xref: /openbmc/linux/fs/nfs/dir.c (revision 9ac3d3e8)
1 /*
2  *  linux/fs/nfs/dir.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  nfs directory handling functions
7  *
8  * 10 Apr 1996	Added silly rename for unlink	--okir
9  * 28 Sep 1996	Improved directory cache --okir
10  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
11  *              Re-implemented silly rename for unlink, newly implemented
12  *              silly rename for nfs_rename() following the suggestions
13  *              of Olaf Kirch (okir) found in this file.
14  *              Following Linus comments on my original hack, this version
15  *              depends only on the dcache stuff and doesn't touch the inode
16  *              layer (iput() and friends).
17  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
18  */
19 
20 #include <linux/module.h>
21 #include <linux/time.h>
22 #include <linux/errno.h>
23 #include <linux/stat.h>
24 #include <linux/fcntl.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/mm.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/nfs_fs.h>
31 #include <linux/nfs_mount.h>
32 #include <linux/pagemap.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/swap.h>
37 #include <linux/sched.h>
38 #include <linux/kmemleak.h>
39 #include <linux/xattr.h>
40 
41 #include "delegation.h"
42 #include "iostat.h"
43 #include "internal.h"
44 #include "fscache.h"
45 
46 #include "nfstrace.h"
47 
48 /* #define NFS_DEBUG_VERBOSE 1 */
49 
50 static int nfs_opendir(struct inode *, struct file *);
51 static int nfs_closedir(struct inode *, struct file *);
52 static int nfs_readdir(struct file *, struct dir_context *);
53 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
54 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
55 static void nfs_readdir_clear_array(struct page*);
56 
57 const struct file_operations nfs_dir_operations = {
58 	.llseek		= nfs_llseek_dir,
59 	.read		= generic_read_dir,
60 	.iterate_shared	= nfs_readdir,
61 	.open		= nfs_opendir,
62 	.release	= nfs_closedir,
63 	.fsync		= nfs_fsync_dir,
64 };
65 
66 const struct address_space_operations nfs_dir_aops = {
67 	.freepage = nfs_readdir_clear_array,
68 };
69 
70 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
71 {
72 	struct nfs_inode *nfsi = NFS_I(dir);
73 	struct nfs_open_dir_context *ctx;
74 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
75 	if (ctx != NULL) {
76 		ctx->duped = 0;
77 		ctx->attr_gencount = nfsi->attr_gencount;
78 		ctx->dir_cookie = 0;
79 		ctx->dup_cookie = 0;
80 		ctx->cred = get_rpccred(cred);
81 		spin_lock(&dir->i_lock);
82 		list_add(&ctx->list, &nfsi->open_files);
83 		spin_unlock(&dir->i_lock);
84 		return ctx;
85 	}
86 	return  ERR_PTR(-ENOMEM);
87 }
88 
89 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
90 {
91 	spin_lock(&dir->i_lock);
92 	list_del(&ctx->list);
93 	spin_unlock(&dir->i_lock);
94 	put_rpccred(ctx->cred);
95 	kfree(ctx);
96 }
97 
98 /*
99  * Open file
100  */
101 static int
102 nfs_opendir(struct inode *inode, struct file *filp)
103 {
104 	int res = 0;
105 	struct nfs_open_dir_context *ctx;
106 	struct rpc_cred *cred;
107 
108 	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
109 
110 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
111 
112 	cred = rpc_lookup_cred();
113 	if (IS_ERR(cred))
114 		return PTR_ERR(cred);
115 	ctx = alloc_nfs_open_dir_context(inode, cred);
116 	if (IS_ERR(ctx)) {
117 		res = PTR_ERR(ctx);
118 		goto out;
119 	}
120 	filp->private_data = ctx;
121 	if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
122 		/* This is a mountpoint, so d_revalidate will never
123 		 * have been called, so we need to refresh the
124 		 * inode (for close-open consistency) ourselves.
125 		 */
126 		__nfs_revalidate_inode(NFS_SERVER(inode), inode);
127 	}
128 out:
129 	put_rpccred(cred);
130 	return res;
131 }
132 
133 static int
134 nfs_closedir(struct inode *inode, struct file *filp)
135 {
136 	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
137 	return 0;
138 }
139 
140 struct nfs_cache_array_entry {
141 	u64 cookie;
142 	u64 ino;
143 	struct qstr string;
144 	unsigned char d_type;
145 };
146 
147 struct nfs_cache_array {
148 	atomic_t refcount;
149 	int size;
150 	int eof_index;
151 	u64 last_cookie;
152 	struct nfs_cache_array_entry array[0];
153 };
154 
155 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
156 typedef struct {
157 	struct file	*file;
158 	struct page	*page;
159 	struct dir_context *ctx;
160 	unsigned long	page_index;
161 	u64		*dir_cookie;
162 	u64		last_cookie;
163 	loff_t		current_index;
164 	decode_dirent_t	decode;
165 
166 	unsigned long	timestamp;
167 	unsigned long	gencount;
168 	unsigned int	cache_entry_index;
169 	unsigned int	plus:1;
170 	unsigned int	eof:1;
171 } nfs_readdir_descriptor_t;
172 
173 /*
174  * The caller is responsible for calling nfs_readdir_release_array(page)
175  */
176 static
177 struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
178 {
179 	void *ptr;
180 	if (page == NULL)
181 		return ERR_PTR(-EIO);
182 	ptr = kmap(page);
183 	if (ptr == NULL)
184 		return ERR_PTR(-ENOMEM);
185 	return ptr;
186 }
187 
188 static
189 void nfs_readdir_release_array(struct page *page)
190 {
191 	kunmap(page);
192 }
193 
194 /*
195  * we are freeing strings created by nfs_add_to_readdir_array()
196  */
197 static
198 void nfs_readdir_clear_array(struct page *page)
199 {
200 	struct nfs_cache_array *array;
201 	int i;
202 
203 	array = kmap_atomic(page);
204 	if (atomic_dec_and_test(&array->refcount))
205 		for (i = 0; i < array->size; i++)
206 			kfree(array->array[i].string.name);
207 	kunmap_atomic(array);
208 }
209 
210 static bool grab_page(struct page *page)
211 {
212 	struct nfs_cache_array *array = kmap_atomic(page);
213 	bool res = atomic_inc_not_zero(&array->refcount);
214 	kunmap_atomic(array);
215 	return res;
216 }
217 
218 /*
219  * the caller is responsible for freeing qstr.name
220  * when called by nfs_readdir_add_to_array, the strings will be freed in
221  * nfs_clear_readdir_array()
222  */
223 static
224 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
225 {
226 	string->len = len;
227 	string->name = kmemdup(name, len, GFP_KERNEL);
228 	if (string->name == NULL)
229 		return -ENOMEM;
230 	/*
231 	 * Avoid a kmemleak false positive. The pointer to the name is stored
232 	 * in a page cache page which kmemleak does not scan.
233 	 */
234 	kmemleak_not_leak(string->name);
235 	string->hash = full_name_hash(name, len);
236 	return 0;
237 }
238 
239 static
240 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
241 {
242 	struct nfs_cache_array *array = nfs_readdir_get_array(page);
243 	struct nfs_cache_array_entry *cache_entry;
244 	int ret;
245 
246 	if (IS_ERR(array))
247 		return PTR_ERR(array);
248 
249 	cache_entry = &array->array[array->size];
250 
251 	/* Check that this entry lies within the page bounds */
252 	ret = -ENOSPC;
253 	if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
254 		goto out;
255 
256 	cache_entry->cookie = entry->prev_cookie;
257 	cache_entry->ino = entry->ino;
258 	cache_entry->d_type = entry->d_type;
259 	ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
260 	if (ret)
261 		goto out;
262 	array->last_cookie = entry->cookie;
263 	array->size++;
264 	if (entry->eof != 0)
265 		array->eof_index = array->size;
266 out:
267 	nfs_readdir_release_array(page);
268 	return ret;
269 }
270 
271 static
272 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
273 {
274 	loff_t diff = desc->ctx->pos - desc->current_index;
275 	unsigned int index;
276 
277 	if (diff < 0)
278 		goto out_eof;
279 	if (diff >= array->size) {
280 		if (array->eof_index >= 0)
281 			goto out_eof;
282 		return -EAGAIN;
283 	}
284 
285 	index = (unsigned int)diff;
286 	*desc->dir_cookie = array->array[index].cookie;
287 	desc->cache_entry_index = index;
288 	return 0;
289 out_eof:
290 	desc->eof = 1;
291 	return -EBADCOOKIE;
292 }
293 
294 static bool
295 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
296 {
297 	if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
298 		return false;
299 	smp_rmb();
300 	return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
301 }
302 
303 static
304 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
305 {
306 	int i;
307 	loff_t new_pos;
308 	int status = -EAGAIN;
309 
310 	for (i = 0; i < array->size; i++) {
311 		if (array->array[i].cookie == *desc->dir_cookie) {
312 			struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
313 			struct nfs_open_dir_context *ctx = desc->file->private_data;
314 
315 			new_pos = desc->current_index + i;
316 			if (ctx->attr_gencount != nfsi->attr_gencount ||
317 			    !nfs_readdir_inode_mapping_valid(nfsi)) {
318 				ctx->duped = 0;
319 				ctx->attr_gencount = nfsi->attr_gencount;
320 			} else if (new_pos < desc->ctx->pos) {
321 				if (ctx->duped > 0
322 				    && ctx->dup_cookie == *desc->dir_cookie) {
323 					if (printk_ratelimit()) {
324 						pr_notice("NFS: directory %pD2 contains a readdir loop."
325 								"Please contact your server vendor.  "
326 								"The file: %.*s has duplicate cookie %llu\n",
327 								desc->file, array->array[i].string.len,
328 								array->array[i].string.name, *desc->dir_cookie);
329 					}
330 					status = -ELOOP;
331 					goto out;
332 				}
333 				ctx->dup_cookie = *desc->dir_cookie;
334 				ctx->duped = -1;
335 			}
336 			desc->ctx->pos = new_pos;
337 			desc->cache_entry_index = i;
338 			return 0;
339 		}
340 	}
341 	if (array->eof_index >= 0) {
342 		status = -EBADCOOKIE;
343 		if (*desc->dir_cookie == array->last_cookie)
344 			desc->eof = 1;
345 	}
346 out:
347 	return status;
348 }
349 
350 static
351 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
352 {
353 	struct nfs_cache_array *array;
354 	int status;
355 
356 	array = nfs_readdir_get_array(desc->page);
357 	if (IS_ERR(array)) {
358 		status = PTR_ERR(array);
359 		goto out;
360 	}
361 
362 	if (*desc->dir_cookie == 0)
363 		status = nfs_readdir_search_for_pos(array, desc);
364 	else
365 		status = nfs_readdir_search_for_cookie(array, desc);
366 
367 	if (status == -EAGAIN) {
368 		desc->last_cookie = array->last_cookie;
369 		desc->current_index += array->size;
370 		desc->page_index++;
371 	}
372 	nfs_readdir_release_array(desc->page);
373 out:
374 	return status;
375 }
376 
377 /* Fill a page with xdr information before transferring to the cache page */
378 static
379 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
380 			struct nfs_entry *entry, struct file *file, struct inode *inode)
381 {
382 	struct nfs_open_dir_context *ctx = file->private_data;
383 	struct rpc_cred	*cred = ctx->cred;
384 	unsigned long	timestamp, gencount;
385 	int		error;
386 
387  again:
388 	timestamp = jiffies;
389 	gencount = nfs_inc_attr_generation_counter();
390 	error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
391 					  NFS_SERVER(inode)->dtsize, desc->plus);
392 	if (error < 0) {
393 		/* We requested READDIRPLUS, but the server doesn't grok it */
394 		if (error == -ENOTSUPP && desc->plus) {
395 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
396 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
397 			desc->plus = 0;
398 			goto again;
399 		}
400 		goto error;
401 	}
402 	desc->timestamp = timestamp;
403 	desc->gencount = gencount;
404 error:
405 	return error;
406 }
407 
408 static int xdr_decode(nfs_readdir_descriptor_t *desc,
409 		      struct nfs_entry *entry, struct xdr_stream *xdr)
410 {
411 	int error;
412 
413 	error = desc->decode(xdr, entry, desc->plus);
414 	if (error)
415 		return error;
416 	entry->fattr->time_start = desc->timestamp;
417 	entry->fattr->gencount = desc->gencount;
418 	return 0;
419 }
420 
421 /* Match file and dirent using either filehandle or fileid
422  * Note: caller is responsible for checking the fsid
423  */
424 static
425 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
426 {
427 	struct nfs_inode *nfsi;
428 
429 	if (d_really_is_negative(dentry))
430 		return 0;
431 
432 	nfsi = NFS_I(d_inode(dentry));
433 	if (entry->fattr->fileid == nfsi->fileid)
434 		return 1;
435 	if (nfs_compare_fh(entry->fh, &nfsi->fh) == 0)
436 		return 1;
437 	return 0;
438 }
439 
440 static
441 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
442 {
443 	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
444 		return false;
445 	if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
446 		return true;
447 	if (ctx->pos == 0)
448 		return true;
449 	return false;
450 }
451 
452 /*
453  * This function is called by the lookup code to request the use of
454  * readdirplus to accelerate any future lookups in the same
455  * directory.
456  */
457 static
458 void nfs_advise_use_readdirplus(struct inode *dir)
459 {
460 	set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags);
461 }
462 
463 /*
464  * This function is mainly for use by nfs_getattr().
465  *
466  * If this is an 'ls -l', we want to force use of readdirplus.
467  * Do this by checking if there is an active file descriptor
468  * and calling nfs_advise_use_readdirplus, then forcing a
469  * cache flush.
470  */
471 void nfs_force_use_readdirplus(struct inode *dir)
472 {
473 	if (!list_empty(&NFS_I(dir)->open_files)) {
474 		nfs_advise_use_readdirplus(dir);
475 		nfs_zap_mapping(dir, dir->i_mapping);
476 	}
477 }
478 
479 static
480 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
481 {
482 	struct qstr filename = QSTR_INIT(entry->name, entry->len);
483 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
484 	struct dentry *dentry;
485 	struct dentry *alias;
486 	struct inode *dir = d_inode(parent);
487 	struct inode *inode;
488 	int status;
489 
490 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
491 		return;
492 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
493 		return;
494 	if (filename.name[0] == '.') {
495 		if (filename.len == 1)
496 			return;
497 		if (filename.len == 2 && filename.name[1] == '.')
498 			return;
499 	}
500 	filename.hash = full_name_hash(filename.name, filename.len);
501 
502 	dentry = d_lookup(parent, &filename);
503 again:
504 	if (!dentry) {
505 		dentry = d_alloc_parallel(parent, &filename, &wq);
506 		if (IS_ERR(dentry))
507 			return;
508 	}
509 	if (!d_in_lookup(dentry)) {
510 		/* Is there a mountpoint here? If so, just exit */
511 		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
512 					&entry->fattr->fsid))
513 			goto out;
514 		if (nfs_same_file(dentry, entry)) {
515 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
516 			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
517 			if (!status)
518 				nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
519 			goto out;
520 		} else {
521 			d_invalidate(dentry);
522 			dput(dentry);
523 			dentry = NULL;
524 			goto again;
525 		}
526 	}
527 
528 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
529 	alias = d_splice_alias(inode, dentry);
530 	d_lookup_done(dentry);
531 	if (alias) {
532 		if (IS_ERR(alias))
533 			goto out;
534 		dput(dentry);
535 		dentry = alias;
536 	}
537 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
538 out:
539 	dput(dentry);
540 }
541 
542 /* Perform conversion from xdr to cache array */
543 static
544 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
545 				struct page **xdr_pages, struct page *page, unsigned int buflen)
546 {
547 	struct xdr_stream stream;
548 	struct xdr_buf buf;
549 	struct page *scratch;
550 	struct nfs_cache_array *array;
551 	unsigned int count = 0;
552 	int status;
553 
554 	scratch = alloc_page(GFP_KERNEL);
555 	if (scratch == NULL)
556 		return -ENOMEM;
557 
558 	if (buflen == 0)
559 		goto out_nopages;
560 
561 	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
562 	xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
563 
564 	do {
565 		status = xdr_decode(desc, entry, &stream);
566 		if (status != 0) {
567 			if (status == -EAGAIN)
568 				status = 0;
569 			break;
570 		}
571 
572 		count++;
573 
574 		if (desc->plus != 0)
575 			nfs_prime_dcache(file_dentry(desc->file), entry);
576 
577 		status = nfs_readdir_add_to_array(entry, page);
578 		if (status != 0)
579 			break;
580 	} while (!entry->eof);
581 
582 out_nopages:
583 	if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
584 		array = nfs_readdir_get_array(page);
585 		if (!IS_ERR(array)) {
586 			array->eof_index = array->size;
587 			status = 0;
588 			nfs_readdir_release_array(page);
589 		} else
590 			status = PTR_ERR(array);
591 	}
592 
593 	put_page(scratch);
594 	return status;
595 }
596 
597 static
598 void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
599 {
600 	unsigned int i;
601 	for (i = 0; i < npages; i++)
602 		put_page(pages[i]);
603 }
604 
605 /*
606  * nfs_readdir_large_page will allocate pages that must be freed with a call
607  * to nfs_readdir_free_pagearray
608  */
609 static
610 int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
611 {
612 	unsigned int i;
613 
614 	for (i = 0; i < npages; i++) {
615 		struct page *page = alloc_page(GFP_KERNEL);
616 		if (page == NULL)
617 			goto out_freepages;
618 		pages[i] = page;
619 	}
620 	return 0;
621 
622 out_freepages:
623 	nfs_readdir_free_pages(pages, i);
624 	return -ENOMEM;
625 }
626 
627 static
628 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
629 {
630 	struct page *pages[NFS_MAX_READDIR_PAGES];
631 	struct nfs_entry entry;
632 	struct file	*file = desc->file;
633 	struct nfs_cache_array *array;
634 	int status = -ENOMEM;
635 	unsigned int array_size = ARRAY_SIZE(pages);
636 
637 	entry.prev_cookie = 0;
638 	entry.cookie = desc->last_cookie;
639 	entry.eof = 0;
640 	entry.fh = nfs_alloc_fhandle();
641 	entry.fattr = nfs_alloc_fattr();
642 	entry.server = NFS_SERVER(inode);
643 	if (entry.fh == NULL || entry.fattr == NULL)
644 		goto out;
645 
646 	entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
647 	if (IS_ERR(entry.label)) {
648 		status = PTR_ERR(entry.label);
649 		goto out;
650 	}
651 
652 	array = nfs_readdir_get_array(page);
653 	if (IS_ERR(array)) {
654 		status = PTR_ERR(array);
655 		goto out_label_free;
656 	}
657 	memset(array, 0, sizeof(struct nfs_cache_array));
658 	atomic_set(&array->refcount, 1);
659 	array->eof_index = -1;
660 
661 	status = nfs_readdir_alloc_pages(pages, array_size);
662 	if (status < 0)
663 		goto out_release_array;
664 	do {
665 		unsigned int pglen;
666 		status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
667 
668 		if (status < 0)
669 			break;
670 		pglen = status;
671 		status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
672 		if (status < 0) {
673 			if (status == -ENOSPC)
674 				status = 0;
675 			break;
676 		}
677 	} while (array->eof_index < 0);
678 
679 	nfs_readdir_free_pages(pages, array_size);
680 out_release_array:
681 	nfs_readdir_release_array(page);
682 out_label_free:
683 	nfs4_label_free(entry.label);
684 out:
685 	nfs_free_fattr(entry.fattr);
686 	nfs_free_fhandle(entry.fh);
687 	return status;
688 }
689 
690 /*
691  * Now we cache directories properly, by converting xdr information
692  * to an array that can be used for lookups later.  This results in
693  * fewer cache pages, since we can store more information on each page.
694  * We only need to convert from xdr once so future lookups are much simpler
695  */
696 static
697 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
698 {
699 	struct inode	*inode = file_inode(desc->file);
700 	int ret;
701 
702 	ret = nfs_readdir_xdr_to_array(desc, page, inode);
703 	if (ret < 0)
704 		goto error;
705 	SetPageUptodate(page);
706 
707 	if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
708 		/* Should never happen */
709 		nfs_zap_mapping(inode, inode->i_mapping);
710 	}
711 	unlock_page(page);
712 	return 0;
713  error:
714 	unlock_page(page);
715 	return ret;
716 }
717 
718 static
719 void cache_page_release(nfs_readdir_descriptor_t *desc)
720 {
721 	nfs_readdir_clear_array(desc->page);
722 	put_page(desc->page);
723 	desc->page = NULL;
724 }
725 
726 static
727 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
728 {
729 	struct page *page;
730 
731 	for (;;) {
732 		page = read_cache_page(file_inode(desc->file)->i_mapping,
733 			desc->page_index, (filler_t *)nfs_readdir_filler, desc);
734 		if (IS_ERR(page) || grab_page(page))
735 			break;
736 		put_page(page);
737 	}
738 	return page;
739 }
740 
741 /*
742  * Returns 0 if desc->dir_cookie was found on page desc->page_index
743  */
744 static
745 int find_cache_page(nfs_readdir_descriptor_t *desc)
746 {
747 	int res;
748 
749 	desc->page = get_cache_page(desc);
750 	if (IS_ERR(desc->page))
751 		return PTR_ERR(desc->page);
752 
753 	res = nfs_readdir_search_array(desc);
754 	if (res != 0)
755 		cache_page_release(desc);
756 	return res;
757 }
758 
759 /* Search for desc->dir_cookie from the beginning of the page cache */
760 static inline
761 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
762 {
763 	int res;
764 
765 	if (desc->page_index == 0) {
766 		desc->current_index = 0;
767 		desc->last_cookie = 0;
768 	}
769 	do {
770 		res = find_cache_page(desc);
771 	} while (res == -EAGAIN);
772 	return res;
773 }
774 
775 /*
776  * Once we've found the start of the dirent within a page: fill 'er up...
777  */
778 static
779 int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
780 {
781 	struct file	*file = desc->file;
782 	int i = 0;
783 	int res = 0;
784 	struct nfs_cache_array *array = NULL;
785 	struct nfs_open_dir_context *ctx = file->private_data;
786 
787 	array = nfs_readdir_get_array(desc->page);
788 	if (IS_ERR(array)) {
789 		res = PTR_ERR(array);
790 		goto out;
791 	}
792 
793 	for (i = desc->cache_entry_index; i < array->size; i++) {
794 		struct nfs_cache_array_entry *ent;
795 
796 		ent = &array->array[i];
797 		if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
798 		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
799 			desc->eof = 1;
800 			break;
801 		}
802 		desc->ctx->pos++;
803 		if (i < (array->size-1))
804 			*desc->dir_cookie = array->array[i+1].cookie;
805 		else
806 			*desc->dir_cookie = array->last_cookie;
807 		if (ctx->duped != 0)
808 			ctx->duped = 1;
809 	}
810 	if (array->eof_index >= 0)
811 		desc->eof = 1;
812 
813 	nfs_readdir_release_array(desc->page);
814 out:
815 	cache_page_release(desc);
816 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
817 			(unsigned long long)*desc->dir_cookie, res);
818 	return res;
819 }
820 
821 /*
822  * If we cannot find a cookie in our cache, we suspect that this is
823  * because it points to a deleted file, so we ask the server to return
824  * whatever it thinks is the next entry. We then feed this to filldir.
825  * If all goes well, we should then be able to find our way round the
826  * cache on the next call to readdir_search_pagecache();
827  *
828  * NOTE: we cannot add the anonymous page to the pagecache because
829  *	 the data it contains might not be page aligned. Besides,
830  *	 we should already have a complete representation of the
831  *	 directory in the page cache by the time we get here.
832  */
833 static inline
834 int uncached_readdir(nfs_readdir_descriptor_t *desc)
835 {
836 	struct page	*page = NULL;
837 	int		status;
838 	struct inode *inode = file_inode(desc->file);
839 	struct nfs_open_dir_context *ctx = desc->file->private_data;
840 
841 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
842 			(unsigned long long)*desc->dir_cookie);
843 
844 	page = alloc_page(GFP_HIGHUSER);
845 	if (!page) {
846 		status = -ENOMEM;
847 		goto out;
848 	}
849 
850 	desc->page_index = 0;
851 	desc->last_cookie = *desc->dir_cookie;
852 	desc->page = page;
853 	ctx->duped = 0;
854 
855 	status = nfs_readdir_xdr_to_array(desc, page, inode);
856 	if (status < 0)
857 		goto out_release;
858 
859 	status = nfs_do_filldir(desc);
860 
861  out:
862 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
863 			__func__, status);
864 	return status;
865  out_release:
866 	cache_page_release(desc);
867 	goto out;
868 }
869 
870 static bool nfs_dir_mapping_need_revalidate(struct inode *dir)
871 {
872 	struct nfs_inode *nfsi = NFS_I(dir);
873 
874 	if (nfs_attribute_cache_expired(dir))
875 		return true;
876 	if (nfsi->cache_validity & NFS_INO_INVALID_DATA)
877 		return true;
878 	return false;
879 }
880 
881 /* The file offset position represents the dirent entry number.  A
882    last cookie cache takes care of the common case of reading the
883    whole directory.
884  */
885 static int nfs_readdir(struct file *file, struct dir_context *ctx)
886 {
887 	struct dentry	*dentry = file_dentry(file);
888 	struct inode	*inode = d_inode(dentry);
889 	nfs_readdir_descriptor_t my_desc,
890 			*desc = &my_desc;
891 	struct nfs_open_dir_context *dir_ctx = file->private_data;
892 	int res = 0;
893 
894 	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
895 			file, (long long)ctx->pos);
896 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
897 
898 	/*
899 	 * ctx->pos points to the dirent entry number.
900 	 * *desc->dir_cookie has the cookie for the next entry. We have
901 	 * to either find the entry with the appropriate number or
902 	 * revalidate the cookie.
903 	 */
904 	memset(desc, 0, sizeof(*desc));
905 
906 	desc->file = file;
907 	desc->ctx = ctx;
908 	desc->dir_cookie = &dir_ctx->dir_cookie;
909 	desc->decode = NFS_PROTO(inode)->decode_dirent;
910 	desc->plus = nfs_use_readdirplus(inode, ctx) ? 1 : 0;
911 
912 	nfs_block_sillyrename(dentry);
913 	if (ctx->pos == 0 || nfs_dir_mapping_need_revalidate(inode))
914 		res = nfs_revalidate_mapping(inode, file->f_mapping);
915 	if (res < 0)
916 		goto out;
917 
918 	do {
919 		res = readdir_search_pagecache(desc);
920 
921 		if (res == -EBADCOOKIE) {
922 			res = 0;
923 			/* This means either end of directory */
924 			if (*desc->dir_cookie && desc->eof == 0) {
925 				/* Or that the server has 'lost' a cookie */
926 				res = uncached_readdir(desc);
927 				if (res == 0)
928 					continue;
929 			}
930 			break;
931 		}
932 		if (res == -ETOOSMALL && desc->plus) {
933 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
934 			nfs_zap_caches(inode);
935 			desc->page_index = 0;
936 			desc->plus = 0;
937 			desc->eof = 0;
938 			continue;
939 		}
940 		if (res < 0)
941 			break;
942 
943 		res = nfs_do_filldir(desc);
944 		if (res < 0)
945 			break;
946 	} while (!desc->eof);
947 out:
948 	nfs_unblock_sillyrename(dentry);
949 	if (res > 0)
950 		res = 0;
951 	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
952 	return res;
953 }
954 
955 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
956 {
957 	struct nfs_open_dir_context *dir_ctx = filp->private_data;
958 
959 	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
960 			filp, offset, whence);
961 
962 	switch (whence) {
963 		case 1:
964 			offset += filp->f_pos;
965 		case 0:
966 			if (offset >= 0)
967 				break;
968 		default:
969 			return -EINVAL;
970 	}
971 	if (offset != filp->f_pos) {
972 		filp->f_pos = offset;
973 		dir_ctx->dir_cookie = 0;
974 		dir_ctx->duped = 0;
975 	}
976 	return offset;
977 }
978 
979 /*
980  * All directory operations under NFS are synchronous, so fsync()
981  * is a dummy operation.
982  */
983 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
984 			 int datasync)
985 {
986 	struct inode *inode = file_inode(filp);
987 
988 	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
989 
990 	inode_lock(inode);
991 	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
992 	inode_unlock(inode);
993 	return 0;
994 }
995 
996 /**
997  * nfs_force_lookup_revalidate - Mark the directory as having changed
998  * @dir - pointer to directory inode
999  *
1000  * This forces the revalidation code in nfs_lookup_revalidate() to do a
1001  * full lookup on all child dentries of 'dir' whenever a change occurs
1002  * on the server that might have invalidated our dcache.
1003  *
1004  * The caller should be holding dir->i_lock
1005  */
1006 void nfs_force_lookup_revalidate(struct inode *dir)
1007 {
1008 	NFS_I(dir)->cache_change_attribute++;
1009 }
1010 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1011 
1012 /*
1013  * A check for whether or not the parent directory has changed.
1014  * In the case it has, we assume that the dentries are untrustworthy
1015  * and may need to be looked up again.
1016  * If rcu_walk prevents us from performing a full check, return 0.
1017  */
1018 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1019 			      int rcu_walk)
1020 {
1021 	int ret;
1022 
1023 	if (IS_ROOT(dentry))
1024 		return 1;
1025 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1026 		return 0;
1027 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1028 		return 0;
1029 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1030 	if (rcu_walk)
1031 		ret = nfs_revalidate_inode_rcu(NFS_SERVER(dir), dir);
1032 	else
1033 		ret = nfs_revalidate_inode(NFS_SERVER(dir), dir);
1034 	if (ret < 0)
1035 		return 0;
1036 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1037 		return 0;
1038 	return 1;
1039 }
1040 
1041 /*
1042  * Use intent information to check whether or not we're going to do
1043  * an O_EXCL create using this path component.
1044  */
1045 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1046 {
1047 	if (NFS_PROTO(dir)->version == 2)
1048 		return 0;
1049 	return flags & LOOKUP_EXCL;
1050 }
1051 
1052 /*
1053  * Inode and filehandle revalidation for lookups.
1054  *
1055  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1056  * or if the intent information indicates that we're about to open this
1057  * particular file and the "nocto" mount flag is not set.
1058  *
1059  */
1060 static
1061 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1062 {
1063 	struct nfs_server *server = NFS_SERVER(inode);
1064 	int ret;
1065 
1066 	if (IS_AUTOMOUNT(inode))
1067 		return 0;
1068 	/* VFS wants an on-the-wire revalidation */
1069 	if (flags & LOOKUP_REVAL)
1070 		goto out_force;
1071 	/* This is an open(2) */
1072 	if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) &&
1073 	    (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
1074 		goto out_force;
1075 out:
1076 	return (inode->i_nlink == 0) ? -ENOENT : 0;
1077 out_force:
1078 	if (flags & LOOKUP_RCU)
1079 		return -ECHILD;
1080 	ret = __nfs_revalidate_inode(server, inode);
1081 	if (ret != 0)
1082 		return ret;
1083 	goto out;
1084 }
1085 
1086 /*
1087  * We judge how long we want to trust negative
1088  * dentries by looking at the parent inode mtime.
1089  *
1090  * If parent mtime has changed, we revalidate, else we wait for a
1091  * period corresponding to the parent's attribute cache timeout value.
1092  *
1093  * If LOOKUP_RCU prevents us from performing a full check, return 1
1094  * suggesting a reval is needed.
1095  */
1096 static inline
1097 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1098 		       unsigned int flags)
1099 {
1100 	/* Don't revalidate a negative dentry if we're creating a new file */
1101 	if (flags & LOOKUP_CREATE)
1102 		return 0;
1103 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1104 		return 1;
1105 	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1106 }
1107 
1108 /*
1109  * This is called every time the dcache has a lookup hit,
1110  * and we should check whether we can really trust that
1111  * lookup.
1112  *
1113  * NOTE! The hit can be a negative hit too, don't assume
1114  * we have an inode!
1115  *
1116  * If the parent directory is seen to have changed, we throw out the
1117  * cached dentry and do a new lookup.
1118  */
1119 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1120 {
1121 	struct inode *dir;
1122 	struct inode *inode;
1123 	struct dentry *parent;
1124 	struct nfs_fh *fhandle = NULL;
1125 	struct nfs_fattr *fattr = NULL;
1126 	struct nfs4_label *label = NULL;
1127 	int error;
1128 
1129 	if (flags & LOOKUP_RCU) {
1130 		parent = ACCESS_ONCE(dentry->d_parent);
1131 		dir = d_inode_rcu(parent);
1132 		if (!dir)
1133 			return -ECHILD;
1134 	} else {
1135 		parent = dget_parent(dentry);
1136 		dir = d_inode(parent);
1137 	}
1138 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1139 	inode = d_inode(dentry);
1140 
1141 	if (!inode) {
1142 		if (nfs_neg_need_reval(dir, dentry, flags)) {
1143 			if (flags & LOOKUP_RCU)
1144 				return -ECHILD;
1145 			goto out_bad;
1146 		}
1147 		goto out_valid_noent;
1148 	}
1149 
1150 	if (is_bad_inode(inode)) {
1151 		if (flags & LOOKUP_RCU)
1152 			return -ECHILD;
1153 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1154 				__func__, dentry);
1155 		goto out_bad;
1156 	}
1157 
1158 	if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1159 		goto out_set_verifier;
1160 
1161 	/* Force a full look up iff the parent directory has changed */
1162 	if (!nfs_is_exclusive_create(dir, flags) &&
1163 	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1164 
1165 		if (nfs_lookup_verify_inode(inode, flags)) {
1166 			if (flags & LOOKUP_RCU)
1167 				return -ECHILD;
1168 			goto out_zap_parent;
1169 		}
1170 		goto out_valid;
1171 	}
1172 
1173 	if (flags & LOOKUP_RCU)
1174 		return -ECHILD;
1175 
1176 	if (NFS_STALE(inode))
1177 		goto out_bad;
1178 
1179 	error = -ENOMEM;
1180 	fhandle = nfs_alloc_fhandle();
1181 	fattr = nfs_alloc_fattr();
1182 	if (fhandle == NULL || fattr == NULL)
1183 		goto out_error;
1184 
1185 	label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
1186 	if (IS_ERR(label))
1187 		goto out_error;
1188 
1189 	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1190 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1191 	trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1192 	if (error)
1193 		goto out_bad;
1194 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1195 		goto out_bad;
1196 	if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1197 		goto out_bad;
1198 
1199 	nfs_setsecurity(inode, fattr, label);
1200 
1201 	nfs_free_fattr(fattr);
1202 	nfs_free_fhandle(fhandle);
1203 	nfs4_label_free(label);
1204 
1205 out_set_verifier:
1206 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1207  out_valid:
1208 	/* Success: notify readdir to use READDIRPLUS */
1209 	nfs_advise_use_readdirplus(dir);
1210  out_valid_noent:
1211 	if (flags & LOOKUP_RCU) {
1212 		if (parent != ACCESS_ONCE(dentry->d_parent))
1213 			return -ECHILD;
1214 	} else
1215 		dput(parent);
1216 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1217 			__func__, dentry);
1218 	return 1;
1219 out_zap_parent:
1220 	nfs_zap_caches(dir);
1221  out_bad:
1222 	WARN_ON(flags & LOOKUP_RCU);
1223 	nfs_free_fattr(fattr);
1224 	nfs_free_fhandle(fhandle);
1225 	nfs4_label_free(label);
1226 	nfs_mark_for_revalidate(dir);
1227 	if (inode && S_ISDIR(inode->i_mode)) {
1228 		/* Purge readdir caches. */
1229 		nfs_zap_caches(inode);
1230 		/*
1231 		 * We can't d_drop the root of a disconnected tree:
1232 		 * its d_hash is on the s_anon list and d_drop() would hide
1233 		 * it from shrink_dcache_for_unmount(), leading to busy
1234 		 * inodes on unmount and further oopses.
1235 		 */
1236 		if (IS_ROOT(dentry))
1237 			goto out_valid;
1238 	}
1239 	dput(parent);
1240 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1241 			__func__, dentry);
1242 	return 0;
1243 out_error:
1244 	WARN_ON(flags & LOOKUP_RCU);
1245 	nfs_free_fattr(fattr);
1246 	nfs_free_fhandle(fhandle);
1247 	nfs4_label_free(label);
1248 	dput(parent);
1249 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1250 			__func__, dentry, error);
1251 	return error;
1252 }
1253 
1254 /*
1255  * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1256  * when we don't really care about the dentry name. This is called when a
1257  * pathwalk ends on a dentry that was not found via a normal lookup in the
1258  * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1259  *
1260  * In this situation, we just want to verify that the inode itself is OK
1261  * since the dentry might have changed on the server.
1262  */
1263 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1264 {
1265 	int error;
1266 	struct inode *inode = d_inode(dentry);
1267 
1268 	/*
1269 	 * I believe we can only get a negative dentry here in the case of a
1270 	 * procfs-style symlink. Just assume it's correct for now, but we may
1271 	 * eventually need to do something more here.
1272 	 */
1273 	if (!inode) {
1274 		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1275 				__func__, dentry);
1276 		return 1;
1277 	}
1278 
1279 	if (is_bad_inode(inode)) {
1280 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1281 				__func__, dentry);
1282 		return 0;
1283 	}
1284 
1285 	error = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1286 	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1287 			__func__, inode->i_ino, error ? "invalid" : "valid");
1288 	return !error;
1289 }
1290 
1291 /*
1292  * This is called from dput() when d_count is going to 0.
1293  */
1294 static int nfs_dentry_delete(const struct dentry *dentry)
1295 {
1296 	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1297 		dentry, dentry->d_flags);
1298 
1299 	/* Unhash any dentry with a stale inode */
1300 	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1301 		return 1;
1302 
1303 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1304 		/* Unhash it, so that ->d_iput() would be called */
1305 		return 1;
1306 	}
1307 	if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1308 		/* Unhash it, so that ancestors of killed async unlink
1309 		 * files will be cleaned up during umount */
1310 		return 1;
1311 	}
1312 	return 0;
1313 
1314 }
1315 
1316 /* Ensure that we revalidate inode->i_nlink */
1317 static void nfs_drop_nlink(struct inode *inode)
1318 {
1319 	spin_lock(&inode->i_lock);
1320 	/* drop the inode if we're reasonably sure this is the last link */
1321 	if (inode->i_nlink == 1)
1322 		clear_nlink(inode);
1323 	NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR;
1324 	spin_unlock(&inode->i_lock);
1325 }
1326 
1327 /*
1328  * Called when the dentry loses inode.
1329  * We use it to clean up silly-renamed files.
1330  */
1331 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1332 {
1333 	if (S_ISDIR(inode->i_mode))
1334 		/* drop any readdir cache as it could easily be old */
1335 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1336 
1337 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1338 		nfs_complete_unlink(dentry, inode);
1339 		nfs_drop_nlink(inode);
1340 	}
1341 	iput(inode);
1342 }
1343 
1344 static void nfs_d_release(struct dentry *dentry)
1345 {
1346 	/* free cached devname value, if it survived that far */
1347 	if (unlikely(dentry->d_fsdata)) {
1348 		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1349 			WARN_ON(1);
1350 		else
1351 			kfree(dentry->d_fsdata);
1352 	}
1353 }
1354 
1355 const struct dentry_operations nfs_dentry_operations = {
1356 	.d_revalidate	= nfs_lookup_revalidate,
1357 	.d_weak_revalidate	= nfs_weak_revalidate,
1358 	.d_delete	= nfs_dentry_delete,
1359 	.d_iput		= nfs_dentry_iput,
1360 	.d_automount	= nfs_d_automount,
1361 	.d_release	= nfs_d_release,
1362 };
1363 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1364 
1365 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1366 {
1367 	struct dentry *res;
1368 	struct dentry *parent;
1369 	struct inode *inode = NULL;
1370 	struct nfs_fh *fhandle = NULL;
1371 	struct nfs_fattr *fattr = NULL;
1372 	struct nfs4_label *label = NULL;
1373 	int error;
1374 
1375 	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1376 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1377 
1378 	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1379 		return ERR_PTR(-ENAMETOOLONG);
1380 
1381 	/*
1382 	 * If we're doing an exclusive create, optimize away the lookup
1383 	 * but don't hash the dentry.
1384 	 */
1385 	if (nfs_is_exclusive_create(dir, flags))
1386 		return NULL;
1387 
1388 	res = ERR_PTR(-ENOMEM);
1389 	fhandle = nfs_alloc_fhandle();
1390 	fattr = nfs_alloc_fattr();
1391 	if (fhandle == NULL || fattr == NULL)
1392 		goto out;
1393 
1394 	label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1395 	if (IS_ERR(label))
1396 		goto out;
1397 
1398 	parent = dentry->d_parent;
1399 	/* Protect against concurrent sillydeletes */
1400 	trace_nfs_lookup_enter(dir, dentry, flags);
1401 	nfs_block_sillyrename(parent);
1402 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1403 	if (error == -ENOENT)
1404 		goto no_entry;
1405 	if (error < 0) {
1406 		res = ERR_PTR(error);
1407 		goto out_unblock_sillyrename;
1408 	}
1409 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1410 	res = ERR_CAST(inode);
1411 	if (IS_ERR(res))
1412 		goto out_unblock_sillyrename;
1413 
1414 	/* Success: notify readdir to use READDIRPLUS */
1415 	nfs_advise_use_readdirplus(dir);
1416 
1417 no_entry:
1418 	res = d_splice_alias(inode, dentry);
1419 	if (res != NULL) {
1420 		if (IS_ERR(res))
1421 			goto out_unblock_sillyrename;
1422 		dentry = res;
1423 	}
1424 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1425 out_unblock_sillyrename:
1426 	nfs_unblock_sillyrename(parent);
1427 	trace_nfs_lookup_exit(dir, dentry, flags, error);
1428 	nfs4_label_free(label);
1429 out:
1430 	nfs_free_fattr(fattr);
1431 	nfs_free_fhandle(fhandle);
1432 	return res;
1433 }
1434 EXPORT_SYMBOL_GPL(nfs_lookup);
1435 
1436 #if IS_ENABLED(CONFIG_NFS_V4)
1437 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1438 
1439 const struct dentry_operations nfs4_dentry_operations = {
1440 	.d_revalidate	= nfs4_lookup_revalidate,
1441 	.d_delete	= nfs_dentry_delete,
1442 	.d_iput		= nfs_dentry_iput,
1443 	.d_automount	= nfs_d_automount,
1444 	.d_release	= nfs_d_release,
1445 };
1446 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1447 
1448 static fmode_t flags_to_mode(int flags)
1449 {
1450 	fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1451 	if ((flags & O_ACCMODE) != O_WRONLY)
1452 		res |= FMODE_READ;
1453 	if ((flags & O_ACCMODE) != O_RDONLY)
1454 		res |= FMODE_WRITE;
1455 	return res;
1456 }
1457 
1458 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags)
1459 {
1460 	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags));
1461 }
1462 
1463 static int do_open(struct inode *inode, struct file *filp)
1464 {
1465 	nfs_fscache_open_file(inode, filp);
1466 	return 0;
1467 }
1468 
1469 static int nfs_finish_open(struct nfs_open_context *ctx,
1470 			   struct dentry *dentry,
1471 			   struct file *file, unsigned open_flags,
1472 			   int *opened)
1473 {
1474 	int err;
1475 
1476 	err = finish_open(file, dentry, do_open, opened);
1477 	if (err)
1478 		goto out;
1479 	nfs_file_set_open_context(file, ctx);
1480 
1481 out:
1482 	return err;
1483 }
1484 
1485 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1486 		    struct file *file, unsigned open_flags,
1487 		    umode_t mode, int *opened)
1488 {
1489 	struct nfs_open_context *ctx;
1490 	struct dentry *res;
1491 	struct iattr attr = { .ia_valid = ATTR_OPEN };
1492 	struct inode *inode;
1493 	unsigned int lookup_flags = 0;
1494 	int err;
1495 
1496 	/* Expect a negative dentry */
1497 	BUG_ON(d_inode(dentry));
1498 
1499 	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1500 			dir->i_sb->s_id, dir->i_ino, dentry);
1501 
1502 	err = nfs_check_flags(open_flags);
1503 	if (err)
1504 		return err;
1505 
1506 	/* NFS only supports OPEN on regular files */
1507 	if ((open_flags & O_DIRECTORY)) {
1508 		if (!d_unhashed(dentry)) {
1509 			/*
1510 			 * Hashed negative dentry with O_DIRECTORY: dentry was
1511 			 * revalidated and is fine, no need to perform lookup
1512 			 * again
1513 			 */
1514 			return -ENOENT;
1515 		}
1516 		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1517 		goto no_open;
1518 	}
1519 
1520 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1521 		return -ENAMETOOLONG;
1522 
1523 	if (open_flags & O_CREAT) {
1524 		attr.ia_valid |= ATTR_MODE;
1525 		attr.ia_mode = mode & ~current_umask();
1526 	}
1527 	if (open_flags & O_TRUNC) {
1528 		attr.ia_valid |= ATTR_SIZE;
1529 		attr.ia_size = 0;
1530 	}
1531 
1532 	ctx = create_nfs_open_context(dentry, open_flags);
1533 	err = PTR_ERR(ctx);
1534 	if (IS_ERR(ctx))
1535 		goto out;
1536 
1537 	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1538 	nfs_block_sillyrename(dentry->d_parent);
1539 	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, opened);
1540 	nfs_unblock_sillyrename(dentry->d_parent);
1541 	if (IS_ERR(inode)) {
1542 		err = PTR_ERR(inode);
1543 		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1544 		put_nfs_open_context(ctx);
1545 		switch (err) {
1546 		case -ENOENT:
1547 			d_drop(dentry);
1548 			d_add(dentry, NULL);
1549 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1550 			break;
1551 		case -EISDIR:
1552 		case -ENOTDIR:
1553 			goto no_open;
1554 		case -ELOOP:
1555 			if (!(open_flags & O_NOFOLLOW))
1556 				goto no_open;
1557 			break;
1558 			/* case -EINVAL: */
1559 		default:
1560 			break;
1561 		}
1562 		goto out;
1563 	}
1564 
1565 	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags, opened);
1566 	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1567 	put_nfs_open_context(ctx);
1568 out:
1569 	return err;
1570 
1571 no_open:
1572 	res = nfs_lookup(dir, dentry, lookup_flags);
1573 	err = PTR_ERR(res);
1574 	if (IS_ERR(res))
1575 		goto out;
1576 
1577 	return finish_no_open(file, res);
1578 }
1579 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1580 
1581 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1582 {
1583 	struct inode *inode;
1584 	int ret = 0;
1585 
1586 	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1587 		goto no_open;
1588 	if (d_mountpoint(dentry))
1589 		goto no_open;
1590 	if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1)
1591 		goto no_open;
1592 
1593 	inode = d_inode(dentry);
1594 
1595 	/* We can't create new files in nfs_open_revalidate(), so we
1596 	 * optimize away revalidation of negative dentries.
1597 	 */
1598 	if (inode == NULL) {
1599 		struct dentry *parent;
1600 		struct inode *dir;
1601 
1602 		if (flags & LOOKUP_RCU) {
1603 			parent = ACCESS_ONCE(dentry->d_parent);
1604 			dir = d_inode_rcu(parent);
1605 			if (!dir)
1606 				return -ECHILD;
1607 		} else {
1608 			parent = dget_parent(dentry);
1609 			dir = d_inode(parent);
1610 		}
1611 		if (!nfs_neg_need_reval(dir, dentry, flags))
1612 			ret = 1;
1613 		else if (flags & LOOKUP_RCU)
1614 			ret = -ECHILD;
1615 		if (!(flags & LOOKUP_RCU))
1616 			dput(parent);
1617 		else if (parent != ACCESS_ONCE(dentry->d_parent))
1618 			return -ECHILD;
1619 		goto out;
1620 	}
1621 
1622 	/* NFS only supports OPEN on regular files */
1623 	if (!S_ISREG(inode->i_mode))
1624 		goto no_open;
1625 	/* We cannot do exclusive creation on a positive dentry */
1626 	if (flags & LOOKUP_EXCL)
1627 		goto no_open;
1628 
1629 	/* Let f_op->open() actually open (and revalidate) the file */
1630 	ret = 1;
1631 
1632 out:
1633 	return ret;
1634 
1635 no_open:
1636 	return nfs_lookup_revalidate(dentry, flags);
1637 }
1638 
1639 #endif /* CONFIG_NFSV4 */
1640 
1641 /*
1642  * Code common to create, mkdir, and mknod.
1643  */
1644 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1645 				struct nfs_fattr *fattr,
1646 				struct nfs4_label *label)
1647 {
1648 	struct dentry *parent = dget_parent(dentry);
1649 	struct inode *dir = d_inode(parent);
1650 	struct inode *inode;
1651 	int error = -EACCES;
1652 
1653 	d_drop(dentry);
1654 
1655 	/* We may have been initialized further down */
1656 	if (d_really_is_positive(dentry))
1657 		goto out;
1658 	if (fhandle->size == 0) {
1659 		error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1660 		if (error)
1661 			goto out_error;
1662 	}
1663 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1664 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1665 		struct nfs_server *server = NFS_SB(dentry->d_sb);
1666 		error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL);
1667 		if (error < 0)
1668 			goto out_error;
1669 	}
1670 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1671 	error = PTR_ERR(inode);
1672 	if (IS_ERR(inode))
1673 		goto out_error;
1674 	d_add(dentry, inode);
1675 out:
1676 	dput(parent);
1677 	return 0;
1678 out_error:
1679 	nfs_mark_for_revalidate(dir);
1680 	dput(parent);
1681 	return error;
1682 }
1683 EXPORT_SYMBOL_GPL(nfs_instantiate);
1684 
1685 /*
1686  * Following a failed create operation, we drop the dentry rather
1687  * than retain a negative dentry. This avoids a problem in the event
1688  * that the operation succeeded on the server, but an error in the
1689  * reply path made it appear to have failed.
1690  */
1691 int nfs_create(struct inode *dir, struct dentry *dentry,
1692 		umode_t mode, bool excl)
1693 {
1694 	struct iattr attr;
1695 	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1696 	int error;
1697 
1698 	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1699 			dir->i_sb->s_id, dir->i_ino, dentry);
1700 
1701 	attr.ia_mode = mode;
1702 	attr.ia_valid = ATTR_MODE;
1703 
1704 	trace_nfs_create_enter(dir, dentry, open_flags);
1705 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1706 	trace_nfs_create_exit(dir, dentry, open_flags, error);
1707 	if (error != 0)
1708 		goto out_err;
1709 	return 0;
1710 out_err:
1711 	d_drop(dentry);
1712 	return error;
1713 }
1714 EXPORT_SYMBOL_GPL(nfs_create);
1715 
1716 /*
1717  * See comments for nfs_proc_create regarding failed operations.
1718  */
1719 int
1720 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1721 {
1722 	struct iattr attr;
1723 	int status;
1724 
1725 	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1726 			dir->i_sb->s_id, dir->i_ino, dentry);
1727 
1728 	attr.ia_mode = mode;
1729 	attr.ia_valid = ATTR_MODE;
1730 
1731 	trace_nfs_mknod_enter(dir, dentry);
1732 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1733 	trace_nfs_mknod_exit(dir, dentry, status);
1734 	if (status != 0)
1735 		goto out_err;
1736 	return 0;
1737 out_err:
1738 	d_drop(dentry);
1739 	return status;
1740 }
1741 EXPORT_SYMBOL_GPL(nfs_mknod);
1742 
1743 /*
1744  * See comments for nfs_proc_create regarding failed operations.
1745  */
1746 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1747 {
1748 	struct iattr attr;
1749 	int error;
1750 
1751 	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1752 			dir->i_sb->s_id, dir->i_ino, dentry);
1753 
1754 	attr.ia_valid = ATTR_MODE;
1755 	attr.ia_mode = mode | S_IFDIR;
1756 
1757 	trace_nfs_mkdir_enter(dir, dentry);
1758 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1759 	trace_nfs_mkdir_exit(dir, dentry, error);
1760 	if (error != 0)
1761 		goto out_err;
1762 	return 0;
1763 out_err:
1764 	d_drop(dentry);
1765 	return error;
1766 }
1767 EXPORT_SYMBOL_GPL(nfs_mkdir);
1768 
1769 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1770 {
1771 	if (simple_positive(dentry))
1772 		d_delete(dentry);
1773 }
1774 
1775 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1776 {
1777 	int error;
1778 
1779 	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1780 			dir->i_sb->s_id, dir->i_ino, dentry);
1781 
1782 	trace_nfs_rmdir_enter(dir, dentry);
1783 	if (d_really_is_positive(dentry)) {
1784 		nfs_wait_on_sillyrename(dentry);
1785 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1786 		/* Ensure the VFS deletes this inode */
1787 		switch (error) {
1788 		case 0:
1789 			clear_nlink(d_inode(dentry));
1790 			break;
1791 		case -ENOENT:
1792 			nfs_dentry_handle_enoent(dentry);
1793 		}
1794 	} else
1795 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1796 	trace_nfs_rmdir_exit(dir, dentry, error);
1797 
1798 	return error;
1799 }
1800 EXPORT_SYMBOL_GPL(nfs_rmdir);
1801 
1802 /*
1803  * Remove a file after making sure there are no pending writes,
1804  * and after checking that the file has only one user.
1805  *
1806  * We invalidate the attribute cache and free the inode prior to the operation
1807  * to avoid possible races if the server reuses the inode.
1808  */
1809 static int nfs_safe_remove(struct dentry *dentry)
1810 {
1811 	struct inode *dir = d_inode(dentry->d_parent);
1812 	struct inode *inode = d_inode(dentry);
1813 	int error = -EBUSY;
1814 
1815 	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
1816 
1817 	/* If the dentry was sillyrenamed, we simply call d_delete() */
1818 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1819 		error = 0;
1820 		goto out;
1821 	}
1822 
1823 	trace_nfs_remove_enter(dir, dentry);
1824 	if (inode != NULL) {
1825 		NFS_PROTO(inode)->return_delegation(inode);
1826 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1827 		if (error == 0)
1828 			nfs_drop_nlink(inode);
1829 	} else
1830 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1831 	if (error == -ENOENT)
1832 		nfs_dentry_handle_enoent(dentry);
1833 	trace_nfs_remove_exit(dir, dentry, error);
1834 out:
1835 	return error;
1836 }
1837 
1838 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1839  *  belongs to an active ".nfs..." file and we return -EBUSY.
1840  *
1841  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1842  */
1843 int nfs_unlink(struct inode *dir, struct dentry *dentry)
1844 {
1845 	int error;
1846 	int need_rehash = 0;
1847 
1848 	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
1849 		dir->i_ino, dentry);
1850 
1851 	trace_nfs_unlink_enter(dir, dentry);
1852 	spin_lock(&dentry->d_lock);
1853 	if (d_count(dentry) > 1) {
1854 		spin_unlock(&dentry->d_lock);
1855 		/* Start asynchronous writeout of the inode */
1856 		write_inode_now(d_inode(dentry), 0);
1857 		error = nfs_sillyrename(dir, dentry);
1858 		goto out;
1859 	}
1860 	if (!d_unhashed(dentry)) {
1861 		__d_drop(dentry);
1862 		need_rehash = 1;
1863 	}
1864 	spin_unlock(&dentry->d_lock);
1865 	error = nfs_safe_remove(dentry);
1866 	if (!error || error == -ENOENT) {
1867 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1868 	} else if (need_rehash)
1869 		d_rehash(dentry);
1870 out:
1871 	trace_nfs_unlink_exit(dir, dentry, error);
1872 	return error;
1873 }
1874 EXPORT_SYMBOL_GPL(nfs_unlink);
1875 
1876 /*
1877  * To create a symbolic link, most file systems instantiate a new inode,
1878  * add a page to it containing the path, then write it out to the disk
1879  * using prepare_write/commit_write.
1880  *
1881  * Unfortunately the NFS client can't create the in-core inode first
1882  * because it needs a file handle to create an in-core inode (see
1883  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1884  * symlink request has completed on the server.
1885  *
1886  * So instead we allocate a raw page, copy the symname into it, then do
1887  * the SYMLINK request with the page as the buffer.  If it succeeds, we
1888  * now have a new file handle and can instantiate an in-core NFS inode
1889  * and move the raw page into its mapping.
1890  */
1891 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1892 {
1893 	struct page *page;
1894 	char *kaddr;
1895 	struct iattr attr;
1896 	unsigned int pathlen = strlen(symname);
1897 	int error;
1898 
1899 	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
1900 		dir->i_ino, dentry, symname);
1901 
1902 	if (pathlen > PAGE_SIZE)
1903 		return -ENAMETOOLONG;
1904 
1905 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
1906 	attr.ia_valid = ATTR_MODE;
1907 
1908 	page = alloc_page(GFP_USER);
1909 	if (!page)
1910 		return -ENOMEM;
1911 
1912 	kaddr = page_address(page);
1913 	memcpy(kaddr, symname, pathlen);
1914 	if (pathlen < PAGE_SIZE)
1915 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1916 
1917 	trace_nfs_symlink_enter(dir, dentry);
1918 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1919 	trace_nfs_symlink_exit(dir, dentry, error);
1920 	if (error != 0) {
1921 		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1922 			dir->i_sb->s_id, dir->i_ino,
1923 			dentry, symname, error);
1924 		d_drop(dentry);
1925 		__free_page(page);
1926 		return error;
1927 	}
1928 
1929 	/*
1930 	 * No big deal if we can't add this page to the page cache here.
1931 	 * READLINK will get the missing page from the server if needed.
1932 	 */
1933 	if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
1934 							GFP_KERNEL)) {
1935 		SetPageUptodate(page);
1936 		unlock_page(page);
1937 		/*
1938 		 * add_to_page_cache_lru() grabs an extra page refcount.
1939 		 * Drop it here to avoid leaking this page later.
1940 		 */
1941 		put_page(page);
1942 	} else
1943 		__free_page(page);
1944 
1945 	return 0;
1946 }
1947 EXPORT_SYMBOL_GPL(nfs_symlink);
1948 
1949 int
1950 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1951 {
1952 	struct inode *inode = d_inode(old_dentry);
1953 	int error;
1954 
1955 	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
1956 		old_dentry, dentry);
1957 
1958 	trace_nfs_link_enter(inode, dir, dentry);
1959 	NFS_PROTO(inode)->return_delegation(inode);
1960 
1961 	d_drop(dentry);
1962 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1963 	if (error == 0) {
1964 		ihold(inode);
1965 		d_add(dentry, inode);
1966 	}
1967 	trace_nfs_link_exit(inode, dir, dentry, error);
1968 	return error;
1969 }
1970 EXPORT_SYMBOL_GPL(nfs_link);
1971 
1972 /*
1973  * RENAME
1974  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1975  * different file handle for the same inode after a rename (e.g. when
1976  * moving to a different directory). A fail-safe method to do so would
1977  * be to look up old_dir/old_name, create a link to new_dir/new_name and
1978  * rename the old file using the sillyrename stuff. This way, the original
1979  * file in old_dir will go away when the last process iput()s the inode.
1980  *
1981  * FIXED.
1982  *
1983  * It actually works quite well. One needs to have the possibility for
1984  * at least one ".nfs..." file in each directory the file ever gets
1985  * moved or linked to which happens automagically with the new
1986  * implementation that only depends on the dcache stuff instead of
1987  * using the inode layer
1988  *
1989  * Unfortunately, things are a little more complicated than indicated
1990  * above. For a cross-directory move, we want to make sure we can get
1991  * rid of the old inode after the operation.  This means there must be
1992  * no pending writes (if it's a file), and the use count must be 1.
1993  * If these conditions are met, we can drop the dentries before doing
1994  * the rename.
1995  */
1996 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1997 		      struct inode *new_dir, struct dentry *new_dentry)
1998 {
1999 	struct inode *old_inode = d_inode(old_dentry);
2000 	struct inode *new_inode = d_inode(new_dentry);
2001 	struct dentry *dentry = NULL, *rehash = NULL;
2002 	struct rpc_task *task;
2003 	int error = -EBUSY;
2004 
2005 	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2006 		 old_dentry, new_dentry,
2007 		 d_count(new_dentry));
2008 
2009 	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2010 	/*
2011 	 * For non-directories, check whether the target is busy and if so,
2012 	 * make a copy of the dentry and then do a silly-rename. If the
2013 	 * silly-rename succeeds, the copied dentry is hashed and becomes
2014 	 * the new target.
2015 	 */
2016 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2017 		/*
2018 		 * To prevent any new references to the target during the
2019 		 * rename, we unhash the dentry in advance.
2020 		 */
2021 		if (!d_unhashed(new_dentry)) {
2022 			d_drop(new_dentry);
2023 			rehash = new_dentry;
2024 		}
2025 
2026 		if (d_count(new_dentry) > 2) {
2027 			int err;
2028 
2029 			/* copy the target dentry's name */
2030 			dentry = d_alloc(new_dentry->d_parent,
2031 					 &new_dentry->d_name);
2032 			if (!dentry)
2033 				goto out;
2034 
2035 			/* silly-rename the existing target ... */
2036 			err = nfs_sillyrename(new_dir, new_dentry);
2037 			if (err)
2038 				goto out;
2039 
2040 			new_dentry = dentry;
2041 			rehash = NULL;
2042 			new_inode = NULL;
2043 		}
2044 	}
2045 
2046 	NFS_PROTO(old_inode)->return_delegation(old_inode);
2047 	if (new_inode != NULL)
2048 		NFS_PROTO(new_inode)->return_delegation(new_inode);
2049 
2050 	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2051 	if (IS_ERR(task)) {
2052 		error = PTR_ERR(task);
2053 		goto out;
2054 	}
2055 
2056 	error = rpc_wait_for_completion_task(task);
2057 	if (error == 0)
2058 		error = task->tk_status;
2059 	rpc_put_task(task);
2060 	nfs_mark_for_revalidate(old_inode);
2061 out:
2062 	if (rehash)
2063 		d_rehash(rehash);
2064 	trace_nfs_rename_exit(old_dir, old_dentry,
2065 			new_dir, new_dentry, error);
2066 	if (!error) {
2067 		if (new_inode != NULL)
2068 			nfs_drop_nlink(new_inode);
2069 		d_move(old_dentry, new_dentry);
2070 		nfs_set_verifier(new_dentry,
2071 					nfs_save_change_attribute(new_dir));
2072 	} else if (error == -ENOENT)
2073 		nfs_dentry_handle_enoent(old_dentry);
2074 
2075 	/* new dentry created? */
2076 	if (dentry)
2077 		dput(dentry);
2078 	return error;
2079 }
2080 EXPORT_SYMBOL_GPL(nfs_rename);
2081 
2082 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2083 static LIST_HEAD(nfs_access_lru_list);
2084 static atomic_long_t nfs_access_nr_entries;
2085 
2086 static unsigned long nfs_access_max_cachesize = ULONG_MAX;
2087 module_param(nfs_access_max_cachesize, ulong, 0644);
2088 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2089 
2090 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2091 {
2092 	put_rpccred(entry->cred);
2093 	kfree_rcu(entry, rcu_head);
2094 	smp_mb__before_atomic();
2095 	atomic_long_dec(&nfs_access_nr_entries);
2096 	smp_mb__after_atomic();
2097 }
2098 
2099 static void nfs_access_free_list(struct list_head *head)
2100 {
2101 	struct nfs_access_entry *cache;
2102 
2103 	while (!list_empty(head)) {
2104 		cache = list_entry(head->next, struct nfs_access_entry, lru);
2105 		list_del(&cache->lru);
2106 		nfs_access_free_entry(cache);
2107 	}
2108 }
2109 
2110 static unsigned long
2111 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2112 {
2113 	LIST_HEAD(head);
2114 	struct nfs_inode *nfsi, *next;
2115 	struct nfs_access_entry *cache;
2116 	long freed = 0;
2117 
2118 	spin_lock(&nfs_access_lru_lock);
2119 	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2120 		struct inode *inode;
2121 
2122 		if (nr_to_scan-- == 0)
2123 			break;
2124 		inode = &nfsi->vfs_inode;
2125 		spin_lock(&inode->i_lock);
2126 		if (list_empty(&nfsi->access_cache_entry_lru))
2127 			goto remove_lru_entry;
2128 		cache = list_entry(nfsi->access_cache_entry_lru.next,
2129 				struct nfs_access_entry, lru);
2130 		list_move(&cache->lru, &head);
2131 		rb_erase(&cache->rb_node, &nfsi->access_cache);
2132 		freed++;
2133 		if (!list_empty(&nfsi->access_cache_entry_lru))
2134 			list_move_tail(&nfsi->access_cache_inode_lru,
2135 					&nfs_access_lru_list);
2136 		else {
2137 remove_lru_entry:
2138 			list_del_init(&nfsi->access_cache_inode_lru);
2139 			smp_mb__before_atomic();
2140 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2141 			smp_mb__after_atomic();
2142 		}
2143 		spin_unlock(&inode->i_lock);
2144 	}
2145 	spin_unlock(&nfs_access_lru_lock);
2146 	nfs_access_free_list(&head);
2147 	return freed;
2148 }
2149 
2150 unsigned long
2151 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2152 {
2153 	int nr_to_scan = sc->nr_to_scan;
2154 	gfp_t gfp_mask = sc->gfp_mask;
2155 
2156 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2157 		return SHRINK_STOP;
2158 	return nfs_do_access_cache_scan(nr_to_scan);
2159 }
2160 
2161 
2162 unsigned long
2163 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2164 {
2165 	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2166 }
2167 
2168 static void
2169 nfs_access_cache_enforce_limit(void)
2170 {
2171 	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2172 	unsigned long diff;
2173 	unsigned int nr_to_scan;
2174 
2175 	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2176 		return;
2177 	nr_to_scan = 100;
2178 	diff = nr_entries - nfs_access_max_cachesize;
2179 	if (diff < nr_to_scan)
2180 		nr_to_scan = diff;
2181 	nfs_do_access_cache_scan(nr_to_scan);
2182 }
2183 
2184 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2185 {
2186 	struct rb_root *root_node = &nfsi->access_cache;
2187 	struct rb_node *n;
2188 	struct nfs_access_entry *entry;
2189 
2190 	/* Unhook entries from the cache */
2191 	while ((n = rb_first(root_node)) != NULL) {
2192 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2193 		rb_erase(n, root_node);
2194 		list_move(&entry->lru, head);
2195 	}
2196 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2197 }
2198 
2199 void nfs_access_zap_cache(struct inode *inode)
2200 {
2201 	LIST_HEAD(head);
2202 
2203 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2204 		return;
2205 	/* Remove from global LRU init */
2206 	spin_lock(&nfs_access_lru_lock);
2207 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2208 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2209 
2210 	spin_lock(&inode->i_lock);
2211 	__nfs_access_zap_cache(NFS_I(inode), &head);
2212 	spin_unlock(&inode->i_lock);
2213 	spin_unlock(&nfs_access_lru_lock);
2214 	nfs_access_free_list(&head);
2215 }
2216 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2217 
2218 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2219 {
2220 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2221 	struct nfs_access_entry *entry;
2222 
2223 	while (n != NULL) {
2224 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2225 
2226 		if (cred < entry->cred)
2227 			n = n->rb_left;
2228 		else if (cred > entry->cred)
2229 			n = n->rb_right;
2230 		else
2231 			return entry;
2232 	}
2233 	return NULL;
2234 }
2235 
2236 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2237 {
2238 	struct nfs_inode *nfsi = NFS_I(inode);
2239 	struct nfs_access_entry *cache;
2240 	int err = -ENOENT;
2241 
2242 	spin_lock(&inode->i_lock);
2243 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2244 		goto out_zap;
2245 	cache = nfs_access_search_rbtree(inode, cred);
2246 	if (cache == NULL)
2247 		goto out;
2248 	if (!nfs_have_delegated_attributes(inode) &&
2249 	    !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2250 		goto out_stale;
2251 	res->jiffies = cache->jiffies;
2252 	res->cred = cache->cred;
2253 	res->mask = cache->mask;
2254 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2255 	err = 0;
2256 out:
2257 	spin_unlock(&inode->i_lock);
2258 	return err;
2259 out_stale:
2260 	rb_erase(&cache->rb_node, &nfsi->access_cache);
2261 	list_del(&cache->lru);
2262 	spin_unlock(&inode->i_lock);
2263 	nfs_access_free_entry(cache);
2264 	return -ENOENT;
2265 out_zap:
2266 	spin_unlock(&inode->i_lock);
2267 	nfs_access_zap_cache(inode);
2268 	return -ENOENT;
2269 }
2270 
2271 static int nfs_access_get_cached_rcu(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2272 {
2273 	/* Only check the most recently returned cache entry,
2274 	 * but do it without locking.
2275 	 */
2276 	struct nfs_inode *nfsi = NFS_I(inode);
2277 	struct nfs_access_entry *cache;
2278 	int err = -ECHILD;
2279 	struct list_head *lh;
2280 
2281 	rcu_read_lock();
2282 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2283 		goto out;
2284 	lh = rcu_dereference(nfsi->access_cache_entry_lru.prev);
2285 	cache = list_entry(lh, struct nfs_access_entry, lru);
2286 	if (lh == &nfsi->access_cache_entry_lru ||
2287 	    cred != cache->cred)
2288 		cache = NULL;
2289 	if (cache == NULL)
2290 		goto out;
2291 	if (!nfs_have_delegated_attributes(inode) &&
2292 	    !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2293 		goto out;
2294 	res->jiffies = cache->jiffies;
2295 	res->cred = cache->cred;
2296 	res->mask = cache->mask;
2297 	err = 0;
2298 out:
2299 	rcu_read_unlock();
2300 	return err;
2301 }
2302 
2303 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2304 {
2305 	struct nfs_inode *nfsi = NFS_I(inode);
2306 	struct rb_root *root_node = &nfsi->access_cache;
2307 	struct rb_node **p = &root_node->rb_node;
2308 	struct rb_node *parent = NULL;
2309 	struct nfs_access_entry *entry;
2310 
2311 	spin_lock(&inode->i_lock);
2312 	while (*p != NULL) {
2313 		parent = *p;
2314 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2315 
2316 		if (set->cred < entry->cred)
2317 			p = &parent->rb_left;
2318 		else if (set->cred > entry->cred)
2319 			p = &parent->rb_right;
2320 		else
2321 			goto found;
2322 	}
2323 	rb_link_node(&set->rb_node, parent, p);
2324 	rb_insert_color(&set->rb_node, root_node);
2325 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2326 	spin_unlock(&inode->i_lock);
2327 	return;
2328 found:
2329 	rb_replace_node(parent, &set->rb_node, root_node);
2330 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2331 	list_del(&entry->lru);
2332 	spin_unlock(&inode->i_lock);
2333 	nfs_access_free_entry(entry);
2334 }
2335 
2336 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2337 {
2338 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2339 	if (cache == NULL)
2340 		return;
2341 	RB_CLEAR_NODE(&cache->rb_node);
2342 	cache->jiffies = set->jiffies;
2343 	cache->cred = get_rpccred(set->cred);
2344 	cache->mask = set->mask;
2345 
2346 	/* The above field assignments must be visible
2347 	 * before this item appears on the lru.  We cannot easily
2348 	 * use rcu_assign_pointer, so just force the memory barrier.
2349 	 */
2350 	smp_wmb();
2351 	nfs_access_add_rbtree(inode, cache);
2352 
2353 	/* Update accounting */
2354 	smp_mb__before_atomic();
2355 	atomic_long_inc(&nfs_access_nr_entries);
2356 	smp_mb__after_atomic();
2357 
2358 	/* Add inode to global LRU list */
2359 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2360 		spin_lock(&nfs_access_lru_lock);
2361 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2362 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2363 					&nfs_access_lru_list);
2364 		spin_unlock(&nfs_access_lru_lock);
2365 	}
2366 	nfs_access_cache_enforce_limit();
2367 }
2368 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2369 
2370 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2371 {
2372 	entry->mask = 0;
2373 	if (access_result & NFS4_ACCESS_READ)
2374 		entry->mask |= MAY_READ;
2375 	if (access_result &
2376 	    (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
2377 		entry->mask |= MAY_WRITE;
2378 	if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
2379 		entry->mask |= MAY_EXEC;
2380 }
2381 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2382 
2383 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2384 {
2385 	struct nfs_access_entry cache;
2386 	int status;
2387 
2388 	trace_nfs_access_enter(inode);
2389 
2390 	status = nfs_access_get_cached_rcu(inode, cred, &cache);
2391 	if (status != 0)
2392 		status = nfs_access_get_cached(inode, cred, &cache);
2393 	if (status == 0)
2394 		goto out_cached;
2395 
2396 	status = -ECHILD;
2397 	if (mask & MAY_NOT_BLOCK)
2398 		goto out;
2399 
2400 	/* Be clever: ask server to check for all possible rights */
2401 	cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2402 	cache.cred = cred;
2403 	cache.jiffies = jiffies;
2404 	status = NFS_PROTO(inode)->access(inode, &cache);
2405 	if (status != 0) {
2406 		if (status == -ESTALE) {
2407 			nfs_zap_caches(inode);
2408 			if (!S_ISDIR(inode->i_mode))
2409 				set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2410 		}
2411 		goto out;
2412 	}
2413 	nfs_access_add_cache(inode, &cache);
2414 out_cached:
2415 	if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2416 		status = -EACCES;
2417 out:
2418 	trace_nfs_access_exit(inode, status);
2419 	return status;
2420 }
2421 
2422 static int nfs_open_permission_mask(int openflags)
2423 {
2424 	int mask = 0;
2425 
2426 	if (openflags & __FMODE_EXEC) {
2427 		/* ONLY check exec rights */
2428 		mask = MAY_EXEC;
2429 	} else {
2430 		if ((openflags & O_ACCMODE) != O_WRONLY)
2431 			mask |= MAY_READ;
2432 		if ((openflags & O_ACCMODE) != O_RDONLY)
2433 			mask |= MAY_WRITE;
2434 	}
2435 
2436 	return mask;
2437 }
2438 
2439 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2440 {
2441 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2442 }
2443 EXPORT_SYMBOL_GPL(nfs_may_open);
2444 
2445 static int nfs_execute_ok(struct inode *inode, int mask)
2446 {
2447 	struct nfs_server *server = NFS_SERVER(inode);
2448 	int ret;
2449 
2450 	if (mask & MAY_NOT_BLOCK)
2451 		ret = nfs_revalidate_inode_rcu(server, inode);
2452 	else
2453 		ret = nfs_revalidate_inode(server, inode);
2454 	if (ret == 0 && !execute_ok(inode))
2455 		ret = -EACCES;
2456 	return ret;
2457 }
2458 
2459 int nfs_permission(struct inode *inode, int mask)
2460 {
2461 	struct rpc_cred *cred;
2462 	int res = 0;
2463 
2464 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2465 
2466 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2467 		goto out;
2468 	/* Is this sys_access() ? */
2469 	if (mask & (MAY_ACCESS | MAY_CHDIR))
2470 		goto force_lookup;
2471 
2472 	switch (inode->i_mode & S_IFMT) {
2473 		case S_IFLNK:
2474 			goto out;
2475 		case S_IFREG:
2476 			if ((mask & MAY_OPEN) &&
2477 			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2478 				return 0;
2479 			break;
2480 		case S_IFDIR:
2481 			/*
2482 			 * Optimize away all write operations, since the server
2483 			 * will check permissions when we perform the op.
2484 			 */
2485 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2486 				goto out;
2487 	}
2488 
2489 force_lookup:
2490 	if (!NFS_PROTO(inode)->access)
2491 		goto out_notsup;
2492 
2493 	/* Always try fast lookups first */
2494 	rcu_read_lock();
2495 	cred = rpc_lookup_cred_nonblock();
2496 	if (!IS_ERR(cred))
2497 		res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK);
2498 	else
2499 		res = PTR_ERR(cred);
2500 	rcu_read_unlock();
2501 	if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) {
2502 		/* Fast lookup failed, try the slow way */
2503 		cred = rpc_lookup_cred();
2504 		if (!IS_ERR(cred)) {
2505 			res = nfs_do_access(inode, cred, mask);
2506 			put_rpccred(cred);
2507 		} else
2508 			res = PTR_ERR(cred);
2509 	}
2510 out:
2511 	if (!res && (mask & MAY_EXEC))
2512 		res = nfs_execute_ok(inode, mask);
2513 
2514 	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2515 		inode->i_sb->s_id, inode->i_ino, mask, res);
2516 	return res;
2517 out_notsup:
2518 	if (mask & MAY_NOT_BLOCK)
2519 		return -ECHILD;
2520 
2521 	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2522 	if (res == 0)
2523 		res = generic_permission(inode, mask);
2524 	goto out;
2525 }
2526 EXPORT_SYMBOL_GPL(nfs_permission);
2527 
2528 /*
2529  * Local variables:
2530  *  version-control: t
2531  *  kept-new-versions: 5
2532  * End:
2533  */
2534