1 /* 2 * linux/fs/nfs/dir.c 3 * 4 * Copyright (C) 1992 Rick Sladkey 5 * 6 * nfs directory handling functions 7 * 8 * 10 Apr 1996 Added silly rename for unlink --okir 9 * 28 Sep 1996 Improved directory cache --okir 10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de 11 * Re-implemented silly rename for unlink, newly implemented 12 * silly rename for nfs_rename() following the suggestions 13 * of Olaf Kirch (okir) found in this file. 14 * Following Linus comments on my original hack, this version 15 * depends only on the dcache stuff and doesn't touch the inode 16 * layer (iput() and friends). 17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM 18 */ 19 20 #include <linux/module.h> 21 #include <linux/time.h> 22 #include <linux/errno.h> 23 #include <linux/stat.h> 24 #include <linux/fcntl.h> 25 #include <linux/string.h> 26 #include <linux/kernel.h> 27 #include <linux/slab.h> 28 #include <linux/mm.h> 29 #include <linux/sunrpc/clnt.h> 30 #include <linux/nfs_fs.h> 31 #include <linux/nfs_mount.h> 32 #include <linux/pagemap.h> 33 #include <linux/pagevec.h> 34 #include <linux/namei.h> 35 #include <linux/mount.h> 36 #include <linux/swap.h> 37 #include <linux/sched.h> 38 #include <linux/kmemleak.h> 39 #include <linux/xattr.h> 40 41 #include "delegation.h" 42 #include "iostat.h" 43 #include "internal.h" 44 #include "fscache.h" 45 46 #include "nfstrace.h" 47 48 /* #define NFS_DEBUG_VERBOSE 1 */ 49 50 static int nfs_opendir(struct inode *, struct file *); 51 static int nfs_closedir(struct inode *, struct file *); 52 static int nfs_readdir(struct file *, struct dir_context *); 53 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int); 54 static loff_t nfs_llseek_dir(struct file *, loff_t, int); 55 static void nfs_readdir_clear_array(struct page*); 56 57 const struct file_operations nfs_dir_operations = { 58 .llseek = nfs_llseek_dir, 59 .read = generic_read_dir, 60 .iterate = nfs_readdir, 61 .open = nfs_opendir, 62 .release = nfs_closedir, 63 .fsync = nfs_fsync_dir, 64 }; 65 66 const struct address_space_operations nfs_dir_aops = { 67 .freepage = nfs_readdir_clear_array, 68 }; 69 70 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred) 71 { 72 struct nfs_open_dir_context *ctx; 73 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); 74 if (ctx != NULL) { 75 ctx->duped = 0; 76 ctx->attr_gencount = NFS_I(dir)->attr_gencount; 77 ctx->dir_cookie = 0; 78 ctx->dup_cookie = 0; 79 ctx->cred = get_rpccred(cred); 80 return ctx; 81 } 82 return ERR_PTR(-ENOMEM); 83 } 84 85 static void put_nfs_open_dir_context(struct nfs_open_dir_context *ctx) 86 { 87 put_rpccred(ctx->cred); 88 kfree(ctx); 89 } 90 91 /* 92 * Open file 93 */ 94 static int 95 nfs_opendir(struct inode *inode, struct file *filp) 96 { 97 int res = 0; 98 struct nfs_open_dir_context *ctx; 99 struct rpc_cred *cred; 100 101 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp); 102 103 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 104 105 cred = rpc_lookup_cred(); 106 if (IS_ERR(cred)) 107 return PTR_ERR(cred); 108 ctx = alloc_nfs_open_dir_context(inode, cred); 109 if (IS_ERR(ctx)) { 110 res = PTR_ERR(ctx); 111 goto out; 112 } 113 filp->private_data = ctx; 114 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) { 115 /* This is a mountpoint, so d_revalidate will never 116 * have been called, so we need to refresh the 117 * inode (for close-open consistency) ourselves. 118 */ 119 __nfs_revalidate_inode(NFS_SERVER(inode), inode); 120 } 121 out: 122 put_rpccred(cred); 123 return res; 124 } 125 126 static int 127 nfs_closedir(struct inode *inode, struct file *filp) 128 { 129 put_nfs_open_dir_context(filp->private_data); 130 return 0; 131 } 132 133 struct nfs_cache_array_entry { 134 u64 cookie; 135 u64 ino; 136 struct qstr string; 137 unsigned char d_type; 138 }; 139 140 struct nfs_cache_array { 141 int size; 142 int eof_index; 143 u64 last_cookie; 144 struct nfs_cache_array_entry array[0]; 145 }; 146 147 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int); 148 typedef struct { 149 struct file *file; 150 struct page *page; 151 struct dir_context *ctx; 152 unsigned long page_index; 153 u64 *dir_cookie; 154 u64 last_cookie; 155 loff_t current_index; 156 decode_dirent_t decode; 157 158 unsigned long timestamp; 159 unsigned long gencount; 160 unsigned int cache_entry_index; 161 unsigned int plus:1; 162 unsigned int eof:1; 163 } nfs_readdir_descriptor_t; 164 165 /* 166 * The caller is responsible for calling nfs_readdir_release_array(page) 167 */ 168 static 169 struct nfs_cache_array *nfs_readdir_get_array(struct page *page) 170 { 171 void *ptr; 172 if (page == NULL) 173 return ERR_PTR(-EIO); 174 ptr = kmap(page); 175 if (ptr == NULL) 176 return ERR_PTR(-ENOMEM); 177 return ptr; 178 } 179 180 static 181 void nfs_readdir_release_array(struct page *page) 182 { 183 kunmap(page); 184 } 185 186 /* 187 * we are freeing strings created by nfs_add_to_readdir_array() 188 */ 189 static 190 void nfs_readdir_clear_array(struct page *page) 191 { 192 struct nfs_cache_array *array; 193 int i; 194 195 array = kmap_atomic(page); 196 for (i = 0; i < array->size; i++) 197 kfree(array->array[i].string.name); 198 kunmap_atomic(array); 199 } 200 201 /* 202 * the caller is responsible for freeing qstr.name 203 * when called by nfs_readdir_add_to_array, the strings will be freed in 204 * nfs_clear_readdir_array() 205 */ 206 static 207 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len) 208 { 209 string->len = len; 210 string->name = kmemdup(name, len, GFP_KERNEL); 211 if (string->name == NULL) 212 return -ENOMEM; 213 /* 214 * Avoid a kmemleak false positive. The pointer to the name is stored 215 * in a page cache page which kmemleak does not scan. 216 */ 217 kmemleak_not_leak(string->name); 218 string->hash = full_name_hash(name, len); 219 return 0; 220 } 221 222 static 223 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page) 224 { 225 struct nfs_cache_array *array = nfs_readdir_get_array(page); 226 struct nfs_cache_array_entry *cache_entry; 227 int ret; 228 229 if (IS_ERR(array)) 230 return PTR_ERR(array); 231 232 cache_entry = &array->array[array->size]; 233 234 /* Check that this entry lies within the page bounds */ 235 ret = -ENOSPC; 236 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE) 237 goto out; 238 239 cache_entry->cookie = entry->prev_cookie; 240 cache_entry->ino = entry->ino; 241 cache_entry->d_type = entry->d_type; 242 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len); 243 if (ret) 244 goto out; 245 array->last_cookie = entry->cookie; 246 array->size++; 247 if (entry->eof != 0) 248 array->eof_index = array->size; 249 out: 250 nfs_readdir_release_array(page); 251 return ret; 252 } 253 254 static 255 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 256 { 257 loff_t diff = desc->ctx->pos - desc->current_index; 258 unsigned int index; 259 260 if (diff < 0) 261 goto out_eof; 262 if (diff >= array->size) { 263 if (array->eof_index >= 0) 264 goto out_eof; 265 return -EAGAIN; 266 } 267 268 index = (unsigned int)diff; 269 *desc->dir_cookie = array->array[index].cookie; 270 desc->cache_entry_index = index; 271 return 0; 272 out_eof: 273 desc->eof = 1; 274 return -EBADCOOKIE; 275 } 276 277 static bool 278 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi) 279 { 280 if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA)) 281 return false; 282 smp_rmb(); 283 return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags); 284 } 285 286 static 287 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 288 { 289 int i; 290 loff_t new_pos; 291 int status = -EAGAIN; 292 293 for (i = 0; i < array->size; i++) { 294 if (array->array[i].cookie == *desc->dir_cookie) { 295 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file)); 296 struct nfs_open_dir_context *ctx = desc->file->private_data; 297 298 new_pos = desc->current_index + i; 299 if (ctx->attr_gencount != nfsi->attr_gencount || 300 !nfs_readdir_inode_mapping_valid(nfsi)) { 301 ctx->duped = 0; 302 ctx->attr_gencount = nfsi->attr_gencount; 303 } else if (new_pos < desc->ctx->pos) { 304 if (ctx->duped > 0 305 && ctx->dup_cookie == *desc->dir_cookie) { 306 if (printk_ratelimit()) { 307 pr_notice("NFS: directory %pD2 contains a readdir loop." 308 "Please contact your server vendor. " 309 "The file: %s has duplicate cookie %llu\n", 310 desc->file, 311 array->array[i].string.name, 312 *desc->dir_cookie); 313 } 314 status = -ELOOP; 315 goto out; 316 } 317 ctx->dup_cookie = *desc->dir_cookie; 318 ctx->duped = -1; 319 } 320 desc->ctx->pos = new_pos; 321 desc->cache_entry_index = i; 322 return 0; 323 } 324 } 325 if (array->eof_index >= 0) { 326 status = -EBADCOOKIE; 327 if (*desc->dir_cookie == array->last_cookie) 328 desc->eof = 1; 329 } 330 out: 331 return status; 332 } 333 334 static 335 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc) 336 { 337 struct nfs_cache_array *array; 338 int status; 339 340 array = nfs_readdir_get_array(desc->page); 341 if (IS_ERR(array)) { 342 status = PTR_ERR(array); 343 goto out; 344 } 345 346 if (*desc->dir_cookie == 0) 347 status = nfs_readdir_search_for_pos(array, desc); 348 else 349 status = nfs_readdir_search_for_cookie(array, desc); 350 351 if (status == -EAGAIN) { 352 desc->last_cookie = array->last_cookie; 353 desc->current_index += array->size; 354 desc->page_index++; 355 } 356 nfs_readdir_release_array(desc->page); 357 out: 358 return status; 359 } 360 361 /* Fill a page with xdr information before transferring to the cache page */ 362 static 363 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc, 364 struct nfs_entry *entry, struct file *file, struct inode *inode) 365 { 366 struct nfs_open_dir_context *ctx = file->private_data; 367 struct rpc_cred *cred = ctx->cred; 368 unsigned long timestamp, gencount; 369 int error; 370 371 again: 372 timestamp = jiffies; 373 gencount = nfs_inc_attr_generation_counter(); 374 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages, 375 NFS_SERVER(inode)->dtsize, desc->plus); 376 if (error < 0) { 377 /* We requested READDIRPLUS, but the server doesn't grok it */ 378 if (error == -ENOTSUPP && desc->plus) { 379 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS; 380 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 381 desc->plus = 0; 382 goto again; 383 } 384 goto error; 385 } 386 desc->timestamp = timestamp; 387 desc->gencount = gencount; 388 error: 389 return error; 390 } 391 392 static int xdr_decode(nfs_readdir_descriptor_t *desc, 393 struct nfs_entry *entry, struct xdr_stream *xdr) 394 { 395 int error; 396 397 error = desc->decode(xdr, entry, desc->plus); 398 if (error) 399 return error; 400 entry->fattr->time_start = desc->timestamp; 401 entry->fattr->gencount = desc->gencount; 402 return 0; 403 } 404 405 static 406 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry) 407 { 408 if (dentry->d_inode == NULL) 409 goto different; 410 if (nfs_compare_fh(entry->fh, NFS_FH(dentry->d_inode)) != 0) 411 goto different; 412 return 1; 413 different: 414 return 0; 415 } 416 417 static 418 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx) 419 { 420 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS)) 421 return false; 422 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags)) 423 return true; 424 if (ctx->pos == 0) 425 return true; 426 return false; 427 } 428 429 /* 430 * This function is called by the lookup code to request the use of 431 * readdirplus to accelerate any future lookups in the same 432 * directory. 433 */ 434 static 435 void nfs_advise_use_readdirplus(struct inode *dir) 436 { 437 set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags); 438 } 439 440 static 441 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry) 442 { 443 struct qstr filename = QSTR_INIT(entry->name, entry->len); 444 struct dentry *dentry; 445 struct dentry *alias; 446 struct inode *dir = parent->d_inode; 447 struct inode *inode; 448 int status; 449 450 if (filename.name[0] == '.') { 451 if (filename.len == 1) 452 return; 453 if (filename.len == 2 && filename.name[1] == '.') 454 return; 455 } 456 filename.hash = full_name_hash(filename.name, filename.len); 457 458 dentry = d_lookup(parent, &filename); 459 if (dentry != NULL) { 460 if (nfs_same_file(dentry, entry)) { 461 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 462 status = nfs_refresh_inode(dentry->d_inode, entry->fattr); 463 if (!status) 464 nfs_setsecurity(dentry->d_inode, entry->fattr, entry->label); 465 goto out; 466 } else { 467 if (d_invalidate(dentry) != 0) 468 goto out; 469 dput(dentry); 470 } 471 } 472 473 dentry = d_alloc(parent, &filename); 474 if (dentry == NULL) 475 return; 476 477 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label); 478 if (IS_ERR(inode)) 479 goto out; 480 481 alias = d_materialise_unique(dentry, inode); 482 if (IS_ERR(alias)) 483 goto out; 484 else if (alias) { 485 nfs_set_verifier(alias, nfs_save_change_attribute(dir)); 486 dput(alias); 487 } else 488 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 489 490 out: 491 dput(dentry); 492 } 493 494 /* Perform conversion from xdr to cache array */ 495 static 496 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry, 497 struct page **xdr_pages, struct page *page, unsigned int buflen) 498 { 499 struct xdr_stream stream; 500 struct xdr_buf buf; 501 struct page *scratch; 502 struct nfs_cache_array *array; 503 unsigned int count = 0; 504 int status; 505 506 scratch = alloc_page(GFP_KERNEL); 507 if (scratch == NULL) 508 return -ENOMEM; 509 510 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen); 511 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE); 512 513 do { 514 status = xdr_decode(desc, entry, &stream); 515 if (status != 0) { 516 if (status == -EAGAIN) 517 status = 0; 518 break; 519 } 520 521 count++; 522 523 if (desc->plus != 0) 524 nfs_prime_dcache(desc->file->f_path.dentry, entry); 525 526 status = nfs_readdir_add_to_array(entry, page); 527 if (status != 0) 528 break; 529 } while (!entry->eof); 530 531 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) { 532 array = nfs_readdir_get_array(page); 533 if (!IS_ERR(array)) { 534 array->eof_index = array->size; 535 status = 0; 536 nfs_readdir_release_array(page); 537 } else 538 status = PTR_ERR(array); 539 } 540 541 put_page(scratch); 542 return status; 543 } 544 545 static 546 void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages) 547 { 548 unsigned int i; 549 for (i = 0; i < npages; i++) 550 put_page(pages[i]); 551 } 552 553 static 554 void nfs_readdir_free_large_page(void *ptr, struct page **pages, 555 unsigned int npages) 556 { 557 nfs_readdir_free_pagearray(pages, npages); 558 } 559 560 /* 561 * nfs_readdir_large_page will allocate pages that must be freed with a call 562 * to nfs_readdir_free_large_page 563 */ 564 static 565 int nfs_readdir_large_page(struct page **pages, unsigned int npages) 566 { 567 unsigned int i; 568 569 for (i = 0; i < npages; i++) { 570 struct page *page = alloc_page(GFP_KERNEL); 571 if (page == NULL) 572 goto out_freepages; 573 pages[i] = page; 574 } 575 return 0; 576 577 out_freepages: 578 nfs_readdir_free_pagearray(pages, i); 579 return -ENOMEM; 580 } 581 582 static 583 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode) 584 { 585 struct page *pages[NFS_MAX_READDIR_PAGES]; 586 void *pages_ptr = NULL; 587 struct nfs_entry entry; 588 struct file *file = desc->file; 589 struct nfs_cache_array *array; 590 int status = -ENOMEM; 591 unsigned int array_size = ARRAY_SIZE(pages); 592 593 entry.prev_cookie = 0; 594 entry.cookie = desc->last_cookie; 595 entry.eof = 0; 596 entry.fh = nfs_alloc_fhandle(); 597 entry.fattr = nfs_alloc_fattr(); 598 entry.server = NFS_SERVER(inode); 599 if (entry.fh == NULL || entry.fattr == NULL) 600 goto out; 601 602 entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT); 603 if (IS_ERR(entry.label)) { 604 status = PTR_ERR(entry.label); 605 goto out; 606 } 607 608 array = nfs_readdir_get_array(page); 609 if (IS_ERR(array)) { 610 status = PTR_ERR(array); 611 goto out_label_free; 612 } 613 memset(array, 0, sizeof(struct nfs_cache_array)); 614 array->eof_index = -1; 615 616 status = nfs_readdir_large_page(pages, array_size); 617 if (status < 0) 618 goto out_release_array; 619 do { 620 unsigned int pglen; 621 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode); 622 623 if (status < 0) 624 break; 625 pglen = status; 626 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen); 627 if (status < 0) { 628 if (status == -ENOSPC) 629 status = 0; 630 break; 631 } 632 } while (array->eof_index < 0); 633 634 nfs_readdir_free_large_page(pages_ptr, pages, array_size); 635 out_release_array: 636 nfs_readdir_release_array(page); 637 out_label_free: 638 nfs4_label_free(entry.label); 639 out: 640 nfs_free_fattr(entry.fattr); 641 nfs_free_fhandle(entry.fh); 642 return status; 643 } 644 645 /* 646 * Now we cache directories properly, by converting xdr information 647 * to an array that can be used for lookups later. This results in 648 * fewer cache pages, since we can store more information on each page. 649 * We only need to convert from xdr once so future lookups are much simpler 650 */ 651 static 652 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page) 653 { 654 struct inode *inode = file_inode(desc->file); 655 int ret; 656 657 ret = nfs_readdir_xdr_to_array(desc, page, inode); 658 if (ret < 0) 659 goto error; 660 SetPageUptodate(page); 661 662 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) { 663 /* Should never happen */ 664 nfs_zap_mapping(inode, inode->i_mapping); 665 } 666 unlock_page(page); 667 return 0; 668 error: 669 unlock_page(page); 670 return ret; 671 } 672 673 static 674 void cache_page_release(nfs_readdir_descriptor_t *desc) 675 { 676 if (!desc->page->mapping) 677 nfs_readdir_clear_array(desc->page); 678 page_cache_release(desc->page); 679 desc->page = NULL; 680 } 681 682 static 683 struct page *get_cache_page(nfs_readdir_descriptor_t *desc) 684 { 685 return read_cache_page(file_inode(desc->file)->i_mapping, 686 desc->page_index, (filler_t *)nfs_readdir_filler, desc); 687 } 688 689 /* 690 * Returns 0 if desc->dir_cookie was found on page desc->page_index 691 */ 692 static 693 int find_cache_page(nfs_readdir_descriptor_t *desc) 694 { 695 int res; 696 697 desc->page = get_cache_page(desc); 698 if (IS_ERR(desc->page)) 699 return PTR_ERR(desc->page); 700 701 res = nfs_readdir_search_array(desc); 702 if (res != 0) 703 cache_page_release(desc); 704 return res; 705 } 706 707 /* Search for desc->dir_cookie from the beginning of the page cache */ 708 static inline 709 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc) 710 { 711 int res; 712 713 if (desc->page_index == 0) { 714 desc->current_index = 0; 715 desc->last_cookie = 0; 716 } 717 do { 718 res = find_cache_page(desc); 719 } while (res == -EAGAIN); 720 return res; 721 } 722 723 /* 724 * Once we've found the start of the dirent within a page: fill 'er up... 725 */ 726 static 727 int nfs_do_filldir(nfs_readdir_descriptor_t *desc) 728 { 729 struct file *file = desc->file; 730 int i = 0; 731 int res = 0; 732 struct nfs_cache_array *array = NULL; 733 struct nfs_open_dir_context *ctx = file->private_data; 734 735 array = nfs_readdir_get_array(desc->page); 736 if (IS_ERR(array)) { 737 res = PTR_ERR(array); 738 goto out; 739 } 740 741 for (i = desc->cache_entry_index; i < array->size; i++) { 742 struct nfs_cache_array_entry *ent; 743 744 ent = &array->array[i]; 745 if (!dir_emit(desc->ctx, ent->string.name, ent->string.len, 746 nfs_compat_user_ino64(ent->ino), ent->d_type)) { 747 desc->eof = 1; 748 break; 749 } 750 desc->ctx->pos++; 751 if (i < (array->size-1)) 752 *desc->dir_cookie = array->array[i+1].cookie; 753 else 754 *desc->dir_cookie = array->last_cookie; 755 if (ctx->duped != 0) 756 ctx->duped = 1; 757 } 758 if (array->eof_index >= 0) 759 desc->eof = 1; 760 761 nfs_readdir_release_array(desc->page); 762 out: 763 cache_page_release(desc); 764 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n", 765 (unsigned long long)*desc->dir_cookie, res); 766 return res; 767 } 768 769 /* 770 * If we cannot find a cookie in our cache, we suspect that this is 771 * because it points to a deleted file, so we ask the server to return 772 * whatever it thinks is the next entry. We then feed this to filldir. 773 * If all goes well, we should then be able to find our way round the 774 * cache on the next call to readdir_search_pagecache(); 775 * 776 * NOTE: we cannot add the anonymous page to the pagecache because 777 * the data it contains might not be page aligned. Besides, 778 * we should already have a complete representation of the 779 * directory in the page cache by the time we get here. 780 */ 781 static inline 782 int uncached_readdir(nfs_readdir_descriptor_t *desc) 783 { 784 struct page *page = NULL; 785 int status; 786 struct inode *inode = file_inode(desc->file); 787 struct nfs_open_dir_context *ctx = desc->file->private_data; 788 789 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n", 790 (unsigned long long)*desc->dir_cookie); 791 792 page = alloc_page(GFP_HIGHUSER); 793 if (!page) { 794 status = -ENOMEM; 795 goto out; 796 } 797 798 desc->page_index = 0; 799 desc->last_cookie = *desc->dir_cookie; 800 desc->page = page; 801 ctx->duped = 0; 802 803 status = nfs_readdir_xdr_to_array(desc, page, inode); 804 if (status < 0) 805 goto out_release; 806 807 status = nfs_do_filldir(desc); 808 809 out: 810 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", 811 __func__, status); 812 return status; 813 out_release: 814 cache_page_release(desc); 815 goto out; 816 } 817 818 /* The file offset position represents the dirent entry number. A 819 last cookie cache takes care of the common case of reading the 820 whole directory. 821 */ 822 static int nfs_readdir(struct file *file, struct dir_context *ctx) 823 { 824 struct dentry *dentry = file->f_path.dentry; 825 struct inode *inode = dentry->d_inode; 826 nfs_readdir_descriptor_t my_desc, 827 *desc = &my_desc; 828 struct nfs_open_dir_context *dir_ctx = file->private_data; 829 int res = 0; 830 831 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n", 832 file, (long long)ctx->pos); 833 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS); 834 835 /* 836 * ctx->pos points to the dirent entry number. 837 * *desc->dir_cookie has the cookie for the next entry. We have 838 * to either find the entry with the appropriate number or 839 * revalidate the cookie. 840 */ 841 memset(desc, 0, sizeof(*desc)); 842 843 desc->file = file; 844 desc->ctx = ctx; 845 desc->dir_cookie = &dir_ctx->dir_cookie; 846 desc->decode = NFS_PROTO(inode)->decode_dirent; 847 desc->plus = nfs_use_readdirplus(inode, ctx) ? 1 : 0; 848 849 nfs_block_sillyrename(dentry); 850 if (ctx->pos == 0 || nfs_attribute_cache_expired(inode)) 851 res = nfs_revalidate_mapping(inode, file->f_mapping); 852 if (res < 0) 853 goto out; 854 855 do { 856 res = readdir_search_pagecache(desc); 857 858 if (res == -EBADCOOKIE) { 859 res = 0; 860 /* This means either end of directory */ 861 if (*desc->dir_cookie && desc->eof == 0) { 862 /* Or that the server has 'lost' a cookie */ 863 res = uncached_readdir(desc); 864 if (res == 0) 865 continue; 866 } 867 break; 868 } 869 if (res == -ETOOSMALL && desc->plus) { 870 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 871 nfs_zap_caches(inode); 872 desc->page_index = 0; 873 desc->plus = 0; 874 desc->eof = 0; 875 continue; 876 } 877 if (res < 0) 878 break; 879 880 res = nfs_do_filldir(desc); 881 if (res < 0) 882 break; 883 } while (!desc->eof); 884 out: 885 nfs_unblock_sillyrename(dentry); 886 if (res > 0) 887 res = 0; 888 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res); 889 return res; 890 } 891 892 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence) 893 { 894 struct inode *inode = file_inode(filp); 895 struct nfs_open_dir_context *dir_ctx = filp->private_data; 896 897 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n", 898 filp, offset, whence); 899 900 mutex_lock(&inode->i_mutex); 901 switch (whence) { 902 case 1: 903 offset += filp->f_pos; 904 case 0: 905 if (offset >= 0) 906 break; 907 default: 908 offset = -EINVAL; 909 goto out; 910 } 911 if (offset != filp->f_pos) { 912 filp->f_pos = offset; 913 dir_ctx->dir_cookie = 0; 914 dir_ctx->duped = 0; 915 } 916 out: 917 mutex_unlock(&inode->i_mutex); 918 return offset; 919 } 920 921 /* 922 * All directory operations under NFS are synchronous, so fsync() 923 * is a dummy operation. 924 */ 925 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end, 926 int datasync) 927 { 928 struct inode *inode = file_inode(filp); 929 930 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync); 931 932 mutex_lock(&inode->i_mutex); 933 nfs_inc_stats(inode, NFSIOS_VFSFSYNC); 934 mutex_unlock(&inode->i_mutex); 935 return 0; 936 } 937 938 /** 939 * nfs_force_lookup_revalidate - Mark the directory as having changed 940 * @dir - pointer to directory inode 941 * 942 * This forces the revalidation code in nfs_lookup_revalidate() to do a 943 * full lookup on all child dentries of 'dir' whenever a change occurs 944 * on the server that might have invalidated our dcache. 945 * 946 * The caller should be holding dir->i_lock 947 */ 948 void nfs_force_lookup_revalidate(struct inode *dir) 949 { 950 NFS_I(dir)->cache_change_attribute++; 951 } 952 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate); 953 954 /* 955 * A check for whether or not the parent directory has changed. 956 * In the case it has, we assume that the dentries are untrustworthy 957 * and may need to be looked up again. 958 */ 959 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry) 960 { 961 if (IS_ROOT(dentry)) 962 return 1; 963 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE) 964 return 0; 965 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 966 return 0; 967 /* Revalidate nfsi->cache_change_attribute before we declare a match */ 968 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0) 969 return 0; 970 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 971 return 0; 972 return 1; 973 } 974 975 /* 976 * Use intent information to check whether or not we're going to do 977 * an O_EXCL create using this path component. 978 */ 979 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags) 980 { 981 if (NFS_PROTO(dir)->version == 2) 982 return 0; 983 return flags & LOOKUP_EXCL; 984 } 985 986 /* 987 * Inode and filehandle revalidation for lookups. 988 * 989 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL, 990 * or if the intent information indicates that we're about to open this 991 * particular file and the "nocto" mount flag is not set. 992 * 993 */ 994 static 995 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags) 996 { 997 struct nfs_server *server = NFS_SERVER(inode); 998 int ret; 999 1000 if (IS_AUTOMOUNT(inode)) 1001 return 0; 1002 /* VFS wants an on-the-wire revalidation */ 1003 if (flags & LOOKUP_REVAL) 1004 goto out_force; 1005 /* This is an open(2) */ 1006 if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) && 1007 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode))) 1008 goto out_force; 1009 out: 1010 return (inode->i_nlink == 0) ? -ENOENT : 0; 1011 out_force: 1012 ret = __nfs_revalidate_inode(server, inode); 1013 if (ret != 0) 1014 return ret; 1015 goto out; 1016 } 1017 1018 /* 1019 * We judge how long we want to trust negative 1020 * dentries by looking at the parent inode mtime. 1021 * 1022 * If parent mtime has changed, we revalidate, else we wait for a 1023 * period corresponding to the parent's attribute cache timeout value. 1024 */ 1025 static inline 1026 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry, 1027 unsigned int flags) 1028 { 1029 /* Don't revalidate a negative dentry if we're creating a new file */ 1030 if (flags & LOOKUP_CREATE) 1031 return 0; 1032 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG) 1033 return 1; 1034 return !nfs_check_verifier(dir, dentry); 1035 } 1036 1037 /* 1038 * This is called every time the dcache has a lookup hit, 1039 * and we should check whether we can really trust that 1040 * lookup. 1041 * 1042 * NOTE! The hit can be a negative hit too, don't assume 1043 * we have an inode! 1044 * 1045 * If the parent directory is seen to have changed, we throw out the 1046 * cached dentry and do a new lookup. 1047 */ 1048 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1049 { 1050 struct inode *dir; 1051 struct inode *inode; 1052 struct dentry *parent; 1053 struct nfs_fh *fhandle = NULL; 1054 struct nfs_fattr *fattr = NULL; 1055 struct nfs4_label *label = NULL; 1056 int error; 1057 1058 if (flags & LOOKUP_RCU) 1059 return -ECHILD; 1060 1061 parent = dget_parent(dentry); 1062 dir = parent->d_inode; 1063 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE); 1064 inode = dentry->d_inode; 1065 1066 if (!inode) { 1067 if (nfs_neg_need_reval(dir, dentry, flags)) 1068 goto out_bad; 1069 goto out_valid_noent; 1070 } 1071 1072 if (is_bad_inode(inode)) { 1073 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1074 __func__, dentry); 1075 goto out_bad; 1076 } 1077 1078 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ)) 1079 goto out_set_verifier; 1080 1081 /* Force a full look up iff the parent directory has changed */ 1082 if (!nfs_is_exclusive_create(dir, flags) && nfs_check_verifier(dir, dentry)) { 1083 if (nfs_lookup_verify_inode(inode, flags)) 1084 goto out_zap_parent; 1085 goto out_valid; 1086 } 1087 1088 if (NFS_STALE(inode)) 1089 goto out_bad; 1090 1091 error = -ENOMEM; 1092 fhandle = nfs_alloc_fhandle(); 1093 fattr = nfs_alloc_fattr(); 1094 if (fhandle == NULL || fattr == NULL) 1095 goto out_error; 1096 1097 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT); 1098 if (IS_ERR(label)) 1099 goto out_error; 1100 1101 trace_nfs_lookup_revalidate_enter(dir, dentry, flags); 1102 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label); 1103 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error); 1104 if (error) 1105 goto out_bad; 1106 if (nfs_compare_fh(NFS_FH(inode), fhandle)) 1107 goto out_bad; 1108 if ((error = nfs_refresh_inode(inode, fattr)) != 0) 1109 goto out_bad; 1110 1111 nfs_setsecurity(inode, fattr, label); 1112 1113 nfs_free_fattr(fattr); 1114 nfs_free_fhandle(fhandle); 1115 nfs4_label_free(label); 1116 1117 out_set_verifier: 1118 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1119 out_valid: 1120 /* Success: notify readdir to use READDIRPLUS */ 1121 nfs_advise_use_readdirplus(dir); 1122 out_valid_noent: 1123 dput(parent); 1124 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n", 1125 __func__, dentry); 1126 return 1; 1127 out_zap_parent: 1128 nfs_zap_caches(dir); 1129 out_bad: 1130 nfs_free_fattr(fattr); 1131 nfs_free_fhandle(fhandle); 1132 nfs4_label_free(label); 1133 nfs_mark_for_revalidate(dir); 1134 if (inode && S_ISDIR(inode->i_mode)) { 1135 /* Purge readdir caches. */ 1136 nfs_zap_caches(inode); 1137 /* 1138 * We can't d_drop the root of a disconnected tree: 1139 * its d_hash is on the s_anon list and d_drop() would hide 1140 * it from shrink_dcache_for_unmount(), leading to busy 1141 * inodes on unmount and further oopses. 1142 */ 1143 if (IS_ROOT(dentry)) 1144 goto out_valid; 1145 } 1146 /* If we have submounts, don't unhash ! */ 1147 if (check_submounts_and_drop(dentry) != 0) 1148 goto out_valid; 1149 1150 dput(parent); 1151 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n", 1152 __func__, dentry); 1153 return 0; 1154 out_error: 1155 nfs_free_fattr(fattr); 1156 nfs_free_fhandle(fhandle); 1157 nfs4_label_free(label); 1158 dput(parent); 1159 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n", 1160 __func__, dentry, error); 1161 return error; 1162 } 1163 1164 /* 1165 * A weaker form of d_revalidate for revalidating just the dentry->d_inode 1166 * when we don't really care about the dentry name. This is called when a 1167 * pathwalk ends on a dentry that was not found via a normal lookup in the 1168 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals). 1169 * 1170 * In this situation, we just want to verify that the inode itself is OK 1171 * since the dentry might have changed on the server. 1172 */ 1173 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags) 1174 { 1175 int error; 1176 struct inode *inode = dentry->d_inode; 1177 1178 /* 1179 * I believe we can only get a negative dentry here in the case of a 1180 * procfs-style symlink. Just assume it's correct for now, but we may 1181 * eventually need to do something more here. 1182 */ 1183 if (!inode) { 1184 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n", 1185 __func__, dentry); 1186 return 1; 1187 } 1188 1189 if (is_bad_inode(inode)) { 1190 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1191 __func__, dentry); 1192 return 0; 1193 } 1194 1195 error = nfs_revalidate_inode(NFS_SERVER(inode), inode); 1196 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n", 1197 __func__, inode->i_ino, error ? "invalid" : "valid"); 1198 return !error; 1199 } 1200 1201 /* 1202 * This is called from dput() when d_count is going to 0. 1203 */ 1204 static int nfs_dentry_delete(const struct dentry *dentry) 1205 { 1206 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n", 1207 dentry, dentry->d_flags); 1208 1209 /* Unhash any dentry with a stale inode */ 1210 if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode)) 1211 return 1; 1212 1213 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1214 /* Unhash it, so that ->d_iput() would be called */ 1215 return 1; 1216 } 1217 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) { 1218 /* Unhash it, so that ancestors of killed async unlink 1219 * files will be cleaned up during umount */ 1220 return 1; 1221 } 1222 return 0; 1223 1224 } 1225 1226 /* Ensure that we revalidate inode->i_nlink */ 1227 static void nfs_drop_nlink(struct inode *inode) 1228 { 1229 spin_lock(&inode->i_lock); 1230 /* drop the inode if we're reasonably sure this is the last link */ 1231 if (inode->i_nlink == 1) 1232 clear_nlink(inode); 1233 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR; 1234 spin_unlock(&inode->i_lock); 1235 } 1236 1237 /* 1238 * Called when the dentry loses inode. 1239 * We use it to clean up silly-renamed files. 1240 */ 1241 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode) 1242 { 1243 if (S_ISDIR(inode->i_mode)) 1244 /* drop any readdir cache as it could easily be old */ 1245 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA; 1246 1247 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1248 nfs_complete_unlink(dentry, inode); 1249 nfs_drop_nlink(inode); 1250 } 1251 iput(inode); 1252 } 1253 1254 static void nfs_d_release(struct dentry *dentry) 1255 { 1256 /* free cached devname value, if it survived that far */ 1257 if (unlikely(dentry->d_fsdata)) { 1258 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1259 WARN_ON(1); 1260 else 1261 kfree(dentry->d_fsdata); 1262 } 1263 } 1264 1265 const struct dentry_operations nfs_dentry_operations = { 1266 .d_revalidate = nfs_lookup_revalidate, 1267 .d_weak_revalidate = nfs_weak_revalidate, 1268 .d_delete = nfs_dentry_delete, 1269 .d_iput = nfs_dentry_iput, 1270 .d_automount = nfs_d_automount, 1271 .d_release = nfs_d_release, 1272 }; 1273 EXPORT_SYMBOL_GPL(nfs_dentry_operations); 1274 1275 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 1276 { 1277 struct dentry *res; 1278 struct dentry *parent; 1279 struct inode *inode = NULL; 1280 struct nfs_fh *fhandle = NULL; 1281 struct nfs_fattr *fattr = NULL; 1282 struct nfs4_label *label = NULL; 1283 int error; 1284 1285 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry); 1286 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP); 1287 1288 res = ERR_PTR(-ENAMETOOLONG); 1289 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 1290 goto out; 1291 1292 /* 1293 * If we're doing an exclusive create, optimize away the lookup 1294 * but don't hash the dentry. 1295 */ 1296 if (nfs_is_exclusive_create(dir, flags)) { 1297 d_instantiate(dentry, NULL); 1298 res = NULL; 1299 goto out; 1300 } 1301 1302 res = ERR_PTR(-ENOMEM); 1303 fhandle = nfs_alloc_fhandle(); 1304 fattr = nfs_alloc_fattr(); 1305 if (fhandle == NULL || fattr == NULL) 1306 goto out; 1307 1308 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT); 1309 if (IS_ERR(label)) 1310 goto out; 1311 1312 parent = dentry->d_parent; 1313 /* Protect against concurrent sillydeletes */ 1314 trace_nfs_lookup_enter(dir, dentry, flags); 1315 nfs_block_sillyrename(parent); 1316 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label); 1317 if (error == -ENOENT) 1318 goto no_entry; 1319 if (error < 0) { 1320 res = ERR_PTR(error); 1321 goto out_unblock_sillyrename; 1322 } 1323 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label); 1324 res = ERR_CAST(inode); 1325 if (IS_ERR(res)) 1326 goto out_unblock_sillyrename; 1327 1328 /* Success: notify readdir to use READDIRPLUS */ 1329 nfs_advise_use_readdirplus(dir); 1330 1331 no_entry: 1332 res = d_materialise_unique(dentry, inode); 1333 if (res != NULL) { 1334 if (IS_ERR(res)) 1335 goto out_unblock_sillyrename; 1336 dentry = res; 1337 } 1338 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1339 out_unblock_sillyrename: 1340 nfs_unblock_sillyrename(parent); 1341 trace_nfs_lookup_exit(dir, dentry, flags, error); 1342 nfs4_label_free(label); 1343 out: 1344 nfs_free_fattr(fattr); 1345 nfs_free_fhandle(fhandle); 1346 return res; 1347 } 1348 EXPORT_SYMBOL_GPL(nfs_lookup); 1349 1350 #if IS_ENABLED(CONFIG_NFS_V4) 1351 static int nfs4_lookup_revalidate(struct dentry *, unsigned int); 1352 1353 const struct dentry_operations nfs4_dentry_operations = { 1354 .d_revalidate = nfs4_lookup_revalidate, 1355 .d_delete = nfs_dentry_delete, 1356 .d_iput = nfs_dentry_iput, 1357 .d_automount = nfs_d_automount, 1358 .d_release = nfs_d_release, 1359 }; 1360 EXPORT_SYMBOL_GPL(nfs4_dentry_operations); 1361 1362 static fmode_t flags_to_mode(int flags) 1363 { 1364 fmode_t res = (__force fmode_t)flags & FMODE_EXEC; 1365 if ((flags & O_ACCMODE) != O_WRONLY) 1366 res |= FMODE_READ; 1367 if ((flags & O_ACCMODE) != O_RDONLY) 1368 res |= FMODE_WRITE; 1369 return res; 1370 } 1371 1372 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags) 1373 { 1374 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags)); 1375 } 1376 1377 static int do_open(struct inode *inode, struct file *filp) 1378 { 1379 nfs_fscache_open_file(inode, filp); 1380 return 0; 1381 } 1382 1383 static int nfs_finish_open(struct nfs_open_context *ctx, 1384 struct dentry *dentry, 1385 struct file *file, unsigned open_flags, 1386 int *opened) 1387 { 1388 int err; 1389 1390 if ((open_flags & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL)) 1391 *opened |= FILE_CREATED; 1392 1393 err = finish_open(file, dentry, do_open, opened); 1394 if (err) 1395 goto out; 1396 nfs_file_set_open_context(file, ctx); 1397 1398 out: 1399 return err; 1400 } 1401 1402 int nfs_atomic_open(struct inode *dir, struct dentry *dentry, 1403 struct file *file, unsigned open_flags, 1404 umode_t mode, int *opened) 1405 { 1406 struct nfs_open_context *ctx; 1407 struct dentry *res; 1408 struct iattr attr = { .ia_valid = ATTR_OPEN }; 1409 struct inode *inode; 1410 unsigned int lookup_flags = 0; 1411 int err; 1412 1413 /* Expect a negative dentry */ 1414 BUG_ON(dentry->d_inode); 1415 1416 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n", 1417 dir->i_sb->s_id, dir->i_ino, dentry); 1418 1419 err = nfs_check_flags(open_flags); 1420 if (err) 1421 return err; 1422 1423 /* NFS only supports OPEN on regular files */ 1424 if ((open_flags & O_DIRECTORY)) { 1425 if (!d_unhashed(dentry)) { 1426 /* 1427 * Hashed negative dentry with O_DIRECTORY: dentry was 1428 * revalidated and is fine, no need to perform lookup 1429 * again 1430 */ 1431 return -ENOENT; 1432 } 1433 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY; 1434 goto no_open; 1435 } 1436 1437 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 1438 return -ENAMETOOLONG; 1439 1440 if (open_flags & O_CREAT) { 1441 attr.ia_valid |= ATTR_MODE; 1442 attr.ia_mode = mode & ~current_umask(); 1443 } 1444 if (open_flags & O_TRUNC) { 1445 attr.ia_valid |= ATTR_SIZE; 1446 attr.ia_size = 0; 1447 } 1448 1449 ctx = create_nfs_open_context(dentry, open_flags); 1450 err = PTR_ERR(ctx); 1451 if (IS_ERR(ctx)) 1452 goto out; 1453 1454 trace_nfs_atomic_open_enter(dir, ctx, open_flags); 1455 nfs_block_sillyrename(dentry->d_parent); 1456 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, opened); 1457 nfs_unblock_sillyrename(dentry->d_parent); 1458 if (IS_ERR(inode)) { 1459 err = PTR_ERR(inode); 1460 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 1461 put_nfs_open_context(ctx); 1462 switch (err) { 1463 case -ENOENT: 1464 d_drop(dentry); 1465 d_add(dentry, NULL); 1466 break; 1467 case -EISDIR: 1468 case -ENOTDIR: 1469 goto no_open; 1470 case -ELOOP: 1471 if (!(open_flags & O_NOFOLLOW)) 1472 goto no_open; 1473 break; 1474 /* case -EINVAL: */ 1475 default: 1476 break; 1477 } 1478 goto out; 1479 } 1480 1481 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags, opened); 1482 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 1483 put_nfs_open_context(ctx); 1484 out: 1485 return err; 1486 1487 no_open: 1488 res = nfs_lookup(dir, dentry, lookup_flags); 1489 err = PTR_ERR(res); 1490 if (IS_ERR(res)) 1491 goto out; 1492 1493 return finish_no_open(file, res); 1494 } 1495 EXPORT_SYMBOL_GPL(nfs_atomic_open); 1496 1497 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1498 { 1499 struct dentry *parent = NULL; 1500 struct inode *inode; 1501 struct inode *dir; 1502 int ret = 0; 1503 1504 if (flags & LOOKUP_RCU) 1505 return -ECHILD; 1506 1507 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY)) 1508 goto no_open; 1509 if (d_mountpoint(dentry)) 1510 goto no_open; 1511 if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1) 1512 goto no_open; 1513 1514 inode = dentry->d_inode; 1515 parent = dget_parent(dentry); 1516 dir = parent->d_inode; 1517 1518 /* We can't create new files in nfs_open_revalidate(), so we 1519 * optimize away revalidation of negative dentries. 1520 */ 1521 if (inode == NULL) { 1522 if (!nfs_neg_need_reval(dir, dentry, flags)) 1523 ret = 1; 1524 goto out; 1525 } 1526 1527 /* NFS only supports OPEN on regular files */ 1528 if (!S_ISREG(inode->i_mode)) 1529 goto no_open_dput; 1530 /* We cannot do exclusive creation on a positive dentry */ 1531 if (flags & LOOKUP_EXCL) 1532 goto no_open_dput; 1533 1534 /* Let f_op->open() actually open (and revalidate) the file */ 1535 ret = 1; 1536 1537 out: 1538 dput(parent); 1539 return ret; 1540 1541 no_open_dput: 1542 dput(parent); 1543 no_open: 1544 return nfs_lookup_revalidate(dentry, flags); 1545 } 1546 1547 #endif /* CONFIG_NFSV4 */ 1548 1549 /* 1550 * Code common to create, mkdir, and mknod. 1551 */ 1552 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle, 1553 struct nfs_fattr *fattr, 1554 struct nfs4_label *label) 1555 { 1556 struct dentry *parent = dget_parent(dentry); 1557 struct inode *dir = parent->d_inode; 1558 struct inode *inode; 1559 int error = -EACCES; 1560 1561 d_drop(dentry); 1562 1563 /* We may have been initialized further down */ 1564 if (dentry->d_inode) 1565 goto out; 1566 if (fhandle->size == 0) { 1567 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL); 1568 if (error) 1569 goto out_error; 1570 } 1571 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1572 if (!(fattr->valid & NFS_ATTR_FATTR)) { 1573 struct nfs_server *server = NFS_SB(dentry->d_sb); 1574 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL); 1575 if (error < 0) 1576 goto out_error; 1577 } 1578 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label); 1579 error = PTR_ERR(inode); 1580 if (IS_ERR(inode)) 1581 goto out_error; 1582 d_add(dentry, inode); 1583 out: 1584 dput(parent); 1585 return 0; 1586 out_error: 1587 nfs_mark_for_revalidate(dir); 1588 dput(parent); 1589 return error; 1590 } 1591 EXPORT_SYMBOL_GPL(nfs_instantiate); 1592 1593 /* 1594 * Following a failed create operation, we drop the dentry rather 1595 * than retain a negative dentry. This avoids a problem in the event 1596 * that the operation succeeded on the server, but an error in the 1597 * reply path made it appear to have failed. 1598 */ 1599 int nfs_create(struct inode *dir, struct dentry *dentry, 1600 umode_t mode, bool excl) 1601 { 1602 struct iattr attr; 1603 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT; 1604 int error; 1605 1606 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n", 1607 dir->i_sb->s_id, dir->i_ino, dentry); 1608 1609 attr.ia_mode = mode; 1610 attr.ia_valid = ATTR_MODE; 1611 1612 trace_nfs_create_enter(dir, dentry, open_flags); 1613 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags); 1614 trace_nfs_create_exit(dir, dentry, open_flags, error); 1615 if (error != 0) 1616 goto out_err; 1617 return 0; 1618 out_err: 1619 d_drop(dentry); 1620 return error; 1621 } 1622 EXPORT_SYMBOL_GPL(nfs_create); 1623 1624 /* 1625 * See comments for nfs_proc_create regarding failed operations. 1626 */ 1627 int 1628 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev) 1629 { 1630 struct iattr attr; 1631 int status; 1632 1633 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n", 1634 dir->i_sb->s_id, dir->i_ino, dentry); 1635 1636 if (!new_valid_dev(rdev)) 1637 return -EINVAL; 1638 1639 attr.ia_mode = mode; 1640 attr.ia_valid = ATTR_MODE; 1641 1642 trace_nfs_mknod_enter(dir, dentry); 1643 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev); 1644 trace_nfs_mknod_exit(dir, dentry, status); 1645 if (status != 0) 1646 goto out_err; 1647 return 0; 1648 out_err: 1649 d_drop(dentry); 1650 return status; 1651 } 1652 EXPORT_SYMBOL_GPL(nfs_mknod); 1653 1654 /* 1655 * See comments for nfs_proc_create regarding failed operations. 1656 */ 1657 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1658 { 1659 struct iattr attr; 1660 int error; 1661 1662 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n", 1663 dir->i_sb->s_id, dir->i_ino, dentry); 1664 1665 attr.ia_valid = ATTR_MODE; 1666 attr.ia_mode = mode | S_IFDIR; 1667 1668 trace_nfs_mkdir_enter(dir, dentry); 1669 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr); 1670 trace_nfs_mkdir_exit(dir, dentry, error); 1671 if (error != 0) 1672 goto out_err; 1673 return 0; 1674 out_err: 1675 d_drop(dentry); 1676 return error; 1677 } 1678 EXPORT_SYMBOL_GPL(nfs_mkdir); 1679 1680 static void nfs_dentry_handle_enoent(struct dentry *dentry) 1681 { 1682 if (dentry->d_inode != NULL && !d_unhashed(dentry)) 1683 d_delete(dentry); 1684 } 1685 1686 int nfs_rmdir(struct inode *dir, struct dentry *dentry) 1687 { 1688 int error; 1689 1690 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n", 1691 dir->i_sb->s_id, dir->i_ino, dentry); 1692 1693 trace_nfs_rmdir_enter(dir, dentry); 1694 if (dentry->d_inode) { 1695 nfs_wait_on_sillyrename(dentry); 1696 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1697 /* Ensure the VFS deletes this inode */ 1698 switch (error) { 1699 case 0: 1700 clear_nlink(dentry->d_inode); 1701 break; 1702 case -ENOENT: 1703 nfs_dentry_handle_enoent(dentry); 1704 } 1705 } else 1706 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1707 trace_nfs_rmdir_exit(dir, dentry, error); 1708 1709 return error; 1710 } 1711 EXPORT_SYMBOL_GPL(nfs_rmdir); 1712 1713 /* 1714 * Remove a file after making sure there are no pending writes, 1715 * and after checking that the file has only one user. 1716 * 1717 * We invalidate the attribute cache and free the inode prior to the operation 1718 * to avoid possible races if the server reuses the inode. 1719 */ 1720 static int nfs_safe_remove(struct dentry *dentry) 1721 { 1722 struct inode *dir = dentry->d_parent->d_inode; 1723 struct inode *inode = dentry->d_inode; 1724 int error = -EBUSY; 1725 1726 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry); 1727 1728 /* If the dentry was sillyrenamed, we simply call d_delete() */ 1729 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1730 error = 0; 1731 goto out; 1732 } 1733 1734 trace_nfs_remove_enter(dir, dentry); 1735 if (inode != NULL) { 1736 NFS_PROTO(inode)->return_delegation(inode); 1737 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name); 1738 if (error == 0) 1739 nfs_drop_nlink(inode); 1740 } else 1741 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name); 1742 if (error == -ENOENT) 1743 nfs_dentry_handle_enoent(dentry); 1744 trace_nfs_remove_exit(dir, dentry, error); 1745 out: 1746 return error; 1747 } 1748 1749 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode 1750 * belongs to an active ".nfs..." file and we return -EBUSY. 1751 * 1752 * If sillyrename() returns 0, we do nothing, otherwise we unlink. 1753 */ 1754 int nfs_unlink(struct inode *dir, struct dentry *dentry) 1755 { 1756 int error; 1757 int need_rehash = 0; 1758 1759 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id, 1760 dir->i_ino, dentry); 1761 1762 trace_nfs_unlink_enter(dir, dentry); 1763 spin_lock(&dentry->d_lock); 1764 if (d_count(dentry) > 1) { 1765 spin_unlock(&dentry->d_lock); 1766 /* Start asynchronous writeout of the inode */ 1767 write_inode_now(dentry->d_inode, 0); 1768 error = nfs_sillyrename(dir, dentry); 1769 goto out; 1770 } 1771 if (!d_unhashed(dentry)) { 1772 __d_drop(dentry); 1773 need_rehash = 1; 1774 } 1775 spin_unlock(&dentry->d_lock); 1776 error = nfs_safe_remove(dentry); 1777 if (!error || error == -ENOENT) { 1778 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1779 } else if (need_rehash) 1780 d_rehash(dentry); 1781 out: 1782 trace_nfs_unlink_exit(dir, dentry, error); 1783 return error; 1784 } 1785 EXPORT_SYMBOL_GPL(nfs_unlink); 1786 1787 /* 1788 * To create a symbolic link, most file systems instantiate a new inode, 1789 * add a page to it containing the path, then write it out to the disk 1790 * using prepare_write/commit_write. 1791 * 1792 * Unfortunately the NFS client can't create the in-core inode first 1793 * because it needs a file handle to create an in-core inode (see 1794 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the 1795 * symlink request has completed on the server. 1796 * 1797 * So instead we allocate a raw page, copy the symname into it, then do 1798 * the SYMLINK request with the page as the buffer. If it succeeds, we 1799 * now have a new file handle and can instantiate an in-core NFS inode 1800 * and move the raw page into its mapping. 1801 */ 1802 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 1803 { 1804 struct page *page; 1805 char *kaddr; 1806 struct iattr attr; 1807 unsigned int pathlen = strlen(symname); 1808 int error; 1809 1810 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id, 1811 dir->i_ino, dentry, symname); 1812 1813 if (pathlen > PAGE_SIZE) 1814 return -ENAMETOOLONG; 1815 1816 attr.ia_mode = S_IFLNK | S_IRWXUGO; 1817 attr.ia_valid = ATTR_MODE; 1818 1819 page = alloc_page(GFP_HIGHUSER); 1820 if (!page) 1821 return -ENOMEM; 1822 1823 kaddr = kmap_atomic(page); 1824 memcpy(kaddr, symname, pathlen); 1825 if (pathlen < PAGE_SIZE) 1826 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen); 1827 kunmap_atomic(kaddr); 1828 1829 trace_nfs_symlink_enter(dir, dentry); 1830 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr); 1831 trace_nfs_symlink_exit(dir, dentry, error); 1832 if (error != 0) { 1833 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n", 1834 dir->i_sb->s_id, dir->i_ino, 1835 dentry, symname, error); 1836 d_drop(dentry); 1837 __free_page(page); 1838 return error; 1839 } 1840 1841 /* 1842 * No big deal if we can't add this page to the page cache here. 1843 * READLINK will get the missing page from the server if needed. 1844 */ 1845 if (!add_to_page_cache_lru(page, dentry->d_inode->i_mapping, 0, 1846 GFP_KERNEL)) { 1847 SetPageUptodate(page); 1848 unlock_page(page); 1849 /* 1850 * add_to_page_cache_lru() grabs an extra page refcount. 1851 * Drop it here to avoid leaking this page later. 1852 */ 1853 page_cache_release(page); 1854 } else 1855 __free_page(page); 1856 1857 return 0; 1858 } 1859 EXPORT_SYMBOL_GPL(nfs_symlink); 1860 1861 int 1862 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 1863 { 1864 struct inode *inode = old_dentry->d_inode; 1865 int error; 1866 1867 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n", 1868 old_dentry, dentry); 1869 1870 trace_nfs_link_enter(inode, dir, dentry); 1871 NFS_PROTO(inode)->return_delegation(inode); 1872 1873 d_drop(dentry); 1874 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name); 1875 if (error == 0) { 1876 ihold(inode); 1877 d_add(dentry, inode); 1878 } 1879 trace_nfs_link_exit(inode, dir, dentry, error); 1880 return error; 1881 } 1882 EXPORT_SYMBOL_GPL(nfs_link); 1883 1884 /* 1885 * RENAME 1886 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a 1887 * different file handle for the same inode after a rename (e.g. when 1888 * moving to a different directory). A fail-safe method to do so would 1889 * be to look up old_dir/old_name, create a link to new_dir/new_name and 1890 * rename the old file using the sillyrename stuff. This way, the original 1891 * file in old_dir will go away when the last process iput()s the inode. 1892 * 1893 * FIXED. 1894 * 1895 * It actually works quite well. One needs to have the possibility for 1896 * at least one ".nfs..." file in each directory the file ever gets 1897 * moved or linked to which happens automagically with the new 1898 * implementation that only depends on the dcache stuff instead of 1899 * using the inode layer 1900 * 1901 * Unfortunately, things are a little more complicated than indicated 1902 * above. For a cross-directory move, we want to make sure we can get 1903 * rid of the old inode after the operation. This means there must be 1904 * no pending writes (if it's a file), and the use count must be 1. 1905 * If these conditions are met, we can drop the dentries before doing 1906 * the rename. 1907 */ 1908 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry, 1909 struct inode *new_dir, struct dentry *new_dentry) 1910 { 1911 struct inode *old_inode = old_dentry->d_inode; 1912 struct inode *new_inode = new_dentry->d_inode; 1913 struct dentry *dentry = NULL, *rehash = NULL; 1914 int error = -EBUSY; 1915 1916 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n", 1917 old_dentry, new_dentry, 1918 d_count(new_dentry)); 1919 1920 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry); 1921 /* 1922 * For non-directories, check whether the target is busy and if so, 1923 * make a copy of the dentry and then do a silly-rename. If the 1924 * silly-rename succeeds, the copied dentry is hashed and becomes 1925 * the new target. 1926 */ 1927 if (new_inode && !S_ISDIR(new_inode->i_mode)) { 1928 /* 1929 * To prevent any new references to the target during the 1930 * rename, we unhash the dentry in advance. 1931 */ 1932 if (!d_unhashed(new_dentry)) { 1933 d_drop(new_dentry); 1934 rehash = new_dentry; 1935 } 1936 1937 if (d_count(new_dentry) > 2) { 1938 int err; 1939 1940 /* copy the target dentry's name */ 1941 dentry = d_alloc(new_dentry->d_parent, 1942 &new_dentry->d_name); 1943 if (!dentry) 1944 goto out; 1945 1946 /* silly-rename the existing target ... */ 1947 err = nfs_sillyrename(new_dir, new_dentry); 1948 if (err) 1949 goto out; 1950 1951 new_dentry = dentry; 1952 rehash = NULL; 1953 new_inode = NULL; 1954 } 1955 } 1956 1957 NFS_PROTO(old_inode)->return_delegation(old_inode); 1958 if (new_inode != NULL) 1959 NFS_PROTO(new_inode)->return_delegation(new_inode); 1960 1961 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name, 1962 new_dir, &new_dentry->d_name); 1963 nfs_mark_for_revalidate(old_inode); 1964 out: 1965 if (rehash) 1966 d_rehash(rehash); 1967 trace_nfs_rename_exit(old_dir, old_dentry, 1968 new_dir, new_dentry, error); 1969 if (!error) { 1970 if (new_inode != NULL) 1971 nfs_drop_nlink(new_inode); 1972 d_move(old_dentry, new_dentry); 1973 nfs_set_verifier(new_dentry, 1974 nfs_save_change_attribute(new_dir)); 1975 } else if (error == -ENOENT) 1976 nfs_dentry_handle_enoent(old_dentry); 1977 1978 /* new dentry created? */ 1979 if (dentry) 1980 dput(dentry); 1981 return error; 1982 } 1983 EXPORT_SYMBOL_GPL(nfs_rename); 1984 1985 static DEFINE_SPINLOCK(nfs_access_lru_lock); 1986 static LIST_HEAD(nfs_access_lru_list); 1987 static atomic_long_t nfs_access_nr_entries; 1988 1989 static void nfs_access_free_entry(struct nfs_access_entry *entry) 1990 { 1991 put_rpccred(entry->cred); 1992 kfree(entry); 1993 smp_mb__before_atomic_dec(); 1994 atomic_long_dec(&nfs_access_nr_entries); 1995 smp_mb__after_atomic_dec(); 1996 } 1997 1998 static void nfs_access_free_list(struct list_head *head) 1999 { 2000 struct nfs_access_entry *cache; 2001 2002 while (!list_empty(head)) { 2003 cache = list_entry(head->next, struct nfs_access_entry, lru); 2004 list_del(&cache->lru); 2005 nfs_access_free_entry(cache); 2006 } 2007 } 2008 2009 unsigned long 2010 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc) 2011 { 2012 LIST_HEAD(head); 2013 struct nfs_inode *nfsi, *next; 2014 struct nfs_access_entry *cache; 2015 int nr_to_scan = sc->nr_to_scan; 2016 gfp_t gfp_mask = sc->gfp_mask; 2017 long freed = 0; 2018 2019 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL) 2020 return SHRINK_STOP; 2021 2022 spin_lock(&nfs_access_lru_lock); 2023 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) { 2024 struct inode *inode; 2025 2026 if (nr_to_scan-- == 0) 2027 break; 2028 inode = &nfsi->vfs_inode; 2029 spin_lock(&inode->i_lock); 2030 if (list_empty(&nfsi->access_cache_entry_lru)) 2031 goto remove_lru_entry; 2032 cache = list_entry(nfsi->access_cache_entry_lru.next, 2033 struct nfs_access_entry, lru); 2034 list_move(&cache->lru, &head); 2035 rb_erase(&cache->rb_node, &nfsi->access_cache); 2036 freed++; 2037 if (!list_empty(&nfsi->access_cache_entry_lru)) 2038 list_move_tail(&nfsi->access_cache_inode_lru, 2039 &nfs_access_lru_list); 2040 else { 2041 remove_lru_entry: 2042 list_del_init(&nfsi->access_cache_inode_lru); 2043 smp_mb__before_clear_bit(); 2044 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags); 2045 smp_mb__after_clear_bit(); 2046 } 2047 spin_unlock(&inode->i_lock); 2048 } 2049 spin_unlock(&nfs_access_lru_lock); 2050 nfs_access_free_list(&head); 2051 return freed; 2052 } 2053 2054 unsigned long 2055 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc) 2056 { 2057 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries)); 2058 } 2059 2060 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head) 2061 { 2062 struct rb_root *root_node = &nfsi->access_cache; 2063 struct rb_node *n; 2064 struct nfs_access_entry *entry; 2065 2066 /* Unhook entries from the cache */ 2067 while ((n = rb_first(root_node)) != NULL) { 2068 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2069 rb_erase(n, root_node); 2070 list_move(&entry->lru, head); 2071 } 2072 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS; 2073 } 2074 2075 void nfs_access_zap_cache(struct inode *inode) 2076 { 2077 LIST_HEAD(head); 2078 2079 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0) 2080 return; 2081 /* Remove from global LRU init */ 2082 spin_lock(&nfs_access_lru_lock); 2083 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2084 list_del_init(&NFS_I(inode)->access_cache_inode_lru); 2085 2086 spin_lock(&inode->i_lock); 2087 __nfs_access_zap_cache(NFS_I(inode), &head); 2088 spin_unlock(&inode->i_lock); 2089 spin_unlock(&nfs_access_lru_lock); 2090 nfs_access_free_list(&head); 2091 } 2092 EXPORT_SYMBOL_GPL(nfs_access_zap_cache); 2093 2094 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred) 2095 { 2096 struct rb_node *n = NFS_I(inode)->access_cache.rb_node; 2097 struct nfs_access_entry *entry; 2098 2099 while (n != NULL) { 2100 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2101 2102 if (cred < entry->cred) 2103 n = n->rb_left; 2104 else if (cred > entry->cred) 2105 n = n->rb_right; 2106 else 2107 return entry; 2108 } 2109 return NULL; 2110 } 2111 2112 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res) 2113 { 2114 struct nfs_inode *nfsi = NFS_I(inode); 2115 struct nfs_access_entry *cache; 2116 int err = -ENOENT; 2117 2118 spin_lock(&inode->i_lock); 2119 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2120 goto out_zap; 2121 cache = nfs_access_search_rbtree(inode, cred); 2122 if (cache == NULL) 2123 goto out; 2124 if (!nfs_have_delegated_attributes(inode) && 2125 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo)) 2126 goto out_stale; 2127 res->jiffies = cache->jiffies; 2128 res->cred = cache->cred; 2129 res->mask = cache->mask; 2130 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru); 2131 err = 0; 2132 out: 2133 spin_unlock(&inode->i_lock); 2134 return err; 2135 out_stale: 2136 rb_erase(&cache->rb_node, &nfsi->access_cache); 2137 list_del(&cache->lru); 2138 spin_unlock(&inode->i_lock); 2139 nfs_access_free_entry(cache); 2140 return -ENOENT; 2141 out_zap: 2142 spin_unlock(&inode->i_lock); 2143 nfs_access_zap_cache(inode); 2144 return -ENOENT; 2145 } 2146 2147 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set) 2148 { 2149 struct nfs_inode *nfsi = NFS_I(inode); 2150 struct rb_root *root_node = &nfsi->access_cache; 2151 struct rb_node **p = &root_node->rb_node; 2152 struct rb_node *parent = NULL; 2153 struct nfs_access_entry *entry; 2154 2155 spin_lock(&inode->i_lock); 2156 while (*p != NULL) { 2157 parent = *p; 2158 entry = rb_entry(parent, struct nfs_access_entry, rb_node); 2159 2160 if (set->cred < entry->cred) 2161 p = &parent->rb_left; 2162 else if (set->cred > entry->cred) 2163 p = &parent->rb_right; 2164 else 2165 goto found; 2166 } 2167 rb_link_node(&set->rb_node, parent, p); 2168 rb_insert_color(&set->rb_node, root_node); 2169 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2170 spin_unlock(&inode->i_lock); 2171 return; 2172 found: 2173 rb_replace_node(parent, &set->rb_node, root_node); 2174 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2175 list_del(&entry->lru); 2176 spin_unlock(&inode->i_lock); 2177 nfs_access_free_entry(entry); 2178 } 2179 2180 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set) 2181 { 2182 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL); 2183 if (cache == NULL) 2184 return; 2185 RB_CLEAR_NODE(&cache->rb_node); 2186 cache->jiffies = set->jiffies; 2187 cache->cred = get_rpccred(set->cred); 2188 cache->mask = set->mask; 2189 2190 nfs_access_add_rbtree(inode, cache); 2191 2192 /* Update accounting */ 2193 smp_mb__before_atomic_inc(); 2194 atomic_long_inc(&nfs_access_nr_entries); 2195 smp_mb__after_atomic_inc(); 2196 2197 /* Add inode to global LRU list */ 2198 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) { 2199 spin_lock(&nfs_access_lru_lock); 2200 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2201 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, 2202 &nfs_access_lru_list); 2203 spin_unlock(&nfs_access_lru_lock); 2204 } 2205 } 2206 EXPORT_SYMBOL_GPL(nfs_access_add_cache); 2207 2208 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result) 2209 { 2210 entry->mask = 0; 2211 if (access_result & NFS4_ACCESS_READ) 2212 entry->mask |= MAY_READ; 2213 if (access_result & 2214 (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE)) 2215 entry->mask |= MAY_WRITE; 2216 if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE)) 2217 entry->mask |= MAY_EXEC; 2218 } 2219 EXPORT_SYMBOL_GPL(nfs_access_set_mask); 2220 2221 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask) 2222 { 2223 struct nfs_access_entry cache; 2224 int status; 2225 2226 trace_nfs_access_enter(inode); 2227 2228 status = nfs_access_get_cached(inode, cred, &cache); 2229 if (status == 0) 2230 goto out_cached; 2231 2232 /* Be clever: ask server to check for all possible rights */ 2233 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ; 2234 cache.cred = cred; 2235 cache.jiffies = jiffies; 2236 status = NFS_PROTO(inode)->access(inode, &cache); 2237 if (status != 0) { 2238 if (status == -ESTALE) { 2239 nfs_zap_caches(inode); 2240 if (!S_ISDIR(inode->i_mode)) 2241 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags); 2242 } 2243 goto out; 2244 } 2245 nfs_access_add_cache(inode, &cache); 2246 out_cached: 2247 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0) 2248 status = -EACCES; 2249 out: 2250 trace_nfs_access_exit(inode, status); 2251 return status; 2252 } 2253 2254 static int nfs_open_permission_mask(int openflags) 2255 { 2256 int mask = 0; 2257 2258 if (openflags & __FMODE_EXEC) { 2259 /* ONLY check exec rights */ 2260 mask = MAY_EXEC; 2261 } else { 2262 if ((openflags & O_ACCMODE) != O_WRONLY) 2263 mask |= MAY_READ; 2264 if ((openflags & O_ACCMODE) != O_RDONLY) 2265 mask |= MAY_WRITE; 2266 } 2267 2268 return mask; 2269 } 2270 2271 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags) 2272 { 2273 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags)); 2274 } 2275 EXPORT_SYMBOL_GPL(nfs_may_open); 2276 2277 int nfs_permission(struct inode *inode, int mask) 2278 { 2279 struct rpc_cred *cred; 2280 int res = 0; 2281 2282 if (mask & MAY_NOT_BLOCK) 2283 return -ECHILD; 2284 2285 nfs_inc_stats(inode, NFSIOS_VFSACCESS); 2286 2287 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 2288 goto out; 2289 /* Is this sys_access() ? */ 2290 if (mask & (MAY_ACCESS | MAY_CHDIR)) 2291 goto force_lookup; 2292 2293 switch (inode->i_mode & S_IFMT) { 2294 case S_IFLNK: 2295 goto out; 2296 case S_IFREG: 2297 break; 2298 case S_IFDIR: 2299 /* 2300 * Optimize away all write operations, since the server 2301 * will check permissions when we perform the op. 2302 */ 2303 if ((mask & MAY_WRITE) && !(mask & MAY_READ)) 2304 goto out; 2305 } 2306 2307 force_lookup: 2308 if (!NFS_PROTO(inode)->access) 2309 goto out_notsup; 2310 2311 cred = rpc_lookup_cred(); 2312 if (!IS_ERR(cred)) { 2313 res = nfs_do_access(inode, cred, mask); 2314 put_rpccred(cred); 2315 } else 2316 res = PTR_ERR(cred); 2317 out: 2318 if (!res && (mask & MAY_EXEC) && !execute_ok(inode)) 2319 res = -EACCES; 2320 2321 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n", 2322 inode->i_sb->s_id, inode->i_ino, mask, res); 2323 return res; 2324 out_notsup: 2325 res = nfs_revalidate_inode(NFS_SERVER(inode), inode); 2326 if (res == 0) 2327 res = generic_permission(inode, mask); 2328 goto out; 2329 } 2330 EXPORT_SYMBOL_GPL(nfs_permission); 2331 2332 /* 2333 * Local variables: 2334 * version-control: t 2335 * kept-new-versions: 5 2336 * End: 2337 */ 2338