xref: /openbmc/linux/fs/nfs/dir.c (revision 93b8959a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/nfs/dir.c
4  *
5  *  Copyright (C) 1992  Rick Sladkey
6  *
7  *  nfs directory handling functions
8  *
9  * 10 Apr 1996	Added silly rename for unlink	--okir
10  * 28 Sep 1996	Improved directory cache --okir
11  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
12  *              Re-implemented silly rename for unlink, newly implemented
13  *              silly rename for nfs_rename() following the suggestions
14  *              of Olaf Kirch (okir) found in this file.
15  *              Following Linus comments on my original hack, this version
16  *              depends only on the dcache stuff and doesn't touch the inode
17  *              layer (iput() and friends).
18  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
19  */
20 
21 #include <linux/module.h>
22 #include <linux/time.h>
23 #include <linux/errno.h>
24 #include <linux/stat.h>
25 #include <linux/fcntl.h>
26 #include <linux/string.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/mm.h>
30 #include <linux/sunrpc/clnt.h>
31 #include <linux/nfs_fs.h>
32 #include <linux/nfs_mount.h>
33 #include <linux/pagemap.h>
34 #include <linux/pagevec.h>
35 #include <linux/namei.h>
36 #include <linux/mount.h>
37 #include <linux/swap.h>
38 #include <linux/sched.h>
39 #include <linux/kmemleak.h>
40 #include <linux/xattr.h>
41 
42 #include "delegation.h"
43 #include "iostat.h"
44 #include "internal.h"
45 #include "fscache.h"
46 
47 #include "nfstrace.h"
48 
49 /* #define NFS_DEBUG_VERBOSE 1 */
50 
51 static int nfs_opendir(struct inode *, struct file *);
52 static int nfs_closedir(struct inode *, struct file *);
53 static int nfs_readdir(struct file *, struct dir_context *);
54 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
55 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
56 static void nfs_readdir_clear_array(struct page*);
57 
58 const struct file_operations nfs_dir_operations = {
59 	.llseek		= nfs_llseek_dir,
60 	.read		= generic_read_dir,
61 	.iterate_shared	= nfs_readdir,
62 	.open		= nfs_opendir,
63 	.release	= nfs_closedir,
64 	.fsync		= nfs_fsync_dir,
65 };
66 
67 const struct address_space_operations nfs_dir_aops = {
68 	.freepage = nfs_readdir_clear_array,
69 };
70 
71 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir)
72 {
73 	struct nfs_inode *nfsi = NFS_I(dir);
74 	struct nfs_open_dir_context *ctx;
75 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
76 	if (ctx != NULL) {
77 		ctx->duped = 0;
78 		ctx->attr_gencount = nfsi->attr_gencount;
79 		ctx->dir_cookie = 0;
80 		ctx->dup_cookie = 0;
81 		spin_lock(&dir->i_lock);
82 		if (list_empty(&nfsi->open_files) &&
83 		    (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
84 			nfsi->cache_validity |= NFS_INO_INVALID_DATA |
85 				NFS_INO_REVAL_FORCED;
86 		list_add(&ctx->list, &nfsi->open_files);
87 		spin_unlock(&dir->i_lock);
88 		return ctx;
89 	}
90 	return  ERR_PTR(-ENOMEM);
91 }
92 
93 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
94 {
95 	spin_lock(&dir->i_lock);
96 	list_del(&ctx->list);
97 	spin_unlock(&dir->i_lock);
98 	kfree(ctx);
99 }
100 
101 /*
102  * Open file
103  */
104 static int
105 nfs_opendir(struct inode *inode, struct file *filp)
106 {
107 	int res = 0;
108 	struct nfs_open_dir_context *ctx;
109 
110 	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
111 
112 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
113 
114 	ctx = alloc_nfs_open_dir_context(inode);
115 	if (IS_ERR(ctx)) {
116 		res = PTR_ERR(ctx);
117 		goto out;
118 	}
119 	filp->private_data = ctx;
120 out:
121 	return res;
122 }
123 
124 static int
125 nfs_closedir(struct inode *inode, struct file *filp)
126 {
127 	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
128 	return 0;
129 }
130 
131 struct nfs_cache_array_entry {
132 	u64 cookie;
133 	u64 ino;
134 	const char *name;
135 	unsigned int name_len;
136 	unsigned char d_type;
137 };
138 
139 struct nfs_cache_array {
140 	u64 last_cookie;
141 	unsigned int size;
142 	unsigned char page_full : 1,
143 		      page_is_eof : 1;
144 	struct nfs_cache_array_entry array[];
145 };
146 
147 typedef struct nfs_readdir_descriptor {
148 	struct file	*file;
149 	struct page	*page;
150 	struct dir_context *ctx;
151 	pgoff_t		page_index;
152 	u64		dir_cookie;
153 	u64		last_cookie;
154 	u64		dup_cookie;
155 	loff_t		current_index;
156 	loff_t		prev_index;
157 
158 	unsigned long	dir_verifier;
159 	unsigned long	timestamp;
160 	unsigned long	gencount;
161 	unsigned long	attr_gencount;
162 	unsigned int	cache_entry_index;
163 	signed char duped;
164 	bool plus;
165 	bool eof;
166 } nfs_readdir_descriptor_t;
167 
168 static void nfs_readdir_array_init(struct nfs_cache_array *array)
169 {
170 	memset(array, 0, sizeof(struct nfs_cache_array));
171 }
172 
173 static void nfs_readdir_page_init_array(struct page *page, u64 last_cookie)
174 {
175 	struct nfs_cache_array *array;
176 
177 	array = kmap_atomic(page);
178 	nfs_readdir_array_init(array);
179 	array->last_cookie = last_cookie;
180 	kunmap_atomic(array);
181 }
182 
183 /*
184  * we are freeing strings created by nfs_add_to_readdir_array()
185  */
186 static
187 void nfs_readdir_clear_array(struct page *page)
188 {
189 	struct nfs_cache_array *array;
190 	int i;
191 
192 	array = kmap_atomic(page);
193 	for (i = 0; i < array->size; i++)
194 		kfree(array->array[i].name);
195 	nfs_readdir_array_init(array);
196 	kunmap_atomic(array);
197 }
198 
199 static void nfs_readdir_array_set_eof(struct nfs_cache_array *array)
200 {
201 	array->page_is_eof = 1;
202 	array->page_full = 1;
203 }
204 
205 static bool nfs_readdir_array_is_full(struct nfs_cache_array *array)
206 {
207 	return array->page_full;
208 }
209 
210 /*
211  * the caller is responsible for freeing qstr.name
212  * when called by nfs_readdir_add_to_array, the strings will be freed in
213  * nfs_clear_readdir_array()
214  */
215 static const char *nfs_readdir_copy_name(const char *name, unsigned int len)
216 {
217 	const char *ret = kmemdup_nul(name, len, GFP_KERNEL);
218 
219 	/*
220 	 * Avoid a kmemleak false positive. The pointer to the name is stored
221 	 * in a page cache page which kmemleak does not scan.
222 	 */
223 	if (ret != NULL)
224 		kmemleak_not_leak(ret);
225 	return ret;
226 }
227 
228 /*
229  * Check that the next array entry lies entirely within the page bounds
230  */
231 static int nfs_readdir_array_can_expand(struct nfs_cache_array *array)
232 {
233 	struct nfs_cache_array_entry *cache_entry;
234 
235 	if (array->page_full)
236 		return -ENOSPC;
237 	cache_entry = &array->array[array->size + 1];
238 	if ((char *)cache_entry - (char *)array > PAGE_SIZE) {
239 		array->page_full = 1;
240 		return -ENOSPC;
241 	}
242 	return 0;
243 }
244 
245 static
246 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
247 {
248 	struct nfs_cache_array *array;
249 	struct nfs_cache_array_entry *cache_entry;
250 	const char *name;
251 	int ret;
252 
253 	name = nfs_readdir_copy_name(entry->name, entry->len);
254 	if (!name)
255 		return -ENOMEM;
256 
257 	array = kmap_atomic(page);
258 	ret = nfs_readdir_array_can_expand(array);
259 	if (ret) {
260 		kfree(name);
261 		goto out;
262 	}
263 
264 	cache_entry = &array->array[array->size];
265 	cache_entry->cookie = entry->prev_cookie;
266 	cache_entry->ino = entry->ino;
267 	cache_entry->d_type = entry->d_type;
268 	cache_entry->name_len = entry->len;
269 	cache_entry->name = name;
270 	array->last_cookie = entry->cookie;
271 	array->size++;
272 	if (entry->eof != 0)
273 		nfs_readdir_array_set_eof(array);
274 out:
275 	kunmap_atomic(array);
276 	return ret;
277 }
278 
279 static struct page *nfs_readdir_page_get_locked(struct address_space *mapping,
280 						pgoff_t index, u64 last_cookie)
281 {
282 	struct page *page;
283 
284 	page = grab_cache_page(mapping, index);
285 	if (page && !PageUptodate(page)) {
286 		nfs_readdir_page_init_array(page, last_cookie);
287 		if (invalidate_inode_pages2_range(mapping, index + 1, -1) < 0)
288 			nfs_zap_mapping(mapping->host, mapping);
289 		SetPageUptodate(page);
290 	}
291 
292 	return page;
293 }
294 
295 static u64 nfs_readdir_page_last_cookie(struct page *page)
296 {
297 	struct nfs_cache_array *array;
298 	u64 ret;
299 
300 	array = kmap_atomic(page);
301 	ret = array->last_cookie;
302 	kunmap_atomic(array);
303 	return ret;
304 }
305 
306 static bool nfs_readdir_page_needs_filling(struct page *page)
307 {
308 	struct nfs_cache_array *array;
309 	bool ret;
310 
311 	array = kmap_atomic(page);
312 	ret = !nfs_readdir_array_is_full(array);
313 	kunmap_atomic(array);
314 	return ret;
315 }
316 
317 static void nfs_readdir_page_set_eof(struct page *page)
318 {
319 	struct nfs_cache_array *array;
320 
321 	array = kmap_atomic(page);
322 	nfs_readdir_array_set_eof(array);
323 	kunmap_atomic(array);
324 }
325 
326 static void nfs_readdir_page_unlock_and_put(struct page *page)
327 {
328 	unlock_page(page);
329 	put_page(page);
330 }
331 
332 static struct page *nfs_readdir_page_get_next(struct address_space *mapping,
333 					      pgoff_t index, u64 cookie)
334 {
335 	struct page *page;
336 
337 	page = nfs_readdir_page_get_locked(mapping, index, cookie);
338 	if (page) {
339 		if (nfs_readdir_page_last_cookie(page) == cookie)
340 			return page;
341 		nfs_readdir_page_unlock_and_put(page);
342 	}
343 	return NULL;
344 }
345 
346 static inline
347 int is_32bit_api(void)
348 {
349 #ifdef CONFIG_COMPAT
350 	return in_compat_syscall();
351 #else
352 	return (BITS_PER_LONG == 32);
353 #endif
354 }
355 
356 static
357 bool nfs_readdir_use_cookie(const struct file *filp)
358 {
359 	if ((filp->f_mode & FMODE_32BITHASH) ||
360 	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
361 		return false;
362 	return true;
363 }
364 
365 static
366 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
367 {
368 	loff_t diff = desc->ctx->pos - desc->current_index;
369 	unsigned int index;
370 
371 	if (diff < 0)
372 		goto out_eof;
373 	if (diff >= array->size) {
374 		if (array->page_is_eof)
375 			goto out_eof;
376 		return -EAGAIN;
377 	}
378 
379 	index = (unsigned int)diff;
380 	desc->dir_cookie = array->array[index].cookie;
381 	desc->cache_entry_index = index;
382 	return 0;
383 out_eof:
384 	desc->eof = true;
385 	return -EBADCOOKIE;
386 }
387 
388 static bool
389 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
390 {
391 	if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
392 		return false;
393 	smp_rmb();
394 	return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
395 }
396 
397 static
398 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
399 {
400 	int i;
401 	loff_t new_pos;
402 	int status = -EAGAIN;
403 
404 	for (i = 0; i < array->size; i++) {
405 		if (array->array[i].cookie == desc->dir_cookie) {
406 			struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
407 
408 			new_pos = desc->current_index + i;
409 			if (desc->attr_gencount != nfsi->attr_gencount ||
410 			    !nfs_readdir_inode_mapping_valid(nfsi)) {
411 				desc->duped = 0;
412 				desc->attr_gencount = nfsi->attr_gencount;
413 			} else if (new_pos < desc->prev_index) {
414 				if (desc->duped > 0
415 				    && desc->dup_cookie == desc->dir_cookie) {
416 					if (printk_ratelimit()) {
417 						pr_notice("NFS: directory %pD2 contains a readdir loop."
418 								"Please contact your server vendor.  "
419 								"The file: %s has duplicate cookie %llu\n",
420 								desc->file, array->array[i].name, desc->dir_cookie);
421 					}
422 					status = -ELOOP;
423 					goto out;
424 				}
425 				desc->dup_cookie = desc->dir_cookie;
426 				desc->duped = -1;
427 			}
428 			if (nfs_readdir_use_cookie(desc->file))
429 				desc->ctx->pos = desc->dir_cookie;
430 			else
431 				desc->ctx->pos = new_pos;
432 			desc->prev_index = new_pos;
433 			desc->cache_entry_index = i;
434 			return 0;
435 		}
436 	}
437 	if (array->page_is_eof) {
438 		status = -EBADCOOKIE;
439 		if (desc->dir_cookie == array->last_cookie)
440 			desc->eof = true;
441 	}
442 out:
443 	return status;
444 }
445 
446 static
447 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
448 {
449 	struct nfs_cache_array *array;
450 	int status;
451 
452 	array = kmap_atomic(desc->page);
453 
454 	if (desc->dir_cookie == 0)
455 		status = nfs_readdir_search_for_pos(array, desc);
456 	else
457 		status = nfs_readdir_search_for_cookie(array, desc);
458 
459 	if (status == -EAGAIN) {
460 		desc->last_cookie = array->last_cookie;
461 		desc->current_index += array->size;
462 		desc->page_index++;
463 	}
464 	kunmap_atomic(array);
465 	return status;
466 }
467 
468 /* Fill a page with xdr information before transferring to the cache page */
469 static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc,
470 				  u64 cookie, struct page **pages,
471 				  size_t bufsize)
472 {
473 	struct file *file = desc->file;
474 	struct inode *inode = file_inode(file);
475 	unsigned long	timestamp, gencount;
476 	int		error;
477 
478  again:
479 	timestamp = jiffies;
480 	gencount = nfs_inc_attr_generation_counter();
481 	desc->dir_verifier = nfs_save_change_attribute(inode);
482 	error = NFS_PROTO(inode)->readdir(file_dentry(file), file->f_cred,
483 					  cookie, pages, bufsize, desc->plus);
484 	if (error < 0) {
485 		/* We requested READDIRPLUS, but the server doesn't grok it */
486 		if (error == -ENOTSUPP && desc->plus) {
487 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
488 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
489 			desc->plus = false;
490 			goto again;
491 		}
492 		goto error;
493 	}
494 	desc->timestamp = timestamp;
495 	desc->gencount = gencount;
496 error:
497 	return error;
498 }
499 
500 static int xdr_decode(nfs_readdir_descriptor_t *desc,
501 		      struct nfs_entry *entry, struct xdr_stream *xdr)
502 {
503 	struct inode *inode = file_inode(desc->file);
504 	int error;
505 
506 	error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
507 	if (error)
508 		return error;
509 	entry->fattr->time_start = desc->timestamp;
510 	entry->fattr->gencount = desc->gencount;
511 	return 0;
512 }
513 
514 /* Match file and dirent using either filehandle or fileid
515  * Note: caller is responsible for checking the fsid
516  */
517 static
518 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
519 {
520 	struct inode *inode;
521 	struct nfs_inode *nfsi;
522 
523 	if (d_really_is_negative(dentry))
524 		return 0;
525 
526 	inode = d_inode(dentry);
527 	if (is_bad_inode(inode) || NFS_STALE(inode))
528 		return 0;
529 
530 	nfsi = NFS_I(inode);
531 	if (entry->fattr->fileid != nfsi->fileid)
532 		return 0;
533 	if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
534 		return 0;
535 	return 1;
536 }
537 
538 static
539 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
540 {
541 	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
542 		return false;
543 	if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
544 		return true;
545 	if (ctx->pos == 0)
546 		return true;
547 	return false;
548 }
549 
550 /*
551  * This function is called by the lookup and getattr code to request the
552  * use of readdirplus to accelerate any future lookups in the same
553  * directory.
554  */
555 void nfs_advise_use_readdirplus(struct inode *dir)
556 {
557 	struct nfs_inode *nfsi = NFS_I(dir);
558 
559 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
560 	    !list_empty(&nfsi->open_files))
561 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
562 }
563 
564 /*
565  * This function is mainly for use by nfs_getattr().
566  *
567  * If this is an 'ls -l', we want to force use of readdirplus.
568  * Do this by checking if there is an active file descriptor
569  * and calling nfs_advise_use_readdirplus, then forcing a
570  * cache flush.
571  */
572 void nfs_force_use_readdirplus(struct inode *dir)
573 {
574 	struct nfs_inode *nfsi = NFS_I(dir);
575 
576 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
577 	    !list_empty(&nfsi->open_files)) {
578 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
579 		invalidate_mapping_pages(dir->i_mapping,
580 			nfsi->page_index + 1, -1);
581 	}
582 }
583 
584 static
585 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
586 		unsigned long dir_verifier)
587 {
588 	struct qstr filename = QSTR_INIT(entry->name, entry->len);
589 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
590 	struct dentry *dentry;
591 	struct dentry *alias;
592 	struct inode *inode;
593 	int status;
594 
595 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
596 		return;
597 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
598 		return;
599 	if (filename.len == 0)
600 		return;
601 	/* Validate that the name doesn't contain any illegal '\0' */
602 	if (strnlen(filename.name, filename.len) != filename.len)
603 		return;
604 	/* ...or '/' */
605 	if (strnchr(filename.name, filename.len, '/'))
606 		return;
607 	if (filename.name[0] == '.') {
608 		if (filename.len == 1)
609 			return;
610 		if (filename.len == 2 && filename.name[1] == '.')
611 			return;
612 	}
613 	filename.hash = full_name_hash(parent, filename.name, filename.len);
614 
615 	dentry = d_lookup(parent, &filename);
616 again:
617 	if (!dentry) {
618 		dentry = d_alloc_parallel(parent, &filename, &wq);
619 		if (IS_ERR(dentry))
620 			return;
621 	}
622 	if (!d_in_lookup(dentry)) {
623 		/* Is there a mountpoint here? If so, just exit */
624 		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
625 					&entry->fattr->fsid))
626 			goto out;
627 		if (nfs_same_file(dentry, entry)) {
628 			if (!entry->fh->size)
629 				goto out;
630 			nfs_set_verifier(dentry, dir_verifier);
631 			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
632 			if (!status)
633 				nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
634 			goto out;
635 		} else {
636 			d_invalidate(dentry);
637 			dput(dentry);
638 			dentry = NULL;
639 			goto again;
640 		}
641 	}
642 	if (!entry->fh->size) {
643 		d_lookup_done(dentry);
644 		goto out;
645 	}
646 
647 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
648 	alias = d_splice_alias(inode, dentry);
649 	d_lookup_done(dentry);
650 	if (alias) {
651 		if (IS_ERR(alias))
652 			goto out;
653 		dput(dentry);
654 		dentry = alias;
655 	}
656 	nfs_set_verifier(dentry, dir_verifier);
657 out:
658 	dput(dentry);
659 }
660 
661 /* Perform conversion from xdr to cache array */
662 static int nfs_readdir_page_filler(struct nfs_readdir_descriptor *desc,
663 				   struct nfs_entry *entry,
664 				   struct page **xdr_pages,
665 				   struct page *fillme, unsigned int buflen)
666 {
667 	struct address_space *mapping = desc->file->f_mapping;
668 	struct xdr_stream stream;
669 	struct xdr_buf buf;
670 	struct page *scratch, *new, *page = fillme;
671 	int status;
672 
673 	scratch = alloc_page(GFP_KERNEL);
674 	if (scratch == NULL)
675 		return -ENOMEM;
676 
677 	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
678 	xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
679 
680 	do {
681 		if (entry->label)
682 			entry->label->len = NFS4_MAXLABELLEN;
683 
684 		status = xdr_decode(desc, entry, &stream);
685 		if (status != 0)
686 			break;
687 
688 		if (desc->plus)
689 			nfs_prime_dcache(file_dentry(desc->file), entry,
690 					desc->dir_verifier);
691 
692 		status = nfs_readdir_add_to_array(entry, page);
693 		if (status != -ENOSPC)
694 			continue;
695 
696 		if (page->mapping != mapping)
697 			break;
698 		new = nfs_readdir_page_get_next(mapping, page->index + 1,
699 						entry->prev_cookie);
700 		if (!new)
701 			break;
702 		if (page != fillme)
703 			nfs_readdir_page_unlock_and_put(page);
704 		page = new;
705 		status = nfs_readdir_add_to_array(entry, page);
706 	} while (!status && !entry->eof);
707 
708 	switch (status) {
709 	case -EBADCOOKIE:
710 		if (entry->eof) {
711 			nfs_readdir_page_set_eof(page);
712 			status = 0;
713 		}
714 		break;
715 	case -ENOSPC:
716 	case -EAGAIN:
717 		status = 0;
718 		break;
719 	}
720 
721 	if (page != fillme)
722 		nfs_readdir_page_unlock_and_put(page);
723 
724 	put_page(scratch);
725 	return status;
726 }
727 
728 static void nfs_readdir_free_pages(struct page **pages, size_t npages)
729 {
730 	while (npages--)
731 		put_page(pages[npages]);
732 	kfree(pages);
733 }
734 
735 /*
736  * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
737  * to nfs_readdir_free_pages()
738  */
739 static struct page **nfs_readdir_alloc_pages(size_t npages)
740 {
741 	struct page **pages;
742 	size_t i;
743 
744 	pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL);
745 	if (!pages)
746 		return NULL;
747 	for (i = 0; i < npages; i++) {
748 		struct page *page = alloc_page(GFP_KERNEL);
749 		if (page == NULL)
750 			goto out_freepages;
751 		pages[i] = page;
752 	}
753 	return pages;
754 
755 out_freepages:
756 	nfs_readdir_free_pages(pages, i);
757 	return NULL;
758 }
759 
760 static
761 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
762 {
763 	struct page **pages;
764 	struct nfs_entry entry;
765 	size_t array_size;
766 	size_t dtsize = NFS_SERVER(inode)->dtsize;
767 	int status = -ENOMEM;
768 
769 	entry.prev_cookie = 0;
770 	entry.cookie = nfs_readdir_page_last_cookie(page);
771 	entry.eof = 0;
772 	entry.fh = nfs_alloc_fhandle();
773 	entry.fattr = nfs_alloc_fattr();
774 	entry.server = NFS_SERVER(inode);
775 	if (entry.fh == NULL || entry.fattr == NULL)
776 		goto out;
777 
778 	entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
779 	if (IS_ERR(entry.label)) {
780 		status = PTR_ERR(entry.label);
781 		goto out;
782 	}
783 
784 	array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT;
785 	pages = nfs_readdir_alloc_pages(array_size);
786 	if (!pages)
787 		goto out_release_label;
788 
789 	do {
790 		unsigned int pglen;
791 		status = nfs_readdir_xdr_filler(desc, entry.cookie,
792 						pages, dtsize);
793 		if (status < 0)
794 			break;
795 
796 		pglen = status;
797 		if (pglen == 0) {
798 			nfs_readdir_page_set_eof(page);
799 			break;
800 		}
801 
802 		status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
803 	} while (!status && nfs_readdir_page_needs_filling(page));
804 
805 	nfs_readdir_free_pages(pages, array_size);
806 out_release_label:
807 	nfs4_label_free(entry.label);
808 out:
809 	nfs_free_fattr(entry.fattr);
810 	nfs_free_fhandle(entry.fh);
811 	return status;
812 }
813 
814 static void nfs_readdir_page_put(struct nfs_readdir_descriptor *desc)
815 {
816 	put_page(desc->page);
817 	desc->page = NULL;
818 }
819 
820 static void
821 nfs_readdir_page_unlock_and_put_cached(struct nfs_readdir_descriptor *desc)
822 {
823 	unlock_page(desc->page);
824 	nfs_readdir_page_put(desc);
825 }
826 
827 static struct page *
828 nfs_readdir_page_get_cached(struct nfs_readdir_descriptor *desc)
829 {
830 	return nfs_readdir_page_get_locked(desc->file->f_mapping,
831 					   desc->page_index,
832 					   desc->last_cookie);
833 }
834 
835 /*
836  * Returns 0 if desc->dir_cookie was found on page desc->page_index
837  * and locks the page to prevent removal from the page cache.
838  */
839 static
840 int find_and_lock_cache_page(nfs_readdir_descriptor_t *desc)
841 {
842 	struct inode *inode = file_inode(desc->file);
843 	struct nfs_inode *nfsi = NFS_I(inode);
844 	int res;
845 
846 	desc->page = nfs_readdir_page_get_cached(desc);
847 	if (!desc->page)
848 		return -ENOMEM;
849 	if (nfs_readdir_page_needs_filling(desc->page)) {
850 		res = nfs_readdir_xdr_to_array(desc, desc->page, inode);
851 		if (res < 0)
852 			goto error;
853 	}
854 	res = nfs_readdir_search_array(desc);
855 	if (res == 0) {
856 		nfsi->page_index = desc->page_index;
857 		return 0;
858 	}
859 error:
860 	nfs_readdir_page_unlock_and_put_cached(desc);
861 	return res;
862 }
863 
864 /* Search for desc->dir_cookie from the beginning of the page cache */
865 static inline
866 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
867 {
868 	int res;
869 
870 	if (desc->page_index == 0) {
871 		desc->current_index = 0;
872 		desc->prev_index = 0;
873 		desc->last_cookie = 0;
874 	}
875 	do {
876 		res = find_and_lock_cache_page(desc);
877 	} while (res == -EAGAIN);
878 	return res;
879 }
880 
881 /*
882  * Once we've found the start of the dirent within a page: fill 'er up...
883  */
884 static
885 int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
886 {
887 	struct file	*file = desc->file;
888 	int i = 0;
889 	int res = 0;
890 	struct nfs_cache_array *array = NULL;
891 
892 	array = kmap(desc->page);
893 	for (i = desc->cache_entry_index; i < array->size; i++) {
894 		struct nfs_cache_array_entry *ent;
895 
896 		ent = &array->array[i];
897 		if (!dir_emit(desc->ctx, ent->name, ent->name_len,
898 		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
899 			desc->eof = true;
900 			break;
901 		}
902 		if (i < (array->size-1))
903 			desc->dir_cookie = array->array[i+1].cookie;
904 		else
905 			desc->dir_cookie = array->last_cookie;
906 		if (nfs_readdir_use_cookie(file))
907 			desc->ctx->pos = desc->dir_cookie;
908 		else
909 			desc->ctx->pos++;
910 		if (desc->duped != 0)
911 			desc->duped = 1;
912 	}
913 	if (array->page_is_eof)
914 		desc->eof = true;
915 
916 	kunmap(desc->page);
917 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
918 			(unsigned long long)desc->dir_cookie, res);
919 	return res;
920 }
921 
922 /*
923  * If we cannot find a cookie in our cache, we suspect that this is
924  * because it points to a deleted file, so we ask the server to return
925  * whatever it thinks is the next entry. We then feed this to filldir.
926  * If all goes well, we should then be able to find our way round the
927  * cache on the next call to readdir_search_pagecache();
928  *
929  * NOTE: we cannot add the anonymous page to the pagecache because
930  *	 the data it contains might not be page aligned. Besides,
931  *	 we should already have a complete representation of the
932  *	 directory in the page cache by the time we get here.
933  */
934 static inline
935 int uncached_readdir(nfs_readdir_descriptor_t *desc)
936 {
937 	struct page	*page = NULL;
938 	int		status;
939 	struct inode *inode = file_inode(desc->file);
940 
941 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
942 			(unsigned long long)desc->dir_cookie);
943 
944 	page = alloc_page(GFP_HIGHUSER);
945 	if (!page) {
946 		status = -ENOMEM;
947 		goto out;
948 	}
949 
950 	desc->page_index = 0;
951 	desc->last_cookie = desc->dir_cookie;
952 	desc->page = page;
953 	desc->duped = 0;
954 
955 	nfs_readdir_page_init_array(page, desc->dir_cookie);
956 	status = nfs_readdir_xdr_to_array(desc, page, inode);
957 	if (status < 0)
958 		goto out_release;
959 
960 	status = nfs_do_filldir(desc);
961 
962  out_release:
963 	nfs_readdir_clear_array(desc->page);
964 	nfs_readdir_page_put(desc);
965  out:
966 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
967 			__func__, status);
968 	return status;
969 }
970 
971 /* The file offset position represents the dirent entry number.  A
972    last cookie cache takes care of the common case of reading the
973    whole directory.
974  */
975 static int nfs_readdir(struct file *file, struct dir_context *ctx)
976 {
977 	struct dentry	*dentry = file_dentry(file);
978 	struct inode	*inode = d_inode(dentry);
979 	struct nfs_open_dir_context *dir_ctx = file->private_data;
980 	nfs_readdir_descriptor_t my_desc = {
981 		.file = file,
982 		.ctx = ctx,
983 		.plus = nfs_use_readdirplus(inode, ctx),
984 	},
985 			*desc = &my_desc;
986 	int res = 0;
987 
988 	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
989 			file, (long long)ctx->pos);
990 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
991 
992 	/*
993 	 * ctx->pos points to the dirent entry number.
994 	 * *desc->dir_cookie has the cookie for the next entry. We have
995 	 * to either find the entry with the appropriate number or
996 	 * revalidate the cookie.
997 	 */
998 	if (ctx->pos == 0 || nfs_attribute_cache_expired(inode))
999 		res = nfs_revalidate_mapping(inode, file->f_mapping);
1000 	if (res < 0)
1001 		goto out;
1002 
1003 	spin_lock(&file->f_lock);
1004 	desc->dir_cookie = dir_ctx->dir_cookie;
1005 	desc->dup_cookie = dir_ctx->dup_cookie;
1006 	desc->duped = dir_ctx->duped;
1007 	desc->attr_gencount = dir_ctx->attr_gencount;
1008 	spin_unlock(&file->f_lock);
1009 
1010 	do {
1011 		res = readdir_search_pagecache(desc);
1012 
1013 		if (res == -EBADCOOKIE) {
1014 			res = 0;
1015 			/* This means either end of directory */
1016 			if (desc->dir_cookie && !desc->eof) {
1017 				/* Or that the server has 'lost' a cookie */
1018 				res = uncached_readdir(desc);
1019 				if (res == 0)
1020 					continue;
1021 			}
1022 			break;
1023 		}
1024 		if (res == -ETOOSMALL && desc->plus) {
1025 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
1026 			nfs_zap_caches(inode);
1027 			desc->page_index = 0;
1028 			desc->plus = false;
1029 			desc->eof = false;
1030 			continue;
1031 		}
1032 		if (res < 0)
1033 			break;
1034 
1035 		res = nfs_do_filldir(desc);
1036 		nfs_readdir_page_unlock_and_put_cached(desc);
1037 		if (res < 0)
1038 			break;
1039 	} while (!desc->eof);
1040 
1041 	spin_lock(&file->f_lock);
1042 	dir_ctx->dir_cookie = desc->dir_cookie;
1043 	dir_ctx->dup_cookie = desc->dup_cookie;
1044 	dir_ctx->duped = desc->duped;
1045 	dir_ctx->attr_gencount = desc->attr_gencount;
1046 	spin_unlock(&file->f_lock);
1047 
1048 out:
1049 	if (res > 0)
1050 		res = 0;
1051 	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
1052 	return res;
1053 }
1054 
1055 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
1056 {
1057 	struct nfs_open_dir_context *dir_ctx = filp->private_data;
1058 
1059 	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
1060 			filp, offset, whence);
1061 
1062 	switch (whence) {
1063 	default:
1064 		return -EINVAL;
1065 	case SEEK_SET:
1066 		if (offset < 0)
1067 			return -EINVAL;
1068 		spin_lock(&filp->f_lock);
1069 		break;
1070 	case SEEK_CUR:
1071 		if (offset == 0)
1072 			return filp->f_pos;
1073 		spin_lock(&filp->f_lock);
1074 		offset += filp->f_pos;
1075 		if (offset < 0) {
1076 			spin_unlock(&filp->f_lock);
1077 			return -EINVAL;
1078 		}
1079 	}
1080 	if (offset != filp->f_pos) {
1081 		filp->f_pos = offset;
1082 		if (nfs_readdir_use_cookie(filp))
1083 			dir_ctx->dir_cookie = offset;
1084 		else
1085 			dir_ctx->dir_cookie = 0;
1086 		dir_ctx->duped = 0;
1087 	}
1088 	spin_unlock(&filp->f_lock);
1089 	return offset;
1090 }
1091 
1092 /*
1093  * All directory operations under NFS are synchronous, so fsync()
1094  * is a dummy operation.
1095  */
1096 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1097 			 int datasync)
1098 {
1099 	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1100 
1101 	nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC);
1102 	return 0;
1103 }
1104 
1105 /**
1106  * nfs_force_lookup_revalidate - Mark the directory as having changed
1107  * @dir: pointer to directory inode
1108  *
1109  * This forces the revalidation code in nfs_lookup_revalidate() to do a
1110  * full lookup on all child dentries of 'dir' whenever a change occurs
1111  * on the server that might have invalidated our dcache.
1112  *
1113  * Note that we reserve bit '0' as a tag to let us know when a dentry
1114  * was revalidated while holding a delegation on its inode.
1115  *
1116  * The caller should be holding dir->i_lock
1117  */
1118 void nfs_force_lookup_revalidate(struct inode *dir)
1119 {
1120 	NFS_I(dir)->cache_change_attribute += 2;
1121 }
1122 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1123 
1124 /**
1125  * nfs_verify_change_attribute - Detects NFS remote directory changes
1126  * @dir: pointer to parent directory inode
1127  * @verf: previously saved change attribute
1128  *
1129  * Return "false" if the verifiers doesn't match the change attribute.
1130  * This would usually indicate that the directory contents have changed on
1131  * the server, and that any dentries need revalidating.
1132  */
1133 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1134 {
1135 	return (verf & ~1UL) == nfs_save_change_attribute(dir);
1136 }
1137 
1138 static void nfs_set_verifier_delegated(unsigned long *verf)
1139 {
1140 	*verf |= 1UL;
1141 }
1142 
1143 #if IS_ENABLED(CONFIG_NFS_V4)
1144 static void nfs_unset_verifier_delegated(unsigned long *verf)
1145 {
1146 	*verf &= ~1UL;
1147 }
1148 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1149 
1150 static bool nfs_test_verifier_delegated(unsigned long verf)
1151 {
1152 	return verf & 1;
1153 }
1154 
1155 static bool nfs_verifier_is_delegated(struct dentry *dentry)
1156 {
1157 	return nfs_test_verifier_delegated(dentry->d_time);
1158 }
1159 
1160 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1161 {
1162 	struct inode *inode = d_inode(dentry);
1163 
1164 	if (!nfs_verifier_is_delegated(dentry) &&
1165 	    !nfs_verify_change_attribute(d_inode(dentry->d_parent), verf))
1166 		goto out;
1167 	if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
1168 		nfs_set_verifier_delegated(&verf);
1169 out:
1170 	dentry->d_time = verf;
1171 }
1172 
1173 /**
1174  * nfs_set_verifier - save a parent directory verifier in the dentry
1175  * @dentry: pointer to dentry
1176  * @verf: verifier to save
1177  *
1178  * Saves the parent directory verifier in @dentry. If the inode has
1179  * a delegation, we also tag the dentry as having been revalidated
1180  * while holding a delegation so that we know we don't have to
1181  * look it up again after a directory change.
1182  */
1183 void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1184 {
1185 
1186 	spin_lock(&dentry->d_lock);
1187 	nfs_set_verifier_locked(dentry, verf);
1188 	spin_unlock(&dentry->d_lock);
1189 }
1190 EXPORT_SYMBOL_GPL(nfs_set_verifier);
1191 
1192 #if IS_ENABLED(CONFIG_NFS_V4)
1193 /**
1194  * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1195  * @inode: pointer to inode
1196  *
1197  * Iterates through the dentries in the inode alias list and clears
1198  * the tag used to indicate that the dentry has been revalidated
1199  * while holding a delegation.
1200  * This function is intended for use when the delegation is being
1201  * returned or revoked.
1202  */
1203 void nfs_clear_verifier_delegated(struct inode *inode)
1204 {
1205 	struct dentry *alias;
1206 
1207 	if (!inode)
1208 		return;
1209 	spin_lock(&inode->i_lock);
1210 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1211 		spin_lock(&alias->d_lock);
1212 		nfs_unset_verifier_delegated(&alias->d_time);
1213 		spin_unlock(&alias->d_lock);
1214 	}
1215 	spin_unlock(&inode->i_lock);
1216 }
1217 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1218 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1219 
1220 /*
1221  * A check for whether or not the parent directory has changed.
1222  * In the case it has, we assume that the dentries are untrustworthy
1223  * and may need to be looked up again.
1224  * If rcu_walk prevents us from performing a full check, return 0.
1225  */
1226 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1227 			      int rcu_walk)
1228 {
1229 	if (IS_ROOT(dentry))
1230 		return 1;
1231 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1232 		return 0;
1233 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1234 		return 0;
1235 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1236 	if (nfs_mapping_need_revalidate_inode(dir)) {
1237 		if (rcu_walk)
1238 			return 0;
1239 		if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1240 			return 0;
1241 	}
1242 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1243 		return 0;
1244 	return 1;
1245 }
1246 
1247 /*
1248  * Use intent information to check whether or not we're going to do
1249  * an O_EXCL create using this path component.
1250  */
1251 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1252 {
1253 	if (NFS_PROTO(dir)->version == 2)
1254 		return 0;
1255 	return flags & LOOKUP_EXCL;
1256 }
1257 
1258 /*
1259  * Inode and filehandle revalidation for lookups.
1260  *
1261  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1262  * or if the intent information indicates that we're about to open this
1263  * particular file and the "nocto" mount flag is not set.
1264  *
1265  */
1266 static
1267 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1268 {
1269 	struct nfs_server *server = NFS_SERVER(inode);
1270 	int ret;
1271 
1272 	if (IS_AUTOMOUNT(inode))
1273 		return 0;
1274 
1275 	if (flags & LOOKUP_OPEN) {
1276 		switch (inode->i_mode & S_IFMT) {
1277 		case S_IFREG:
1278 			/* A NFSv4 OPEN will revalidate later */
1279 			if (server->caps & NFS_CAP_ATOMIC_OPEN)
1280 				goto out;
1281 			fallthrough;
1282 		case S_IFDIR:
1283 			if (server->flags & NFS_MOUNT_NOCTO)
1284 				break;
1285 			/* NFS close-to-open cache consistency validation */
1286 			goto out_force;
1287 		}
1288 	}
1289 
1290 	/* VFS wants an on-the-wire revalidation */
1291 	if (flags & LOOKUP_REVAL)
1292 		goto out_force;
1293 out:
1294 	return (inode->i_nlink == 0) ? -ESTALE : 0;
1295 out_force:
1296 	if (flags & LOOKUP_RCU)
1297 		return -ECHILD;
1298 	ret = __nfs_revalidate_inode(server, inode);
1299 	if (ret != 0)
1300 		return ret;
1301 	goto out;
1302 }
1303 
1304 /*
1305  * We judge how long we want to trust negative
1306  * dentries by looking at the parent inode mtime.
1307  *
1308  * If parent mtime has changed, we revalidate, else we wait for a
1309  * period corresponding to the parent's attribute cache timeout value.
1310  *
1311  * If LOOKUP_RCU prevents us from performing a full check, return 1
1312  * suggesting a reval is needed.
1313  *
1314  * Note that when creating a new file, or looking up a rename target,
1315  * then it shouldn't be necessary to revalidate a negative dentry.
1316  */
1317 static inline
1318 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1319 		       unsigned int flags)
1320 {
1321 	if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1322 		return 0;
1323 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1324 		return 1;
1325 	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1326 }
1327 
1328 static int
1329 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1330 			   struct inode *inode, int error)
1331 {
1332 	switch (error) {
1333 	case 1:
1334 		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1335 			__func__, dentry);
1336 		return 1;
1337 	case 0:
1338 		nfs_mark_for_revalidate(dir);
1339 		if (inode && S_ISDIR(inode->i_mode)) {
1340 			/* Purge readdir caches. */
1341 			nfs_zap_caches(inode);
1342 			/*
1343 			 * We can't d_drop the root of a disconnected tree:
1344 			 * its d_hash is on the s_anon list and d_drop() would hide
1345 			 * it from shrink_dcache_for_unmount(), leading to busy
1346 			 * inodes on unmount and further oopses.
1347 			 */
1348 			if (IS_ROOT(dentry))
1349 				return 1;
1350 		}
1351 		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1352 				__func__, dentry);
1353 		return 0;
1354 	}
1355 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1356 				__func__, dentry, error);
1357 	return error;
1358 }
1359 
1360 static int
1361 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1362 			       unsigned int flags)
1363 {
1364 	int ret = 1;
1365 	if (nfs_neg_need_reval(dir, dentry, flags)) {
1366 		if (flags & LOOKUP_RCU)
1367 			return -ECHILD;
1368 		ret = 0;
1369 	}
1370 	return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1371 }
1372 
1373 static int
1374 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1375 				struct inode *inode)
1376 {
1377 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1378 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1379 }
1380 
1381 static int
1382 nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry,
1383 			     struct inode *inode)
1384 {
1385 	struct nfs_fh *fhandle;
1386 	struct nfs_fattr *fattr;
1387 	struct nfs4_label *label;
1388 	unsigned long dir_verifier;
1389 	int ret;
1390 
1391 	ret = -ENOMEM;
1392 	fhandle = nfs_alloc_fhandle();
1393 	fattr = nfs_alloc_fattr();
1394 	label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL);
1395 	if (fhandle == NULL || fattr == NULL || IS_ERR(label))
1396 		goto out;
1397 
1398 	dir_verifier = nfs_save_change_attribute(dir);
1399 	ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1400 	if (ret < 0) {
1401 		switch (ret) {
1402 		case -ESTALE:
1403 		case -ENOENT:
1404 			ret = 0;
1405 			break;
1406 		case -ETIMEDOUT:
1407 			if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1408 				ret = 1;
1409 		}
1410 		goto out;
1411 	}
1412 	ret = 0;
1413 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1414 		goto out;
1415 	if (nfs_refresh_inode(inode, fattr) < 0)
1416 		goto out;
1417 
1418 	nfs_setsecurity(inode, fattr, label);
1419 	nfs_set_verifier(dentry, dir_verifier);
1420 
1421 	/* set a readdirplus hint that we had a cache miss */
1422 	nfs_force_use_readdirplus(dir);
1423 	ret = 1;
1424 out:
1425 	nfs_free_fattr(fattr);
1426 	nfs_free_fhandle(fhandle);
1427 	nfs4_label_free(label);
1428 	return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1429 }
1430 
1431 /*
1432  * This is called every time the dcache has a lookup hit,
1433  * and we should check whether we can really trust that
1434  * lookup.
1435  *
1436  * NOTE! The hit can be a negative hit too, don't assume
1437  * we have an inode!
1438  *
1439  * If the parent directory is seen to have changed, we throw out the
1440  * cached dentry and do a new lookup.
1441  */
1442 static int
1443 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1444 			 unsigned int flags)
1445 {
1446 	struct inode *inode;
1447 	int error;
1448 
1449 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1450 	inode = d_inode(dentry);
1451 
1452 	if (!inode)
1453 		return nfs_lookup_revalidate_negative(dir, dentry, flags);
1454 
1455 	if (is_bad_inode(inode)) {
1456 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1457 				__func__, dentry);
1458 		goto out_bad;
1459 	}
1460 
1461 	if (nfs_verifier_is_delegated(dentry))
1462 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1463 
1464 	/* Force a full look up iff the parent directory has changed */
1465 	if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1466 	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1467 		error = nfs_lookup_verify_inode(inode, flags);
1468 		if (error) {
1469 			if (error == -ESTALE)
1470 				nfs_zap_caches(dir);
1471 			goto out_bad;
1472 		}
1473 		nfs_advise_use_readdirplus(dir);
1474 		goto out_valid;
1475 	}
1476 
1477 	if (flags & LOOKUP_RCU)
1478 		return -ECHILD;
1479 
1480 	if (NFS_STALE(inode))
1481 		goto out_bad;
1482 
1483 	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1484 	error = nfs_lookup_revalidate_dentry(dir, dentry, inode);
1485 	trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1486 	return error;
1487 out_valid:
1488 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1489 out_bad:
1490 	if (flags & LOOKUP_RCU)
1491 		return -ECHILD;
1492 	return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1493 }
1494 
1495 static int
1496 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1497 			int (*reval)(struct inode *, struct dentry *, unsigned int))
1498 {
1499 	struct dentry *parent;
1500 	struct inode *dir;
1501 	int ret;
1502 
1503 	if (flags & LOOKUP_RCU) {
1504 		parent = READ_ONCE(dentry->d_parent);
1505 		dir = d_inode_rcu(parent);
1506 		if (!dir)
1507 			return -ECHILD;
1508 		ret = reval(dir, dentry, flags);
1509 		if (parent != READ_ONCE(dentry->d_parent))
1510 			return -ECHILD;
1511 	} else {
1512 		parent = dget_parent(dentry);
1513 		ret = reval(d_inode(parent), dentry, flags);
1514 		dput(parent);
1515 	}
1516 	return ret;
1517 }
1518 
1519 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1520 {
1521 	return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1522 }
1523 
1524 /*
1525  * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1526  * when we don't really care about the dentry name. This is called when a
1527  * pathwalk ends on a dentry that was not found via a normal lookup in the
1528  * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1529  *
1530  * In this situation, we just want to verify that the inode itself is OK
1531  * since the dentry might have changed on the server.
1532  */
1533 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1534 {
1535 	struct inode *inode = d_inode(dentry);
1536 	int error = 0;
1537 
1538 	/*
1539 	 * I believe we can only get a negative dentry here in the case of a
1540 	 * procfs-style symlink. Just assume it's correct for now, but we may
1541 	 * eventually need to do something more here.
1542 	 */
1543 	if (!inode) {
1544 		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1545 				__func__, dentry);
1546 		return 1;
1547 	}
1548 
1549 	if (is_bad_inode(inode)) {
1550 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1551 				__func__, dentry);
1552 		return 0;
1553 	}
1554 
1555 	error = nfs_lookup_verify_inode(inode, flags);
1556 	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1557 			__func__, inode->i_ino, error ? "invalid" : "valid");
1558 	return !error;
1559 }
1560 
1561 /*
1562  * This is called from dput() when d_count is going to 0.
1563  */
1564 static int nfs_dentry_delete(const struct dentry *dentry)
1565 {
1566 	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1567 		dentry, dentry->d_flags);
1568 
1569 	/* Unhash any dentry with a stale inode */
1570 	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1571 		return 1;
1572 
1573 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1574 		/* Unhash it, so that ->d_iput() would be called */
1575 		return 1;
1576 	}
1577 	if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1578 		/* Unhash it, so that ancestors of killed async unlink
1579 		 * files will be cleaned up during umount */
1580 		return 1;
1581 	}
1582 	return 0;
1583 
1584 }
1585 
1586 /* Ensure that we revalidate inode->i_nlink */
1587 static void nfs_drop_nlink(struct inode *inode)
1588 {
1589 	spin_lock(&inode->i_lock);
1590 	/* drop the inode if we're reasonably sure this is the last link */
1591 	if (inode->i_nlink > 0)
1592 		drop_nlink(inode);
1593 	NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1594 	NFS_I(inode)->cache_validity |= NFS_INO_INVALID_CHANGE
1595 		| NFS_INO_INVALID_CTIME
1596 		| NFS_INO_INVALID_OTHER
1597 		| NFS_INO_REVAL_FORCED;
1598 	spin_unlock(&inode->i_lock);
1599 }
1600 
1601 /*
1602  * Called when the dentry loses inode.
1603  * We use it to clean up silly-renamed files.
1604  */
1605 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1606 {
1607 	if (S_ISDIR(inode->i_mode))
1608 		/* drop any readdir cache as it could easily be old */
1609 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1610 
1611 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1612 		nfs_complete_unlink(dentry, inode);
1613 		nfs_drop_nlink(inode);
1614 	}
1615 	iput(inode);
1616 }
1617 
1618 static void nfs_d_release(struct dentry *dentry)
1619 {
1620 	/* free cached devname value, if it survived that far */
1621 	if (unlikely(dentry->d_fsdata)) {
1622 		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1623 			WARN_ON(1);
1624 		else
1625 			kfree(dentry->d_fsdata);
1626 	}
1627 }
1628 
1629 const struct dentry_operations nfs_dentry_operations = {
1630 	.d_revalidate	= nfs_lookup_revalidate,
1631 	.d_weak_revalidate	= nfs_weak_revalidate,
1632 	.d_delete	= nfs_dentry_delete,
1633 	.d_iput		= nfs_dentry_iput,
1634 	.d_automount	= nfs_d_automount,
1635 	.d_release	= nfs_d_release,
1636 };
1637 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1638 
1639 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1640 {
1641 	struct dentry *res;
1642 	struct inode *inode = NULL;
1643 	struct nfs_fh *fhandle = NULL;
1644 	struct nfs_fattr *fattr = NULL;
1645 	struct nfs4_label *label = NULL;
1646 	unsigned long dir_verifier;
1647 	int error;
1648 
1649 	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1650 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1651 
1652 	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1653 		return ERR_PTR(-ENAMETOOLONG);
1654 
1655 	/*
1656 	 * If we're doing an exclusive create, optimize away the lookup
1657 	 * but don't hash the dentry.
1658 	 */
1659 	if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1660 		return NULL;
1661 
1662 	res = ERR_PTR(-ENOMEM);
1663 	fhandle = nfs_alloc_fhandle();
1664 	fattr = nfs_alloc_fattr();
1665 	if (fhandle == NULL || fattr == NULL)
1666 		goto out;
1667 
1668 	label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1669 	if (IS_ERR(label))
1670 		goto out;
1671 
1672 	dir_verifier = nfs_save_change_attribute(dir);
1673 	trace_nfs_lookup_enter(dir, dentry, flags);
1674 	error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1675 	if (error == -ENOENT)
1676 		goto no_entry;
1677 	if (error < 0) {
1678 		res = ERR_PTR(error);
1679 		goto out_label;
1680 	}
1681 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1682 	res = ERR_CAST(inode);
1683 	if (IS_ERR(res))
1684 		goto out_label;
1685 
1686 	/* Notify readdir to use READDIRPLUS */
1687 	nfs_force_use_readdirplus(dir);
1688 
1689 no_entry:
1690 	res = d_splice_alias(inode, dentry);
1691 	if (res != NULL) {
1692 		if (IS_ERR(res))
1693 			goto out_label;
1694 		dentry = res;
1695 	}
1696 	nfs_set_verifier(dentry, dir_verifier);
1697 out_label:
1698 	trace_nfs_lookup_exit(dir, dentry, flags, error);
1699 	nfs4_label_free(label);
1700 out:
1701 	nfs_free_fattr(fattr);
1702 	nfs_free_fhandle(fhandle);
1703 	return res;
1704 }
1705 EXPORT_SYMBOL_GPL(nfs_lookup);
1706 
1707 #if IS_ENABLED(CONFIG_NFS_V4)
1708 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1709 
1710 const struct dentry_operations nfs4_dentry_operations = {
1711 	.d_revalidate	= nfs4_lookup_revalidate,
1712 	.d_weak_revalidate	= nfs_weak_revalidate,
1713 	.d_delete	= nfs_dentry_delete,
1714 	.d_iput		= nfs_dentry_iput,
1715 	.d_automount	= nfs_d_automount,
1716 	.d_release	= nfs_d_release,
1717 };
1718 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1719 
1720 static fmode_t flags_to_mode(int flags)
1721 {
1722 	fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1723 	if ((flags & O_ACCMODE) != O_WRONLY)
1724 		res |= FMODE_READ;
1725 	if ((flags & O_ACCMODE) != O_RDONLY)
1726 		res |= FMODE_WRITE;
1727 	return res;
1728 }
1729 
1730 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1731 {
1732 	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1733 }
1734 
1735 static int do_open(struct inode *inode, struct file *filp)
1736 {
1737 	nfs_fscache_open_file(inode, filp);
1738 	return 0;
1739 }
1740 
1741 static int nfs_finish_open(struct nfs_open_context *ctx,
1742 			   struct dentry *dentry,
1743 			   struct file *file, unsigned open_flags)
1744 {
1745 	int err;
1746 
1747 	err = finish_open(file, dentry, do_open);
1748 	if (err)
1749 		goto out;
1750 	if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1751 		nfs_file_set_open_context(file, ctx);
1752 	else
1753 		err = -EOPENSTALE;
1754 out:
1755 	return err;
1756 }
1757 
1758 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1759 		    struct file *file, unsigned open_flags,
1760 		    umode_t mode)
1761 {
1762 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1763 	struct nfs_open_context *ctx;
1764 	struct dentry *res;
1765 	struct iattr attr = { .ia_valid = ATTR_OPEN };
1766 	struct inode *inode;
1767 	unsigned int lookup_flags = 0;
1768 	bool switched = false;
1769 	int created = 0;
1770 	int err;
1771 
1772 	/* Expect a negative dentry */
1773 	BUG_ON(d_inode(dentry));
1774 
1775 	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1776 			dir->i_sb->s_id, dir->i_ino, dentry);
1777 
1778 	err = nfs_check_flags(open_flags);
1779 	if (err)
1780 		return err;
1781 
1782 	/* NFS only supports OPEN on regular files */
1783 	if ((open_flags & O_DIRECTORY)) {
1784 		if (!d_in_lookup(dentry)) {
1785 			/*
1786 			 * Hashed negative dentry with O_DIRECTORY: dentry was
1787 			 * revalidated and is fine, no need to perform lookup
1788 			 * again
1789 			 */
1790 			return -ENOENT;
1791 		}
1792 		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1793 		goto no_open;
1794 	}
1795 
1796 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1797 		return -ENAMETOOLONG;
1798 
1799 	if (open_flags & O_CREAT) {
1800 		struct nfs_server *server = NFS_SERVER(dir);
1801 
1802 		if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1803 			mode &= ~current_umask();
1804 
1805 		attr.ia_valid |= ATTR_MODE;
1806 		attr.ia_mode = mode;
1807 	}
1808 	if (open_flags & O_TRUNC) {
1809 		attr.ia_valid |= ATTR_SIZE;
1810 		attr.ia_size = 0;
1811 	}
1812 
1813 	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1814 		d_drop(dentry);
1815 		switched = true;
1816 		dentry = d_alloc_parallel(dentry->d_parent,
1817 					  &dentry->d_name, &wq);
1818 		if (IS_ERR(dentry))
1819 			return PTR_ERR(dentry);
1820 		if (unlikely(!d_in_lookup(dentry)))
1821 			return finish_no_open(file, dentry);
1822 	}
1823 
1824 	ctx = create_nfs_open_context(dentry, open_flags, file);
1825 	err = PTR_ERR(ctx);
1826 	if (IS_ERR(ctx))
1827 		goto out;
1828 
1829 	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1830 	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
1831 	if (created)
1832 		file->f_mode |= FMODE_CREATED;
1833 	if (IS_ERR(inode)) {
1834 		err = PTR_ERR(inode);
1835 		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1836 		put_nfs_open_context(ctx);
1837 		d_drop(dentry);
1838 		switch (err) {
1839 		case -ENOENT:
1840 			d_splice_alias(NULL, dentry);
1841 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1842 			break;
1843 		case -EISDIR:
1844 		case -ENOTDIR:
1845 			goto no_open;
1846 		case -ELOOP:
1847 			if (!(open_flags & O_NOFOLLOW))
1848 				goto no_open;
1849 			break;
1850 			/* case -EINVAL: */
1851 		default:
1852 			break;
1853 		}
1854 		goto out;
1855 	}
1856 
1857 	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
1858 	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1859 	put_nfs_open_context(ctx);
1860 out:
1861 	if (unlikely(switched)) {
1862 		d_lookup_done(dentry);
1863 		dput(dentry);
1864 	}
1865 	return err;
1866 
1867 no_open:
1868 	res = nfs_lookup(dir, dentry, lookup_flags);
1869 	if (switched) {
1870 		d_lookup_done(dentry);
1871 		if (!res)
1872 			res = dentry;
1873 		else
1874 			dput(dentry);
1875 	}
1876 	if (IS_ERR(res))
1877 		return PTR_ERR(res);
1878 	return finish_no_open(file, res);
1879 }
1880 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1881 
1882 static int
1883 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1884 			  unsigned int flags)
1885 {
1886 	struct inode *inode;
1887 
1888 	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1889 		goto full_reval;
1890 	if (d_mountpoint(dentry))
1891 		goto full_reval;
1892 
1893 	inode = d_inode(dentry);
1894 
1895 	/* We can't create new files in nfs_open_revalidate(), so we
1896 	 * optimize away revalidation of negative dentries.
1897 	 */
1898 	if (inode == NULL)
1899 		goto full_reval;
1900 
1901 	if (nfs_verifier_is_delegated(dentry))
1902 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1903 
1904 	/* NFS only supports OPEN on regular files */
1905 	if (!S_ISREG(inode->i_mode))
1906 		goto full_reval;
1907 
1908 	/* We cannot do exclusive creation on a positive dentry */
1909 	if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
1910 		goto reval_dentry;
1911 
1912 	/* Check if the directory changed */
1913 	if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
1914 		goto reval_dentry;
1915 
1916 	/* Let f_op->open() actually open (and revalidate) the file */
1917 	return 1;
1918 reval_dentry:
1919 	if (flags & LOOKUP_RCU)
1920 		return -ECHILD;
1921 	return nfs_lookup_revalidate_dentry(dir, dentry, inode);
1922 
1923 full_reval:
1924 	return nfs_do_lookup_revalidate(dir, dentry, flags);
1925 }
1926 
1927 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1928 {
1929 	return __nfs_lookup_revalidate(dentry, flags,
1930 			nfs4_do_lookup_revalidate);
1931 }
1932 
1933 #endif /* CONFIG_NFSV4 */
1934 
1935 struct dentry *
1936 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
1937 				struct nfs_fattr *fattr,
1938 				struct nfs4_label *label)
1939 {
1940 	struct dentry *parent = dget_parent(dentry);
1941 	struct inode *dir = d_inode(parent);
1942 	struct inode *inode;
1943 	struct dentry *d;
1944 	int error;
1945 
1946 	d_drop(dentry);
1947 
1948 	if (fhandle->size == 0) {
1949 		error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, NULL);
1950 		if (error)
1951 			goto out_error;
1952 	}
1953 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1954 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1955 		struct nfs_server *server = NFS_SB(dentry->d_sb);
1956 		error = server->nfs_client->rpc_ops->getattr(server, fhandle,
1957 				fattr, NULL, NULL);
1958 		if (error < 0)
1959 			goto out_error;
1960 	}
1961 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1962 	d = d_splice_alias(inode, dentry);
1963 out:
1964 	dput(parent);
1965 	return d;
1966 out_error:
1967 	nfs_mark_for_revalidate(dir);
1968 	d = ERR_PTR(error);
1969 	goto out;
1970 }
1971 EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
1972 
1973 /*
1974  * Code common to create, mkdir, and mknod.
1975  */
1976 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1977 				struct nfs_fattr *fattr,
1978 				struct nfs4_label *label)
1979 {
1980 	struct dentry *d;
1981 
1982 	d = nfs_add_or_obtain(dentry, fhandle, fattr, label);
1983 	if (IS_ERR(d))
1984 		return PTR_ERR(d);
1985 
1986 	/* Callers don't care */
1987 	dput(d);
1988 	return 0;
1989 }
1990 EXPORT_SYMBOL_GPL(nfs_instantiate);
1991 
1992 /*
1993  * Following a failed create operation, we drop the dentry rather
1994  * than retain a negative dentry. This avoids a problem in the event
1995  * that the operation succeeded on the server, but an error in the
1996  * reply path made it appear to have failed.
1997  */
1998 int nfs_create(struct inode *dir, struct dentry *dentry,
1999 		umode_t mode, bool excl)
2000 {
2001 	struct iattr attr;
2002 	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
2003 	int error;
2004 
2005 	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
2006 			dir->i_sb->s_id, dir->i_ino, dentry);
2007 
2008 	attr.ia_mode = mode;
2009 	attr.ia_valid = ATTR_MODE;
2010 
2011 	trace_nfs_create_enter(dir, dentry, open_flags);
2012 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
2013 	trace_nfs_create_exit(dir, dentry, open_flags, error);
2014 	if (error != 0)
2015 		goto out_err;
2016 	return 0;
2017 out_err:
2018 	d_drop(dentry);
2019 	return error;
2020 }
2021 EXPORT_SYMBOL_GPL(nfs_create);
2022 
2023 /*
2024  * See comments for nfs_proc_create regarding failed operations.
2025  */
2026 int
2027 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
2028 {
2029 	struct iattr attr;
2030 	int status;
2031 
2032 	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
2033 			dir->i_sb->s_id, dir->i_ino, dentry);
2034 
2035 	attr.ia_mode = mode;
2036 	attr.ia_valid = ATTR_MODE;
2037 
2038 	trace_nfs_mknod_enter(dir, dentry);
2039 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
2040 	trace_nfs_mknod_exit(dir, dentry, status);
2041 	if (status != 0)
2042 		goto out_err;
2043 	return 0;
2044 out_err:
2045 	d_drop(dentry);
2046 	return status;
2047 }
2048 EXPORT_SYMBOL_GPL(nfs_mknod);
2049 
2050 /*
2051  * See comments for nfs_proc_create regarding failed operations.
2052  */
2053 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2054 {
2055 	struct iattr attr;
2056 	int error;
2057 
2058 	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
2059 			dir->i_sb->s_id, dir->i_ino, dentry);
2060 
2061 	attr.ia_valid = ATTR_MODE;
2062 	attr.ia_mode = mode | S_IFDIR;
2063 
2064 	trace_nfs_mkdir_enter(dir, dentry);
2065 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
2066 	trace_nfs_mkdir_exit(dir, dentry, error);
2067 	if (error != 0)
2068 		goto out_err;
2069 	return 0;
2070 out_err:
2071 	d_drop(dentry);
2072 	return error;
2073 }
2074 EXPORT_SYMBOL_GPL(nfs_mkdir);
2075 
2076 static void nfs_dentry_handle_enoent(struct dentry *dentry)
2077 {
2078 	if (simple_positive(dentry))
2079 		d_delete(dentry);
2080 }
2081 
2082 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
2083 {
2084 	int error;
2085 
2086 	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
2087 			dir->i_sb->s_id, dir->i_ino, dentry);
2088 
2089 	trace_nfs_rmdir_enter(dir, dentry);
2090 	if (d_really_is_positive(dentry)) {
2091 		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2092 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2093 		/* Ensure the VFS deletes this inode */
2094 		switch (error) {
2095 		case 0:
2096 			clear_nlink(d_inode(dentry));
2097 			break;
2098 		case -ENOENT:
2099 			nfs_dentry_handle_enoent(dentry);
2100 		}
2101 		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2102 	} else
2103 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2104 	trace_nfs_rmdir_exit(dir, dentry, error);
2105 
2106 	return error;
2107 }
2108 EXPORT_SYMBOL_GPL(nfs_rmdir);
2109 
2110 /*
2111  * Remove a file after making sure there are no pending writes,
2112  * and after checking that the file has only one user.
2113  *
2114  * We invalidate the attribute cache and free the inode prior to the operation
2115  * to avoid possible races if the server reuses the inode.
2116  */
2117 static int nfs_safe_remove(struct dentry *dentry)
2118 {
2119 	struct inode *dir = d_inode(dentry->d_parent);
2120 	struct inode *inode = d_inode(dentry);
2121 	int error = -EBUSY;
2122 
2123 	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2124 
2125 	/* If the dentry was sillyrenamed, we simply call d_delete() */
2126 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2127 		error = 0;
2128 		goto out;
2129 	}
2130 
2131 	trace_nfs_remove_enter(dir, dentry);
2132 	if (inode != NULL) {
2133 		error = NFS_PROTO(dir)->remove(dir, dentry);
2134 		if (error == 0)
2135 			nfs_drop_nlink(inode);
2136 	} else
2137 		error = NFS_PROTO(dir)->remove(dir, dentry);
2138 	if (error == -ENOENT)
2139 		nfs_dentry_handle_enoent(dentry);
2140 	trace_nfs_remove_exit(dir, dentry, error);
2141 out:
2142 	return error;
2143 }
2144 
2145 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
2146  *  belongs to an active ".nfs..." file and we return -EBUSY.
2147  *
2148  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
2149  */
2150 int nfs_unlink(struct inode *dir, struct dentry *dentry)
2151 {
2152 	int error;
2153 	int need_rehash = 0;
2154 
2155 	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2156 		dir->i_ino, dentry);
2157 
2158 	trace_nfs_unlink_enter(dir, dentry);
2159 	spin_lock(&dentry->d_lock);
2160 	if (d_count(dentry) > 1) {
2161 		spin_unlock(&dentry->d_lock);
2162 		/* Start asynchronous writeout of the inode */
2163 		write_inode_now(d_inode(dentry), 0);
2164 		error = nfs_sillyrename(dir, dentry);
2165 		goto out;
2166 	}
2167 	if (!d_unhashed(dentry)) {
2168 		__d_drop(dentry);
2169 		need_rehash = 1;
2170 	}
2171 	spin_unlock(&dentry->d_lock);
2172 	error = nfs_safe_remove(dentry);
2173 	if (!error || error == -ENOENT) {
2174 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2175 	} else if (need_rehash)
2176 		d_rehash(dentry);
2177 out:
2178 	trace_nfs_unlink_exit(dir, dentry, error);
2179 	return error;
2180 }
2181 EXPORT_SYMBOL_GPL(nfs_unlink);
2182 
2183 /*
2184  * To create a symbolic link, most file systems instantiate a new inode,
2185  * add a page to it containing the path, then write it out to the disk
2186  * using prepare_write/commit_write.
2187  *
2188  * Unfortunately the NFS client can't create the in-core inode first
2189  * because it needs a file handle to create an in-core inode (see
2190  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
2191  * symlink request has completed on the server.
2192  *
2193  * So instead we allocate a raw page, copy the symname into it, then do
2194  * the SYMLINK request with the page as the buffer.  If it succeeds, we
2195  * now have a new file handle and can instantiate an in-core NFS inode
2196  * and move the raw page into its mapping.
2197  */
2198 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2199 {
2200 	struct page *page;
2201 	char *kaddr;
2202 	struct iattr attr;
2203 	unsigned int pathlen = strlen(symname);
2204 	int error;
2205 
2206 	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2207 		dir->i_ino, dentry, symname);
2208 
2209 	if (pathlen > PAGE_SIZE)
2210 		return -ENAMETOOLONG;
2211 
2212 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
2213 	attr.ia_valid = ATTR_MODE;
2214 
2215 	page = alloc_page(GFP_USER);
2216 	if (!page)
2217 		return -ENOMEM;
2218 
2219 	kaddr = page_address(page);
2220 	memcpy(kaddr, symname, pathlen);
2221 	if (pathlen < PAGE_SIZE)
2222 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2223 
2224 	trace_nfs_symlink_enter(dir, dentry);
2225 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
2226 	trace_nfs_symlink_exit(dir, dentry, error);
2227 	if (error != 0) {
2228 		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2229 			dir->i_sb->s_id, dir->i_ino,
2230 			dentry, symname, error);
2231 		d_drop(dentry);
2232 		__free_page(page);
2233 		return error;
2234 	}
2235 
2236 	/*
2237 	 * No big deal if we can't add this page to the page cache here.
2238 	 * READLINK will get the missing page from the server if needed.
2239 	 */
2240 	if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2241 							GFP_KERNEL)) {
2242 		SetPageUptodate(page);
2243 		unlock_page(page);
2244 		/*
2245 		 * add_to_page_cache_lru() grabs an extra page refcount.
2246 		 * Drop it here to avoid leaking this page later.
2247 		 */
2248 		put_page(page);
2249 	} else
2250 		__free_page(page);
2251 
2252 	return 0;
2253 }
2254 EXPORT_SYMBOL_GPL(nfs_symlink);
2255 
2256 int
2257 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2258 {
2259 	struct inode *inode = d_inode(old_dentry);
2260 	int error;
2261 
2262 	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2263 		old_dentry, dentry);
2264 
2265 	trace_nfs_link_enter(inode, dir, dentry);
2266 	d_drop(dentry);
2267 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2268 	if (error == 0) {
2269 		ihold(inode);
2270 		d_add(dentry, inode);
2271 	}
2272 	trace_nfs_link_exit(inode, dir, dentry, error);
2273 	return error;
2274 }
2275 EXPORT_SYMBOL_GPL(nfs_link);
2276 
2277 /*
2278  * RENAME
2279  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2280  * different file handle for the same inode after a rename (e.g. when
2281  * moving to a different directory). A fail-safe method to do so would
2282  * be to look up old_dir/old_name, create a link to new_dir/new_name and
2283  * rename the old file using the sillyrename stuff. This way, the original
2284  * file in old_dir will go away when the last process iput()s the inode.
2285  *
2286  * FIXED.
2287  *
2288  * It actually works quite well. One needs to have the possibility for
2289  * at least one ".nfs..." file in each directory the file ever gets
2290  * moved or linked to which happens automagically with the new
2291  * implementation that only depends on the dcache stuff instead of
2292  * using the inode layer
2293  *
2294  * Unfortunately, things are a little more complicated than indicated
2295  * above. For a cross-directory move, we want to make sure we can get
2296  * rid of the old inode after the operation.  This means there must be
2297  * no pending writes (if it's a file), and the use count must be 1.
2298  * If these conditions are met, we can drop the dentries before doing
2299  * the rename.
2300  */
2301 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2302 	       struct inode *new_dir, struct dentry *new_dentry,
2303 	       unsigned int flags)
2304 {
2305 	struct inode *old_inode = d_inode(old_dentry);
2306 	struct inode *new_inode = d_inode(new_dentry);
2307 	struct dentry *dentry = NULL, *rehash = NULL;
2308 	struct rpc_task *task;
2309 	int error = -EBUSY;
2310 
2311 	if (flags)
2312 		return -EINVAL;
2313 
2314 	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2315 		 old_dentry, new_dentry,
2316 		 d_count(new_dentry));
2317 
2318 	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2319 	/*
2320 	 * For non-directories, check whether the target is busy and if so,
2321 	 * make a copy of the dentry and then do a silly-rename. If the
2322 	 * silly-rename succeeds, the copied dentry is hashed and becomes
2323 	 * the new target.
2324 	 */
2325 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2326 		/*
2327 		 * To prevent any new references to the target during the
2328 		 * rename, we unhash the dentry in advance.
2329 		 */
2330 		if (!d_unhashed(new_dentry)) {
2331 			d_drop(new_dentry);
2332 			rehash = new_dentry;
2333 		}
2334 
2335 		if (d_count(new_dentry) > 2) {
2336 			int err;
2337 
2338 			/* copy the target dentry's name */
2339 			dentry = d_alloc(new_dentry->d_parent,
2340 					 &new_dentry->d_name);
2341 			if (!dentry)
2342 				goto out;
2343 
2344 			/* silly-rename the existing target ... */
2345 			err = nfs_sillyrename(new_dir, new_dentry);
2346 			if (err)
2347 				goto out;
2348 
2349 			new_dentry = dentry;
2350 			rehash = NULL;
2351 			new_inode = NULL;
2352 		}
2353 	}
2354 
2355 	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2356 	if (IS_ERR(task)) {
2357 		error = PTR_ERR(task);
2358 		goto out;
2359 	}
2360 
2361 	error = rpc_wait_for_completion_task(task);
2362 	if (error != 0) {
2363 		((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2364 		/* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2365 		smp_wmb();
2366 	} else
2367 		error = task->tk_status;
2368 	rpc_put_task(task);
2369 	/* Ensure the inode attributes are revalidated */
2370 	if (error == 0) {
2371 		spin_lock(&old_inode->i_lock);
2372 		NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2373 		NFS_I(old_inode)->cache_validity |= NFS_INO_INVALID_CHANGE
2374 			| NFS_INO_INVALID_CTIME
2375 			| NFS_INO_REVAL_FORCED;
2376 		spin_unlock(&old_inode->i_lock);
2377 	}
2378 out:
2379 	if (rehash)
2380 		d_rehash(rehash);
2381 	trace_nfs_rename_exit(old_dir, old_dentry,
2382 			new_dir, new_dentry, error);
2383 	if (!error) {
2384 		if (new_inode != NULL)
2385 			nfs_drop_nlink(new_inode);
2386 		/*
2387 		 * The d_move() should be here instead of in an async RPC completion
2388 		 * handler because we need the proper locks to move the dentry.  If
2389 		 * we're interrupted by a signal, the async RPC completion handler
2390 		 * should mark the directories for revalidation.
2391 		 */
2392 		d_move(old_dentry, new_dentry);
2393 		nfs_set_verifier(old_dentry,
2394 					nfs_save_change_attribute(new_dir));
2395 	} else if (error == -ENOENT)
2396 		nfs_dentry_handle_enoent(old_dentry);
2397 
2398 	/* new dentry created? */
2399 	if (dentry)
2400 		dput(dentry);
2401 	return error;
2402 }
2403 EXPORT_SYMBOL_GPL(nfs_rename);
2404 
2405 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2406 static LIST_HEAD(nfs_access_lru_list);
2407 static atomic_long_t nfs_access_nr_entries;
2408 
2409 static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2410 module_param(nfs_access_max_cachesize, ulong, 0644);
2411 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2412 
2413 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2414 {
2415 	put_cred(entry->cred);
2416 	kfree_rcu(entry, rcu_head);
2417 	smp_mb__before_atomic();
2418 	atomic_long_dec(&nfs_access_nr_entries);
2419 	smp_mb__after_atomic();
2420 }
2421 
2422 static void nfs_access_free_list(struct list_head *head)
2423 {
2424 	struct nfs_access_entry *cache;
2425 
2426 	while (!list_empty(head)) {
2427 		cache = list_entry(head->next, struct nfs_access_entry, lru);
2428 		list_del(&cache->lru);
2429 		nfs_access_free_entry(cache);
2430 	}
2431 }
2432 
2433 static unsigned long
2434 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2435 {
2436 	LIST_HEAD(head);
2437 	struct nfs_inode *nfsi, *next;
2438 	struct nfs_access_entry *cache;
2439 	long freed = 0;
2440 
2441 	spin_lock(&nfs_access_lru_lock);
2442 	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2443 		struct inode *inode;
2444 
2445 		if (nr_to_scan-- == 0)
2446 			break;
2447 		inode = &nfsi->vfs_inode;
2448 		spin_lock(&inode->i_lock);
2449 		if (list_empty(&nfsi->access_cache_entry_lru))
2450 			goto remove_lru_entry;
2451 		cache = list_entry(nfsi->access_cache_entry_lru.next,
2452 				struct nfs_access_entry, lru);
2453 		list_move(&cache->lru, &head);
2454 		rb_erase(&cache->rb_node, &nfsi->access_cache);
2455 		freed++;
2456 		if (!list_empty(&nfsi->access_cache_entry_lru))
2457 			list_move_tail(&nfsi->access_cache_inode_lru,
2458 					&nfs_access_lru_list);
2459 		else {
2460 remove_lru_entry:
2461 			list_del_init(&nfsi->access_cache_inode_lru);
2462 			smp_mb__before_atomic();
2463 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2464 			smp_mb__after_atomic();
2465 		}
2466 		spin_unlock(&inode->i_lock);
2467 	}
2468 	spin_unlock(&nfs_access_lru_lock);
2469 	nfs_access_free_list(&head);
2470 	return freed;
2471 }
2472 
2473 unsigned long
2474 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2475 {
2476 	int nr_to_scan = sc->nr_to_scan;
2477 	gfp_t gfp_mask = sc->gfp_mask;
2478 
2479 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2480 		return SHRINK_STOP;
2481 	return nfs_do_access_cache_scan(nr_to_scan);
2482 }
2483 
2484 
2485 unsigned long
2486 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2487 {
2488 	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2489 }
2490 
2491 static void
2492 nfs_access_cache_enforce_limit(void)
2493 {
2494 	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2495 	unsigned long diff;
2496 	unsigned int nr_to_scan;
2497 
2498 	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2499 		return;
2500 	nr_to_scan = 100;
2501 	diff = nr_entries - nfs_access_max_cachesize;
2502 	if (diff < nr_to_scan)
2503 		nr_to_scan = diff;
2504 	nfs_do_access_cache_scan(nr_to_scan);
2505 }
2506 
2507 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2508 {
2509 	struct rb_root *root_node = &nfsi->access_cache;
2510 	struct rb_node *n;
2511 	struct nfs_access_entry *entry;
2512 
2513 	/* Unhook entries from the cache */
2514 	while ((n = rb_first(root_node)) != NULL) {
2515 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2516 		rb_erase(n, root_node);
2517 		list_move(&entry->lru, head);
2518 	}
2519 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2520 }
2521 
2522 void nfs_access_zap_cache(struct inode *inode)
2523 {
2524 	LIST_HEAD(head);
2525 
2526 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2527 		return;
2528 	/* Remove from global LRU init */
2529 	spin_lock(&nfs_access_lru_lock);
2530 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2531 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2532 
2533 	spin_lock(&inode->i_lock);
2534 	__nfs_access_zap_cache(NFS_I(inode), &head);
2535 	spin_unlock(&inode->i_lock);
2536 	spin_unlock(&nfs_access_lru_lock);
2537 	nfs_access_free_list(&head);
2538 }
2539 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2540 
2541 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2542 {
2543 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2544 
2545 	while (n != NULL) {
2546 		struct nfs_access_entry *entry =
2547 			rb_entry(n, struct nfs_access_entry, rb_node);
2548 		int cmp = cred_fscmp(cred, entry->cred);
2549 
2550 		if (cmp < 0)
2551 			n = n->rb_left;
2552 		else if (cmp > 0)
2553 			n = n->rb_right;
2554 		else
2555 			return entry;
2556 	}
2557 	return NULL;
2558 }
2559 
2560 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res, bool may_block)
2561 {
2562 	struct nfs_inode *nfsi = NFS_I(inode);
2563 	struct nfs_access_entry *cache;
2564 	bool retry = true;
2565 	int err;
2566 
2567 	spin_lock(&inode->i_lock);
2568 	for(;;) {
2569 		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2570 			goto out_zap;
2571 		cache = nfs_access_search_rbtree(inode, cred);
2572 		err = -ENOENT;
2573 		if (cache == NULL)
2574 			goto out;
2575 		/* Found an entry, is our attribute cache valid? */
2576 		if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2577 			break;
2578 		if (!retry)
2579 			break;
2580 		err = -ECHILD;
2581 		if (!may_block)
2582 			goto out;
2583 		spin_unlock(&inode->i_lock);
2584 		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2585 		if (err)
2586 			return err;
2587 		spin_lock(&inode->i_lock);
2588 		retry = false;
2589 	}
2590 	res->cred = cache->cred;
2591 	res->mask = cache->mask;
2592 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2593 	err = 0;
2594 out:
2595 	spin_unlock(&inode->i_lock);
2596 	return err;
2597 out_zap:
2598 	spin_unlock(&inode->i_lock);
2599 	nfs_access_zap_cache(inode);
2600 	return -ENOENT;
2601 }
2602 
2603 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res)
2604 {
2605 	/* Only check the most recently returned cache entry,
2606 	 * but do it without locking.
2607 	 */
2608 	struct nfs_inode *nfsi = NFS_I(inode);
2609 	struct nfs_access_entry *cache;
2610 	int err = -ECHILD;
2611 	struct list_head *lh;
2612 
2613 	rcu_read_lock();
2614 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2615 		goto out;
2616 	lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
2617 	cache = list_entry(lh, struct nfs_access_entry, lru);
2618 	if (lh == &nfsi->access_cache_entry_lru ||
2619 	    cred_fscmp(cred, cache->cred) != 0)
2620 		cache = NULL;
2621 	if (cache == NULL)
2622 		goto out;
2623 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2624 		goto out;
2625 	res->cred = cache->cred;
2626 	res->mask = cache->mask;
2627 	err = 0;
2628 out:
2629 	rcu_read_unlock();
2630 	return err;
2631 }
2632 
2633 int nfs_access_get_cached(struct inode *inode, const struct cred *cred, struct
2634 nfs_access_entry *res, bool may_block)
2635 {
2636 	int status;
2637 
2638 	status = nfs_access_get_cached_rcu(inode, cred, res);
2639 	if (status != 0)
2640 		status = nfs_access_get_cached_locked(inode, cred, res,
2641 		    may_block);
2642 
2643 	return status;
2644 }
2645 EXPORT_SYMBOL_GPL(nfs_access_get_cached);
2646 
2647 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2648 {
2649 	struct nfs_inode *nfsi = NFS_I(inode);
2650 	struct rb_root *root_node = &nfsi->access_cache;
2651 	struct rb_node **p = &root_node->rb_node;
2652 	struct rb_node *parent = NULL;
2653 	struct nfs_access_entry *entry;
2654 	int cmp;
2655 
2656 	spin_lock(&inode->i_lock);
2657 	while (*p != NULL) {
2658 		parent = *p;
2659 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2660 		cmp = cred_fscmp(set->cred, entry->cred);
2661 
2662 		if (cmp < 0)
2663 			p = &parent->rb_left;
2664 		else if (cmp > 0)
2665 			p = &parent->rb_right;
2666 		else
2667 			goto found;
2668 	}
2669 	rb_link_node(&set->rb_node, parent, p);
2670 	rb_insert_color(&set->rb_node, root_node);
2671 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2672 	spin_unlock(&inode->i_lock);
2673 	return;
2674 found:
2675 	rb_replace_node(parent, &set->rb_node, root_node);
2676 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2677 	list_del(&entry->lru);
2678 	spin_unlock(&inode->i_lock);
2679 	nfs_access_free_entry(entry);
2680 }
2681 
2682 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2683 {
2684 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2685 	if (cache == NULL)
2686 		return;
2687 	RB_CLEAR_NODE(&cache->rb_node);
2688 	cache->cred = get_cred(set->cred);
2689 	cache->mask = set->mask;
2690 
2691 	/* The above field assignments must be visible
2692 	 * before this item appears on the lru.  We cannot easily
2693 	 * use rcu_assign_pointer, so just force the memory barrier.
2694 	 */
2695 	smp_wmb();
2696 	nfs_access_add_rbtree(inode, cache);
2697 
2698 	/* Update accounting */
2699 	smp_mb__before_atomic();
2700 	atomic_long_inc(&nfs_access_nr_entries);
2701 	smp_mb__after_atomic();
2702 
2703 	/* Add inode to global LRU list */
2704 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2705 		spin_lock(&nfs_access_lru_lock);
2706 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2707 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2708 					&nfs_access_lru_list);
2709 		spin_unlock(&nfs_access_lru_lock);
2710 	}
2711 	nfs_access_cache_enforce_limit();
2712 }
2713 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2714 
2715 #define NFS_MAY_READ (NFS_ACCESS_READ)
2716 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2717 		NFS_ACCESS_EXTEND | \
2718 		NFS_ACCESS_DELETE)
2719 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2720 		NFS_ACCESS_EXTEND)
2721 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2722 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2723 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2724 static int
2725 nfs_access_calc_mask(u32 access_result, umode_t umode)
2726 {
2727 	int mask = 0;
2728 
2729 	if (access_result & NFS_MAY_READ)
2730 		mask |= MAY_READ;
2731 	if (S_ISDIR(umode)) {
2732 		if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2733 			mask |= MAY_WRITE;
2734 		if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2735 			mask |= MAY_EXEC;
2736 	} else if (S_ISREG(umode)) {
2737 		if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2738 			mask |= MAY_WRITE;
2739 		if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2740 			mask |= MAY_EXEC;
2741 	} else if (access_result & NFS_MAY_WRITE)
2742 			mask |= MAY_WRITE;
2743 	return mask;
2744 }
2745 
2746 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2747 {
2748 	entry->mask = access_result;
2749 }
2750 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2751 
2752 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
2753 {
2754 	struct nfs_access_entry cache;
2755 	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2756 	int cache_mask = -1;
2757 	int status;
2758 
2759 	trace_nfs_access_enter(inode);
2760 
2761 	status = nfs_access_get_cached(inode, cred, &cache, may_block);
2762 	if (status == 0)
2763 		goto out_cached;
2764 
2765 	status = -ECHILD;
2766 	if (!may_block)
2767 		goto out;
2768 
2769 	/*
2770 	 * Determine which access bits we want to ask for...
2771 	 */
2772 	cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND;
2773 	if (nfs_server_capable(inode, NFS_CAP_XATTR)) {
2774 		cache.mask |= NFS_ACCESS_XAREAD | NFS_ACCESS_XAWRITE |
2775 		    NFS_ACCESS_XALIST;
2776 	}
2777 	if (S_ISDIR(inode->i_mode))
2778 		cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
2779 	else
2780 		cache.mask |= NFS_ACCESS_EXECUTE;
2781 	cache.cred = cred;
2782 	status = NFS_PROTO(inode)->access(inode, &cache);
2783 	if (status != 0) {
2784 		if (status == -ESTALE) {
2785 			if (!S_ISDIR(inode->i_mode))
2786 				nfs_set_inode_stale(inode);
2787 			else
2788 				nfs_zap_caches(inode);
2789 		}
2790 		goto out;
2791 	}
2792 	nfs_access_add_cache(inode, &cache);
2793 out_cached:
2794 	cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
2795 	if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2796 		status = -EACCES;
2797 out:
2798 	trace_nfs_access_exit(inode, mask, cache_mask, status);
2799 	return status;
2800 }
2801 
2802 static int nfs_open_permission_mask(int openflags)
2803 {
2804 	int mask = 0;
2805 
2806 	if (openflags & __FMODE_EXEC) {
2807 		/* ONLY check exec rights */
2808 		mask = MAY_EXEC;
2809 	} else {
2810 		if ((openflags & O_ACCMODE) != O_WRONLY)
2811 			mask |= MAY_READ;
2812 		if ((openflags & O_ACCMODE) != O_RDONLY)
2813 			mask |= MAY_WRITE;
2814 	}
2815 
2816 	return mask;
2817 }
2818 
2819 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
2820 {
2821 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2822 }
2823 EXPORT_SYMBOL_GPL(nfs_may_open);
2824 
2825 static int nfs_execute_ok(struct inode *inode, int mask)
2826 {
2827 	struct nfs_server *server = NFS_SERVER(inode);
2828 	int ret = 0;
2829 
2830 	if (S_ISDIR(inode->i_mode))
2831 		return 0;
2832 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_OTHER)) {
2833 		if (mask & MAY_NOT_BLOCK)
2834 			return -ECHILD;
2835 		ret = __nfs_revalidate_inode(server, inode);
2836 	}
2837 	if (ret == 0 && !execute_ok(inode))
2838 		ret = -EACCES;
2839 	return ret;
2840 }
2841 
2842 int nfs_permission(struct inode *inode, int mask)
2843 {
2844 	const struct cred *cred = current_cred();
2845 	int res = 0;
2846 
2847 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2848 
2849 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2850 		goto out;
2851 	/* Is this sys_access() ? */
2852 	if (mask & (MAY_ACCESS | MAY_CHDIR))
2853 		goto force_lookup;
2854 
2855 	switch (inode->i_mode & S_IFMT) {
2856 		case S_IFLNK:
2857 			goto out;
2858 		case S_IFREG:
2859 			if ((mask & MAY_OPEN) &&
2860 			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2861 				return 0;
2862 			break;
2863 		case S_IFDIR:
2864 			/*
2865 			 * Optimize away all write operations, since the server
2866 			 * will check permissions when we perform the op.
2867 			 */
2868 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2869 				goto out;
2870 	}
2871 
2872 force_lookup:
2873 	if (!NFS_PROTO(inode)->access)
2874 		goto out_notsup;
2875 
2876 	res = nfs_do_access(inode, cred, mask);
2877 out:
2878 	if (!res && (mask & MAY_EXEC))
2879 		res = nfs_execute_ok(inode, mask);
2880 
2881 	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2882 		inode->i_sb->s_id, inode->i_ino, mask, res);
2883 	return res;
2884 out_notsup:
2885 	if (mask & MAY_NOT_BLOCK)
2886 		return -ECHILD;
2887 
2888 	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2889 	if (res == 0)
2890 		res = generic_permission(inode, mask);
2891 	goto out;
2892 }
2893 EXPORT_SYMBOL_GPL(nfs_permission);
2894 
2895 /*
2896  * Local variables:
2897  *  version-control: t
2898  *  kept-new-versions: 5
2899  * End:
2900  */
2901