FMODE_CREATED;
2082 	if (IS_ERR(inode)) {
2083 		err = PTR_ERR(inode);
2084 		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2085 		put_nfs_open_context(ctx);
2086 		d_drop(dentry);
2087 		switch (err) {
2088 		case -ENOENT:
2089 			d_splice_alias(NULL, dentry);
2090 			if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
2091 				dir_verifier = inode_peek_iversion_raw(dir);
2092 			else
2093 				dir_verifier = nfs_save_change_attribute(dir);
2094 			nfs_set_verifier(dentry, dir_verifier);
2095 			break;
2096 		case -EISDIR:
2097 		case -ENOTDIR:
2098 			goto no_open;
2099 		case -ELOOP:
2100 			if (!(open_flags & O_NOFOLLOW))
2101 				goto no_open;
2102 			break;
2103 			/* case -EINVAL: */
2104 		default:
2105 			break;
2106 		}
2107 		goto out;
2108 	}
2109 
2110 	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
2111 	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2112 	put_nfs_open_context(ctx);
2113 out:
2114 	if (unlikely(switched)) {
2115 		d_lookup_done(dentry);
2116 		dput(dentry);
2117 	}
2118 	return err;
2119 
2120 no_open:
2121 	res = nfs_lookup(dir, dentry, lookup_flags);
2122 	if (!res) {
2123 		inode = d_inode(dentry);
2124 		if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2125 		    !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)))
2126 			res = ERR_PTR(-ENOTDIR);
2127 		else if (inode && S_ISREG(inode->i_mode))
2128 			res = ERR_PTR(-EOPENSTALE);
2129 	} else if (!IS_ERR(res)) {
2130 		inode = d_inode(res);
2131 		if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2132 		    !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) {
2133 			dput(res);
2134 			res = ERR_PTR(-ENOTDIR);
2135 		} else if (inode && S_ISREG(inode->i_mode)) {
2136 			dput(res);
2137 			res = ERR_PTR(-EOPENSTALE);
2138 		}
2139 	}
2140 	if (switched) {
2141 		d_lookup_done(dentry);
2142 		if (!res)
2143 			res = dentry;
2144 		else
2145 			dput(dentry);
2146 	}
2147 	if (IS_ERR(res))
2148 		return PTR_ERR(res);
2149 	return finish_no_open(file, res);
2150 }
2151 EXPORT_SYMBOL_GPL(nfs_atomic_open);
2152 
2153 static int
2154 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
2155 			  unsigned int flags)
2156 {
2157 	struct inode *inode;
2158 
2159 	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
2160 		goto full_reval;
2161 	if (d_mountpoint(dentry))
2162 		goto full_reval;
2163 
2164 	inode = d_inode(dentry);
2165 
2166 	/* We can't create new files in nfs_open_revalidate(), so we
2167 	 * optimize away revalidation of negative dentries.
2168 	 */
2169 	if (inode == NULL)
2170 		goto full_reval;
2171 
2172 	if (nfs_verifier_is_delegated(dentry))
2173 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
2174 
2175 	/* NFS only supports OPEN on regular files */
2176 	if (!S_ISREG(inode->i_mode))
2177 		goto full_reval;
2178 
2179 	/* We cannot do exclusive creation on a positive dentry */
2180 	if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
2181 		goto reval_dentry;
2182 
2183 	/* Check if the directory changed */
2184 	if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
2185 		goto reval_dentry;
2186 
2187 	/* Let f_op->open() actually open (and revalidate) the file */
2188 	return 1;
2189 reval_dentry:
2190 	if (flags & LOOKUP_RCU)
2191 		return -ECHILD;
2192 	return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags);
2193 
2194 full_reval:
2195 	return nfs_do_lookup_revalidate(dir, dentry, flags);
2196 }
2197 
2198 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
2199 {
2200 	return __nfs_lookup_revalidate(dentry, flags,
2201 			nfs4_do_lookup_revalidate);
2202 }
2203 
2204 #endif /* CONFIG_NFSV4 */
2205 
2206 struct dentry *
2207 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
2208 				struct nfs_fattr *fattr)
2209 {
2210 	struct dentry *parent = dget_parent(dentry);
2211 	struct inode *dir = d_inode(parent);
2212 	struct inode *inode;
2213 	struct dentry *d;
2214 	int error;
2215 
2216 	d_drop(dentry);
2217 
2218 	if (fhandle->size == 0) {
2219 		error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
2220 		if (error)
2221 			goto out_error;
2222 	}
2223 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2224 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
2225 		struct nfs_server *server = NFS_SB(dentry->d_sb);
2226 		error = server->nfs_client->rpc_ops->getattr(server, fhandle,
2227 				fattr, NULL);
2228 		if (error < 0)
2229 			goto out_error;
2230 	}
2231 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
2232 	d = d_splice_alias(inode, dentry);
2233 out:
2234 	dput(parent);
2235 	return d;
2236 out_error:
2237 	d = ERR_PTR(error);
2238 	goto out;
2239 }
2240 EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
2241 
2242 /*
2243  * Code common to create, mkdir, and mknod.
2244  */
2245 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
2246 				struct nfs_fattr *fattr)
2247 {
2248 	struct dentry *d;
2249 
2250 	d = nfs_add_or_obtain(dentry, fhandle, fattr);
2251 	if (IS_ERR(d))
2252 		return PTR_ERR(d);
2253 
2254 	/* Callers don't care */
2255 	dput(d);
2256 	return 0;
2257 }
2258 EXPORT_SYMBOL_GPL(nfs_instantiate);
2259 
2260 /*
2261  * Following a failed create operation, we drop the dentry rather
2262  * than retain a negative dentry. This avoids a problem in the event
2263  * that the operation succeeded on the server, but an error in the
2264  * reply path made it appear to have failed.
2265  */
2266 int nfs_create(struct user_namespace *mnt_userns, struct inode *dir,
2267 	       struct dentry *dentry, umode_t mode, bool excl)
2268 {
2269 	struct iattr attr;
2270 	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
2271 	int error;
2272 
2273 	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
2274 			dir->i_sb->s_id, dir->i_ino, dentry);
2275 
2276 	attr.ia_mode = mode;
2277 	attr.ia_valid = ATTR_MODE;
2278 
2279 	trace_nfs_create_enter(dir, dentry, open_flags);
2280 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
2281 	trace_nfs_create_exit(dir, dentry, open_flags, error);
2282 	if (error != 0)
2283 		goto out_err;
2284 	return 0;
2285 out_err:
2286 	d_drop(dentry);
2287 	return error;
2288 }
2289 EXPORT_SYMBOL_GPL(nfs_create);
2290 
2291 /*
2292  * See comments for nfs_proc_create regarding failed operations.
2293  */
2294 int
2295 nfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2296 	  struct dentry *dentry, umode_t mode, dev_t rdev)
2297 {
2298 	struct iattr attr;
2299 	int status;
2300 
2301 	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
2302 			dir->i_sb->s_id, dir->i_ino, dentry);
2303 
2304 	attr.ia_mode = mode;
2305 	attr.ia_valid = ATTR_MODE;
2306 
2307 	trace_nfs_mknod_enter(dir, dentry);
2308 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
2309 	trace_nfs_mknod_exit(dir, dentry, status);
2310 	if (status != 0)
2311 		goto out_err;
2312 	return 0;
2313 out_err:
2314 	d_drop(dentry);
2315 	return status;
2316 }
2317 EXPORT_SYMBOL_GPL(nfs_mknod);
2318 
2319 /*
2320  * See comments for nfs_proc_create regarding failed operations.
2321  */
2322 int nfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2323 	      struct dentry *dentry, umode_t mode)
2324 {
2325 	struct iattr attr;
2326 	int error;
2327 
2328 	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
2329 			dir->i_sb->s_id, dir->i_ino, dentry);
2330 
2331 	attr.ia_valid = ATTR_MODE;
2332 	attr.ia_mode = mode | S_IFDIR;
2333 
2334 	trace_nfs_mkdir_enter(dir, dentry);
2335 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
2336 	trace_nfs_mkdir_exit(dir, dentry, error);
2337 	if (error != 0)
2338 		goto out_err;
2339 	return 0;
2340 out_err:
2341 	d_drop(dentry);
2342 	return error;
2343 }
2344 EXPORT_SYMBOL_GPL(nfs_mkdir);
2345 
2346 static void nfs_dentry_handle_enoent(struct dentry *dentry)
2347 {
2348 	if (simple_positive(dentry))
2349 		d_delete(dentry);
2350 }
2351 
2352 static void nfs_dentry_remove_handle_error(struct inode *dir,
2353 					   struct dentry *dentry, int error)
2354 {
2355 	switch (error) {
2356 	case -ENOENT:
2357 		d_delete(dentry);
2358 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2359 		break;
2360 	case 0:
2361 		nfs_d_prune_case_insensitive_aliases(d_inode(dentry));
2362 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2363 	}
2364 }
2365 
2366 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
2367 {
2368 	int error;
2369 
2370 	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
2371 			dir->i_sb->s_id, dir->i_ino, dentry);
2372 
2373 	trace_nfs_rmdir_enter(dir, dentry);
2374 	if (d_really_is_positive(dentry)) {
2375 		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2376 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2377 		/* Ensure the VFS deletes this inode */
2378 		switch (error) {
2379 		case 0:
2380 			clear_nlink(d_inode(dentry));
2381 			break;
2382 		case -ENOENT:
2383 			nfs_dentry_handle_enoent(dentry);
2384 		}
2385 		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2386 	} else
2387 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2388 	nfs_dentry_remove_handle_error(dir, dentry, error);
2389 	trace_nfs_rmdir_exit(dir, dentry, error);
2390 
2391 	return error;
2392 }
2393 EXPORT_SYMBOL_GPL(nfs_rmdir);
2394 
2395 /*
2396  * Remove a file after making sure there are no pending writes,
2397  * and after checking that the file has only one user.
2398  *
2399  * We invalidate the attribute cache and free the inode prior to the operation
2400  * to avoid possible races if the server reuses the inode.
2401  */
2402 static int nfs_safe_remove(struct dentry *dentry)
2403 {
2404 	struct inode *dir = d_inode(dentry->d_parent);
2405 	struct inode *inode = d_inode(dentry);
2406 	int error = -EBUSY;
2407 
2408 	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2409 
2410 	/* If the dentry was sillyrenamed, we simply call d_delete() */
2411 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2412 		error = 0;
2413 		goto out;
2414 	}
2415 
2416 	trace_nfs_remove_enter(dir, dentry);
2417 	if (inode != NULL) {
2418 		error = NFS_PROTO(dir)->remove(dir, dentry);
2419 		if (error == 0)
2420 			nfs_drop_nlink(inode);
2421 	} else
2422 		error = NFS_PROTO(dir)->remove(dir, dentry);
2423 	if (error == -ENOENT)
2424 		nfs_dentry_handle_enoent(dentry);
2425 	trace_nfs_remove_exit(dir, dentry, error);
2426 out:
2427 	return error;
2428 }
2429 
2430 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
2431  *  belongs to an active ".nfs..." file and we return -EBUSY.
2432  *
2433  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
2434  */
2435 int nfs_unlink(struct inode *dir, struct dentry *dentry)
2436 {
2437 	int error;
2438 	int need_rehash = 0;
2439 
2440 	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2441 		dir->i_ino, dentry);
2442 
2443 	trace_nfs_unlink_enter(dir, dentry);
2444 	spin_lock(&dentry->d_lock);
2445 	if (d_count(dentry) > 1 && !test_bit(NFS_INO_PRESERVE_UNLINKED,
2446 					     &NFS_I(d_inode(dentry))->flags)) {
2447 		spin_unlock(&dentry->d_lock);
2448 		/* Start asynchronous writeout of the inode */
2449 		write_inode_now(d_inode(dentry), 0);
2450 		error = nfs_sillyrename(dir, dentry);
2451 		goto out;
2452 	}
2453 	if (!d_unhashed(dentry)) {
2454 		__d_drop(dentry);
2455 		need_rehash = 1;
2456 	}
2457 	spin_unlock(&dentry->d_lock);
2458 	error = nfs_safe_remove(dentry);
2459 	nfs_dentry_remove_handle_error(dir, dentry, error);
2460 	if (need_rehash)
2461 		d_rehash(dentry);
2462 out:
2463 	trace_nfs_unlink_exit(dir, dentry, error);
2464 	return error;
2465 }
2466 EXPORT_SYMBOL_GPL(nfs_unlink);
2467 
2468 /*
2469  * To create a symbolic link, most file systems instantiate a new inode,
2470  * add a page to it containing the path, then write it out to the disk
2471  * using prepare_write/commit_write.
2472  *
2473  * Unfortunately the NFS client can't create the in-core inode first
2474  * because it needs a file handle to create an in-core inode (see
2475  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
2476  * symlink request has completed on the server.
2477  *
2478  * So instead we allocate a raw page, copy the symname into it, then do
2479  * the SYMLINK request with the page as the buffer.  If it succeeds, we
2480  * now have a new file handle and can instantiate an in-core NFS inode
2481  * and move the raw page into its mapping.
2482  */
2483 int nfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
2484 		struct dentry *dentry, const char *symname)
2485 {
2486 	struct page *page;
2487 	char *kaddr;
2488 	struct iattr attr;
2489 	unsigned int pathlen = strlen(symname);
2490 	int error;
2491 
2492 	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2493 		dir->i_ino, dentry, symname);
2494 
2495 	if (pathlen > PAGE_SIZE)
2496 		return -ENAMETOOLONG;
2497 
2498 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
2499 	attr.ia_valid = ATTR_MODE;
2500 
2501 	page = alloc_page(GFP_USER);
2502 	if (!page)
2503 		return -ENOMEM;
2504 
2505 	kaddr = page_address(page);
2506 	memcpy(kaddr, symname, pathlen);
2507 	if (pathlen < PAGE_SIZE)
2508 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2509 
2510 	trace_nfs_symlink_enter(dir, dentry);
2511 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
2512 	trace_nfs_symlink_exit(dir, dentry, error);
2513 	if (error != 0) {
2514 		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2515 			dir->i_sb->s_id, dir->i_ino,
2516 			dentry, symname, error);
2517 		d_drop(dentry);
2518 		__free_page(page);
2519 		return error;
2520 	}
2521 
2522 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2523 
2524 	/*
2525 	 * No big deal if we can't add this page to the page cache here.
2526 	 * READLINK will get the missing page from the server if needed.
2527 	 */
2528 	if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2529 							GFP_KERNEL)) {
2530 		SetPageUptodate(page);
2531 		unlock_page(page);
2532 		/*
2533 		 * add_to_page_cache_lru() grabs an extra page refcount.
2534 		 * Drop it here to avoid leaking this page later.
2535 		 */
2536 		put_page(page);
2537 	} else
2538 		__free_page(page);
2539 
2540 	return 0;
2541 }
2542 EXPORT_SYMBOL_GPL(nfs_symlink);
2543 
2544 int
2545 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2546 {
2547 	struct inode *inode = d_inode(old_dentry);
2548 	int error;
2549 
2550 	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2551 		old_dentry, dentry);
2552 
2553 	trace_nfs_link_enter(inode, dir, dentry);
2554 	d_drop(dentry);
2555 	if (S_ISREG(inode->i_mode))
2556 		nfs_sync_inode(inode);
2557 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2558 	if (error == 0) {
2559 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2560 		ihold(inode);
2561 		d_add(dentry, inode);
2562 	}
2563 	trace_nfs_link_exit(inode, dir, dentry, error);
2564 	return error;
2565 }
2566 EXPORT_SYMBOL_GPL(nfs_link);
2567 
2568 /*
2569  * RENAME
2570  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2571  * different file handle for the same inode after a rename (e.g. when
2572  * moving to a different directory). A fail-safe method to do so would
2573  * be to look up old_dir/old_name, create a link to new_dir/new_name and
2574  * rename the old file using the sillyrename stuff. This way, the original
2575  * file in old_dir will go away when the last process iput()s the inode.
2576  *
2577  * FIXED.
2578  *
2579  * It actually works quite well. One needs to have the possibility for
2580  * at least one ".nfs..." file in each directory the file ever gets
2581  * moved or linked to which happens automagically with the new
2582  * implementation that only depends on the dcache stuff instead of
2583  * using the inode layer
2584  *
2585  * Unfortunately, things are a little more complicated than indicated
2586  * above. For a cross-directory move, we want to make sure we can get
2587  * rid of the old inode after the operation.  This means there must be
2588  * no pending writes (if it's a file), and the use count must be 1.
2589  * If these conditions are met, we can drop the dentries before doing
2590  * the rename.
2591  */
2592 int nfs_rename(struct user_namespace *mnt_userns, struct inode *old_dir,
2593 	       struct dentry *old_dentry, struct inode *new_dir,
2594 	       struct dentry *new_dentry, unsigned int flags)
2595 {
2596 	struct inode *old_inode = d_inode(old_dentry);
2597 	struct inode *new_inode = d_inode(new_dentry);
2598 	struct dentry *dentry = NULL, *rehash = NULL;
2599 	struct rpc_task *task;
2600 	int error = -EBUSY;
2601 
2602 	if (flags)
2603 		return -EINVAL;
2604 
2605 	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2606 		 old_dentry, new_dentry,
2607 		 d_count(new_dentry));
2608 
2609 	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2610 	/*
2611 	 * For non-directories, check whether the target is busy and if so,
2612 	 * make a copy of the dentry and then do a silly-rename. If the
2613 	 * silly-rename succeeds, the copied dentry is hashed and becomes
2614 	 * the new target.
2615 	 */
2616 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2617 		/*
2618 		 * To prevent any new references to the target during the
2619 		 * rename, we unhash the dentry in advance.
2620 		 */
2621 		if (!d_unhashed(new_dentry)) {
2622 			d_drop(new_dentry);
2623 			rehash = new_dentry;
2624 		}
2625 
2626 		if (d_count(new_dentry) > 2) {
2627 			int err;
2628 
2629 			/* copy the target dentry's name */
2630 			dentry = d_alloc(new_dentry->d_parent,
2631 					 &new_dentry->d_name);
2632 			if (!dentry)
2633 				goto out;
2634 
2635 			/* silly-rename the existing target ... */
2636 			err = nfs_sillyrename(new_dir, new_dentry);
2637 			if (err)
2638 				goto out;
2639 
2640 			new_dentry = dentry;
2641 			rehash = NULL;
2642 			new_inode = NULL;
2643 		}
2644 	}
2645 
2646 	if (S_ISREG(old_inode->i_mode))
2647 		nfs_sync_inode(old_inode);
2648 	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2649 	if (IS_ERR(task)) {
2650 		error = PTR_ERR(task);
2651 		goto out;
2652 	}
2653 
2654 	error = rpc_wait_for_completion_task(task);
2655 	if (error != 0) {
2656 		((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2657 		/* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2658 		smp_wmb();
2659 	} else
2660 		error = task->tk_status;
2661 	rpc_put_task(task);
2662 	/* Ensure the inode attributes are revalidated */
2663 	if (error == 0) {
2664 		spin_lock(&old_inode->i_lock);
2665 		NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2666 		nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE |
2667 							 NFS_INO_INVALID_CTIME |
2668 							 NFS_INO_REVAL_FORCED);
2669 		spin_unlock(&old_inode->i_lock);
2670 	}
2671 out:
2672 	if (rehash)
2673 		d_rehash(rehash);
2674 	trace_nfs_rename_exit(old_dir, old_dentry,
2675 			new_dir, new_dentry, error);
2676 	if (!error) {
2677 		if (new_inode != NULL)
2678 			nfs_drop_nlink(new_inode);
2679 		/*
2680 		 * The d_move() should be here instead of in an async RPC completion
2681 		 * handler because we need the proper locks to move the dentry.  If
2682 		 * we're interrupted by a signal, the async RPC completion handler
2683 		 * should mark the directories for revalidation.
2684 		 */
2685 		d_move(old_dentry, new_dentry);
2686 		nfs_set_verifier(old_dentry,
2687 					nfs_save_change_attribute(new_dir));
2688 	} else if (error == -ENOENT)
2689 		nfs_dentry_handle_enoent(old_dentry);
2690 
2691 	/* new dentry created? */
2692 	if (dentry)
2693 		dput(dentry);
2694 	return error;
2695 }
2696 EXPORT_SYMBOL_GPL(nfs_rename);
2697 
2698 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2699 static LIST_HEAD(nfs_access_lru_list);
2700 static atomic_long_t nfs_access_nr_entries;
2701 
2702 static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2703 module_param(nfs_access_max_cachesize, ulong, 0644);
2704 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2705 
2706 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2707 {
2708 	put_group_info(entry->group_info);
2709 	kfree_rcu(entry, rcu_head);
2710 	smp_mb__before_atomic();
2711 	atomic_long_dec(&nfs_access_nr_entries);
2712 	smp_mb__after_atomic();
2713 }
2714 
2715 static void nfs_access_free_list(struct list_head *head)
2716 {
2717 	struct nfs_access_entry *cache;
2718 
2719 	while (!list_empty(head)) {
2720 		cache = list_entry(head->next, struct nfs_access_entry, lru);
2721 		list_del(&cache->lru);
2722 		nfs_access_free_entry(cache);
2723 	}
2724 }
2725 
2726 static unsigned long
2727 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2728 {
2729 	LIST_HEAD(head);
2730 	struct nfs_inode *nfsi, *next;
2731 	struct nfs_access_entry *cache;
2732 	long freed = 0;
2733 
2734 	spin_lock(&nfs_access_lru_lock);
2735 	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2736 		struct inode *inode;
2737 
2738 		if (nr_to_scan-- == 0)
2739 			break;
2740 		inode = &nfsi->vfs_inode;
2741 		spin_lock(&inode->i_lock);
2742 		if (list_empty(&nfsi->access_cache_entry_lru))
2743 			goto remove_lru_entry;
2744 		cache = list_entry(nfsi->access_cache_entry_lru.next,
2745 				struct nfs_access_entry, lru);
2746 		list_move(&cache->lru, &head);
2747 		rb_erase(&cache->rb_node, &nfsi->access_cache);
2748 		freed++;
2749 		if (!list_empty(&nfsi->access_cache_entry_lru))
2750 			list_move_tail(&nfsi->access_cache_inode_lru,
2751 					&nfs_access_lru_list);
2752 		else {
2753 remove_lru_entry:
2754 			list_del_init(&nfsi->access_cache_inode_lru);
2755 			smp_mb__before_atomic();
2756 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2757 			smp_mb__after_atomic();
2758 		}
2759 		spin_unlock(&inode->i_lock);
2760 	}
2761 	spin_unlock(&nfs_access_lru_lock);
2762 	nfs_access_free_list(&head);
2763 	return freed;
2764 }
2765 
2766 unsigned long
2767 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2768 {
2769 	int nr_to_scan = sc->nr_to_scan;
2770 	gfp_t gfp_mask = sc->gfp_mask;
2771 
2772 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2773 		return SHRINK_STOP;
2774 	return nfs_do_access_cache_scan(nr_to_scan);
2775 }
2776 
2777 
2778 unsigned long
2779 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2780 {
2781 	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2782 }
2783 
2784 static void
2785 nfs_access_cache_enforce_limit(void)
2786 {
2787 	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2788 	unsigned long diff;
2789 	unsigned int nr_to_scan;
2790 
2791 	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2792 		return;
2793 	nr_to_scan = 100;
2794 	diff = nr_entries - nfs_access_max_cachesize;
2795 	if (diff < nr_to_scan)
2796 		nr_to_scan = diff;
2797 	nfs_do_access_cache_scan(nr_to_scan);
2798 }
2799 
2800 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2801 {
2802 	struct rb_root *root_node = &nfsi->access_cache;
2803 	struct rb_node *n;
2804 	struct nfs_access_entry *entry;
2805 
2806 	/* Unhook entries from the cache */
2807 	while ((n = rb_first(root_node)) != NULL) {
2808 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2809 		rb_erase(n, root_node);
2810 		list_move(&entry->lru, head);
2811 	}
2812 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2813 }
2814 
2815 void nfs_access_zap_cache(struct inode *inode)
2816 {
2817 	LIST_HEAD(head);
2818 
2819 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2820 		return;
2821 	/* Remove from global LRU init */
2822 	spin_lock(&nfs_access_lru_lock);
2823 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2824 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2825 
2826 	spin_lock(&inode->i_lock);
2827 	__nfs_access_zap_cache(NFS_I(inode), &head);
2828 	spin_unlock(&inode->i_lock);
2829 	spin_unlock(&nfs_access_lru_lock);
2830 	nfs_access_free_list(&head);
2831 }
2832 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2833 
2834 static int access_cmp(const struct cred *a, const struct nfs_access_entry *b)
2835 {
2836 	struct group_info *ga, *gb;
2837 	int g;
2838 
2839 	if (uid_lt(a->fsuid, b->fsuid))
2840 		return -1;
2841 	if (uid_gt(a->fsuid, b->fsuid))
2842 		return 1;
2843 
2844 	if (gid_lt(a->fsgid, b->fsgid))
2845 		return -1;
2846 	if (gid_gt(a->fsgid, b->fsgid))
2847 		return 1;
2848 
2849 	ga = a->group_info;
2850 	gb = b->group_info;
2851 	if (ga == gb)
2852 		return 0;
2853 	if (ga == NULL)
2854 		return -1;
2855 	if (gb == NULL)
2856 		return 1;
2857 	if (ga->ngroups < gb->ngroups)
2858 		return -1;
2859 	if (ga->ngroups > gb->ngroups)
2860 		return 1;
2861 
2862 	for (g = 0; g < ga->ngroups; g++) {
2863 		if (gid_lt(ga->gid[g], gb->gid[g]))
2864 			return -1;
2865 		if (gid_gt(ga->gid[g], gb->gid[g]))
2866 			return 1;
2867 	}
2868 	return 0;
2869 }
2870 
2871 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2872 {
2873 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2874 
2875 	while (n != NULL) {
2876 		struct nfs_access_entry *entry =
2877 			rb_entry(n, struct nfs_access_entry, rb_node);
2878 		int cmp = access_cmp(cred, entry);
2879 
2880 		if (cmp < 0)
2881 			n = n->rb_left;
2882 		else if (cmp > 0)
2883 			n = n->rb_right;
2884 		else
2885 			return entry;
2886 	}
2887 	return NULL;
2888 }
2889 
2890 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, u32 *mask, bool may_block)
2891 {
2892 	struct nfs_inode *nfsi = NFS_I(inode);
2893 	struct nfs_access_entry *cache;
2894 	bool retry = true;
2895 	int err;
2896 
2897 	spin_lock(&inode->i_lock);
2898 	for(;;) {
2899 		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2900 			goto out_zap;
2901 		cache = nfs_access_search_rbtree(inode, cred);
2902 		err = -ENOENT;
2903 		if (cache == NULL)
2904 			goto out;
2905 		/* Found an entry, is our attribute cache valid? */
2906 		if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2907 			break;
2908 		if (!retry)
2909 			break;
2910 		err = -ECHILD;
2911 		if (!may_block)
2912 			goto out;
2913 		spin_unlock(&inode->i_lock);
2914 		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2915 		if (err)
2916 			return err;
2917 		spin_lock(&inode->i_lock);
2918 		retry = false;
2919 	}
2920 	*mask = cache->mask;
2921 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2922 	err = 0;
2923 out:
2924 	spin_unlock(&inode->i_lock);
2925 	return err;
2926 out_zap:
2927 	spin_unlock(&inode->i_lock);
2928 	nfs_access_zap_cache(inode);
2929 	return -ENOENT;
2930 }
2931 
2932 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, u32 *mask)
2933 {
2934 	/* Only check the most recently returned cache entry,
2935 	 * but do it without locking.
2936 	 */
2937 	struct nfs_inode *nfsi = NFS_I(inode);
2938 	struct nfs_access_entry *cache;
2939 	int err = -ECHILD;
2940 	struct list_head *lh;
2941 
2942 	rcu_read_lock();
2943 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2944 		goto out;
2945 	lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
2946 	cache = list_entry(lh, struct nfs_access_entry, lru);
2947 	if (lh == &nfsi->access_cache_entry_lru ||
2948 	    access_cmp(cred, cache) != 0)
2949 		cache = NULL;
2950 	if (cache == NULL)
2951 		goto out;
2952 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2953 		goto out;
2954 	*mask = cache->mask;
2955 	err = 0;
2956 out:
2957 	rcu_read_unlock();
2958 	return err;
2959 }
2960 
2961 int nfs_access_get_cached(struct inode *inode, const struct cred *cred,
2962 			  u32 *mask, bool may_block)
2963 {
2964 	int status;
2965 
2966 	status = nfs_access_get_cached_rcu(inode, cred, mask);
2967 	if (status != 0)
2968 		status = nfs_access_get_cached_locked(inode, cred, mask,
2969 		    may_block);
2970 
2971 	return status;
2972 }
2973 EXPORT_SYMBOL_GPL(nfs_access_get_cached);
2974 
2975 static void nfs_access_add_rbtree(struct inode *inode,
2976 				  struct nfs_access_entry *set,
2977 				  const struct cred *cred)
2978 {
2979 	struct nfs_inode *nfsi = NFS_I(inode);
2980 	struct rb_root *root_node = &nfsi->access_cache;
2981 	struct rb_node **p = &root_node->rb_node;
2982 	struct rb_node *parent = NULL;
2983 	struct nfs_access_entry *entry;
2984 	int cmp;
2985 
2986 	spin_lock(&inode->i_lock);
2987 	while (*p != NULL) {
2988 		parent = *p;
2989 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2990 		cmp = access_cmp(cred, entry);
2991 
2992 		if (cmp < 0)
2993 			p = &parent->rb_left;
2994 		else if (cmp > 0)
2995 			p = &parent->rb_right;
2996 		else
2997 			goto found;
2998 	}
2999 	rb_link_node(&set->rb_node, parent, p);
3000 	rb_insert_color(&set->rb_node, root_node);
3001 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
3002 	spin_unlock(&inode->i_lock);
3003 	return;
3004 found:
3005 	rb_replace_node(parent, &set->rb_node, root_node);
3006 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
3007 	list_del(&entry->lru);
3008 	spin_unlock(&inode->i_lock);
3009 	nfs_access_free_entry(entry);
3010 }
3011 
3012 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set,
3013 			  const struct cred *cred)
3014 {
3015 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
3016 	if (cache == NULL)
3017 		return;
3018 	RB_CLEAR_NODE(&cache->rb_node);
3019 	cache->fsuid = cred->fsuid;
3020 	cache->fsgid = cred->fsgid;
3021 	cache->group_info = get_group_info(cred->group_info);
3022 	cache->mask = set->mask;
3023 
3024 	/* The above field assignments must be visible
3025 	 * before this item appears on the lru.  We cannot easily
3026 	 * use rcu_assign_pointer, so just force the memory barrier.
3027 	 */
3028 	smp_wmb();
3029 	nfs_access_add_rbtree(inode, cache, cred);
3030 
3031 	/* Update accounting */
3032 	smp_mb__before_atomic();
3033 	atomic_long_inc(&nfs_access_nr_entries);
3034 	smp_mb__after_atomic();
3035 
3036 	/* Add inode to global LRU list */
3037 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
3038 		spin_lock(&nfs_access_lru_lock);
3039 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
3040 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
3041 					&nfs_access_lru_list);
3042 		spin_unlock(&nfs_access_lru_lock);
3043 	}
3044 	nfs_access_cache_enforce_limit();
3045 }
3046 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
3047 
3048 #define NFS_MAY_READ (NFS_ACCESS_READ)
3049 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
3050 		NFS_ACCESS_EXTEND | \
3051 		NFS_ACCESS_DELETE)
3052 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
3053 		NFS_ACCESS_EXTEND)
3054 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
3055 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
3056 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
3057 static int
3058 nfs_access_calc_mask(u32 access_result, umode_t umode)
3059 {
3060 	int mask = 0;
3061 
3062 	if (access_result & NFS_MAY_READ)
3063 		mask |= MAY_READ;
3064 	if (S_ISDIR(umode)) {
3065 		if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
3066 			mask |= MAY_WRITE;
3067 		if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
3068 			mask |= MAY_EXEC;
3069 	} else if (S_ISREG(umode)) {
3070 		if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
3071 			mask |= MAY_WRITE;
3072 		if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
3073 			mask |= MAY_EXEC;
3074 	} else if (access_result & NFS_MAY_WRITE)
3075 			mask |= MAY_WRITE;
3076 	return mask;
3077 }
3078 
3079 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
3080 {
3081 	entry->mask = access_result;
3082 }
3083 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
3084 
3085 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
3086 {
3087 	struct nfs_access_entry cache;
3088 	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
3089 	int cache_mask = -1;
3090 	int status;
3091 
3092 	trace_nfs_access_enter(inode);
3093 
3094 	status = nfs_access_get_cached(inode, cred, &cache.mask, may_block);
3095 	if (status == 0)
3096 		goto out_cached;
3097 
3098 	status = -ECHILD;
3099 	if (!may_block)
3100 		goto out;
3101 
3102 	/*
3103 	 * Determine which access bits we want to ask for...
3104 	 */
3105 	cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND |
3106 		     nfs_access_xattr_mask(NFS_SERVER(inode));
3107 	if (S_ISDIR(inode->i_mode))
3108 		cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
3109 	else
3110 		cache.mask |= NFS_ACCESS_EXECUTE;
3111 	status = NFS_PROTO(inode)->access(inode, &cache, cred);
3112 	if (status != 0) {
3113 		if (status == -ESTALE) {
3114 			if (!S_ISDIR(inode->i_mode))
3115 				nfs_set_inode_stale(inode);
3116 			else
3117 				nfs_zap_caches(inode);
3118 		}
3119 		goto out;
3120 	}
3121 	nfs_access_add_cache(inode, &cache, cred);
3122 out_cached:
3123 	cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
3124 	if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
3125 		status = -EACCES;
3126 out:
3127 	trace_nfs_access_exit(inode, mask, cache_mask, status);
3128 	return status;
3129 }
3130 
3131 static int nfs_open_permission_mask(int openflags)
3132 {
3133 	int mask = 0;
3134 
3135 	if (openflags & __FMODE_EXEC) {
3136 		/* ONLY check exec rights */
3137 		mask = MAY_EXEC;
3138 	} else {
3139 		if ((openflags & O_ACCMODE) != O_WRONLY)
3140 			mask |= MAY_READ;
3141 		if ((openflags & O_ACCMODE) != O_RDONLY)
3142 			mask |= MAY_WRITE;
3143 	}
3144 
3145 	return mask;
3146 }
3147 
3148 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
3149 {
3150 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
3151 }
3152 EXPORT_SYMBOL_GPL(nfs_may_open);
3153 
3154 static int nfs_execute_ok(struct inode *inode, int mask)
3155 {
3156 	struct nfs_server *server = NFS_SERVER(inode);
3157 	int ret = 0;
3158 
3159 	if (S_ISDIR(inode->i_mode))
3160 		return 0;
3161 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) {
3162 		if (mask & MAY_NOT_BLOCK)
3163 			return -ECHILD;
3164 		ret = __nfs_revalidate_inode(server, inode);
3165 	}
3166 	if (ret == 0 && !execute_ok(inode))
3167 		ret = -EACCES;
3168 	return ret;
3169 }
3170 
3171 int nfs_permission(struct user_namespace *mnt_userns,
3172 		   struct inode *inode,
3173 		   int mask)
3174 {
3175 	const struct cred *cred = current_cred();
3176 	int res = 0;
3177 
3178 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
3179 
3180 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
3181 		goto out;
3182 	/* Is this sys_access() ? */
3183 	if (mask & (MAY_ACCESS | MAY_CHDIR))
3184 		goto force_lookup;
3185 
3186 	switch (inode->i_mode & S_IFMT) {
3187 		case S_IFLNK:
3188 			goto out;
3189 		case S_IFREG:
3190 			if ((mask & MAY_OPEN) &&
3191 			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
3192 				return 0;
3193 			break;
3194 		case S_IFDIR:
3195 			/*
3196 			 * Optimize away all write operations, since the server
3197 			 * will check permissions when we perform the op.
3198 			 */
3199 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
3200 				goto out;
3201 	}
3202 
3203 force_lookup:
3204 	if (!NFS_PROTO(inode)->access)
3205 		goto out_notsup;
3206 
3207 	res = nfs_do_access(inode, cred, mask);
3208 out:
3209 	if (!res && (mask & MAY_EXEC))
3210 		res = nfs_execute_ok(inode, mask);
3211 
3212 	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
3213 		inode->i_sb->s_id, inode->i_ino, mask, res);
3214 	return res;
3215 out_notsup:
3216 	if (mask & MAY_NOT_BLOCK)
3217 		return -ECHILD;
3218 
3219 	res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE |
3220 						  NFS_INO_INVALID_OTHER);
3221 	if (res == 0)
3222 		res = generic_permission(&init_user_ns, inode, mask);
3223 	goto out;
3224 }
3225 EXPORT_SYMBOL_GPL(nfs_permission);
3226