1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/nfs/dir.c 4 * 5 * Copyright (C) 1992 Rick Sladkey 6 * 7 * nfs directory handling functions 8 * 9 * 10 Apr 1996 Added silly rename for unlink --okir 10 * 28 Sep 1996 Improved directory cache --okir 11 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de 12 * Re-implemented silly rename for unlink, newly implemented 13 * silly rename for nfs_rename() following the suggestions 14 * of Olaf Kirch (okir) found in this file. 15 * Following Linus comments on my original hack, this version 16 * depends only on the dcache stuff and doesn't touch the inode 17 * layer (iput() and friends). 18 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM 19 */ 20 21 #include <linux/module.h> 22 #include <linux/time.h> 23 #include <linux/errno.h> 24 #include <linux/stat.h> 25 #include <linux/fcntl.h> 26 #include <linux/string.h> 27 #include <linux/kernel.h> 28 #include <linux/slab.h> 29 #include <linux/mm.h> 30 #include <linux/sunrpc/clnt.h> 31 #include <linux/nfs_fs.h> 32 #include <linux/nfs_mount.h> 33 #include <linux/pagemap.h> 34 #include <linux/pagevec.h> 35 #include <linux/namei.h> 36 #include <linux/mount.h> 37 #include <linux/swap.h> 38 #include <linux/sched.h> 39 #include <linux/kmemleak.h> 40 #include <linux/xattr.h> 41 42 #include "delegation.h" 43 #include "iostat.h" 44 #include "internal.h" 45 #include "fscache.h" 46 47 #include "nfstrace.h" 48 49 /* #define NFS_DEBUG_VERBOSE 1 */ 50 51 static int nfs_opendir(struct inode *, struct file *); 52 static int nfs_closedir(struct inode *, struct file *); 53 static int nfs_readdir(struct file *, struct dir_context *); 54 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int); 55 static loff_t nfs_llseek_dir(struct file *, loff_t, int); 56 static void nfs_readdir_clear_array(struct page*); 57 58 const struct file_operations nfs_dir_operations = { 59 .llseek = nfs_llseek_dir, 60 .read = generic_read_dir, 61 .iterate = nfs_readdir, 62 .open = nfs_opendir, 63 .release = nfs_closedir, 64 .fsync = nfs_fsync_dir, 65 }; 66 67 const struct address_space_operations nfs_dir_aops = { 68 .freepage = nfs_readdir_clear_array, 69 }; 70 71 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, const struct cred *cred) 72 { 73 struct nfs_inode *nfsi = NFS_I(dir); 74 struct nfs_open_dir_context *ctx; 75 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); 76 if (ctx != NULL) { 77 ctx->duped = 0; 78 ctx->attr_gencount = nfsi->attr_gencount; 79 ctx->dir_cookie = 0; 80 ctx->dup_cookie = 0; 81 ctx->cred = get_cred(cred); 82 spin_lock(&dir->i_lock); 83 list_add(&ctx->list, &nfsi->open_files); 84 spin_unlock(&dir->i_lock); 85 return ctx; 86 } 87 return ERR_PTR(-ENOMEM); 88 } 89 90 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx) 91 { 92 spin_lock(&dir->i_lock); 93 list_del(&ctx->list); 94 spin_unlock(&dir->i_lock); 95 put_cred(ctx->cred); 96 kfree(ctx); 97 } 98 99 /* 100 * Open file 101 */ 102 static int 103 nfs_opendir(struct inode *inode, struct file *filp) 104 { 105 int res = 0; 106 struct nfs_open_dir_context *ctx; 107 108 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp); 109 110 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 111 112 ctx = alloc_nfs_open_dir_context(inode, current_cred()); 113 if (IS_ERR(ctx)) { 114 res = PTR_ERR(ctx); 115 goto out; 116 } 117 filp->private_data = ctx; 118 out: 119 return res; 120 } 121 122 static int 123 nfs_closedir(struct inode *inode, struct file *filp) 124 { 125 put_nfs_open_dir_context(file_inode(filp), filp->private_data); 126 return 0; 127 } 128 129 struct nfs_cache_array_entry { 130 u64 cookie; 131 u64 ino; 132 struct qstr string; 133 unsigned char d_type; 134 }; 135 136 struct nfs_cache_array { 137 int size; 138 int eof_index; 139 u64 last_cookie; 140 struct nfs_cache_array_entry array[0]; 141 }; 142 143 struct readdirvec { 144 unsigned long nr; 145 unsigned long index; 146 struct page *pages[NFS_MAX_READDIR_RAPAGES]; 147 }; 148 149 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, bool); 150 typedef struct { 151 struct file *file; 152 struct page *page; 153 struct dir_context *ctx; 154 unsigned long page_index; 155 struct readdirvec pvec; 156 u64 *dir_cookie; 157 u64 last_cookie; 158 loff_t current_index; 159 decode_dirent_t decode; 160 161 unsigned long timestamp; 162 unsigned long gencount; 163 unsigned int cache_entry_index; 164 bool plus; 165 bool eof; 166 } nfs_readdir_descriptor_t; 167 168 /* 169 * we are freeing strings created by nfs_add_to_readdir_array() 170 */ 171 static 172 void nfs_readdir_clear_array(struct page *page) 173 { 174 struct nfs_cache_array *array; 175 int i; 176 177 array = kmap_atomic(page); 178 for (i = 0; i < array->size; i++) 179 kfree(array->array[i].string.name); 180 kunmap_atomic(array); 181 } 182 183 /* 184 * the caller is responsible for freeing qstr.name 185 * when called by nfs_readdir_add_to_array, the strings will be freed in 186 * nfs_clear_readdir_array() 187 */ 188 static 189 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len) 190 { 191 string->len = len; 192 string->name = kmemdup(name, len, GFP_KERNEL); 193 if (string->name == NULL) 194 return -ENOMEM; 195 /* 196 * Avoid a kmemleak false positive. The pointer to the name is stored 197 * in a page cache page which kmemleak does not scan. 198 */ 199 kmemleak_not_leak(string->name); 200 string->hash = full_name_hash(NULL, name, len); 201 return 0; 202 } 203 204 static 205 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page) 206 { 207 struct nfs_cache_array *array = kmap(page); 208 struct nfs_cache_array_entry *cache_entry; 209 int ret; 210 211 cache_entry = &array->array[array->size]; 212 213 /* Check that this entry lies within the page bounds */ 214 ret = -ENOSPC; 215 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE) 216 goto out; 217 218 cache_entry->cookie = entry->prev_cookie; 219 cache_entry->ino = entry->ino; 220 cache_entry->d_type = entry->d_type; 221 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len); 222 if (ret) 223 goto out; 224 array->last_cookie = entry->cookie; 225 array->size++; 226 if (entry->eof != 0) 227 array->eof_index = array->size; 228 out: 229 kunmap(page); 230 return ret; 231 } 232 233 static 234 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 235 { 236 loff_t diff = desc->ctx->pos - desc->current_index; 237 unsigned int index; 238 239 if (diff < 0) 240 goto out_eof; 241 if (diff >= array->size) { 242 if (array->eof_index >= 0) 243 goto out_eof; 244 return -EAGAIN; 245 } 246 247 index = (unsigned int)diff; 248 *desc->dir_cookie = array->array[index].cookie; 249 desc->cache_entry_index = index; 250 return 0; 251 out_eof: 252 desc->eof = true; 253 return -EBADCOOKIE; 254 } 255 256 static bool 257 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi) 258 { 259 if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA)) 260 return false; 261 smp_rmb(); 262 return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags); 263 } 264 265 static 266 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 267 { 268 int i; 269 loff_t new_pos; 270 int status = -EAGAIN; 271 272 for (i = 0; i < array->size; i++) { 273 if (array->array[i].cookie == *desc->dir_cookie) { 274 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file)); 275 struct nfs_open_dir_context *ctx = desc->file->private_data; 276 277 new_pos = desc->current_index + i; 278 if (ctx->attr_gencount != nfsi->attr_gencount || 279 !nfs_readdir_inode_mapping_valid(nfsi)) { 280 ctx->duped = 0; 281 ctx->attr_gencount = nfsi->attr_gencount; 282 } else if (new_pos < desc->ctx->pos) { 283 if (ctx->duped > 0 284 && ctx->dup_cookie == *desc->dir_cookie) { 285 if (printk_ratelimit()) { 286 pr_notice("NFS: directory %pD2 contains a readdir loop." 287 "Please contact your server vendor. " 288 "The file: %.*s has duplicate cookie %llu\n", 289 desc->file, array->array[i].string.len, 290 array->array[i].string.name, *desc->dir_cookie); 291 } 292 status = -ELOOP; 293 goto out; 294 } 295 ctx->dup_cookie = *desc->dir_cookie; 296 ctx->duped = -1; 297 } 298 desc->ctx->pos = new_pos; 299 desc->cache_entry_index = i; 300 return 0; 301 } 302 } 303 if (array->eof_index >= 0) { 304 status = -EBADCOOKIE; 305 if (*desc->dir_cookie == array->last_cookie) 306 desc->eof = true; 307 } 308 out: 309 return status; 310 } 311 312 static 313 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc) 314 { 315 struct nfs_cache_array *array; 316 int status; 317 318 array = kmap(desc->page); 319 320 if (*desc->dir_cookie == 0) 321 status = nfs_readdir_search_for_pos(array, desc); 322 else 323 status = nfs_readdir_search_for_cookie(array, desc); 324 325 if (status == -EAGAIN) { 326 desc->last_cookie = array->last_cookie; 327 desc->current_index += array->size; 328 desc->page_index++; 329 } 330 kunmap(desc->page); 331 return status; 332 } 333 334 /* Fill a page with xdr information before transferring to the cache page */ 335 static 336 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc, 337 struct nfs_entry *entry, struct file *file, struct inode *inode) 338 { 339 struct nfs_open_dir_context *ctx = file->private_data; 340 const struct cred *cred = ctx->cred; 341 unsigned long timestamp, gencount; 342 int error; 343 344 again: 345 timestamp = jiffies; 346 gencount = nfs_inc_attr_generation_counter(); 347 error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages, 348 NFS_SERVER(inode)->dtsize, desc->plus); 349 if (error < 0) { 350 /* We requested READDIRPLUS, but the server doesn't grok it */ 351 if (error == -ENOTSUPP && desc->plus) { 352 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS; 353 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 354 desc->plus = false; 355 goto again; 356 } 357 goto error; 358 } 359 desc->timestamp = timestamp; 360 desc->gencount = gencount; 361 error: 362 return error; 363 } 364 365 static int xdr_decode(nfs_readdir_descriptor_t *desc, 366 struct nfs_entry *entry, struct xdr_stream *xdr) 367 { 368 int error; 369 370 error = desc->decode(xdr, entry, desc->plus); 371 if (error) 372 return error; 373 entry->fattr->time_start = desc->timestamp; 374 entry->fattr->gencount = desc->gencount; 375 return 0; 376 } 377 378 /* Match file and dirent using either filehandle or fileid 379 * Note: caller is responsible for checking the fsid 380 */ 381 static 382 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry) 383 { 384 struct inode *inode; 385 struct nfs_inode *nfsi; 386 387 if (d_really_is_negative(dentry)) 388 return 0; 389 390 inode = d_inode(dentry); 391 if (is_bad_inode(inode) || NFS_STALE(inode)) 392 return 0; 393 394 nfsi = NFS_I(inode); 395 if (entry->fattr->fileid != nfsi->fileid) 396 return 0; 397 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0) 398 return 0; 399 return 1; 400 } 401 402 static 403 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx) 404 { 405 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS)) 406 return false; 407 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags)) 408 return true; 409 if (ctx->pos == 0) 410 return true; 411 return false; 412 } 413 414 /* 415 * This function is called by the lookup and getattr code to request the 416 * use of readdirplus to accelerate any future lookups in the same 417 * directory. 418 */ 419 void nfs_advise_use_readdirplus(struct inode *dir) 420 { 421 struct nfs_inode *nfsi = NFS_I(dir); 422 423 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) && 424 !list_empty(&nfsi->open_files)) 425 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags); 426 } 427 428 /* 429 * This function is mainly for use by nfs_getattr(). 430 * 431 * If this is an 'ls -l', we want to force use of readdirplus. 432 * Do this by checking if there is an active file descriptor 433 * and calling nfs_advise_use_readdirplus, then forcing a 434 * cache flush. 435 */ 436 void nfs_force_use_readdirplus(struct inode *dir) 437 { 438 struct nfs_inode *nfsi = NFS_I(dir); 439 440 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) && 441 !list_empty(&nfsi->open_files)) { 442 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags); 443 invalidate_mapping_pages(dir->i_mapping, 0, -1); 444 } 445 } 446 447 static 448 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry) 449 { 450 struct qstr filename = QSTR_INIT(entry->name, entry->len); 451 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 452 struct dentry *dentry; 453 struct dentry *alias; 454 struct inode *dir = d_inode(parent); 455 struct inode *inode; 456 int status; 457 458 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID)) 459 return; 460 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID)) 461 return; 462 if (filename.len == 0) 463 return; 464 /* Validate that the name doesn't contain any illegal '\0' */ 465 if (strnlen(filename.name, filename.len) != filename.len) 466 return; 467 /* ...or '/' */ 468 if (strnchr(filename.name, filename.len, '/')) 469 return; 470 if (filename.name[0] == '.') { 471 if (filename.len == 1) 472 return; 473 if (filename.len == 2 && filename.name[1] == '.') 474 return; 475 } 476 filename.hash = full_name_hash(parent, filename.name, filename.len); 477 478 dentry = d_lookup(parent, &filename); 479 again: 480 if (!dentry) { 481 dentry = d_alloc_parallel(parent, &filename, &wq); 482 if (IS_ERR(dentry)) 483 return; 484 } 485 if (!d_in_lookup(dentry)) { 486 /* Is there a mountpoint here? If so, just exit */ 487 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid, 488 &entry->fattr->fsid)) 489 goto out; 490 if (nfs_same_file(dentry, entry)) { 491 if (!entry->fh->size) 492 goto out; 493 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 494 status = nfs_refresh_inode(d_inode(dentry), entry->fattr); 495 if (!status) 496 nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label); 497 goto out; 498 } else { 499 d_invalidate(dentry); 500 dput(dentry); 501 dentry = NULL; 502 goto again; 503 } 504 } 505 if (!entry->fh->size) { 506 d_lookup_done(dentry); 507 goto out; 508 } 509 510 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label); 511 alias = d_splice_alias(inode, dentry); 512 d_lookup_done(dentry); 513 if (alias) { 514 if (IS_ERR(alias)) 515 goto out; 516 dput(dentry); 517 dentry = alias; 518 } 519 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 520 out: 521 dput(dentry); 522 } 523 524 /* Perform conversion from xdr to cache array */ 525 static 526 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry, 527 struct page **xdr_pages, struct page *page, unsigned int buflen) 528 { 529 struct xdr_stream stream; 530 struct xdr_buf buf; 531 struct page *scratch; 532 struct nfs_cache_array *array; 533 unsigned int count = 0; 534 int status; 535 int max_rapages = NFS_MAX_READDIR_RAPAGES; 536 537 desc->pvec.index = desc->page_index; 538 desc->pvec.nr = 0; 539 540 scratch = alloc_page(GFP_KERNEL); 541 if (scratch == NULL) 542 return -ENOMEM; 543 544 if (buflen == 0) 545 goto out_nopages; 546 547 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen); 548 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE); 549 550 do { 551 status = xdr_decode(desc, entry, &stream); 552 if (status != 0) { 553 if (status == -EAGAIN) 554 status = 0; 555 break; 556 } 557 558 count++; 559 560 if (desc->plus) 561 nfs_prime_dcache(file_dentry(desc->file), entry); 562 563 status = nfs_readdir_add_to_array(entry, desc->pvec.pages[desc->pvec.nr]); 564 if (status == -ENOSPC) { 565 desc->pvec.nr++; 566 if (desc->pvec.nr == max_rapages) 567 break; 568 status = nfs_readdir_add_to_array(entry, desc->pvec.pages[desc->pvec.nr]); 569 } 570 if (status != 0) 571 break; 572 } while (!entry->eof); 573 574 /* 575 * page and desc->pvec.pages[0] are valid, don't need to check 576 * whether or not to be NULL. 577 */ 578 copy_highpage(page, desc->pvec.pages[0]); 579 580 out_nopages: 581 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) { 582 array = kmap_atomic(desc->pvec.pages[desc->pvec.nr]); 583 array->eof_index = array->size; 584 status = 0; 585 kunmap_atomic(array); 586 } 587 588 put_page(scratch); 589 590 /* 591 * desc->pvec.nr > 0 means at least one page was completely filled, 592 * we should return -ENOSPC. Otherwise function 593 * nfs_readdir_xdr_to_array will enter infinite loop. 594 */ 595 if (desc->pvec.nr > 0) 596 return -ENOSPC; 597 return status; 598 } 599 600 static 601 void nfs_readdir_free_pages(struct page **pages, unsigned int npages) 602 { 603 unsigned int i; 604 for (i = 0; i < npages; i++) 605 put_page(pages[i]); 606 } 607 608 /* 609 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call 610 * to nfs_readdir_free_pages() 611 */ 612 static 613 int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages) 614 { 615 unsigned int i; 616 617 for (i = 0; i < npages; i++) { 618 struct page *page = alloc_page(GFP_KERNEL); 619 if (page == NULL) 620 goto out_freepages; 621 pages[i] = page; 622 } 623 return 0; 624 625 out_freepages: 626 nfs_readdir_free_pages(pages, i); 627 return -ENOMEM; 628 } 629 630 /* 631 * nfs_readdir_rapages_init initialize rapages by nfs_cache_array structure. 632 */ 633 static 634 void nfs_readdir_rapages_init(nfs_readdir_descriptor_t *desc) 635 { 636 struct nfs_cache_array *array; 637 int max_rapages = NFS_MAX_READDIR_RAPAGES; 638 int index; 639 640 for (index = 0; index < max_rapages; index++) { 641 array = kmap_atomic(desc->pvec.pages[index]); 642 memset(array, 0, sizeof(struct nfs_cache_array)); 643 array->eof_index = -1; 644 kunmap_atomic(array); 645 } 646 } 647 648 static 649 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode) 650 { 651 struct page *pages[NFS_MAX_READDIR_PAGES]; 652 struct nfs_entry entry; 653 struct file *file = desc->file; 654 struct nfs_cache_array *array; 655 int status = -ENOMEM; 656 unsigned int array_size = ARRAY_SIZE(pages); 657 658 /* 659 * This means we hit readdir rdpages miss, the preallocated rdpages 660 * are useless, the preallocate rdpages should be reinitialized. 661 */ 662 nfs_readdir_rapages_init(desc); 663 664 entry.prev_cookie = 0; 665 entry.cookie = desc->last_cookie; 666 entry.eof = 0; 667 entry.fh = nfs_alloc_fhandle(); 668 entry.fattr = nfs_alloc_fattr(); 669 entry.server = NFS_SERVER(inode); 670 if (entry.fh == NULL || entry.fattr == NULL) 671 goto out; 672 673 entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT); 674 if (IS_ERR(entry.label)) { 675 status = PTR_ERR(entry.label); 676 goto out; 677 } 678 679 array = kmap(page); 680 memset(array, 0, sizeof(struct nfs_cache_array)); 681 array->eof_index = -1; 682 683 status = nfs_readdir_alloc_pages(pages, array_size); 684 if (status < 0) 685 goto out_release_array; 686 do { 687 unsigned int pglen; 688 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode); 689 690 if (status < 0) 691 break; 692 pglen = status; 693 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen); 694 if (status < 0) { 695 if (status == -ENOSPC) 696 status = 0; 697 break; 698 } 699 } while (array->eof_index < 0); 700 701 nfs_readdir_free_pages(pages, array_size); 702 out_release_array: 703 kunmap(page); 704 nfs4_label_free(entry.label); 705 out: 706 nfs_free_fattr(entry.fattr); 707 nfs_free_fhandle(entry.fh); 708 return status; 709 } 710 711 /* 712 * Now we cache directories properly, by converting xdr information 713 * to an array that can be used for lookups later. This results in 714 * fewer cache pages, since we can store more information on each page. 715 * We only need to convert from xdr once so future lookups are much simpler 716 */ 717 static 718 int nfs_readdir_filler(void *data, struct page* page) 719 { 720 nfs_readdir_descriptor_t *desc = data; 721 struct inode *inode = file_inode(desc->file); 722 int ret; 723 724 /* 725 * If desc->page_index in range desc->pvec.index and 726 * desc->pvec.index + desc->pvec.nr, we get readdir cache hit. 727 */ 728 if (desc->page_index >= desc->pvec.index && 729 desc->page_index < (desc->pvec.index + desc->pvec.nr)) { 730 /* 731 * page and desc->pvec.pages[x] are valid, don't need to check 732 * whether or not to be NULL. 733 */ 734 copy_highpage(page, desc->pvec.pages[desc->page_index - desc->pvec.index]); 735 ret = 0; 736 } else { 737 ret = nfs_readdir_xdr_to_array(desc, page, inode); 738 if (ret < 0) 739 goto error; 740 } 741 742 SetPageUptodate(page); 743 744 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) { 745 /* Should never happen */ 746 nfs_zap_mapping(inode, inode->i_mapping); 747 } 748 unlock_page(page); 749 return 0; 750 error: 751 unlock_page(page); 752 return ret; 753 } 754 755 static 756 void cache_page_release(nfs_readdir_descriptor_t *desc) 757 { 758 if (!desc->page->mapping) 759 nfs_readdir_clear_array(desc->page); 760 put_page(desc->page); 761 desc->page = NULL; 762 } 763 764 static 765 struct page *get_cache_page(nfs_readdir_descriptor_t *desc) 766 { 767 return read_cache_page(desc->file->f_mapping, desc->page_index, 768 nfs_readdir_filler, desc); 769 } 770 771 /* 772 * Returns 0 if desc->dir_cookie was found on page desc->page_index 773 */ 774 static 775 int find_cache_page(nfs_readdir_descriptor_t *desc) 776 { 777 int res; 778 779 desc->page = get_cache_page(desc); 780 if (IS_ERR(desc->page)) 781 return PTR_ERR(desc->page); 782 783 res = nfs_readdir_search_array(desc); 784 if (res != 0) 785 cache_page_release(desc); 786 return res; 787 } 788 789 /* Search for desc->dir_cookie from the beginning of the page cache */ 790 static inline 791 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc) 792 { 793 int res; 794 795 if (desc->page_index == 0) { 796 desc->current_index = 0; 797 desc->last_cookie = 0; 798 } 799 do { 800 res = find_cache_page(desc); 801 } while (res == -EAGAIN); 802 return res; 803 } 804 805 /* 806 * Once we've found the start of the dirent within a page: fill 'er up... 807 */ 808 static 809 int nfs_do_filldir(nfs_readdir_descriptor_t *desc) 810 { 811 struct file *file = desc->file; 812 int i = 0; 813 int res = 0; 814 struct nfs_cache_array *array = NULL; 815 struct nfs_open_dir_context *ctx = file->private_data; 816 817 array = kmap(desc->page); 818 for (i = desc->cache_entry_index; i < array->size; i++) { 819 struct nfs_cache_array_entry *ent; 820 821 ent = &array->array[i]; 822 if (!dir_emit(desc->ctx, ent->string.name, ent->string.len, 823 nfs_compat_user_ino64(ent->ino), ent->d_type)) { 824 desc->eof = true; 825 break; 826 } 827 desc->ctx->pos++; 828 if (i < (array->size-1)) 829 *desc->dir_cookie = array->array[i+1].cookie; 830 else 831 *desc->dir_cookie = array->last_cookie; 832 if (ctx->duped != 0) 833 ctx->duped = 1; 834 } 835 if (array->eof_index >= 0) 836 desc->eof = true; 837 838 kunmap(desc->page); 839 cache_page_release(desc); 840 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n", 841 (unsigned long long)*desc->dir_cookie, res); 842 return res; 843 } 844 845 /* 846 * If we cannot find a cookie in our cache, we suspect that this is 847 * because it points to a deleted file, so we ask the server to return 848 * whatever it thinks is the next entry. We then feed this to filldir. 849 * If all goes well, we should then be able to find our way round the 850 * cache on the next call to readdir_search_pagecache(); 851 * 852 * NOTE: we cannot add the anonymous page to the pagecache because 853 * the data it contains might not be page aligned. Besides, 854 * we should already have a complete representation of the 855 * directory in the page cache by the time we get here. 856 */ 857 static inline 858 int uncached_readdir(nfs_readdir_descriptor_t *desc) 859 { 860 struct page *page = NULL; 861 int status; 862 struct inode *inode = file_inode(desc->file); 863 struct nfs_open_dir_context *ctx = desc->file->private_data; 864 865 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n", 866 (unsigned long long)*desc->dir_cookie); 867 868 page = alloc_page(GFP_HIGHUSER); 869 if (!page) { 870 status = -ENOMEM; 871 goto out; 872 } 873 874 desc->page_index = 0; 875 desc->last_cookie = *desc->dir_cookie; 876 desc->page = page; 877 ctx->duped = 0; 878 879 status = nfs_readdir_xdr_to_array(desc, page, inode); 880 if (status < 0) 881 goto out_release; 882 883 status = nfs_do_filldir(desc); 884 885 out: 886 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", 887 __func__, status); 888 return status; 889 out_release: 890 cache_page_release(desc); 891 goto out; 892 } 893 894 /* The file offset position represents the dirent entry number. A 895 last cookie cache takes care of the common case of reading the 896 whole directory. 897 */ 898 static int nfs_readdir(struct file *file, struct dir_context *ctx) 899 { 900 struct dentry *dentry = file_dentry(file); 901 struct inode *inode = d_inode(dentry); 902 nfs_readdir_descriptor_t my_desc, 903 *desc = &my_desc; 904 struct nfs_open_dir_context *dir_ctx = file->private_data; 905 int res = 0; 906 int max_rapages = NFS_MAX_READDIR_RAPAGES; 907 908 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n", 909 file, (long long)ctx->pos); 910 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS); 911 912 /* 913 * ctx->pos points to the dirent entry number. 914 * *desc->dir_cookie has the cookie for the next entry. We have 915 * to either find the entry with the appropriate number or 916 * revalidate the cookie. 917 */ 918 memset(desc, 0, sizeof(*desc)); 919 920 desc->file = file; 921 desc->ctx = ctx; 922 desc->dir_cookie = &dir_ctx->dir_cookie; 923 desc->decode = NFS_PROTO(inode)->decode_dirent; 924 desc->plus = nfs_use_readdirplus(inode, ctx); 925 926 res = nfs_readdir_alloc_pages(desc->pvec.pages, max_rapages); 927 if (res < 0) 928 return -ENOMEM; 929 930 nfs_readdir_rapages_init(desc); 931 932 if (ctx->pos == 0 || nfs_attribute_cache_expired(inode)) 933 res = nfs_revalidate_mapping(inode, file->f_mapping); 934 if (res < 0) 935 goto out; 936 937 do { 938 res = readdir_search_pagecache(desc); 939 940 if (res == -EBADCOOKIE) { 941 res = 0; 942 /* This means either end of directory */ 943 if (*desc->dir_cookie && !desc->eof) { 944 /* Or that the server has 'lost' a cookie */ 945 res = uncached_readdir(desc); 946 if (res == 0) 947 continue; 948 } 949 break; 950 } 951 if (res == -ETOOSMALL && desc->plus) { 952 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 953 nfs_zap_caches(inode); 954 desc->page_index = 0; 955 desc->plus = false; 956 desc->eof = false; 957 continue; 958 } 959 if (res < 0) 960 break; 961 962 res = nfs_do_filldir(desc); 963 if (res < 0) 964 break; 965 } while (!desc->eof); 966 out: 967 nfs_readdir_free_pages(desc->pvec.pages, max_rapages); 968 if (res > 0) 969 res = 0; 970 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res); 971 return res; 972 } 973 974 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence) 975 { 976 struct inode *inode = file_inode(filp); 977 struct nfs_open_dir_context *dir_ctx = filp->private_data; 978 979 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n", 980 filp, offset, whence); 981 982 switch (whence) { 983 default: 984 return -EINVAL; 985 case SEEK_SET: 986 if (offset < 0) 987 return -EINVAL; 988 inode_lock(inode); 989 break; 990 case SEEK_CUR: 991 if (offset == 0) 992 return filp->f_pos; 993 inode_lock(inode); 994 offset += filp->f_pos; 995 if (offset < 0) { 996 inode_unlock(inode); 997 return -EINVAL; 998 } 999 } 1000 if (offset != filp->f_pos) { 1001 filp->f_pos = offset; 1002 dir_ctx->dir_cookie = 0; 1003 dir_ctx->duped = 0; 1004 } 1005 inode_unlock(inode); 1006 return offset; 1007 } 1008 1009 /* 1010 * All directory operations under NFS are synchronous, so fsync() 1011 * is a dummy operation. 1012 */ 1013 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end, 1014 int datasync) 1015 { 1016 struct inode *inode = file_inode(filp); 1017 1018 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync); 1019 1020 inode_lock(inode); 1021 nfs_inc_stats(inode, NFSIOS_VFSFSYNC); 1022 inode_unlock(inode); 1023 return 0; 1024 } 1025 1026 /** 1027 * nfs_force_lookup_revalidate - Mark the directory as having changed 1028 * @dir: pointer to directory inode 1029 * 1030 * This forces the revalidation code in nfs_lookup_revalidate() to do a 1031 * full lookup on all child dentries of 'dir' whenever a change occurs 1032 * on the server that might have invalidated our dcache. 1033 * 1034 * The caller should be holding dir->i_lock 1035 */ 1036 void nfs_force_lookup_revalidate(struct inode *dir) 1037 { 1038 NFS_I(dir)->cache_change_attribute++; 1039 } 1040 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate); 1041 1042 /* 1043 * A check for whether or not the parent directory has changed. 1044 * In the case it has, we assume that the dentries are untrustworthy 1045 * and may need to be looked up again. 1046 * If rcu_walk prevents us from performing a full check, return 0. 1047 */ 1048 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry, 1049 int rcu_walk) 1050 { 1051 if (IS_ROOT(dentry)) 1052 return 1; 1053 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE) 1054 return 0; 1055 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 1056 return 0; 1057 /* Revalidate nfsi->cache_change_attribute before we declare a match */ 1058 if (nfs_mapping_need_revalidate_inode(dir)) { 1059 if (rcu_walk) 1060 return 0; 1061 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0) 1062 return 0; 1063 } 1064 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 1065 return 0; 1066 return 1; 1067 } 1068 1069 /* 1070 * Use intent information to check whether or not we're going to do 1071 * an O_EXCL create using this path component. 1072 */ 1073 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags) 1074 { 1075 if (NFS_PROTO(dir)->version == 2) 1076 return 0; 1077 return flags & LOOKUP_EXCL; 1078 } 1079 1080 /* 1081 * Inode and filehandle revalidation for lookups. 1082 * 1083 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL, 1084 * or if the intent information indicates that we're about to open this 1085 * particular file and the "nocto" mount flag is not set. 1086 * 1087 */ 1088 static 1089 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags) 1090 { 1091 struct nfs_server *server = NFS_SERVER(inode); 1092 int ret; 1093 1094 if (IS_AUTOMOUNT(inode)) 1095 return 0; 1096 1097 if (flags & LOOKUP_OPEN) { 1098 switch (inode->i_mode & S_IFMT) { 1099 case S_IFREG: 1100 /* A NFSv4 OPEN will revalidate later */ 1101 if (server->caps & NFS_CAP_ATOMIC_OPEN) 1102 goto out; 1103 /* Fallthrough */ 1104 case S_IFDIR: 1105 if (server->flags & NFS_MOUNT_NOCTO) 1106 break; 1107 /* NFS close-to-open cache consistency validation */ 1108 goto out_force; 1109 } 1110 } 1111 1112 /* VFS wants an on-the-wire revalidation */ 1113 if (flags & LOOKUP_REVAL) 1114 goto out_force; 1115 out: 1116 return (inode->i_nlink == 0) ? -ESTALE : 0; 1117 out_force: 1118 if (flags & LOOKUP_RCU) 1119 return -ECHILD; 1120 ret = __nfs_revalidate_inode(server, inode); 1121 if (ret != 0) 1122 return ret; 1123 goto out; 1124 } 1125 1126 /* 1127 * We judge how long we want to trust negative 1128 * dentries by looking at the parent inode mtime. 1129 * 1130 * If parent mtime has changed, we revalidate, else we wait for a 1131 * period corresponding to the parent's attribute cache timeout value. 1132 * 1133 * If LOOKUP_RCU prevents us from performing a full check, return 1 1134 * suggesting a reval is needed. 1135 * 1136 * Note that when creating a new file, or looking up a rename target, 1137 * then it shouldn't be necessary to revalidate a negative dentry. 1138 */ 1139 static inline 1140 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry, 1141 unsigned int flags) 1142 { 1143 if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET)) 1144 return 0; 1145 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG) 1146 return 1; 1147 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU); 1148 } 1149 1150 static int 1151 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry, 1152 struct inode *inode, int error) 1153 { 1154 switch (error) { 1155 case 1: 1156 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n", 1157 __func__, dentry); 1158 return 1; 1159 case 0: 1160 nfs_mark_for_revalidate(dir); 1161 if (inode && S_ISDIR(inode->i_mode)) { 1162 /* Purge readdir caches. */ 1163 nfs_zap_caches(inode); 1164 /* 1165 * We can't d_drop the root of a disconnected tree: 1166 * its d_hash is on the s_anon list and d_drop() would hide 1167 * it from shrink_dcache_for_unmount(), leading to busy 1168 * inodes on unmount and further oopses. 1169 */ 1170 if (IS_ROOT(dentry)) 1171 return 1; 1172 } 1173 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n", 1174 __func__, dentry); 1175 return 0; 1176 } 1177 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n", 1178 __func__, dentry, error); 1179 return error; 1180 } 1181 1182 static int 1183 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry, 1184 unsigned int flags) 1185 { 1186 int ret = 1; 1187 if (nfs_neg_need_reval(dir, dentry, flags)) { 1188 if (flags & LOOKUP_RCU) 1189 return -ECHILD; 1190 ret = 0; 1191 } 1192 return nfs_lookup_revalidate_done(dir, dentry, NULL, ret); 1193 } 1194 1195 static int 1196 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry, 1197 struct inode *inode) 1198 { 1199 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1200 return nfs_lookup_revalidate_done(dir, dentry, inode, 1); 1201 } 1202 1203 static int 1204 nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry, 1205 struct inode *inode) 1206 { 1207 struct nfs_fh *fhandle; 1208 struct nfs_fattr *fattr; 1209 struct nfs4_label *label; 1210 int ret; 1211 1212 ret = -ENOMEM; 1213 fhandle = nfs_alloc_fhandle(); 1214 fattr = nfs_alloc_fattr(); 1215 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL); 1216 if (fhandle == NULL || fattr == NULL || IS_ERR(label)) 1217 goto out; 1218 1219 ret = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label); 1220 if (ret < 0) { 1221 if (ret == -ESTALE || ret == -ENOENT) 1222 ret = 0; 1223 goto out; 1224 } 1225 ret = 0; 1226 if (nfs_compare_fh(NFS_FH(inode), fhandle)) 1227 goto out; 1228 if (nfs_refresh_inode(inode, fattr) < 0) 1229 goto out; 1230 1231 nfs_setsecurity(inode, fattr, label); 1232 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1233 1234 /* set a readdirplus hint that we had a cache miss */ 1235 nfs_force_use_readdirplus(dir); 1236 ret = 1; 1237 out: 1238 nfs_free_fattr(fattr); 1239 nfs_free_fhandle(fhandle); 1240 nfs4_label_free(label); 1241 return nfs_lookup_revalidate_done(dir, dentry, inode, ret); 1242 } 1243 1244 /* 1245 * This is called every time the dcache has a lookup hit, 1246 * and we should check whether we can really trust that 1247 * lookup. 1248 * 1249 * NOTE! The hit can be a negative hit too, don't assume 1250 * we have an inode! 1251 * 1252 * If the parent directory is seen to have changed, we throw out the 1253 * cached dentry and do a new lookup. 1254 */ 1255 static int 1256 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry, 1257 unsigned int flags) 1258 { 1259 struct inode *inode; 1260 int error; 1261 1262 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE); 1263 inode = d_inode(dentry); 1264 1265 if (!inode) 1266 return nfs_lookup_revalidate_negative(dir, dentry, flags); 1267 1268 if (is_bad_inode(inode)) { 1269 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1270 __func__, dentry); 1271 goto out_bad; 1272 } 1273 1274 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ)) 1275 return nfs_lookup_revalidate_delegated(dir, dentry, inode); 1276 1277 /* Force a full look up iff the parent directory has changed */ 1278 if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) && 1279 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) { 1280 error = nfs_lookup_verify_inode(inode, flags); 1281 if (error) { 1282 if (error == -ESTALE) 1283 nfs_zap_caches(dir); 1284 goto out_bad; 1285 } 1286 nfs_advise_use_readdirplus(dir); 1287 goto out_valid; 1288 } 1289 1290 if (flags & LOOKUP_RCU) 1291 return -ECHILD; 1292 1293 if (NFS_STALE(inode)) 1294 goto out_bad; 1295 1296 trace_nfs_lookup_revalidate_enter(dir, dentry, flags); 1297 error = nfs_lookup_revalidate_dentry(dir, dentry, inode); 1298 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error); 1299 return error; 1300 out_valid: 1301 return nfs_lookup_revalidate_done(dir, dentry, inode, 1); 1302 out_bad: 1303 if (flags & LOOKUP_RCU) 1304 return -ECHILD; 1305 return nfs_lookup_revalidate_done(dir, dentry, inode, 0); 1306 } 1307 1308 static int 1309 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags, 1310 int (*reval)(struct inode *, struct dentry *, unsigned int)) 1311 { 1312 struct dentry *parent; 1313 struct inode *dir; 1314 int ret; 1315 1316 if (flags & LOOKUP_RCU) { 1317 parent = READ_ONCE(dentry->d_parent); 1318 dir = d_inode_rcu(parent); 1319 if (!dir) 1320 return -ECHILD; 1321 ret = reval(dir, dentry, flags); 1322 if (parent != READ_ONCE(dentry->d_parent)) 1323 return -ECHILD; 1324 } else { 1325 parent = dget_parent(dentry); 1326 ret = reval(d_inode(parent), dentry, flags); 1327 dput(parent); 1328 } 1329 return ret; 1330 } 1331 1332 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1333 { 1334 return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate); 1335 } 1336 1337 /* 1338 * A weaker form of d_revalidate for revalidating just the d_inode(dentry) 1339 * when we don't really care about the dentry name. This is called when a 1340 * pathwalk ends on a dentry that was not found via a normal lookup in the 1341 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals). 1342 * 1343 * In this situation, we just want to verify that the inode itself is OK 1344 * since the dentry might have changed on the server. 1345 */ 1346 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags) 1347 { 1348 struct inode *inode = d_inode(dentry); 1349 int error = 0; 1350 1351 /* 1352 * I believe we can only get a negative dentry here in the case of a 1353 * procfs-style symlink. Just assume it's correct for now, but we may 1354 * eventually need to do something more here. 1355 */ 1356 if (!inode) { 1357 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n", 1358 __func__, dentry); 1359 return 1; 1360 } 1361 1362 if (is_bad_inode(inode)) { 1363 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1364 __func__, dentry); 1365 return 0; 1366 } 1367 1368 error = nfs_lookup_verify_inode(inode, flags); 1369 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n", 1370 __func__, inode->i_ino, error ? "invalid" : "valid"); 1371 return !error; 1372 } 1373 1374 /* 1375 * This is called from dput() when d_count is going to 0. 1376 */ 1377 static int nfs_dentry_delete(const struct dentry *dentry) 1378 { 1379 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n", 1380 dentry, dentry->d_flags); 1381 1382 /* Unhash any dentry with a stale inode */ 1383 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry))) 1384 return 1; 1385 1386 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1387 /* Unhash it, so that ->d_iput() would be called */ 1388 return 1; 1389 } 1390 if (!(dentry->d_sb->s_flags & SB_ACTIVE)) { 1391 /* Unhash it, so that ancestors of killed async unlink 1392 * files will be cleaned up during umount */ 1393 return 1; 1394 } 1395 return 0; 1396 1397 } 1398 1399 /* Ensure that we revalidate inode->i_nlink */ 1400 static void nfs_drop_nlink(struct inode *inode) 1401 { 1402 spin_lock(&inode->i_lock); 1403 /* drop the inode if we're reasonably sure this is the last link */ 1404 if (inode->i_nlink > 0) 1405 drop_nlink(inode); 1406 NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter(); 1407 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_CHANGE 1408 | NFS_INO_INVALID_CTIME 1409 | NFS_INO_INVALID_OTHER 1410 | NFS_INO_REVAL_FORCED; 1411 spin_unlock(&inode->i_lock); 1412 } 1413 1414 /* 1415 * Called when the dentry loses inode. 1416 * We use it to clean up silly-renamed files. 1417 */ 1418 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode) 1419 { 1420 if (S_ISDIR(inode->i_mode)) 1421 /* drop any readdir cache as it could easily be old */ 1422 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA; 1423 1424 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1425 nfs_complete_unlink(dentry, inode); 1426 nfs_drop_nlink(inode); 1427 } 1428 iput(inode); 1429 } 1430 1431 static void nfs_d_release(struct dentry *dentry) 1432 { 1433 /* free cached devname value, if it survived that far */ 1434 if (unlikely(dentry->d_fsdata)) { 1435 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1436 WARN_ON(1); 1437 else 1438 kfree(dentry->d_fsdata); 1439 } 1440 } 1441 1442 const struct dentry_operations nfs_dentry_operations = { 1443 .d_revalidate = nfs_lookup_revalidate, 1444 .d_weak_revalidate = nfs_weak_revalidate, 1445 .d_delete = nfs_dentry_delete, 1446 .d_iput = nfs_dentry_iput, 1447 .d_automount = nfs_d_automount, 1448 .d_release = nfs_d_release, 1449 }; 1450 EXPORT_SYMBOL_GPL(nfs_dentry_operations); 1451 1452 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 1453 { 1454 struct dentry *res; 1455 struct inode *inode = NULL; 1456 struct nfs_fh *fhandle = NULL; 1457 struct nfs_fattr *fattr = NULL; 1458 struct nfs4_label *label = NULL; 1459 int error; 1460 1461 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry); 1462 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP); 1463 1464 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen)) 1465 return ERR_PTR(-ENAMETOOLONG); 1466 1467 /* 1468 * If we're doing an exclusive create, optimize away the lookup 1469 * but don't hash the dentry. 1470 */ 1471 if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET) 1472 return NULL; 1473 1474 res = ERR_PTR(-ENOMEM); 1475 fhandle = nfs_alloc_fhandle(); 1476 fattr = nfs_alloc_fattr(); 1477 if (fhandle == NULL || fattr == NULL) 1478 goto out; 1479 1480 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT); 1481 if (IS_ERR(label)) 1482 goto out; 1483 1484 trace_nfs_lookup_enter(dir, dentry, flags); 1485 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label); 1486 if (error == -ENOENT) 1487 goto no_entry; 1488 if (error < 0) { 1489 res = ERR_PTR(error); 1490 goto out_label; 1491 } 1492 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label); 1493 res = ERR_CAST(inode); 1494 if (IS_ERR(res)) 1495 goto out_label; 1496 1497 /* Notify readdir to use READDIRPLUS */ 1498 nfs_force_use_readdirplus(dir); 1499 1500 no_entry: 1501 res = d_splice_alias(inode, dentry); 1502 if (res != NULL) { 1503 if (IS_ERR(res)) 1504 goto out_label; 1505 dentry = res; 1506 } 1507 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1508 out_label: 1509 trace_nfs_lookup_exit(dir, dentry, flags, error); 1510 nfs4_label_free(label); 1511 out: 1512 nfs_free_fattr(fattr); 1513 nfs_free_fhandle(fhandle); 1514 return res; 1515 } 1516 EXPORT_SYMBOL_GPL(nfs_lookup); 1517 1518 #if IS_ENABLED(CONFIG_NFS_V4) 1519 static int nfs4_lookup_revalidate(struct dentry *, unsigned int); 1520 1521 const struct dentry_operations nfs4_dentry_operations = { 1522 .d_revalidate = nfs4_lookup_revalidate, 1523 .d_weak_revalidate = nfs_weak_revalidate, 1524 .d_delete = nfs_dentry_delete, 1525 .d_iput = nfs_dentry_iput, 1526 .d_automount = nfs_d_automount, 1527 .d_release = nfs_d_release, 1528 }; 1529 EXPORT_SYMBOL_GPL(nfs4_dentry_operations); 1530 1531 static fmode_t flags_to_mode(int flags) 1532 { 1533 fmode_t res = (__force fmode_t)flags & FMODE_EXEC; 1534 if ((flags & O_ACCMODE) != O_WRONLY) 1535 res |= FMODE_READ; 1536 if ((flags & O_ACCMODE) != O_RDONLY) 1537 res |= FMODE_WRITE; 1538 return res; 1539 } 1540 1541 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp) 1542 { 1543 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp); 1544 } 1545 1546 static int do_open(struct inode *inode, struct file *filp) 1547 { 1548 nfs_fscache_open_file(inode, filp); 1549 return 0; 1550 } 1551 1552 static int nfs_finish_open(struct nfs_open_context *ctx, 1553 struct dentry *dentry, 1554 struct file *file, unsigned open_flags) 1555 { 1556 int err; 1557 1558 err = finish_open(file, dentry, do_open); 1559 if (err) 1560 goto out; 1561 if (S_ISREG(file->f_path.dentry->d_inode->i_mode)) 1562 nfs_file_set_open_context(file, ctx); 1563 else 1564 err = -ESTALE; 1565 out: 1566 return err; 1567 } 1568 1569 int nfs_atomic_open(struct inode *dir, struct dentry *dentry, 1570 struct file *file, unsigned open_flags, 1571 umode_t mode) 1572 { 1573 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1574 struct nfs_open_context *ctx; 1575 struct dentry *res; 1576 struct iattr attr = { .ia_valid = ATTR_OPEN }; 1577 struct inode *inode; 1578 unsigned int lookup_flags = 0; 1579 bool switched = false; 1580 int created = 0; 1581 int err; 1582 1583 /* Expect a negative dentry */ 1584 BUG_ON(d_inode(dentry)); 1585 1586 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n", 1587 dir->i_sb->s_id, dir->i_ino, dentry); 1588 1589 err = nfs_check_flags(open_flags); 1590 if (err) 1591 return err; 1592 1593 /* NFS only supports OPEN on regular files */ 1594 if ((open_flags & O_DIRECTORY)) { 1595 if (!d_in_lookup(dentry)) { 1596 /* 1597 * Hashed negative dentry with O_DIRECTORY: dentry was 1598 * revalidated and is fine, no need to perform lookup 1599 * again 1600 */ 1601 return -ENOENT; 1602 } 1603 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY; 1604 goto no_open; 1605 } 1606 1607 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 1608 return -ENAMETOOLONG; 1609 1610 if (open_flags & O_CREAT) { 1611 struct nfs_server *server = NFS_SERVER(dir); 1612 1613 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK)) 1614 mode &= ~current_umask(); 1615 1616 attr.ia_valid |= ATTR_MODE; 1617 attr.ia_mode = mode; 1618 } 1619 if (open_flags & O_TRUNC) { 1620 attr.ia_valid |= ATTR_SIZE; 1621 attr.ia_size = 0; 1622 } 1623 1624 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) { 1625 d_drop(dentry); 1626 switched = true; 1627 dentry = d_alloc_parallel(dentry->d_parent, 1628 &dentry->d_name, &wq); 1629 if (IS_ERR(dentry)) 1630 return PTR_ERR(dentry); 1631 if (unlikely(!d_in_lookup(dentry))) 1632 return finish_no_open(file, dentry); 1633 } 1634 1635 ctx = create_nfs_open_context(dentry, open_flags, file); 1636 err = PTR_ERR(ctx); 1637 if (IS_ERR(ctx)) 1638 goto out; 1639 1640 trace_nfs_atomic_open_enter(dir, ctx, open_flags); 1641 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created); 1642 if (created) 1643 file->f_mode |= FMODE_CREATED; 1644 if (IS_ERR(inode)) { 1645 err = PTR_ERR(inode); 1646 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 1647 put_nfs_open_context(ctx); 1648 d_drop(dentry); 1649 switch (err) { 1650 case -ENOENT: 1651 d_splice_alias(NULL, dentry); 1652 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1653 break; 1654 case -EISDIR: 1655 case -ENOTDIR: 1656 goto no_open; 1657 case -ELOOP: 1658 if (!(open_flags & O_NOFOLLOW)) 1659 goto no_open; 1660 break; 1661 /* case -EINVAL: */ 1662 default: 1663 break; 1664 } 1665 goto out; 1666 } 1667 1668 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags); 1669 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 1670 put_nfs_open_context(ctx); 1671 out: 1672 if (unlikely(switched)) { 1673 d_lookup_done(dentry); 1674 dput(dentry); 1675 } 1676 return err; 1677 1678 no_open: 1679 res = nfs_lookup(dir, dentry, lookup_flags); 1680 if (switched) { 1681 d_lookup_done(dentry); 1682 if (!res) 1683 res = dentry; 1684 else 1685 dput(dentry); 1686 } 1687 if (IS_ERR(res)) 1688 return PTR_ERR(res); 1689 return finish_no_open(file, res); 1690 } 1691 EXPORT_SYMBOL_GPL(nfs_atomic_open); 1692 1693 static int 1694 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry, 1695 unsigned int flags) 1696 { 1697 struct inode *inode; 1698 1699 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY)) 1700 goto full_reval; 1701 if (d_mountpoint(dentry)) 1702 goto full_reval; 1703 1704 inode = d_inode(dentry); 1705 1706 /* We can't create new files in nfs_open_revalidate(), so we 1707 * optimize away revalidation of negative dentries. 1708 */ 1709 if (inode == NULL) 1710 goto full_reval; 1711 1712 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ)) 1713 return nfs_lookup_revalidate_delegated(dir, dentry, inode); 1714 1715 /* NFS only supports OPEN on regular files */ 1716 if (!S_ISREG(inode->i_mode)) 1717 goto full_reval; 1718 1719 /* We cannot do exclusive creation on a positive dentry */ 1720 if (flags & (LOOKUP_EXCL | LOOKUP_REVAL)) 1721 goto reval_dentry; 1722 1723 /* Check if the directory changed */ 1724 if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) 1725 goto reval_dentry; 1726 1727 /* Let f_op->open() actually open (and revalidate) the file */ 1728 return 1; 1729 reval_dentry: 1730 if (flags & LOOKUP_RCU) 1731 return -ECHILD; 1732 return nfs_lookup_revalidate_dentry(dir, dentry, inode); 1733 1734 full_reval: 1735 return nfs_do_lookup_revalidate(dir, dentry, flags); 1736 } 1737 1738 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1739 { 1740 return __nfs_lookup_revalidate(dentry, flags, 1741 nfs4_do_lookup_revalidate); 1742 } 1743 1744 #endif /* CONFIG_NFSV4 */ 1745 1746 /* 1747 * Code common to create, mkdir, and mknod. 1748 */ 1749 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle, 1750 struct nfs_fattr *fattr, 1751 struct nfs4_label *label) 1752 { 1753 struct dentry *parent = dget_parent(dentry); 1754 struct inode *dir = d_inode(parent); 1755 struct inode *inode; 1756 struct dentry *d; 1757 int error = -EACCES; 1758 1759 d_drop(dentry); 1760 1761 /* We may have been initialized further down */ 1762 if (d_really_is_positive(dentry)) 1763 goto out; 1764 if (fhandle->size == 0) { 1765 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL); 1766 if (error) 1767 goto out_error; 1768 } 1769 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1770 if (!(fattr->valid & NFS_ATTR_FATTR)) { 1771 struct nfs_server *server = NFS_SB(dentry->d_sb); 1772 error = server->nfs_client->rpc_ops->getattr(server, fhandle, 1773 fattr, NULL, NULL); 1774 if (error < 0) 1775 goto out_error; 1776 } 1777 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label); 1778 d = d_splice_alias(inode, dentry); 1779 if (IS_ERR(d)) { 1780 error = PTR_ERR(d); 1781 goto out_error; 1782 } 1783 dput(d); 1784 out: 1785 dput(parent); 1786 return 0; 1787 out_error: 1788 nfs_mark_for_revalidate(dir); 1789 dput(parent); 1790 return error; 1791 } 1792 EXPORT_SYMBOL_GPL(nfs_instantiate); 1793 1794 /* 1795 * Following a failed create operation, we drop the dentry rather 1796 * than retain a negative dentry. This avoids a problem in the event 1797 * that the operation succeeded on the server, but an error in the 1798 * reply path made it appear to have failed. 1799 */ 1800 int nfs_create(struct inode *dir, struct dentry *dentry, 1801 umode_t mode, bool excl) 1802 { 1803 struct iattr attr; 1804 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT; 1805 int error; 1806 1807 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n", 1808 dir->i_sb->s_id, dir->i_ino, dentry); 1809 1810 attr.ia_mode = mode; 1811 attr.ia_valid = ATTR_MODE; 1812 1813 trace_nfs_create_enter(dir, dentry, open_flags); 1814 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags); 1815 trace_nfs_create_exit(dir, dentry, open_flags, error); 1816 if (error != 0) 1817 goto out_err; 1818 return 0; 1819 out_err: 1820 d_drop(dentry); 1821 return error; 1822 } 1823 EXPORT_SYMBOL_GPL(nfs_create); 1824 1825 /* 1826 * See comments for nfs_proc_create regarding failed operations. 1827 */ 1828 int 1829 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev) 1830 { 1831 struct iattr attr; 1832 int status; 1833 1834 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n", 1835 dir->i_sb->s_id, dir->i_ino, dentry); 1836 1837 attr.ia_mode = mode; 1838 attr.ia_valid = ATTR_MODE; 1839 1840 trace_nfs_mknod_enter(dir, dentry); 1841 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev); 1842 trace_nfs_mknod_exit(dir, dentry, status); 1843 if (status != 0) 1844 goto out_err; 1845 return 0; 1846 out_err: 1847 d_drop(dentry); 1848 return status; 1849 } 1850 EXPORT_SYMBOL_GPL(nfs_mknod); 1851 1852 /* 1853 * See comments for nfs_proc_create regarding failed operations. 1854 */ 1855 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1856 { 1857 struct iattr attr; 1858 int error; 1859 1860 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n", 1861 dir->i_sb->s_id, dir->i_ino, dentry); 1862 1863 attr.ia_valid = ATTR_MODE; 1864 attr.ia_mode = mode | S_IFDIR; 1865 1866 trace_nfs_mkdir_enter(dir, dentry); 1867 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr); 1868 trace_nfs_mkdir_exit(dir, dentry, error); 1869 if (error != 0) 1870 goto out_err; 1871 return 0; 1872 out_err: 1873 d_drop(dentry); 1874 return error; 1875 } 1876 EXPORT_SYMBOL_GPL(nfs_mkdir); 1877 1878 static void nfs_dentry_handle_enoent(struct dentry *dentry) 1879 { 1880 if (simple_positive(dentry)) 1881 d_delete(dentry); 1882 } 1883 1884 int nfs_rmdir(struct inode *dir, struct dentry *dentry) 1885 { 1886 int error; 1887 1888 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n", 1889 dir->i_sb->s_id, dir->i_ino, dentry); 1890 1891 trace_nfs_rmdir_enter(dir, dentry); 1892 if (d_really_is_positive(dentry)) { 1893 down_write(&NFS_I(d_inode(dentry))->rmdir_sem); 1894 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1895 /* Ensure the VFS deletes this inode */ 1896 switch (error) { 1897 case 0: 1898 clear_nlink(d_inode(dentry)); 1899 break; 1900 case -ENOENT: 1901 nfs_dentry_handle_enoent(dentry); 1902 } 1903 up_write(&NFS_I(d_inode(dentry))->rmdir_sem); 1904 } else 1905 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1906 trace_nfs_rmdir_exit(dir, dentry, error); 1907 1908 return error; 1909 } 1910 EXPORT_SYMBOL_GPL(nfs_rmdir); 1911 1912 /* 1913 * Remove a file after making sure there are no pending writes, 1914 * and after checking that the file has only one user. 1915 * 1916 * We invalidate the attribute cache and free the inode prior to the operation 1917 * to avoid possible races if the server reuses the inode. 1918 */ 1919 static int nfs_safe_remove(struct dentry *dentry) 1920 { 1921 struct inode *dir = d_inode(dentry->d_parent); 1922 struct inode *inode = d_inode(dentry); 1923 int error = -EBUSY; 1924 1925 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry); 1926 1927 /* If the dentry was sillyrenamed, we simply call d_delete() */ 1928 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1929 error = 0; 1930 goto out; 1931 } 1932 1933 trace_nfs_remove_enter(dir, dentry); 1934 if (inode != NULL) { 1935 error = NFS_PROTO(dir)->remove(dir, dentry); 1936 if (error == 0) 1937 nfs_drop_nlink(inode); 1938 } else 1939 error = NFS_PROTO(dir)->remove(dir, dentry); 1940 if (error == -ENOENT) 1941 nfs_dentry_handle_enoent(dentry); 1942 trace_nfs_remove_exit(dir, dentry, error); 1943 out: 1944 return error; 1945 } 1946 1947 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode 1948 * belongs to an active ".nfs..." file and we return -EBUSY. 1949 * 1950 * If sillyrename() returns 0, we do nothing, otherwise we unlink. 1951 */ 1952 int nfs_unlink(struct inode *dir, struct dentry *dentry) 1953 { 1954 int error; 1955 int need_rehash = 0; 1956 1957 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id, 1958 dir->i_ino, dentry); 1959 1960 trace_nfs_unlink_enter(dir, dentry); 1961 spin_lock(&dentry->d_lock); 1962 if (d_count(dentry) > 1) { 1963 spin_unlock(&dentry->d_lock); 1964 /* Start asynchronous writeout of the inode */ 1965 write_inode_now(d_inode(dentry), 0); 1966 error = nfs_sillyrename(dir, dentry); 1967 goto out; 1968 } 1969 if (!d_unhashed(dentry)) { 1970 __d_drop(dentry); 1971 need_rehash = 1; 1972 } 1973 spin_unlock(&dentry->d_lock); 1974 error = nfs_safe_remove(dentry); 1975 if (!error || error == -ENOENT) { 1976 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1977 } else if (need_rehash) 1978 d_rehash(dentry); 1979 out: 1980 trace_nfs_unlink_exit(dir, dentry, error); 1981 return error; 1982 } 1983 EXPORT_SYMBOL_GPL(nfs_unlink); 1984 1985 /* 1986 * To create a symbolic link, most file systems instantiate a new inode, 1987 * add a page to it containing the path, then write it out to the disk 1988 * using prepare_write/commit_write. 1989 * 1990 * Unfortunately the NFS client can't create the in-core inode first 1991 * because it needs a file handle to create an in-core inode (see 1992 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the 1993 * symlink request has completed on the server. 1994 * 1995 * So instead we allocate a raw page, copy the symname into it, then do 1996 * the SYMLINK request with the page as the buffer. If it succeeds, we 1997 * now have a new file handle and can instantiate an in-core NFS inode 1998 * and move the raw page into its mapping. 1999 */ 2000 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 2001 { 2002 struct page *page; 2003 char *kaddr; 2004 struct iattr attr; 2005 unsigned int pathlen = strlen(symname); 2006 int error; 2007 2008 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id, 2009 dir->i_ino, dentry, symname); 2010 2011 if (pathlen > PAGE_SIZE) 2012 return -ENAMETOOLONG; 2013 2014 attr.ia_mode = S_IFLNK | S_IRWXUGO; 2015 attr.ia_valid = ATTR_MODE; 2016 2017 page = alloc_page(GFP_USER); 2018 if (!page) 2019 return -ENOMEM; 2020 2021 kaddr = page_address(page); 2022 memcpy(kaddr, symname, pathlen); 2023 if (pathlen < PAGE_SIZE) 2024 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen); 2025 2026 trace_nfs_symlink_enter(dir, dentry); 2027 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr); 2028 trace_nfs_symlink_exit(dir, dentry, error); 2029 if (error != 0) { 2030 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n", 2031 dir->i_sb->s_id, dir->i_ino, 2032 dentry, symname, error); 2033 d_drop(dentry); 2034 __free_page(page); 2035 return error; 2036 } 2037 2038 /* 2039 * No big deal if we can't add this page to the page cache here. 2040 * READLINK will get the missing page from the server if needed. 2041 */ 2042 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0, 2043 GFP_KERNEL)) { 2044 SetPageUptodate(page); 2045 unlock_page(page); 2046 /* 2047 * add_to_page_cache_lru() grabs an extra page refcount. 2048 * Drop it here to avoid leaking this page later. 2049 */ 2050 put_page(page); 2051 } else 2052 __free_page(page); 2053 2054 return 0; 2055 } 2056 EXPORT_SYMBOL_GPL(nfs_symlink); 2057 2058 int 2059 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2060 { 2061 struct inode *inode = d_inode(old_dentry); 2062 int error; 2063 2064 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n", 2065 old_dentry, dentry); 2066 2067 trace_nfs_link_enter(inode, dir, dentry); 2068 d_drop(dentry); 2069 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name); 2070 if (error == 0) { 2071 ihold(inode); 2072 d_add(dentry, inode); 2073 } 2074 trace_nfs_link_exit(inode, dir, dentry, error); 2075 return error; 2076 } 2077 EXPORT_SYMBOL_GPL(nfs_link); 2078 2079 /* 2080 * RENAME 2081 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a 2082 * different file handle for the same inode after a rename (e.g. when 2083 * moving to a different directory). A fail-safe method to do so would 2084 * be to look up old_dir/old_name, create a link to new_dir/new_name and 2085 * rename the old file using the sillyrename stuff. This way, the original 2086 * file in old_dir will go away when the last process iput()s the inode. 2087 * 2088 * FIXED. 2089 * 2090 * It actually works quite well. One needs to have the possibility for 2091 * at least one ".nfs..." file in each directory the file ever gets 2092 * moved or linked to which happens automagically with the new 2093 * implementation that only depends on the dcache stuff instead of 2094 * using the inode layer 2095 * 2096 * Unfortunately, things are a little more complicated than indicated 2097 * above. For a cross-directory move, we want to make sure we can get 2098 * rid of the old inode after the operation. This means there must be 2099 * no pending writes (if it's a file), and the use count must be 1. 2100 * If these conditions are met, we can drop the dentries before doing 2101 * the rename. 2102 */ 2103 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry, 2104 struct inode *new_dir, struct dentry *new_dentry, 2105 unsigned int flags) 2106 { 2107 struct inode *old_inode = d_inode(old_dentry); 2108 struct inode *new_inode = d_inode(new_dentry); 2109 struct dentry *dentry = NULL, *rehash = NULL; 2110 struct rpc_task *task; 2111 int error = -EBUSY; 2112 2113 if (flags) 2114 return -EINVAL; 2115 2116 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n", 2117 old_dentry, new_dentry, 2118 d_count(new_dentry)); 2119 2120 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry); 2121 /* 2122 * For non-directories, check whether the target is busy and if so, 2123 * make a copy of the dentry and then do a silly-rename. If the 2124 * silly-rename succeeds, the copied dentry is hashed and becomes 2125 * the new target. 2126 */ 2127 if (new_inode && !S_ISDIR(new_inode->i_mode)) { 2128 /* 2129 * To prevent any new references to the target during the 2130 * rename, we unhash the dentry in advance. 2131 */ 2132 if (!d_unhashed(new_dentry)) { 2133 d_drop(new_dentry); 2134 rehash = new_dentry; 2135 } 2136 2137 if (d_count(new_dentry) > 2) { 2138 int err; 2139 2140 /* copy the target dentry's name */ 2141 dentry = d_alloc(new_dentry->d_parent, 2142 &new_dentry->d_name); 2143 if (!dentry) 2144 goto out; 2145 2146 /* silly-rename the existing target ... */ 2147 err = nfs_sillyrename(new_dir, new_dentry); 2148 if (err) 2149 goto out; 2150 2151 new_dentry = dentry; 2152 rehash = NULL; 2153 new_inode = NULL; 2154 } 2155 } 2156 2157 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL); 2158 if (IS_ERR(task)) { 2159 error = PTR_ERR(task); 2160 goto out; 2161 } 2162 2163 error = rpc_wait_for_completion_task(task); 2164 if (error != 0) { 2165 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1; 2166 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */ 2167 smp_wmb(); 2168 } else 2169 error = task->tk_status; 2170 rpc_put_task(task); 2171 /* Ensure the inode attributes are revalidated */ 2172 if (error == 0) { 2173 spin_lock(&old_inode->i_lock); 2174 NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter(); 2175 NFS_I(old_inode)->cache_validity |= NFS_INO_INVALID_CHANGE 2176 | NFS_INO_INVALID_CTIME 2177 | NFS_INO_REVAL_FORCED; 2178 spin_unlock(&old_inode->i_lock); 2179 } 2180 out: 2181 if (rehash) 2182 d_rehash(rehash); 2183 trace_nfs_rename_exit(old_dir, old_dentry, 2184 new_dir, new_dentry, error); 2185 if (!error) { 2186 if (new_inode != NULL) 2187 nfs_drop_nlink(new_inode); 2188 /* 2189 * The d_move() should be here instead of in an async RPC completion 2190 * handler because we need the proper locks to move the dentry. If 2191 * we're interrupted by a signal, the async RPC completion handler 2192 * should mark the directories for revalidation. 2193 */ 2194 d_move(old_dentry, new_dentry); 2195 nfs_set_verifier(old_dentry, 2196 nfs_save_change_attribute(new_dir)); 2197 } else if (error == -ENOENT) 2198 nfs_dentry_handle_enoent(old_dentry); 2199 2200 /* new dentry created? */ 2201 if (dentry) 2202 dput(dentry); 2203 return error; 2204 } 2205 EXPORT_SYMBOL_GPL(nfs_rename); 2206 2207 static DEFINE_SPINLOCK(nfs_access_lru_lock); 2208 static LIST_HEAD(nfs_access_lru_list); 2209 static atomic_long_t nfs_access_nr_entries; 2210 2211 static unsigned long nfs_access_max_cachesize = ULONG_MAX; 2212 module_param(nfs_access_max_cachesize, ulong, 0644); 2213 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length"); 2214 2215 static void nfs_access_free_entry(struct nfs_access_entry *entry) 2216 { 2217 put_cred(entry->cred); 2218 kfree_rcu(entry, rcu_head); 2219 smp_mb__before_atomic(); 2220 atomic_long_dec(&nfs_access_nr_entries); 2221 smp_mb__after_atomic(); 2222 } 2223 2224 static void nfs_access_free_list(struct list_head *head) 2225 { 2226 struct nfs_access_entry *cache; 2227 2228 while (!list_empty(head)) { 2229 cache = list_entry(head->next, struct nfs_access_entry, lru); 2230 list_del(&cache->lru); 2231 nfs_access_free_entry(cache); 2232 } 2233 } 2234 2235 static unsigned long 2236 nfs_do_access_cache_scan(unsigned int nr_to_scan) 2237 { 2238 LIST_HEAD(head); 2239 struct nfs_inode *nfsi, *next; 2240 struct nfs_access_entry *cache; 2241 long freed = 0; 2242 2243 spin_lock(&nfs_access_lru_lock); 2244 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) { 2245 struct inode *inode; 2246 2247 if (nr_to_scan-- == 0) 2248 break; 2249 inode = &nfsi->vfs_inode; 2250 spin_lock(&inode->i_lock); 2251 if (list_empty(&nfsi->access_cache_entry_lru)) 2252 goto remove_lru_entry; 2253 cache = list_entry(nfsi->access_cache_entry_lru.next, 2254 struct nfs_access_entry, lru); 2255 list_move(&cache->lru, &head); 2256 rb_erase(&cache->rb_node, &nfsi->access_cache); 2257 freed++; 2258 if (!list_empty(&nfsi->access_cache_entry_lru)) 2259 list_move_tail(&nfsi->access_cache_inode_lru, 2260 &nfs_access_lru_list); 2261 else { 2262 remove_lru_entry: 2263 list_del_init(&nfsi->access_cache_inode_lru); 2264 smp_mb__before_atomic(); 2265 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags); 2266 smp_mb__after_atomic(); 2267 } 2268 spin_unlock(&inode->i_lock); 2269 } 2270 spin_unlock(&nfs_access_lru_lock); 2271 nfs_access_free_list(&head); 2272 return freed; 2273 } 2274 2275 unsigned long 2276 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc) 2277 { 2278 int nr_to_scan = sc->nr_to_scan; 2279 gfp_t gfp_mask = sc->gfp_mask; 2280 2281 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL) 2282 return SHRINK_STOP; 2283 return nfs_do_access_cache_scan(nr_to_scan); 2284 } 2285 2286 2287 unsigned long 2288 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc) 2289 { 2290 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries)); 2291 } 2292 2293 static void 2294 nfs_access_cache_enforce_limit(void) 2295 { 2296 long nr_entries = atomic_long_read(&nfs_access_nr_entries); 2297 unsigned long diff; 2298 unsigned int nr_to_scan; 2299 2300 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize) 2301 return; 2302 nr_to_scan = 100; 2303 diff = nr_entries - nfs_access_max_cachesize; 2304 if (diff < nr_to_scan) 2305 nr_to_scan = diff; 2306 nfs_do_access_cache_scan(nr_to_scan); 2307 } 2308 2309 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head) 2310 { 2311 struct rb_root *root_node = &nfsi->access_cache; 2312 struct rb_node *n; 2313 struct nfs_access_entry *entry; 2314 2315 /* Unhook entries from the cache */ 2316 while ((n = rb_first(root_node)) != NULL) { 2317 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2318 rb_erase(n, root_node); 2319 list_move(&entry->lru, head); 2320 } 2321 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS; 2322 } 2323 2324 void nfs_access_zap_cache(struct inode *inode) 2325 { 2326 LIST_HEAD(head); 2327 2328 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0) 2329 return; 2330 /* Remove from global LRU init */ 2331 spin_lock(&nfs_access_lru_lock); 2332 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2333 list_del_init(&NFS_I(inode)->access_cache_inode_lru); 2334 2335 spin_lock(&inode->i_lock); 2336 __nfs_access_zap_cache(NFS_I(inode), &head); 2337 spin_unlock(&inode->i_lock); 2338 spin_unlock(&nfs_access_lru_lock); 2339 nfs_access_free_list(&head); 2340 } 2341 EXPORT_SYMBOL_GPL(nfs_access_zap_cache); 2342 2343 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred) 2344 { 2345 struct rb_node *n = NFS_I(inode)->access_cache.rb_node; 2346 2347 while (n != NULL) { 2348 struct nfs_access_entry *entry = 2349 rb_entry(n, struct nfs_access_entry, rb_node); 2350 int cmp = cred_fscmp(cred, entry->cred); 2351 2352 if (cmp < 0) 2353 n = n->rb_left; 2354 else if (cmp > 0) 2355 n = n->rb_right; 2356 else 2357 return entry; 2358 } 2359 return NULL; 2360 } 2361 2362 static int nfs_access_get_cached(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res, bool may_block) 2363 { 2364 struct nfs_inode *nfsi = NFS_I(inode); 2365 struct nfs_access_entry *cache; 2366 bool retry = true; 2367 int err; 2368 2369 spin_lock(&inode->i_lock); 2370 for(;;) { 2371 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2372 goto out_zap; 2373 cache = nfs_access_search_rbtree(inode, cred); 2374 err = -ENOENT; 2375 if (cache == NULL) 2376 goto out; 2377 /* Found an entry, is our attribute cache valid? */ 2378 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) 2379 break; 2380 err = -ECHILD; 2381 if (!may_block) 2382 goto out; 2383 if (!retry) 2384 goto out_zap; 2385 spin_unlock(&inode->i_lock); 2386 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode); 2387 if (err) 2388 return err; 2389 spin_lock(&inode->i_lock); 2390 retry = false; 2391 } 2392 res->cred = cache->cred; 2393 res->mask = cache->mask; 2394 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru); 2395 err = 0; 2396 out: 2397 spin_unlock(&inode->i_lock); 2398 return err; 2399 out_zap: 2400 spin_unlock(&inode->i_lock); 2401 nfs_access_zap_cache(inode); 2402 return -ENOENT; 2403 } 2404 2405 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res) 2406 { 2407 /* Only check the most recently returned cache entry, 2408 * but do it without locking. 2409 */ 2410 struct nfs_inode *nfsi = NFS_I(inode); 2411 struct nfs_access_entry *cache; 2412 int err = -ECHILD; 2413 struct list_head *lh; 2414 2415 rcu_read_lock(); 2416 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2417 goto out; 2418 lh = rcu_dereference(nfsi->access_cache_entry_lru.prev); 2419 cache = list_entry(lh, struct nfs_access_entry, lru); 2420 if (lh == &nfsi->access_cache_entry_lru || 2421 cred != cache->cred) 2422 cache = NULL; 2423 if (cache == NULL) 2424 goto out; 2425 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) 2426 goto out; 2427 res->cred = cache->cred; 2428 res->mask = cache->mask; 2429 err = 0; 2430 out: 2431 rcu_read_unlock(); 2432 return err; 2433 } 2434 2435 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set) 2436 { 2437 struct nfs_inode *nfsi = NFS_I(inode); 2438 struct rb_root *root_node = &nfsi->access_cache; 2439 struct rb_node **p = &root_node->rb_node; 2440 struct rb_node *parent = NULL; 2441 struct nfs_access_entry *entry; 2442 int cmp; 2443 2444 spin_lock(&inode->i_lock); 2445 while (*p != NULL) { 2446 parent = *p; 2447 entry = rb_entry(parent, struct nfs_access_entry, rb_node); 2448 cmp = cred_fscmp(set->cred, entry->cred); 2449 2450 if (cmp < 0) 2451 p = &parent->rb_left; 2452 else if (cmp > 0) 2453 p = &parent->rb_right; 2454 else 2455 goto found; 2456 } 2457 rb_link_node(&set->rb_node, parent, p); 2458 rb_insert_color(&set->rb_node, root_node); 2459 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2460 spin_unlock(&inode->i_lock); 2461 return; 2462 found: 2463 rb_replace_node(parent, &set->rb_node, root_node); 2464 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2465 list_del(&entry->lru); 2466 spin_unlock(&inode->i_lock); 2467 nfs_access_free_entry(entry); 2468 } 2469 2470 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set) 2471 { 2472 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL); 2473 if (cache == NULL) 2474 return; 2475 RB_CLEAR_NODE(&cache->rb_node); 2476 cache->cred = get_cred(set->cred); 2477 cache->mask = set->mask; 2478 2479 /* The above field assignments must be visible 2480 * before this item appears on the lru. We cannot easily 2481 * use rcu_assign_pointer, so just force the memory barrier. 2482 */ 2483 smp_wmb(); 2484 nfs_access_add_rbtree(inode, cache); 2485 2486 /* Update accounting */ 2487 smp_mb__before_atomic(); 2488 atomic_long_inc(&nfs_access_nr_entries); 2489 smp_mb__after_atomic(); 2490 2491 /* Add inode to global LRU list */ 2492 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) { 2493 spin_lock(&nfs_access_lru_lock); 2494 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2495 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, 2496 &nfs_access_lru_list); 2497 spin_unlock(&nfs_access_lru_lock); 2498 } 2499 nfs_access_cache_enforce_limit(); 2500 } 2501 EXPORT_SYMBOL_GPL(nfs_access_add_cache); 2502 2503 #define NFS_MAY_READ (NFS_ACCESS_READ) 2504 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \ 2505 NFS_ACCESS_EXTEND | \ 2506 NFS_ACCESS_DELETE) 2507 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \ 2508 NFS_ACCESS_EXTEND) 2509 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE 2510 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP) 2511 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE) 2512 static int 2513 nfs_access_calc_mask(u32 access_result, umode_t umode) 2514 { 2515 int mask = 0; 2516 2517 if (access_result & NFS_MAY_READ) 2518 mask |= MAY_READ; 2519 if (S_ISDIR(umode)) { 2520 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE) 2521 mask |= MAY_WRITE; 2522 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP) 2523 mask |= MAY_EXEC; 2524 } else if (S_ISREG(umode)) { 2525 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE) 2526 mask |= MAY_WRITE; 2527 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE) 2528 mask |= MAY_EXEC; 2529 } else if (access_result & NFS_MAY_WRITE) 2530 mask |= MAY_WRITE; 2531 return mask; 2532 } 2533 2534 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result) 2535 { 2536 entry->mask = access_result; 2537 } 2538 EXPORT_SYMBOL_GPL(nfs_access_set_mask); 2539 2540 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask) 2541 { 2542 struct nfs_access_entry cache; 2543 bool may_block = (mask & MAY_NOT_BLOCK) == 0; 2544 int cache_mask; 2545 int status; 2546 2547 trace_nfs_access_enter(inode); 2548 2549 status = nfs_access_get_cached_rcu(inode, cred, &cache); 2550 if (status != 0) 2551 status = nfs_access_get_cached(inode, cred, &cache, may_block); 2552 if (status == 0) 2553 goto out_cached; 2554 2555 status = -ECHILD; 2556 if (!may_block) 2557 goto out; 2558 2559 /* 2560 * Determine which access bits we want to ask for... 2561 */ 2562 cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND; 2563 if (S_ISDIR(inode->i_mode)) 2564 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP; 2565 else 2566 cache.mask |= NFS_ACCESS_EXECUTE; 2567 cache.cred = cred; 2568 status = NFS_PROTO(inode)->access(inode, &cache); 2569 if (status != 0) { 2570 if (status == -ESTALE) { 2571 nfs_zap_caches(inode); 2572 if (!S_ISDIR(inode->i_mode)) 2573 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags); 2574 } 2575 goto out; 2576 } 2577 nfs_access_add_cache(inode, &cache); 2578 out_cached: 2579 cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode); 2580 if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0) 2581 status = -EACCES; 2582 out: 2583 trace_nfs_access_exit(inode, status); 2584 return status; 2585 } 2586 2587 static int nfs_open_permission_mask(int openflags) 2588 { 2589 int mask = 0; 2590 2591 if (openflags & __FMODE_EXEC) { 2592 /* ONLY check exec rights */ 2593 mask = MAY_EXEC; 2594 } else { 2595 if ((openflags & O_ACCMODE) != O_WRONLY) 2596 mask |= MAY_READ; 2597 if ((openflags & O_ACCMODE) != O_RDONLY) 2598 mask |= MAY_WRITE; 2599 } 2600 2601 return mask; 2602 } 2603 2604 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags) 2605 { 2606 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags)); 2607 } 2608 EXPORT_SYMBOL_GPL(nfs_may_open); 2609 2610 static int nfs_execute_ok(struct inode *inode, int mask) 2611 { 2612 struct nfs_server *server = NFS_SERVER(inode); 2613 int ret = 0; 2614 2615 if (S_ISDIR(inode->i_mode)) 2616 return 0; 2617 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_OTHER)) { 2618 if (mask & MAY_NOT_BLOCK) 2619 return -ECHILD; 2620 ret = __nfs_revalidate_inode(server, inode); 2621 } 2622 if (ret == 0 && !execute_ok(inode)) 2623 ret = -EACCES; 2624 return ret; 2625 } 2626 2627 int nfs_permission(struct inode *inode, int mask) 2628 { 2629 const struct cred *cred = current_cred(); 2630 int res = 0; 2631 2632 nfs_inc_stats(inode, NFSIOS_VFSACCESS); 2633 2634 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 2635 goto out; 2636 /* Is this sys_access() ? */ 2637 if (mask & (MAY_ACCESS | MAY_CHDIR)) 2638 goto force_lookup; 2639 2640 switch (inode->i_mode & S_IFMT) { 2641 case S_IFLNK: 2642 goto out; 2643 case S_IFREG: 2644 if ((mask & MAY_OPEN) && 2645 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)) 2646 return 0; 2647 break; 2648 case S_IFDIR: 2649 /* 2650 * Optimize away all write operations, since the server 2651 * will check permissions when we perform the op. 2652 */ 2653 if ((mask & MAY_WRITE) && !(mask & MAY_READ)) 2654 goto out; 2655 } 2656 2657 force_lookup: 2658 if (!NFS_PROTO(inode)->access) 2659 goto out_notsup; 2660 2661 /* Always try fast lookups first */ 2662 rcu_read_lock(); 2663 res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK); 2664 rcu_read_unlock(); 2665 if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) { 2666 /* Fast lookup failed, try the slow way */ 2667 res = nfs_do_access(inode, cred, mask); 2668 } 2669 out: 2670 if (!res && (mask & MAY_EXEC)) 2671 res = nfs_execute_ok(inode, mask); 2672 2673 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n", 2674 inode->i_sb->s_id, inode->i_ino, mask, res); 2675 return res; 2676 out_notsup: 2677 if (mask & MAY_NOT_BLOCK) 2678 return -ECHILD; 2679 2680 res = nfs_revalidate_inode(NFS_SERVER(inode), inode); 2681 if (res == 0) 2682 res = generic_permission(inode, mask); 2683 goto out; 2684 } 2685 EXPORT_SYMBOL_GPL(nfs_permission); 2686 2687 /* 2688 * Local variables: 2689 * version-control: t 2690 * kept-new-versions: 5 2691 * End: 2692 */ 2693