xref: /openbmc/linux/fs/nfs/dir.c (revision ab3a560a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/nfs/dir.c
4  *
5  *  Copyright (C) 1992  Rick Sladkey
6  *
7  *  nfs directory handling functions
8  *
9  * 10 Apr 1996	Added silly rename for unlink	--okir
10  * 28 Sep 1996	Improved directory cache --okir
11  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
12  *              Re-implemented silly rename for unlink, newly implemented
13  *              silly rename for nfs_rename() following the suggestions
14  *              of Olaf Kirch (okir) found in this file.
15  *              Following Linus comments on my original hack, this version
16  *              depends only on the dcache stuff and doesn't touch the inode
17  *              layer (iput() and friends).
18  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
19  */
20 
21 #include <linux/compat.h>
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/errno.h>
25 #include <linux/stat.h>
26 #include <linux/fcntl.h>
27 #include <linux/string.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/mm.h>
31 #include <linux/sunrpc/clnt.h>
32 #include <linux/nfs_fs.h>
33 #include <linux/nfs_mount.h>
34 #include <linux/pagemap.h>
35 #include <linux/pagevec.h>
36 #include <linux/namei.h>
37 #include <linux/mount.h>
38 #include <linux/swap.h>
39 #include <linux/sched.h>
40 #include <linux/kmemleak.h>
41 #include <linux/xattr.h>
42 #include <linux/xxhash.h>
43 
44 #include "delegation.h"
45 #include "iostat.h"
46 #include "internal.h"
47 #include "fscache.h"
48 
49 #include "nfstrace.h"
50 
51 /* #define NFS_DEBUG_VERBOSE 1 */
52 
53 static int nfs_opendir(struct inode *, struct file *);
54 static int nfs_closedir(struct inode *, struct file *);
55 static int nfs_readdir(struct file *, struct dir_context *);
56 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
57 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
58 static void nfs_readdir_clear_array(struct page*);
59 
60 const struct file_operations nfs_dir_operations = {
61 	.llseek		= nfs_llseek_dir,
62 	.read		= generic_read_dir,
63 	.iterate_shared	= nfs_readdir,
64 	.open		= nfs_opendir,
65 	.release	= nfs_closedir,
66 	.fsync		= nfs_fsync_dir,
67 };
68 
69 const struct address_space_operations nfs_dir_aops = {
70 	.freepage = nfs_readdir_clear_array,
71 };
72 
73 #define NFS_INIT_DTSIZE PAGE_SIZE
74 
75 static struct nfs_open_dir_context *
76 alloc_nfs_open_dir_context(struct inode *dir)
77 {
78 	struct nfs_inode *nfsi = NFS_I(dir);
79 	struct nfs_open_dir_context *ctx;
80 
81 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL_ACCOUNT);
82 	if (ctx != NULL) {
83 		ctx->attr_gencount = nfsi->attr_gencount;
84 		ctx->dtsize = NFS_INIT_DTSIZE;
85 		spin_lock(&dir->i_lock);
86 		if (list_empty(&nfsi->open_files) &&
87 		    (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
88 			nfs_set_cache_invalid(dir,
89 					      NFS_INO_INVALID_DATA |
90 						      NFS_INO_REVAL_FORCED);
91 		list_add_tail_rcu(&ctx->list, &nfsi->open_files);
92 		memcpy(ctx->verf, nfsi->cookieverf, sizeof(ctx->verf));
93 		spin_unlock(&dir->i_lock);
94 		return ctx;
95 	}
96 	return  ERR_PTR(-ENOMEM);
97 }
98 
99 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
100 {
101 	spin_lock(&dir->i_lock);
102 	list_del_rcu(&ctx->list);
103 	spin_unlock(&dir->i_lock);
104 	kfree_rcu(ctx, rcu_head);
105 }
106 
107 /*
108  * Open file
109  */
110 static int
111 nfs_opendir(struct inode *inode, struct file *filp)
112 {
113 	int res = 0;
114 	struct nfs_open_dir_context *ctx;
115 
116 	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
117 
118 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
119 
120 	ctx = alloc_nfs_open_dir_context(inode);
121 	if (IS_ERR(ctx)) {
122 		res = PTR_ERR(ctx);
123 		goto out;
124 	}
125 	filp->private_data = ctx;
126 out:
127 	return res;
128 }
129 
130 static int
131 nfs_closedir(struct inode *inode, struct file *filp)
132 {
133 	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
134 	return 0;
135 }
136 
137 struct nfs_cache_array_entry {
138 	u64 cookie;
139 	u64 ino;
140 	const char *name;
141 	unsigned int name_len;
142 	unsigned char d_type;
143 };
144 
145 struct nfs_cache_array {
146 	u64 change_attr;
147 	u64 last_cookie;
148 	unsigned int size;
149 	unsigned char page_full : 1,
150 		      page_is_eof : 1,
151 		      cookies_are_ordered : 1;
152 	struct nfs_cache_array_entry array[];
153 };
154 
155 struct nfs_readdir_descriptor {
156 	struct file	*file;
157 	struct page	*page;
158 	struct dir_context *ctx;
159 	pgoff_t		page_index;
160 	pgoff_t		page_index_max;
161 	u64		dir_cookie;
162 	u64		last_cookie;
163 	loff_t		current_index;
164 
165 	__be32		verf[NFS_DIR_VERIFIER_SIZE];
166 	unsigned long	dir_verifier;
167 	unsigned long	timestamp;
168 	unsigned long	gencount;
169 	unsigned long	attr_gencount;
170 	unsigned int	cache_entry_index;
171 	unsigned int	buffer_fills;
172 	unsigned int	dtsize;
173 	bool clear_cache;
174 	bool plus;
175 	bool eob;
176 	bool eof;
177 };
178 
179 static void nfs_set_dtsize(struct nfs_readdir_descriptor *desc, unsigned int sz)
180 {
181 	struct nfs_server *server = NFS_SERVER(file_inode(desc->file));
182 	unsigned int maxsize = server->dtsize;
183 
184 	if (sz > maxsize)
185 		sz = maxsize;
186 	if (sz < NFS_MIN_FILE_IO_SIZE)
187 		sz = NFS_MIN_FILE_IO_SIZE;
188 	desc->dtsize = sz;
189 }
190 
191 static void nfs_shrink_dtsize(struct nfs_readdir_descriptor *desc)
192 {
193 	nfs_set_dtsize(desc, desc->dtsize >> 1);
194 }
195 
196 static void nfs_grow_dtsize(struct nfs_readdir_descriptor *desc)
197 {
198 	nfs_set_dtsize(desc, desc->dtsize << 1);
199 }
200 
201 static void nfs_readdir_page_init_array(struct page *page, u64 last_cookie,
202 					u64 change_attr)
203 {
204 	struct nfs_cache_array *array;
205 
206 	array = kmap_atomic(page);
207 	array->change_attr = change_attr;
208 	array->last_cookie = last_cookie;
209 	array->size = 0;
210 	array->page_full = 0;
211 	array->page_is_eof = 0;
212 	array->cookies_are_ordered = 1;
213 	kunmap_atomic(array);
214 }
215 
216 /*
217  * we are freeing strings created by nfs_add_to_readdir_array()
218  */
219 static void nfs_readdir_clear_array(struct page *page)
220 {
221 	struct nfs_cache_array *array;
222 	unsigned int i;
223 
224 	array = kmap_atomic(page);
225 	for (i = 0; i < array->size; i++)
226 		kfree(array->array[i].name);
227 	array->size = 0;
228 	kunmap_atomic(array);
229 }
230 
231 static void nfs_readdir_page_reinit_array(struct page *page, u64 last_cookie,
232 					  u64 change_attr)
233 {
234 	nfs_readdir_clear_array(page);
235 	nfs_readdir_page_init_array(page, last_cookie, change_attr);
236 }
237 
238 static struct page *
239 nfs_readdir_page_array_alloc(u64 last_cookie, gfp_t gfp_flags)
240 {
241 	struct page *page = alloc_page(gfp_flags);
242 	if (page)
243 		nfs_readdir_page_init_array(page, last_cookie, 0);
244 	return page;
245 }
246 
247 static void nfs_readdir_page_array_free(struct page *page)
248 {
249 	if (page) {
250 		nfs_readdir_clear_array(page);
251 		put_page(page);
252 	}
253 }
254 
255 static u64 nfs_readdir_array_index_cookie(struct nfs_cache_array *array)
256 {
257 	return array->size == 0 ? array->last_cookie : array->array[0].cookie;
258 }
259 
260 static void nfs_readdir_array_set_eof(struct nfs_cache_array *array)
261 {
262 	array->page_is_eof = 1;
263 	array->page_full = 1;
264 }
265 
266 static bool nfs_readdir_array_is_full(struct nfs_cache_array *array)
267 {
268 	return array->page_full;
269 }
270 
271 /*
272  * the caller is responsible for freeing qstr.name
273  * when called by nfs_readdir_add_to_array, the strings will be freed in
274  * nfs_clear_readdir_array()
275  */
276 static const char *nfs_readdir_copy_name(const char *name, unsigned int len)
277 {
278 	const char *ret = kmemdup_nul(name, len, GFP_KERNEL);
279 
280 	/*
281 	 * Avoid a kmemleak false positive. The pointer to the name is stored
282 	 * in a page cache page which kmemleak does not scan.
283 	 */
284 	if (ret != NULL)
285 		kmemleak_not_leak(ret);
286 	return ret;
287 }
288 
289 static size_t nfs_readdir_array_maxentries(void)
290 {
291 	return (PAGE_SIZE - sizeof(struct nfs_cache_array)) /
292 	       sizeof(struct nfs_cache_array_entry);
293 }
294 
295 /*
296  * Check that the next array entry lies entirely within the page bounds
297  */
298 static int nfs_readdir_array_can_expand(struct nfs_cache_array *array)
299 {
300 	if (array->page_full)
301 		return -ENOSPC;
302 	if (array->size == nfs_readdir_array_maxentries()) {
303 		array->page_full = 1;
304 		return -ENOSPC;
305 	}
306 	return 0;
307 }
308 
309 static int nfs_readdir_page_array_append(struct page *page,
310 					 const struct nfs_entry *entry,
311 					 u64 *cookie)
312 {
313 	struct nfs_cache_array *array;
314 	struct nfs_cache_array_entry *cache_entry;
315 	const char *name;
316 	int ret = -ENOMEM;
317 
318 	name = nfs_readdir_copy_name(entry->name, entry->len);
319 
320 	array = kmap_atomic(page);
321 	if (!name)
322 		goto out;
323 	ret = nfs_readdir_array_can_expand(array);
324 	if (ret) {
325 		kfree(name);
326 		goto out;
327 	}
328 
329 	cache_entry = &array->array[array->size];
330 	cache_entry->cookie = array->last_cookie;
331 	cache_entry->ino = entry->ino;
332 	cache_entry->d_type = entry->d_type;
333 	cache_entry->name_len = entry->len;
334 	cache_entry->name = name;
335 	array->last_cookie = entry->cookie;
336 	if (array->last_cookie <= cache_entry->cookie)
337 		array->cookies_are_ordered = 0;
338 	array->size++;
339 	if (entry->eof != 0)
340 		nfs_readdir_array_set_eof(array);
341 out:
342 	*cookie = array->last_cookie;
343 	kunmap_atomic(array);
344 	return ret;
345 }
346 
347 #define NFS_READDIR_COOKIE_MASK (U32_MAX >> 14)
348 /*
349  * Hash algorithm allowing content addressible access to sequences
350  * of directory cookies. Content is addressed by the value of the
351  * cookie index of the first readdir entry in a page.
352  *
353  * The xxhash algorithm is chosen because it is fast, and is supposed
354  * to result in a decent flat distribution of hashes.
355  *
356  * We then select only the first 18 bits to avoid issues with excessive
357  * memory use for the page cache XArray. 18 bits should allow the caching
358  * of 262144 pages of sequences of readdir entries. Since each page holds
359  * 127 readdir entries for a typical 64-bit system, that works out to a
360  * cache of ~ 33 million entries per directory.
361  */
362 static pgoff_t nfs_readdir_page_cookie_hash(u64 cookie)
363 {
364 	if (cookie == 0)
365 		return 0;
366 	return xxhash(&cookie, sizeof(cookie), 0) & NFS_READDIR_COOKIE_MASK;
367 }
368 
369 static bool nfs_readdir_page_validate(struct page *page, u64 last_cookie,
370 				      u64 change_attr)
371 {
372 	struct nfs_cache_array *array = kmap_atomic(page);
373 	int ret = true;
374 
375 	if (array->change_attr != change_attr)
376 		ret = false;
377 	if (nfs_readdir_array_index_cookie(array) != last_cookie)
378 		ret = false;
379 	kunmap_atomic(array);
380 	return ret;
381 }
382 
383 static void nfs_readdir_page_unlock_and_put(struct page *page)
384 {
385 	unlock_page(page);
386 	put_page(page);
387 }
388 
389 static void nfs_readdir_page_init_and_validate(struct page *page, u64 cookie,
390 					       u64 change_attr)
391 {
392 	if (PageUptodate(page)) {
393 		if (nfs_readdir_page_validate(page, cookie, change_attr))
394 			return;
395 		nfs_readdir_clear_array(page);
396 	}
397 	nfs_readdir_page_init_array(page, cookie, change_attr);
398 	SetPageUptodate(page);
399 }
400 
401 static struct page *nfs_readdir_page_get_locked(struct address_space *mapping,
402 						u64 cookie, u64 change_attr)
403 {
404 	pgoff_t index = nfs_readdir_page_cookie_hash(cookie);
405 	struct page *page;
406 
407 	page = grab_cache_page(mapping, index);
408 	if (!page)
409 		return NULL;
410 	nfs_readdir_page_init_and_validate(page, cookie, change_attr);
411 	return page;
412 }
413 
414 static u64 nfs_readdir_page_last_cookie(struct page *page)
415 {
416 	struct nfs_cache_array *array;
417 	u64 ret;
418 
419 	array = kmap_atomic(page);
420 	ret = array->last_cookie;
421 	kunmap_atomic(array);
422 	return ret;
423 }
424 
425 static bool nfs_readdir_page_needs_filling(struct page *page)
426 {
427 	struct nfs_cache_array *array;
428 	bool ret;
429 
430 	array = kmap_atomic(page);
431 	ret = !nfs_readdir_array_is_full(array);
432 	kunmap_atomic(array);
433 	return ret;
434 }
435 
436 static void nfs_readdir_page_set_eof(struct page *page)
437 {
438 	struct nfs_cache_array *array;
439 
440 	array = kmap_atomic(page);
441 	nfs_readdir_array_set_eof(array);
442 	kunmap_atomic(array);
443 }
444 
445 static struct page *nfs_readdir_page_get_next(struct address_space *mapping,
446 					      u64 cookie, u64 change_attr)
447 {
448 	pgoff_t index = nfs_readdir_page_cookie_hash(cookie);
449 	struct page *page;
450 
451 	page = grab_cache_page_nowait(mapping, index);
452 	if (!page)
453 		return NULL;
454 	nfs_readdir_page_init_and_validate(page, cookie, change_attr);
455 	if (nfs_readdir_page_last_cookie(page) != cookie)
456 		nfs_readdir_page_reinit_array(page, cookie, change_attr);
457 	return page;
458 }
459 
460 static inline
461 int is_32bit_api(void)
462 {
463 #ifdef CONFIG_COMPAT
464 	return in_compat_syscall();
465 #else
466 	return (BITS_PER_LONG == 32);
467 #endif
468 }
469 
470 static
471 bool nfs_readdir_use_cookie(const struct file *filp)
472 {
473 	if ((filp->f_mode & FMODE_32BITHASH) ||
474 	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
475 		return false;
476 	return true;
477 }
478 
479 static void nfs_readdir_seek_next_array(struct nfs_cache_array *array,
480 					struct nfs_readdir_descriptor *desc)
481 {
482 	if (array->page_full) {
483 		desc->last_cookie = array->last_cookie;
484 		desc->current_index += array->size;
485 		desc->cache_entry_index = 0;
486 		desc->page_index++;
487 	} else
488 		desc->last_cookie = nfs_readdir_array_index_cookie(array);
489 }
490 
491 static void nfs_readdir_rewind_search(struct nfs_readdir_descriptor *desc)
492 {
493 	desc->current_index = 0;
494 	desc->last_cookie = 0;
495 	desc->page_index = 0;
496 }
497 
498 static int nfs_readdir_search_for_pos(struct nfs_cache_array *array,
499 				      struct nfs_readdir_descriptor *desc)
500 {
501 	loff_t diff = desc->ctx->pos - desc->current_index;
502 	unsigned int index;
503 
504 	if (diff < 0)
505 		goto out_eof;
506 	if (diff >= array->size) {
507 		if (array->page_is_eof)
508 			goto out_eof;
509 		nfs_readdir_seek_next_array(array, desc);
510 		return -EAGAIN;
511 	}
512 
513 	index = (unsigned int)diff;
514 	desc->dir_cookie = array->array[index].cookie;
515 	desc->cache_entry_index = index;
516 	return 0;
517 out_eof:
518 	desc->eof = true;
519 	return -EBADCOOKIE;
520 }
521 
522 static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array,
523 					      u64 cookie)
524 {
525 	if (!array->cookies_are_ordered)
526 		return true;
527 	/* Optimisation for monotonically increasing cookies */
528 	if (cookie >= array->last_cookie)
529 		return false;
530 	if (array->size && cookie < array->array[0].cookie)
531 		return false;
532 	return true;
533 }
534 
535 static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array,
536 					 struct nfs_readdir_descriptor *desc)
537 {
538 	unsigned int i;
539 	int status = -EAGAIN;
540 
541 	if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie))
542 		goto check_eof;
543 
544 	for (i = 0; i < array->size; i++) {
545 		if (array->array[i].cookie == desc->dir_cookie) {
546 			if (nfs_readdir_use_cookie(desc->file))
547 				desc->ctx->pos = desc->dir_cookie;
548 			else
549 				desc->ctx->pos = desc->current_index + i;
550 			desc->cache_entry_index = i;
551 			return 0;
552 		}
553 	}
554 check_eof:
555 	if (array->page_is_eof) {
556 		status = -EBADCOOKIE;
557 		if (desc->dir_cookie == array->last_cookie)
558 			desc->eof = true;
559 	} else
560 		nfs_readdir_seek_next_array(array, desc);
561 	return status;
562 }
563 
564 static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc)
565 {
566 	struct nfs_cache_array *array;
567 	int status;
568 
569 	array = kmap_atomic(desc->page);
570 
571 	if (desc->dir_cookie == 0)
572 		status = nfs_readdir_search_for_pos(array, desc);
573 	else
574 		status = nfs_readdir_search_for_cookie(array, desc);
575 
576 	kunmap_atomic(array);
577 	return status;
578 }
579 
580 /* Fill a page with xdr information before transferring to the cache page */
581 static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc,
582 				  __be32 *verf, u64 cookie,
583 				  struct page **pages, size_t bufsize,
584 				  __be32 *verf_res)
585 {
586 	struct inode *inode = file_inode(desc->file);
587 	struct nfs_readdir_arg arg = {
588 		.dentry = file_dentry(desc->file),
589 		.cred = desc->file->f_cred,
590 		.verf = verf,
591 		.cookie = cookie,
592 		.pages = pages,
593 		.page_len = bufsize,
594 		.plus = desc->plus,
595 	};
596 	struct nfs_readdir_res res = {
597 		.verf = verf_res,
598 	};
599 	unsigned long	timestamp, gencount;
600 	int		error;
601 
602  again:
603 	timestamp = jiffies;
604 	gencount = nfs_inc_attr_generation_counter();
605 	desc->dir_verifier = nfs_save_change_attribute(inode);
606 	error = NFS_PROTO(inode)->readdir(&arg, &res);
607 	if (error < 0) {
608 		/* We requested READDIRPLUS, but the server doesn't grok it */
609 		if (error == -ENOTSUPP && desc->plus) {
610 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
611 			desc->plus = arg.plus = false;
612 			goto again;
613 		}
614 		goto error;
615 	}
616 	desc->timestamp = timestamp;
617 	desc->gencount = gencount;
618 error:
619 	return error;
620 }
621 
622 static int xdr_decode(struct nfs_readdir_descriptor *desc,
623 		      struct nfs_entry *entry, struct xdr_stream *xdr)
624 {
625 	struct inode *inode = file_inode(desc->file);
626 	int error;
627 
628 	error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
629 	if (error)
630 		return error;
631 	entry->fattr->time_start = desc->timestamp;
632 	entry->fattr->gencount = desc->gencount;
633 	return 0;
634 }
635 
636 /* Match file and dirent using either filehandle or fileid
637  * Note: caller is responsible for checking the fsid
638  */
639 static
640 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
641 {
642 	struct inode *inode;
643 	struct nfs_inode *nfsi;
644 
645 	if (d_really_is_negative(dentry))
646 		return 0;
647 
648 	inode = d_inode(dentry);
649 	if (is_bad_inode(inode) || NFS_STALE(inode))
650 		return 0;
651 
652 	nfsi = NFS_I(inode);
653 	if (entry->fattr->fileid != nfsi->fileid)
654 		return 0;
655 	if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
656 		return 0;
657 	return 1;
658 }
659 
660 #define NFS_READDIR_CACHE_USAGE_THRESHOLD (8UL)
661 
662 static bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx,
663 				unsigned int cache_hits,
664 				unsigned int cache_misses)
665 {
666 	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
667 		return false;
668 	if (ctx->pos == 0 ||
669 	    cache_hits + cache_misses > NFS_READDIR_CACHE_USAGE_THRESHOLD)
670 		return true;
671 	return false;
672 }
673 
674 /*
675  * This function is called by the getattr code to request the
676  * use of readdirplus to accelerate any future lookups in the same
677  * directory.
678  */
679 void nfs_readdir_record_entry_cache_hit(struct inode *dir)
680 {
681 	struct nfs_inode *nfsi = NFS_I(dir);
682 	struct nfs_open_dir_context *ctx;
683 
684 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
685 	    S_ISDIR(dir->i_mode)) {
686 		rcu_read_lock();
687 		list_for_each_entry_rcu (ctx, &nfsi->open_files, list)
688 			atomic_inc(&ctx->cache_hits);
689 		rcu_read_unlock();
690 	}
691 }
692 
693 /*
694  * This function is mainly for use by nfs_getattr().
695  *
696  * If this is an 'ls -l', we want to force use of readdirplus.
697  */
698 void nfs_readdir_record_entry_cache_miss(struct inode *dir)
699 {
700 	struct nfs_inode *nfsi = NFS_I(dir);
701 	struct nfs_open_dir_context *ctx;
702 
703 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
704 	    S_ISDIR(dir->i_mode)) {
705 		rcu_read_lock();
706 		list_for_each_entry_rcu (ctx, &nfsi->open_files, list)
707 			atomic_inc(&ctx->cache_misses);
708 		rcu_read_unlock();
709 	}
710 }
711 
712 static void nfs_lookup_advise_force_readdirplus(struct inode *dir,
713 						unsigned int flags)
714 {
715 	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
716 		return;
717 	if (flags & (LOOKUP_EXCL | LOOKUP_PARENT | LOOKUP_REVAL))
718 		return;
719 	nfs_readdir_record_entry_cache_miss(dir);
720 }
721 
722 static
723 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
724 		unsigned long dir_verifier)
725 {
726 	struct qstr filename = QSTR_INIT(entry->name, entry->len);
727 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
728 	struct dentry *dentry;
729 	struct dentry *alias;
730 	struct inode *inode;
731 	int status;
732 
733 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
734 		return;
735 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
736 		return;
737 	if (filename.len == 0)
738 		return;
739 	/* Validate that the name doesn't contain any illegal '\0' */
740 	if (strnlen(filename.name, filename.len) != filename.len)
741 		return;
742 	/* ...or '/' */
743 	if (strnchr(filename.name, filename.len, '/'))
744 		return;
745 	if (filename.name[0] == '.') {
746 		if (filename.len == 1)
747 			return;
748 		if (filename.len == 2 && filename.name[1] == '.')
749 			return;
750 	}
751 	filename.hash = full_name_hash(parent, filename.name, filename.len);
752 
753 	dentry = d_lookup(parent, &filename);
754 again:
755 	if (!dentry) {
756 		dentry = d_alloc_parallel(parent, &filename, &wq);
757 		if (IS_ERR(dentry))
758 			return;
759 	}
760 	if (!d_in_lookup(dentry)) {
761 		/* Is there a mountpoint here? If so, just exit */
762 		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
763 					&entry->fattr->fsid))
764 			goto out;
765 		if (nfs_same_file(dentry, entry)) {
766 			if (!entry->fh->size)
767 				goto out;
768 			nfs_set_verifier(dentry, dir_verifier);
769 			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
770 			if (!status)
771 				nfs_setsecurity(d_inode(dentry), entry->fattr);
772 			trace_nfs_readdir_lookup_revalidate(d_inode(parent),
773 							    dentry, 0, status);
774 			goto out;
775 		} else {
776 			trace_nfs_readdir_lookup_revalidate_failed(
777 				d_inode(parent), dentry, 0);
778 			d_invalidate(dentry);
779 			dput(dentry);
780 			dentry = NULL;
781 			goto again;
782 		}
783 	}
784 	if (!entry->fh->size) {
785 		d_lookup_done(dentry);
786 		goto out;
787 	}
788 
789 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
790 	alias = d_splice_alias(inode, dentry);
791 	d_lookup_done(dentry);
792 	if (alias) {
793 		if (IS_ERR(alias))
794 			goto out;
795 		dput(dentry);
796 		dentry = alias;
797 	}
798 	nfs_set_verifier(dentry, dir_verifier);
799 	trace_nfs_readdir_lookup(d_inode(parent), dentry, 0);
800 out:
801 	dput(dentry);
802 }
803 
804 static int nfs_readdir_entry_decode(struct nfs_readdir_descriptor *desc,
805 				    struct nfs_entry *entry,
806 				    struct xdr_stream *stream)
807 {
808 	int ret;
809 
810 	if (entry->fattr->label)
811 		entry->fattr->label->len = NFS4_MAXLABELLEN;
812 	ret = xdr_decode(desc, entry, stream);
813 	if (ret || !desc->plus)
814 		return ret;
815 	nfs_prime_dcache(file_dentry(desc->file), entry, desc->dir_verifier);
816 	return 0;
817 }
818 
819 /* Perform conversion from xdr to cache array */
820 static int nfs_readdir_page_filler(struct nfs_readdir_descriptor *desc,
821 				   struct nfs_entry *entry,
822 				   struct page **xdr_pages, unsigned int buflen,
823 				   struct page **arrays, size_t narrays,
824 				   u64 change_attr)
825 {
826 	struct address_space *mapping = desc->file->f_mapping;
827 	struct xdr_stream stream;
828 	struct xdr_buf buf;
829 	struct page *scratch, *new, *page = *arrays;
830 	u64 cookie;
831 	int status;
832 
833 	scratch = alloc_page(GFP_KERNEL);
834 	if (scratch == NULL)
835 		return -ENOMEM;
836 
837 	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
838 	xdr_set_scratch_page(&stream, scratch);
839 
840 	do {
841 		status = nfs_readdir_entry_decode(desc, entry, &stream);
842 		if (status != 0)
843 			break;
844 
845 		status = nfs_readdir_page_array_append(page, entry, &cookie);
846 		if (status != -ENOSPC)
847 			continue;
848 
849 		if (page->mapping != mapping) {
850 			if (!--narrays)
851 				break;
852 			new = nfs_readdir_page_array_alloc(cookie, GFP_KERNEL);
853 			if (!new)
854 				break;
855 			arrays++;
856 			*arrays = page = new;
857 		} else {
858 			new = nfs_readdir_page_get_next(mapping, cookie,
859 							change_attr);
860 			if (!new)
861 				break;
862 			if (page != *arrays)
863 				nfs_readdir_page_unlock_and_put(page);
864 			page = new;
865 		}
866 		desc->page_index_max++;
867 		status = nfs_readdir_page_array_append(page, entry, &cookie);
868 	} while (!status && !entry->eof);
869 
870 	switch (status) {
871 	case -EBADCOOKIE:
872 		if (!entry->eof)
873 			break;
874 		nfs_readdir_page_set_eof(page);
875 		fallthrough;
876 	case -EAGAIN:
877 		status = 0;
878 		break;
879 	case -ENOSPC:
880 		status = 0;
881 		if (!desc->plus)
882 			break;
883 		while (!nfs_readdir_entry_decode(desc, entry, &stream))
884 			;
885 	}
886 
887 	if (page != *arrays)
888 		nfs_readdir_page_unlock_and_put(page);
889 
890 	put_page(scratch);
891 	return status;
892 }
893 
894 static void nfs_readdir_free_pages(struct page **pages, size_t npages)
895 {
896 	while (npages--)
897 		put_page(pages[npages]);
898 	kfree(pages);
899 }
900 
901 /*
902  * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
903  * to nfs_readdir_free_pages()
904  */
905 static struct page **nfs_readdir_alloc_pages(size_t npages)
906 {
907 	struct page **pages;
908 	size_t i;
909 
910 	pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL);
911 	if (!pages)
912 		return NULL;
913 	for (i = 0; i < npages; i++) {
914 		struct page *page = alloc_page(GFP_KERNEL);
915 		if (page == NULL)
916 			goto out_freepages;
917 		pages[i] = page;
918 	}
919 	return pages;
920 
921 out_freepages:
922 	nfs_readdir_free_pages(pages, i);
923 	return NULL;
924 }
925 
926 static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc,
927 				    __be32 *verf_arg, __be32 *verf_res,
928 				    struct page **arrays, size_t narrays)
929 {
930 	u64 change_attr;
931 	struct page **pages;
932 	struct page *page = *arrays;
933 	struct nfs_entry *entry;
934 	size_t array_size;
935 	struct inode *inode = file_inode(desc->file);
936 	unsigned int dtsize = desc->dtsize;
937 	unsigned int pglen;
938 	int status = -ENOMEM;
939 
940 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
941 	if (!entry)
942 		return -ENOMEM;
943 	entry->cookie = nfs_readdir_page_last_cookie(page);
944 	entry->fh = nfs_alloc_fhandle();
945 	entry->fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
946 	entry->server = NFS_SERVER(inode);
947 	if (entry->fh == NULL || entry->fattr == NULL)
948 		goto out;
949 
950 	array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT;
951 	pages = nfs_readdir_alloc_pages(array_size);
952 	if (!pages)
953 		goto out;
954 
955 	change_attr = inode_peek_iversion_raw(inode);
956 	status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie, pages,
957 					dtsize, verf_res);
958 	if (status < 0)
959 		goto free_pages;
960 
961 	pglen = status;
962 	if (pglen != 0)
963 		status = nfs_readdir_page_filler(desc, entry, pages, pglen,
964 						 arrays, narrays, change_attr);
965 	else
966 		nfs_readdir_page_set_eof(page);
967 	desc->buffer_fills++;
968 
969 free_pages:
970 	nfs_readdir_free_pages(pages, array_size);
971 out:
972 	nfs_free_fattr(entry->fattr);
973 	nfs_free_fhandle(entry->fh);
974 	kfree(entry);
975 	return status;
976 }
977 
978 static void nfs_readdir_page_put(struct nfs_readdir_descriptor *desc)
979 {
980 	put_page(desc->page);
981 	desc->page = NULL;
982 }
983 
984 static void
985 nfs_readdir_page_unlock_and_put_cached(struct nfs_readdir_descriptor *desc)
986 {
987 	unlock_page(desc->page);
988 	nfs_readdir_page_put(desc);
989 }
990 
991 static struct page *
992 nfs_readdir_page_get_cached(struct nfs_readdir_descriptor *desc)
993 {
994 	struct address_space *mapping = desc->file->f_mapping;
995 	u64 change_attr = inode_peek_iversion_raw(mapping->host);
996 	u64 cookie = desc->last_cookie;
997 	struct page *page;
998 
999 	page = nfs_readdir_page_get_locked(mapping, cookie, change_attr);
1000 	if (!page)
1001 		return NULL;
1002 	if (desc->clear_cache && !nfs_readdir_page_needs_filling(page))
1003 		nfs_readdir_page_reinit_array(page, cookie, change_attr);
1004 	return page;
1005 }
1006 
1007 /*
1008  * Returns 0 if desc->dir_cookie was found on page desc->page_index
1009  * and locks the page to prevent removal from the page cache.
1010  */
1011 static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc)
1012 {
1013 	struct inode *inode = file_inode(desc->file);
1014 	struct nfs_inode *nfsi = NFS_I(inode);
1015 	__be32 verf[NFS_DIR_VERIFIER_SIZE];
1016 	int res;
1017 
1018 	desc->page = nfs_readdir_page_get_cached(desc);
1019 	if (!desc->page)
1020 		return -ENOMEM;
1021 	if (nfs_readdir_page_needs_filling(desc->page)) {
1022 		/* Grow the dtsize if we had to go back for more pages */
1023 		if (desc->page_index == desc->page_index_max)
1024 			nfs_grow_dtsize(desc);
1025 		desc->page_index_max = desc->page_index;
1026 		trace_nfs_readdir_cache_fill(desc->file, nfsi->cookieverf,
1027 					     desc->last_cookie,
1028 					     desc->page->index, desc->dtsize);
1029 		res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf,
1030 					       &desc->page, 1);
1031 		if (res < 0) {
1032 			nfs_readdir_page_unlock_and_put_cached(desc);
1033 			trace_nfs_readdir_cache_fill_done(inode, res);
1034 			if (res == -EBADCOOKIE || res == -ENOTSYNC) {
1035 				invalidate_inode_pages2(desc->file->f_mapping);
1036 				nfs_readdir_rewind_search(desc);
1037 				trace_nfs_readdir_invalidate_cache_range(
1038 					inode, 0, MAX_LFS_FILESIZE);
1039 				return -EAGAIN;
1040 			}
1041 			return res;
1042 		}
1043 		/*
1044 		 * Set the cookie verifier if the page cache was empty
1045 		 */
1046 		if (desc->last_cookie == 0 &&
1047 		    memcmp(nfsi->cookieverf, verf, sizeof(nfsi->cookieverf))) {
1048 			memcpy(nfsi->cookieverf, verf,
1049 			       sizeof(nfsi->cookieverf));
1050 			invalidate_inode_pages2_range(desc->file->f_mapping, 1,
1051 						      -1);
1052 			trace_nfs_readdir_invalidate_cache_range(
1053 				inode, 1, MAX_LFS_FILESIZE);
1054 		}
1055 		desc->clear_cache = false;
1056 	}
1057 	res = nfs_readdir_search_array(desc);
1058 	if (res == 0)
1059 		return 0;
1060 	nfs_readdir_page_unlock_and_put_cached(desc);
1061 	return res;
1062 }
1063 
1064 /* Search for desc->dir_cookie from the beginning of the page cache */
1065 static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc)
1066 {
1067 	int res;
1068 
1069 	do {
1070 		res = find_and_lock_cache_page(desc);
1071 	} while (res == -EAGAIN);
1072 	return res;
1073 }
1074 
1075 /*
1076  * Once we've found the start of the dirent within a page: fill 'er up...
1077  */
1078 static void nfs_do_filldir(struct nfs_readdir_descriptor *desc,
1079 			   const __be32 *verf)
1080 {
1081 	struct file	*file = desc->file;
1082 	struct nfs_cache_array *array;
1083 	unsigned int i;
1084 
1085 	array = kmap(desc->page);
1086 	for (i = desc->cache_entry_index; i < array->size; i++) {
1087 		struct nfs_cache_array_entry *ent;
1088 
1089 		ent = &array->array[i];
1090 		if (!dir_emit(desc->ctx, ent->name, ent->name_len,
1091 		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
1092 			desc->eob = true;
1093 			break;
1094 		}
1095 		memcpy(desc->verf, verf, sizeof(desc->verf));
1096 		if (i == array->size - 1) {
1097 			desc->dir_cookie = array->last_cookie;
1098 			nfs_readdir_seek_next_array(array, desc);
1099 		} else {
1100 			desc->dir_cookie = array->array[i + 1].cookie;
1101 			desc->last_cookie = array->array[0].cookie;
1102 		}
1103 		if (nfs_readdir_use_cookie(file))
1104 			desc->ctx->pos = desc->dir_cookie;
1105 		else
1106 			desc->ctx->pos++;
1107 	}
1108 	if (array->page_is_eof)
1109 		desc->eof = !desc->eob;
1110 
1111 	kunmap(desc->page);
1112 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n",
1113 			(unsigned long long)desc->dir_cookie);
1114 }
1115 
1116 /*
1117  * If we cannot find a cookie in our cache, we suspect that this is
1118  * because it points to a deleted file, so we ask the server to return
1119  * whatever it thinks is the next entry. We then feed this to filldir.
1120  * If all goes well, we should then be able to find our way round the
1121  * cache on the next call to readdir_search_pagecache();
1122  *
1123  * NOTE: we cannot add the anonymous page to the pagecache because
1124  *	 the data it contains might not be page aligned. Besides,
1125  *	 we should already have a complete representation of the
1126  *	 directory in the page cache by the time we get here.
1127  */
1128 static int uncached_readdir(struct nfs_readdir_descriptor *desc)
1129 {
1130 	struct page	**arrays;
1131 	size_t		i, sz = 512;
1132 	__be32		verf[NFS_DIR_VERIFIER_SIZE];
1133 	int		status = -ENOMEM;
1134 
1135 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n",
1136 			(unsigned long long)desc->dir_cookie);
1137 
1138 	arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL);
1139 	if (!arrays)
1140 		goto out;
1141 	arrays[0] = nfs_readdir_page_array_alloc(desc->dir_cookie, GFP_KERNEL);
1142 	if (!arrays[0])
1143 		goto out;
1144 
1145 	desc->page_index = 0;
1146 	desc->cache_entry_index = 0;
1147 	desc->last_cookie = desc->dir_cookie;
1148 	desc->page_index_max = 0;
1149 
1150 	trace_nfs_readdir_uncached(desc->file, desc->verf, desc->last_cookie,
1151 				   -1, desc->dtsize);
1152 
1153 	status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz);
1154 	if (status < 0) {
1155 		trace_nfs_readdir_uncached_done(file_inode(desc->file), status);
1156 		goto out_free;
1157 	}
1158 
1159 	for (i = 0; !desc->eob && i < sz && arrays[i]; i++) {
1160 		desc->page = arrays[i];
1161 		nfs_do_filldir(desc, verf);
1162 	}
1163 	desc->page = NULL;
1164 
1165 	/*
1166 	 * Grow the dtsize if we have to go back for more pages,
1167 	 * or shrink it if we're reading too many.
1168 	 */
1169 	if (!desc->eof) {
1170 		if (!desc->eob)
1171 			nfs_grow_dtsize(desc);
1172 		else if (desc->buffer_fills == 1 &&
1173 			 i < (desc->page_index_max >> 1))
1174 			nfs_shrink_dtsize(desc);
1175 	}
1176 out_free:
1177 	for (i = 0; i < sz && arrays[i]; i++)
1178 		nfs_readdir_page_array_free(arrays[i]);
1179 out:
1180 	if (!nfs_readdir_use_cookie(desc->file))
1181 		nfs_readdir_rewind_search(desc);
1182 	desc->page_index_max = -1;
1183 	kfree(arrays);
1184 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
1185 	return status;
1186 }
1187 
1188 #define NFS_READDIR_CACHE_MISS_THRESHOLD (16UL)
1189 
1190 static bool nfs_readdir_handle_cache_misses(struct inode *inode,
1191 					    struct nfs_readdir_descriptor *desc,
1192 					    unsigned int cache_misses,
1193 					    bool force_clear)
1194 {
1195 	if (desc->ctx->pos == 0 || !desc->plus)
1196 		return false;
1197 	if (cache_misses <= NFS_READDIR_CACHE_MISS_THRESHOLD && !force_clear)
1198 		return false;
1199 	trace_nfs_readdir_force_readdirplus(inode);
1200 	return true;
1201 }
1202 
1203 /* The file offset position represents the dirent entry number.  A
1204    last cookie cache takes care of the common case of reading the
1205    whole directory.
1206  */
1207 static int nfs_readdir(struct file *file, struct dir_context *ctx)
1208 {
1209 	struct dentry	*dentry = file_dentry(file);
1210 	struct inode	*inode = d_inode(dentry);
1211 	struct nfs_inode *nfsi = NFS_I(inode);
1212 	struct nfs_open_dir_context *dir_ctx = file->private_data;
1213 	struct nfs_readdir_descriptor *desc;
1214 	unsigned int cache_hits, cache_misses;
1215 	bool force_clear;
1216 	int res;
1217 
1218 	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
1219 			file, (long long)ctx->pos);
1220 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
1221 
1222 	/*
1223 	 * ctx->pos points to the dirent entry number.
1224 	 * *desc->dir_cookie has the cookie for the next entry. We have
1225 	 * to either find the entry with the appropriate number or
1226 	 * revalidate the cookie.
1227 	 */
1228 	nfs_revalidate_mapping(inode, file->f_mapping);
1229 
1230 	res = -ENOMEM;
1231 	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
1232 	if (!desc)
1233 		goto out;
1234 	desc->file = file;
1235 	desc->ctx = ctx;
1236 	desc->page_index_max = -1;
1237 
1238 	spin_lock(&file->f_lock);
1239 	desc->dir_cookie = dir_ctx->dir_cookie;
1240 	desc->page_index = dir_ctx->page_index;
1241 	desc->last_cookie = dir_ctx->last_cookie;
1242 	desc->attr_gencount = dir_ctx->attr_gencount;
1243 	desc->eof = dir_ctx->eof;
1244 	nfs_set_dtsize(desc, dir_ctx->dtsize);
1245 	memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf));
1246 	cache_hits = atomic_xchg(&dir_ctx->cache_hits, 0);
1247 	cache_misses = atomic_xchg(&dir_ctx->cache_misses, 0);
1248 	force_clear = dir_ctx->force_clear;
1249 	spin_unlock(&file->f_lock);
1250 
1251 	if (desc->eof) {
1252 		res = 0;
1253 		goto out_free;
1254 	}
1255 
1256 	desc->plus = nfs_use_readdirplus(inode, ctx, cache_hits, cache_misses);
1257 	force_clear = nfs_readdir_handle_cache_misses(inode, desc, cache_misses,
1258 						      force_clear);
1259 	desc->clear_cache = force_clear;
1260 
1261 	do {
1262 		res = readdir_search_pagecache(desc);
1263 
1264 		if (res == -EBADCOOKIE) {
1265 			res = 0;
1266 			/* This means either end of directory */
1267 			if (desc->dir_cookie && !desc->eof) {
1268 				/* Or that the server has 'lost' a cookie */
1269 				res = uncached_readdir(desc);
1270 				if (res == 0)
1271 					continue;
1272 				if (res == -EBADCOOKIE || res == -ENOTSYNC)
1273 					res = 0;
1274 			}
1275 			break;
1276 		}
1277 		if (res == -ETOOSMALL && desc->plus) {
1278 			nfs_zap_caches(inode);
1279 			desc->plus = false;
1280 			desc->eof = false;
1281 			continue;
1282 		}
1283 		if (res < 0)
1284 			break;
1285 
1286 		nfs_do_filldir(desc, nfsi->cookieverf);
1287 		nfs_readdir_page_unlock_and_put_cached(desc);
1288 		if (desc->page_index == desc->page_index_max)
1289 			desc->clear_cache = force_clear;
1290 	} while (!desc->eob && !desc->eof);
1291 
1292 	spin_lock(&file->f_lock);
1293 	dir_ctx->dir_cookie = desc->dir_cookie;
1294 	dir_ctx->last_cookie = desc->last_cookie;
1295 	dir_ctx->attr_gencount = desc->attr_gencount;
1296 	dir_ctx->page_index = desc->page_index;
1297 	dir_ctx->force_clear = force_clear;
1298 	dir_ctx->eof = desc->eof;
1299 	dir_ctx->dtsize = desc->dtsize;
1300 	memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf));
1301 	spin_unlock(&file->f_lock);
1302 out_free:
1303 	kfree(desc);
1304 
1305 out:
1306 	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
1307 	return res;
1308 }
1309 
1310 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
1311 {
1312 	struct nfs_open_dir_context *dir_ctx = filp->private_data;
1313 
1314 	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
1315 			filp, offset, whence);
1316 
1317 	switch (whence) {
1318 	default:
1319 		return -EINVAL;
1320 	case SEEK_SET:
1321 		if (offset < 0)
1322 			return -EINVAL;
1323 		spin_lock(&filp->f_lock);
1324 		break;
1325 	case SEEK_CUR:
1326 		if (offset == 0)
1327 			return filp->f_pos;
1328 		spin_lock(&filp->f_lock);
1329 		offset += filp->f_pos;
1330 		if (offset < 0) {
1331 			spin_unlock(&filp->f_lock);
1332 			return -EINVAL;
1333 		}
1334 	}
1335 	if (offset != filp->f_pos) {
1336 		filp->f_pos = offset;
1337 		dir_ctx->page_index = 0;
1338 		if (!nfs_readdir_use_cookie(filp)) {
1339 			dir_ctx->dir_cookie = 0;
1340 			dir_ctx->last_cookie = 0;
1341 		} else {
1342 			dir_ctx->dir_cookie = offset;
1343 			dir_ctx->last_cookie = offset;
1344 		}
1345 		dir_ctx->eof = false;
1346 	}
1347 	spin_unlock(&filp->f_lock);
1348 	return offset;
1349 }
1350 
1351 /*
1352  * All directory operations under NFS are synchronous, so fsync()
1353  * is a dummy operation.
1354  */
1355 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1356 			 int datasync)
1357 {
1358 	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1359 
1360 	nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC);
1361 	return 0;
1362 }
1363 
1364 /**
1365  * nfs_force_lookup_revalidate - Mark the directory as having changed
1366  * @dir: pointer to directory inode
1367  *
1368  * This forces the revalidation code in nfs_lookup_revalidate() to do a
1369  * full lookup on all child dentries of 'dir' whenever a change occurs
1370  * on the server that might have invalidated our dcache.
1371  *
1372  * Note that we reserve bit '0' as a tag to let us know when a dentry
1373  * was revalidated while holding a delegation on its inode.
1374  *
1375  * The caller should be holding dir->i_lock
1376  */
1377 void nfs_force_lookup_revalidate(struct inode *dir)
1378 {
1379 	NFS_I(dir)->cache_change_attribute += 2;
1380 }
1381 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1382 
1383 /**
1384  * nfs_verify_change_attribute - Detects NFS remote directory changes
1385  * @dir: pointer to parent directory inode
1386  * @verf: previously saved change attribute
1387  *
1388  * Return "false" if the verifiers doesn't match the change attribute.
1389  * This would usually indicate that the directory contents have changed on
1390  * the server, and that any dentries need revalidating.
1391  */
1392 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1393 {
1394 	return (verf & ~1UL) == nfs_save_change_attribute(dir);
1395 }
1396 
1397 static void nfs_set_verifier_delegated(unsigned long *verf)
1398 {
1399 	*verf |= 1UL;
1400 }
1401 
1402 #if IS_ENABLED(CONFIG_NFS_V4)
1403 static void nfs_unset_verifier_delegated(unsigned long *verf)
1404 {
1405 	*verf &= ~1UL;
1406 }
1407 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1408 
1409 static bool nfs_test_verifier_delegated(unsigned long verf)
1410 {
1411 	return verf & 1;
1412 }
1413 
1414 static bool nfs_verifier_is_delegated(struct dentry *dentry)
1415 {
1416 	return nfs_test_verifier_delegated(dentry->d_time);
1417 }
1418 
1419 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1420 {
1421 	struct inode *inode = d_inode(dentry);
1422 	struct inode *dir = d_inode(dentry->d_parent);
1423 
1424 	if (!nfs_verify_change_attribute(dir, verf))
1425 		return;
1426 	if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
1427 		nfs_set_verifier_delegated(&verf);
1428 	dentry->d_time = verf;
1429 }
1430 
1431 /**
1432  * nfs_set_verifier - save a parent directory verifier in the dentry
1433  * @dentry: pointer to dentry
1434  * @verf: verifier to save
1435  *
1436  * Saves the parent directory verifier in @dentry. If the inode has
1437  * a delegation, we also tag the dentry as having been revalidated
1438  * while holding a delegation so that we know we don't have to
1439  * look it up again after a directory change.
1440  */
1441 void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1442 {
1443 
1444 	spin_lock(&dentry->d_lock);
1445 	nfs_set_verifier_locked(dentry, verf);
1446 	spin_unlock(&dentry->d_lock);
1447 }
1448 EXPORT_SYMBOL_GPL(nfs_set_verifier);
1449 
1450 #if IS_ENABLED(CONFIG_NFS_V4)
1451 /**
1452  * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1453  * @inode: pointer to inode
1454  *
1455  * Iterates through the dentries in the inode alias list and clears
1456  * the tag used to indicate that the dentry has been revalidated
1457  * while holding a delegation.
1458  * This function is intended for use when the delegation is being
1459  * returned or revoked.
1460  */
1461 void nfs_clear_verifier_delegated(struct inode *inode)
1462 {
1463 	struct dentry *alias;
1464 
1465 	if (!inode)
1466 		return;
1467 	spin_lock(&inode->i_lock);
1468 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1469 		spin_lock(&alias->d_lock);
1470 		nfs_unset_verifier_delegated(&alias->d_time);
1471 		spin_unlock(&alias->d_lock);
1472 	}
1473 	spin_unlock(&inode->i_lock);
1474 }
1475 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1476 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1477 
1478 static int nfs_dentry_verify_change(struct inode *dir, struct dentry *dentry)
1479 {
1480 	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE) &&
1481 	    d_really_is_negative(dentry))
1482 		return dentry->d_time == inode_peek_iversion_raw(dir);
1483 	return nfs_verify_change_attribute(dir, dentry->d_time);
1484 }
1485 
1486 /*
1487  * A check for whether or not the parent directory has changed.
1488  * In the case it has, we assume that the dentries are untrustworthy
1489  * and may need to be looked up again.
1490  * If rcu_walk prevents us from performing a full check, return 0.
1491  */
1492 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1493 			      int rcu_walk)
1494 {
1495 	if (IS_ROOT(dentry))
1496 		return 1;
1497 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1498 		return 0;
1499 	if (!nfs_dentry_verify_change(dir, dentry))
1500 		return 0;
1501 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1502 	if (nfs_mapping_need_revalidate_inode(dir)) {
1503 		if (rcu_walk)
1504 			return 0;
1505 		if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1506 			return 0;
1507 	}
1508 	if (!nfs_dentry_verify_change(dir, dentry))
1509 		return 0;
1510 	return 1;
1511 }
1512 
1513 /*
1514  * Use intent information to check whether or not we're going to do
1515  * an O_EXCL create using this path component.
1516  */
1517 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1518 {
1519 	if (NFS_PROTO(dir)->version == 2)
1520 		return 0;
1521 	return flags & LOOKUP_EXCL;
1522 }
1523 
1524 /*
1525  * Inode and filehandle revalidation for lookups.
1526  *
1527  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1528  * or if the intent information indicates that we're about to open this
1529  * particular file and the "nocto" mount flag is not set.
1530  *
1531  */
1532 static
1533 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1534 {
1535 	struct nfs_server *server = NFS_SERVER(inode);
1536 	int ret;
1537 
1538 	if (IS_AUTOMOUNT(inode))
1539 		return 0;
1540 
1541 	if (flags & LOOKUP_OPEN) {
1542 		switch (inode->i_mode & S_IFMT) {
1543 		case S_IFREG:
1544 			/* A NFSv4 OPEN will revalidate later */
1545 			if (server->caps & NFS_CAP_ATOMIC_OPEN)
1546 				goto out;
1547 			fallthrough;
1548 		case S_IFDIR:
1549 			if (server->flags & NFS_MOUNT_NOCTO)
1550 				break;
1551 			/* NFS close-to-open cache consistency validation */
1552 			goto out_force;
1553 		}
1554 	}
1555 
1556 	/* VFS wants an on-the-wire revalidation */
1557 	if (flags & LOOKUP_REVAL)
1558 		goto out_force;
1559 out:
1560 	if (inode->i_nlink > 0 ||
1561 	    (inode->i_nlink == 0 &&
1562 	     test_bit(NFS_INO_PRESERVE_UNLINKED, &NFS_I(inode)->flags)))
1563 		return 0;
1564 	else
1565 		return -ESTALE;
1566 out_force:
1567 	if (flags & LOOKUP_RCU)
1568 		return -ECHILD;
1569 	ret = __nfs_revalidate_inode(server, inode);
1570 	if (ret != 0)
1571 		return ret;
1572 	goto out;
1573 }
1574 
1575 static void nfs_mark_dir_for_revalidate(struct inode *inode)
1576 {
1577 	spin_lock(&inode->i_lock);
1578 	nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE);
1579 	spin_unlock(&inode->i_lock);
1580 }
1581 
1582 /*
1583  * We judge how long we want to trust negative
1584  * dentries by looking at the parent inode mtime.
1585  *
1586  * If parent mtime has changed, we revalidate, else we wait for a
1587  * period corresponding to the parent's attribute cache timeout value.
1588  *
1589  * If LOOKUP_RCU prevents us from performing a full check, return 1
1590  * suggesting a reval is needed.
1591  *
1592  * Note that when creating a new file, or looking up a rename target,
1593  * then it shouldn't be necessary to revalidate a negative dentry.
1594  */
1595 static inline
1596 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1597 		       unsigned int flags)
1598 {
1599 	if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1600 		return 0;
1601 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1602 		return 1;
1603 	/* Case insensitive server? Revalidate negative dentries */
1604 	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1605 		return 1;
1606 	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1607 }
1608 
1609 static int
1610 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1611 			   struct inode *inode, int error)
1612 {
1613 	switch (error) {
1614 	case 1:
1615 		break;
1616 	case 0:
1617 		/*
1618 		 * We can't d_drop the root of a disconnected tree:
1619 		 * its d_hash is on the s_anon list and d_drop() would hide
1620 		 * it from shrink_dcache_for_unmount(), leading to busy
1621 		 * inodes on unmount and further oopses.
1622 		 */
1623 		if (inode && IS_ROOT(dentry))
1624 			error = 1;
1625 		break;
1626 	}
1627 	trace_nfs_lookup_revalidate_exit(dir, dentry, 0, error);
1628 	return error;
1629 }
1630 
1631 static int
1632 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1633 			       unsigned int flags)
1634 {
1635 	int ret = 1;
1636 	if (nfs_neg_need_reval(dir, dentry, flags)) {
1637 		if (flags & LOOKUP_RCU)
1638 			return -ECHILD;
1639 		ret = 0;
1640 	}
1641 	return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1642 }
1643 
1644 static int
1645 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1646 				struct inode *inode)
1647 {
1648 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1649 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1650 }
1651 
1652 static int nfs_lookup_revalidate_dentry(struct inode *dir,
1653 					struct dentry *dentry,
1654 					struct inode *inode, unsigned int flags)
1655 {
1656 	struct nfs_fh *fhandle;
1657 	struct nfs_fattr *fattr;
1658 	unsigned long dir_verifier;
1659 	int ret;
1660 
1661 	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1662 
1663 	ret = -ENOMEM;
1664 	fhandle = nfs_alloc_fhandle();
1665 	fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
1666 	if (fhandle == NULL || fattr == NULL)
1667 		goto out;
1668 
1669 	dir_verifier = nfs_save_change_attribute(dir);
1670 	ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1671 	if (ret < 0) {
1672 		switch (ret) {
1673 		case -ESTALE:
1674 		case -ENOENT:
1675 			ret = 0;
1676 			break;
1677 		case -ETIMEDOUT:
1678 			if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1679 				ret = 1;
1680 		}
1681 		goto out;
1682 	}
1683 
1684 	/* Request help from readdirplus */
1685 	nfs_lookup_advise_force_readdirplus(dir, flags);
1686 
1687 	ret = 0;
1688 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1689 		goto out;
1690 	if (nfs_refresh_inode(inode, fattr) < 0)
1691 		goto out;
1692 
1693 	nfs_setsecurity(inode, fattr);
1694 	nfs_set_verifier(dentry, dir_verifier);
1695 
1696 	ret = 1;
1697 out:
1698 	nfs_free_fattr(fattr);
1699 	nfs_free_fhandle(fhandle);
1700 
1701 	/*
1702 	 * If the lookup failed despite the dentry change attribute being
1703 	 * a match, then we should revalidate the directory cache.
1704 	 */
1705 	if (!ret && nfs_dentry_verify_change(dir, dentry))
1706 		nfs_mark_dir_for_revalidate(dir);
1707 	return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1708 }
1709 
1710 /*
1711  * This is called every time the dcache has a lookup hit,
1712  * and we should check whether we can really trust that
1713  * lookup.
1714  *
1715  * NOTE! The hit can be a negative hit too, don't assume
1716  * we have an inode!
1717  *
1718  * If the parent directory is seen to have changed, we throw out the
1719  * cached dentry and do a new lookup.
1720  */
1721 static int
1722 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1723 			 unsigned int flags)
1724 {
1725 	struct inode *inode;
1726 	int error;
1727 
1728 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1729 	inode = d_inode(dentry);
1730 
1731 	if (!inode)
1732 		return nfs_lookup_revalidate_negative(dir, dentry, flags);
1733 
1734 	if (is_bad_inode(inode)) {
1735 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1736 				__func__, dentry);
1737 		goto out_bad;
1738 	}
1739 
1740 	if (nfs_verifier_is_delegated(dentry))
1741 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1742 
1743 	/* Force a full look up iff the parent directory has changed */
1744 	if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1745 	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1746 		error = nfs_lookup_verify_inode(inode, flags);
1747 		if (error) {
1748 			if (error == -ESTALE)
1749 				nfs_mark_dir_for_revalidate(dir);
1750 			goto out_bad;
1751 		}
1752 		goto out_valid;
1753 	}
1754 
1755 	if (flags & LOOKUP_RCU)
1756 		return -ECHILD;
1757 
1758 	if (NFS_STALE(inode))
1759 		goto out_bad;
1760 
1761 	return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags);
1762 out_valid:
1763 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1764 out_bad:
1765 	if (flags & LOOKUP_RCU)
1766 		return -ECHILD;
1767 	return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1768 }
1769 
1770 static int
1771 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1772 			int (*reval)(struct inode *, struct dentry *, unsigned int))
1773 {
1774 	struct dentry *parent;
1775 	struct inode *dir;
1776 	int ret;
1777 
1778 	if (flags & LOOKUP_RCU) {
1779 		parent = READ_ONCE(dentry->d_parent);
1780 		dir = d_inode_rcu(parent);
1781 		if (!dir)
1782 			return -ECHILD;
1783 		ret = reval(dir, dentry, flags);
1784 		if (parent != READ_ONCE(dentry->d_parent))
1785 			return -ECHILD;
1786 	} else {
1787 		parent = dget_parent(dentry);
1788 		ret = reval(d_inode(parent), dentry, flags);
1789 		dput(parent);
1790 	}
1791 	return ret;
1792 }
1793 
1794 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1795 {
1796 	return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1797 }
1798 
1799 /*
1800  * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1801  * when we don't really care about the dentry name. This is called when a
1802  * pathwalk ends on a dentry that was not found via a normal lookup in the
1803  * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1804  *
1805  * In this situation, we just want to verify that the inode itself is OK
1806  * since the dentry might have changed on the server.
1807  */
1808 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1809 {
1810 	struct inode *inode = d_inode(dentry);
1811 	int error = 0;
1812 
1813 	/*
1814 	 * I believe we can only get a negative dentry here in the case of a
1815 	 * procfs-style symlink. Just assume it's correct for now, but we may
1816 	 * eventually need to do something more here.
1817 	 */
1818 	if (!inode) {
1819 		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1820 				__func__, dentry);
1821 		return 1;
1822 	}
1823 
1824 	if (is_bad_inode(inode)) {
1825 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1826 				__func__, dentry);
1827 		return 0;
1828 	}
1829 
1830 	error = nfs_lookup_verify_inode(inode, flags);
1831 	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1832 			__func__, inode->i_ino, error ? "invalid" : "valid");
1833 	return !error;
1834 }
1835 
1836 /*
1837  * This is called from dput() when d_count is going to 0.
1838  */
1839 static int nfs_dentry_delete(const struct dentry *dentry)
1840 {
1841 	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1842 		dentry, dentry->d_flags);
1843 
1844 	/* Unhash any dentry with a stale inode */
1845 	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1846 		return 1;
1847 
1848 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1849 		/* Unhash it, so that ->d_iput() would be called */
1850 		return 1;
1851 	}
1852 	if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1853 		/* Unhash it, so that ancestors of killed async unlink
1854 		 * files will be cleaned up during umount */
1855 		return 1;
1856 	}
1857 	return 0;
1858 
1859 }
1860 
1861 /* Ensure that we revalidate inode->i_nlink */
1862 static void nfs_drop_nlink(struct inode *inode)
1863 {
1864 	spin_lock(&inode->i_lock);
1865 	/* drop the inode if we're reasonably sure this is the last link */
1866 	if (inode->i_nlink > 0)
1867 		drop_nlink(inode);
1868 	NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1869 	nfs_set_cache_invalid(
1870 		inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME |
1871 			       NFS_INO_INVALID_NLINK);
1872 	spin_unlock(&inode->i_lock);
1873 }
1874 
1875 /*
1876  * Called when the dentry loses inode.
1877  * We use it to clean up silly-renamed files.
1878  */
1879 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1880 {
1881 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1882 		nfs_complete_unlink(dentry, inode);
1883 		nfs_drop_nlink(inode);
1884 	}
1885 	iput(inode);
1886 }
1887 
1888 static void nfs_d_release(struct dentry *dentry)
1889 {
1890 	/* free cached devname value, if it survived that far */
1891 	if (unlikely(dentry->d_fsdata)) {
1892 		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1893 			WARN_ON(1);
1894 		else
1895 			kfree(dentry->d_fsdata);
1896 	}
1897 }
1898 
1899 const struct dentry_operations nfs_dentry_operations = {
1900 	.d_revalidate	= nfs_lookup_revalidate,
1901 	.d_weak_revalidate	= nfs_weak_revalidate,
1902 	.d_delete	= nfs_dentry_delete,
1903 	.d_iput		= nfs_dentry_iput,
1904 	.d_automount	= nfs_d_automount,
1905 	.d_release	= nfs_d_release,
1906 };
1907 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1908 
1909 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1910 {
1911 	struct dentry *res;
1912 	struct inode *inode = NULL;
1913 	struct nfs_fh *fhandle = NULL;
1914 	struct nfs_fattr *fattr = NULL;
1915 	unsigned long dir_verifier;
1916 	int error;
1917 
1918 	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1919 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1920 
1921 	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1922 		return ERR_PTR(-ENAMETOOLONG);
1923 
1924 	/*
1925 	 * If we're doing an exclusive create, optimize away the lookup
1926 	 * but don't hash the dentry.
1927 	 */
1928 	if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1929 		return NULL;
1930 
1931 	res = ERR_PTR(-ENOMEM);
1932 	fhandle = nfs_alloc_fhandle();
1933 	fattr = nfs_alloc_fattr_with_label(NFS_SERVER(dir));
1934 	if (fhandle == NULL || fattr == NULL)
1935 		goto out;
1936 
1937 	dir_verifier = nfs_save_change_attribute(dir);
1938 	trace_nfs_lookup_enter(dir, dentry, flags);
1939 	error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1940 	if (error == -ENOENT) {
1941 		if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1942 			dir_verifier = inode_peek_iversion_raw(dir);
1943 		goto no_entry;
1944 	}
1945 	if (error < 0) {
1946 		res = ERR_PTR(error);
1947 		goto out;
1948 	}
1949 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1950 	res = ERR_CAST(inode);
1951 	if (IS_ERR(res))
1952 		goto out;
1953 
1954 	/* Notify readdir to use READDIRPLUS */
1955 	nfs_lookup_advise_force_readdirplus(dir, flags);
1956 
1957 no_entry:
1958 	res = d_splice_alias(inode, dentry);
1959 	if (res != NULL) {
1960 		if (IS_ERR(res))
1961 			goto out;
1962 		dentry = res;
1963 	}
1964 	nfs_set_verifier(dentry, dir_verifier);
1965 out:
1966 	trace_nfs_lookup_exit(dir, dentry, flags, PTR_ERR_OR_ZERO(res));
1967 	nfs_free_fattr(fattr);
1968 	nfs_free_fhandle(fhandle);
1969 	return res;
1970 }
1971 EXPORT_SYMBOL_GPL(nfs_lookup);
1972 
1973 void nfs_d_prune_case_insensitive_aliases(struct inode *inode)
1974 {
1975 	/* Case insensitive server? Revalidate dentries */
1976 	if (inode && nfs_server_capable(inode, NFS_CAP_CASE_INSENSITIVE))
1977 		d_prune_aliases(inode);
1978 }
1979 EXPORT_SYMBOL_GPL(nfs_d_prune_case_insensitive_aliases);
1980 
1981 #if IS_ENABLED(CONFIG_NFS_V4)
1982 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1983 
1984 const struct dentry_operations nfs4_dentry_operations = {
1985 	.d_revalidate	= nfs4_lookup_revalidate,
1986 	.d_weak_revalidate	= nfs_weak_revalidate,
1987 	.d_delete	= nfs_dentry_delete,
1988 	.d_iput		= nfs_dentry_iput,
1989 	.d_automount	= nfs_d_automount,
1990 	.d_release	= nfs_d_release,
1991 };
1992 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1993 
1994 static fmode_t flags_to_mode(int flags)
1995 {
1996 	fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1997 	if ((flags & O_ACCMODE) != O_WRONLY)
1998 		res |= FMODE_READ;
1999 	if ((flags & O_ACCMODE) != O_RDONLY)
2000 		res |= FMODE_WRITE;
2001 	return res;
2002 }
2003 
2004 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
2005 {
2006 	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
2007 }
2008 
2009 static int do_open(struct inode *inode, struct file *filp)
2010 {
2011 	nfs_fscache_open_file(inode, filp);
2012 	return 0;
2013 }
2014 
2015 static int nfs_finish_open(struct nfs_open_context *ctx,
2016 			   struct dentry *dentry,
2017 			   struct file *file, unsigned open_flags)
2018 {
2019 	int err;
2020 
2021 	err = finish_open(file, dentry, do_open);
2022 	if (err)
2023 		goto out;
2024 	if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
2025 		nfs_file_set_open_context(file, ctx);
2026 	else
2027 		err = -EOPENSTALE;
2028 out:
2029 	return err;
2030 }
2031 
2032 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
2033 		    struct file *file, unsigned open_flags,
2034 		    umode_t mode)
2035 {
2036 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2037 	struct nfs_open_context *ctx;
2038 	struct dentry *res;
2039 	struct iattr attr = { .ia_valid = ATTR_OPEN };
2040 	struct inode *inode;
2041 	unsigned int lookup_flags = 0;
2042 	unsigned long dir_verifier;
2043 	bool switched = false;
2044 	int created = 0;
2045 	int err;
2046 
2047 	/* Expect a negative dentry */
2048 	BUG_ON(d_inode(dentry));
2049 
2050 	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
2051 			dir->i_sb->s_id, dir->i_ino, dentry);
2052 
2053 	err = nfs_check_flags(open_flags);
2054 	if (err)
2055 		return err;
2056 
2057 	/* NFS only supports OPEN on regular files */
2058 	if ((open_flags & O_DIRECTORY)) {
2059 		if (!d_in_lookup(dentry)) {
2060 			/*
2061 			 * Hashed negative dentry with O_DIRECTORY: dentry was
2062 			 * revalidated and is fine, no need to perform lookup
2063 			 * again
2064 			 */
2065 			return -ENOENT;
2066 		}
2067 		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
2068 		goto no_open;
2069 	}
2070 
2071 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
2072 		return -ENAMETOOLONG;
2073 
2074 	if (open_flags & O_CREAT) {
2075 		struct nfs_server *server = NFS_SERVER(dir);
2076 
2077 		if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
2078 			mode &= ~current_umask();
2079 
2080 		attr.ia_valid |= ATTR_MODE;
2081 		attr.ia_mode = mode;
2082 	}
2083 	if (open_flags & O_TRUNC) {
2084 		attr.ia_valid |= ATTR_SIZE;
2085 		attr.ia_size = 0;
2086 	}
2087 
2088 	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
2089 		d_drop(dentry);
2090 		switched = true;
2091 		dentry = d_alloc_parallel(dentry->d_parent,
2092 					  &dentry->d_name, &wq);
2093 		if (IS_ERR(dentry))
2094 			return PTR_ERR(dentry);
2095 		if (unlikely(!d_in_lookup(dentry)))
2096 			return finish_no_open(file, dentry);
2097 	}
2098 
2099 	ctx = create_nfs_open_context(dentry, open_flags, file);
2100 	err = PTR_ERR(ctx);
2101 	if (IS_ERR(ctx))
2102 		goto out;
2103 
2104 	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
2105 	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
2106 	if (created)
2107 		file->f_mode |= FMODE_CREATED;
2108 	if (IS_ERR(inode)) {
2109 		err = PTR_ERR(inode);
2110 		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2111 		put_nfs_open_context(ctx);
2112 		d_drop(dentry);
2113 		switch (err) {
2114 		case -ENOENT:
2115 			d_splice_alias(NULL, dentry);
2116 			if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
2117 				dir_verifier = inode_peek_iversion_raw(dir);
2118 			else
2119 				dir_verifier = nfs_save_change_attribute(dir);
2120 			nfs_set_verifier(dentry, dir_verifier);
2121 			break;
2122 		case -EISDIR:
2123 		case -ENOTDIR:
2124 			goto no_open;
2125 		case -ELOOP:
2126 			if (!(open_flags & O_NOFOLLOW))
2127 				goto no_open;
2128 			break;
2129 			/* case -EINVAL: */
2130 		default:
2131 			break;
2132 		}
2133 		goto out;
2134 	}
2135 
2136 	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
2137 	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2138 	put_nfs_open_context(ctx);
2139 out:
2140 	if (unlikely(switched)) {
2141 		d_lookup_done(dentry);
2142 		dput(dentry);
2143 	}
2144 	return err;
2145 
2146 no_open:
2147 	res = nfs_lookup(dir, dentry, lookup_flags);
2148 	if (!res) {
2149 		inode = d_inode(dentry);
2150 		if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2151 		    !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)))
2152 			res = ERR_PTR(-ENOTDIR);
2153 		else if (inode && S_ISREG(inode->i_mode))
2154 			res = ERR_PTR(-EOPENSTALE);
2155 	} else if (!IS_ERR(res)) {
2156 		inode = d_inode(res);
2157 		if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2158 		    !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) {
2159 			dput(res);
2160 			res = ERR_PTR(-ENOTDIR);
2161 		} else if (inode && S_ISREG(inode->i_mode)) {
2162 			dput(res);
2163 			res = ERR_PTR(-EOPENSTALE);
2164 		}
2165 	}
2166 	if (switched) {
2167 		d_lookup_done(dentry);
2168 		if (!res)
2169 			res = dentry;
2170 		else
2171 			dput(dentry);
2172 	}
2173 	if (IS_ERR(res))
2174 		return PTR_ERR(res);
2175 	return finish_no_open(file, res);
2176 }
2177 EXPORT_SYMBOL_GPL(nfs_atomic_open);
2178 
2179 static int
2180 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
2181 			  unsigned int flags)
2182 {
2183 	struct inode *inode;
2184 
2185 	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
2186 		goto full_reval;
2187 	if (d_mountpoint(dentry))
2188 		goto full_reval;
2189 
2190 	inode = d_inode(dentry);
2191 
2192 	/* We can't create new files in nfs_open_revalidate(), so we
2193 	 * optimize away revalidation of negative dentries.
2194 	 */
2195 	if (inode == NULL)
2196 		goto full_reval;
2197 
2198 	if (nfs_verifier_is_delegated(dentry))
2199 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
2200 
2201 	/* NFS only supports OPEN on regular files */
2202 	if (!S_ISREG(inode->i_mode))
2203 		goto full_reval;
2204 
2205 	/* We cannot do exclusive creation on a positive dentry */
2206 	if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
2207 		goto reval_dentry;
2208 
2209 	/* Check if the directory changed */
2210 	if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
2211 		goto reval_dentry;
2212 
2213 	/* Let f_op->open() actually open (and revalidate) the file */
2214 	return 1;
2215 reval_dentry:
2216 	if (flags & LOOKUP_RCU)
2217 		return -ECHILD;
2218 	return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags);
2219 
2220 full_reval:
2221 	return nfs_do_lookup_revalidate(dir, dentry, flags);
2222 }
2223 
2224 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
2225 {
2226 	return __nfs_lookup_revalidate(dentry, flags,
2227 			nfs4_do_lookup_revalidate);
2228 }
2229 
2230 #endif /* CONFIG_NFSV4 */
2231 
2232 struct dentry *
2233 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
2234 				struct nfs_fattr *fattr)
2235 {
2236 	struct dentry *parent = dget_parent(dentry);
2237 	struct inode *dir = d_inode(parent);
2238 	struct inode *inode;
2239 	struct dentry *d;
2240 	int error;
2241 
2242 	d_drop(dentry);
2243 
2244 	if (fhandle->size == 0) {
2245 		error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
2246 		if (error)
2247 			goto out_error;
2248 	}
2249 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2250 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
2251 		struct nfs_server *server = NFS_SB(dentry->d_sb);
2252 		error = server->nfs_client->rpc_ops->getattr(server, fhandle,
2253 				fattr, NULL);
2254 		if (error < 0)
2255 			goto out_error;
2256 	}
2257 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
2258 	d = d_splice_alias(inode, dentry);
2259 out:
2260 	dput(parent);
2261 	return d;
2262 out_error:
2263 	d = ERR_PTR(error);
2264 	goto out;
2265 }
2266 EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
2267 
2268 /*
2269  * Code common to create, mkdir, and mknod.
2270  */
2271 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
2272 				struct nfs_fattr *fattr)
2273 {
2274 	struct dentry *d;
2275 
2276 	d = nfs_add_or_obtain(dentry, fhandle, fattr);
2277 	if (IS_ERR(d))
2278 		return PTR_ERR(d);
2279 
2280 	/* Callers don't care */
2281 	dput(d);
2282 	return 0;
2283 }
2284 EXPORT_SYMBOL_GPL(nfs_instantiate);
2285 
2286 /*
2287  * Following a failed create operation, we drop the dentry rather
2288  * than retain a negative dentry. This avoids a problem in the event
2289  * that the operation succeeded on the server, but an error in the
2290  * reply path made it appear to have failed.
2291  */
2292 int nfs_create(struct user_namespace *mnt_userns, struct inode *dir,
2293 	       struct dentry *dentry, umode_t mode, bool excl)
2294 {
2295 	struct iattr attr;
2296 	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
2297 	int error;
2298 
2299 	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
2300 			dir->i_sb->s_id, dir->i_ino, dentry);
2301 
2302 	attr.ia_mode = mode;
2303 	attr.ia_valid = ATTR_MODE;
2304 
2305 	trace_nfs_create_enter(dir, dentry, open_flags);
2306 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
2307 	trace_nfs_create_exit(dir, dentry, open_flags, error);
2308 	if (error != 0)
2309 		goto out_err;
2310 	return 0;
2311 out_err:
2312 	d_drop(dentry);
2313 	return error;
2314 }
2315 EXPORT_SYMBOL_GPL(nfs_create);
2316 
2317 /*
2318  * See comments for nfs_proc_create regarding failed operations.
2319  */
2320 int
2321 nfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2322 	  struct dentry *dentry, umode_t mode, dev_t rdev)
2323 {
2324 	struct iattr attr;
2325 	int status;
2326 
2327 	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
2328 			dir->i_sb->s_id, dir->i_ino, dentry);
2329 
2330 	attr.ia_mode = mode;
2331 	attr.ia_valid = ATTR_MODE;
2332 
2333 	trace_nfs_mknod_enter(dir, dentry);
2334 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
2335 	trace_nfs_mknod_exit(dir, dentry, status);
2336 	if (status != 0)
2337 		goto out_err;
2338 	return 0;
2339 out_err:
2340 	d_drop(dentry);
2341 	return status;
2342 }
2343 EXPORT_SYMBOL_GPL(nfs_mknod);
2344 
2345 /*
2346  * See comments for nfs_proc_create regarding failed operations.
2347  */
2348 int nfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2349 	      struct dentry *dentry, umode_t mode)
2350 {
2351 	struct iattr attr;
2352 	int error;
2353 
2354 	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
2355 			dir->i_sb->s_id, dir->i_ino, dentry);
2356 
2357 	attr.ia_valid = ATTR_MODE;
2358 	attr.ia_mode = mode | S_IFDIR;
2359 
2360 	trace_nfs_mkdir_enter(dir, dentry);
2361 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
2362 	trace_nfs_mkdir_exit(dir, dentry, error);
2363 	if (error != 0)
2364 		goto out_err;
2365 	return 0;
2366 out_err:
2367 	d_drop(dentry);
2368 	return error;
2369 }
2370 EXPORT_SYMBOL_GPL(nfs_mkdir);
2371 
2372 static void nfs_dentry_handle_enoent(struct dentry *dentry)
2373 {
2374 	if (simple_positive(dentry))
2375 		d_delete(dentry);
2376 }
2377 
2378 static void nfs_dentry_remove_handle_error(struct inode *dir,
2379 					   struct dentry *dentry, int error)
2380 {
2381 	switch (error) {
2382 	case -ENOENT:
2383 		d_delete(dentry);
2384 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2385 		break;
2386 	case 0:
2387 		nfs_d_prune_case_insensitive_aliases(d_inode(dentry));
2388 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2389 	}
2390 }
2391 
2392 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
2393 {
2394 	int error;
2395 
2396 	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
2397 			dir->i_sb->s_id, dir->i_ino, dentry);
2398 
2399 	trace_nfs_rmdir_enter(dir, dentry);
2400 	if (d_really_is_positive(dentry)) {
2401 		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2402 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2403 		/* Ensure the VFS deletes this inode */
2404 		switch (error) {
2405 		case 0:
2406 			clear_nlink(d_inode(dentry));
2407 			break;
2408 		case -ENOENT:
2409 			nfs_dentry_handle_enoent(dentry);
2410 		}
2411 		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2412 	} else
2413 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2414 	nfs_dentry_remove_handle_error(dir, dentry, error);
2415 	trace_nfs_rmdir_exit(dir, dentry, error);
2416 
2417 	return error;
2418 }
2419 EXPORT_SYMBOL_GPL(nfs_rmdir);
2420 
2421 /*
2422  * Remove a file after making sure there are no pending writes,
2423  * and after checking that the file has only one user.
2424  *
2425  * We invalidate the attribute cache and free the inode prior to the operation
2426  * to avoid possible races if the server reuses the inode.
2427  */
2428 static int nfs_safe_remove(struct dentry *dentry)
2429 {
2430 	struct inode *dir = d_inode(dentry->d_parent);
2431 	struct inode *inode = d_inode(dentry);
2432 	int error = -EBUSY;
2433 
2434 	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2435 
2436 	/* If the dentry was sillyrenamed, we simply call d_delete() */
2437 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2438 		error = 0;
2439 		goto out;
2440 	}
2441 
2442 	trace_nfs_remove_enter(dir, dentry);
2443 	if (inode != NULL) {
2444 		error = NFS_PROTO(dir)->remove(dir, dentry);
2445 		if (error == 0)
2446 			nfs_drop_nlink(inode);
2447 	} else
2448 		error = NFS_PROTO(dir)->remove(dir, dentry);
2449 	if (error == -ENOENT)
2450 		nfs_dentry_handle_enoent(dentry);
2451 	trace_nfs_remove_exit(dir, dentry, error);
2452 out:
2453 	return error;
2454 }
2455 
2456 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
2457  *  belongs to an active ".nfs..." file and we return -EBUSY.
2458  *
2459  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
2460  */
2461 int nfs_unlink(struct inode *dir, struct dentry *dentry)
2462 {
2463 	int error;
2464 	int need_rehash = 0;
2465 
2466 	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2467 		dir->i_ino, dentry);
2468 
2469 	trace_nfs_unlink_enter(dir, dentry);
2470 	spin_lock(&dentry->d_lock);
2471 	if (d_count(dentry) > 1 && !test_bit(NFS_INO_PRESERVE_UNLINKED,
2472 					     &NFS_I(d_inode(dentry))->flags)) {
2473 		spin_unlock(&dentry->d_lock);
2474 		/* Start asynchronous writeout of the inode */
2475 		write_inode_now(d_inode(dentry), 0);
2476 		error = nfs_sillyrename(dir, dentry);
2477 		goto out;
2478 	}
2479 	if (!d_unhashed(dentry)) {
2480 		__d_drop(dentry);
2481 		need_rehash = 1;
2482 	}
2483 	spin_unlock(&dentry->d_lock);
2484 	error = nfs_safe_remove(dentry);
2485 	nfs_dentry_remove_handle_error(dir, dentry, error);
2486 	if (need_rehash)
2487 		d_rehash(dentry);
2488 out:
2489 	trace_nfs_unlink_exit(dir, dentry, error);
2490 	return error;
2491 }
2492 EXPORT_SYMBOL_GPL(nfs_unlink);
2493 
2494 /*
2495  * To create a symbolic link, most file systems instantiate a new inode,
2496  * add a page to it containing the path, then write it out to the disk
2497  * using prepare_write/commit_write.
2498  *
2499  * Unfortunately the NFS client can't create the in-core inode first
2500  * because it needs a file handle to create an in-core inode (see
2501  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
2502  * symlink request has completed on the server.
2503  *
2504  * So instead we allocate a raw page, copy the symname into it, then do
2505  * the SYMLINK request with the page as the buffer.  If it succeeds, we
2506  * now have a new file handle and can instantiate an in-core NFS inode
2507  * and move the raw page into its mapping.
2508  */
2509 int nfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
2510 		struct dentry *dentry, const char *symname)
2511 {
2512 	struct page *page;
2513 	char *kaddr;
2514 	struct iattr attr;
2515 	unsigned int pathlen = strlen(symname);
2516 	int error;
2517 
2518 	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2519 		dir->i_ino, dentry, symname);
2520 
2521 	if (pathlen > PAGE_SIZE)
2522 		return -ENAMETOOLONG;
2523 
2524 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
2525 	attr.ia_valid = ATTR_MODE;
2526 
2527 	page = alloc_page(GFP_USER);
2528 	if (!page)
2529 		return -ENOMEM;
2530 
2531 	kaddr = page_address(page);
2532 	memcpy(kaddr, symname, pathlen);
2533 	if (pathlen < PAGE_SIZE)
2534 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2535 
2536 	trace_nfs_symlink_enter(dir, dentry);
2537 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
2538 	trace_nfs_symlink_exit(dir, dentry, error);
2539 	if (error != 0) {
2540 		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2541 			dir->i_sb->s_id, dir->i_ino,
2542 			dentry, symname, error);
2543 		d_drop(dentry);
2544 		__free_page(page);
2545 		return error;
2546 	}
2547 
2548 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2549 
2550 	/*
2551 	 * No big deal if we can't add this page to the page cache here.
2552 	 * READLINK will get the missing page from the server if needed.
2553 	 */
2554 	if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2555 							GFP_KERNEL)) {
2556 		SetPageUptodate(page);
2557 		unlock_page(page);
2558 		/*
2559 		 * add_to_page_cache_lru() grabs an extra page refcount.
2560 		 * Drop it here to avoid leaking this page later.
2561 		 */
2562 		put_page(page);
2563 	} else
2564 		__free_page(page);
2565 
2566 	return 0;
2567 }
2568 EXPORT_SYMBOL_GPL(nfs_symlink);
2569 
2570 int
2571 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2572 {
2573 	struct inode *inode = d_inode(old_dentry);
2574 	int error;
2575 
2576 	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2577 		old_dentry, dentry);
2578 
2579 	trace_nfs_link_enter(inode, dir, dentry);
2580 	d_drop(dentry);
2581 	if (S_ISREG(inode->i_mode))
2582 		nfs_sync_inode(inode);
2583 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2584 	if (error == 0) {
2585 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2586 		ihold(inode);
2587 		d_add(dentry, inode);
2588 	}
2589 	trace_nfs_link_exit(inode, dir, dentry, error);
2590 	return error;
2591 }
2592 EXPORT_SYMBOL_GPL(nfs_link);
2593 
2594 /*
2595  * RENAME
2596  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2597  * different file handle for the same inode after a rename (e.g. when
2598  * moving to a different directory). A fail-safe method to do so would
2599  * be to look up old_dir/old_name, create a link to new_dir/new_name and
2600  * rename the old file using the sillyrename stuff. This way, the original
2601  * file in old_dir will go away when the last process iput()s the inode.
2602  *
2603  * FIXED.
2604  *
2605  * It actually works quite well. One needs to have the possibility for
2606  * at least one ".nfs..." file in each directory the file ever gets
2607  * moved or linked to which happens automagically with the new
2608  * implementation that only depends on the dcache stuff instead of
2609  * using the inode layer
2610  *
2611  * Unfortunately, things are a little more complicated than indicated
2612  * above. For a cross-directory move, we want to make sure we can get
2613  * rid of the old inode after the operation.  This means there must be
2614  * no pending writes (if it's a file), and the use count must be 1.
2615  * If these conditions are met, we can drop the dentries before doing
2616  * the rename.
2617  */
2618 int nfs_rename(struct user_namespace *mnt_userns, struct inode *old_dir,
2619 	       struct dentry *old_dentry, struct inode *new_dir,
2620 	       struct dentry *new_dentry, unsigned int flags)
2621 {
2622 	struct inode *old_inode = d_inode(old_dentry);
2623 	struct inode *new_inode = d_inode(new_dentry);
2624 	struct dentry *dentry = NULL, *rehash = NULL;
2625 	struct rpc_task *task;
2626 	int error = -EBUSY;
2627 
2628 	if (flags)
2629 		return -EINVAL;
2630 
2631 	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2632 		 old_dentry, new_dentry,
2633 		 d_count(new_dentry));
2634 
2635 	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2636 	/*
2637 	 * For non-directories, check whether the target is busy and if so,
2638 	 * make a copy of the dentry and then do a silly-rename. If the
2639 	 * silly-rename succeeds, the copied dentry is hashed and becomes
2640 	 * the new target.
2641 	 */
2642 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2643 		/*
2644 		 * To prevent any new references to the target during the
2645 		 * rename, we unhash the dentry in advance.
2646 		 */
2647 		if (!d_unhashed(new_dentry)) {
2648 			d_drop(new_dentry);
2649 			rehash = new_dentry;
2650 		}
2651 
2652 		if (d_count(new_dentry) > 2) {
2653 			int err;
2654 
2655 			/* copy the target dentry's name */
2656 			dentry = d_alloc(new_dentry->d_parent,
2657 					 &new_dentry->d_name);
2658 			if (!dentry)
2659 				goto out;
2660 
2661 			/* silly-rename the existing target ... */
2662 			err = nfs_sillyrename(new_dir, new_dentry);
2663 			if (err)
2664 				goto out;
2665 
2666 			new_dentry = dentry;
2667 			rehash = NULL;
2668 			new_inode = NULL;
2669 		}
2670 	}
2671 
2672 	if (S_ISREG(old_inode->i_mode))
2673 		nfs_sync_inode(old_inode);
2674 	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2675 	if (IS_ERR(task)) {
2676 		error = PTR_ERR(task);
2677 		goto out;
2678 	}
2679 
2680 	error = rpc_wait_for_completion_task(task);
2681 	if (error != 0) {
2682 		((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2683 		/* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2684 		smp_wmb();
2685 	} else
2686 		error = task->tk_status;
2687 	rpc_put_task(task);
2688 	/* Ensure the inode attributes are revalidated */
2689 	if (error == 0) {
2690 		spin_lock(&old_inode->i_lock);
2691 		NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2692 		nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE |
2693 							 NFS_INO_INVALID_CTIME |
2694 							 NFS_INO_REVAL_FORCED);
2695 		spin_unlock(&old_inode->i_lock);
2696 	}
2697 out:
2698 	if (rehash)
2699 		d_rehash(rehash);
2700 	trace_nfs_rename_exit(old_dir, old_dentry,
2701 			new_dir, new_dentry, error);
2702 	if (!error) {
2703 		if (new_inode != NULL)
2704 			nfs_drop_nlink(new_inode);
2705 		/*
2706 		 * The d_move() should be here instead of in an async RPC completion
2707 		 * handler because we need the proper locks to move the dentry.  If
2708 		 * we're interrupted by a signal, the async RPC completion handler
2709 		 * should mark the directories for revalidation.
2710 		 */
2711 		d_move(old_dentry, new_dentry);
2712 		nfs_set_verifier(old_dentry,
2713 					nfs_save_change_attribute(new_dir));
2714 	} else if (error == -ENOENT)
2715 		nfs_dentry_handle_enoent(old_dentry);
2716 
2717 	/* new dentry created? */
2718 	if (dentry)
2719 		dput(dentry);
2720 	return error;
2721 }
2722 EXPORT_SYMBOL_GPL(nfs_rename);
2723 
2724 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2725 static LIST_HEAD(nfs_access_lru_list);
2726 static atomic_long_t nfs_access_nr_entries;
2727 
2728 static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2729 module_param(nfs_access_max_cachesize, ulong, 0644);
2730 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2731 
2732 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2733 {
2734 	put_group_info(entry->group_info);
2735 	kfree_rcu(entry, rcu_head);
2736 	smp_mb__before_atomic();
2737 	atomic_long_dec(&nfs_access_nr_entries);
2738 	smp_mb__after_atomic();
2739 }
2740 
2741 static void nfs_access_free_list(struct list_head *head)
2742 {
2743 	struct nfs_access_entry *cache;
2744 
2745 	while (!list_empty(head)) {
2746 		cache = list_entry(head->next, struct nfs_access_entry, lru);
2747 		list_del(&cache->lru);
2748 		nfs_access_free_entry(cache);
2749 	}
2750 }
2751 
2752 static unsigned long
2753 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2754 {
2755 	LIST_HEAD(head);
2756 	struct nfs_inode *nfsi, *next;
2757 	struct nfs_access_entry *cache;
2758 	long freed = 0;
2759 
2760 	spin_lock(&nfs_access_lru_lock);
2761 	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2762 		struct inode *inode;
2763 
2764 		if (nr_to_scan-- == 0)
2765 			break;
2766 		inode = &nfsi->vfs_inode;
2767 		spin_lock(&inode->i_lock);
2768 		if (list_empty(&nfsi->access_cache_entry_lru))
2769 			goto remove_lru_entry;
2770 		cache = list_entry(nfsi->access_cache_entry_lru.next,
2771 				struct nfs_access_entry, lru);
2772 		list_move(&cache->lru, &head);
2773 		rb_erase(&cache->rb_node, &nfsi->access_cache);
2774 		freed++;
2775 		if (!list_empty(&nfsi->access_cache_entry_lru))
2776 			list_move_tail(&nfsi->access_cache_inode_lru,
2777 					&nfs_access_lru_list);
2778 		else {
2779 remove_lru_entry:
2780 			list_del_init(&nfsi->access_cache_inode_lru);
2781 			smp_mb__before_atomic();
2782 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2783 			smp_mb__after_atomic();
2784 		}
2785 		spin_unlock(&inode->i_lock);
2786 	}
2787 	spin_unlock(&nfs_access_lru_lock);
2788 	nfs_access_free_list(&head);
2789 	return freed;
2790 }
2791 
2792 unsigned long
2793 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2794 {
2795 	int nr_to_scan = sc->nr_to_scan;
2796 	gfp_t gfp_mask = sc->gfp_mask;
2797 
2798 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2799 		return SHRINK_STOP;
2800 	return nfs_do_access_cache_scan(nr_to_scan);
2801 }
2802 
2803 
2804 unsigned long
2805 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2806 {
2807 	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2808 }
2809 
2810 static void
2811 nfs_access_cache_enforce_limit(void)
2812 {
2813 	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2814 	unsigned long diff;
2815 	unsigned int nr_to_scan;
2816 
2817 	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2818 		return;
2819 	nr_to_scan = 100;
2820 	diff = nr_entries - nfs_access_max_cachesize;
2821 	if (diff < nr_to_scan)
2822 		nr_to_scan = diff;
2823 	nfs_do_access_cache_scan(nr_to_scan);
2824 }
2825 
2826 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2827 {
2828 	struct rb_root *root_node = &nfsi->access_cache;
2829 	struct rb_node *n;
2830 	struct nfs_access_entry *entry;
2831 
2832 	/* Unhook entries from the cache */
2833 	while ((n = rb_first(root_node)) != NULL) {
2834 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2835 		rb_erase(n, root_node);
2836 		list_move(&entry->lru, head);
2837 	}
2838 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2839 }
2840 
2841 void nfs_access_zap_cache(struct inode *inode)
2842 {
2843 	LIST_HEAD(head);
2844 
2845 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2846 		return;
2847 	/* Remove from global LRU init */
2848 	spin_lock(&nfs_access_lru_lock);
2849 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2850 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2851 
2852 	spin_lock(&inode->i_lock);
2853 	__nfs_access_zap_cache(NFS_I(inode), &head);
2854 	spin_unlock(&inode->i_lock);
2855 	spin_unlock(&nfs_access_lru_lock);
2856 	nfs_access_free_list(&head);
2857 }
2858 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2859 
2860 static int access_cmp(const struct cred *a, const struct nfs_access_entry *b)
2861 {
2862 	struct group_info *ga, *gb;
2863 	int g;
2864 
2865 	if (uid_lt(a->fsuid, b->fsuid))
2866 		return -1;
2867 	if (uid_gt(a->fsuid, b->fsuid))
2868 		return 1;
2869 
2870 	if (gid_lt(a->fsgid, b->fsgid))
2871 		return -1;
2872 	if (gid_gt(a->fsgid, b->fsgid))
2873 		return 1;
2874 
2875 	ga = a->group_info;
2876 	gb = b->group_info;
2877 	if (ga == gb)
2878 		return 0;
2879 	if (ga == NULL)
2880 		return -1;
2881 	if (gb == NULL)
2882 		return 1;
2883 	if (ga->ngroups < gb->ngroups)
2884 		return -1;
2885 	if (ga->ngroups > gb->ngroups)
2886 		return 1;
2887 
2888 	for (g = 0; g < ga->ngroups; g++) {
2889 		if (gid_lt(ga->gid[g], gb->gid[g]))
2890 			return -1;
2891 		if (gid_gt(ga->gid[g], gb->gid[g]))
2892 			return 1;
2893 	}
2894 	return 0;
2895 }
2896 
2897 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2898 {
2899 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2900 
2901 	while (n != NULL) {
2902 		struct nfs_access_entry *entry =
2903 			rb_entry(n, struct nfs_access_entry, rb_node);
2904 		int cmp = access_cmp(cred, entry);
2905 
2906 		if (cmp < 0)
2907 			n = n->rb_left;
2908 		else if (cmp > 0)
2909 			n = n->rb_right;
2910 		else
2911 			return entry;
2912 	}
2913 	return NULL;
2914 }
2915 
2916 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, u32 *mask, bool may_block)
2917 {
2918 	struct nfs_inode *nfsi = NFS_I(inode);
2919 	struct nfs_access_entry *cache;
2920 	bool retry = true;
2921 	int err;
2922 
2923 	spin_lock(&inode->i_lock);
2924 	for(;;) {
2925 		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2926 			goto out_zap;
2927 		cache = nfs_access_search_rbtree(inode, cred);
2928 		err = -ENOENT;
2929 		if (cache == NULL)
2930 			goto out;
2931 		/* Found an entry, is our attribute cache valid? */
2932 		if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2933 			break;
2934 		if (!retry)
2935 			break;
2936 		err = -ECHILD;
2937 		if (!may_block)
2938 			goto out;
2939 		spin_unlock(&inode->i_lock);
2940 		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2941 		if (err)
2942 			return err;
2943 		spin_lock(&inode->i_lock);
2944 		retry = false;
2945 	}
2946 	*mask = cache->mask;
2947 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2948 	err = 0;
2949 out:
2950 	spin_unlock(&inode->i_lock);
2951 	return err;
2952 out_zap:
2953 	spin_unlock(&inode->i_lock);
2954 	nfs_access_zap_cache(inode);
2955 	return -ENOENT;
2956 }
2957 
2958 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, u32 *mask)
2959 {
2960 	/* Only check the most recently returned cache entry,
2961 	 * but do it without locking.
2962 	 */
2963 	struct nfs_inode *nfsi = NFS_I(inode);
2964 	struct nfs_access_entry *cache;
2965 	int err = -ECHILD;
2966 	struct list_head *lh;
2967 
2968 	rcu_read_lock();
2969 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2970 		goto out;
2971 	lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
2972 	cache = list_entry(lh, struct nfs_access_entry, lru);
2973 	if (lh == &nfsi->access_cache_entry_lru ||
2974 	    access_cmp(cred, cache) != 0)
2975 		cache = NULL;
2976 	if (cache == NULL)
2977 		goto out;
2978 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2979 		goto out;
2980 	*mask = cache->mask;
2981 	err = 0;
2982 out:
2983 	rcu_read_unlock();
2984 	return err;
2985 }
2986 
2987 int nfs_access_get_cached(struct inode *inode, const struct cred *cred,
2988 			  u32 *mask, bool may_block)
2989 {
2990 	int status;
2991 
2992 	status = nfs_access_get_cached_rcu(inode, cred, mask);
2993 	if (status != 0)
2994 		status = nfs_access_get_cached_locked(inode, cred, mask,
2995 		    may_block);
2996 
2997 	return status;
2998 }
2999 EXPORT_SYMBOL_GPL(nfs_access_get_cached);
3000 
3001 static void nfs_access_add_rbtree(struct inode *inode,
3002 				  struct nfs_access_entry *set,
3003 				  const struct cred *cred)
3004 {
3005 	struct nfs_inode *nfsi = NFS_I(inode);
3006 	struct rb_root *root_node = &nfsi->access_cache;
3007 	struct rb_node **p = &root_node->rb_node;
3008 	struct rb_node *parent = NULL;
3009 	struct nfs_access_entry *entry;
3010 	int cmp;
3011 
3012 	spin_lock(&inode->i_lock);
3013 	while (*p != NULL) {
3014 		parent = *p;
3015 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
3016 		cmp = access_cmp(cred, entry);
3017 
3018 		if (cmp < 0)
3019 			p = &parent->rb_left;
3020 		else if (cmp > 0)
3021 			p = &parent->rb_right;
3022 		else
3023 			goto found;
3024 	}
3025 	rb_link_node(&set->rb_node, parent, p);
3026 	rb_insert_color(&set->rb_node, root_node);
3027 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
3028 	spin_unlock(&inode->i_lock);
3029 	return;
3030 found:
3031 	rb_replace_node(parent, &set->rb_node, root_node);
3032 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
3033 	list_del(&entry->lru);
3034 	spin_unlock(&inode->i_lock);
3035 	nfs_access_free_entry(entry);
3036 }
3037 
3038 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set,
3039 			  const struct cred *cred)
3040 {
3041 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
3042 	if (cache == NULL)
3043 		return;
3044 	RB_CLEAR_NODE(&cache->rb_node);
3045 	cache->fsuid = cred->fsuid;
3046 	cache->fsgid = cred->fsgid;
3047 	cache->group_info = get_group_info(cred->group_info);
3048 	cache->mask = set->mask;
3049 
3050 	/* The above field assignments must be visible
3051 	 * before this item appears on the lru.  We cannot easily
3052 	 * use rcu_assign_pointer, so just force the memory barrier.
3053 	 */
3054 	smp_wmb();
3055 	nfs_access_add_rbtree(inode, cache, cred);
3056 
3057 	/* Update accounting */
3058 	smp_mb__before_atomic();
3059 	atomic_long_inc(&nfs_access_nr_entries);
3060 	smp_mb__after_atomic();
3061 
3062 	/* Add inode to global LRU list */
3063 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
3064 		spin_lock(&nfs_access_lru_lock);
3065 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
3066 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
3067 					&nfs_access_lru_list);
3068 		spin_unlock(&nfs_access_lru_lock);
3069 	}
3070 	nfs_access_cache_enforce_limit();
3071 }
3072 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
3073 
3074 #define NFS_MAY_READ (NFS_ACCESS_READ)
3075 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
3076 		NFS_ACCESS_EXTEND | \
3077 		NFS_ACCESS_DELETE)
3078 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
3079 		NFS_ACCESS_EXTEND)
3080 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
3081 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
3082 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
3083 static int
3084 nfs_access_calc_mask(u32 access_result, umode_t umode)
3085 {
3086 	int mask = 0;
3087 
3088 	if (access_result & NFS_MAY_READ)
3089 		mask |= MAY_READ;
3090 	if (S_ISDIR(umode)) {
3091 		if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
3092 			mask |= MAY_WRITE;
3093 		if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
3094 			mask |= MAY_EXEC;
3095 	} else if (S_ISREG(umode)) {
3096 		if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
3097 			mask |= MAY_WRITE;
3098 		if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
3099 			mask |= MAY_EXEC;
3100 	} else if (access_result & NFS_MAY_WRITE)
3101 			mask |= MAY_WRITE;
3102 	return mask;
3103 }
3104 
3105 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
3106 {
3107 	entry->mask = access_result;
3108 }
3109 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
3110 
3111 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
3112 {
3113 	struct nfs_access_entry cache;
3114 	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
3115 	int cache_mask = -1;
3116 	int status;
3117 
3118 	trace_nfs_access_enter(inode);
3119 
3120 	status = nfs_access_get_cached(inode, cred, &cache.mask, may_block);
3121 	if (status == 0)
3122 		goto out_cached;
3123 
3124 	status = -ECHILD;
3125 	if (!may_block)
3126 		goto out;
3127 
3128 	/*
3129 	 * Determine which access bits we want to ask for...
3130 	 */
3131 	cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND |
3132 		     nfs_access_xattr_mask(NFS_SERVER(inode));
3133 	if (S_ISDIR(inode->i_mode))
3134 		cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
3135 	else
3136 		cache.mask |= NFS_ACCESS_EXECUTE;
3137 	status = NFS_PROTO(inode)->access(inode, &cache, cred);
3138 	if (status != 0) {
3139 		if (status == -ESTALE) {
3140 			if (!S_ISDIR(inode->i_mode))
3141 				nfs_set_inode_stale(inode);
3142 			else
3143 				nfs_zap_caches(inode);
3144 		}
3145 		goto out;
3146 	}
3147 	nfs_access_add_cache(inode, &cache, cred);
3148 out_cached:
3149 	cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
3150 	if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
3151 		status = -EACCES;
3152 out:
3153 	trace_nfs_access_exit(inode, mask, cache_mask, status);
3154 	return status;
3155 }
3156 
3157 static int nfs_open_permission_mask(int openflags)
3158 {
3159 	int mask = 0;
3160 
3161 	if (openflags & __FMODE_EXEC) {
3162 		/* ONLY check exec rights */
3163 		mask = MAY_EXEC;
3164 	} else {
3165 		if ((openflags & O_ACCMODE) != O_WRONLY)
3166 			mask |= MAY_READ;
3167 		if ((openflags & O_ACCMODE) != O_RDONLY)
3168 			mask |= MAY_WRITE;
3169 	}
3170 
3171 	return mask;
3172 }
3173 
3174 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
3175 {
3176 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
3177 }
3178 EXPORT_SYMBOL_GPL(nfs_may_open);
3179 
3180 static int nfs_execute_ok(struct inode *inode, int mask)
3181 {
3182 	struct nfs_server *server = NFS_SERVER(inode);
3183 	int ret = 0;
3184 
3185 	if (S_ISDIR(inode->i_mode))
3186 		return 0;
3187 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) {
3188 		if (mask & MAY_NOT_BLOCK)
3189 			return -ECHILD;
3190 		ret = __nfs_revalidate_inode(server, inode);
3191 	}
3192 	if (ret == 0 && !execute_ok(inode))
3193 		ret = -EACCES;
3194 	return ret;
3195 }
3196 
3197 int nfs_permission(struct user_namespace *mnt_userns,
3198 		   struct inode *inode,
3199 		   int mask)
3200 {
3201 	const struct cred *cred = current_cred();
3202 	int res = 0;
3203 
3204 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
3205 
3206 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
3207 		goto out;
3208 	/* Is this sys_access() ? */
3209 	if (mask & (MAY_ACCESS | MAY_CHDIR))
3210 		goto force_lookup;
3211 
3212 	switch (inode->i_mode & S_IFMT) {
3213 		case S_IFLNK:
3214 			goto out;
3215 		case S_IFREG:
3216 			if ((mask & MAY_OPEN) &&
3217 			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
3218 				return 0;
3219 			break;
3220 		case S_IFDIR:
3221 			/*
3222 			 * Optimize away all write operations, since the server
3223 			 * will check permissions when we perform the op.
3224 			 */
3225 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
3226 				goto out;
3227 	}
3228 
3229 force_lookup:
3230 	if (!NFS_PROTO(inode)->access)
3231 		goto out_notsup;
3232 
3233 	res = nfs_do_access(inode, cred, mask);
3234 out:
3235 	if (!res && (mask & MAY_EXEC))
3236 		res = nfs_execute_ok(inode, mask);
3237 
3238 	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
3239 		inode->i_sb->s_id, inode->i_ino, mask, res);
3240 	return res;
3241 out_notsup:
3242 	if (mask & MAY_NOT_BLOCK)
3243 		return -ECHILD;
3244 
3245 	res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE |
3246 						  NFS_INO_INVALID_OTHER);
3247 	if (res == 0)
3248 		res = generic_permission(&init_user_ns, inode, mask);
3249 	goto out;
3250 }
3251 EXPORT_SYMBOL_GPL(nfs_permission);
3252