xref: /openbmc/linux/fs/nfs/dir.c (revision 93c76a3d)
1 /*
2  *  linux/fs/nfs/dir.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  nfs directory handling functions
7  *
8  * 10 Apr 1996	Added silly rename for unlink	--okir
9  * 28 Sep 1996	Improved directory cache --okir
10  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
11  *              Re-implemented silly rename for unlink, newly implemented
12  *              silly rename for nfs_rename() following the suggestions
13  *              of Olaf Kirch (okir) found in this file.
14  *              Following Linus comments on my original hack, this version
15  *              depends only on the dcache stuff and doesn't touch the inode
16  *              layer (iput() and friends).
17  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
18  */
19 
20 #include <linux/module.h>
21 #include <linux/time.h>
22 #include <linux/errno.h>
23 #include <linux/stat.h>
24 #include <linux/fcntl.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/mm.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/nfs_fs.h>
31 #include <linux/nfs_mount.h>
32 #include <linux/pagemap.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/swap.h>
37 #include <linux/sched.h>
38 #include <linux/kmemleak.h>
39 #include <linux/xattr.h>
40 
41 #include "delegation.h"
42 #include "iostat.h"
43 #include "internal.h"
44 #include "fscache.h"
45 
46 #include "nfstrace.h"
47 
48 /* #define NFS_DEBUG_VERBOSE 1 */
49 
50 static int nfs_opendir(struct inode *, struct file *);
51 static int nfs_closedir(struct inode *, struct file *);
52 static int nfs_readdir(struct file *, struct dir_context *);
53 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
54 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
55 static void nfs_readdir_clear_array(struct page*);
56 
57 const struct file_operations nfs_dir_operations = {
58 	.llseek		= nfs_llseek_dir,
59 	.read		= generic_read_dir,
60 	.iterate_shared	= nfs_readdir,
61 	.open		= nfs_opendir,
62 	.release	= nfs_closedir,
63 	.fsync		= nfs_fsync_dir,
64 };
65 
66 const struct address_space_operations nfs_dir_aops = {
67 	.freepage = nfs_readdir_clear_array,
68 };
69 
70 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
71 {
72 	struct nfs_inode *nfsi = NFS_I(dir);
73 	struct nfs_open_dir_context *ctx;
74 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
75 	if (ctx != NULL) {
76 		ctx->duped = 0;
77 		ctx->attr_gencount = nfsi->attr_gencount;
78 		ctx->dir_cookie = 0;
79 		ctx->dup_cookie = 0;
80 		ctx->cred = get_rpccred(cred);
81 		spin_lock(&dir->i_lock);
82 		list_add(&ctx->list, &nfsi->open_files);
83 		spin_unlock(&dir->i_lock);
84 		return ctx;
85 	}
86 	return  ERR_PTR(-ENOMEM);
87 }
88 
89 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
90 {
91 	spin_lock(&dir->i_lock);
92 	list_del(&ctx->list);
93 	spin_unlock(&dir->i_lock);
94 	put_rpccred(ctx->cred);
95 	kfree(ctx);
96 }
97 
98 /*
99  * Open file
100  */
101 static int
102 nfs_opendir(struct inode *inode, struct file *filp)
103 {
104 	int res = 0;
105 	struct nfs_open_dir_context *ctx;
106 	struct rpc_cred *cred;
107 
108 	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
109 
110 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
111 
112 	cred = rpc_lookup_cred();
113 	if (IS_ERR(cred))
114 		return PTR_ERR(cred);
115 	ctx = alloc_nfs_open_dir_context(inode, cred);
116 	if (IS_ERR(ctx)) {
117 		res = PTR_ERR(ctx);
118 		goto out;
119 	}
120 	filp->private_data = ctx;
121 	if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
122 		/* This is a mountpoint, so d_revalidate will never
123 		 * have been called, so we need to refresh the
124 		 * inode (for close-open consistency) ourselves.
125 		 */
126 		__nfs_revalidate_inode(NFS_SERVER(inode), inode);
127 	}
128 out:
129 	put_rpccred(cred);
130 	return res;
131 }
132 
133 static int
134 nfs_closedir(struct inode *inode, struct file *filp)
135 {
136 	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
137 	return 0;
138 }
139 
140 struct nfs_cache_array_entry {
141 	u64 cookie;
142 	u64 ino;
143 	struct qstr string;
144 	unsigned char d_type;
145 };
146 
147 struct nfs_cache_array {
148 	atomic_t refcount;
149 	int size;
150 	int eof_index;
151 	u64 last_cookie;
152 	struct nfs_cache_array_entry array[0];
153 };
154 
155 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
156 typedef struct {
157 	struct file	*file;
158 	struct page	*page;
159 	struct dir_context *ctx;
160 	unsigned long	page_index;
161 	u64		*dir_cookie;
162 	u64		last_cookie;
163 	loff_t		current_index;
164 	decode_dirent_t	decode;
165 
166 	unsigned long	timestamp;
167 	unsigned long	gencount;
168 	unsigned int	cache_entry_index;
169 	unsigned int	plus:1;
170 	unsigned int	eof:1;
171 } nfs_readdir_descriptor_t;
172 
173 /*
174  * The caller is responsible for calling nfs_readdir_release_array(page)
175  */
176 static
177 struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
178 {
179 	void *ptr;
180 	if (page == NULL)
181 		return ERR_PTR(-EIO);
182 	ptr = kmap(page);
183 	if (ptr == NULL)
184 		return ERR_PTR(-ENOMEM);
185 	return ptr;
186 }
187 
188 static
189 void nfs_readdir_release_array(struct page *page)
190 {
191 	kunmap(page);
192 }
193 
194 /*
195  * we are freeing strings created by nfs_add_to_readdir_array()
196  */
197 static
198 void nfs_readdir_clear_array(struct page *page)
199 {
200 	struct nfs_cache_array *array;
201 	int i;
202 
203 	array = kmap_atomic(page);
204 	if (atomic_dec_and_test(&array->refcount))
205 		for (i = 0; i < array->size; i++)
206 			kfree(array->array[i].string.name);
207 	kunmap_atomic(array);
208 }
209 
210 static bool grab_page(struct page *page)
211 {
212 	struct nfs_cache_array *array = kmap_atomic(page);
213 	bool res = atomic_inc_not_zero(&array->refcount);
214 	kunmap_atomic(array);
215 	return res;
216 }
217 
218 /*
219  * the caller is responsible for freeing qstr.name
220  * when called by nfs_readdir_add_to_array, the strings will be freed in
221  * nfs_clear_readdir_array()
222  */
223 static
224 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
225 {
226 	string->len = len;
227 	string->name = kmemdup(name, len, GFP_KERNEL);
228 	if (string->name == NULL)
229 		return -ENOMEM;
230 	/*
231 	 * Avoid a kmemleak false positive. The pointer to the name is stored
232 	 * in a page cache page which kmemleak does not scan.
233 	 */
234 	kmemleak_not_leak(string->name);
235 	string->hash = full_name_hash(name, len);
236 	return 0;
237 }
238 
239 static
240 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
241 {
242 	struct nfs_cache_array *array = nfs_readdir_get_array(page);
243 	struct nfs_cache_array_entry *cache_entry;
244 	int ret;
245 
246 	if (IS_ERR(array))
247 		return PTR_ERR(array);
248 
249 	cache_entry = &array->array[array->size];
250 
251 	/* Check that this entry lies within the page bounds */
252 	ret = -ENOSPC;
253 	if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
254 		goto out;
255 
256 	cache_entry->cookie = entry->prev_cookie;
257 	cache_entry->ino = entry->ino;
258 	cache_entry->d_type = entry->d_type;
259 	ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
260 	if (ret)
261 		goto out;
262 	array->last_cookie = entry->cookie;
263 	array->size++;
264 	if (entry->eof != 0)
265 		array->eof_index = array->size;
266 out:
267 	nfs_readdir_release_array(page);
268 	return ret;
269 }
270 
271 static
272 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
273 {
274 	loff_t diff = desc->ctx->pos - desc->current_index;
275 	unsigned int index;
276 
277 	if (diff < 0)
278 		goto out_eof;
279 	if (diff >= array->size) {
280 		if (array->eof_index >= 0)
281 			goto out_eof;
282 		return -EAGAIN;
283 	}
284 
285 	index = (unsigned int)diff;
286 	*desc->dir_cookie = array->array[index].cookie;
287 	desc->cache_entry_index = index;
288 	return 0;
289 out_eof:
290 	desc->eof = 1;
291 	return -EBADCOOKIE;
292 }
293 
294 static bool
295 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
296 {
297 	if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
298 		return false;
299 	smp_rmb();
300 	return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
301 }
302 
303 static
304 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
305 {
306 	int i;
307 	loff_t new_pos;
308 	int status = -EAGAIN;
309 
310 	for (i = 0; i < array->size; i++) {
311 		if (array->array[i].cookie == *desc->dir_cookie) {
312 			struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
313 			struct nfs_open_dir_context *ctx = desc->file->private_data;
314 
315 			new_pos = desc->current_index + i;
316 			if (ctx->attr_gencount != nfsi->attr_gencount ||
317 			    !nfs_readdir_inode_mapping_valid(nfsi)) {
318 				ctx->duped = 0;
319 				ctx->attr_gencount = nfsi->attr_gencount;
320 			} else if (new_pos < desc->ctx->pos) {
321 				if (ctx->duped > 0
322 				    && ctx->dup_cookie == *desc->dir_cookie) {
323 					if (printk_ratelimit()) {
324 						pr_notice("NFS: directory %pD2 contains a readdir loop."
325 								"Please contact your server vendor.  "
326 								"The file: %.*s has duplicate cookie %llu\n",
327 								desc->file, array->array[i].string.len,
328 								array->array[i].string.name, *desc->dir_cookie);
329 					}
330 					status = -ELOOP;
331 					goto out;
332 				}
333 				ctx->dup_cookie = *desc->dir_cookie;
334 				ctx->duped = -1;
335 			}
336 			desc->ctx->pos = new_pos;
337 			desc->cache_entry_index = i;
338 			return 0;
339 		}
340 	}
341 	if (array->eof_index >= 0) {
342 		status = -EBADCOOKIE;
343 		if (*desc->dir_cookie == array->last_cookie)
344 			desc->eof = 1;
345 	}
346 out:
347 	return status;
348 }
349 
350 static
351 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
352 {
353 	struct nfs_cache_array *array;
354 	int status;
355 
356 	array = nfs_readdir_get_array(desc->page);
357 	if (IS_ERR(array)) {
358 		status = PTR_ERR(array);
359 		goto out;
360 	}
361 
362 	if (*desc->dir_cookie == 0)
363 		status = nfs_readdir_search_for_pos(array, desc);
364 	else
365 		status = nfs_readdir_search_for_cookie(array, desc);
366 
367 	if (status == -EAGAIN) {
368 		desc->last_cookie = array->last_cookie;
369 		desc->current_index += array->size;
370 		desc->page_index++;
371 	}
372 	nfs_readdir_release_array(desc->page);
373 out:
374 	return status;
375 }
376 
377 /* Fill a page with xdr information before transferring to the cache page */
378 static
379 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
380 			struct nfs_entry *entry, struct file *file, struct inode *inode)
381 {
382 	struct nfs_open_dir_context *ctx = file->private_data;
383 	struct rpc_cred	*cred = ctx->cred;
384 	unsigned long	timestamp, gencount;
385 	int		error;
386 
387  again:
388 	timestamp = jiffies;
389 	gencount = nfs_inc_attr_generation_counter();
390 	error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
391 					  NFS_SERVER(inode)->dtsize, desc->plus);
392 	if (error < 0) {
393 		/* We requested READDIRPLUS, but the server doesn't grok it */
394 		if (error == -ENOTSUPP && desc->plus) {
395 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
396 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
397 			desc->plus = 0;
398 			goto again;
399 		}
400 		goto error;
401 	}
402 	desc->timestamp = timestamp;
403 	desc->gencount = gencount;
404 error:
405 	return error;
406 }
407 
408 static int xdr_decode(nfs_readdir_descriptor_t *desc,
409 		      struct nfs_entry *entry, struct xdr_stream *xdr)
410 {
411 	int error;
412 
413 	error = desc->decode(xdr, entry, desc->plus);
414 	if (error)
415 		return error;
416 	entry->fattr->time_start = desc->timestamp;
417 	entry->fattr->gencount = desc->gencount;
418 	return 0;
419 }
420 
421 /* Match file and dirent using either filehandle or fileid
422  * Note: caller is responsible for checking the fsid
423  */
424 static
425 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
426 {
427 	struct nfs_inode *nfsi;
428 
429 	if (d_really_is_negative(dentry))
430 		return 0;
431 
432 	nfsi = NFS_I(d_inode(dentry));
433 	if (entry->fattr->fileid == nfsi->fileid)
434 		return 1;
435 	if (nfs_compare_fh(entry->fh, &nfsi->fh) == 0)
436 		return 1;
437 	return 0;
438 }
439 
440 static
441 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
442 {
443 	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
444 		return false;
445 	if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
446 		return true;
447 	if (ctx->pos == 0)
448 		return true;
449 	return false;
450 }
451 
452 /*
453  * This function is called by the lookup code to request the use of
454  * readdirplus to accelerate any future lookups in the same
455  * directory.
456  */
457 static
458 void nfs_advise_use_readdirplus(struct inode *dir)
459 {
460 	set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags);
461 }
462 
463 /*
464  * This function is mainly for use by nfs_getattr().
465  *
466  * If this is an 'ls -l', we want to force use of readdirplus.
467  * Do this by checking if there is an active file descriptor
468  * and calling nfs_advise_use_readdirplus, then forcing a
469  * cache flush.
470  */
471 void nfs_force_use_readdirplus(struct inode *dir)
472 {
473 	if (!list_empty(&NFS_I(dir)->open_files)) {
474 		nfs_advise_use_readdirplus(dir);
475 		nfs_zap_mapping(dir, dir->i_mapping);
476 	}
477 }
478 
479 static
480 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
481 {
482 	struct qstr filename = QSTR_INIT(entry->name, entry->len);
483 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
484 	struct dentry *dentry;
485 	struct dentry *alias;
486 	struct inode *dir = d_inode(parent);
487 	struct inode *inode;
488 	int status;
489 
490 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
491 		return;
492 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
493 		return;
494 	if (filename.name[0] == '.') {
495 		if (filename.len == 1)
496 			return;
497 		if (filename.len == 2 && filename.name[1] == '.')
498 			return;
499 	}
500 	filename.hash = full_name_hash(filename.name, filename.len);
501 
502 	dentry = d_lookup(parent, &filename);
503 again:
504 	if (!dentry) {
505 		dentry = d_alloc_parallel(parent, &filename, &wq);
506 		if (IS_ERR(dentry))
507 			return;
508 	}
509 	if (!d_in_lookup(dentry)) {
510 		/* Is there a mountpoint here? If so, just exit */
511 		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
512 					&entry->fattr->fsid))
513 			goto out;
514 		if (nfs_same_file(dentry, entry)) {
515 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
516 			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
517 			if (!status)
518 				nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
519 			goto out;
520 		} else {
521 			d_invalidate(dentry);
522 			dput(dentry);
523 			dentry = NULL;
524 			goto again;
525 		}
526 	}
527 
528 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
529 	alias = d_splice_alias(inode, dentry);
530 	d_lookup_done(dentry);
531 	if (alias) {
532 		if (IS_ERR(alias))
533 			goto out;
534 		dput(dentry);
535 		dentry = alias;
536 	}
537 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
538 out:
539 	dput(dentry);
540 }
541 
542 /* Perform conversion from xdr to cache array */
543 static
544 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
545 				struct page **xdr_pages, struct page *page, unsigned int buflen)
546 {
547 	struct xdr_stream stream;
548 	struct xdr_buf buf;
549 	struct page *scratch;
550 	struct nfs_cache_array *array;
551 	unsigned int count = 0;
552 	int status;
553 
554 	scratch = alloc_page(GFP_KERNEL);
555 	if (scratch == NULL)
556 		return -ENOMEM;
557 
558 	if (buflen == 0)
559 		goto out_nopages;
560 
561 	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
562 	xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
563 
564 	do {
565 		status = xdr_decode(desc, entry, &stream);
566 		if (status != 0) {
567 			if (status == -EAGAIN)
568 				status = 0;
569 			break;
570 		}
571 
572 		count++;
573 
574 		if (desc->plus != 0)
575 			nfs_prime_dcache(file_dentry(desc->file), entry);
576 
577 		status = nfs_readdir_add_to_array(entry, page);
578 		if (status != 0)
579 			break;
580 	} while (!entry->eof);
581 
582 out_nopages:
583 	if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
584 		array = nfs_readdir_get_array(page);
585 		if (!IS_ERR(array)) {
586 			array->eof_index = array->size;
587 			status = 0;
588 			nfs_readdir_release_array(page);
589 		} else
590 			status = PTR_ERR(array);
591 	}
592 
593 	put_page(scratch);
594 	return status;
595 }
596 
597 static
598 void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
599 {
600 	unsigned int i;
601 	for (i = 0; i < npages; i++)
602 		put_page(pages[i]);
603 }
604 
605 /*
606  * nfs_readdir_large_page will allocate pages that must be freed with a call
607  * to nfs_readdir_free_pagearray
608  */
609 static
610 int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
611 {
612 	unsigned int i;
613 
614 	for (i = 0; i < npages; i++) {
615 		struct page *page = alloc_page(GFP_KERNEL);
616 		if (page == NULL)
617 			goto out_freepages;
618 		pages[i] = page;
619 	}
620 	return 0;
621 
622 out_freepages:
623 	nfs_readdir_free_pages(pages, i);
624 	return -ENOMEM;
625 }
626 
627 static
628 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
629 {
630 	struct page *pages[NFS_MAX_READDIR_PAGES];
631 	struct nfs_entry entry;
632 	struct file	*file = desc->file;
633 	struct nfs_cache_array *array;
634 	int status = -ENOMEM;
635 	unsigned int array_size = ARRAY_SIZE(pages);
636 
637 	entry.prev_cookie = 0;
638 	entry.cookie = desc->last_cookie;
639 	entry.eof = 0;
640 	entry.fh = nfs_alloc_fhandle();
641 	entry.fattr = nfs_alloc_fattr();
642 	entry.server = NFS_SERVER(inode);
643 	if (entry.fh == NULL || entry.fattr == NULL)
644 		goto out;
645 
646 	entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
647 	if (IS_ERR(entry.label)) {
648 		status = PTR_ERR(entry.label);
649 		goto out;
650 	}
651 
652 	array = nfs_readdir_get_array(page);
653 	if (IS_ERR(array)) {
654 		status = PTR_ERR(array);
655 		goto out_label_free;
656 	}
657 	memset(array, 0, sizeof(struct nfs_cache_array));
658 	atomic_set(&array->refcount, 1);
659 	array->eof_index = -1;
660 
661 	status = nfs_readdir_alloc_pages(pages, array_size);
662 	if (status < 0)
663 		goto out_release_array;
664 	do {
665 		unsigned int pglen;
666 		status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
667 
668 		if (status < 0)
669 			break;
670 		pglen = status;
671 		status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
672 		if (status < 0) {
673 			if (status == -ENOSPC)
674 				status = 0;
675 			break;
676 		}
677 	} while (array->eof_index < 0);
678 
679 	nfs_readdir_free_pages(pages, array_size);
680 out_release_array:
681 	nfs_readdir_release_array(page);
682 out_label_free:
683 	nfs4_label_free(entry.label);
684 out:
685 	nfs_free_fattr(entry.fattr);
686 	nfs_free_fhandle(entry.fh);
687 	return status;
688 }
689 
690 /*
691  * Now we cache directories properly, by converting xdr information
692  * to an array that can be used for lookups later.  This results in
693  * fewer cache pages, since we can store more information on each page.
694  * We only need to convert from xdr once so future lookups are much simpler
695  */
696 static
697 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
698 {
699 	struct inode	*inode = file_inode(desc->file);
700 	int ret;
701 
702 	ret = nfs_readdir_xdr_to_array(desc, page, inode);
703 	if (ret < 0)
704 		goto error;
705 	SetPageUptodate(page);
706 
707 	if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
708 		/* Should never happen */
709 		nfs_zap_mapping(inode, inode->i_mapping);
710 	}
711 	unlock_page(page);
712 	return 0;
713  error:
714 	unlock_page(page);
715 	return ret;
716 }
717 
718 static
719 void cache_page_release(nfs_readdir_descriptor_t *desc)
720 {
721 	nfs_readdir_clear_array(desc->page);
722 	put_page(desc->page);
723 	desc->page = NULL;
724 }
725 
726 static
727 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
728 {
729 	struct page *page;
730 
731 	for (;;) {
732 		page = read_cache_page(desc->file->f_mapping,
733 			desc->page_index, (filler_t *)nfs_readdir_filler, desc);
734 		if (IS_ERR(page) || grab_page(page))
735 			break;
736 		put_page(page);
737 	}
738 	return page;
739 }
740 
741 /*
742  * Returns 0 if desc->dir_cookie was found on page desc->page_index
743  */
744 static
745 int find_cache_page(nfs_readdir_descriptor_t *desc)
746 {
747 	int res;
748 
749 	desc->page = get_cache_page(desc);
750 	if (IS_ERR(desc->page))
751 		return PTR_ERR(desc->page);
752 
753 	res = nfs_readdir_search_array(desc);
754 	if (res != 0)
755 		cache_page_release(desc);
756 	return res;
757 }
758 
759 /* Search for desc->dir_cookie from the beginning of the page cache */
760 static inline
761 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
762 {
763 	int res;
764 
765 	if (desc->page_index == 0) {
766 		desc->current_index = 0;
767 		desc->last_cookie = 0;
768 	}
769 	do {
770 		res = find_cache_page(desc);
771 	} while (res == -EAGAIN);
772 	return res;
773 }
774 
775 /*
776  * Once we've found the start of the dirent within a page: fill 'er up...
777  */
778 static
779 int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
780 {
781 	struct file	*file = desc->file;
782 	int i = 0;
783 	int res = 0;
784 	struct nfs_cache_array *array = NULL;
785 	struct nfs_open_dir_context *ctx = file->private_data;
786 
787 	array = nfs_readdir_get_array(desc->page);
788 	if (IS_ERR(array)) {
789 		res = PTR_ERR(array);
790 		goto out;
791 	}
792 
793 	for (i = desc->cache_entry_index; i < array->size; i++) {
794 		struct nfs_cache_array_entry *ent;
795 
796 		ent = &array->array[i];
797 		if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
798 		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
799 			desc->eof = 1;
800 			break;
801 		}
802 		desc->ctx->pos++;
803 		if (i < (array->size-1))
804 			*desc->dir_cookie = array->array[i+1].cookie;
805 		else
806 			*desc->dir_cookie = array->last_cookie;
807 		if (ctx->duped != 0)
808 			ctx->duped = 1;
809 	}
810 	if (array->eof_index >= 0)
811 		desc->eof = 1;
812 
813 	nfs_readdir_release_array(desc->page);
814 out:
815 	cache_page_release(desc);
816 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
817 			(unsigned long long)*desc->dir_cookie, res);
818 	return res;
819 }
820 
821 /*
822  * If we cannot find a cookie in our cache, we suspect that this is
823  * because it points to a deleted file, so we ask the server to return
824  * whatever it thinks is the next entry. We then feed this to filldir.
825  * If all goes well, we should then be able to find our way round the
826  * cache on the next call to readdir_search_pagecache();
827  *
828  * NOTE: we cannot add the anonymous page to the pagecache because
829  *	 the data it contains might not be page aligned. Besides,
830  *	 we should already have a complete representation of the
831  *	 directory in the page cache by the time we get here.
832  */
833 static inline
834 int uncached_readdir(nfs_readdir_descriptor_t *desc)
835 {
836 	struct page	*page = NULL;
837 	int		status;
838 	struct inode *inode = file_inode(desc->file);
839 	struct nfs_open_dir_context *ctx = desc->file->private_data;
840 
841 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
842 			(unsigned long long)*desc->dir_cookie);
843 
844 	page = alloc_page(GFP_HIGHUSER);
845 	if (!page) {
846 		status = -ENOMEM;
847 		goto out;
848 	}
849 
850 	desc->page_index = 0;
851 	desc->last_cookie = *desc->dir_cookie;
852 	desc->page = page;
853 	ctx->duped = 0;
854 
855 	status = nfs_readdir_xdr_to_array(desc, page, inode);
856 	if (status < 0)
857 		goto out_release;
858 
859 	status = nfs_do_filldir(desc);
860 
861  out:
862 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
863 			__func__, status);
864 	return status;
865  out_release:
866 	cache_page_release(desc);
867 	goto out;
868 }
869 
870 static bool nfs_dir_mapping_need_revalidate(struct inode *dir)
871 {
872 	struct nfs_inode *nfsi = NFS_I(dir);
873 
874 	if (nfs_attribute_cache_expired(dir))
875 		return true;
876 	if (nfsi->cache_validity & NFS_INO_INVALID_DATA)
877 		return true;
878 	return false;
879 }
880 
881 /* The file offset position represents the dirent entry number.  A
882    last cookie cache takes care of the common case of reading the
883    whole directory.
884  */
885 static int nfs_readdir(struct file *file, struct dir_context *ctx)
886 {
887 	struct dentry	*dentry = file_dentry(file);
888 	struct inode	*inode = d_inode(dentry);
889 	nfs_readdir_descriptor_t my_desc,
890 			*desc = &my_desc;
891 	struct nfs_open_dir_context *dir_ctx = file->private_data;
892 	int res = 0;
893 
894 	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
895 			file, (long long)ctx->pos);
896 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
897 
898 	/*
899 	 * ctx->pos points to the dirent entry number.
900 	 * *desc->dir_cookie has the cookie for the next entry. We have
901 	 * to either find the entry with the appropriate number or
902 	 * revalidate the cookie.
903 	 */
904 	memset(desc, 0, sizeof(*desc));
905 
906 	desc->file = file;
907 	desc->ctx = ctx;
908 	desc->dir_cookie = &dir_ctx->dir_cookie;
909 	desc->decode = NFS_PROTO(inode)->decode_dirent;
910 	desc->plus = nfs_use_readdirplus(inode, ctx) ? 1 : 0;
911 
912 	if (ctx->pos == 0 || nfs_dir_mapping_need_revalidate(inode))
913 		res = nfs_revalidate_mapping(inode, file->f_mapping);
914 	if (res < 0)
915 		goto out;
916 
917 	do {
918 		res = readdir_search_pagecache(desc);
919 
920 		if (res == -EBADCOOKIE) {
921 			res = 0;
922 			/* This means either end of directory */
923 			if (*desc->dir_cookie && desc->eof == 0) {
924 				/* Or that the server has 'lost' a cookie */
925 				res = uncached_readdir(desc);
926 				if (res == 0)
927 					continue;
928 			}
929 			break;
930 		}
931 		if (res == -ETOOSMALL && desc->plus) {
932 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
933 			nfs_zap_caches(inode);
934 			desc->page_index = 0;
935 			desc->plus = 0;
936 			desc->eof = 0;
937 			continue;
938 		}
939 		if (res < 0)
940 			break;
941 
942 		res = nfs_do_filldir(desc);
943 		if (res < 0)
944 			break;
945 	} while (!desc->eof);
946 out:
947 	if (res > 0)
948 		res = 0;
949 	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
950 	return res;
951 }
952 
953 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
954 {
955 	struct nfs_open_dir_context *dir_ctx = filp->private_data;
956 
957 	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
958 			filp, offset, whence);
959 
960 	switch (whence) {
961 		case 1:
962 			offset += filp->f_pos;
963 		case 0:
964 			if (offset >= 0)
965 				break;
966 		default:
967 			return -EINVAL;
968 	}
969 	if (offset != filp->f_pos) {
970 		filp->f_pos = offset;
971 		dir_ctx->dir_cookie = 0;
972 		dir_ctx->duped = 0;
973 	}
974 	return offset;
975 }
976 
977 /*
978  * All directory operations under NFS are synchronous, so fsync()
979  * is a dummy operation.
980  */
981 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
982 			 int datasync)
983 {
984 	struct inode *inode = file_inode(filp);
985 
986 	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
987 
988 	inode_lock(inode);
989 	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
990 	inode_unlock(inode);
991 	return 0;
992 }
993 
994 /**
995  * nfs_force_lookup_revalidate - Mark the directory as having changed
996  * @dir - pointer to directory inode
997  *
998  * This forces the revalidation code in nfs_lookup_revalidate() to do a
999  * full lookup on all child dentries of 'dir' whenever a change occurs
1000  * on the server that might have invalidated our dcache.
1001  *
1002  * The caller should be holding dir->i_lock
1003  */
1004 void nfs_force_lookup_revalidate(struct inode *dir)
1005 {
1006 	NFS_I(dir)->cache_change_attribute++;
1007 }
1008 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1009 
1010 /*
1011  * A check for whether or not the parent directory has changed.
1012  * In the case it has, we assume that the dentries are untrustworthy
1013  * and may need to be looked up again.
1014  * If rcu_walk prevents us from performing a full check, return 0.
1015  */
1016 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1017 			      int rcu_walk)
1018 {
1019 	int ret;
1020 
1021 	if (IS_ROOT(dentry))
1022 		return 1;
1023 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1024 		return 0;
1025 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1026 		return 0;
1027 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1028 	if (rcu_walk)
1029 		ret = nfs_revalidate_inode_rcu(NFS_SERVER(dir), dir);
1030 	else
1031 		ret = nfs_revalidate_inode(NFS_SERVER(dir), dir);
1032 	if (ret < 0)
1033 		return 0;
1034 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1035 		return 0;
1036 	return 1;
1037 }
1038 
1039 /*
1040  * Use intent information to check whether or not we're going to do
1041  * an O_EXCL create using this path component.
1042  */
1043 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1044 {
1045 	if (NFS_PROTO(dir)->version == 2)
1046 		return 0;
1047 	return flags & LOOKUP_EXCL;
1048 }
1049 
1050 /*
1051  * Inode and filehandle revalidation for lookups.
1052  *
1053  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1054  * or if the intent information indicates that we're about to open this
1055  * particular file and the "nocto" mount flag is not set.
1056  *
1057  */
1058 static
1059 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1060 {
1061 	struct nfs_server *server = NFS_SERVER(inode);
1062 	int ret;
1063 
1064 	if (IS_AUTOMOUNT(inode))
1065 		return 0;
1066 	/* VFS wants an on-the-wire revalidation */
1067 	if (flags & LOOKUP_REVAL)
1068 		goto out_force;
1069 	/* This is an open(2) */
1070 	if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) &&
1071 	    (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
1072 		goto out_force;
1073 out:
1074 	return (inode->i_nlink == 0) ? -ENOENT : 0;
1075 out_force:
1076 	if (flags & LOOKUP_RCU)
1077 		return -ECHILD;
1078 	ret = __nfs_revalidate_inode(server, inode);
1079 	if (ret != 0)
1080 		return ret;
1081 	goto out;
1082 }
1083 
1084 /*
1085  * We judge how long we want to trust negative
1086  * dentries by looking at the parent inode mtime.
1087  *
1088  * If parent mtime has changed, we revalidate, else we wait for a
1089  * period corresponding to the parent's attribute cache timeout value.
1090  *
1091  * If LOOKUP_RCU prevents us from performing a full check, return 1
1092  * suggesting a reval is needed.
1093  */
1094 static inline
1095 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1096 		       unsigned int flags)
1097 {
1098 	/* Don't revalidate a negative dentry if we're creating a new file */
1099 	if (flags & LOOKUP_CREATE)
1100 		return 0;
1101 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1102 		return 1;
1103 	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1104 }
1105 
1106 /*
1107  * This is called every time the dcache has a lookup hit,
1108  * and we should check whether we can really trust that
1109  * lookup.
1110  *
1111  * NOTE! The hit can be a negative hit too, don't assume
1112  * we have an inode!
1113  *
1114  * If the parent directory is seen to have changed, we throw out the
1115  * cached dentry and do a new lookup.
1116  */
1117 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1118 {
1119 	struct inode *dir;
1120 	struct inode *inode;
1121 	struct dentry *parent;
1122 	struct nfs_fh *fhandle = NULL;
1123 	struct nfs_fattr *fattr = NULL;
1124 	struct nfs4_label *label = NULL;
1125 	int error;
1126 
1127 	if (flags & LOOKUP_RCU) {
1128 		parent = ACCESS_ONCE(dentry->d_parent);
1129 		dir = d_inode_rcu(parent);
1130 		if (!dir)
1131 			return -ECHILD;
1132 	} else {
1133 		parent = dget_parent(dentry);
1134 		dir = d_inode(parent);
1135 	}
1136 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1137 	inode = d_inode(dentry);
1138 
1139 	if (!inode) {
1140 		if (nfs_neg_need_reval(dir, dentry, flags)) {
1141 			if (flags & LOOKUP_RCU)
1142 				return -ECHILD;
1143 			goto out_bad;
1144 		}
1145 		goto out_valid_noent;
1146 	}
1147 
1148 	if (is_bad_inode(inode)) {
1149 		if (flags & LOOKUP_RCU)
1150 			return -ECHILD;
1151 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1152 				__func__, dentry);
1153 		goto out_bad;
1154 	}
1155 
1156 	if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1157 		goto out_set_verifier;
1158 
1159 	/* Force a full look up iff the parent directory has changed */
1160 	if (!nfs_is_exclusive_create(dir, flags) &&
1161 	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1162 
1163 		if (nfs_lookup_verify_inode(inode, flags)) {
1164 			if (flags & LOOKUP_RCU)
1165 				return -ECHILD;
1166 			goto out_zap_parent;
1167 		}
1168 		goto out_valid;
1169 	}
1170 
1171 	if (flags & LOOKUP_RCU)
1172 		return -ECHILD;
1173 
1174 	if (NFS_STALE(inode))
1175 		goto out_bad;
1176 
1177 	error = -ENOMEM;
1178 	fhandle = nfs_alloc_fhandle();
1179 	fattr = nfs_alloc_fattr();
1180 	if (fhandle == NULL || fattr == NULL)
1181 		goto out_error;
1182 
1183 	label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
1184 	if (IS_ERR(label))
1185 		goto out_error;
1186 
1187 	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1188 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1189 	trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1190 	if (error)
1191 		goto out_bad;
1192 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1193 		goto out_bad;
1194 	if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1195 		goto out_bad;
1196 
1197 	nfs_setsecurity(inode, fattr, label);
1198 
1199 	nfs_free_fattr(fattr);
1200 	nfs_free_fhandle(fhandle);
1201 	nfs4_label_free(label);
1202 
1203 out_set_verifier:
1204 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1205  out_valid:
1206 	/* Success: notify readdir to use READDIRPLUS */
1207 	nfs_advise_use_readdirplus(dir);
1208  out_valid_noent:
1209 	if (flags & LOOKUP_RCU) {
1210 		if (parent != ACCESS_ONCE(dentry->d_parent))
1211 			return -ECHILD;
1212 	} else
1213 		dput(parent);
1214 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1215 			__func__, dentry);
1216 	return 1;
1217 out_zap_parent:
1218 	nfs_zap_caches(dir);
1219  out_bad:
1220 	WARN_ON(flags & LOOKUP_RCU);
1221 	nfs_free_fattr(fattr);
1222 	nfs_free_fhandle(fhandle);
1223 	nfs4_label_free(label);
1224 	nfs_mark_for_revalidate(dir);
1225 	if (inode && S_ISDIR(inode->i_mode)) {
1226 		/* Purge readdir caches. */
1227 		nfs_zap_caches(inode);
1228 		/*
1229 		 * We can't d_drop the root of a disconnected tree:
1230 		 * its d_hash is on the s_anon list and d_drop() would hide
1231 		 * it from shrink_dcache_for_unmount(), leading to busy
1232 		 * inodes on unmount and further oopses.
1233 		 */
1234 		if (IS_ROOT(dentry))
1235 			goto out_valid;
1236 	}
1237 	dput(parent);
1238 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1239 			__func__, dentry);
1240 	return 0;
1241 out_error:
1242 	WARN_ON(flags & LOOKUP_RCU);
1243 	nfs_free_fattr(fattr);
1244 	nfs_free_fhandle(fhandle);
1245 	nfs4_label_free(label);
1246 	dput(parent);
1247 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1248 			__func__, dentry, error);
1249 	return error;
1250 }
1251 
1252 /*
1253  * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1254  * when we don't really care about the dentry name. This is called when a
1255  * pathwalk ends on a dentry that was not found via a normal lookup in the
1256  * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1257  *
1258  * In this situation, we just want to verify that the inode itself is OK
1259  * since the dentry might have changed on the server.
1260  */
1261 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1262 {
1263 	int error;
1264 	struct inode *inode = d_inode(dentry);
1265 
1266 	/*
1267 	 * I believe we can only get a negative dentry here in the case of a
1268 	 * procfs-style symlink. Just assume it's correct for now, but we may
1269 	 * eventually need to do something more here.
1270 	 */
1271 	if (!inode) {
1272 		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1273 				__func__, dentry);
1274 		return 1;
1275 	}
1276 
1277 	if (is_bad_inode(inode)) {
1278 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1279 				__func__, dentry);
1280 		return 0;
1281 	}
1282 
1283 	error = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1284 	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1285 			__func__, inode->i_ino, error ? "invalid" : "valid");
1286 	return !error;
1287 }
1288 
1289 /*
1290  * This is called from dput() when d_count is going to 0.
1291  */
1292 static int nfs_dentry_delete(const struct dentry *dentry)
1293 {
1294 	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1295 		dentry, dentry->d_flags);
1296 
1297 	/* Unhash any dentry with a stale inode */
1298 	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1299 		return 1;
1300 
1301 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1302 		/* Unhash it, so that ->d_iput() would be called */
1303 		return 1;
1304 	}
1305 	if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1306 		/* Unhash it, so that ancestors of killed async unlink
1307 		 * files will be cleaned up during umount */
1308 		return 1;
1309 	}
1310 	return 0;
1311 
1312 }
1313 
1314 /* Ensure that we revalidate inode->i_nlink */
1315 static void nfs_drop_nlink(struct inode *inode)
1316 {
1317 	spin_lock(&inode->i_lock);
1318 	/* drop the inode if we're reasonably sure this is the last link */
1319 	if (inode->i_nlink == 1)
1320 		clear_nlink(inode);
1321 	NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR;
1322 	spin_unlock(&inode->i_lock);
1323 }
1324 
1325 /*
1326  * Called when the dentry loses inode.
1327  * We use it to clean up silly-renamed files.
1328  */
1329 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1330 {
1331 	if (S_ISDIR(inode->i_mode))
1332 		/* drop any readdir cache as it could easily be old */
1333 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1334 
1335 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1336 		nfs_complete_unlink(dentry, inode);
1337 		nfs_drop_nlink(inode);
1338 	}
1339 	iput(inode);
1340 }
1341 
1342 static void nfs_d_release(struct dentry *dentry)
1343 {
1344 	/* free cached devname value, if it survived that far */
1345 	if (unlikely(dentry->d_fsdata)) {
1346 		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1347 			WARN_ON(1);
1348 		else
1349 			kfree(dentry->d_fsdata);
1350 	}
1351 }
1352 
1353 const struct dentry_operations nfs_dentry_operations = {
1354 	.d_revalidate	= nfs_lookup_revalidate,
1355 	.d_weak_revalidate	= nfs_weak_revalidate,
1356 	.d_delete	= nfs_dentry_delete,
1357 	.d_iput		= nfs_dentry_iput,
1358 	.d_automount	= nfs_d_automount,
1359 	.d_release	= nfs_d_release,
1360 };
1361 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1362 
1363 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1364 {
1365 	struct dentry *res;
1366 	struct inode *inode = NULL;
1367 	struct nfs_fh *fhandle = NULL;
1368 	struct nfs_fattr *fattr = NULL;
1369 	struct nfs4_label *label = NULL;
1370 	int error;
1371 
1372 	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1373 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1374 
1375 	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1376 		return ERR_PTR(-ENAMETOOLONG);
1377 
1378 	/*
1379 	 * If we're doing an exclusive create, optimize away the lookup
1380 	 * but don't hash the dentry.
1381 	 */
1382 	if (nfs_is_exclusive_create(dir, flags))
1383 		return NULL;
1384 
1385 	res = ERR_PTR(-ENOMEM);
1386 	fhandle = nfs_alloc_fhandle();
1387 	fattr = nfs_alloc_fattr();
1388 	if (fhandle == NULL || fattr == NULL)
1389 		goto out;
1390 
1391 	label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1392 	if (IS_ERR(label))
1393 		goto out;
1394 
1395 	trace_nfs_lookup_enter(dir, dentry, flags);
1396 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1397 	if (error == -ENOENT)
1398 		goto no_entry;
1399 	if (error < 0) {
1400 		res = ERR_PTR(error);
1401 		goto out_label;
1402 	}
1403 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1404 	res = ERR_CAST(inode);
1405 	if (IS_ERR(res))
1406 		goto out_label;
1407 
1408 	/* Success: notify readdir to use READDIRPLUS */
1409 	nfs_advise_use_readdirplus(dir);
1410 
1411 no_entry:
1412 	res = d_splice_alias(inode, dentry);
1413 	if (res != NULL) {
1414 		if (IS_ERR(res))
1415 			goto out_label;
1416 		dentry = res;
1417 	}
1418 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1419 out_label:
1420 	trace_nfs_lookup_exit(dir, dentry, flags, error);
1421 	nfs4_label_free(label);
1422 out:
1423 	nfs_free_fattr(fattr);
1424 	nfs_free_fhandle(fhandle);
1425 	return res;
1426 }
1427 EXPORT_SYMBOL_GPL(nfs_lookup);
1428 
1429 #if IS_ENABLED(CONFIG_NFS_V4)
1430 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1431 
1432 const struct dentry_operations nfs4_dentry_operations = {
1433 	.d_revalidate	= nfs4_lookup_revalidate,
1434 	.d_delete	= nfs_dentry_delete,
1435 	.d_iput		= nfs_dentry_iput,
1436 	.d_automount	= nfs_d_automount,
1437 	.d_release	= nfs_d_release,
1438 };
1439 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1440 
1441 static fmode_t flags_to_mode(int flags)
1442 {
1443 	fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1444 	if ((flags & O_ACCMODE) != O_WRONLY)
1445 		res |= FMODE_READ;
1446 	if ((flags & O_ACCMODE) != O_RDONLY)
1447 		res |= FMODE_WRITE;
1448 	return res;
1449 }
1450 
1451 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags)
1452 {
1453 	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags));
1454 }
1455 
1456 static int do_open(struct inode *inode, struct file *filp)
1457 {
1458 	nfs_fscache_open_file(inode, filp);
1459 	return 0;
1460 }
1461 
1462 static int nfs_finish_open(struct nfs_open_context *ctx,
1463 			   struct dentry *dentry,
1464 			   struct file *file, unsigned open_flags,
1465 			   int *opened)
1466 {
1467 	int err;
1468 
1469 	err = finish_open(file, dentry, do_open, opened);
1470 	if (err)
1471 		goto out;
1472 	nfs_file_set_open_context(file, ctx);
1473 
1474 out:
1475 	return err;
1476 }
1477 
1478 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1479 		    struct file *file, unsigned open_flags,
1480 		    umode_t mode, int *opened)
1481 {
1482 	struct nfs_open_context *ctx;
1483 	struct dentry *res;
1484 	struct iattr attr = { .ia_valid = ATTR_OPEN };
1485 	struct inode *inode;
1486 	unsigned int lookup_flags = 0;
1487 	int err;
1488 
1489 	/* Expect a negative dentry */
1490 	BUG_ON(d_inode(dentry));
1491 
1492 	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1493 			dir->i_sb->s_id, dir->i_ino, dentry);
1494 
1495 	err = nfs_check_flags(open_flags);
1496 	if (err)
1497 		return err;
1498 
1499 	/* NFS only supports OPEN on regular files */
1500 	if ((open_flags & O_DIRECTORY)) {
1501 		if (!d_unhashed(dentry)) {
1502 			/*
1503 			 * Hashed negative dentry with O_DIRECTORY: dentry was
1504 			 * revalidated and is fine, no need to perform lookup
1505 			 * again
1506 			 */
1507 			return -ENOENT;
1508 		}
1509 		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1510 		goto no_open;
1511 	}
1512 
1513 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1514 		return -ENAMETOOLONG;
1515 
1516 	if (open_flags & O_CREAT) {
1517 		attr.ia_valid |= ATTR_MODE;
1518 		attr.ia_mode = mode & ~current_umask();
1519 	}
1520 	if (open_flags & O_TRUNC) {
1521 		attr.ia_valid |= ATTR_SIZE;
1522 		attr.ia_size = 0;
1523 	}
1524 
1525 	ctx = create_nfs_open_context(dentry, open_flags);
1526 	err = PTR_ERR(ctx);
1527 	if (IS_ERR(ctx))
1528 		goto out;
1529 
1530 	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1531 	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, opened);
1532 	if (IS_ERR(inode)) {
1533 		err = PTR_ERR(inode);
1534 		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1535 		put_nfs_open_context(ctx);
1536 		switch (err) {
1537 		case -ENOENT:
1538 			d_drop(dentry);
1539 			d_add(dentry, NULL);
1540 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1541 			break;
1542 		case -EISDIR:
1543 		case -ENOTDIR:
1544 			goto no_open;
1545 		case -ELOOP:
1546 			if (!(open_flags & O_NOFOLLOW))
1547 				goto no_open;
1548 			break;
1549 			/* case -EINVAL: */
1550 		default:
1551 			break;
1552 		}
1553 		goto out;
1554 	}
1555 
1556 	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags, opened);
1557 	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1558 	put_nfs_open_context(ctx);
1559 out:
1560 	return err;
1561 
1562 no_open:
1563 	res = nfs_lookup(dir, dentry, lookup_flags);
1564 	err = PTR_ERR(res);
1565 	if (IS_ERR(res))
1566 		goto out;
1567 
1568 	return finish_no_open(file, res);
1569 }
1570 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1571 
1572 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1573 {
1574 	struct inode *inode;
1575 	int ret = 0;
1576 
1577 	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1578 		goto no_open;
1579 	if (d_mountpoint(dentry))
1580 		goto no_open;
1581 	if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1)
1582 		goto no_open;
1583 
1584 	inode = d_inode(dentry);
1585 
1586 	/* We can't create new files in nfs_open_revalidate(), so we
1587 	 * optimize away revalidation of negative dentries.
1588 	 */
1589 	if (inode == NULL) {
1590 		struct dentry *parent;
1591 		struct inode *dir;
1592 
1593 		if (flags & LOOKUP_RCU) {
1594 			parent = ACCESS_ONCE(dentry->d_parent);
1595 			dir = d_inode_rcu(parent);
1596 			if (!dir)
1597 				return -ECHILD;
1598 		} else {
1599 			parent = dget_parent(dentry);
1600 			dir = d_inode(parent);
1601 		}
1602 		if (!nfs_neg_need_reval(dir, dentry, flags))
1603 			ret = 1;
1604 		else if (flags & LOOKUP_RCU)
1605 			ret = -ECHILD;
1606 		if (!(flags & LOOKUP_RCU))
1607 			dput(parent);
1608 		else if (parent != ACCESS_ONCE(dentry->d_parent))
1609 			return -ECHILD;
1610 		goto out;
1611 	}
1612 
1613 	/* NFS only supports OPEN on regular files */
1614 	if (!S_ISREG(inode->i_mode))
1615 		goto no_open;
1616 	/* We cannot do exclusive creation on a positive dentry */
1617 	if (flags & LOOKUP_EXCL)
1618 		goto no_open;
1619 
1620 	/* Let f_op->open() actually open (and revalidate) the file */
1621 	ret = 1;
1622 
1623 out:
1624 	return ret;
1625 
1626 no_open:
1627 	return nfs_lookup_revalidate(dentry, flags);
1628 }
1629 
1630 #endif /* CONFIG_NFSV4 */
1631 
1632 /*
1633  * Code common to create, mkdir, and mknod.
1634  */
1635 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1636 				struct nfs_fattr *fattr,
1637 				struct nfs4_label *label)
1638 {
1639 	struct dentry *parent = dget_parent(dentry);
1640 	struct inode *dir = d_inode(parent);
1641 	struct inode *inode;
1642 	int error = -EACCES;
1643 
1644 	d_drop(dentry);
1645 
1646 	/* We may have been initialized further down */
1647 	if (d_really_is_positive(dentry))
1648 		goto out;
1649 	if (fhandle->size == 0) {
1650 		error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1651 		if (error)
1652 			goto out_error;
1653 	}
1654 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1655 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1656 		struct nfs_server *server = NFS_SB(dentry->d_sb);
1657 		error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL);
1658 		if (error < 0)
1659 			goto out_error;
1660 	}
1661 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1662 	error = PTR_ERR(inode);
1663 	if (IS_ERR(inode))
1664 		goto out_error;
1665 	d_add(dentry, inode);
1666 out:
1667 	dput(parent);
1668 	return 0;
1669 out_error:
1670 	nfs_mark_for_revalidate(dir);
1671 	dput(parent);
1672 	return error;
1673 }
1674 EXPORT_SYMBOL_GPL(nfs_instantiate);
1675 
1676 /*
1677  * Following a failed create operation, we drop the dentry rather
1678  * than retain a negative dentry. This avoids a problem in the event
1679  * that the operation succeeded on the server, but an error in the
1680  * reply path made it appear to have failed.
1681  */
1682 int nfs_create(struct inode *dir, struct dentry *dentry,
1683 		umode_t mode, bool excl)
1684 {
1685 	struct iattr attr;
1686 	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1687 	int error;
1688 
1689 	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1690 			dir->i_sb->s_id, dir->i_ino, dentry);
1691 
1692 	attr.ia_mode = mode;
1693 	attr.ia_valid = ATTR_MODE;
1694 
1695 	trace_nfs_create_enter(dir, dentry, open_flags);
1696 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1697 	trace_nfs_create_exit(dir, dentry, open_flags, error);
1698 	if (error != 0)
1699 		goto out_err;
1700 	return 0;
1701 out_err:
1702 	d_drop(dentry);
1703 	return error;
1704 }
1705 EXPORT_SYMBOL_GPL(nfs_create);
1706 
1707 /*
1708  * See comments for nfs_proc_create regarding failed operations.
1709  */
1710 int
1711 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1712 {
1713 	struct iattr attr;
1714 	int status;
1715 
1716 	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1717 			dir->i_sb->s_id, dir->i_ino, dentry);
1718 
1719 	attr.ia_mode = mode;
1720 	attr.ia_valid = ATTR_MODE;
1721 
1722 	trace_nfs_mknod_enter(dir, dentry);
1723 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1724 	trace_nfs_mknod_exit(dir, dentry, status);
1725 	if (status != 0)
1726 		goto out_err;
1727 	return 0;
1728 out_err:
1729 	d_drop(dentry);
1730 	return status;
1731 }
1732 EXPORT_SYMBOL_GPL(nfs_mknod);
1733 
1734 /*
1735  * See comments for nfs_proc_create regarding failed operations.
1736  */
1737 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1738 {
1739 	struct iattr attr;
1740 	int error;
1741 
1742 	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1743 			dir->i_sb->s_id, dir->i_ino, dentry);
1744 
1745 	attr.ia_valid = ATTR_MODE;
1746 	attr.ia_mode = mode | S_IFDIR;
1747 
1748 	trace_nfs_mkdir_enter(dir, dentry);
1749 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1750 	trace_nfs_mkdir_exit(dir, dentry, error);
1751 	if (error != 0)
1752 		goto out_err;
1753 	return 0;
1754 out_err:
1755 	d_drop(dentry);
1756 	return error;
1757 }
1758 EXPORT_SYMBOL_GPL(nfs_mkdir);
1759 
1760 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1761 {
1762 	if (simple_positive(dentry))
1763 		d_delete(dentry);
1764 }
1765 
1766 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1767 {
1768 	int error;
1769 
1770 	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1771 			dir->i_sb->s_id, dir->i_ino, dentry);
1772 
1773 	trace_nfs_rmdir_enter(dir, dentry);
1774 	if (d_really_is_positive(dentry)) {
1775 		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1776 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1777 		/* Ensure the VFS deletes this inode */
1778 		switch (error) {
1779 		case 0:
1780 			clear_nlink(d_inode(dentry));
1781 			break;
1782 		case -ENOENT:
1783 			nfs_dentry_handle_enoent(dentry);
1784 		}
1785 		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1786 	} else
1787 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1788 	trace_nfs_rmdir_exit(dir, dentry, error);
1789 
1790 	return error;
1791 }
1792 EXPORT_SYMBOL_GPL(nfs_rmdir);
1793 
1794 /*
1795  * Remove a file after making sure there are no pending writes,
1796  * and after checking that the file has only one user.
1797  *
1798  * We invalidate the attribute cache and free the inode prior to the operation
1799  * to avoid possible races if the server reuses the inode.
1800  */
1801 static int nfs_safe_remove(struct dentry *dentry)
1802 {
1803 	struct inode *dir = d_inode(dentry->d_parent);
1804 	struct inode *inode = d_inode(dentry);
1805 	int error = -EBUSY;
1806 
1807 	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
1808 
1809 	/* If the dentry was sillyrenamed, we simply call d_delete() */
1810 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1811 		error = 0;
1812 		goto out;
1813 	}
1814 
1815 	trace_nfs_remove_enter(dir, dentry);
1816 	if (inode != NULL) {
1817 		NFS_PROTO(inode)->return_delegation(inode);
1818 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1819 		if (error == 0)
1820 			nfs_drop_nlink(inode);
1821 	} else
1822 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1823 	if (error == -ENOENT)
1824 		nfs_dentry_handle_enoent(dentry);
1825 	trace_nfs_remove_exit(dir, dentry, error);
1826 out:
1827 	return error;
1828 }
1829 
1830 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1831  *  belongs to an active ".nfs..." file and we return -EBUSY.
1832  *
1833  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1834  */
1835 int nfs_unlink(struct inode *dir, struct dentry *dentry)
1836 {
1837 	int error;
1838 	int need_rehash = 0;
1839 
1840 	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
1841 		dir->i_ino, dentry);
1842 
1843 	trace_nfs_unlink_enter(dir, dentry);
1844 	spin_lock(&dentry->d_lock);
1845 	if (d_count(dentry) > 1) {
1846 		spin_unlock(&dentry->d_lock);
1847 		/* Start asynchronous writeout of the inode */
1848 		write_inode_now(d_inode(dentry), 0);
1849 		error = nfs_sillyrename(dir, dentry);
1850 		goto out;
1851 	}
1852 	if (!d_unhashed(dentry)) {
1853 		__d_drop(dentry);
1854 		need_rehash = 1;
1855 	}
1856 	spin_unlock(&dentry->d_lock);
1857 	error = nfs_safe_remove(dentry);
1858 	if (!error || error == -ENOENT) {
1859 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1860 	} else if (need_rehash)
1861 		d_rehash(dentry);
1862 out:
1863 	trace_nfs_unlink_exit(dir, dentry, error);
1864 	return error;
1865 }
1866 EXPORT_SYMBOL_GPL(nfs_unlink);
1867 
1868 /*
1869  * To create a symbolic link, most file systems instantiate a new inode,
1870  * add a page to it containing the path, then write it out to the disk
1871  * using prepare_write/commit_write.
1872  *
1873  * Unfortunately the NFS client can't create the in-core inode first
1874  * because it needs a file handle to create an in-core inode (see
1875  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1876  * symlink request has completed on the server.
1877  *
1878  * So instead we allocate a raw page, copy the symname into it, then do
1879  * the SYMLINK request with the page as the buffer.  If it succeeds, we
1880  * now have a new file handle and can instantiate an in-core NFS inode
1881  * and move the raw page into its mapping.
1882  */
1883 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1884 {
1885 	struct page *page;
1886 	char *kaddr;
1887 	struct iattr attr;
1888 	unsigned int pathlen = strlen(symname);
1889 	int error;
1890 
1891 	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
1892 		dir->i_ino, dentry, symname);
1893 
1894 	if (pathlen > PAGE_SIZE)
1895 		return -ENAMETOOLONG;
1896 
1897 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
1898 	attr.ia_valid = ATTR_MODE;
1899 
1900 	page = alloc_page(GFP_USER);
1901 	if (!page)
1902 		return -ENOMEM;
1903 
1904 	kaddr = page_address(page);
1905 	memcpy(kaddr, symname, pathlen);
1906 	if (pathlen < PAGE_SIZE)
1907 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1908 
1909 	trace_nfs_symlink_enter(dir, dentry);
1910 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1911 	trace_nfs_symlink_exit(dir, dentry, error);
1912 	if (error != 0) {
1913 		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1914 			dir->i_sb->s_id, dir->i_ino,
1915 			dentry, symname, error);
1916 		d_drop(dentry);
1917 		__free_page(page);
1918 		return error;
1919 	}
1920 
1921 	/*
1922 	 * No big deal if we can't add this page to the page cache here.
1923 	 * READLINK will get the missing page from the server if needed.
1924 	 */
1925 	if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
1926 							GFP_KERNEL)) {
1927 		SetPageUptodate(page);
1928 		unlock_page(page);
1929 		/*
1930 		 * add_to_page_cache_lru() grabs an extra page refcount.
1931 		 * Drop it here to avoid leaking this page later.
1932 		 */
1933 		put_page(page);
1934 	} else
1935 		__free_page(page);
1936 
1937 	return 0;
1938 }
1939 EXPORT_SYMBOL_GPL(nfs_symlink);
1940 
1941 int
1942 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1943 {
1944 	struct inode *inode = d_inode(old_dentry);
1945 	int error;
1946 
1947 	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
1948 		old_dentry, dentry);
1949 
1950 	trace_nfs_link_enter(inode, dir, dentry);
1951 	NFS_PROTO(inode)->return_delegation(inode);
1952 
1953 	d_drop(dentry);
1954 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1955 	if (error == 0) {
1956 		ihold(inode);
1957 		d_add(dentry, inode);
1958 	}
1959 	trace_nfs_link_exit(inode, dir, dentry, error);
1960 	return error;
1961 }
1962 EXPORT_SYMBOL_GPL(nfs_link);
1963 
1964 /*
1965  * RENAME
1966  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1967  * different file handle for the same inode after a rename (e.g. when
1968  * moving to a different directory). A fail-safe method to do so would
1969  * be to look up old_dir/old_name, create a link to new_dir/new_name and
1970  * rename the old file using the sillyrename stuff. This way, the original
1971  * file in old_dir will go away when the last process iput()s the inode.
1972  *
1973  * FIXED.
1974  *
1975  * It actually works quite well. One needs to have the possibility for
1976  * at least one ".nfs..." file in each directory the file ever gets
1977  * moved or linked to which happens automagically with the new
1978  * implementation that only depends on the dcache stuff instead of
1979  * using the inode layer
1980  *
1981  * Unfortunately, things are a little more complicated than indicated
1982  * above. For a cross-directory move, we want to make sure we can get
1983  * rid of the old inode after the operation.  This means there must be
1984  * no pending writes (if it's a file), and the use count must be 1.
1985  * If these conditions are met, we can drop the dentries before doing
1986  * the rename.
1987  */
1988 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1989 		      struct inode *new_dir, struct dentry *new_dentry)
1990 {
1991 	struct inode *old_inode = d_inode(old_dentry);
1992 	struct inode *new_inode = d_inode(new_dentry);
1993 	struct dentry *dentry = NULL, *rehash = NULL;
1994 	struct rpc_task *task;
1995 	int error = -EBUSY;
1996 
1997 	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
1998 		 old_dentry, new_dentry,
1999 		 d_count(new_dentry));
2000 
2001 	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2002 	/*
2003 	 * For non-directories, check whether the target is busy and if so,
2004 	 * make a copy of the dentry and then do a silly-rename. If the
2005 	 * silly-rename succeeds, the copied dentry is hashed and becomes
2006 	 * the new target.
2007 	 */
2008 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2009 		/*
2010 		 * To prevent any new references to the target during the
2011 		 * rename, we unhash the dentry in advance.
2012 		 */
2013 		if (!d_unhashed(new_dentry)) {
2014 			d_drop(new_dentry);
2015 			rehash = new_dentry;
2016 		}
2017 
2018 		if (d_count(new_dentry) > 2) {
2019 			int err;
2020 
2021 			/* copy the target dentry's name */
2022 			dentry = d_alloc(new_dentry->d_parent,
2023 					 &new_dentry->d_name);
2024 			if (!dentry)
2025 				goto out;
2026 
2027 			/* silly-rename the existing target ... */
2028 			err = nfs_sillyrename(new_dir, new_dentry);
2029 			if (err)
2030 				goto out;
2031 
2032 			new_dentry = dentry;
2033 			rehash = NULL;
2034 			new_inode = NULL;
2035 		}
2036 	}
2037 
2038 	NFS_PROTO(old_inode)->return_delegation(old_inode);
2039 	if (new_inode != NULL)
2040 		NFS_PROTO(new_inode)->return_delegation(new_inode);
2041 
2042 	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2043 	if (IS_ERR(task)) {
2044 		error = PTR_ERR(task);
2045 		goto out;
2046 	}
2047 
2048 	error = rpc_wait_for_completion_task(task);
2049 	if (error == 0)
2050 		error = task->tk_status;
2051 	rpc_put_task(task);
2052 	nfs_mark_for_revalidate(old_inode);
2053 out:
2054 	if (rehash)
2055 		d_rehash(rehash);
2056 	trace_nfs_rename_exit(old_dir, old_dentry,
2057 			new_dir, new_dentry, error);
2058 	if (!error) {
2059 		if (new_inode != NULL)
2060 			nfs_drop_nlink(new_inode);
2061 		d_move(old_dentry, new_dentry);
2062 		nfs_set_verifier(new_dentry,
2063 					nfs_save_change_attribute(new_dir));
2064 	} else if (error == -ENOENT)
2065 		nfs_dentry_handle_enoent(old_dentry);
2066 
2067 	/* new dentry created? */
2068 	if (dentry)
2069 		dput(dentry);
2070 	return error;
2071 }
2072 EXPORT_SYMBOL_GPL(nfs_rename);
2073 
2074 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2075 static LIST_HEAD(nfs_access_lru_list);
2076 static atomic_long_t nfs_access_nr_entries;
2077 
2078 static unsigned long nfs_access_max_cachesize = ULONG_MAX;
2079 module_param(nfs_access_max_cachesize, ulong, 0644);
2080 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2081 
2082 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2083 {
2084 	put_rpccred(entry->cred);
2085 	kfree_rcu(entry, rcu_head);
2086 	smp_mb__before_atomic();
2087 	atomic_long_dec(&nfs_access_nr_entries);
2088 	smp_mb__after_atomic();
2089 }
2090 
2091 static void nfs_access_free_list(struct list_head *head)
2092 {
2093 	struct nfs_access_entry *cache;
2094 
2095 	while (!list_empty(head)) {
2096 		cache = list_entry(head->next, struct nfs_access_entry, lru);
2097 		list_del(&cache->lru);
2098 		nfs_access_free_entry(cache);
2099 	}
2100 }
2101 
2102 static unsigned long
2103 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2104 {
2105 	LIST_HEAD(head);
2106 	struct nfs_inode *nfsi, *next;
2107 	struct nfs_access_entry *cache;
2108 	long freed = 0;
2109 
2110 	spin_lock(&nfs_access_lru_lock);
2111 	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2112 		struct inode *inode;
2113 
2114 		if (nr_to_scan-- == 0)
2115 			break;
2116 		inode = &nfsi->vfs_inode;
2117 		spin_lock(&inode->i_lock);
2118 		if (list_empty(&nfsi->access_cache_entry_lru))
2119 			goto remove_lru_entry;
2120 		cache = list_entry(nfsi->access_cache_entry_lru.next,
2121 				struct nfs_access_entry, lru);
2122 		list_move(&cache->lru, &head);
2123 		rb_erase(&cache->rb_node, &nfsi->access_cache);
2124 		freed++;
2125 		if (!list_empty(&nfsi->access_cache_entry_lru))
2126 			list_move_tail(&nfsi->access_cache_inode_lru,
2127 					&nfs_access_lru_list);
2128 		else {
2129 remove_lru_entry:
2130 			list_del_init(&nfsi->access_cache_inode_lru);
2131 			smp_mb__before_atomic();
2132 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2133 			smp_mb__after_atomic();
2134 		}
2135 		spin_unlock(&inode->i_lock);
2136 	}
2137 	spin_unlock(&nfs_access_lru_lock);
2138 	nfs_access_free_list(&head);
2139 	return freed;
2140 }
2141 
2142 unsigned long
2143 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2144 {
2145 	int nr_to_scan = sc->nr_to_scan;
2146 	gfp_t gfp_mask = sc->gfp_mask;
2147 
2148 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2149 		return SHRINK_STOP;
2150 	return nfs_do_access_cache_scan(nr_to_scan);
2151 }
2152 
2153 
2154 unsigned long
2155 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2156 {
2157 	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2158 }
2159 
2160 static void
2161 nfs_access_cache_enforce_limit(void)
2162 {
2163 	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2164 	unsigned long diff;
2165 	unsigned int nr_to_scan;
2166 
2167 	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2168 		return;
2169 	nr_to_scan = 100;
2170 	diff = nr_entries - nfs_access_max_cachesize;
2171 	if (diff < nr_to_scan)
2172 		nr_to_scan = diff;
2173 	nfs_do_access_cache_scan(nr_to_scan);
2174 }
2175 
2176 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2177 {
2178 	struct rb_root *root_node = &nfsi->access_cache;
2179 	struct rb_node *n;
2180 	struct nfs_access_entry *entry;
2181 
2182 	/* Unhook entries from the cache */
2183 	while ((n = rb_first(root_node)) != NULL) {
2184 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2185 		rb_erase(n, root_node);
2186 		list_move(&entry->lru, head);
2187 	}
2188 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2189 }
2190 
2191 void nfs_access_zap_cache(struct inode *inode)
2192 {
2193 	LIST_HEAD(head);
2194 
2195 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2196 		return;
2197 	/* Remove from global LRU init */
2198 	spin_lock(&nfs_access_lru_lock);
2199 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2200 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2201 
2202 	spin_lock(&inode->i_lock);
2203 	__nfs_access_zap_cache(NFS_I(inode), &head);
2204 	spin_unlock(&inode->i_lock);
2205 	spin_unlock(&nfs_access_lru_lock);
2206 	nfs_access_free_list(&head);
2207 }
2208 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2209 
2210 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2211 {
2212 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2213 	struct nfs_access_entry *entry;
2214 
2215 	while (n != NULL) {
2216 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2217 
2218 		if (cred < entry->cred)
2219 			n = n->rb_left;
2220 		else if (cred > entry->cred)
2221 			n = n->rb_right;
2222 		else
2223 			return entry;
2224 	}
2225 	return NULL;
2226 }
2227 
2228 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2229 {
2230 	struct nfs_inode *nfsi = NFS_I(inode);
2231 	struct nfs_access_entry *cache;
2232 	int err = -ENOENT;
2233 
2234 	spin_lock(&inode->i_lock);
2235 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2236 		goto out_zap;
2237 	cache = nfs_access_search_rbtree(inode, cred);
2238 	if (cache == NULL)
2239 		goto out;
2240 	if (!nfs_have_delegated_attributes(inode) &&
2241 	    !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2242 		goto out_stale;
2243 	res->jiffies = cache->jiffies;
2244 	res->cred = cache->cred;
2245 	res->mask = cache->mask;
2246 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2247 	err = 0;
2248 out:
2249 	spin_unlock(&inode->i_lock);
2250 	return err;
2251 out_stale:
2252 	rb_erase(&cache->rb_node, &nfsi->access_cache);
2253 	list_del(&cache->lru);
2254 	spin_unlock(&inode->i_lock);
2255 	nfs_access_free_entry(cache);
2256 	return -ENOENT;
2257 out_zap:
2258 	spin_unlock(&inode->i_lock);
2259 	nfs_access_zap_cache(inode);
2260 	return -ENOENT;
2261 }
2262 
2263 static int nfs_access_get_cached_rcu(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2264 {
2265 	/* Only check the most recently returned cache entry,
2266 	 * but do it without locking.
2267 	 */
2268 	struct nfs_inode *nfsi = NFS_I(inode);
2269 	struct nfs_access_entry *cache;
2270 	int err = -ECHILD;
2271 	struct list_head *lh;
2272 
2273 	rcu_read_lock();
2274 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2275 		goto out;
2276 	lh = rcu_dereference(nfsi->access_cache_entry_lru.prev);
2277 	cache = list_entry(lh, struct nfs_access_entry, lru);
2278 	if (lh == &nfsi->access_cache_entry_lru ||
2279 	    cred != cache->cred)
2280 		cache = NULL;
2281 	if (cache == NULL)
2282 		goto out;
2283 	if (!nfs_have_delegated_attributes(inode) &&
2284 	    !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2285 		goto out;
2286 	res->jiffies = cache->jiffies;
2287 	res->cred = cache->cred;
2288 	res->mask = cache->mask;
2289 	err = 0;
2290 out:
2291 	rcu_read_unlock();
2292 	return err;
2293 }
2294 
2295 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2296 {
2297 	struct nfs_inode *nfsi = NFS_I(inode);
2298 	struct rb_root *root_node = &nfsi->access_cache;
2299 	struct rb_node **p = &root_node->rb_node;
2300 	struct rb_node *parent = NULL;
2301 	struct nfs_access_entry *entry;
2302 
2303 	spin_lock(&inode->i_lock);
2304 	while (*p != NULL) {
2305 		parent = *p;
2306 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2307 
2308 		if (set->cred < entry->cred)
2309 			p = &parent->rb_left;
2310 		else if (set->cred > entry->cred)
2311 			p = &parent->rb_right;
2312 		else
2313 			goto found;
2314 	}
2315 	rb_link_node(&set->rb_node, parent, p);
2316 	rb_insert_color(&set->rb_node, root_node);
2317 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2318 	spin_unlock(&inode->i_lock);
2319 	return;
2320 found:
2321 	rb_replace_node(parent, &set->rb_node, root_node);
2322 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2323 	list_del(&entry->lru);
2324 	spin_unlock(&inode->i_lock);
2325 	nfs_access_free_entry(entry);
2326 }
2327 
2328 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2329 {
2330 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2331 	if (cache == NULL)
2332 		return;
2333 	RB_CLEAR_NODE(&cache->rb_node);
2334 	cache->jiffies = set->jiffies;
2335 	cache->cred = get_rpccred(set->cred);
2336 	cache->mask = set->mask;
2337 
2338 	/* The above field assignments must be visible
2339 	 * before this item appears on the lru.  We cannot easily
2340 	 * use rcu_assign_pointer, so just force the memory barrier.
2341 	 */
2342 	smp_wmb();
2343 	nfs_access_add_rbtree(inode, cache);
2344 
2345 	/* Update accounting */
2346 	smp_mb__before_atomic();
2347 	atomic_long_inc(&nfs_access_nr_entries);
2348 	smp_mb__after_atomic();
2349 
2350 	/* Add inode to global LRU list */
2351 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2352 		spin_lock(&nfs_access_lru_lock);
2353 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2354 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2355 					&nfs_access_lru_list);
2356 		spin_unlock(&nfs_access_lru_lock);
2357 	}
2358 	nfs_access_cache_enforce_limit();
2359 }
2360 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2361 
2362 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2363 {
2364 	entry->mask = 0;
2365 	if (access_result & NFS4_ACCESS_READ)
2366 		entry->mask |= MAY_READ;
2367 	if (access_result &
2368 	    (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
2369 		entry->mask |= MAY_WRITE;
2370 	if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
2371 		entry->mask |= MAY_EXEC;
2372 }
2373 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2374 
2375 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2376 {
2377 	struct nfs_access_entry cache;
2378 	int status;
2379 
2380 	trace_nfs_access_enter(inode);
2381 
2382 	status = nfs_access_get_cached_rcu(inode, cred, &cache);
2383 	if (status != 0)
2384 		status = nfs_access_get_cached(inode, cred, &cache);
2385 	if (status == 0)
2386 		goto out_cached;
2387 
2388 	status = -ECHILD;
2389 	if (mask & MAY_NOT_BLOCK)
2390 		goto out;
2391 
2392 	/* Be clever: ask server to check for all possible rights */
2393 	cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2394 	cache.cred = cred;
2395 	cache.jiffies = jiffies;
2396 	status = NFS_PROTO(inode)->access(inode, &cache);
2397 	if (status != 0) {
2398 		if (status == -ESTALE) {
2399 			nfs_zap_caches(inode);
2400 			if (!S_ISDIR(inode->i_mode))
2401 				set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2402 		}
2403 		goto out;
2404 	}
2405 	nfs_access_add_cache(inode, &cache);
2406 out_cached:
2407 	if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2408 		status = -EACCES;
2409 out:
2410 	trace_nfs_access_exit(inode, status);
2411 	return status;
2412 }
2413 
2414 static int nfs_open_permission_mask(int openflags)
2415 {
2416 	int mask = 0;
2417 
2418 	if (openflags & __FMODE_EXEC) {
2419 		/* ONLY check exec rights */
2420 		mask = MAY_EXEC;
2421 	} else {
2422 		if ((openflags & O_ACCMODE) != O_WRONLY)
2423 			mask |= MAY_READ;
2424 		if ((openflags & O_ACCMODE) != O_RDONLY)
2425 			mask |= MAY_WRITE;
2426 	}
2427 
2428 	return mask;
2429 }
2430 
2431 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2432 {
2433 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2434 }
2435 EXPORT_SYMBOL_GPL(nfs_may_open);
2436 
2437 static int nfs_execute_ok(struct inode *inode, int mask)
2438 {
2439 	struct nfs_server *server = NFS_SERVER(inode);
2440 	int ret;
2441 
2442 	if (mask & MAY_NOT_BLOCK)
2443 		ret = nfs_revalidate_inode_rcu(server, inode);
2444 	else
2445 		ret = nfs_revalidate_inode(server, inode);
2446 	if (ret == 0 && !execute_ok(inode))
2447 		ret = -EACCES;
2448 	return ret;
2449 }
2450 
2451 int nfs_permission(struct inode *inode, int mask)
2452 {
2453 	struct rpc_cred *cred;
2454 	int res = 0;
2455 
2456 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2457 
2458 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2459 		goto out;
2460 	/* Is this sys_access() ? */
2461 	if (mask & (MAY_ACCESS | MAY_CHDIR))
2462 		goto force_lookup;
2463 
2464 	switch (inode->i_mode & S_IFMT) {
2465 		case S_IFLNK:
2466 			goto out;
2467 		case S_IFREG:
2468 			if ((mask & MAY_OPEN) &&
2469 			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2470 				return 0;
2471 			break;
2472 		case S_IFDIR:
2473 			/*
2474 			 * Optimize away all write operations, since the server
2475 			 * will check permissions when we perform the op.
2476 			 */
2477 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2478 				goto out;
2479 	}
2480 
2481 force_lookup:
2482 	if (!NFS_PROTO(inode)->access)
2483 		goto out_notsup;
2484 
2485 	/* Always try fast lookups first */
2486 	rcu_read_lock();
2487 	cred = rpc_lookup_cred_nonblock();
2488 	if (!IS_ERR(cred))
2489 		res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK);
2490 	else
2491 		res = PTR_ERR(cred);
2492 	rcu_read_unlock();
2493 	if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) {
2494 		/* Fast lookup failed, try the slow way */
2495 		cred = rpc_lookup_cred();
2496 		if (!IS_ERR(cred)) {
2497 			res = nfs_do_access(inode, cred, mask);
2498 			put_rpccred(cred);
2499 		} else
2500 			res = PTR_ERR(cred);
2501 	}
2502 out:
2503 	if (!res && (mask & MAY_EXEC))
2504 		res = nfs_execute_ok(inode, mask);
2505 
2506 	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2507 		inode->i_sb->s_id, inode->i_ino, mask, res);
2508 	return res;
2509 out_notsup:
2510 	if (mask & MAY_NOT_BLOCK)
2511 		return -ECHILD;
2512 
2513 	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2514 	if (res == 0)
2515 		res = generic_permission(inode, mask);
2516 	goto out;
2517 }
2518 EXPORT_SYMBOL_GPL(nfs_permission);
2519 
2520 /*
2521  * Local variables:
2522  *  version-control: t
2523  *  kept-new-versions: 5
2524  * End:
2525  */
2526