xref: /openbmc/linux/fs/nfs/dir.c (revision 8440bb9b)
1 /*
2  *  linux/fs/nfs/dir.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  nfs directory handling functions
7  *
8  * 10 Apr 1996	Added silly rename for unlink	--okir
9  * 28 Sep 1996	Improved directory cache --okir
10  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
11  *              Re-implemented silly rename for unlink, newly implemented
12  *              silly rename for nfs_rename() following the suggestions
13  *              of Olaf Kirch (okir) found in this file.
14  *              Following Linus comments on my original hack, this version
15  *              depends only on the dcache stuff and doesn't touch the inode
16  *              layer (iput() and friends).
17  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
18  */
19 
20 #include <linux/module.h>
21 #include <linux/time.h>
22 #include <linux/errno.h>
23 #include <linux/stat.h>
24 #include <linux/fcntl.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/mm.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/nfs_fs.h>
31 #include <linux/nfs_mount.h>
32 #include <linux/pagemap.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/swap.h>
37 #include <linux/sched.h>
38 #include <linux/kmemleak.h>
39 #include <linux/xattr.h>
40 
41 #include "delegation.h"
42 #include "iostat.h"
43 #include "internal.h"
44 #include "fscache.h"
45 
46 #include "nfstrace.h"
47 
48 /* #define NFS_DEBUG_VERBOSE 1 */
49 
50 static int nfs_opendir(struct inode *, struct file *);
51 static int nfs_closedir(struct inode *, struct file *);
52 static int nfs_readdir(struct file *, struct dir_context *);
53 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
54 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
55 static void nfs_readdir_clear_array(struct page*);
56 
57 const struct file_operations nfs_dir_operations = {
58 	.llseek		= nfs_llseek_dir,
59 	.read		= generic_read_dir,
60 	.iterate	= nfs_readdir,
61 	.open		= nfs_opendir,
62 	.release	= nfs_closedir,
63 	.fsync		= nfs_fsync_dir,
64 };
65 
66 const struct address_space_operations nfs_dir_aops = {
67 	.freepage = nfs_readdir_clear_array,
68 };
69 
70 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, const struct cred *cred)
71 {
72 	struct nfs_inode *nfsi = NFS_I(dir);
73 	struct nfs_open_dir_context *ctx;
74 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
75 	if (ctx != NULL) {
76 		ctx->duped = 0;
77 		ctx->attr_gencount = nfsi->attr_gencount;
78 		ctx->dir_cookie = 0;
79 		ctx->dup_cookie = 0;
80 		ctx->cred = get_cred(cred);
81 		spin_lock(&dir->i_lock);
82 		list_add(&ctx->list, &nfsi->open_files);
83 		spin_unlock(&dir->i_lock);
84 		return ctx;
85 	}
86 	return  ERR_PTR(-ENOMEM);
87 }
88 
89 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
90 {
91 	spin_lock(&dir->i_lock);
92 	list_del(&ctx->list);
93 	spin_unlock(&dir->i_lock);
94 	put_cred(ctx->cred);
95 	kfree(ctx);
96 }
97 
98 /*
99  * Open file
100  */
101 static int
102 nfs_opendir(struct inode *inode, struct file *filp)
103 {
104 	int res = 0;
105 	struct nfs_open_dir_context *ctx;
106 
107 	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
108 
109 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
110 
111 	ctx = alloc_nfs_open_dir_context(inode, current_cred());
112 	if (IS_ERR(ctx)) {
113 		res = PTR_ERR(ctx);
114 		goto out;
115 	}
116 	filp->private_data = ctx;
117 out:
118 	return res;
119 }
120 
121 static int
122 nfs_closedir(struct inode *inode, struct file *filp)
123 {
124 	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
125 	return 0;
126 }
127 
128 struct nfs_cache_array_entry {
129 	u64 cookie;
130 	u64 ino;
131 	struct qstr string;
132 	unsigned char d_type;
133 };
134 
135 struct nfs_cache_array {
136 	int size;
137 	int eof_index;
138 	u64 last_cookie;
139 	struct nfs_cache_array_entry array[0];
140 };
141 
142 struct readdirvec {
143 	unsigned long nr;
144 	unsigned long index;
145 	struct page *pages[NFS_MAX_READDIR_RAPAGES];
146 };
147 
148 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, bool);
149 typedef struct {
150 	struct file	*file;
151 	struct page	*page;
152 	struct dir_context *ctx;
153 	unsigned long	page_index;
154 	struct readdirvec pvec;
155 	u64		*dir_cookie;
156 	u64		last_cookie;
157 	loff_t		current_index;
158 	decode_dirent_t	decode;
159 
160 	unsigned long	timestamp;
161 	unsigned long	gencount;
162 	unsigned int	cache_entry_index;
163 	bool plus;
164 	bool eof;
165 } nfs_readdir_descriptor_t;
166 
167 /*
168  * we are freeing strings created by nfs_add_to_readdir_array()
169  */
170 static
171 void nfs_readdir_clear_array(struct page *page)
172 {
173 	struct nfs_cache_array *array;
174 	int i;
175 
176 	array = kmap_atomic(page);
177 	for (i = 0; i < array->size; i++)
178 		kfree(array->array[i].string.name);
179 	kunmap_atomic(array);
180 }
181 
182 /*
183  * the caller is responsible for freeing qstr.name
184  * when called by nfs_readdir_add_to_array, the strings will be freed in
185  * nfs_clear_readdir_array()
186  */
187 static
188 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
189 {
190 	string->len = len;
191 	string->name = kmemdup(name, len, GFP_KERNEL);
192 	if (string->name == NULL)
193 		return -ENOMEM;
194 	/*
195 	 * Avoid a kmemleak false positive. The pointer to the name is stored
196 	 * in a page cache page which kmemleak does not scan.
197 	 */
198 	kmemleak_not_leak(string->name);
199 	string->hash = full_name_hash(NULL, name, len);
200 	return 0;
201 }
202 
203 static
204 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
205 {
206 	struct nfs_cache_array *array = kmap(page);
207 	struct nfs_cache_array_entry *cache_entry;
208 	int ret;
209 
210 	cache_entry = &array->array[array->size];
211 
212 	/* Check that this entry lies within the page bounds */
213 	ret = -ENOSPC;
214 	if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
215 		goto out;
216 
217 	cache_entry->cookie = entry->prev_cookie;
218 	cache_entry->ino = entry->ino;
219 	cache_entry->d_type = entry->d_type;
220 	ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
221 	if (ret)
222 		goto out;
223 	array->last_cookie = entry->cookie;
224 	array->size++;
225 	if (entry->eof != 0)
226 		array->eof_index = array->size;
227 out:
228 	kunmap(page);
229 	return ret;
230 }
231 
232 static
233 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
234 {
235 	loff_t diff = desc->ctx->pos - desc->current_index;
236 	unsigned int index;
237 
238 	if (diff < 0)
239 		goto out_eof;
240 	if (diff >= array->size) {
241 		if (array->eof_index >= 0)
242 			goto out_eof;
243 		return -EAGAIN;
244 	}
245 
246 	index = (unsigned int)diff;
247 	*desc->dir_cookie = array->array[index].cookie;
248 	desc->cache_entry_index = index;
249 	return 0;
250 out_eof:
251 	desc->eof = true;
252 	return -EBADCOOKIE;
253 }
254 
255 static bool
256 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
257 {
258 	if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
259 		return false;
260 	smp_rmb();
261 	return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
262 }
263 
264 static
265 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
266 {
267 	int i;
268 	loff_t new_pos;
269 	int status = -EAGAIN;
270 
271 	for (i = 0; i < array->size; i++) {
272 		if (array->array[i].cookie == *desc->dir_cookie) {
273 			struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
274 			struct nfs_open_dir_context *ctx = desc->file->private_data;
275 
276 			new_pos = desc->current_index + i;
277 			if (ctx->attr_gencount != nfsi->attr_gencount ||
278 			    !nfs_readdir_inode_mapping_valid(nfsi)) {
279 				ctx->duped = 0;
280 				ctx->attr_gencount = nfsi->attr_gencount;
281 			} else if (new_pos < desc->ctx->pos) {
282 				if (ctx->duped > 0
283 				    && ctx->dup_cookie == *desc->dir_cookie) {
284 					if (printk_ratelimit()) {
285 						pr_notice("NFS: directory %pD2 contains a readdir loop."
286 								"Please contact your server vendor.  "
287 								"The file: %.*s has duplicate cookie %llu\n",
288 								desc->file, array->array[i].string.len,
289 								array->array[i].string.name, *desc->dir_cookie);
290 					}
291 					status = -ELOOP;
292 					goto out;
293 				}
294 				ctx->dup_cookie = *desc->dir_cookie;
295 				ctx->duped = -1;
296 			}
297 			desc->ctx->pos = new_pos;
298 			desc->cache_entry_index = i;
299 			return 0;
300 		}
301 	}
302 	if (array->eof_index >= 0) {
303 		status = -EBADCOOKIE;
304 		if (*desc->dir_cookie == array->last_cookie)
305 			desc->eof = true;
306 	}
307 out:
308 	return status;
309 }
310 
311 static
312 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
313 {
314 	struct nfs_cache_array *array;
315 	int status;
316 
317 	array = kmap(desc->page);
318 
319 	if (*desc->dir_cookie == 0)
320 		status = nfs_readdir_search_for_pos(array, desc);
321 	else
322 		status = nfs_readdir_search_for_cookie(array, desc);
323 
324 	if (status == -EAGAIN) {
325 		desc->last_cookie = array->last_cookie;
326 		desc->current_index += array->size;
327 		desc->page_index++;
328 	}
329 	kunmap(desc->page);
330 	return status;
331 }
332 
333 /* Fill a page with xdr information before transferring to the cache page */
334 static
335 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
336 			struct nfs_entry *entry, struct file *file, struct inode *inode)
337 {
338 	struct nfs_open_dir_context *ctx = file->private_data;
339 	const struct cred *cred = ctx->cred;
340 	unsigned long	timestamp, gencount;
341 	int		error;
342 
343  again:
344 	timestamp = jiffies;
345 	gencount = nfs_inc_attr_generation_counter();
346 	error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
347 					  NFS_SERVER(inode)->dtsize, desc->plus);
348 	if (error < 0) {
349 		/* We requested READDIRPLUS, but the server doesn't grok it */
350 		if (error == -ENOTSUPP && desc->plus) {
351 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
352 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
353 			desc->plus = false;
354 			goto again;
355 		}
356 		goto error;
357 	}
358 	desc->timestamp = timestamp;
359 	desc->gencount = gencount;
360 error:
361 	return error;
362 }
363 
364 static int xdr_decode(nfs_readdir_descriptor_t *desc,
365 		      struct nfs_entry *entry, struct xdr_stream *xdr)
366 {
367 	int error;
368 
369 	error = desc->decode(xdr, entry, desc->plus);
370 	if (error)
371 		return error;
372 	entry->fattr->time_start = desc->timestamp;
373 	entry->fattr->gencount = desc->gencount;
374 	return 0;
375 }
376 
377 /* Match file and dirent using either filehandle or fileid
378  * Note: caller is responsible for checking the fsid
379  */
380 static
381 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
382 {
383 	struct inode *inode;
384 	struct nfs_inode *nfsi;
385 
386 	if (d_really_is_negative(dentry))
387 		return 0;
388 
389 	inode = d_inode(dentry);
390 	if (is_bad_inode(inode) || NFS_STALE(inode))
391 		return 0;
392 
393 	nfsi = NFS_I(inode);
394 	if (entry->fattr->fileid != nfsi->fileid)
395 		return 0;
396 	if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
397 		return 0;
398 	return 1;
399 }
400 
401 static
402 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
403 {
404 	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
405 		return false;
406 	if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
407 		return true;
408 	if (ctx->pos == 0)
409 		return true;
410 	return false;
411 }
412 
413 /*
414  * This function is called by the lookup and getattr code to request the
415  * use of readdirplus to accelerate any future lookups in the same
416  * directory.
417  */
418 void nfs_advise_use_readdirplus(struct inode *dir)
419 {
420 	struct nfs_inode *nfsi = NFS_I(dir);
421 
422 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
423 	    !list_empty(&nfsi->open_files))
424 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
425 }
426 
427 /*
428  * This function is mainly for use by nfs_getattr().
429  *
430  * If this is an 'ls -l', we want to force use of readdirplus.
431  * Do this by checking if there is an active file descriptor
432  * and calling nfs_advise_use_readdirplus, then forcing a
433  * cache flush.
434  */
435 void nfs_force_use_readdirplus(struct inode *dir)
436 {
437 	struct nfs_inode *nfsi = NFS_I(dir);
438 
439 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
440 	    !list_empty(&nfsi->open_files)) {
441 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
442 		invalidate_mapping_pages(dir->i_mapping, 0, -1);
443 	}
444 }
445 
446 static
447 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
448 {
449 	struct qstr filename = QSTR_INIT(entry->name, entry->len);
450 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
451 	struct dentry *dentry;
452 	struct dentry *alias;
453 	struct inode *dir = d_inode(parent);
454 	struct inode *inode;
455 	int status;
456 
457 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
458 		return;
459 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
460 		return;
461 	if (filename.len == 0)
462 		return;
463 	/* Validate that the name doesn't contain any illegal '\0' */
464 	if (strnlen(filename.name, filename.len) != filename.len)
465 		return;
466 	/* ...or '/' */
467 	if (strnchr(filename.name, filename.len, '/'))
468 		return;
469 	if (filename.name[0] == '.') {
470 		if (filename.len == 1)
471 			return;
472 		if (filename.len == 2 && filename.name[1] == '.')
473 			return;
474 	}
475 	filename.hash = full_name_hash(parent, filename.name, filename.len);
476 
477 	dentry = d_lookup(parent, &filename);
478 again:
479 	if (!dentry) {
480 		dentry = d_alloc_parallel(parent, &filename, &wq);
481 		if (IS_ERR(dentry))
482 			return;
483 	}
484 	if (!d_in_lookup(dentry)) {
485 		/* Is there a mountpoint here? If so, just exit */
486 		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
487 					&entry->fattr->fsid))
488 			goto out;
489 		if (nfs_same_file(dentry, entry)) {
490 			if (!entry->fh->size)
491 				goto out;
492 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
493 			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
494 			if (!status)
495 				nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
496 			goto out;
497 		} else {
498 			d_invalidate(dentry);
499 			dput(dentry);
500 			dentry = NULL;
501 			goto again;
502 		}
503 	}
504 	if (!entry->fh->size) {
505 		d_lookup_done(dentry);
506 		goto out;
507 	}
508 
509 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
510 	alias = d_splice_alias(inode, dentry);
511 	d_lookup_done(dentry);
512 	if (alias) {
513 		if (IS_ERR(alias))
514 			goto out;
515 		dput(dentry);
516 		dentry = alias;
517 	}
518 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
519 out:
520 	dput(dentry);
521 }
522 
523 /* Perform conversion from xdr to cache array */
524 static
525 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
526 				struct page **xdr_pages, struct page *page, unsigned int buflen)
527 {
528 	struct xdr_stream stream;
529 	struct xdr_buf buf;
530 	struct page *scratch;
531 	struct nfs_cache_array *array;
532 	unsigned int count = 0;
533 	int status;
534 	int max_rapages = NFS_MAX_READDIR_RAPAGES;
535 
536 	desc->pvec.index = desc->page_index;
537 	desc->pvec.nr = 0;
538 
539 	scratch = alloc_page(GFP_KERNEL);
540 	if (scratch == NULL)
541 		return -ENOMEM;
542 
543 	if (buflen == 0)
544 		goto out_nopages;
545 
546 	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
547 	xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
548 
549 	do {
550 		status = xdr_decode(desc, entry, &stream);
551 		if (status != 0) {
552 			if (status == -EAGAIN)
553 				status = 0;
554 			break;
555 		}
556 
557 		count++;
558 
559 		if (desc->plus)
560 			nfs_prime_dcache(file_dentry(desc->file), entry);
561 
562 		status = nfs_readdir_add_to_array(entry, desc->pvec.pages[desc->pvec.nr]);
563 		if (status == -ENOSPC) {
564 			desc->pvec.nr++;
565 			if (desc->pvec.nr == max_rapages)
566 				break;
567 			status = nfs_readdir_add_to_array(entry, desc->pvec.pages[desc->pvec.nr]);
568 		}
569 		if (status != 0)
570 			break;
571 	} while (!entry->eof);
572 
573 	/*
574 	 * page and desc->pvec.pages[0] are valid, don't need to check
575 	 * whether or not to be NULL.
576 	 */
577 	copy_highpage(page, desc->pvec.pages[0]);
578 
579 out_nopages:
580 	if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
581 		array = kmap_atomic(desc->pvec.pages[desc->pvec.nr]);
582 		array->eof_index = array->size;
583 		status = 0;
584 		kunmap_atomic(array);
585 	}
586 
587 	put_page(scratch);
588 
589 	/*
590 	 * desc->pvec.nr > 0 means at least one page was completely filled,
591 	 * we should return -ENOSPC. Otherwise function
592 	 * nfs_readdir_xdr_to_array will enter infinite loop.
593 	 */
594 	if (desc->pvec.nr > 0)
595 		return -ENOSPC;
596 	return status;
597 }
598 
599 static
600 void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
601 {
602 	unsigned int i;
603 	for (i = 0; i < npages; i++)
604 		put_page(pages[i]);
605 }
606 
607 /*
608  * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
609  * to nfs_readdir_free_pages()
610  */
611 static
612 int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
613 {
614 	unsigned int i;
615 
616 	for (i = 0; i < npages; i++) {
617 		struct page *page = alloc_page(GFP_KERNEL);
618 		if (page == NULL)
619 			goto out_freepages;
620 		pages[i] = page;
621 	}
622 	return 0;
623 
624 out_freepages:
625 	nfs_readdir_free_pages(pages, i);
626 	return -ENOMEM;
627 }
628 
629 /*
630  * nfs_readdir_rapages_init initialize rapages by nfs_cache_array structure.
631  */
632 static
633 void nfs_readdir_rapages_init(nfs_readdir_descriptor_t *desc)
634 {
635 	struct nfs_cache_array *array;
636 	int max_rapages = NFS_MAX_READDIR_RAPAGES;
637 	int index;
638 
639 	for (index = 0; index < max_rapages; index++) {
640 		array = kmap_atomic(desc->pvec.pages[index]);
641 		memset(array, 0, sizeof(struct nfs_cache_array));
642 		array->eof_index = -1;
643 		kunmap_atomic(array);
644 	}
645 }
646 
647 static
648 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
649 {
650 	struct page *pages[NFS_MAX_READDIR_PAGES];
651 	struct nfs_entry entry;
652 	struct file	*file = desc->file;
653 	struct nfs_cache_array *array;
654 	int status = -ENOMEM;
655 	unsigned int array_size = ARRAY_SIZE(pages);
656 
657 	/*
658 	 * This means we hit readdir rdpages miss, the preallocated rdpages
659 	 * are useless, the preallocate rdpages should be reinitialized.
660 	 */
661 	nfs_readdir_rapages_init(desc);
662 
663 	entry.prev_cookie = 0;
664 	entry.cookie = desc->last_cookie;
665 	entry.eof = 0;
666 	entry.fh = nfs_alloc_fhandle();
667 	entry.fattr = nfs_alloc_fattr();
668 	entry.server = NFS_SERVER(inode);
669 	if (entry.fh == NULL || entry.fattr == NULL)
670 		goto out;
671 
672 	entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
673 	if (IS_ERR(entry.label)) {
674 		status = PTR_ERR(entry.label);
675 		goto out;
676 	}
677 
678 	array = kmap(page);
679 	memset(array, 0, sizeof(struct nfs_cache_array));
680 	array->eof_index = -1;
681 
682 	status = nfs_readdir_alloc_pages(pages, array_size);
683 	if (status < 0)
684 		goto out_release_array;
685 	do {
686 		unsigned int pglen;
687 		status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
688 
689 		if (status < 0)
690 			break;
691 		pglen = status;
692 		status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
693 		if (status < 0) {
694 			if (status == -ENOSPC)
695 				status = 0;
696 			break;
697 		}
698 	} while (array->eof_index < 0);
699 
700 	nfs_readdir_free_pages(pages, array_size);
701 out_release_array:
702 	kunmap(page);
703 	nfs4_label_free(entry.label);
704 out:
705 	nfs_free_fattr(entry.fattr);
706 	nfs_free_fhandle(entry.fh);
707 	return status;
708 }
709 
710 /*
711  * Now we cache directories properly, by converting xdr information
712  * to an array that can be used for lookups later.  This results in
713  * fewer cache pages, since we can store more information on each page.
714  * We only need to convert from xdr once so future lookups are much simpler
715  */
716 static
717 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
718 {
719 	struct inode	*inode = file_inode(desc->file);
720 	int ret;
721 
722 	/*
723 	 * If desc->page_index in range desc->pvec.index and
724 	 * desc->pvec.index + desc->pvec.nr, we get readdir cache hit.
725 	 */
726 	if (desc->page_index >= desc->pvec.index &&
727 		desc->page_index < (desc->pvec.index + desc->pvec.nr)) {
728 		/*
729 		 * page and desc->pvec.pages[x] are valid, don't need to check
730 		 * whether or not to be NULL.
731 		 */
732 		copy_highpage(page, desc->pvec.pages[desc->page_index - desc->pvec.index]);
733 		ret = 0;
734 	} else {
735 		ret = nfs_readdir_xdr_to_array(desc, page, inode);
736 		if (ret < 0)
737 			goto error;
738 	}
739 
740 	SetPageUptodate(page);
741 
742 	if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
743 		/* Should never happen */
744 		nfs_zap_mapping(inode, inode->i_mapping);
745 	}
746 	unlock_page(page);
747 	return 0;
748  error:
749 	unlock_page(page);
750 	return ret;
751 }
752 
753 static
754 void cache_page_release(nfs_readdir_descriptor_t *desc)
755 {
756 	if (!desc->page->mapping)
757 		nfs_readdir_clear_array(desc->page);
758 	put_page(desc->page);
759 	desc->page = NULL;
760 }
761 
762 static
763 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
764 {
765 	return read_cache_page(desc->file->f_mapping,
766 			desc->page_index, (filler_t *)nfs_readdir_filler, desc);
767 }
768 
769 /*
770  * Returns 0 if desc->dir_cookie was found on page desc->page_index
771  */
772 static
773 int find_cache_page(nfs_readdir_descriptor_t *desc)
774 {
775 	int res;
776 
777 	desc->page = get_cache_page(desc);
778 	if (IS_ERR(desc->page))
779 		return PTR_ERR(desc->page);
780 
781 	res = nfs_readdir_search_array(desc);
782 	if (res != 0)
783 		cache_page_release(desc);
784 	return res;
785 }
786 
787 /* Search for desc->dir_cookie from the beginning of the page cache */
788 static inline
789 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
790 {
791 	int res;
792 
793 	if (desc->page_index == 0) {
794 		desc->current_index = 0;
795 		desc->last_cookie = 0;
796 	}
797 	do {
798 		res = find_cache_page(desc);
799 	} while (res == -EAGAIN);
800 	return res;
801 }
802 
803 /*
804  * Once we've found the start of the dirent within a page: fill 'er up...
805  */
806 static
807 int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
808 {
809 	struct file	*file = desc->file;
810 	int i = 0;
811 	int res = 0;
812 	struct nfs_cache_array *array = NULL;
813 	struct nfs_open_dir_context *ctx = file->private_data;
814 
815 	array = kmap(desc->page);
816 	for (i = desc->cache_entry_index; i < array->size; i++) {
817 		struct nfs_cache_array_entry *ent;
818 
819 		ent = &array->array[i];
820 		if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
821 		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
822 			desc->eof = true;
823 			break;
824 		}
825 		desc->ctx->pos++;
826 		if (i < (array->size-1))
827 			*desc->dir_cookie = array->array[i+1].cookie;
828 		else
829 			*desc->dir_cookie = array->last_cookie;
830 		if (ctx->duped != 0)
831 			ctx->duped = 1;
832 	}
833 	if (array->eof_index >= 0)
834 		desc->eof = true;
835 
836 	kunmap(desc->page);
837 	cache_page_release(desc);
838 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
839 			(unsigned long long)*desc->dir_cookie, res);
840 	return res;
841 }
842 
843 /*
844  * If we cannot find a cookie in our cache, we suspect that this is
845  * because it points to a deleted file, so we ask the server to return
846  * whatever it thinks is the next entry. We then feed this to filldir.
847  * If all goes well, we should then be able to find our way round the
848  * cache on the next call to readdir_search_pagecache();
849  *
850  * NOTE: we cannot add the anonymous page to the pagecache because
851  *	 the data it contains might not be page aligned. Besides,
852  *	 we should already have a complete representation of the
853  *	 directory in the page cache by the time we get here.
854  */
855 static inline
856 int uncached_readdir(nfs_readdir_descriptor_t *desc)
857 {
858 	struct page	*page = NULL;
859 	int		status;
860 	struct inode *inode = file_inode(desc->file);
861 	struct nfs_open_dir_context *ctx = desc->file->private_data;
862 
863 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
864 			(unsigned long long)*desc->dir_cookie);
865 
866 	page = alloc_page(GFP_HIGHUSER);
867 	if (!page) {
868 		status = -ENOMEM;
869 		goto out;
870 	}
871 
872 	desc->page_index = 0;
873 	desc->last_cookie = *desc->dir_cookie;
874 	desc->page = page;
875 	ctx->duped = 0;
876 
877 	status = nfs_readdir_xdr_to_array(desc, page, inode);
878 	if (status < 0)
879 		goto out_release;
880 
881 	status = nfs_do_filldir(desc);
882 
883  out:
884 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
885 			__func__, status);
886 	return status;
887  out_release:
888 	cache_page_release(desc);
889 	goto out;
890 }
891 
892 /* The file offset position represents the dirent entry number.  A
893    last cookie cache takes care of the common case of reading the
894    whole directory.
895  */
896 static int nfs_readdir(struct file *file, struct dir_context *ctx)
897 {
898 	struct dentry	*dentry = file_dentry(file);
899 	struct inode	*inode = d_inode(dentry);
900 	nfs_readdir_descriptor_t my_desc,
901 			*desc = &my_desc;
902 	struct nfs_open_dir_context *dir_ctx = file->private_data;
903 	int res = 0;
904 	int max_rapages = NFS_MAX_READDIR_RAPAGES;
905 
906 	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
907 			file, (long long)ctx->pos);
908 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
909 
910 	/*
911 	 * ctx->pos points to the dirent entry number.
912 	 * *desc->dir_cookie has the cookie for the next entry. We have
913 	 * to either find the entry with the appropriate number or
914 	 * revalidate the cookie.
915 	 */
916 	memset(desc, 0, sizeof(*desc));
917 
918 	desc->file = file;
919 	desc->ctx = ctx;
920 	desc->dir_cookie = &dir_ctx->dir_cookie;
921 	desc->decode = NFS_PROTO(inode)->decode_dirent;
922 	desc->plus = nfs_use_readdirplus(inode, ctx);
923 
924 	res = nfs_readdir_alloc_pages(desc->pvec.pages, max_rapages);
925 	if (res < 0)
926 		return -ENOMEM;
927 
928 	nfs_readdir_rapages_init(desc);
929 
930 	if (ctx->pos == 0 || nfs_attribute_cache_expired(inode))
931 		res = nfs_revalidate_mapping(inode, file->f_mapping);
932 	if (res < 0)
933 		goto out;
934 
935 	do {
936 		res = readdir_search_pagecache(desc);
937 
938 		if (res == -EBADCOOKIE) {
939 			res = 0;
940 			/* This means either end of directory */
941 			if (*desc->dir_cookie && !desc->eof) {
942 				/* Or that the server has 'lost' a cookie */
943 				res = uncached_readdir(desc);
944 				if (res == 0)
945 					continue;
946 			}
947 			break;
948 		}
949 		if (res == -ETOOSMALL && desc->plus) {
950 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
951 			nfs_zap_caches(inode);
952 			desc->page_index = 0;
953 			desc->plus = false;
954 			desc->eof = false;
955 			continue;
956 		}
957 		if (res < 0)
958 			break;
959 
960 		res = nfs_do_filldir(desc);
961 		if (res < 0)
962 			break;
963 	} while (!desc->eof);
964 out:
965 	nfs_readdir_free_pages(desc->pvec.pages, max_rapages);
966 	if (res > 0)
967 		res = 0;
968 	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
969 	return res;
970 }
971 
972 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
973 {
974 	struct inode *inode = file_inode(filp);
975 	struct nfs_open_dir_context *dir_ctx = filp->private_data;
976 
977 	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
978 			filp, offset, whence);
979 
980 	switch (whence) {
981 	default:
982 		return -EINVAL;
983 	case SEEK_SET:
984 		if (offset < 0)
985 			return -EINVAL;
986 		inode_lock(inode);
987 		break;
988 	case SEEK_CUR:
989 		if (offset == 0)
990 			return filp->f_pos;
991 		inode_lock(inode);
992 		offset += filp->f_pos;
993 		if (offset < 0) {
994 			inode_unlock(inode);
995 			return -EINVAL;
996 		}
997 	}
998 	if (offset != filp->f_pos) {
999 		filp->f_pos = offset;
1000 		dir_ctx->dir_cookie = 0;
1001 		dir_ctx->duped = 0;
1002 	}
1003 	inode_unlock(inode);
1004 	return offset;
1005 }
1006 
1007 /*
1008  * All directory operations under NFS are synchronous, so fsync()
1009  * is a dummy operation.
1010  */
1011 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1012 			 int datasync)
1013 {
1014 	struct inode *inode = file_inode(filp);
1015 
1016 	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1017 
1018 	inode_lock(inode);
1019 	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
1020 	inode_unlock(inode);
1021 	return 0;
1022 }
1023 
1024 /**
1025  * nfs_force_lookup_revalidate - Mark the directory as having changed
1026  * @dir: pointer to directory inode
1027  *
1028  * This forces the revalidation code in nfs_lookup_revalidate() to do a
1029  * full lookup on all child dentries of 'dir' whenever a change occurs
1030  * on the server that might have invalidated our dcache.
1031  *
1032  * The caller should be holding dir->i_lock
1033  */
1034 void nfs_force_lookup_revalidate(struct inode *dir)
1035 {
1036 	NFS_I(dir)->cache_change_attribute++;
1037 }
1038 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1039 
1040 /*
1041  * A check for whether or not the parent directory has changed.
1042  * In the case it has, we assume that the dentries are untrustworthy
1043  * and may need to be looked up again.
1044  * If rcu_walk prevents us from performing a full check, return 0.
1045  */
1046 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1047 			      int rcu_walk)
1048 {
1049 	if (IS_ROOT(dentry))
1050 		return 1;
1051 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1052 		return 0;
1053 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1054 		return 0;
1055 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1056 	if (nfs_mapping_need_revalidate_inode(dir)) {
1057 		if (rcu_walk)
1058 			return 0;
1059 		if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1060 			return 0;
1061 	}
1062 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1063 		return 0;
1064 	return 1;
1065 }
1066 
1067 /*
1068  * Use intent information to check whether or not we're going to do
1069  * an O_EXCL create using this path component.
1070  */
1071 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1072 {
1073 	if (NFS_PROTO(dir)->version == 2)
1074 		return 0;
1075 	return flags & LOOKUP_EXCL;
1076 }
1077 
1078 /*
1079  * Inode and filehandle revalidation for lookups.
1080  *
1081  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1082  * or if the intent information indicates that we're about to open this
1083  * particular file and the "nocto" mount flag is not set.
1084  *
1085  */
1086 static
1087 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1088 {
1089 	struct nfs_server *server = NFS_SERVER(inode);
1090 	int ret;
1091 
1092 	if (IS_AUTOMOUNT(inode))
1093 		return 0;
1094 
1095 	if (flags & LOOKUP_OPEN) {
1096 		switch (inode->i_mode & S_IFMT) {
1097 		case S_IFREG:
1098 			/* A NFSv4 OPEN will revalidate later */
1099 			if (server->caps & NFS_CAP_ATOMIC_OPEN)
1100 				goto out;
1101 			/* Fallthrough */
1102 		case S_IFDIR:
1103 			if (server->flags & NFS_MOUNT_NOCTO)
1104 				break;
1105 			/* NFS close-to-open cache consistency validation */
1106 			goto out_force;
1107 		}
1108 	}
1109 
1110 	/* VFS wants an on-the-wire revalidation */
1111 	if (flags & LOOKUP_REVAL)
1112 		goto out_force;
1113 out:
1114 	return (inode->i_nlink == 0) ? -ESTALE : 0;
1115 out_force:
1116 	if (flags & LOOKUP_RCU)
1117 		return -ECHILD;
1118 	ret = __nfs_revalidate_inode(server, inode);
1119 	if (ret != 0)
1120 		return ret;
1121 	goto out;
1122 }
1123 
1124 /*
1125  * We judge how long we want to trust negative
1126  * dentries by looking at the parent inode mtime.
1127  *
1128  * If parent mtime has changed, we revalidate, else we wait for a
1129  * period corresponding to the parent's attribute cache timeout value.
1130  *
1131  * If LOOKUP_RCU prevents us from performing a full check, return 1
1132  * suggesting a reval is needed.
1133  *
1134  * Note that when creating a new file, or looking up a rename target,
1135  * then it shouldn't be necessary to revalidate a negative dentry.
1136  */
1137 static inline
1138 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1139 		       unsigned int flags)
1140 {
1141 	if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1142 		return 0;
1143 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1144 		return 1;
1145 	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1146 }
1147 
1148 static int
1149 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1150 			   struct inode *inode, int error)
1151 {
1152 	switch (error) {
1153 	case 1:
1154 		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1155 			__func__, dentry);
1156 		return 1;
1157 	case 0:
1158 		nfs_mark_for_revalidate(dir);
1159 		if (inode && S_ISDIR(inode->i_mode)) {
1160 			/* Purge readdir caches. */
1161 			nfs_zap_caches(inode);
1162 			/*
1163 			 * We can't d_drop the root of a disconnected tree:
1164 			 * its d_hash is on the s_anon list and d_drop() would hide
1165 			 * it from shrink_dcache_for_unmount(), leading to busy
1166 			 * inodes on unmount and further oopses.
1167 			 */
1168 			if (IS_ROOT(dentry))
1169 				return 1;
1170 		}
1171 		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1172 				__func__, dentry);
1173 		return 0;
1174 	}
1175 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1176 				__func__, dentry, error);
1177 	return error;
1178 }
1179 
1180 static int
1181 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1182 			       unsigned int flags)
1183 {
1184 	int ret = 1;
1185 	if (nfs_neg_need_reval(dir, dentry, flags)) {
1186 		if (flags & LOOKUP_RCU)
1187 			return -ECHILD;
1188 		ret = 0;
1189 	}
1190 	return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1191 }
1192 
1193 static int
1194 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1195 				struct inode *inode)
1196 {
1197 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1198 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1199 }
1200 
1201 static int
1202 nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry,
1203 			     struct inode *inode)
1204 {
1205 	struct nfs_fh *fhandle;
1206 	struct nfs_fattr *fattr;
1207 	struct nfs4_label *label;
1208 	int ret;
1209 
1210 	ret = -ENOMEM;
1211 	fhandle = nfs_alloc_fhandle();
1212 	fattr = nfs_alloc_fattr();
1213 	label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL);
1214 	if (fhandle == NULL || fattr == NULL || IS_ERR(label))
1215 		goto out;
1216 
1217 	ret = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1218 	if (ret < 0) {
1219 		if (ret == -ESTALE || ret == -ENOENT)
1220 			ret = 0;
1221 		goto out;
1222 	}
1223 	ret = 0;
1224 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1225 		goto out;
1226 	if (nfs_refresh_inode(inode, fattr) < 0)
1227 		goto out;
1228 
1229 	nfs_setsecurity(inode, fattr, label);
1230 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1231 
1232 	/* set a readdirplus hint that we had a cache miss */
1233 	nfs_force_use_readdirplus(dir);
1234 	ret = 1;
1235 out:
1236 	nfs_free_fattr(fattr);
1237 	nfs_free_fhandle(fhandle);
1238 	nfs4_label_free(label);
1239 	return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1240 }
1241 
1242 /*
1243  * This is called every time the dcache has a lookup hit,
1244  * and we should check whether we can really trust that
1245  * lookup.
1246  *
1247  * NOTE! The hit can be a negative hit too, don't assume
1248  * we have an inode!
1249  *
1250  * If the parent directory is seen to have changed, we throw out the
1251  * cached dentry and do a new lookup.
1252  */
1253 static int
1254 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1255 			 unsigned int flags)
1256 {
1257 	struct inode *inode;
1258 	int error;
1259 
1260 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1261 	inode = d_inode(dentry);
1262 
1263 	if (!inode)
1264 		return nfs_lookup_revalidate_negative(dir, dentry, flags);
1265 
1266 	if (is_bad_inode(inode)) {
1267 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1268 				__func__, dentry);
1269 		goto out_bad;
1270 	}
1271 
1272 	if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1273 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1274 
1275 	/* Force a full look up iff the parent directory has changed */
1276 	if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1277 	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1278 		error = nfs_lookup_verify_inode(inode, flags);
1279 		if (error) {
1280 			if (error == -ESTALE)
1281 				nfs_zap_caches(dir);
1282 			goto out_bad;
1283 		}
1284 		nfs_advise_use_readdirplus(dir);
1285 		goto out_valid;
1286 	}
1287 
1288 	if (flags & LOOKUP_RCU)
1289 		return -ECHILD;
1290 
1291 	if (NFS_STALE(inode))
1292 		goto out_bad;
1293 
1294 	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1295 	error = nfs_lookup_revalidate_dentry(dir, dentry, inode);
1296 	trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1297 	return error;
1298 out_valid:
1299 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1300 out_bad:
1301 	if (flags & LOOKUP_RCU)
1302 		return -ECHILD;
1303 	return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1304 }
1305 
1306 static int
1307 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1308 			int (*reval)(struct inode *, struct dentry *, unsigned int))
1309 {
1310 	struct dentry *parent;
1311 	struct inode *dir;
1312 	int ret;
1313 
1314 	if (flags & LOOKUP_RCU) {
1315 		parent = READ_ONCE(dentry->d_parent);
1316 		dir = d_inode_rcu(parent);
1317 		if (!dir)
1318 			return -ECHILD;
1319 		ret = reval(dir, dentry, flags);
1320 		if (parent != READ_ONCE(dentry->d_parent))
1321 			return -ECHILD;
1322 	} else {
1323 		parent = dget_parent(dentry);
1324 		ret = reval(d_inode(parent), dentry, flags);
1325 		dput(parent);
1326 	}
1327 	return ret;
1328 }
1329 
1330 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1331 {
1332 	return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1333 }
1334 
1335 /*
1336  * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1337  * when we don't really care about the dentry name. This is called when a
1338  * pathwalk ends on a dentry that was not found via a normal lookup in the
1339  * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1340  *
1341  * In this situation, we just want to verify that the inode itself is OK
1342  * since the dentry might have changed on the server.
1343  */
1344 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1345 {
1346 	struct inode *inode = d_inode(dentry);
1347 	int error = 0;
1348 
1349 	/*
1350 	 * I believe we can only get a negative dentry here in the case of a
1351 	 * procfs-style symlink. Just assume it's correct for now, but we may
1352 	 * eventually need to do something more here.
1353 	 */
1354 	if (!inode) {
1355 		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1356 				__func__, dentry);
1357 		return 1;
1358 	}
1359 
1360 	if (is_bad_inode(inode)) {
1361 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1362 				__func__, dentry);
1363 		return 0;
1364 	}
1365 
1366 	error = nfs_lookup_verify_inode(inode, flags);
1367 	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1368 			__func__, inode->i_ino, error ? "invalid" : "valid");
1369 	return !error;
1370 }
1371 
1372 /*
1373  * This is called from dput() when d_count is going to 0.
1374  */
1375 static int nfs_dentry_delete(const struct dentry *dentry)
1376 {
1377 	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1378 		dentry, dentry->d_flags);
1379 
1380 	/* Unhash any dentry with a stale inode */
1381 	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1382 		return 1;
1383 
1384 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1385 		/* Unhash it, so that ->d_iput() would be called */
1386 		return 1;
1387 	}
1388 	if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1389 		/* Unhash it, so that ancestors of killed async unlink
1390 		 * files will be cleaned up during umount */
1391 		return 1;
1392 	}
1393 	return 0;
1394 
1395 }
1396 
1397 /* Ensure that we revalidate inode->i_nlink */
1398 static void nfs_drop_nlink(struct inode *inode)
1399 {
1400 	spin_lock(&inode->i_lock);
1401 	/* drop the inode if we're reasonably sure this is the last link */
1402 	if (inode->i_nlink > 0)
1403 		drop_nlink(inode);
1404 	NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1405 	NFS_I(inode)->cache_validity |= NFS_INO_INVALID_CHANGE
1406 		| NFS_INO_INVALID_CTIME
1407 		| NFS_INO_INVALID_OTHER
1408 		| NFS_INO_REVAL_FORCED;
1409 	spin_unlock(&inode->i_lock);
1410 }
1411 
1412 /*
1413  * Called when the dentry loses inode.
1414  * We use it to clean up silly-renamed files.
1415  */
1416 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1417 {
1418 	if (S_ISDIR(inode->i_mode))
1419 		/* drop any readdir cache as it could easily be old */
1420 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1421 
1422 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1423 		nfs_complete_unlink(dentry, inode);
1424 		nfs_drop_nlink(inode);
1425 	}
1426 	iput(inode);
1427 }
1428 
1429 static void nfs_d_release(struct dentry *dentry)
1430 {
1431 	/* free cached devname value, if it survived that far */
1432 	if (unlikely(dentry->d_fsdata)) {
1433 		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1434 			WARN_ON(1);
1435 		else
1436 			kfree(dentry->d_fsdata);
1437 	}
1438 }
1439 
1440 const struct dentry_operations nfs_dentry_operations = {
1441 	.d_revalidate	= nfs_lookup_revalidate,
1442 	.d_weak_revalidate	= nfs_weak_revalidate,
1443 	.d_delete	= nfs_dentry_delete,
1444 	.d_iput		= nfs_dentry_iput,
1445 	.d_automount	= nfs_d_automount,
1446 	.d_release	= nfs_d_release,
1447 };
1448 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1449 
1450 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1451 {
1452 	struct dentry *res;
1453 	struct inode *inode = NULL;
1454 	struct nfs_fh *fhandle = NULL;
1455 	struct nfs_fattr *fattr = NULL;
1456 	struct nfs4_label *label = NULL;
1457 	int error;
1458 
1459 	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1460 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1461 
1462 	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1463 		return ERR_PTR(-ENAMETOOLONG);
1464 
1465 	/*
1466 	 * If we're doing an exclusive create, optimize away the lookup
1467 	 * but don't hash the dentry.
1468 	 */
1469 	if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1470 		return NULL;
1471 
1472 	res = ERR_PTR(-ENOMEM);
1473 	fhandle = nfs_alloc_fhandle();
1474 	fattr = nfs_alloc_fattr();
1475 	if (fhandle == NULL || fattr == NULL)
1476 		goto out;
1477 
1478 	label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1479 	if (IS_ERR(label))
1480 		goto out;
1481 
1482 	trace_nfs_lookup_enter(dir, dentry, flags);
1483 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1484 	if (error == -ENOENT)
1485 		goto no_entry;
1486 	if (error < 0) {
1487 		res = ERR_PTR(error);
1488 		goto out_label;
1489 	}
1490 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1491 	res = ERR_CAST(inode);
1492 	if (IS_ERR(res))
1493 		goto out_label;
1494 
1495 	/* Notify readdir to use READDIRPLUS */
1496 	nfs_force_use_readdirplus(dir);
1497 
1498 no_entry:
1499 	res = d_splice_alias(inode, dentry);
1500 	if (res != NULL) {
1501 		if (IS_ERR(res))
1502 			goto out_label;
1503 		dentry = res;
1504 	}
1505 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1506 out_label:
1507 	trace_nfs_lookup_exit(dir, dentry, flags, error);
1508 	nfs4_label_free(label);
1509 out:
1510 	nfs_free_fattr(fattr);
1511 	nfs_free_fhandle(fhandle);
1512 	return res;
1513 }
1514 EXPORT_SYMBOL_GPL(nfs_lookup);
1515 
1516 #if IS_ENABLED(CONFIG_NFS_V4)
1517 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1518 
1519 const struct dentry_operations nfs4_dentry_operations = {
1520 	.d_revalidate	= nfs4_lookup_revalidate,
1521 	.d_weak_revalidate	= nfs_weak_revalidate,
1522 	.d_delete	= nfs_dentry_delete,
1523 	.d_iput		= nfs_dentry_iput,
1524 	.d_automount	= nfs_d_automount,
1525 	.d_release	= nfs_d_release,
1526 };
1527 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1528 
1529 static fmode_t flags_to_mode(int flags)
1530 {
1531 	fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1532 	if ((flags & O_ACCMODE) != O_WRONLY)
1533 		res |= FMODE_READ;
1534 	if ((flags & O_ACCMODE) != O_RDONLY)
1535 		res |= FMODE_WRITE;
1536 	return res;
1537 }
1538 
1539 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1540 {
1541 	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1542 }
1543 
1544 static int do_open(struct inode *inode, struct file *filp)
1545 {
1546 	nfs_fscache_open_file(inode, filp);
1547 	return 0;
1548 }
1549 
1550 static int nfs_finish_open(struct nfs_open_context *ctx,
1551 			   struct dentry *dentry,
1552 			   struct file *file, unsigned open_flags)
1553 {
1554 	int err;
1555 
1556 	err = finish_open(file, dentry, do_open);
1557 	if (err)
1558 		goto out;
1559 	if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1560 		nfs_file_set_open_context(file, ctx);
1561 	else
1562 		err = -ESTALE;
1563 out:
1564 	return err;
1565 }
1566 
1567 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1568 		    struct file *file, unsigned open_flags,
1569 		    umode_t mode)
1570 {
1571 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1572 	struct nfs_open_context *ctx;
1573 	struct dentry *res;
1574 	struct iattr attr = { .ia_valid = ATTR_OPEN };
1575 	struct inode *inode;
1576 	unsigned int lookup_flags = 0;
1577 	bool switched = false;
1578 	int created = 0;
1579 	int err;
1580 
1581 	/* Expect a negative dentry */
1582 	BUG_ON(d_inode(dentry));
1583 
1584 	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1585 			dir->i_sb->s_id, dir->i_ino, dentry);
1586 
1587 	err = nfs_check_flags(open_flags);
1588 	if (err)
1589 		return err;
1590 
1591 	/* NFS only supports OPEN on regular files */
1592 	if ((open_flags & O_DIRECTORY)) {
1593 		if (!d_in_lookup(dentry)) {
1594 			/*
1595 			 * Hashed negative dentry with O_DIRECTORY: dentry was
1596 			 * revalidated and is fine, no need to perform lookup
1597 			 * again
1598 			 */
1599 			return -ENOENT;
1600 		}
1601 		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1602 		goto no_open;
1603 	}
1604 
1605 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1606 		return -ENAMETOOLONG;
1607 
1608 	if (open_flags & O_CREAT) {
1609 		struct nfs_server *server = NFS_SERVER(dir);
1610 
1611 		if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1612 			mode &= ~current_umask();
1613 
1614 		attr.ia_valid |= ATTR_MODE;
1615 		attr.ia_mode = mode;
1616 	}
1617 	if (open_flags & O_TRUNC) {
1618 		attr.ia_valid |= ATTR_SIZE;
1619 		attr.ia_size = 0;
1620 	}
1621 
1622 	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1623 		d_drop(dentry);
1624 		switched = true;
1625 		dentry = d_alloc_parallel(dentry->d_parent,
1626 					  &dentry->d_name, &wq);
1627 		if (IS_ERR(dentry))
1628 			return PTR_ERR(dentry);
1629 		if (unlikely(!d_in_lookup(dentry)))
1630 			return finish_no_open(file, dentry);
1631 	}
1632 
1633 	ctx = create_nfs_open_context(dentry, open_flags, file);
1634 	err = PTR_ERR(ctx);
1635 	if (IS_ERR(ctx))
1636 		goto out;
1637 
1638 	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1639 	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
1640 	if (created)
1641 		file->f_mode |= FMODE_CREATED;
1642 	if (IS_ERR(inode)) {
1643 		err = PTR_ERR(inode);
1644 		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1645 		put_nfs_open_context(ctx);
1646 		d_drop(dentry);
1647 		switch (err) {
1648 		case -ENOENT:
1649 			d_splice_alias(NULL, dentry);
1650 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1651 			break;
1652 		case -EISDIR:
1653 		case -ENOTDIR:
1654 			goto no_open;
1655 		case -ELOOP:
1656 			if (!(open_flags & O_NOFOLLOW))
1657 				goto no_open;
1658 			break;
1659 			/* case -EINVAL: */
1660 		default:
1661 			break;
1662 		}
1663 		goto out;
1664 	}
1665 
1666 	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
1667 	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1668 	put_nfs_open_context(ctx);
1669 out:
1670 	if (unlikely(switched)) {
1671 		d_lookup_done(dentry);
1672 		dput(dentry);
1673 	}
1674 	return err;
1675 
1676 no_open:
1677 	res = nfs_lookup(dir, dentry, lookup_flags);
1678 	if (switched) {
1679 		d_lookup_done(dentry);
1680 		if (!res)
1681 			res = dentry;
1682 		else
1683 			dput(dentry);
1684 	}
1685 	if (IS_ERR(res))
1686 		return PTR_ERR(res);
1687 	return finish_no_open(file, res);
1688 }
1689 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1690 
1691 static int
1692 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1693 			  unsigned int flags)
1694 {
1695 	struct inode *inode;
1696 
1697 	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1698 		goto full_reval;
1699 	if (d_mountpoint(dentry))
1700 		goto full_reval;
1701 
1702 	inode = d_inode(dentry);
1703 
1704 	/* We can't create new files in nfs_open_revalidate(), so we
1705 	 * optimize away revalidation of negative dentries.
1706 	 */
1707 	if (inode == NULL)
1708 		goto full_reval;
1709 
1710 	if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1711 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1712 
1713 	/* NFS only supports OPEN on regular files */
1714 	if (!S_ISREG(inode->i_mode))
1715 		goto full_reval;
1716 
1717 	/* We cannot do exclusive creation on a positive dentry */
1718 	if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
1719 		goto reval_dentry;
1720 
1721 	/* Check if the directory changed */
1722 	if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
1723 		goto reval_dentry;
1724 
1725 	/* Let f_op->open() actually open (and revalidate) the file */
1726 	return 1;
1727 reval_dentry:
1728 	if (flags & LOOKUP_RCU)
1729 		return -ECHILD;
1730 	return nfs_lookup_revalidate_dentry(dir, dentry, inode);
1731 
1732 full_reval:
1733 	return nfs_do_lookup_revalidate(dir, dentry, flags);
1734 }
1735 
1736 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1737 {
1738 	return __nfs_lookup_revalidate(dentry, flags,
1739 			nfs4_do_lookup_revalidate);
1740 }
1741 
1742 #endif /* CONFIG_NFSV4 */
1743 
1744 /*
1745  * Code common to create, mkdir, and mknod.
1746  */
1747 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1748 				struct nfs_fattr *fattr,
1749 				struct nfs4_label *label)
1750 {
1751 	struct dentry *parent = dget_parent(dentry);
1752 	struct inode *dir = d_inode(parent);
1753 	struct inode *inode;
1754 	struct dentry *d;
1755 	int error = -EACCES;
1756 
1757 	d_drop(dentry);
1758 
1759 	/* We may have been initialized further down */
1760 	if (d_really_is_positive(dentry))
1761 		goto out;
1762 	if (fhandle->size == 0) {
1763 		error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1764 		if (error)
1765 			goto out_error;
1766 	}
1767 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1768 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1769 		struct nfs_server *server = NFS_SB(dentry->d_sb);
1770 		error = server->nfs_client->rpc_ops->getattr(server, fhandle,
1771 				fattr, NULL, NULL);
1772 		if (error < 0)
1773 			goto out_error;
1774 	}
1775 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1776 	d = d_splice_alias(inode, dentry);
1777 	if (IS_ERR(d)) {
1778 		error = PTR_ERR(d);
1779 		goto out_error;
1780 	}
1781 	dput(d);
1782 out:
1783 	dput(parent);
1784 	return 0;
1785 out_error:
1786 	nfs_mark_for_revalidate(dir);
1787 	dput(parent);
1788 	return error;
1789 }
1790 EXPORT_SYMBOL_GPL(nfs_instantiate);
1791 
1792 /*
1793  * Following a failed create operation, we drop the dentry rather
1794  * than retain a negative dentry. This avoids a problem in the event
1795  * that the operation succeeded on the server, but an error in the
1796  * reply path made it appear to have failed.
1797  */
1798 int nfs_create(struct inode *dir, struct dentry *dentry,
1799 		umode_t mode, bool excl)
1800 {
1801 	struct iattr attr;
1802 	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1803 	int error;
1804 
1805 	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1806 			dir->i_sb->s_id, dir->i_ino, dentry);
1807 
1808 	attr.ia_mode = mode;
1809 	attr.ia_valid = ATTR_MODE;
1810 
1811 	trace_nfs_create_enter(dir, dentry, open_flags);
1812 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1813 	trace_nfs_create_exit(dir, dentry, open_flags, error);
1814 	if (error != 0)
1815 		goto out_err;
1816 	return 0;
1817 out_err:
1818 	d_drop(dentry);
1819 	return error;
1820 }
1821 EXPORT_SYMBOL_GPL(nfs_create);
1822 
1823 /*
1824  * See comments for nfs_proc_create regarding failed operations.
1825  */
1826 int
1827 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1828 {
1829 	struct iattr attr;
1830 	int status;
1831 
1832 	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1833 			dir->i_sb->s_id, dir->i_ino, dentry);
1834 
1835 	attr.ia_mode = mode;
1836 	attr.ia_valid = ATTR_MODE;
1837 
1838 	trace_nfs_mknod_enter(dir, dentry);
1839 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1840 	trace_nfs_mknod_exit(dir, dentry, status);
1841 	if (status != 0)
1842 		goto out_err;
1843 	return 0;
1844 out_err:
1845 	d_drop(dentry);
1846 	return status;
1847 }
1848 EXPORT_SYMBOL_GPL(nfs_mknod);
1849 
1850 /*
1851  * See comments for nfs_proc_create regarding failed operations.
1852  */
1853 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1854 {
1855 	struct iattr attr;
1856 	int error;
1857 
1858 	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1859 			dir->i_sb->s_id, dir->i_ino, dentry);
1860 
1861 	attr.ia_valid = ATTR_MODE;
1862 	attr.ia_mode = mode | S_IFDIR;
1863 
1864 	trace_nfs_mkdir_enter(dir, dentry);
1865 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1866 	trace_nfs_mkdir_exit(dir, dentry, error);
1867 	if (error != 0)
1868 		goto out_err;
1869 	return 0;
1870 out_err:
1871 	d_drop(dentry);
1872 	return error;
1873 }
1874 EXPORT_SYMBOL_GPL(nfs_mkdir);
1875 
1876 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1877 {
1878 	if (simple_positive(dentry))
1879 		d_delete(dentry);
1880 }
1881 
1882 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1883 {
1884 	int error;
1885 
1886 	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1887 			dir->i_sb->s_id, dir->i_ino, dentry);
1888 
1889 	trace_nfs_rmdir_enter(dir, dentry);
1890 	if (d_really_is_positive(dentry)) {
1891 		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1892 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1893 		/* Ensure the VFS deletes this inode */
1894 		switch (error) {
1895 		case 0:
1896 			clear_nlink(d_inode(dentry));
1897 			break;
1898 		case -ENOENT:
1899 			nfs_dentry_handle_enoent(dentry);
1900 		}
1901 		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1902 	} else
1903 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1904 	trace_nfs_rmdir_exit(dir, dentry, error);
1905 
1906 	return error;
1907 }
1908 EXPORT_SYMBOL_GPL(nfs_rmdir);
1909 
1910 /*
1911  * Remove a file after making sure there are no pending writes,
1912  * and after checking that the file has only one user.
1913  *
1914  * We invalidate the attribute cache and free the inode prior to the operation
1915  * to avoid possible races if the server reuses the inode.
1916  */
1917 static int nfs_safe_remove(struct dentry *dentry)
1918 {
1919 	struct inode *dir = d_inode(dentry->d_parent);
1920 	struct inode *inode = d_inode(dentry);
1921 	int error = -EBUSY;
1922 
1923 	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
1924 
1925 	/* If the dentry was sillyrenamed, we simply call d_delete() */
1926 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1927 		error = 0;
1928 		goto out;
1929 	}
1930 
1931 	trace_nfs_remove_enter(dir, dentry);
1932 	if (inode != NULL) {
1933 		error = NFS_PROTO(dir)->remove(dir, dentry);
1934 		if (error == 0)
1935 			nfs_drop_nlink(inode);
1936 	} else
1937 		error = NFS_PROTO(dir)->remove(dir, dentry);
1938 	if (error == -ENOENT)
1939 		nfs_dentry_handle_enoent(dentry);
1940 	trace_nfs_remove_exit(dir, dentry, error);
1941 out:
1942 	return error;
1943 }
1944 
1945 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1946  *  belongs to an active ".nfs..." file and we return -EBUSY.
1947  *
1948  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1949  */
1950 int nfs_unlink(struct inode *dir, struct dentry *dentry)
1951 {
1952 	int error;
1953 	int need_rehash = 0;
1954 
1955 	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
1956 		dir->i_ino, dentry);
1957 
1958 	trace_nfs_unlink_enter(dir, dentry);
1959 	spin_lock(&dentry->d_lock);
1960 	if (d_count(dentry) > 1) {
1961 		spin_unlock(&dentry->d_lock);
1962 		/* Start asynchronous writeout of the inode */
1963 		write_inode_now(d_inode(dentry), 0);
1964 		error = nfs_sillyrename(dir, dentry);
1965 		goto out;
1966 	}
1967 	if (!d_unhashed(dentry)) {
1968 		__d_drop(dentry);
1969 		need_rehash = 1;
1970 	}
1971 	spin_unlock(&dentry->d_lock);
1972 	error = nfs_safe_remove(dentry);
1973 	if (!error || error == -ENOENT) {
1974 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1975 	} else if (need_rehash)
1976 		d_rehash(dentry);
1977 out:
1978 	trace_nfs_unlink_exit(dir, dentry, error);
1979 	return error;
1980 }
1981 EXPORT_SYMBOL_GPL(nfs_unlink);
1982 
1983 /*
1984  * To create a symbolic link, most file systems instantiate a new inode,
1985  * add a page to it containing the path, then write it out to the disk
1986  * using prepare_write/commit_write.
1987  *
1988  * Unfortunately the NFS client can't create the in-core inode first
1989  * because it needs a file handle to create an in-core inode (see
1990  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1991  * symlink request has completed on the server.
1992  *
1993  * So instead we allocate a raw page, copy the symname into it, then do
1994  * the SYMLINK request with the page as the buffer.  If it succeeds, we
1995  * now have a new file handle and can instantiate an in-core NFS inode
1996  * and move the raw page into its mapping.
1997  */
1998 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1999 {
2000 	struct page *page;
2001 	char *kaddr;
2002 	struct iattr attr;
2003 	unsigned int pathlen = strlen(symname);
2004 	int error;
2005 
2006 	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2007 		dir->i_ino, dentry, symname);
2008 
2009 	if (pathlen > PAGE_SIZE)
2010 		return -ENAMETOOLONG;
2011 
2012 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
2013 	attr.ia_valid = ATTR_MODE;
2014 
2015 	page = alloc_page(GFP_USER);
2016 	if (!page)
2017 		return -ENOMEM;
2018 
2019 	kaddr = page_address(page);
2020 	memcpy(kaddr, symname, pathlen);
2021 	if (pathlen < PAGE_SIZE)
2022 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2023 
2024 	trace_nfs_symlink_enter(dir, dentry);
2025 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
2026 	trace_nfs_symlink_exit(dir, dentry, error);
2027 	if (error != 0) {
2028 		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2029 			dir->i_sb->s_id, dir->i_ino,
2030 			dentry, symname, error);
2031 		d_drop(dentry);
2032 		__free_page(page);
2033 		return error;
2034 	}
2035 
2036 	/*
2037 	 * No big deal if we can't add this page to the page cache here.
2038 	 * READLINK will get the missing page from the server if needed.
2039 	 */
2040 	if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2041 							GFP_KERNEL)) {
2042 		SetPageUptodate(page);
2043 		unlock_page(page);
2044 		/*
2045 		 * add_to_page_cache_lru() grabs an extra page refcount.
2046 		 * Drop it here to avoid leaking this page later.
2047 		 */
2048 		put_page(page);
2049 	} else
2050 		__free_page(page);
2051 
2052 	return 0;
2053 }
2054 EXPORT_SYMBOL_GPL(nfs_symlink);
2055 
2056 int
2057 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2058 {
2059 	struct inode *inode = d_inode(old_dentry);
2060 	int error;
2061 
2062 	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2063 		old_dentry, dentry);
2064 
2065 	trace_nfs_link_enter(inode, dir, dentry);
2066 	d_drop(dentry);
2067 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2068 	if (error == 0) {
2069 		ihold(inode);
2070 		d_add(dentry, inode);
2071 	}
2072 	trace_nfs_link_exit(inode, dir, dentry, error);
2073 	return error;
2074 }
2075 EXPORT_SYMBOL_GPL(nfs_link);
2076 
2077 /*
2078  * RENAME
2079  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2080  * different file handle for the same inode after a rename (e.g. when
2081  * moving to a different directory). A fail-safe method to do so would
2082  * be to look up old_dir/old_name, create a link to new_dir/new_name and
2083  * rename the old file using the sillyrename stuff. This way, the original
2084  * file in old_dir will go away when the last process iput()s the inode.
2085  *
2086  * FIXED.
2087  *
2088  * It actually works quite well. One needs to have the possibility for
2089  * at least one ".nfs..." file in each directory the file ever gets
2090  * moved or linked to which happens automagically with the new
2091  * implementation that only depends on the dcache stuff instead of
2092  * using the inode layer
2093  *
2094  * Unfortunately, things are a little more complicated than indicated
2095  * above. For a cross-directory move, we want to make sure we can get
2096  * rid of the old inode after the operation.  This means there must be
2097  * no pending writes (if it's a file), and the use count must be 1.
2098  * If these conditions are met, we can drop the dentries before doing
2099  * the rename.
2100  */
2101 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2102 	       struct inode *new_dir, struct dentry *new_dentry,
2103 	       unsigned int flags)
2104 {
2105 	struct inode *old_inode = d_inode(old_dentry);
2106 	struct inode *new_inode = d_inode(new_dentry);
2107 	struct dentry *dentry = NULL, *rehash = NULL;
2108 	struct rpc_task *task;
2109 	int error = -EBUSY;
2110 
2111 	if (flags)
2112 		return -EINVAL;
2113 
2114 	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2115 		 old_dentry, new_dentry,
2116 		 d_count(new_dentry));
2117 
2118 	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2119 	/*
2120 	 * For non-directories, check whether the target is busy and if so,
2121 	 * make a copy of the dentry and then do a silly-rename. If the
2122 	 * silly-rename succeeds, the copied dentry is hashed and becomes
2123 	 * the new target.
2124 	 */
2125 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2126 		/*
2127 		 * To prevent any new references to the target during the
2128 		 * rename, we unhash the dentry in advance.
2129 		 */
2130 		if (!d_unhashed(new_dentry)) {
2131 			d_drop(new_dentry);
2132 			rehash = new_dentry;
2133 		}
2134 
2135 		if (d_count(new_dentry) > 2) {
2136 			int err;
2137 
2138 			/* copy the target dentry's name */
2139 			dentry = d_alloc(new_dentry->d_parent,
2140 					 &new_dentry->d_name);
2141 			if (!dentry)
2142 				goto out;
2143 
2144 			/* silly-rename the existing target ... */
2145 			err = nfs_sillyrename(new_dir, new_dentry);
2146 			if (err)
2147 				goto out;
2148 
2149 			new_dentry = dentry;
2150 			rehash = NULL;
2151 			new_inode = NULL;
2152 		}
2153 	}
2154 
2155 	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2156 	if (IS_ERR(task)) {
2157 		error = PTR_ERR(task);
2158 		goto out;
2159 	}
2160 
2161 	error = rpc_wait_for_completion_task(task);
2162 	if (error != 0) {
2163 		((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2164 		/* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2165 		smp_wmb();
2166 	} else
2167 		error = task->tk_status;
2168 	rpc_put_task(task);
2169 	/* Ensure the inode attributes are revalidated */
2170 	if (error == 0) {
2171 		spin_lock(&old_inode->i_lock);
2172 		NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2173 		NFS_I(old_inode)->cache_validity |= NFS_INO_INVALID_CHANGE
2174 			| NFS_INO_INVALID_CTIME
2175 			| NFS_INO_REVAL_FORCED;
2176 		spin_unlock(&old_inode->i_lock);
2177 	}
2178 out:
2179 	if (rehash)
2180 		d_rehash(rehash);
2181 	trace_nfs_rename_exit(old_dir, old_dentry,
2182 			new_dir, new_dentry, error);
2183 	if (!error) {
2184 		if (new_inode != NULL)
2185 			nfs_drop_nlink(new_inode);
2186 		/*
2187 		 * The d_move() should be here instead of in an async RPC completion
2188 		 * handler because we need the proper locks to move the dentry.  If
2189 		 * we're interrupted by a signal, the async RPC completion handler
2190 		 * should mark the directories for revalidation.
2191 		 */
2192 		d_move(old_dentry, new_dentry);
2193 		nfs_set_verifier(old_dentry,
2194 					nfs_save_change_attribute(new_dir));
2195 	} else if (error == -ENOENT)
2196 		nfs_dentry_handle_enoent(old_dentry);
2197 
2198 	/* new dentry created? */
2199 	if (dentry)
2200 		dput(dentry);
2201 	return error;
2202 }
2203 EXPORT_SYMBOL_GPL(nfs_rename);
2204 
2205 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2206 static LIST_HEAD(nfs_access_lru_list);
2207 static atomic_long_t nfs_access_nr_entries;
2208 
2209 static unsigned long nfs_access_max_cachesize = ULONG_MAX;
2210 module_param(nfs_access_max_cachesize, ulong, 0644);
2211 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2212 
2213 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2214 {
2215 	put_cred(entry->cred);
2216 	kfree_rcu(entry, rcu_head);
2217 	smp_mb__before_atomic();
2218 	atomic_long_dec(&nfs_access_nr_entries);
2219 	smp_mb__after_atomic();
2220 }
2221 
2222 static void nfs_access_free_list(struct list_head *head)
2223 {
2224 	struct nfs_access_entry *cache;
2225 
2226 	while (!list_empty(head)) {
2227 		cache = list_entry(head->next, struct nfs_access_entry, lru);
2228 		list_del(&cache->lru);
2229 		nfs_access_free_entry(cache);
2230 	}
2231 }
2232 
2233 static unsigned long
2234 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2235 {
2236 	LIST_HEAD(head);
2237 	struct nfs_inode *nfsi, *next;
2238 	struct nfs_access_entry *cache;
2239 	long freed = 0;
2240 
2241 	spin_lock(&nfs_access_lru_lock);
2242 	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2243 		struct inode *inode;
2244 
2245 		if (nr_to_scan-- == 0)
2246 			break;
2247 		inode = &nfsi->vfs_inode;
2248 		spin_lock(&inode->i_lock);
2249 		if (list_empty(&nfsi->access_cache_entry_lru))
2250 			goto remove_lru_entry;
2251 		cache = list_entry(nfsi->access_cache_entry_lru.next,
2252 				struct nfs_access_entry, lru);
2253 		list_move(&cache->lru, &head);
2254 		rb_erase(&cache->rb_node, &nfsi->access_cache);
2255 		freed++;
2256 		if (!list_empty(&nfsi->access_cache_entry_lru))
2257 			list_move_tail(&nfsi->access_cache_inode_lru,
2258 					&nfs_access_lru_list);
2259 		else {
2260 remove_lru_entry:
2261 			list_del_init(&nfsi->access_cache_inode_lru);
2262 			smp_mb__before_atomic();
2263 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2264 			smp_mb__after_atomic();
2265 		}
2266 		spin_unlock(&inode->i_lock);
2267 	}
2268 	spin_unlock(&nfs_access_lru_lock);
2269 	nfs_access_free_list(&head);
2270 	return freed;
2271 }
2272 
2273 unsigned long
2274 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2275 {
2276 	int nr_to_scan = sc->nr_to_scan;
2277 	gfp_t gfp_mask = sc->gfp_mask;
2278 
2279 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2280 		return SHRINK_STOP;
2281 	return nfs_do_access_cache_scan(nr_to_scan);
2282 }
2283 
2284 
2285 unsigned long
2286 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2287 {
2288 	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2289 }
2290 
2291 static void
2292 nfs_access_cache_enforce_limit(void)
2293 {
2294 	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2295 	unsigned long diff;
2296 	unsigned int nr_to_scan;
2297 
2298 	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2299 		return;
2300 	nr_to_scan = 100;
2301 	diff = nr_entries - nfs_access_max_cachesize;
2302 	if (diff < nr_to_scan)
2303 		nr_to_scan = diff;
2304 	nfs_do_access_cache_scan(nr_to_scan);
2305 }
2306 
2307 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2308 {
2309 	struct rb_root *root_node = &nfsi->access_cache;
2310 	struct rb_node *n;
2311 	struct nfs_access_entry *entry;
2312 
2313 	/* Unhook entries from the cache */
2314 	while ((n = rb_first(root_node)) != NULL) {
2315 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2316 		rb_erase(n, root_node);
2317 		list_move(&entry->lru, head);
2318 	}
2319 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2320 }
2321 
2322 void nfs_access_zap_cache(struct inode *inode)
2323 {
2324 	LIST_HEAD(head);
2325 
2326 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2327 		return;
2328 	/* Remove from global LRU init */
2329 	spin_lock(&nfs_access_lru_lock);
2330 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2331 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2332 
2333 	spin_lock(&inode->i_lock);
2334 	__nfs_access_zap_cache(NFS_I(inode), &head);
2335 	spin_unlock(&inode->i_lock);
2336 	spin_unlock(&nfs_access_lru_lock);
2337 	nfs_access_free_list(&head);
2338 }
2339 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2340 
2341 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2342 {
2343 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2344 
2345 	while (n != NULL) {
2346 		struct nfs_access_entry *entry =
2347 			rb_entry(n, struct nfs_access_entry, rb_node);
2348 		int cmp = cred_fscmp(cred, entry->cred);
2349 
2350 		if (cmp < 0)
2351 			n = n->rb_left;
2352 		else if (cmp > 0)
2353 			n = n->rb_right;
2354 		else
2355 			return entry;
2356 	}
2357 	return NULL;
2358 }
2359 
2360 static int nfs_access_get_cached(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res, bool may_block)
2361 {
2362 	struct nfs_inode *nfsi = NFS_I(inode);
2363 	struct nfs_access_entry *cache;
2364 	bool retry = true;
2365 	int err;
2366 
2367 	spin_lock(&inode->i_lock);
2368 	for(;;) {
2369 		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2370 			goto out_zap;
2371 		cache = nfs_access_search_rbtree(inode, cred);
2372 		err = -ENOENT;
2373 		if (cache == NULL)
2374 			goto out;
2375 		/* Found an entry, is our attribute cache valid? */
2376 		if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2377 			break;
2378 		err = -ECHILD;
2379 		if (!may_block)
2380 			goto out;
2381 		if (!retry)
2382 			goto out_zap;
2383 		spin_unlock(&inode->i_lock);
2384 		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2385 		if (err)
2386 			return err;
2387 		spin_lock(&inode->i_lock);
2388 		retry = false;
2389 	}
2390 	res->cred = cache->cred;
2391 	res->mask = cache->mask;
2392 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2393 	err = 0;
2394 out:
2395 	spin_unlock(&inode->i_lock);
2396 	return err;
2397 out_zap:
2398 	spin_unlock(&inode->i_lock);
2399 	nfs_access_zap_cache(inode);
2400 	return -ENOENT;
2401 }
2402 
2403 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res)
2404 {
2405 	/* Only check the most recently returned cache entry,
2406 	 * but do it without locking.
2407 	 */
2408 	struct nfs_inode *nfsi = NFS_I(inode);
2409 	struct nfs_access_entry *cache;
2410 	int err = -ECHILD;
2411 	struct list_head *lh;
2412 
2413 	rcu_read_lock();
2414 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2415 		goto out;
2416 	lh = rcu_dereference(nfsi->access_cache_entry_lru.prev);
2417 	cache = list_entry(lh, struct nfs_access_entry, lru);
2418 	if (lh == &nfsi->access_cache_entry_lru ||
2419 	    cred != cache->cred)
2420 		cache = NULL;
2421 	if (cache == NULL)
2422 		goto out;
2423 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2424 		goto out;
2425 	res->cred = cache->cred;
2426 	res->mask = cache->mask;
2427 	err = 0;
2428 out:
2429 	rcu_read_unlock();
2430 	return err;
2431 }
2432 
2433 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2434 {
2435 	struct nfs_inode *nfsi = NFS_I(inode);
2436 	struct rb_root *root_node = &nfsi->access_cache;
2437 	struct rb_node **p = &root_node->rb_node;
2438 	struct rb_node *parent = NULL;
2439 	struct nfs_access_entry *entry;
2440 	int cmp;
2441 
2442 	spin_lock(&inode->i_lock);
2443 	while (*p != NULL) {
2444 		parent = *p;
2445 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2446 		cmp = cred_fscmp(set->cred, entry->cred);
2447 
2448 		if (cmp < 0)
2449 			p = &parent->rb_left;
2450 		else if (cmp > 0)
2451 			p = &parent->rb_right;
2452 		else
2453 			goto found;
2454 	}
2455 	rb_link_node(&set->rb_node, parent, p);
2456 	rb_insert_color(&set->rb_node, root_node);
2457 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2458 	spin_unlock(&inode->i_lock);
2459 	return;
2460 found:
2461 	rb_replace_node(parent, &set->rb_node, root_node);
2462 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2463 	list_del(&entry->lru);
2464 	spin_unlock(&inode->i_lock);
2465 	nfs_access_free_entry(entry);
2466 }
2467 
2468 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2469 {
2470 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2471 	if (cache == NULL)
2472 		return;
2473 	RB_CLEAR_NODE(&cache->rb_node);
2474 	cache->cred = get_cred(set->cred);
2475 	cache->mask = set->mask;
2476 
2477 	/* The above field assignments must be visible
2478 	 * before this item appears on the lru.  We cannot easily
2479 	 * use rcu_assign_pointer, so just force the memory barrier.
2480 	 */
2481 	smp_wmb();
2482 	nfs_access_add_rbtree(inode, cache);
2483 
2484 	/* Update accounting */
2485 	smp_mb__before_atomic();
2486 	atomic_long_inc(&nfs_access_nr_entries);
2487 	smp_mb__after_atomic();
2488 
2489 	/* Add inode to global LRU list */
2490 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2491 		spin_lock(&nfs_access_lru_lock);
2492 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2493 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2494 					&nfs_access_lru_list);
2495 		spin_unlock(&nfs_access_lru_lock);
2496 	}
2497 	nfs_access_cache_enforce_limit();
2498 }
2499 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2500 
2501 #define NFS_MAY_READ (NFS_ACCESS_READ)
2502 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2503 		NFS_ACCESS_EXTEND | \
2504 		NFS_ACCESS_DELETE)
2505 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2506 		NFS_ACCESS_EXTEND)
2507 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2508 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2509 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2510 static int
2511 nfs_access_calc_mask(u32 access_result, umode_t umode)
2512 {
2513 	int mask = 0;
2514 
2515 	if (access_result & NFS_MAY_READ)
2516 		mask |= MAY_READ;
2517 	if (S_ISDIR(umode)) {
2518 		if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2519 			mask |= MAY_WRITE;
2520 		if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2521 			mask |= MAY_EXEC;
2522 	} else if (S_ISREG(umode)) {
2523 		if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2524 			mask |= MAY_WRITE;
2525 		if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2526 			mask |= MAY_EXEC;
2527 	} else if (access_result & NFS_MAY_WRITE)
2528 			mask |= MAY_WRITE;
2529 	return mask;
2530 }
2531 
2532 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2533 {
2534 	entry->mask = access_result;
2535 }
2536 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2537 
2538 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
2539 {
2540 	struct nfs_access_entry cache;
2541 	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2542 	int cache_mask;
2543 	int status;
2544 
2545 	trace_nfs_access_enter(inode);
2546 
2547 	status = nfs_access_get_cached_rcu(inode, cred, &cache);
2548 	if (status != 0)
2549 		status = nfs_access_get_cached(inode, cred, &cache, may_block);
2550 	if (status == 0)
2551 		goto out_cached;
2552 
2553 	status = -ECHILD;
2554 	if (!may_block)
2555 		goto out;
2556 
2557 	/*
2558 	 * Determine which access bits we want to ask for...
2559 	 */
2560 	cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND;
2561 	if (S_ISDIR(inode->i_mode))
2562 		cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
2563 	else
2564 		cache.mask |= NFS_ACCESS_EXECUTE;
2565 	cache.cred = cred;
2566 	status = NFS_PROTO(inode)->access(inode, &cache);
2567 	if (status != 0) {
2568 		if (status == -ESTALE) {
2569 			nfs_zap_caches(inode);
2570 			if (!S_ISDIR(inode->i_mode))
2571 				set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2572 		}
2573 		goto out;
2574 	}
2575 	nfs_access_add_cache(inode, &cache);
2576 out_cached:
2577 	cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
2578 	if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2579 		status = -EACCES;
2580 out:
2581 	trace_nfs_access_exit(inode, status);
2582 	return status;
2583 }
2584 
2585 static int nfs_open_permission_mask(int openflags)
2586 {
2587 	int mask = 0;
2588 
2589 	if (openflags & __FMODE_EXEC) {
2590 		/* ONLY check exec rights */
2591 		mask = MAY_EXEC;
2592 	} else {
2593 		if ((openflags & O_ACCMODE) != O_WRONLY)
2594 			mask |= MAY_READ;
2595 		if ((openflags & O_ACCMODE) != O_RDONLY)
2596 			mask |= MAY_WRITE;
2597 	}
2598 
2599 	return mask;
2600 }
2601 
2602 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
2603 {
2604 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2605 }
2606 EXPORT_SYMBOL_GPL(nfs_may_open);
2607 
2608 static int nfs_execute_ok(struct inode *inode, int mask)
2609 {
2610 	struct nfs_server *server = NFS_SERVER(inode);
2611 	int ret = 0;
2612 
2613 	if (S_ISDIR(inode->i_mode))
2614 		return 0;
2615 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_OTHER)) {
2616 		if (mask & MAY_NOT_BLOCK)
2617 			return -ECHILD;
2618 		ret = __nfs_revalidate_inode(server, inode);
2619 	}
2620 	if (ret == 0 && !execute_ok(inode))
2621 		ret = -EACCES;
2622 	return ret;
2623 }
2624 
2625 int nfs_permission(struct inode *inode, int mask)
2626 {
2627 	const struct cred *cred = current_cred();
2628 	int res = 0;
2629 
2630 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2631 
2632 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2633 		goto out;
2634 	/* Is this sys_access() ? */
2635 	if (mask & (MAY_ACCESS | MAY_CHDIR))
2636 		goto force_lookup;
2637 
2638 	switch (inode->i_mode & S_IFMT) {
2639 		case S_IFLNK:
2640 			goto out;
2641 		case S_IFREG:
2642 			if ((mask & MAY_OPEN) &&
2643 			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2644 				return 0;
2645 			break;
2646 		case S_IFDIR:
2647 			/*
2648 			 * Optimize away all write operations, since the server
2649 			 * will check permissions when we perform the op.
2650 			 */
2651 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2652 				goto out;
2653 	}
2654 
2655 force_lookup:
2656 	if (!NFS_PROTO(inode)->access)
2657 		goto out_notsup;
2658 
2659 	/* Always try fast lookups first */
2660 	rcu_read_lock();
2661 	res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK);
2662 	rcu_read_unlock();
2663 	if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) {
2664 		/* Fast lookup failed, try the slow way */
2665 		res = nfs_do_access(inode, cred, mask);
2666 	}
2667 out:
2668 	if (!res && (mask & MAY_EXEC))
2669 		res = nfs_execute_ok(inode, mask);
2670 
2671 	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2672 		inode->i_sb->s_id, inode->i_ino, mask, res);
2673 	return res;
2674 out_notsup:
2675 	if (mask & MAY_NOT_BLOCK)
2676 		return -ECHILD;
2677 
2678 	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2679 	if (res == 0)
2680 		res = generic_permission(inode, mask);
2681 	goto out;
2682 }
2683 EXPORT_SYMBOL_GPL(nfs_permission);
2684 
2685 /*
2686  * Local variables:
2687  *  version-control: t
2688  *  kept-new-versions: 5
2689  * End:
2690  */
2691