xref: /openbmc/linux/fs/nfs/dir.c (revision a52a8a6a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/nfs/dir.c
4  *
5  *  Copyright (C) 1992  Rick Sladkey
6  *
7  *  nfs directory handling functions
8  *
9  * 10 Apr 1996	Added silly rename for unlink	--okir
10  * 28 Sep 1996	Improved directory cache --okir
11  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
12  *              Re-implemented silly rename for unlink, newly implemented
13  *              silly rename for nfs_rename() following the suggestions
14  *              of Olaf Kirch (okir) found in this file.
15  *              Following Linus comments on my original hack, this version
16  *              depends only on the dcache stuff and doesn't touch the inode
17  *              layer (iput() and friends).
18  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
19  */
20 
21 #include <linux/module.h>
22 #include <linux/time.h>
23 #include <linux/errno.h>
24 #include <linux/stat.h>
25 #include <linux/fcntl.h>
26 #include <linux/string.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/mm.h>
30 #include <linux/sunrpc/clnt.h>
31 #include <linux/nfs_fs.h>
32 #include <linux/nfs_mount.h>
33 #include <linux/pagemap.h>
34 #include <linux/pagevec.h>
35 #include <linux/namei.h>
36 #include <linux/mount.h>
37 #include <linux/swap.h>
38 #include <linux/sched.h>
39 #include <linux/kmemleak.h>
40 #include <linux/xattr.h>
41 
42 #include "delegation.h"
43 #include "iostat.h"
44 #include "internal.h"
45 #include "fscache.h"
46 
47 #include "nfstrace.h"
48 
49 /* #define NFS_DEBUG_VERBOSE 1 */
50 
51 static int nfs_opendir(struct inode *, struct file *);
52 static int nfs_closedir(struct inode *, struct file *);
53 static int nfs_readdir(struct file *, struct dir_context *);
54 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
55 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
56 static void nfs_readdir_clear_array(struct page*);
57 
58 const struct file_operations nfs_dir_operations = {
59 	.llseek		= nfs_llseek_dir,
60 	.read		= generic_read_dir,
61 	.iterate_shared	= nfs_readdir,
62 	.open		= nfs_opendir,
63 	.release	= nfs_closedir,
64 	.fsync		= nfs_fsync_dir,
65 };
66 
67 const struct address_space_operations nfs_dir_aops = {
68 	.freepage = nfs_readdir_clear_array,
69 };
70 
71 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, const struct cred *cred)
72 {
73 	struct nfs_inode *nfsi = NFS_I(dir);
74 	struct nfs_open_dir_context *ctx;
75 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
76 	if (ctx != NULL) {
77 		ctx->duped = 0;
78 		ctx->attr_gencount = nfsi->attr_gencount;
79 		ctx->dir_cookie = 0;
80 		ctx->dup_cookie = 0;
81 		ctx->cred = get_cred(cred);
82 		spin_lock(&dir->i_lock);
83 		if (list_empty(&nfsi->open_files) &&
84 		    (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
85 			nfsi->cache_validity |= NFS_INO_INVALID_DATA |
86 				NFS_INO_REVAL_FORCED;
87 		list_add(&ctx->list, &nfsi->open_files);
88 		spin_unlock(&dir->i_lock);
89 		return ctx;
90 	}
91 	return  ERR_PTR(-ENOMEM);
92 }
93 
94 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
95 {
96 	spin_lock(&dir->i_lock);
97 	list_del(&ctx->list);
98 	spin_unlock(&dir->i_lock);
99 	put_cred(ctx->cred);
100 	kfree(ctx);
101 }
102 
103 /*
104  * Open file
105  */
106 static int
107 nfs_opendir(struct inode *inode, struct file *filp)
108 {
109 	int res = 0;
110 	struct nfs_open_dir_context *ctx;
111 
112 	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
113 
114 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
115 
116 	ctx = alloc_nfs_open_dir_context(inode, current_cred());
117 	if (IS_ERR(ctx)) {
118 		res = PTR_ERR(ctx);
119 		goto out;
120 	}
121 	filp->private_data = ctx;
122 out:
123 	return res;
124 }
125 
126 static int
127 nfs_closedir(struct inode *inode, struct file *filp)
128 {
129 	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
130 	return 0;
131 }
132 
133 struct nfs_cache_array_entry {
134 	u64 cookie;
135 	u64 ino;
136 	const char *name;
137 	unsigned int name_len;
138 	unsigned char d_type;
139 };
140 
141 struct nfs_cache_array {
142 	u64 last_cookie;
143 	unsigned int size;
144 	unsigned char page_full : 1,
145 		      page_is_eof : 1;
146 	struct nfs_cache_array_entry array[];
147 };
148 
149 typedef struct nfs_readdir_descriptor {
150 	struct file	*file;
151 	struct page	*page;
152 	struct dir_context *ctx;
153 	pgoff_t		page_index;
154 	u64		dir_cookie;
155 	u64		last_cookie;
156 	u64		dup_cookie;
157 	loff_t		current_index;
158 	loff_t		prev_index;
159 
160 	unsigned long	dir_verifier;
161 	unsigned long	timestamp;
162 	unsigned long	gencount;
163 	unsigned long	attr_gencount;
164 	unsigned int	cache_entry_index;
165 	signed char duped;
166 	bool plus;
167 	bool eof;
168 } nfs_readdir_descriptor_t;
169 
170 static void nfs_readdir_array_init(struct nfs_cache_array *array)
171 {
172 	memset(array, 0, sizeof(struct nfs_cache_array));
173 }
174 
175 static void nfs_readdir_page_init_array(struct page *page, u64 last_cookie)
176 {
177 	struct nfs_cache_array *array;
178 
179 	array = kmap_atomic(page);
180 	nfs_readdir_array_init(array);
181 	array->last_cookie = last_cookie;
182 	kunmap_atomic(array);
183 }
184 
185 /*
186  * we are freeing strings created by nfs_add_to_readdir_array()
187  */
188 static
189 void nfs_readdir_clear_array(struct page *page)
190 {
191 	struct nfs_cache_array *array;
192 	int i;
193 
194 	array = kmap_atomic(page);
195 	for (i = 0; i < array->size; i++)
196 		kfree(array->array[i].name);
197 	nfs_readdir_array_init(array);
198 	kunmap_atomic(array);
199 }
200 
201 static void nfs_readdir_array_set_eof(struct nfs_cache_array *array)
202 {
203 	array->page_is_eof = 1;
204 	array->page_full = 1;
205 }
206 
207 static bool nfs_readdir_array_is_full(struct nfs_cache_array *array)
208 {
209 	return array->page_full;
210 }
211 
212 /*
213  * the caller is responsible for freeing qstr.name
214  * when called by nfs_readdir_add_to_array, the strings will be freed in
215  * nfs_clear_readdir_array()
216  */
217 static const char *nfs_readdir_copy_name(const char *name, unsigned int len)
218 {
219 	const char *ret = kmemdup_nul(name, len, GFP_KERNEL);
220 
221 	/*
222 	 * Avoid a kmemleak false positive. The pointer to the name is stored
223 	 * in a page cache page which kmemleak does not scan.
224 	 */
225 	if (ret != NULL)
226 		kmemleak_not_leak(ret);
227 	return ret;
228 }
229 
230 /*
231  * Check that the next array entry lies entirely within the page bounds
232  */
233 static int nfs_readdir_array_can_expand(struct nfs_cache_array *array)
234 {
235 	struct nfs_cache_array_entry *cache_entry;
236 
237 	if (array->page_full)
238 		return -ENOSPC;
239 	cache_entry = &array->array[array->size + 1];
240 	if ((char *)cache_entry - (char *)array > PAGE_SIZE) {
241 		array->page_full = 1;
242 		return -ENOSPC;
243 	}
244 	return 0;
245 }
246 
247 static
248 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
249 {
250 	struct nfs_cache_array *array;
251 	struct nfs_cache_array_entry *cache_entry;
252 	const char *name;
253 	int ret;
254 
255 	name = nfs_readdir_copy_name(entry->name, entry->len);
256 	if (!name)
257 		return -ENOMEM;
258 
259 	array = kmap_atomic(page);
260 	ret = nfs_readdir_array_can_expand(array);
261 	if (ret) {
262 		kfree(name);
263 		goto out;
264 	}
265 
266 	cache_entry = &array->array[array->size];
267 	cache_entry->cookie = entry->prev_cookie;
268 	cache_entry->ino = entry->ino;
269 	cache_entry->d_type = entry->d_type;
270 	cache_entry->name_len = entry->len;
271 	cache_entry->name = name;
272 	array->last_cookie = entry->cookie;
273 	array->size++;
274 	if (entry->eof != 0)
275 		nfs_readdir_array_set_eof(array);
276 out:
277 	kunmap_atomic(array);
278 	return ret;
279 }
280 
281 static struct page *nfs_readdir_page_get_locked(struct address_space *mapping,
282 						pgoff_t index, u64 last_cookie)
283 {
284 	struct page *page;
285 
286 	page = grab_cache_page(mapping, index);
287 	if (page && !PageUptodate(page)) {
288 		nfs_readdir_page_init_array(page, last_cookie);
289 		if (invalidate_inode_pages2_range(mapping, index + 1, -1) < 0)
290 			nfs_zap_mapping(mapping->host, mapping);
291 		SetPageUptodate(page);
292 	}
293 
294 	return page;
295 }
296 
297 static u64 nfs_readdir_page_last_cookie(struct page *page)
298 {
299 	struct nfs_cache_array *array;
300 	u64 ret;
301 
302 	array = kmap_atomic(page);
303 	ret = array->last_cookie;
304 	kunmap_atomic(array);
305 	return ret;
306 }
307 
308 static bool nfs_readdir_page_needs_filling(struct page *page)
309 {
310 	struct nfs_cache_array *array;
311 	bool ret;
312 
313 	array = kmap_atomic(page);
314 	ret = !nfs_readdir_array_is_full(array);
315 	kunmap_atomic(array);
316 	return ret;
317 }
318 
319 static void nfs_readdir_page_set_eof(struct page *page)
320 {
321 	struct nfs_cache_array *array;
322 
323 	array = kmap_atomic(page);
324 	nfs_readdir_array_set_eof(array);
325 	kunmap_atomic(array);
326 }
327 
328 static void nfs_readdir_page_unlock_and_put(struct page *page)
329 {
330 	unlock_page(page);
331 	put_page(page);
332 }
333 
334 static struct page *nfs_readdir_page_get_next(struct address_space *mapping,
335 					      pgoff_t index, u64 cookie)
336 {
337 	struct page *page;
338 
339 	page = nfs_readdir_page_get_locked(mapping, index, cookie);
340 	if (page) {
341 		if (nfs_readdir_page_last_cookie(page) == cookie)
342 			return page;
343 		nfs_readdir_page_unlock_and_put(page);
344 	}
345 	return NULL;
346 }
347 
348 static inline
349 int is_32bit_api(void)
350 {
351 #ifdef CONFIG_COMPAT
352 	return in_compat_syscall();
353 #else
354 	return (BITS_PER_LONG == 32);
355 #endif
356 }
357 
358 static
359 bool nfs_readdir_use_cookie(const struct file *filp)
360 {
361 	if ((filp->f_mode & FMODE_32BITHASH) ||
362 	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
363 		return false;
364 	return true;
365 }
366 
367 static
368 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
369 {
370 	loff_t diff = desc->ctx->pos - desc->current_index;
371 	unsigned int index;
372 
373 	if (diff < 0)
374 		goto out_eof;
375 	if (diff >= array->size) {
376 		if (array->page_is_eof)
377 			goto out_eof;
378 		return -EAGAIN;
379 	}
380 
381 	index = (unsigned int)diff;
382 	desc->dir_cookie = array->array[index].cookie;
383 	desc->cache_entry_index = index;
384 	return 0;
385 out_eof:
386 	desc->eof = true;
387 	return -EBADCOOKIE;
388 }
389 
390 static bool
391 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
392 {
393 	if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
394 		return false;
395 	smp_rmb();
396 	return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
397 }
398 
399 static
400 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
401 {
402 	int i;
403 	loff_t new_pos;
404 	int status = -EAGAIN;
405 
406 	for (i = 0; i < array->size; i++) {
407 		if (array->array[i].cookie == desc->dir_cookie) {
408 			struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
409 
410 			new_pos = desc->current_index + i;
411 			if (desc->attr_gencount != nfsi->attr_gencount ||
412 			    !nfs_readdir_inode_mapping_valid(nfsi)) {
413 				desc->duped = 0;
414 				desc->attr_gencount = nfsi->attr_gencount;
415 			} else if (new_pos < desc->prev_index) {
416 				if (desc->duped > 0
417 				    && desc->dup_cookie == desc->dir_cookie) {
418 					if (printk_ratelimit()) {
419 						pr_notice("NFS: directory %pD2 contains a readdir loop."
420 								"Please contact your server vendor.  "
421 								"The file: %s has duplicate cookie %llu\n",
422 								desc->file, array->array[i].name, desc->dir_cookie);
423 					}
424 					status = -ELOOP;
425 					goto out;
426 				}
427 				desc->dup_cookie = desc->dir_cookie;
428 				desc->duped = -1;
429 			}
430 			if (nfs_readdir_use_cookie(desc->file))
431 				desc->ctx->pos = desc->dir_cookie;
432 			else
433 				desc->ctx->pos = new_pos;
434 			desc->prev_index = new_pos;
435 			desc->cache_entry_index = i;
436 			return 0;
437 		}
438 	}
439 	if (array->page_is_eof) {
440 		status = -EBADCOOKIE;
441 		if (desc->dir_cookie == array->last_cookie)
442 			desc->eof = true;
443 	}
444 out:
445 	return status;
446 }
447 
448 static
449 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
450 {
451 	struct nfs_cache_array *array;
452 	int status;
453 
454 	array = kmap_atomic(desc->page);
455 
456 	if (desc->dir_cookie == 0)
457 		status = nfs_readdir_search_for_pos(array, desc);
458 	else
459 		status = nfs_readdir_search_for_cookie(array, desc);
460 
461 	if (status == -EAGAIN) {
462 		desc->last_cookie = array->last_cookie;
463 		desc->current_index += array->size;
464 		desc->page_index++;
465 	}
466 	kunmap_atomic(array);
467 	return status;
468 }
469 
470 /* Fill a page with xdr information before transferring to the cache page */
471 static
472 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
473 			struct nfs_entry *entry, struct file *file, struct inode *inode)
474 {
475 	struct nfs_open_dir_context *ctx = file->private_data;
476 	const struct cred *cred = ctx->cred;
477 	unsigned long	timestamp, gencount;
478 	int		error;
479 
480  again:
481 	timestamp = jiffies;
482 	gencount = nfs_inc_attr_generation_counter();
483 	desc->dir_verifier = nfs_save_change_attribute(inode);
484 	error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
485 					  NFS_SERVER(inode)->dtsize, desc->plus);
486 	if (error < 0) {
487 		/* We requested READDIRPLUS, but the server doesn't grok it */
488 		if (error == -ENOTSUPP && desc->plus) {
489 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
490 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
491 			desc->plus = false;
492 			goto again;
493 		}
494 		goto error;
495 	}
496 	desc->timestamp = timestamp;
497 	desc->gencount = gencount;
498 error:
499 	return error;
500 }
501 
502 static int xdr_decode(nfs_readdir_descriptor_t *desc,
503 		      struct nfs_entry *entry, struct xdr_stream *xdr)
504 {
505 	struct inode *inode = file_inode(desc->file);
506 	int error;
507 
508 	error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
509 	if (error)
510 		return error;
511 	entry->fattr->time_start = desc->timestamp;
512 	entry->fattr->gencount = desc->gencount;
513 	return 0;
514 }
515 
516 /* Match file and dirent using either filehandle or fileid
517  * Note: caller is responsible for checking the fsid
518  */
519 static
520 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
521 {
522 	struct inode *inode;
523 	struct nfs_inode *nfsi;
524 
525 	if (d_really_is_negative(dentry))
526 		return 0;
527 
528 	inode = d_inode(dentry);
529 	if (is_bad_inode(inode) || NFS_STALE(inode))
530 		return 0;
531 
532 	nfsi = NFS_I(inode);
533 	if (entry->fattr->fileid != nfsi->fileid)
534 		return 0;
535 	if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
536 		return 0;
537 	return 1;
538 }
539 
540 static
541 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
542 {
543 	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
544 		return false;
545 	if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
546 		return true;
547 	if (ctx->pos == 0)
548 		return true;
549 	return false;
550 }
551 
552 /*
553  * This function is called by the lookup and getattr code to request the
554  * use of readdirplus to accelerate any future lookups in the same
555  * directory.
556  */
557 void nfs_advise_use_readdirplus(struct inode *dir)
558 {
559 	struct nfs_inode *nfsi = NFS_I(dir);
560 
561 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
562 	    !list_empty(&nfsi->open_files))
563 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
564 }
565 
566 /*
567  * This function is mainly for use by nfs_getattr().
568  *
569  * If this is an 'ls -l', we want to force use of readdirplus.
570  * Do this by checking if there is an active file descriptor
571  * and calling nfs_advise_use_readdirplus, then forcing a
572  * cache flush.
573  */
574 void nfs_force_use_readdirplus(struct inode *dir)
575 {
576 	struct nfs_inode *nfsi = NFS_I(dir);
577 
578 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
579 	    !list_empty(&nfsi->open_files)) {
580 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
581 		invalidate_mapping_pages(dir->i_mapping,
582 			nfsi->page_index + 1, -1);
583 	}
584 }
585 
586 static
587 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
588 		unsigned long dir_verifier)
589 {
590 	struct qstr filename = QSTR_INIT(entry->name, entry->len);
591 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
592 	struct dentry *dentry;
593 	struct dentry *alias;
594 	struct inode *inode;
595 	int status;
596 
597 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
598 		return;
599 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
600 		return;
601 	if (filename.len == 0)
602 		return;
603 	/* Validate that the name doesn't contain any illegal '\0' */
604 	if (strnlen(filename.name, filename.len) != filename.len)
605 		return;
606 	/* ...or '/' */
607 	if (strnchr(filename.name, filename.len, '/'))
608 		return;
609 	if (filename.name[0] == '.') {
610 		if (filename.len == 1)
611 			return;
612 		if (filename.len == 2 && filename.name[1] == '.')
613 			return;
614 	}
615 	filename.hash = full_name_hash(parent, filename.name, filename.len);
616 
617 	dentry = d_lookup(parent, &filename);
618 again:
619 	if (!dentry) {
620 		dentry = d_alloc_parallel(parent, &filename, &wq);
621 		if (IS_ERR(dentry))
622 			return;
623 	}
624 	if (!d_in_lookup(dentry)) {
625 		/* Is there a mountpoint here? If so, just exit */
626 		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
627 					&entry->fattr->fsid))
628 			goto out;
629 		if (nfs_same_file(dentry, entry)) {
630 			if (!entry->fh->size)
631 				goto out;
632 			nfs_set_verifier(dentry, dir_verifier);
633 			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
634 			if (!status)
635 				nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
636 			goto out;
637 		} else {
638 			d_invalidate(dentry);
639 			dput(dentry);
640 			dentry = NULL;
641 			goto again;
642 		}
643 	}
644 	if (!entry->fh->size) {
645 		d_lookup_done(dentry);
646 		goto out;
647 	}
648 
649 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
650 	alias = d_splice_alias(inode, dentry);
651 	d_lookup_done(dentry);
652 	if (alias) {
653 		if (IS_ERR(alias))
654 			goto out;
655 		dput(dentry);
656 		dentry = alias;
657 	}
658 	nfs_set_verifier(dentry, dir_verifier);
659 out:
660 	dput(dentry);
661 }
662 
663 /* Perform conversion from xdr to cache array */
664 static int nfs_readdir_page_filler(struct nfs_readdir_descriptor *desc,
665 				   struct nfs_entry *entry,
666 				   struct page **xdr_pages,
667 				   struct page *fillme, unsigned int buflen)
668 {
669 	struct address_space *mapping = desc->file->f_mapping;
670 	struct xdr_stream stream;
671 	struct xdr_buf buf;
672 	struct page *scratch, *new, *page = fillme;
673 	int status;
674 
675 	scratch = alloc_page(GFP_KERNEL);
676 	if (scratch == NULL)
677 		return -ENOMEM;
678 
679 	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
680 	xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
681 
682 	do {
683 		if (entry->label)
684 			entry->label->len = NFS4_MAXLABELLEN;
685 
686 		status = xdr_decode(desc, entry, &stream);
687 		if (status != 0)
688 			break;
689 
690 		if (desc->plus)
691 			nfs_prime_dcache(file_dentry(desc->file), entry,
692 					desc->dir_verifier);
693 
694 		status = nfs_readdir_add_to_array(entry, page);
695 		if (status != -ENOSPC)
696 			continue;
697 
698 		if (page->mapping != mapping)
699 			break;
700 		new = nfs_readdir_page_get_next(mapping, page->index + 1,
701 						entry->prev_cookie);
702 		if (!new)
703 			break;
704 		if (page != fillme)
705 			nfs_readdir_page_unlock_and_put(page);
706 		page = new;
707 		status = nfs_readdir_add_to_array(entry, page);
708 	} while (!status && !entry->eof);
709 
710 	switch (status) {
711 	case -EBADCOOKIE:
712 		if (entry->eof) {
713 			nfs_readdir_page_set_eof(page);
714 			status = 0;
715 		}
716 		break;
717 	case -ENOSPC:
718 	case -EAGAIN:
719 		status = 0;
720 		break;
721 	}
722 
723 	if (page != fillme)
724 		nfs_readdir_page_unlock_and_put(page);
725 
726 	put_page(scratch);
727 	return status;
728 }
729 
730 static
731 void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
732 {
733 	unsigned int i;
734 	for (i = 0; i < npages; i++)
735 		put_page(pages[i]);
736 }
737 
738 /*
739  * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
740  * to nfs_readdir_free_pages()
741  */
742 static
743 int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
744 {
745 	unsigned int i;
746 
747 	for (i = 0; i < npages; i++) {
748 		struct page *page = alloc_page(GFP_KERNEL);
749 		if (page == NULL)
750 			goto out_freepages;
751 		pages[i] = page;
752 	}
753 	return 0;
754 
755 out_freepages:
756 	nfs_readdir_free_pages(pages, i);
757 	return -ENOMEM;
758 }
759 
760 static
761 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
762 {
763 	struct page *pages[NFS_MAX_READDIR_PAGES];
764 	struct nfs_entry entry;
765 	struct file	*file = desc->file;
766 	int status = -ENOMEM;
767 	unsigned int array_size = ARRAY_SIZE(pages);
768 
769 	entry.prev_cookie = 0;
770 	entry.cookie = nfs_readdir_page_last_cookie(page);
771 	entry.eof = 0;
772 	entry.fh = nfs_alloc_fhandle();
773 	entry.fattr = nfs_alloc_fattr();
774 	entry.server = NFS_SERVER(inode);
775 	if (entry.fh == NULL || entry.fattr == NULL)
776 		goto out;
777 
778 	entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
779 	if (IS_ERR(entry.label)) {
780 		status = PTR_ERR(entry.label);
781 		goto out;
782 	}
783 
784 	status = nfs_readdir_alloc_pages(pages, array_size);
785 	if (status < 0)
786 		goto out_release_label;
787 	do {
788 		unsigned int pglen;
789 		status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
790 
791 		if (status < 0)
792 			break;
793 
794 		pglen = status;
795 		if (pglen == 0) {
796 			nfs_readdir_page_set_eof(page);
797 			break;
798 		}
799 
800 		status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
801 	} while (!status && nfs_readdir_page_needs_filling(page));
802 
803 	nfs_readdir_free_pages(pages, array_size);
804 out_release_label:
805 	nfs4_label_free(entry.label);
806 out:
807 	nfs_free_fattr(entry.fattr);
808 	nfs_free_fhandle(entry.fh);
809 	return status;
810 }
811 
812 static void nfs_readdir_page_put(struct nfs_readdir_descriptor *desc)
813 {
814 	put_page(desc->page);
815 	desc->page = NULL;
816 }
817 
818 static void
819 nfs_readdir_page_unlock_and_put_cached(struct nfs_readdir_descriptor *desc)
820 {
821 	unlock_page(desc->page);
822 	nfs_readdir_page_put(desc);
823 }
824 
825 static struct page *
826 nfs_readdir_page_get_cached(struct nfs_readdir_descriptor *desc)
827 {
828 	return nfs_readdir_page_get_locked(desc->file->f_mapping,
829 					   desc->page_index,
830 					   desc->last_cookie);
831 }
832 
833 /*
834  * Returns 0 if desc->dir_cookie was found on page desc->page_index
835  * and locks the page to prevent removal from the page cache.
836  */
837 static
838 int find_and_lock_cache_page(nfs_readdir_descriptor_t *desc)
839 {
840 	struct inode *inode = file_inode(desc->file);
841 	struct nfs_inode *nfsi = NFS_I(inode);
842 	int res;
843 
844 	desc->page = nfs_readdir_page_get_cached(desc);
845 	if (!desc->page)
846 		return -ENOMEM;
847 	if (nfs_readdir_page_needs_filling(desc->page)) {
848 		res = nfs_readdir_xdr_to_array(desc, desc->page, inode);
849 		if (res < 0)
850 			goto error;
851 	}
852 	res = nfs_readdir_search_array(desc);
853 	if (res == 0) {
854 		nfsi->page_index = desc->page_index;
855 		return 0;
856 	}
857 error:
858 	nfs_readdir_page_unlock_and_put_cached(desc);
859 	return res;
860 }
861 
862 /* Search for desc->dir_cookie from the beginning of the page cache */
863 static inline
864 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
865 {
866 	int res;
867 
868 	if (desc->page_index == 0) {
869 		desc->current_index = 0;
870 		desc->prev_index = 0;
871 		desc->last_cookie = 0;
872 	}
873 	do {
874 		res = find_and_lock_cache_page(desc);
875 	} while (res == -EAGAIN);
876 	return res;
877 }
878 
879 /*
880  * Once we've found the start of the dirent within a page: fill 'er up...
881  */
882 static
883 int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
884 {
885 	struct file	*file = desc->file;
886 	int i = 0;
887 	int res = 0;
888 	struct nfs_cache_array *array = NULL;
889 
890 	array = kmap(desc->page);
891 	for (i = desc->cache_entry_index; i < array->size; i++) {
892 		struct nfs_cache_array_entry *ent;
893 
894 		ent = &array->array[i];
895 		if (!dir_emit(desc->ctx, ent->name, ent->name_len,
896 		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
897 			desc->eof = true;
898 			break;
899 		}
900 		if (i < (array->size-1))
901 			desc->dir_cookie = array->array[i+1].cookie;
902 		else
903 			desc->dir_cookie = array->last_cookie;
904 		if (nfs_readdir_use_cookie(file))
905 			desc->ctx->pos = desc->dir_cookie;
906 		else
907 			desc->ctx->pos++;
908 		if (desc->duped != 0)
909 			desc->duped = 1;
910 	}
911 	if (array->page_is_eof)
912 		desc->eof = true;
913 
914 	kunmap(desc->page);
915 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
916 			(unsigned long long)desc->dir_cookie, res);
917 	return res;
918 }
919 
920 /*
921  * If we cannot find a cookie in our cache, we suspect that this is
922  * because it points to a deleted file, so we ask the server to return
923  * whatever it thinks is the next entry. We then feed this to filldir.
924  * If all goes well, we should then be able to find our way round the
925  * cache on the next call to readdir_search_pagecache();
926  *
927  * NOTE: we cannot add the anonymous page to the pagecache because
928  *	 the data it contains might not be page aligned. Besides,
929  *	 we should already have a complete representation of the
930  *	 directory in the page cache by the time we get here.
931  */
932 static inline
933 int uncached_readdir(nfs_readdir_descriptor_t *desc)
934 {
935 	struct page	*page = NULL;
936 	int		status;
937 	struct inode *inode = file_inode(desc->file);
938 
939 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
940 			(unsigned long long)desc->dir_cookie);
941 
942 	page = alloc_page(GFP_HIGHUSER);
943 	if (!page) {
944 		status = -ENOMEM;
945 		goto out;
946 	}
947 
948 	desc->page_index = 0;
949 	desc->last_cookie = desc->dir_cookie;
950 	desc->page = page;
951 	desc->duped = 0;
952 
953 	nfs_readdir_page_init_array(page, desc->dir_cookie);
954 	status = nfs_readdir_xdr_to_array(desc, page, inode);
955 	if (status < 0)
956 		goto out_release;
957 
958 	status = nfs_do_filldir(desc);
959 
960  out_release:
961 	nfs_readdir_clear_array(desc->page);
962 	nfs_readdir_page_put(desc);
963  out:
964 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
965 			__func__, status);
966 	return status;
967 }
968 
969 /* The file offset position represents the dirent entry number.  A
970    last cookie cache takes care of the common case of reading the
971    whole directory.
972  */
973 static int nfs_readdir(struct file *file, struct dir_context *ctx)
974 {
975 	struct dentry	*dentry = file_dentry(file);
976 	struct inode	*inode = d_inode(dentry);
977 	struct nfs_open_dir_context *dir_ctx = file->private_data;
978 	nfs_readdir_descriptor_t my_desc = {
979 		.file = file,
980 		.ctx = ctx,
981 		.plus = nfs_use_readdirplus(inode, ctx),
982 	},
983 			*desc = &my_desc;
984 	int res = 0;
985 
986 	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
987 			file, (long long)ctx->pos);
988 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
989 
990 	/*
991 	 * ctx->pos points to the dirent entry number.
992 	 * *desc->dir_cookie has the cookie for the next entry. We have
993 	 * to either find the entry with the appropriate number or
994 	 * revalidate the cookie.
995 	 */
996 	if (ctx->pos == 0 || nfs_attribute_cache_expired(inode))
997 		res = nfs_revalidate_mapping(inode, file->f_mapping);
998 	if (res < 0)
999 		goto out;
1000 
1001 	spin_lock(&file->f_lock);
1002 	desc->dir_cookie = dir_ctx->dir_cookie;
1003 	desc->dup_cookie = dir_ctx->dup_cookie;
1004 	desc->duped = dir_ctx->duped;
1005 	desc->attr_gencount = dir_ctx->attr_gencount;
1006 	spin_unlock(&file->f_lock);
1007 
1008 	do {
1009 		res = readdir_search_pagecache(desc);
1010 
1011 		if (res == -EBADCOOKIE) {
1012 			res = 0;
1013 			/* This means either end of directory */
1014 			if (desc->dir_cookie && !desc->eof) {
1015 				/* Or that the server has 'lost' a cookie */
1016 				res = uncached_readdir(desc);
1017 				if (res == 0)
1018 					continue;
1019 			}
1020 			break;
1021 		}
1022 		if (res == -ETOOSMALL && desc->plus) {
1023 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
1024 			nfs_zap_caches(inode);
1025 			desc->page_index = 0;
1026 			desc->plus = false;
1027 			desc->eof = false;
1028 			continue;
1029 		}
1030 		if (res < 0)
1031 			break;
1032 
1033 		res = nfs_do_filldir(desc);
1034 		nfs_readdir_page_unlock_and_put_cached(desc);
1035 		if (res < 0)
1036 			break;
1037 	} while (!desc->eof);
1038 
1039 	spin_lock(&file->f_lock);
1040 	dir_ctx->dir_cookie = desc->dir_cookie;
1041 	dir_ctx->dup_cookie = desc->dup_cookie;
1042 	dir_ctx->duped = desc->duped;
1043 	dir_ctx->attr_gencount = desc->attr_gencount;
1044 	spin_unlock(&file->f_lock);
1045 
1046 out:
1047 	if (res > 0)
1048 		res = 0;
1049 	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
1050 	return res;
1051 }
1052 
1053 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
1054 {
1055 	struct nfs_open_dir_context *dir_ctx = filp->private_data;
1056 
1057 	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
1058 			filp, offset, whence);
1059 
1060 	switch (whence) {
1061 	default:
1062 		return -EINVAL;
1063 	case SEEK_SET:
1064 		if (offset < 0)
1065 			return -EINVAL;
1066 		spin_lock(&filp->f_lock);
1067 		break;
1068 	case SEEK_CUR:
1069 		if (offset == 0)
1070 			return filp->f_pos;
1071 		spin_lock(&filp->f_lock);
1072 		offset += filp->f_pos;
1073 		if (offset < 0) {
1074 			spin_unlock(&filp->f_lock);
1075 			return -EINVAL;
1076 		}
1077 	}
1078 	if (offset != filp->f_pos) {
1079 		filp->f_pos = offset;
1080 		if (nfs_readdir_use_cookie(filp))
1081 			dir_ctx->dir_cookie = offset;
1082 		else
1083 			dir_ctx->dir_cookie = 0;
1084 		dir_ctx->duped = 0;
1085 	}
1086 	spin_unlock(&filp->f_lock);
1087 	return offset;
1088 }
1089 
1090 /*
1091  * All directory operations under NFS are synchronous, so fsync()
1092  * is a dummy operation.
1093  */
1094 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1095 			 int datasync)
1096 {
1097 	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1098 
1099 	nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC);
1100 	return 0;
1101 }
1102 
1103 /**
1104  * nfs_force_lookup_revalidate - Mark the directory as having changed
1105  * @dir: pointer to directory inode
1106  *
1107  * This forces the revalidation code in nfs_lookup_revalidate() to do a
1108  * full lookup on all child dentries of 'dir' whenever a change occurs
1109  * on the server that might have invalidated our dcache.
1110  *
1111  * Note that we reserve bit '0' as a tag to let us know when a dentry
1112  * was revalidated while holding a delegation on its inode.
1113  *
1114  * The caller should be holding dir->i_lock
1115  */
1116 void nfs_force_lookup_revalidate(struct inode *dir)
1117 {
1118 	NFS_I(dir)->cache_change_attribute += 2;
1119 }
1120 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1121 
1122 /**
1123  * nfs_verify_change_attribute - Detects NFS remote directory changes
1124  * @dir: pointer to parent directory inode
1125  * @verf: previously saved change attribute
1126  *
1127  * Return "false" if the verifiers doesn't match the change attribute.
1128  * This would usually indicate that the directory contents have changed on
1129  * the server, and that any dentries need revalidating.
1130  */
1131 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1132 {
1133 	return (verf & ~1UL) == nfs_save_change_attribute(dir);
1134 }
1135 
1136 static void nfs_set_verifier_delegated(unsigned long *verf)
1137 {
1138 	*verf |= 1UL;
1139 }
1140 
1141 #if IS_ENABLED(CONFIG_NFS_V4)
1142 static void nfs_unset_verifier_delegated(unsigned long *verf)
1143 {
1144 	*verf &= ~1UL;
1145 }
1146 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1147 
1148 static bool nfs_test_verifier_delegated(unsigned long verf)
1149 {
1150 	return verf & 1;
1151 }
1152 
1153 static bool nfs_verifier_is_delegated(struct dentry *dentry)
1154 {
1155 	return nfs_test_verifier_delegated(dentry->d_time);
1156 }
1157 
1158 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1159 {
1160 	struct inode *inode = d_inode(dentry);
1161 
1162 	if (!nfs_verifier_is_delegated(dentry) &&
1163 	    !nfs_verify_change_attribute(d_inode(dentry->d_parent), verf))
1164 		goto out;
1165 	if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
1166 		nfs_set_verifier_delegated(&verf);
1167 out:
1168 	dentry->d_time = verf;
1169 }
1170 
1171 /**
1172  * nfs_set_verifier - save a parent directory verifier in the dentry
1173  * @dentry: pointer to dentry
1174  * @verf: verifier to save
1175  *
1176  * Saves the parent directory verifier in @dentry. If the inode has
1177  * a delegation, we also tag the dentry as having been revalidated
1178  * while holding a delegation so that we know we don't have to
1179  * look it up again after a directory change.
1180  */
1181 void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1182 {
1183 
1184 	spin_lock(&dentry->d_lock);
1185 	nfs_set_verifier_locked(dentry, verf);
1186 	spin_unlock(&dentry->d_lock);
1187 }
1188 EXPORT_SYMBOL_GPL(nfs_set_verifier);
1189 
1190 #if IS_ENABLED(CONFIG_NFS_V4)
1191 /**
1192  * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1193  * @inode: pointer to inode
1194  *
1195  * Iterates through the dentries in the inode alias list and clears
1196  * the tag used to indicate that the dentry has been revalidated
1197  * while holding a delegation.
1198  * This function is intended for use when the delegation is being
1199  * returned or revoked.
1200  */
1201 void nfs_clear_verifier_delegated(struct inode *inode)
1202 {
1203 	struct dentry *alias;
1204 
1205 	if (!inode)
1206 		return;
1207 	spin_lock(&inode->i_lock);
1208 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1209 		spin_lock(&alias->d_lock);
1210 		nfs_unset_verifier_delegated(&alias->d_time);
1211 		spin_unlock(&alias->d_lock);
1212 	}
1213 	spin_unlock(&inode->i_lock);
1214 }
1215 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1216 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1217 
1218 /*
1219  * A check for whether or not the parent directory has changed.
1220  * In the case it has, we assume that the dentries are untrustworthy
1221  * and may need to be looked up again.
1222  * If rcu_walk prevents us from performing a full check, return 0.
1223  */
1224 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1225 			      int rcu_walk)
1226 {
1227 	if (IS_ROOT(dentry))
1228 		return 1;
1229 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1230 		return 0;
1231 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1232 		return 0;
1233 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1234 	if (nfs_mapping_need_revalidate_inode(dir)) {
1235 		if (rcu_walk)
1236 			return 0;
1237 		if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1238 			return 0;
1239 	}
1240 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1241 		return 0;
1242 	return 1;
1243 }
1244 
1245 /*
1246  * Use intent information to check whether or not we're going to do
1247  * an O_EXCL create using this path component.
1248  */
1249 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1250 {
1251 	if (NFS_PROTO(dir)->version == 2)
1252 		return 0;
1253 	return flags & LOOKUP_EXCL;
1254 }
1255 
1256 /*
1257  * Inode and filehandle revalidation for lookups.
1258  *
1259  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1260  * or if the intent information indicates that we're about to open this
1261  * particular file and the "nocto" mount flag is not set.
1262  *
1263  */
1264 static
1265 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1266 {
1267 	struct nfs_server *server = NFS_SERVER(inode);
1268 	int ret;
1269 
1270 	if (IS_AUTOMOUNT(inode))
1271 		return 0;
1272 
1273 	if (flags & LOOKUP_OPEN) {
1274 		switch (inode->i_mode & S_IFMT) {
1275 		case S_IFREG:
1276 			/* A NFSv4 OPEN will revalidate later */
1277 			if (server->caps & NFS_CAP_ATOMIC_OPEN)
1278 				goto out;
1279 			fallthrough;
1280 		case S_IFDIR:
1281 			if (server->flags & NFS_MOUNT_NOCTO)
1282 				break;
1283 			/* NFS close-to-open cache consistency validation */
1284 			goto out_force;
1285 		}
1286 	}
1287 
1288 	/* VFS wants an on-the-wire revalidation */
1289 	if (flags & LOOKUP_REVAL)
1290 		goto out_force;
1291 out:
1292 	return (inode->i_nlink == 0) ? -ESTALE : 0;
1293 out_force:
1294 	if (flags & LOOKUP_RCU)
1295 		return -ECHILD;
1296 	ret = __nfs_revalidate_inode(server, inode);
1297 	if (ret != 0)
1298 		return ret;
1299 	goto out;
1300 }
1301 
1302 /*
1303  * We judge how long we want to trust negative
1304  * dentries by looking at the parent inode mtime.
1305  *
1306  * If parent mtime has changed, we revalidate, else we wait for a
1307  * period corresponding to the parent's attribute cache timeout value.
1308  *
1309  * If LOOKUP_RCU prevents us from performing a full check, return 1
1310  * suggesting a reval is needed.
1311  *
1312  * Note that when creating a new file, or looking up a rename target,
1313  * then it shouldn't be necessary to revalidate a negative dentry.
1314  */
1315 static inline
1316 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1317 		       unsigned int flags)
1318 {
1319 	if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1320 		return 0;
1321 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1322 		return 1;
1323 	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1324 }
1325 
1326 static int
1327 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1328 			   struct inode *inode, int error)
1329 {
1330 	switch (error) {
1331 	case 1:
1332 		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1333 			__func__, dentry);
1334 		return 1;
1335 	case 0:
1336 		nfs_mark_for_revalidate(dir);
1337 		if (inode && S_ISDIR(inode->i_mode)) {
1338 			/* Purge readdir caches. */
1339 			nfs_zap_caches(inode);
1340 			/*
1341 			 * We can't d_drop the root of a disconnected tree:
1342 			 * its d_hash is on the s_anon list and d_drop() would hide
1343 			 * it from shrink_dcache_for_unmount(), leading to busy
1344 			 * inodes on unmount and further oopses.
1345 			 */
1346 			if (IS_ROOT(dentry))
1347 				return 1;
1348 		}
1349 		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1350 				__func__, dentry);
1351 		return 0;
1352 	}
1353 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1354 				__func__, dentry, error);
1355 	return error;
1356 }
1357 
1358 static int
1359 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1360 			       unsigned int flags)
1361 {
1362 	int ret = 1;
1363 	if (nfs_neg_need_reval(dir, dentry, flags)) {
1364 		if (flags & LOOKUP_RCU)
1365 			return -ECHILD;
1366 		ret = 0;
1367 	}
1368 	return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1369 }
1370 
1371 static int
1372 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1373 				struct inode *inode)
1374 {
1375 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1376 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1377 }
1378 
1379 static int
1380 nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry,
1381 			     struct inode *inode)
1382 {
1383 	struct nfs_fh *fhandle;
1384 	struct nfs_fattr *fattr;
1385 	struct nfs4_label *label;
1386 	unsigned long dir_verifier;
1387 	int ret;
1388 
1389 	ret = -ENOMEM;
1390 	fhandle = nfs_alloc_fhandle();
1391 	fattr = nfs_alloc_fattr();
1392 	label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL);
1393 	if (fhandle == NULL || fattr == NULL || IS_ERR(label))
1394 		goto out;
1395 
1396 	dir_verifier = nfs_save_change_attribute(dir);
1397 	ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1398 	if (ret < 0) {
1399 		switch (ret) {
1400 		case -ESTALE:
1401 		case -ENOENT:
1402 			ret = 0;
1403 			break;
1404 		case -ETIMEDOUT:
1405 			if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1406 				ret = 1;
1407 		}
1408 		goto out;
1409 	}
1410 	ret = 0;
1411 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1412 		goto out;
1413 	if (nfs_refresh_inode(inode, fattr) < 0)
1414 		goto out;
1415 
1416 	nfs_setsecurity(inode, fattr, label);
1417 	nfs_set_verifier(dentry, dir_verifier);
1418 
1419 	/* set a readdirplus hint that we had a cache miss */
1420 	nfs_force_use_readdirplus(dir);
1421 	ret = 1;
1422 out:
1423 	nfs_free_fattr(fattr);
1424 	nfs_free_fhandle(fhandle);
1425 	nfs4_label_free(label);
1426 	return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1427 }
1428 
1429 /*
1430  * This is called every time the dcache has a lookup hit,
1431  * and we should check whether we can really trust that
1432  * lookup.
1433  *
1434  * NOTE! The hit can be a negative hit too, don't assume
1435  * we have an inode!
1436  *
1437  * If the parent directory is seen to have changed, we throw out the
1438  * cached dentry and do a new lookup.
1439  */
1440 static int
1441 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1442 			 unsigned int flags)
1443 {
1444 	struct inode *inode;
1445 	int error;
1446 
1447 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1448 	inode = d_inode(dentry);
1449 
1450 	if (!inode)
1451 		return nfs_lookup_revalidate_negative(dir, dentry, flags);
1452 
1453 	if (is_bad_inode(inode)) {
1454 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1455 				__func__, dentry);
1456 		goto out_bad;
1457 	}
1458 
1459 	if (nfs_verifier_is_delegated(dentry))
1460 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1461 
1462 	/* Force a full look up iff the parent directory has changed */
1463 	if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1464 	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1465 		error = nfs_lookup_verify_inode(inode, flags);
1466 		if (error) {
1467 			if (error == -ESTALE)
1468 				nfs_zap_caches(dir);
1469 			goto out_bad;
1470 		}
1471 		nfs_advise_use_readdirplus(dir);
1472 		goto out_valid;
1473 	}
1474 
1475 	if (flags & LOOKUP_RCU)
1476 		return -ECHILD;
1477 
1478 	if (NFS_STALE(inode))
1479 		goto out_bad;
1480 
1481 	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1482 	error = nfs_lookup_revalidate_dentry(dir, dentry, inode);
1483 	trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1484 	return error;
1485 out_valid:
1486 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1487 out_bad:
1488 	if (flags & LOOKUP_RCU)
1489 		return -ECHILD;
1490 	return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1491 }
1492 
1493 static int
1494 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1495 			int (*reval)(struct inode *, struct dentry *, unsigned int))
1496 {
1497 	struct dentry *parent;
1498 	struct inode *dir;
1499 	int ret;
1500 
1501 	if (flags & LOOKUP_RCU) {
1502 		parent = READ_ONCE(dentry->d_parent);
1503 		dir = d_inode_rcu(parent);
1504 		if (!dir)
1505 			return -ECHILD;
1506 		ret = reval(dir, dentry, flags);
1507 		if (parent != READ_ONCE(dentry->d_parent))
1508 			return -ECHILD;
1509 	} else {
1510 		parent = dget_parent(dentry);
1511 		ret = reval(d_inode(parent), dentry, flags);
1512 		dput(parent);
1513 	}
1514 	return ret;
1515 }
1516 
1517 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1518 {
1519 	return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1520 }
1521 
1522 /*
1523  * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1524  * when we don't really care about the dentry name. This is called when a
1525  * pathwalk ends on a dentry that was not found via a normal lookup in the
1526  * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1527  *
1528  * In this situation, we just want to verify that the inode itself is OK
1529  * since the dentry might have changed on the server.
1530  */
1531 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1532 {
1533 	struct inode *inode = d_inode(dentry);
1534 	int error = 0;
1535 
1536 	/*
1537 	 * I believe we can only get a negative dentry here in the case of a
1538 	 * procfs-style symlink. Just assume it's correct for now, but we may
1539 	 * eventually need to do something more here.
1540 	 */
1541 	if (!inode) {
1542 		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1543 				__func__, dentry);
1544 		return 1;
1545 	}
1546 
1547 	if (is_bad_inode(inode)) {
1548 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1549 				__func__, dentry);
1550 		return 0;
1551 	}
1552 
1553 	error = nfs_lookup_verify_inode(inode, flags);
1554 	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1555 			__func__, inode->i_ino, error ? "invalid" : "valid");
1556 	return !error;
1557 }
1558 
1559 /*
1560  * This is called from dput() when d_count is going to 0.
1561  */
1562 static int nfs_dentry_delete(const struct dentry *dentry)
1563 {
1564 	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1565 		dentry, dentry->d_flags);
1566 
1567 	/* Unhash any dentry with a stale inode */
1568 	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1569 		return 1;
1570 
1571 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1572 		/* Unhash it, so that ->d_iput() would be called */
1573 		return 1;
1574 	}
1575 	if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1576 		/* Unhash it, so that ancestors of killed async unlink
1577 		 * files will be cleaned up during umount */
1578 		return 1;
1579 	}
1580 	return 0;
1581 
1582 }
1583 
1584 /* Ensure that we revalidate inode->i_nlink */
1585 static void nfs_drop_nlink(struct inode *inode)
1586 {
1587 	spin_lock(&inode->i_lock);
1588 	/* drop the inode if we're reasonably sure this is the last link */
1589 	if (inode->i_nlink > 0)
1590 		drop_nlink(inode);
1591 	NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1592 	NFS_I(inode)->cache_validity |= NFS_INO_INVALID_CHANGE
1593 		| NFS_INO_INVALID_CTIME
1594 		| NFS_INO_INVALID_OTHER
1595 		| NFS_INO_REVAL_FORCED;
1596 	spin_unlock(&inode->i_lock);
1597 }
1598 
1599 /*
1600  * Called when the dentry loses inode.
1601  * We use it to clean up silly-renamed files.
1602  */
1603 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1604 {
1605 	if (S_ISDIR(inode->i_mode))
1606 		/* drop any readdir cache as it could easily be old */
1607 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1608 
1609 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1610 		nfs_complete_unlink(dentry, inode);
1611 		nfs_drop_nlink(inode);
1612 	}
1613 	iput(inode);
1614 }
1615 
1616 static void nfs_d_release(struct dentry *dentry)
1617 {
1618 	/* free cached devname value, if it survived that far */
1619 	if (unlikely(dentry->d_fsdata)) {
1620 		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1621 			WARN_ON(1);
1622 		else
1623 			kfree(dentry->d_fsdata);
1624 	}
1625 }
1626 
1627 const struct dentry_operations nfs_dentry_operations = {
1628 	.d_revalidate	= nfs_lookup_revalidate,
1629 	.d_weak_revalidate	= nfs_weak_revalidate,
1630 	.d_delete	= nfs_dentry_delete,
1631 	.d_iput		= nfs_dentry_iput,
1632 	.d_automount	= nfs_d_automount,
1633 	.d_release	= nfs_d_release,
1634 };
1635 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1636 
1637 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1638 {
1639 	struct dentry *res;
1640 	struct inode *inode = NULL;
1641 	struct nfs_fh *fhandle = NULL;
1642 	struct nfs_fattr *fattr = NULL;
1643 	struct nfs4_label *label = NULL;
1644 	unsigned long dir_verifier;
1645 	int error;
1646 
1647 	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1648 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1649 
1650 	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1651 		return ERR_PTR(-ENAMETOOLONG);
1652 
1653 	/*
1654 	 * If we're doing an exclusive create, optimize away the lookup
1655 	 * but don't hash the dentry.
1656 	 */
1657 	if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1658 		return NULL;
1659 
1660 	res = ERR_PTR(-ENOMEM);
1661 	fhandle = nfs_alloc_fhandle();
1662 	fattr = nfs_alloc_fattr();
1663 	if (fhandle == NULL || fattr == NULL)
1664 		goto out;
1665 
1666 	label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1667 	if (IS_ERR(label))
1668 		goto out;
1669 
1670 	dir_verifier = nfs_save_change_attribute(dir);
1671 	trace_nfs_lookup_enter(dir, dentry, flags);
1672 	error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1673 	if (error == -ENOENT)
1674 		goto no_entry;
1675 	if (error < 0) {
1676 		res = ERR_PTR(error);
1677 		goto out_label;
1678 	}
1679 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1680 	res = ERR_CAST(inode);
1681 	if (IS_ERR(res))
1682 		goto out_label;
1683 
1684 	/* Notify readdir to use READDIRPLUS */
1685 	nfs_force_use_readdirplus(dir);
1686 
1687 no_entry:
1688 	res = d_splice_alias(inode, dentry);
1689 	if (res != NULL) {
1690 		if (IS_ERR(res))
1691 			goto out_label;
1692 		dentry = res;
1693 	}
1694 	nfs_set_verifier(dentry, dir_verifier);
1695 out_label:
1696 	trace_nfs_lookup_exit(dir, dentry, flags, error);
1697 	nfs4_label_free(label);
1698 out:
1699 	nfs_free_fattr(fattr);
1700 	nfs_free_fhandle(fhandle);
1701 	return res;
1702 }
1703 EXPORT_SYMBOL_GPL(nfs_lookup);
1704 
1705 #if IS_ENABLED(CONFIG_NFS_V4)
1706 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1707 
1708 const struct dentry_operations nfs4_dentry_operations = {
1709 	.d_revalidate	= nfs4_lookup_revalidate,
1710 	.d_weak_revalidate	= nfs_weak_revalidate,
1711 	.d_delete	= nfs_dentry_delete,
1712 	.d_iput		= nfs_dentry_iput,
1713 	.d_automount	= nfs_d_automount,
1714 	.d_release	= nfs_d_release,
1715 };
1716 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1717 
1718 static fmode_t flags_to_mode(int flags)
1719 {
1720 	fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1721 	if ((flags & O_ACCMODE) != O_WRONLY)
1722 		res |= FMODE_READ;
1723 	if ((flags & O_ACCMODE) != O_RDONLY)
1724 		res |= FMODE_WRITE;
1725 	return res;
1726 }
1727 
1728 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1729 {
1730 	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1731 }
1732 
1733 static int do_open(struct inode *inode, struct file *filp)
1734 {
1735 	nfs_fscache_open_file(inode, filp);
1736 	return 0;
1737 }
1738 
1739 static int nfs_finish_open(struct nfs_open_context *ctx,
1740 			   struct dentry *dentry,
1741 			   struct file *file, unsigned open_flags)
1742 {
1743 	int err;
1744 
1745 	err = finish_open(file, dentry, do_open);
1746 	if (err)
1747 		goto out;
1748 	if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1749 		nfs_file_set_open_context(file, ctx);
1750 	else
1751 		err = -EOPENSTALE;
1752 out:
1753 	return err;
1754 }
1755 
1756 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1757 		    struct file *file, unsigned open_flags,
1758 		    umode_t mode)
1759 {
1760 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1761 	struct nfs_open_context *ctx;
1762 	struct dentry *res;
1763 	struct iattr attr = { .ia_valid = ATTR_OPEN };
1764 	struct inode *inode;
1765 	unsigned int lookup_flags = 0;
1766 	bool switched = false;
1767 	int created = 0;
1768 	int err;
1769 
1770 	/* Expect a negative dentry */
1771 	BUG_ON(d_inode(dentry));
1772 
1773 	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1774 			dir->i_sb->s_id, dir->i_ino, dentry);
1775 
1776 	err = nfs_check_flags(open_flags);
1777 	if (err)
1778 		return err;
1779 
1780 	/* NFS only supports OPEN on regular files */
1781 	if ((open_flags & O_DIRECTORY)) {
1782 		if (!d_in_lookup(dentry)) {
1783 			/*
1784 			 * Hashed negative dentry with O_DIRECTORY: dentry was
1785 			 * revalidated and is fine, no need to perform lookup
1786 			 * again
1787 			 */
1788 			return -ENOENT;
1789 		}
1790 		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1791 		goto no_open;
1792 	}
1793 
1794 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1795 		return -ENAMETOOLONG;
1796 
1797 	if (open_flags & O_CREAT) {
1798 		struct nfs_server *server = NFS_SERVER(dir);
1799 
1800 		if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1801 			mode &= ~current_umask();
1802 
1803 		attr.ia_valid |= ATTR_MODE;
1804 		attr.ia_mode = mode;
1805 	}
1806 	if (open_flags & O_TRUNC) {
1807 		attr.ia_valid |= ATTR_SIZE;
1808 		attr.ia_size = 0;
1809 	}
1810 
1811 	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1812 		d_drop(dentry);
1813 		switched = true;
1814 		dentry = d_alloc_parallel(dentry->d_parent,
1815 					  &dentry->d_name, &wq);
1816 		if (IS_ERR(dentry))
1817 			return PTR_ERR(dentry);
1818 		if (unlikely(!d_in_lookup(dentry)))
1819 			return finish_no_open(file, dentry);
1820 	}
1821 
1822 	ctx = create_nfs_open_context(dentry, open_flags, file);
1823 	err = PTR_ERR(ctx);
1824 	if (IS_ERR(ctx))
1825 		goto out;
1826 
1827 	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1828 	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
1829 	if (created)
1830 		file->f_mode |= FMODE_CREATED;
1831 	if (IS_ERR(inode)) {
1832 		err = PTR_ERR(inode);
1833 		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1834 		put_nfs_open_context(ctx);
1835 		d_drop(dentry);
1836 		switch (err) {
1837 		case -ENOENT:
1838 			d_splice_alias(NULL, dentry);
1839 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1840 			break;
1841 		case -EISDIR:
1842 		case -ENOTDIR:
1843 			goto no_open;
1844 		case -ELOOP:
1845 			if (!(open_flags & O_NOFOLLOW))
1846 				goto no_open;
1847 			break;
1848 			/* case -EINVAL: */
1849 		default:
1850 			break;
1851 		}
1852 		goto out;
1853 	}
1854 
1855 	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
1856 	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1857 	put_nfs_open_context(ctx);
1858 out:
1859 	if (unlikely(switched)) {
1860 		d_lookup_done(dentry);
1861 		dput(dentry);
1862 	}
1863 	return err;
1864 
1865 no_open:
1866 	res = nfs_lookup(dir, dentry, lookup_flags);
1867 	if (switched) {
1868 		d_lookup_done(dentry);
1869 		if (!res)
1870 			res = dentry;
1871 		else
1872 			dput(dentry);
1873 	}
1874 	if (IS_ERR(res))
1875 		return PTR_ERR(res);
1876 	return finish_no_open(file, res);
1877 }
1878 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1879 
1880 static int
1881 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1882 			  unsigned int flags)
1883 {
1884 	struct inode *inode;
1885 
1886 	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1887 		goto full_reval;
1888 	if (d_mountpoint(dentry))
1889 		goto full_reval;
1890 
1891 	inode = d_inode(dentry);
1892 
1893 	/* We can't create new files in nfs_open_revalidate(), so we
1894 	 * optimize away revalidation of negative dentries.
1895 	 */
1896 	if (inode == NULL)
1897 		goto full_reval;
1898 
1899 	if (nfs_verifier_is_delegated(dentry))
1900 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1901 
1902 	/* NFS only supports OPEN on regular files */
1903 	if (!S_ISREG(inode->i_mode))
1904 		goto full_reval;
1905 
1906 	/* We cannot do exclusive creation on a positive dentry */
1907 	if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
1908 		goto reval_dentry;
1909 
1910 	/* Check if the directory changed */
1911 	if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
1912 		goto reval_dentry;
1913 
1914 	/* Let f_op->open() actually open (and revalidate) the file */
1915 	return 1;
1916 reval_dentry:
1917 	if (flags & LOOKUP_RCU)
1918 		return -ECHILD;
1919 	return nfs_lookup_revalidate_dentry(dir, dentry, inode);
1920 
1921 full_reval:
1922 	return nfs_do_lookup_revalidate(dir, dentry, flags);
1923 }
1924 
1925 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1926 {
1927 	return __nfs_lookup_revalidate(dentry, flags,
1928 			nfs4_do_lookup_revalidate);
1929 }
1930 
1931 #endif /* CONFIG_NFSV4 */
1932 
1933 struct dentry *
1934 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
1935 				struct nfs_fattr *fattr,
1936 				struct nfs4_label *label)
1937 {
1938 	struct dentry *parent = dget_parent(dentry);
1939 	struct inode *dir = d_inode(parent);
1940 	struct inode *inode;
1941 	struct dentry *d;
1942 	int error;
1943 
1944 	d_drop(dentry);
1945 
1946 	if (fhandle->size == 0) {
1947 		error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, NULL);
1948 		if (error)
1949 			goto out_error;
1950 	}
1951 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1952 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1953 		struct nfs_server *server = NFS_SB(dentry->d_sb);
1954 		error = server->nfs_client->rpc_ops->getattr(server, fhandle,
1955 				fattr, NULL, NULL);
1956 		if (error < 0)
1957 			goto out_error;
1958 	}
1959 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1960 	d = d_splice_alias(inode, dentry);
1961 out:
1962 	dput(parent);
1963 	return d;
1964 out_error:
1965 	nfs_mark_for_revalidate(dir);
1966 	d = ERR_PTR(error);
1967 	goto out;
1968 }
1969 EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
1970 
1971 /*
1972  * Code common to create, mkdir, and mknod.
1973  */
1974 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1975 				struct nfs_fattr *fattr,
1976 				struct nfs4_label *label)
1977 {
1978 	struct dentry *d;
1979 
1980 	d = nfs_add_or_obtain(dentry, fhandle, fattr, label);
1981 	if (IS_ERR(d))
1982 		return PTR_ERR(d);
1983 
1984 	/* Callers don't care */
1985 	dput(d);
1986 	return 0;
1987 }
1988 EXPORT_SYMBOL_GPL(nfs_instantiate);
1989 
1990 /*
1991  * Following a failed create operation, we drop the dentry rather
1992  * than retain a negative dentry. This avoids a problem in the event
1993  * that the operation succeeded on the server, but an error in the
1994  * reply path made it appear to have failed.
1995  */
1996 int nfs_create(struct inode *dir, struct dentry *dentry,
1997 		umode_t mode, bool excl)
1998 {
1999 	struct iattr attr;
2000 	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
2001 	int error;
2002 
2003 	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
2004 			dir->i_sb->s_id, dir->i_ino, dentry);
2005 
2006 	attr.ia_mode = mode;
2007 	attr.ia_valid = ATTR_MODE;
2008 
2009 	trace_nfs_create_enter(dir, dentry, open_flags);
2010 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
2011 	trace_nfs_create_exit(dir, dentry, open_flags, error);
2012 	if (error != 0)
2013 		goto out_err;
2014 	return 0;
2015 out_err:
2016 	d_drop(dentry);
2017 	return error;
2018 }
2019 EXPORT_SYMBOL_GPL(nfs_create);
2020 
2021 /*
2022  * See comments for nfs_proc_create regarding failed operations.
2023  */
2024 int
2025 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
2026 {
2027 	struct iattr attr;
2028 	int status;
2029 
2030 	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
2031 			dir->i_sb->s_id, dir->i_ino, dentry);
2032 
2033 	attr.ia_mode = mode;
2034 	attr.ia_valid = ATTR_MODE;
2035 
2036 	trace_nfs_mknod_enter(dir, dentry);
2037 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
2038 	trace_nfs_mknod_exit(dir, dentry, status);
2039 	if (status != 0)
2040 		goto out_err;
2041 	return 0;
2042 out_err:
2043 	d_drop(dentry);
2044 	return status;
2045 }
2046 EXPORT_SYMBOL_GPL(nfs_mknod);
2047 
2048 /*
2049  * See comments for nfs_proc_create regarding failed operations.
2050  */
2051 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2052 {
2053 	struct iattr attr;
2054 	int error;
2055 
2056 	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
2057 			dir->i_sb->s_id, dir->i_ino, dentry);
2058 
2059 	attr.ia_valid = ATTR_MODE;
2060 	attr.ia_mode = mode | S_IFDIR;
2061 
2062 	trace_nfs_mkdir_enter(dir, dentry);
2063 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
2064 	trace_nfs_mkdir_exit(dir, dentry, error);
2065 	if (error != 0)
2066 		goto out_err;
2067 	return 0;
2068 out_err:
2069 	d_drop(dentry);
2070 	return error;
2071 }
2072 EXPORT_SYMBOL_GPL(nfs_mkdir);
2073 
2074 static void nfs_dentry_handle_enoent(struct dentry *dentry)
2075 {
2076 	if (simple_positive(dentry))
2077 		d_delete(dentry);
2078 }
2079 
2080 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
2081 {
2082 	int error;
2083 
2084 	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
2085 			dir->i_sb->s_id, dir->i_ino, dentry);
2086 
2087 	trace_nfs_rmdir_enter(dir, dentry);
2088 	if (d_really_is_positive(dentry)) {
2089 		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2090 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2091 		/* Ensure the VFS deletes this inode */
2092 		switch (error) {
2093 		case 0:
2094 			clear_nlink(d_inode(dentry));
2095 			break;
2096 		case -ENOENT:
2097 			nfs_dentry_handle_enoent(dentry);
2098 		}
2099 		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2100 	} else
2101 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2102 	trace_nfs_rmdir_exit(dir, dentry, error);
2103 
2104 	return error;
2105 }
2106 EXPORT_SYMBOL_GPL(nfs_rmdir);
2107 
2108 /*
2109  * Remove a file after making sure there are no pending writes,
2110  * and after checking that the file has only one user.
2111  *
2112  * We invalidate the attribute cache and free the inode prior to the operation
2113  * to avoid possible races if the server reuses the inode.
2114  */
2115 static int nfs_safe_remove(struct dentry *dentry)
2116 {
2117 	struct inode *dir = d_inode(dentry->d_parent);
2118 	struct inode *inode = d_inode(dentry);
2119 	int error = -EBUSY;
2120 
2121 	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2122 
2123 	/* If the dentry was sillyrenamed, we simply call d_delete() */
2124 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2125 		error = 0;
2126 		goto out;
2127 	}
2128 
2129 	trace_nfs_remove_enter(dir, dentry);
2130 	if (inode != NULL) {
2131 		error = NFS_PROTO(dir)->remove(dir, dentry);
2132 		if (error == 0)
2133 			nfs_drop_nlink(inode);
2134 	} else
2135 		error = NFS_PROTO(dir)->remove(dir, dentry);
2136 	if (error == -ENOENT)
2137 		nfs_dentry_handle_enoent(dentry);
2138 	trace_nfs_remove_exit(dir, dentry, error);
2139 out:
2140 	return error;
2141 }
2142 
2143 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
2144  *  belongs to an active ".nfs..." file and we return -EBUSY.
2145  *
2146  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
2147  */
2148 int nfs_unlink(struct inode *dir, struct dentry *dentry)
2149 {
2150 	int error;
2151 	int need_rehash = 0;
2152 
2153 	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2154 		dir->i_ino, dentry);
2155 
2156 	trace_nfs_unlink_enter(dir, dentry);
2157 	spin_lock(&dentry->d_lock);
2158 	if (d_count(dentry) > 1) {
2159 		spin_unlock(&dentry->d_lock);
2160 		/* Start asynchronous writeout of the inode */
2161 		write_inode_now(d_inode(dentry), 0);
2162 		error = nfs_sillyrename(dir, dentry);
2163 		goto out;
2164 	}
2165 	if (!d_unhashed(dentry)) {
2166 		__d_drop(dentry);
2167 		need_rehash = 1;
2168 	}
2169 	spin_unlock(&dentry->d_lock);
2170 	error = nfs_safe_remove(dentry);
2171 	if (!error || error == -ENOENT) {
2172 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2173 	} else if (need_rehash)
2174 		d_rehash(dentry);
2175 out:
2176 	trace_nfs_unlink_exit(dir, dentry, error);
2177 	return error;
2178 }
2179 EXPORT_SYMBOL_GPL(nfs_unlink);
2180 
2181 /*
2182  * To create a symbolic link, most file systems instantiate a new inode,
2183  * add a page to it containing the path, then write it out to the disk
2184  * using prepare_write/commit_write.
2185  *
2186  * Unfortunately the NFS client can't create the in-core inode first
2187  * because it needs a file handle to create an in-core inode (see
2188  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
2189  * symlink request has completed on the server.
2190  *
2191  * So instead we allocate a raw page, copy the symname into it, then do
2192  * the SYMLINK request with the page as the buffer.  If it succeeds, we
2193  * now have a new file handle and can instantiate an in-core NFS inode
2194  * and move the raw page into its mapping.
2195  */
2196 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2197 {
2198 	struct page *page;
2199 	char *kaddr;
2200 	struct iattr attr;
2201 	unsigned int pathlen = strlen(symname);
2202 	int error;
2203 
2204 	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2205 		dir->i_ino, dentry, symname);
2206 
2207 	if (pathlen > PAGE_SIZE)
2208 		return -ENAMETOOLONG;
2209 
2210 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
2211 	attr.ia_valid = ATTR_MODE;
2212 
2213 	page = alloc_page(GFP_USER);
2214 	if (!page)
2215 		return -ENOMEM;
2216 
2217 	kaddr = page_address(page);
2218 	memcpy(kaddr, symname, pathlen);
2219 	if (pathlen < PAGE_SIZE)
2220 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2221 
2222 	trace_nfs_symlink_enter(dir, dentry);
2223 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
2224 	trace_nfs_symlink_exit(dir, dentry, error);
2225 	if (error != 0) {
2226 		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2227 			dir->i_sb->s_id, dir->i_ino,
2228 			dentry, symname, error);
2229 		d_drop(dentry);
2230 		__free_page(page);
2231 		return error;
2232 	}
2233 
2234 	/*
2235 	 * No big deal if we can't add this page to the page cache here.
2236 	 * READLINK will get the missing page from the server if needed.
2237 	 */
2238 	if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2239 							GFP_KERNEL)) {
2240 		SetPageUptodate(page);
2241 		unlock_page(page);
2242 		/*
2243 		 * add_to_page_cache_lru() grabs an extra page refcount.
2244 		 * Drop it here to avoid leaking this page later.
2245 		 */
2246 		put_page(page);
2247 	} else
2248 		__free_page(page);
2249 
2250 	return 0;
2251 }
2252 EXPORT_SYMBOL_GPL(nfs_symlink);
2253 
2254 int
2255 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2256 {
2257 	struct inode *inode = d_inode(old_dentry);
2258 	int error;
2259 
2260 	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2261 		old_dentry, dentry);
2262 
2263 	trace_nfs_link_enter(inode, dir, dentry);
2264 	d_drop(dentry);
2265 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2266 	if (error == 0) {
2267 		ihold(inode);
2268 		d_add(dentry, inode);
2269 	}
2270 	trace_nfs_link_exit(inode, dir, dentry, error);
2271 	return error;
2272 }
2273 EXPORT_SYMBOL_GPL(nfs_link);
2274 
2275 /*
2276  * RENAME
2277  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2278  * different file handle for the same inode after a rename (e.g. when
2279  * moving to a different directory). A fail-safe method to do so would
2280  * be to look up old_dir/old_name, create a link to new_dir/new_name and
2281  * rename the old file using the sillyrename stuff. This way, the original
2282  * file in old_dir will go away when the last process iput()s the inode.
2283  *
2284  * FIXED.
2285  *
2286  * It actually works quite well. One needs to have the possibility for
2287  * at least one ".nfs..." file in each directory the file ever gets
2288  * moved or linked to which happens automagically with the new
2289  * implementation that only depends on the dcache stuff instead of
2290  * using the inode layer
2291  *
2292  * Unfortunately, things are a little more complicated than indicated
2293  * above. For a cross-directory move, we want to make sure we can get
2294  * rid of the old inode after the operation.  This means there must be
2295  * no pending writes (if it's a file), and the use count must be 1.
2296  * If these conditions are met, we can drop the dentries before doing
2297  * the rename.
2298  */
2299 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2300 	       struct inode *new_dir, struct dentry *new_dentry,
2301 	       unsigned int flags)
2302 {
2303 	struct inode *old_inode = d_inode(old_dentry);
2304 	struct inode *new_inode = d_inode(new_dentry);
2305 	struct dentry *dentry = NULL, *rehash = NULL;
2306 	struct rpc_task *task;
2307 	int error = -EBUSY;
2308 
2309 	if (flags)
2310 		return -EINVAL;
2311 
2312 	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2313 		 old_dentry, new_dentry,
2314 		 d_count(new_dentry));
2315 
2316 	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2317 	/*
2318 	 * For non-directories, check whether the target is busy and if so,
2319 	 * make a copy of the dentry and then do a silly-rename. If the
2320 	 * silly-rename succeeds, the copied dentry is hashed and becomes
2321 	 * the new target.
2322 	 */
2323 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2324 		/*
2325 		 * To prevent any new references to the target during the
2326 		 * rename, we unhash the dentry in advance.
2327 		 */
2328 		if (!d_unhashed(new_dentry)) {
2329 			d_drop(new_dentry);
2330 			rehash = new_dentry;
2331 		}
2332 
2333 		if (d_count(new_dentry) > 2) {
2334 			int err;
2335 
2336 			/* copy the target dentry's name */
2337 			dentry = d_alloc(new_dentry->d_parent,
2338 					 &new_dentry->d_name);
2339 			if (!dentry)
2340 				goto out;
2341 
2342 			/* silly-rename the existing target ... */
2343 			err = nfs_sillyrename(new_dir, new_dentry);
2344 			if (err)
2345 				goto out;
2346 
2347 			new_dentry = dentry;
2348 			rehash = NULL;
2349 			new_inode = NULL;
2350 		}
2351 	}
2352 
2353 	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2354 	if (IS_ERR(task)) {
2355 		error = PTR_ERR(task);
2356 		goto out;
2357 	}
2358 
2359 	error = rpc_wait_for_completion_task(task);
2360 	if (error != 0) {
2361 		((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2362 		/* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2363 		smp_wmb();
2364 	} else
2365 		error = task->tk_status;
2366 	rpc_put_task(task);
2367 	/* Ensure the inode attributes are revalidated */
2368 	if (error == 0) {
2369 		spin_lock(&old_inode->i_lock);
2370 		NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2371 		NFS_I(old_inode)->cache_validity |= NFS_INO_INVALID_CHANGE
2372 			| NFS_INO_INVALID_CTIME
2373 			| NFS_INO_REVAL_FORCED;
2374 		spin_unlock(&old_inode->i_lock);
2375 	}
2376 out:
2377 	if (rehash)
2378 		d_rehash(rehash);
2379 	trace_nfs_rename_exit(old_dir, old_dentry,
2380 			new_dir, new_dentry, error);
2381 	if (!error) {
2382 		if (new_inode != NULL)
2383 			nfs_drop_nlink(new_inode);
2384 		/*
2385 		 * The d_move() should be here instead of in an async RPC completion
2386 		 * handler because we need the proper locks to move the dentry.  If
2387 		 * we're interrupted by a signal, the async RPC completion handler
2388 		 * should mark the directories for revalidation.
2389 		 */
2390 		d_move(old_dentry, new_dentry);
2391 		nfs_set_verifier(old_dentry,
2392 					nfs_save_change_attribute(new_dir));
2393 	} else if (error == -ENOENT)
2394 		nfs_dentry_handle_enoent(old_dentry);
2395 
2396 	/* new dentry created? */
2397 	if (dentry)
2398 		dput(dentry);
2399 	return error;
2400 }
2401 EXPORT_SYMBOL_GPL(nfs_rename);
2402 
2403 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2404 static LIST_HEAD(nfs_access_lru_list);
2405 static atomic_long_t nfs_access_nr_entries;
2406 
2407 static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2408 module_param(nfs_access_max_cachesize, ulong, 0644);
2409 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2410 
2411 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2412 {
2413 	put_cred(entry->cred);
2414 	kfree_rcu(entry, rcu_head);
2415 	smp_mb__before_atomic();
2416 	atomic_long_dec(&nfs_access_nr_entries);
2417 	smp_mb__after_atomic();
2418 }
2419 
2420 static void nfs_access_free_list(struct list_head *head)
2421 {
2422 	struct nfs_access_entry *cache;
2423 
2424 	while (!list_empty(head)) {
2425 		cache = list_entry(head->next, struct nfs_access_entry, lru);
2426 		list_del(&cache->lru);
2427 		nfs_access_free_entry(cache);
2428 	}
2429 }
2430 
2431 static unsigned long
2432 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2433 {
2434 	LIST_HEAD(head);
2435 	struct nfs_inode *nfsi, *next;
2436 	struct nfs_access_entry *cache;
2437 	long freed = 0;
2438 
2439 	spin_lock(&nfs_access_lru_lock);
2440 	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2441 		struct inode *inode;
2442 
2443 		if (nr_to_scan-- == 0)
2444 			break;
2445 		inode = &nfsi->vfs_inode;
2446 		spin_lock(&inode->i_lock);
2447 		if (list_empty(&nfsi->access_cache_entry_lru))
2448 			goto remove_lru_entry;
2449 		cache = list_entry(nfsi->access_cache_entry_lru.next,
2450 				struct nfs_access_entry, lru);
2451 		list_move(&cache->lru, &head);
2452 		rb_erase(&cache->rb_node, &nfsi->access_cache);
2453 		freed++;
2454 		if (!list_empty(&nfsi->access_cache_entry_lru))
2455 			list_move_tail(&nfsi->access_cache_inode_lru,
2456 					&nfs_access_lru_list);
2457 		else {
2458 remove_lru_entry:
2459 			list_del_init(&nfsi->access_cache_inode_lru);
2460 			smp_mb__before_atomic();
2461 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2462 			smp_mb__after_atomic();
2463 		}
2464 		spin_unlock(&inode->i_lock);
2465 	}
2466 	spin_unlock(&nfs_access_lru_lock);
2467 	nfs_access_free_list(&head);
2468 	return freed;
2469 }
2470 
2471 unsigned long
2472 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2473 {
2474 	int nr_to_scan = sc->nr_to_scan;
2475 	gfp_t gfp_mask = sc->gfp_mask;
2476 
2477 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2478 		return SHRINK_STOP;
2479 	return nfs_do_access_cache_scan(nr_to_scan);
2480 }
2481 
2482 
2483 unsigned long
2484 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2485 {
2486 	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2487 }
2488 
2489 static void
2490 nfs_access_cache_enforce_limit(void)
2491 {
2492 	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2493 	unsigned long diff;
2494 	unsigned int nr_to_scan;
2495 
2496 	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2497 		return;
2498 	nr_to_scan = 100;
2499 	diff = nr_entries - nfs_access_max_cachesize;
2500 	if (diff < nr_to_scan)
2501 		nr_to_scan = diff;
2502 	nfs_do_access_cache_scan(nr_to_scan);
2503 }
2504 
2505 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2506 {
2507 	struct rb_root *root_node = &nfsi->access_cache;
2508 	struct rb_node *n;
2509 	struct nfs_access_entry *entry;
2510 
2511 	/* Unhook entries from the cache */
2512 	while ((n = rb_first(root_node)) != NULL) {
2513 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2514 		rb_erase(n, root_node);
2515 		list_move(&entry->lru, head);
2516 	}
2517 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2518 }
2519 
2520 void nfs_access_zap_cache(struct inode *inode)
2521 {
2522 	LIST_HEAD(head);
2523 
2524 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2525 		return;
2526 	/* Remove from global LRU init */
2527 	spin_lock(&nfs_access_lru_lock);
2528 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2529 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2530 
2531 	spin_lock(&inode->i_lock);
2532 	__nfs_access_zap_cache(NFS_I(inode), &head);
2533 	spin_unlock(&inode->i_lock);
2534 	spin_unlock(&nfs_access_lru_lock);
2535 	nfs_access_free_list(&head);
2536 }
2537 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2538 
2539 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2540 {
2541 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2542 
2543 	while (n != NULL) {
2544 		struct nfs_access_entry *entry =
2545 			rb_entry(n, struct nfs_access_entry, rb_node);
2546 		int cmp = cred_fscmp(cred, entry->cred);
2547 
2548 		if (cmp < 0)
2549 			n = n->rb_left;
2550 		else if (cmp > 0)
2551 			n = n->rb_right;
2552 		else
2553 			return entry;
2554 	}
2555 	return NULL;
2556 }
2557 
2558 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res, bool may_block)
2559 {
2560 	struct nfs_inode *nfsi = NFS_I(inode);
2561 	struct nfs_access_entry *cache;
2562 	bool retry = true;
2563 	int err;
2564 
2565 	spin_lock(&inode->i_lock);
2566 	for(;;) {
2567 		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2568 			goto out_zap;
2569 		cache = nfs_access_search_rbtree(inode, cred);
2570 		err = -ENOENT;
2571 		if (cache == NULL)
2572 			goto out;
2573 		/* Found an entry, is our attribute cache valid? */
2574 		if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2575 			break;
2576 		if (!retry)
2577 			break;
2578 		err = -ECHILD;
2579 		if (!may_block)
2580 			goto out;
2581 		spin_unlock(&inode->i_lock);
2582 		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2583 		if (err)
2584 			return err;
2585 		spin_lock(&inode->i_lock);
2586 		retry = false;
2587 	}
2588 	res->cred = cache->cred;
2589 	res->mask = cache->mask;
2590 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2591 	err = 0;
2592 out:
2593 	spin_unlock(&inode->i_lock);
2594 	return err;
2595 out_zap:
2596 	spin_unlock(&inode->i_lock);
2597 	nfs_access_zap_cache(inode);
2598 	return -ENOENT;
2599 }
2600 
2601 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res)
2602 {
2603 	/* Only check the most recently returned cache entry,
2604 	 * but do it without locking.
2605 	 */
2606 	struct nfs_inode *nfsi = NFS_I(inode);
2607 	struct nfs_access_entry *cache;
2608 	int err = -ECHILD;
2609 	struct list_head *lh;
2610 
2611 	rcu_read_lock();
2612 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2613 		goto out;
2614 	lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
2615 	cache = list_entry(lh, struct nfs_access_entry, lru);
2616 	if (lh == &nfsi->access_cache_entry_lru ||
2617 	    cred_fscmp(cred, cache->cred) != 0)
2618 		cache = NULL;
2619 	if (cache == NULL)
2620 		goto out;
2621 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2622 		goto out;
2623 	res->cred = cache->cred;
2624 	res->mask = cache->mask;
2625 	err = 0;
2626 out:
2627 	rcu_read_unlock();
2628 	return err;
2629 }
2630 
2631 int nfs_access_get_cached(struct inode *inode, const struct cred *cred, struct
2632 nfs_access_entry *res, bool may_block)
2633 {
2634 	int status;
2635 
2636 	status = nfs_access_get_cached_rcu(inode, cred, res);
2637 	if (status != 0)
2638 		status = nfs_access_get_cached_locked(inode, cred, res,
2639 		    may_block);
2640 
2641 	return status;
2642 }
2643 EXPORT_SYMBOL_GPL(nfs_access_get_cached);
2644 
2645 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2646 {
2647 	struct nfs_inode *nfsi = NFS_I(inode);
2648 	struct rb_root *root_node = &nfsi->access_cache;
2649 	struct rb_node **p = &root_node->rb_node;
2650 	struct rb_node *parent = NULL;
2651 	struct nfs_access_entry *entry;
2652 	int cmp;
2653 
2654 	spin_lock(&inode->i_lock);
2655 	while (*p != NULL) {
2656 		parent = *p;
2657 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2658 		cmp = cred_fscmp(set->cred, entry->cred);
2659 
2660 		if (cmp < 0)
2661 			p = &parent->rb_left;
2662 		else if (cmp > 0)
2663 			p = &parent->rb_right;
2664 		else
2665 			goto found;
2666 	}
2667 	rb_link_node(&set->rb_node, parent, p);
2668 	rb_insert_color(&set->rb_node, root_node);
2669 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2670 	spin_unlock(&inode->i_lock);
2671 	return;
2672 found:
2673 	rb_replace_node(parent, &set->rb_node, root_node);
2674 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2675 	list_del(&entry->lru);
2676 	spin_unlock(&inode->i_lock);
2677 	nfs_access_free_entry(entry);
2678 }
2679 
2680 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2681 {
2682 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2683 	if (cache == NULL)
2684 		return;
2685 	RB_CLEAR_NODE(&cache->rb_node);
2686 	cache->cred = get_cred(set->cred);
2687 	cache->mask = set->mask;
2688 
2689 	/* The above field assignments must be visible
2690 	 * before this item appears on the lru.  We cannot easily
2691 	 * use rcu_assign_pointer, so just force the memory barrier.
2692 	 */
2693 	smp_wmb();
2694 	nfs_access_add_rbtree(inode, cache);
2695 
2696 	/* Update accounting */
2697 	smp_mb__before_atomic();
2698 	atomic_long_inc(&nfs_access_nr_entries);
2699 	smp_mb__after_atomic();
2700 
2701 	/* Add inode to global LRU list */
2702 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2703 		spin_lock(&nfs_access_lru_lock);
2704 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2705 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2706 					&nfs_access_lru_list);
2707 		spin_unlock(&nfs_access_lru_lock);
2708 	}
2709 	nfs_access_cache_enforce_limit();
2710 }
2711 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2712 
2713 #define NFS_MAY_READ (NFS_ACCESS_READ)
2714 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2715 		NFS_ACCESS_EXTEND | \
2716 		NFS_ACCESS_DELETE)
2717 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2718 		NFS_ACCESS_EXTEND)
2719 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2720 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2721 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2722 static int
2723 nfs_access_calc_mask(u32 access_result, umode_t umode)
2724 {
2725 	int mask = 0;
2726 
2727 	if (access_result & NFS_MAY_READ)
2728 		mask |= MAY_READ;
2729 	if (S_ISDIR(umode)) {
2730 		if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2731 			mask |= MAY_WRITE;
2732 		if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2733 			mask |= MAY_EXEC;
2734 	} else if (S_ISREG(umode)) {
2735 		if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2736 			mask |= MAY_WRITE;
2737 		if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2738 			mask |= MAY_EXEC;
2739 	} else if (access_result & NFS_MAY_WRITE)
2740 			mask |= MAY_WRITE;
2741 	return mask;
2742 }
2743 
2744 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2745 {
2746 	entry->mask = access_result;
2747 }
2748 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2749 
2750 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
2751 {
2752 	struct nfs_access_entry cache;
2753 	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2754 	int cache_mask = -1;
2755 	int status;
2756 
2757 	trace_nfs_access_enter(inode);
2758 
2759 	status = nfs_access_get_cached(inode, cred, &cache, may_block);
2760 	if (status == 0)
2761 		goto out_cached;
2762 
2763 	status = -ECHILD;
2764 	if (!may_block)
2765 		goto out;
2766 
2767 	/*
2768 	 * Determine which access bits we want to ask for...
2769 	 */
2770 	cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND;
2771 	if (nfs_server_capable(inode, NFS_CAP_XATTR)) {
2772 		cache.mask |= NFS_ACCESS_XAREAD | NFS_ACCESS_XAWRITE |
2773 		    NFS_ACCESS_XALIST;
2774 	}
2775 	if (S_ISDIR(inode->i_mode))
2776 		cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
2777 	else
2778 		cache.mask |= NFS_ACCESS_EXECUTE;
2779 	cache.cred = cred;
2780 	status = NFS_PROTO(inode)->access(inode, &cache);
2781 	if (status != 0) {
2782 		if (status == -ESTALE) {
2783 			if (!S_ISDIR(inode->i_mode))
2784 				nfs_set_inode_stale(inode);
2785 			else
2786 				nfs_zap_caches(inode);
2787 		}
2788 		goto out;
2789 	}
2790 	nfs_access_add_cache(inode, &cache);
2791 out_cached:
2792 	cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
2793 	if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2794 		status = -EACCES;
2795 out:
2796 	trace_nfs_access_exit(inode, mask, cache_mask, status);
2797 	return status;
2798 }
2799 
2800 static int nfs_open_permission_mask(int openflags)
2801 {
2802 	int mask = 0;
2803 
2804 	if (openflags & __FMODE_EXEC) {
2805 		/* ONLY check exec rights */
2806 		mask = MAY_EXEC;
2807 	} else {
2808 		if ((openflags & O_ACCMODE) != O_WRONLY)
2809 			mask |= MAY_READ;
2810 		if ((openflags & O_ACCMODE) != O_RDONLY)
2811 			mask |= MAY_WRITE;
2812 	}
2813 
2814 	return mask;
2815 }
2816 
2817 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
2818 {
2819 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2820 }
2821 EXPORT_SYMBOL_GPL(nfs_may_open);
2822 
2823 static int nfs_execute_ok(struct inode *inode, int mask)
2824 {
2825 	struct nfs_server *server = NFS_SERVER(inode);
2826 	int ret = 0;
2827 
2828 	if (S_ISDIR(inode->i_mode))
2829 		return 0;
2830 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_OTHER)) {
2831 		if (mask & MAY_NOT_BLOCK)
2832 			return -ECHILD;
2833 		ret = __nfs_revalidate_inode(server, inode);
2834 	}
2835 	if (ret == 0 && !execute_ok(inode))
2836 		ret = -EACCES;
2837 	return ret;
2838 }
2839 
2840 int nfs_permission(struct inode *inode, int mask)
2841 {
2842 	const struct cred *cred = current_cred();
2843 	int res = 0;
2844 
2845 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2846 
2847 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2848 		goto out;
2849 	/* Is this sys_access() ? */
2850 	if (mask & (MAY_ACCESS | MAY_CHDIR))
2851 		goto force_lookup;
2852 
2853 	switch (inode->i_mode & S_IFMT) {
2854 		case S_IFLNK:
2855 			goto out;
2856 		case S_IFREG:
2857 			if ((mask & MAY_OPEN) &&
2858 			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2859 				return 0;
2860 			break;
2861 		case S_IFDIR:
2862 			/*
2863 			 * Optimize away all write operations, since the server
2864 			 * will check permissions when we perform the op.
2865 			 */
2866 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2867 				goto out;
2868 	}
2869 
2870 force_lookup:
2871 	if (!NFS_PROTO(inode)->access)
2872 		goto out_notsup;
2873 
2874 	res = nfs_do_access(inode, cred, mask);
2875 out:
2876 	if (!res && (mask & MAY_EXEC))
2877 		res = nfs_execute_ok(inode, mask);
2878 
2879 	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2880 		inode->i_sb->s_id, inode->i_ino, mask, res);
2881 	return res;
2882 out_notsup:
2883 	if (mask & MAY_NOT_BLOCK)
2884 		return -ECHILD;
2885 
2886 	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2887 	if (res == 0)
2888 		res = generic_permission(inode, mask);
2889 	goto out;
2890 }
2891 EXPORT_SYMBOL_GPL(nfs_permission);
2892 
2893 /*
2894  * Local variables:
2895  *  version-control: t
2896  *  kept-new-versions: 5
2897  * End:
2898  */
2899