xref: /openbmc/linux/fs/nfs/dir.c (revision 83f2c45e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/nfs/dir.c
4  *
5  *  Copyright (C) 1992  Rick Sladkey
6  *
7  *  nfs directory handling functions
8  *
9  * 10 Apr 1996	Added silly rename for unlink	--okir
10  * 28 Sep 1996	Improved directory cache --okir
11  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
12  *              Re-implemented silly rename for unlink, newly implemented
13  *              silly rename for nfs_rename() following the suggestions
14  *              of Olaf Kirch (okir) found in this file.
15  *              Following Linus comments on my original hack, this version
16  *              depends only on the dcache stuff and doesn't touch the inode
17  *              layer (iput() and friends).
18  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
19  */
20 
21 #include <linux/module.h>
22 #include <linux/time.h>
23 #include <linux/errno.h>
24 #include <linux/stat.h>
25 #include <linux/fcntl.h>
26 #include <linux/string.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/mm.h>
30 #include <linux/sunrpc/clnt.h>
31 #include <linux/nfs_fs.h>
32 #include <linux/nfs_mount.h>
33 #include <linux/pagemap.h>
34 #include <linux/pagevec.h>
35 #include <linux/namei.h>
36 #include <linux/mount.h>
37 #include <linux/swap.h>
38 #include <linux/sched.h>
39 #include <linux/kmemleak.h>
40 #include <linux/xattr.h>
41 
42 #include "delegation.h"
43 #include "iostat.h"
44 #include "internal.h"
45 #include "fscache.h"
46 
47 #include "nfstrace.h"
48 
49 /* #define NFS_DEBUG_VERBOSE 1 */
50 
51 static int nfs_opendir(struct inode *, struct file *);
52 static int nfs_closedir(struct inode *, struct file *);
53 static int nfs_readdir(struct file *, struct dir_context *);
54 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
55 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
56 static void nfs_readdir_clear_array(struct page*);
57 
58 const struct file_operations nfs_dir_operations = {
59 	.llseek		= nfs_llseek_dir,
60 	.read		= generic_read_dir,
61 	.iterate_shared	= nfs_readdir,
62 	.open		= nfs_opendir,
63 	.release	= nfs_closedir,
64 	.fsync		= nfs_fsync_dir,
65 };
66 
67 const struct address_space_operations nfs_dir_aops = {
68 	.freepage = nfs_readdir_clear_array,
69 };
70 
71 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, const struct cred *cred)
72 {
73 	struct nfs_inode *nfsi = NFS_I(dir);
74 	struct nfs_open_dir_context *ctx;
75 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
76 	if (ctx != NULL) {
77 		ctx->duped = 0;
78 		ctx->attr_gencount = nfsi->attr_gencount;
79 		ctx->dir_cookie = 0;
80 		ctx->dup_cookie = 0;
81 		ctx->cred = get_cred(cred);
82 		spin_lock(&dir->i_lock);
83 		if (list_empty(&nfsi->open_files) &&
84 		    (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
85 			nfsi->cache_validity |= NFS_INO_INVALID_DATA |
86 				NFS_INO_REVAL_FORCED;
87 		list_add(&ctx->list, &nfsi->open_files);
88 		spin_unlock(&dir->i_lock);
89 		return ctx;
90 	}
91 	return  ERR_PTR(-ENOMEM);
92 }
93 
94 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
95 {
96 	spin_lock(&dir->i_lock);
97 	list_del(&ctx->list);
98 	spin_unlock(&dir->i_lock);
99 	put_cred(ctx->cred);
100 	kfree(ctx);
101 }
102 
103 /*
104  * Open file
105  */
106 static int
107 nfs_opendir(struct inode *inode, struct file *filp)
108 {
109 	int res = 0;
110 	struct nfs_open_dir_context *ctx;
111 
112 	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
113 
114 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
115 
116 	ctx = alloc_nfs_open_dir_context(inode, current_cred());
117 	if (IS_ERR(ctx)) {
118 		res = PTR_ERR(ctx);
119 		goto out;
120 	}
121 	filp->private_data = ctx;
122 out:
123 	return res;
124 }
125 
126 static int
127 nfs_closedir(struct inode *inode, struct file *filp)
128 {
129 	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
130 	return 0;
131 }
132 
133 struct nfs_cache_array_entry {
134 	u64 cookie;
135 	u64 ino;
136 	struct qstr string;
137 	unsigned char d_type;
138 };
139 
140 struct nfs_cache_array {
141 	int size;
142 	int eof_index;
143 	u64 last_cookie;
144 	struct nfs_cache_array_entry array[];
145 };
146 
147 typedef struct {
148 	struct file	*file;
149 	struct page	*page;
150 	struct dir_context *ctx;
151 	unsigned long	page_index;
152 	u64		*dir_cookie;
153 	u64		last_cookie;
154 	loff_t		current_index;
155 	loff_t		prev_index;
156 
157 	unsigned long	dir_verifier;
158 	unsigned long	timestamp;
159 	unsigned long	gencount;
160 	unsigned int	cache_entry_index;
161 	bool plus;
162 	bool eof;
163 } nfs_readdir_descriptor_t;
164 
165 static
166 void nfs_readdir_init_array(struct page *page)
167 {
168 	struct nfs_cache_array *array;
169 
170 	array = kmap_atomic(page);
171 	memset(array, 0, sizeof(struct nfs_cache_array));
172 	array->eof_index = -1;
173 	kunmap_atomic(array);
174 }
175 
176 /*
177  * we are freeing strings created by nfs_add_to_readdir_array()
178  */
179 static
180 void nfs_readdir_clear_array(struct page *page)
181 {
182 	struct nfs_cache_array *array;
183 	int i;
184 
185 	array = kmap_atomic(page);
186 	for (i = 0; i < array->size; i++)
187 		kfree(array->array[i].string.name);
188 	array->size = 0;
189 	kunmap_atomic(array);
190 }
191 
192 /*
193  * the caller is responsible for freeing qstr.name
194  * when called by nfs_readdir_add_to_array, the strings will be freed in
195  * nfs_clear_readdir_array()
196  */
197 static
198 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
199 {
200 	string->len = len;
201 	string->name = kmemdup_nul(name, len, GFP_KERNEL);
202 	if (string->name == NULL)
203 		return -ENOMEM;
204 	/*
205 	 * Avoid a kmemleak false positive. The pointer to the name is stored
206 	 * in a page cache page which kmemleak does not scan.
207 	 */
208 	kmemleak_not_leak(string->name);
209 	string->hash = full_name_hash(NULL, name, len);
210 	return 0;
211 }
212 
213 static
214 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
215 {
216 	struct nfs_cache_array *array = kmap(page);
217 	struct nfs_cache_array_entry *cache_entry;
218 	int ret;
219 
220 	cache_entry = &array->array[array->size];
221 
222 	/* Check that this entry lies within the page bounds */
223 	ret = -ENOSPC;
224 	if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
225 		goto out;
226 
227 	cache_entry->cookie = entry->prev_cookie;
228 	cache_entry->ino = entry->ino;
229 	cache_entry->d_type = entry->d_type;
230 	ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
231 	if (ret)
232 		goto out;
233 	array->last_cookie = entry->cookie;
234 	array->size++;
235 	if (entry->eof != 0)
236 		array->eof_index = array->size;
237 out:
238 	kunmap(page);
239 	return ret;
240 }
241 
242 static inline
243 int is_32bit_api(void)
244 {
245 #ifdef CONFIG_COMPAT
246 	return in_compat_syscall();
247 #else
248 	return (BITS_PER_LONG == 32);
249 #endif
250 }
251 
252 static
253 bool nfs_readdir_use_cookie(const struct file *filp)
254 {
255 	if ((filp->f_mode & FMODE_32BITHASH) ||
256 	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
257 		return false;
258 	return true;
259 }
260 
261 static
262 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
263 {
264 	loff_t diff = desc->ctx->pos - desc->current_index;
265 	unsigned int index;
266 
267 	if (diff < 0)
268 		goto out_eof;
269 	if (diff >= array->size) {
270 		if (array->eof_index >= 0)
271 			goto out_eof;
272 		return -EAGAIN;
273 	}
274 
275 	index = (unsigned int)diff;
276 	*desc->dir_cookie = array->array[index].cookie;
277 	desc->cache_entry_index = index;
278 	return 0;
279 out_eof:
280 	desc->eof = true;
281 	return -EBADCOOKIE;
282 }
283 
284 static bool
285 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
286 {
287 	if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
288 		return false;
289 	smp_rmb();
290 	return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
291 }
292 
293 static
294 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
295 {
296 	int i;
297 	loff_t new_pos;
298 	int status = -EAGAIN;
299 
300 	for (i = 0; i < array->size; i++) {
301 		if (array->array[i].cookie == *desc->dir_cookie) {
302 			struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
303 			struct nfs_open_dir_context *ctx = desc->file->private_data;
304 
305 			new_pos = desc->current_index + i;
306 			if (ctx->attr_gencount != nfsi->attr_gencount ||
307 			    !nfs_readdir_inode_mapping_valid(nfsi)) {
308 				ctx->duped = 0;
309 				ctx->attr_gencount = nfsi->attr_gencount;
310 			} else if (new_pos < desc->prev_index) {
311 				if (ctx->duped > 0
312 				    && ctx->dup_cookie == *desc->dir_cookie) {
313 					if (printk_ratelimit()) {
314 						pr_notice("NFS: directory %pD2 contains a readdir loop."
315 								"Please contact your server vendor.  "
316 								"The file: %.*s has duplicate cookie %llu\n",
317 								desc->file, array->array[i].string.len,
318 								array->array[i].string.name, *desc->dir_cookie);
319 					}
320 					status = -ELOOP;
321 					goto out;
322 				}
323 				ctx->dup_cookie = *desc->dir_cookie;
324 				ctx->duped = -1;
325 			}
326 			if (nfs_readdir_use_cookie(desc->file))
327 				desc->ctx->pos = *desc->dir_cookie;
328 			else
329 				desc->ctx->pos = new_pos;
330 			desc->prev_index = new_pos;
331 			desc->cache_entry_index = i;
332 			return 0;
333 		}
334 	}
335 	if (array->eof_index >= 0) {
336 		status = -EBADCOOKIE;
337 		if (*desc->dir_cookie == array->last_cookie)
338 			desc->eof = true;
339 	}
340 out:
341 	return status;
342 }
343 
344 static
345 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
346 {
347 	struct nfs_cache_array *array;
348 	int status;
349 
350 	array = kmap(desc->page);
351 
352 	if (*desc->dir_cookie == 0)
353 		status = nfs_readdir_search_for_pos(array, desc);
354 	else
355 		status = nfs_readdir_search_for_cookie(array, desc);
356 
357 	if (status == -EAGAIN) {
358 		desc->last_cookie = array->last_cookie;
359 		desc->current_index += array->size;
360 		desc->page_index++;
361 	}
362 	kunmap(desc->page);
363 	return status;
364 }
365 
366 /* Fill a page with xdr information before transferring to the cache page */
367 static
368 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
369 			struct nfs_entry *entry, struct file *file, struct inode *inode)
370 {
371 	struct nfs_open_dir_context *ctx = file->private_data;
372 	const struct cred *cred = ctx->cred;
373 	unsigned long	timestamp, gencount;
374 	int		error;
375 
376  again:
377 	timestamp = jiffies;
378 	gencount = nfs_inc_attr_generation_counter();
379 	desc->dir_verifier = nfs_save_change_attribute(inode);
380 	error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
381 					  NFS_SERVER(inode)->dtsize, desc->plus);
382 	if (error < 0) {
383 		/* We requested READDIRPLUS, but the server doesn't grok it */
384 		if (error == -ENOTSUPP && desc->plus) {
385 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
386 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
387 			desc->plus = false;
388 			goto again;
389 		}
390 		goto error;
391 	}
392 	desc->timestamp = timestamp;
393 	desc->gencount = gencount;
394 error:
395 	return error;
396 }
397 
398 static int xdr_decode(nfs_readdir_descriptor_t *desc,
399 		      struct nfs_entry *entry, struct xdr_stream *xdr)
400 {
401 	struct inode *inode = file_inode(desc->file);
402 	int error;
403 
404 	error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
405 	if (error)
406 		return error;
407 	entry->fattr->time_start = desc->timestamp;
408 	entry->fattr->gencount = desc->gencount;
409 	return 0;
410 }
411 
412 /* Match file and dirent using either filehandle or fileid
413  * Note: caller is responsible for checking the fsid
414  */
415 static
416 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
417 {
418 	struct inode *inode;
419 	struct nfs_inode *nfsi;
420 
421 	if (d_really_is_negative(dentry))
422 		return 0;
423 
424 	inode = d_inode(dentry);
425 	if (is_bad_inode(inode) || NFS_STALE(inode))
426 		return 0;
427 
428 	nfsi = NFS_I(inode);
429 	if (entry->fattr->fileid != nfsi->fileid)
430 		return 0;
431 	if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
432 		return 0;
433 	return 1;
434 }
435 
436 static
437 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
438 {
439 	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
440 		return false;
441 	if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
442 		return true;
443 	if (ctx->pos == 0)
444 		return true;
445 	return false;
446 }
447 
448 /*
449  * This function is called by the lookup and getattr code to request the
450  * use of readdirplus to accelerate any future lookups in the same
451  * directory.
452  */
453 void nfs_advise_use_readdirplus(struct inode *dir)
454 {
455 	struct nfs_inode *nfsi = NFS_I(dir);
456 
457 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
458 	    !list_empty(&nfsi->open_files))
459 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
460 }
461 
462 /*
463  * This function is mainly for use by nfs_getattr().
464  *
465  * If this is an 'ls -l', we want to force use of readdirplus.
466  * Do this by checking if there is an active file descriptor
467  * and calling nfs_advise_use_readdirplus, then forcing a
468  * cache flush.
469  */
470 void nfs_force_use_readdirplus(struct inode *dir)
471 {
472 	struct nfs_inode *nfsi = NFS_I(dir);
473 
474 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
475 	    !list_empty(&nfsi->open_files)) {
476 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
477 		invalidate_mapping_pages(dir->i_mapping,
478 			nfsi->page_index + 1, -1);
479 	}
480 }
481 
482 static
483 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
484 		unsigned long dir_verifier)
485 {
486 	struct qstr filename = QSTR_INIT(entry->name, entry->len);
487 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
488 	struct dentry *dentry;
489 	struct dentry *alias;
490 	struct inode *inode;
491 	int status;
492 
493 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
494 		return;
495 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
496 		return;
497 	if (filename.len == 0)
498 		return;
499 	/* Validate that the name doesn't contain any illegal '\0' */
500 	if (strnlen(filename.name, filename.len) != filename.len)
501 		return;
502 	/* ...or '/' */
503 	if (strnchr(filename.name, filename.len, '/'))
504 		return;
505 	if (filename.name[0] == '.') {
506 		if (filename.len == 1)
507 			return;
508 		if (filename.len == 2 && filename.name[1] == '.')
509 			return;
510 	}
511 	filename.hash = full_name_hash(parent, filename.name, filename.len);
512 
513 	dentry = d_lookup(parent, &filename);
514 again:
515 	if (!dentry) {
516 		dentry = d_alloc_parallel(parent, &filename, &wq);
517 		if (IS_ERR(dentry))
518 			return;
519 	}
520 	if (!d_in_lookup(dentry)) {
521 		/* Is there a mountpoint here? If so, just exit */
522 		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
523 					&entry->fattr->fsid))
524 			goto out;
525 		if (nfs_same_file(dentry, entry)) {
526 			if (!entry->fh->size)
527 				goto out;
528 			nfs_set_verifier(dentry, dir_verifier);
529 			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
530 			if (!status)
531 				nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
532 			goto out;
533 		} else {
534 			d_invalidate(dentry);
535 			dput(dentry);
536 			dentry = NULL;
537 			goto again;
538 		}
539 	}
540 	if (!entry->fh->size) {
541 		d_lookup_done(dentry);
542 		goto out;
543 	}
544 
545 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
546 	alias = d_splice_alias(inode, dentry);
547 	d_lookup_done(dentry);
548 	if (alias) {
549 		if (IS_ERR(alias))
550 			goto out;
551 		dput(dentry);
552 		dentry = alias;
553 	}
554 	nfs_set_verifier(dentry, dir_verifier);
555 out:
556 	dput(dentry);
557 }
558 
559 /* Perform conversion from xdr to cache array */
560 static
561 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
562 				struct page **xdr_pages, struct page *page, unsigned int buflen)
563 {
564 	struct xdr_stream stream;
565 	struct xdr_buf buf;
566 	struct page *scratch;
567 	struct nfs_cache_array *array;
568 	unsigned int count = 0;
569 	int status;
570 
571 	scratch = alloc_page(GFP_KERNEL);
572 	if (scratch == NULL)
573 		return -ENOMEM;
574 
575 	if (buflen == 0)
576 		goto out_nopages;
577 
578 	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
579 	xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
580 
581 	do {
582 		if (entry->label)
583 			entry->label->len = NFS4_MAXLABELLEN;
584 
585 		status = xdr_decode(desc, entry, &stream);
586 		if (status != 0) {
587 			if (status == -EAGAIN)
588 				status = 0;
589 			break;
590 		}
591 
592 		count++;
593 
594 		if (desc->plus)
595 			nfs_prime_dcache(file_dentry(desc->file), entry,
596 					desc->dir_verifier);
597 
598 		status = nfs_readdir_add_to_array(entry, page);
599 		if (status != 0)
600 			break;
601 	} while (!entry->eof);
602 
603 out_nopages:
604 	if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
605 		array = kmap(page);
606 		array->eof_index = array->size;
607 		status = 0;
608 		kunmap(page);
609 	}
610 
611 	put_page(scratch);
612 	return status;
613 }
614 
615 static
616 void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
617 {
618 	unsigned int i;
619 	for (i = 0; i < npages; i++)
620 		put_page(pages[i]);
621 }
622 
623 /*
624  * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
625  * to nfs_readdir_free_pages()
626  */
627 static
628 int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
629 {
630 	unsigned int i;
631 
632 	for (i = 0; i < npages; i++) {
633 		struct page *page = alloc_page(GFP_KERNEL);
634 		if (page == NULL)
635 			goto out_freepages;
636 		pages[i] = page;
637 	}
638 	return 0;
639 
640 out_freepages:
641 	nfs_readdir_free_pages(pages, i);
642 	return -ENOMEM;
643 }
644 
645 static
646 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
647 {
648 	struct page *pages[NFS_MAX_READDIR_PAGES];
649 	struct nfs_entry entry;
650 	struct file	*file = desc->file;
651 	struct nfs_cache_array *array;
652 	int status = -ENOMEM;
653 	unsigned int array_size = ARRAY_SIZE(pages);
654 
655 	nfs_readdir_init_array(page);
656 
657 	entry.prev_cookie = 0;
658 	entry.cookie = desc->last_cookie;
659 	entry.eof = 0;
660 	entry.fh = nfs_alloc_fhandle();
661 	entry.fattr = nfs_alloc_fattr();
662 	entry.server = NFS_SERVER(inode);
663 	if (entry.fh == NULL || entry.fattr == NULL)
664 		goto out;
665 
666 	entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
667 	if (IS_ERR(entry.label)) {
668 		status = PTR_ERR(entry.label);
669 		goto out;
670 	}
671 
672 	array = kmap(page);
673 
674 	status = nfs_readdir_alloc_pages(pages, array_size);
675 	if (status < 0)
676 		goto out_release_array;
677 	do {
678 		unsigned int pglen;
679 		status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
680 
681 		if (status < 0)
682 			break;
683 		pglen = status;
684 		status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
685 		if (status < 0) {
686 			if (status == -ENOSPC)
687 				status = 0;
688 			break;
689 		}
690 	} while (array->eof_index < 0);
691 
692 	nfs_readdir_free_pages(pages, array_size);
693 out_release_array:
694 	kunmap(page);
695 	nfs4_label_free(entry.label);
696 out:
697 	nfs_free_fattr(entry.fattr);
698 	nfs_free_fhandle(entry.fh);
699 	return status;
700 }
701 
702 /*
703  * Now we cache directories properly, by converting xdr information
704  * to an array that can be used for lookups later.  This results in
705  * fewer cache pages, since we can store more information on each page.
706  * We only need to convert from xdr once so future lookups are much simpler
707  */
708 static
709 int nfs_readdir_filler(void *data, struct page* page)
710 {
711 	nfs_readdir_descriptor_t *desc = data;
712 	struct inode	*inode = file_inode(desc->file);
713 	int ret;
714 
715 	ret = nfs_readdir_xdr_to_array(desc, page, inode);
716 	if (ret < 0)
717 		goto error;
718 	SetPageUptodate(page);
719 
720 	if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
721 		/* Should never happen */
722 		nfs_zap_mapping(inode, inode->i_mapping);
723 	}
724 	unlock_page(page);
725 	return 0;
726  error:
727 	nfs_readdir_clear_array(page);
728 	unlock_page(page);
729 	return ret;
730 }
731 
732 static
733 void cache_page_release(nfs_readdir_descriptor_t *desc)
734 {
735 	put_page(desc->page);
736 	desc->page = NULL;
737 }
738 
739 static
740 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
741 {
742 	return read_cache_page(desc->file->f_mapping, desc->page_index,
743 			nfs_readdir_filler, desc);
744 }
745 
746 /*
747  * Returns 0 if desc->dir_cookie was found on page desc->page_index
748  * and locks the page to prevent removal from the page cache.
749  */
750 static
751 int find_and_lock_cache_page(nfs_readdir_descriptor_t *desc)
752 {
753 	struct inode *inode = file_inode(desc->file);
754 	struct nfs_inode *nfsi = NFS_I(inode);
755 	int res;
756 
757 	desc->page = get_cache_page(desc);
758 	if (IS_ERR(desc->page))
759 		return PTR_ERR(desc->page);
760 	res = lock_page_killable(desc->page);
761 	if (res != 0)
762 		goto error;
763 	res = -EAGAIN;
764 	if (desc->page->mapping != NULL) {
765 		res = nfs_readdir_search_array(desc);
766 		if (res == 0) {
767 			nfsi->page_index = desc->page_index;
768 			return 0;
769 		}
770 	}
771 	unlock_page(desc->page);
772 error:
773 	cache_page_release(desc);
774 	return res;
775 }
776 
777 /* Search for desc->dir_cookie from the beginning of the page cache */
778 static inline
779 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
780 {
781 	int res;
782 
783 	if (desc->page_index == 0) {
784 		desc->current_index = 0;
785 		desc->prev_index = 0;
786 		desc->last_cookie = 0;
787 	}
788 	do {
789 		res = find_and_lock_cache_page(desc);
790 	} while (res == -EAGAIN);
791 	return res;
792 }
793 
794 /*
795  * Once we've found the start of the dirent within a page: fill 'er up...
796  */
797 static
798 int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
799 {
800 	struct file	*file = desc->file;
801 	int i = 0;
802 	int res = 0;
803 	struct nfs_cache_array *array = NULL;
804 	struct nfs_open_dir_context *ctx = file->private_data;
805 
806 	array = kmap(desc->page);
807 	for (i = desc->cache_entry_index; i < array->size; i++) {
808 		struct nfs_cache_array_entry *ent;
809 
810 		ent = &array->array[i];
811 		if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
812 		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
813 			desc->eof = true;
814 			break;
815 		}
816 		if (i < (array->size-1))
817 			*desc->dir_cookie = array->array[i+1].cookie;
818 		else
819 			*desc->dir_cookie = array->last_cookie;
820 		if (nfs_readdir_use_cookie(file))
821 			desc->ctx->pos = *desc->dir_cookie;
822 		else
823 			desc->ctx->pos++;
824 		if (ctx->duped != 0)
825 			ctx->duped = 1;
826 	}
827 	if (array->eof_index >= 0)
828 		desc->eof = true;
829 
830 	kunmap(desc->page);
831 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
832 			(unsigned long long)*desc->dir_cookie, res);
833 	return res;
834 }
835 
836 /*
837  * If we cannot find a cookie in our cache, we suspect that this is
838  * because it points to a deleted file, so we ask the server to return
839  * whatever it thinks is the next entry. We then feed this to filldir.
840  * If all goes well, we should then be able to find our way round the
841  * cache on the next call to readdir_search_pagecache();
842  *
843  * NOTE: we cannot add the anonymous page to the pagecache because
844  *	 the data it contains might not be page aligned. Besides,
845  *	 we should already have a complete representation of the
846  *	 directory in the page cache by the time we get here.
847  */
848 static inline
849 int uncached_readdir(nfs_readdir_descriptor_t *desc)
850 {
851 	struct page	*page = NULL;
852 	int		status;
853 	struct inode *inode = file_inode(desc->file);
854 	struct nfs_open_dir_context *ctx = desc->file->private_data;
855 
856 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
857 			(unsigned long long)*desc->dir_cookie);
858 
859 	page = alloc_page(GFP_HIGHUSER);
860 	if (!page) {
861 		status = -ENOMEM;
862 		goto out;
863 	}
864 
865 	desc->page_index = 0;
866 	desc->last_cookie = *desc->dir_cookie;
867 	desc->page = page;
868 	ctx->duped = 0;
869 
870 	status = nfs_readdir_xdr_to_array(desc, page, inode);
871 	if (status < 0)
872 		goto out_release;
873 
874 	status = nfs_do_filldir(desc);
875 
876  out_release:
877 	nfs_readdir_clear_array(desc->page);
878 	cache_page_release(desc);
879  out:
880 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
881 			__func__, status);
882 	return status;
883 }
884 
885 /* The file offset position represents the dirent entry number.  A
886    last cookie cache takes care of the common case of reading the
887    whole directory.
888  */
889 static int nfs_readdir(struct file *file, struct dir_context *ctx)
890 {
891 	struct dentry	*dentry = file_dentry(file);
892 	struct inode	*inode = d_inode(dentry);
893 	struct nfs_open_dir_context *dir_ctx = file->private_data;
894 	nfs_readdir_descriptor_t my_desc = {
895 		.file = file,
896 		.ctx = ctx,
897 		.dir_cookie = &dir_ctx->dir_cookie,
898 		.plus = nfs_use_readdirplus(inode, ctx),
899 	},
900 			*desc = &my_desc;
901 	int res = 0;
902 
903 	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
904 			file, (long long)ctx->pos);
905 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
906 
907 	/*
908 	 * ctx->pos points to the dirent entry number.
909 	 * *desc->dir_cookie has the cookie for the next entry. We have
910 	 * to either find the entry with the appropriate number or
911 	 * revalidate the cookie.
912 	 */
913 	if (ctx->pos == 0 || nfs_attribute_cache_expired(inode))
914 		res = nfs_revalidate_mapping(inode, file->f_mapping);
915 	if (res < 0)
916 		goto out;
917 
918 	do {
919 		res = readdir_search_pagecache(desc);
920 
921 		if (res == -EBADCOOKIE) {
922 			res = 0;
923 			/* This means either end of directory */
924 			if (*desc->dir_cookie && !desc->eof) {
925 				/* Or that the server has 'lost' a cookie */
926 				res = uncached_readdir(desc);
927 				if (res == 0)
928 					continue;
929 			}
930 			break;
931 		}
932 		if (res == -ETOOSMALL && desc->plus) {
933 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
934 			nfs_zap_caches(inode);
935 			desc->page_index = 0;
936 			desc->plus = false;
937 			desc->eof = false;
938 			continue;
939 		}
940 		if (res < 0)
941 			break;
942 
943 		res = nfs_do_filldir(desc);
944 		unlock_page(desc->page);
945 		cache_page_release(desc);
946 		if (res < 0)
947 			break;
948 	} while (!desc->eof);
949 out:
950 	if (res > 0)
951 		res = 0;
952 	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
953 	return res;
954 }
955 
956 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
957 {
958 	struct nfs_open_dir_context *dir_ctx = filp->private_data;
959 
960 	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
961 			filp, offset, whence);
962 
963 	switch (whence) {
964 	default:
965 		return -EINVAL;
966 	case SEEK_SET:
967 		if (offset < 0)
968 			return -EINVAL;
969 		spin_lock(&filp->f_lock);
970 		break;
971 	case SEEK_CUR:
972 		if (offset == 0)
973 			return filp->f_pos;
974 		spin_lock(&filp->f_lock);
975 		offset += filp->f_pos;
976 		if (offset < 0) {
977 			spin_unlock(&filp->f_lock);
978 			return -EINVAL;
979 		}
980 	}
981 	if (offset != filp->f_pos) {
982 		filp->f_pos = offset;
983 		if (nfs_readdir_use_cookie(filp))
984 			dir_ctx->dir_cookie = offset;
985 		else
986 			dir_ctx->dir_cookie = 0;
987 		dir_ctx->duped = 0;
988 	}
989 	spin_unlock(&filp->f_lock);
990 	return offset;
991 }
992 
993 /*
994  * All directory operations under NFS are synchronous, so fsync()
995  * is a dummy operation.
996  */
997 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
998 			 int datasync)
999 {
1000 	struct inode *inode = file_inode(filp);
1001 
1002 	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1003 
1004 	inode_lock(inode);
1005 	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
1006 	inode_unlock(inode);
1007 	return 0;
1008 }
1009 
1010 /**
1011  * nfs_force_lookup_revalidate - Mark the directory as having changed
1012  * @dir: pointer to directory inode
1013  *
1014  * This forces the revalidation code in nfs_lookup_revalidate() to do a
1015  * full lookup on all child dentries of 'dir' whenever a change occurs
1016  * on the server that might have invalidated our dcache.
1017  *
1018  * Note that we reserve bit '0' as a tag to let us know when a dentry
1019  * was revalidated while holding a delegation on its inode.
1020  *
1021  * The caller should be holding dir->i_lock
1022  */
1023 void nfs_force_lookup_revalidate(struct inode *dir)
1024 {
1025 	NFS_I(dir)->cache_change_attribute += 2;
1026 }
1027 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1028 
1029 /**
1030  * nfs_verify_change_attribute - Detects NFS remote directory changes
1031  * @dir: pointer to parent directory inode
1032  * @verf: previously saved change attribute
1033  *
1034  * Return "false" if the verifiers doesn't match the change attribute.
1035  * This would usually indicate that the directory contents have changed on
1036  * the server, and that any dentries need revalidating.
1037  */
1038 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1039 {
1040 	return (verf & ~1UL) == nfs_save_change_attribute(dir);
1041 }
1042 
1043 static void nfs_set_verifier_delegated(unsigned long *verf)
1044 {
1045 	*verf |= 1UL;
1046 }
1047 
1048 #if IS_ENABLED(CONFIG_NFS_V4)
1049 static void nfs_unset_verifier_delegated(unsigned long *verf)
1050 {
1051 	*verf &= ~1UL;
1052 }
1053 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1054 
1055 static bool nfs_test_verifier_delegated(unsigned long verf)
1056 {
1057 	return verf & 1;
1058 }
1059 
1060 static bool nfs_verifier_is_delegated(struct dentry *dentry)
1061 {
1062 	return nfs_test_verifier_delegated(dentry->d_time);
1063 }
1064 
1065 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1066 {
1067 	struct inode *inode = d_inode(dentry);
1068 
1069 	if (!nfs_verifier_is_delegated(dentry) &&
1070 	    !nfs_verify_change_attribute(d_inode(dentry->d_parent), verf))
1071 		goto out;
1072 	if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
1073 		nfs_set_verifier_delegated(&verf);
1074 out:
1075 	dentry->d_time = verf;
1076 }
1077 
1078 /**
1079  * nfs_set_verifier - save a parent directory verifier in the dentry
1080  * @dentry: pointer to dentry
1081  * @verf: verifier to save
1082  *
1083  * Saves the parent directory verifier in @dentry. If the inode has
1084  * a delegation, we also tag the dentry as having been revalidated
1085  * while holding a delegation so that we know we don't have to
1086  * look it up again after a directory change.
1087  */
1088 void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1089 {
1090 
1091 	spin_lock(&dentry->d_lock);
1092 	nfs_set_verifier_locked(dentry, verf);
1093 	spin_unlock(&dentry->d_lock);
1094 }
1095 EXPORT_SYMBOL_GPL(nfs_set_verifier);
1096 
1097 #if IS_ENABLED(CONFIG_NFS_V4)
1098 /**
1099  * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1100  * @inode: pointer to inode
1101  *
1102  * Iterates through the dentries in the inode alias list and clears
1103  * the tag used to indicate that the dentry has been revalidated
1104  * while holding a delegation.
1105  * This function is intended for use when the delegation is being
1106  * returned or revoked.
1107  */
1108 void nfs_clear_verifier_delegated(struct inode *inode)
1109 {
1110 	struct dentry *alias;
1111 
1112 	if (!inode)
1113 		return;
1114 	spin_lock(&inode->i_lock);
1115 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1116 		spin_lock(&alias->d_lock);
1117 		nfs_unset_verifier_delegated(&alias->d_time);
1118 		spin_unlock(&alias->d_lock);
1119 	}
1120 	spin_unlock(&inode->i_lock);
1121 }
1122 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1123 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1124 
1125 /*
1126  * A check for whether or not the parent directory has changed.
1127  * In the case it has, we assume that the dentries are untrustworthy
1128  * and may need to be looked up again.
1129  * If rcu_walk prevents us from performing a full check, return 0.
1130  */
1131 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1132 			      int rcu_walk)
1133 {
1134 	if (IS_ROOT(dentry))
1135 		return 1;
1136 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1137 		return 0;
1138 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1139 		return 0;
1140 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1141 	if (nfs_mapping_need_revalidate_inode(dir)) {
1142 		if (rcu_walk)
1143 			return 0;
1144 		if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1145 			return 0;
1146 	}
1147 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1148 		return 0;
1149 	return 1;
1150 }
1151 
1152 /*
1153  * Use intent information to check whether or not we're going to do
1154  * an O_EXCL create using this path component.
1155  */
1156 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1157 {
1158 	if (NFS_PROTO(dir)->version == 2)
1159 		return 0;
1160 	return flags & LOOKUP_EXCL;
1161 }
1162 
1163 /*
1164  * Inode and filehandle revalidation for lookups.
1165  *
1166  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1167  * or if the intent information indicates that we're about to open this
1168  * particular file and the "nocto" mount flag is not set.
1169  *
1170  */
1171 static
1172 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1173 {
1174 	struct nfs_server *server = NFS_SERVER(inode);
1175 	int ret;
1176 
1177 	if (IS_AUTOMOUNT(inode))
1178 		return 0;
1179 
1180 	if (flags & LOOKUP_OPEN) {
1181 		switch (inode->i_mode & S_IFMT) {
1182 		case S_IFREG:
1183 			/* A NFSv4 OPEN will revalidate later */
1184 			if (server->caps & NFS_CAP_ATOMIC_OPEN)
1185 				goto out;
1186 			fallthrough;
1187 		case S_IFDIR:
1188 			if (server->flags & NFS_MOUNT_NOCTO)
1189 				break;
1190 			/* NFS close-to-open cache consistency validation */
1191 			goto out_force;
1192 		}
1193 	}
1194 
1195 	/* VFS wants an on-the-wire revalidation */
1196 	if (flags & LOOKUP_REVAL)
1197 		goto out_force;
1198 out:
1199 	return (inode->i_nlink == 0) ? -ESTALE : 0;
1200 out_force:
1201 	if (flags & LOOKUP_RCU)
1202 		return -ECHILD;
1203 	ret = __nfs_revalidate_inode(server, inode);
1204 	if (ret != 0)
1205 		return ret;
1206 	goto out;
1207 }
1208 
1209 /*
1210  * We judge how long we want to trust negative
1211  * dentries by looking at the parent inode mtime.
1212  *
1213  * If parent mtime has changed, we revalidate, else we wait for a
1214  * period corresponding to the parent's attribute cache timeout value.
1215  *
1216  * If LOOKUP_RCU prevents us from performing a full check, return 1
1217  * suggesting a reval is needed.
1218  *
1219  * Note that when creating a new file, or looking up a rename target,
1220  * then it shouldn't be necessary to revalidate a negative dentry.
1221  */
1222 static inline
1223 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1224 		       unsigned int flags)
1225 {
1226 	if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1227 		return 0;
1228 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1229 		return 1;
1230 	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1231 }
1232 
1233 static int
1234 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1235 			   struct inode *inode, int error)
1236 {
1237 	switch (error) {
1238 	case 1:
1239 		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1240 			__func__, dentry);
1241 		return 1;
1242 	case 0:
1243 		nfs_mark_for_revalidate(dir);
1244 		if (inode && S_ISDIR(inode->i_mode)) {
1245 			/* Purge readdir caches. */
1246 			nfs_zap_caches(inode);
1247 			/*
1248 			 * We can't d_drop the root of a disconnected tree:
1249 			 * its d_hash is on the s_anon list and d_drop() would hide
1250 			 * it from shrink_dcache_for_unmount(), leading to busy
1251 			 * inodes on unmount and further oopses.
1252 			 */
1253 			if (IS_ROOT(dentry))
1254 				return 1;
1255 		}
1256 		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1257 				__func__, dentry);
1258 		return 0;
1259 	}
1260 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1261 				__func__, dentry, error);
1262 	return error;
1263 }
1264 
1265 static int
1266 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1267 			       unsigned int flags)
1268 {
1269 	int ret = 1;
1270 	if (nfs_neg_need_reval(dir, dentry, flags)) {
1271 		if (flags & LOOKUP_RCU)
1272 			return -ECHILD;
1273 		ret = 0;
1274 	}
1275 	return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1276 }
1277 
1278 static int
1279 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1280 				struct inode *inode)
1281 {
1282 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1283 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1284 }
1285 
1286 static int
1287 nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry,
1288 			     struct inode *inode)
1289 {
1290 	struct nfs_fh *fhandle;
1291 	struct nfs_fattr *fattr;
1292 	struct nfs4_label *label;
1293 	unsigned long dir_verifier;
1294 	int ret;
1295 
1296 	ret = -ENOMEM;
1297 	fhandle = nfs_alloc_fhandle();
1298 	fattr = nfs_alloc_fattr();
1299 	label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL);
1300 	if (fhandle == NULL || fattr == NULL || IS_ERR(label))
1301 		goto out;
1302 
1303 	dir_verifier = nfs_save_change_attribute(dir);
1304 	ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1305 	if (ret < 0) {
1306 		switch (ret) {
1307 		case -ESTALE:
1308 		case -ENOENT:
1309 			ret = 0;
1310 			break;
1311 		case -ETIMEDOUT:
1312 			if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1313 				ret = 1;
1314 		}
1315 		goto out;
1316 	}
1317 	ret = 0;
1318 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1319 		goto out;
1320 	if (nfs_refresh_inode(inode, fattr) < 0)
1321 		goto out;
1322 
1323 	nfs_setsecurity(inode, fattr, label);
1324 	nfs_set_verifier(dentry, dir_verifier);
1325 
1326 	/* set a readdirplus hint that we had a cache miss */
1327 	nfs_force_use_readdirplus(dir);
1328 	ret = 1;
1329 out:
1330 	nfs_free_fattr(fattr);
1331 	nfs_free_fhandle(fhandle);
1332 	nfs4_label_free(label);
1333 	return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1334 }
1335 
1336 /*
1337  * This is called every time the dcache has a lookup hit,
1338  * and we should check whether we can really trust that
1339  * lookup.
1340  *
1341  * NOTE! The hit can be a negative hit too, don't assume
1342  * we have an inode!
1343  *
1344  * If the parent directory is seen to have changed, we throw out the
1345  * cached dentry and do a new lookup.
1346  */
1347 static int
1348 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1349 			 unsigned int flags)
1350 {
1351 	struct inode *inode;
1352 	int error;
1353 
1354 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1355 	inode = d_inode(dentry);
1356 
1357 	if (!inode)
1358 		return nfs_lookup_revalidate_negative(dir, dentry, flags);
1359 
1360 	if (is_bad_inode(inode)) {
1361 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1362 				__func__, dentry);
1363 		goto out_bad;
1364 	}
1365 
1366 	if (nfs_verifier_is_delegated(dentry))
1367 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1368 
1369 	/* Force a full look up iff the parent directory has changed */
1370 	if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1371 	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1372 		error = nfs_lookup_verify_inode(inode, flags);
1373 		if (error) {
1374 			if (error == -ESTALE)
1375 				nfs_zap_caches(dir);
1376 			goto out_bad;
1377 		}
1378 		nfs_advise_use_readdirplus(dir);
1379 		goto out_valid;
1380 	}
1381 
1382 	if (flags & LOOKUP_RCU)
1383 		return -ECHILD;
1384 
1385 	if (NFS_STALE(inode))
1386 		goto out_bad;
1387 
1388 	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1389 	error = nfs_lookup_revalidate_dentry(dir, dentry, inode);
1390 	trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1391 	return error;
1392 out_valid:
1393 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1394 out_bad:
1395 	if (flags & LOOKUP_RCU)
1396 		return -ECHILD;
1397 	return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1398 }
1399 
1400 static int
1401 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1402 			int (*reval)(struct inode *, struct dentry *, unsigned int))
1403 {
1404 	struct dentry *parent;
1405 	struct inode *dir;
1406 	int ret;
1407 
1408 	if (flags & LOOKUP_RCU) {
1409 		parent = READ_ONCE(dentry->d_parent);
1410 		dir = d_inode_rcu(parent);
1411 		if (!dir)
1412 			return -ECHILD;
1413 		ret = reval(dir, dentry, flags);
1414 		if (parent != READ_ONCE(dentry->d_parent))
1415 			return -ECHILD;
1416 	} else {
1417 		parent = dget_parent(dentry);
1418 		ret = reval(d_inode(parent), dentry, flags);
1419 		dput(parent);
1420 	}
1421 	return ret;
1422 }
1423 
1424 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1425 {
1426 	return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1427 }
1428 
1429 /*
1430  * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1431  * when we don't really care about the dentry name. This is called when a
1432  * pathwalk ends on a dentry that was not found via a normal lookup in the
1433  * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1434  *
1435  * In this situation, we just want to verify that the inode itself is OK
1436  * since the dentry might have changed on the server.
1437  */
1438 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1439 {
1440 	struct inode *inode = d_inode(dentry);
1441 	int error = 0;
1442 
1443 	/*
1444 	 * I believe we can only get a negative dentry here in the case of a
1445 	 * procfs-style symlink. Just assume it's correct for now, but we may
1446 	 * eventually need to do something more here.
1447 	 */
1448 	if (!inode) {
1449 		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1450 				__func__, dentry);
1451 		return 1;
1452 	}
1453 
1454 	if (is_bad_inode(inode)) {
1455 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1456 				__func__, dentry);
1457 		return 0;
1458 	}
1459 
1460 	error = nfs_lookup_verify_inode(inode, flags);
1461 	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1462 			__func__, inode->i_ino, error ? "invalid" : "valid");
1463 	return !error;
1464 }
1465 
1466 /*
1467  * This is called from dput() when d_count is going to 0.
1468  */
1469 static int nfs_dentry_delete(const struct dentry *dentry)
1470 {
1471 	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1472 		dentry, dentry->d_flags);
1473 
1474 	/* Unhash any dentry with a stale inode */
1475 	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1476 		return 1;
1477 
1478 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1479 		/* Unhash it, so that ->d_iput() would be called */
1480 		return 1;
1481 	}
1482 	if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1483 		/* Unhash it, so that ancestors of killed async unlink
1484 		 * files will be cleaned up during umount */
1485 		return 1;
1486 	}
1487 	return 0;
1488 
1489 }
1490 
1491 /* Ensure that we revalidate inode->i_nlink */
1492 static void nfs_drop_nlink(struct inode *inode)
1493 {
1494 	spin_lock(&inode->i_lock);
1495 	/* drop the inode if we're reasonably sure this is the last link */
1496 	if (inode->i_nlink > 0)
1497 		drop_nlink(inode);
1498 	NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1499 	NFS_I(inode)->cache_validity |= NFS_INO_INVALID_CHANGE
1500 		| NFS_INO_INVALID_CTIME
1501 		| NFS_INO_INVALID_OTHER
1502 		| NFS_INO_REVAL_FORCED;
1503 	spin_unlock(&inode->i_lock);
1504 }
1505 
1506 /*
1507  * Called when the dentry loses inode.
1508  * We use it to clean up silly-renamed files.
1509  */
1510 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1511 {
1512 	if (S_ISDIR(inode->i_mode))
1513 		/* drop any readdir cache as it could easily be old */
1514 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1515 
1516 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1517 		nfs_complete_unlink(dentry, inode);
1518 		nfs_drop_nlink(inode);
1519 	}
1520 	iput(inode);
1521 }
1522 
1523 static void nfs_d_release(struct dentry *dentry)
1524 {
1525 	/* free cached devname value, if it survived that far */
1526 	if (unlikely(dentry->d_fsdata)) {
1527 		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1528 			WARN_ON(1);
1529 		else
1530 			kfree(dentry->d_fsdata);
1531 	}
1532 }
1533 
1534 const struct dentry_operations nfs_dentry_operations = {
1535 	.d_revalidate	= nfs_lookup_revalidate,
1536 	.d_weak_revalidate	= nfs_weak_revalidate,
1537 	.d_delete	= nfs_dentry_delete,
1538 	.d_iput		= nfs_dentry_iput,
1539 	.d_automount	= nfs_d_automount,
1540 	.d_release	= nfs_d_release,
1541 };
1542 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1543 
1544 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1545 {
1546 	struct dentry *res;
1547 	struct inode *inode = NULL;
1548 	struct nfs_fh *fhandle = NULL;
1549 	struct nfs_fattr *fattr = NULL;
1550 	struct nfs4_label *label = NULL;
1551 	unsigned long dir_verifier;
1552 	int error;
1553 
1554 	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1555 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1556 
1557 	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1558 		return ERR_PTR(-ENAMETOOLONG);
1559 
1560 	/*
1561 	 * If we're doing an exclusive create, optimize away the lookup
1562 	 * but don't hash the dentry.
1563 	 */
1564 	if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1565 		return NULL;
1566 
1567 	res = ERR_PTR(-ENOMEM);
1568 	fhandle = nfs_alloc_fhandle();
1569 	fattr = nfs_alloc_fattr();
1570 	if (fhandle == NULL || fattr == NULL)
1571 		goto out;
1572 
1573 	label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1574 	if (IS_ERR(label))
1575 		goto out;
1576 
1577 	dir_verifier = nfs_save_change_attribute(dir);
1578 	trace_nfs_lookup_enter(dir, dentry, flags);
1579 	error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1580 	if (error == -ENOENT)
1581 		goto no_entry;
1582 	if (error < 0) {
1583 		res = ERR_PTR(error);
1584 		goto out_label;
1585 	}
1586 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1587 	res = ERR_CAST(inode);
1588 	if (IS_ERR(res))
1589 		goto out_label;
1590 
1591 	/* Notify readdir to use READDIRPLUS */
1592 	nfs_force_use_readdirplus(dir);
1593 
1594 no_entry:
1595 	res = d_splice_alias(inode, dentry);
1596 	if (res != NULL) {
1597 		if (IS_ERR(res))
1598 			goto out_label;
1599 		dentry = res;
1600 	}
1601 	nfs_set_verifier(dentry, dir_verifier);
1602 out_label:
1603 	trace_nfs_lookup_exit(dir, dentry, flags, error);
1604 	nfs4_label_free(label);
1605 out:
1606 	nfs_free_fattr(fattr);
1607 	nfs_free_fhandle(fhandle);
1608 	return res;
1609 }
1610 EXPORT_SYMBOL_GPL(nfs_lookup);
1611 
1612 #if IS_ENABLED(CONFIG_NFS_V4)
1613 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1614 
1615 const struct dentry_operations nfs4_dentry_operations = {
1616 	.d_revalidate	= nfs4_lookup_revalidate,
1617 	.d_weak_revalidate	= nfs_weak_revalidate,
1618 	.d_delete	= nfs_dentry_delete,
1619 	.d_iput		= nfs_dentry_iput,
1620 	.d_automount	= nfs_d_automount,
1621 	.d_release	= nfs_d_release,
1622 };
1623 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1624 
1625 static fmode_t flags_to_mode(int flags)
1626 {
1627 	fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1628 	if ((flags & O_ACCMODE) != O_WRONLY)
1629 		res |= FMODE_READ;
1630 	if ((flags & O_ACCMODE) != O_RDONLY)
1631 		res |= FMODE_WRITE;
1632 	return res;
1633 }
1634 
1635 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1636 {
1637 	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1638 }
1639 
1640 static int do_open(struct inode *inode, struct file *filp)
1641 {
1642 	nfs_fscache_open_file(inode, filp);
1643 	return 0;
1644 }
1645 
1646 static int nfs_finish_open(struct nfs_open_context *ctx,
1647 			   struct dentry *dentry,
1648 			   struct file *file, unsigned open_flags)
1649 {
1650 	int err;
1651 
1652 	err = finish_open(file, dentry, do_open);
1653 	if (err)
1654 		goto out;
1655 	if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1656 		nfs_file_set_open_context(file, ctx);
1657 	else
1658 		err = -EOPENSTALE;
1659 out:
1660 	return err;
1661 }
1662 
1663 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1664 		    struct file *file, unsigned open_flags,
1665 		    umode_t mode)
1666 {
1667 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1668 	struct nfs_open_context *ctx;
1669 	struct dentry *res;
1670 	struct iattr attr = { .ia_valid = ATTR_OPEN };
1671 	struct inode *inode;
1672 	unsigned int lookup_flags = 0;
1673 	bool switched = false;
1674 	int created = 0;
1675 	int err;
1676 
1677 	/* Expect a negative dentry */
1678 	BUG_ON(d_inode(dentry));
1679 
1680 	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1681 			dir->i_sb->s_id, dir->i_ino, dentry);
1682 
1683 	err = nfs_check_flags(open_flags);
1684 	if (err)
1685 		return err;
1686 
1687 	/* NFS only supports OPEN on regular files */
1688 	if ((open_flags & O_DIRECTORY)) {
1689 		if (!d_in_lookup(dentry)) {
1690 			/*
1691 			 * Hashed negative dentry with O_DIRECTORY: dentry was
1692 			 * revalidated and is fine, no need to perform lookup
1693 			 * again
1694 			 */
1695 			return -ENOENT;
1696 		}
1697 		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1698 		goto no_open;
1699 	}
1700 
1701 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1702 		return -ENAMETOOLONG;
1703 
1704 	if (open_flags & O_CREAT) {
1705 		struct nfs_server *server = NFS_SERVER(dir);
1706 
1707 		if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1708 			mode &= ~current_umask();
1709 
1710 		attr.ia_valid |= ATTR_MODE;
1711 		attr.ia_mode = mode;
1712 	}
1713 	if (open_flags & O_TRUNC) {
1714 		attr.ia_valid |= ATTR_SIZE;
1715 		attr.ia_size = 0;
1716 	}
1717 
1718 	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1719 		d_drop(dentry);
1720 		switched = true;
1721 		dentry = d_alloc_parallel(dentry->d_parent,
1722 					  &dentry->d_name, &wq);
1723 		if (IS_ERR(dentry))
1724 			return PTR_ERR(dentry);
1725 		if (unlikely(!d_in_lookup(dentry)))
1726 			return finish_no_open(file, dentry);
1727 	}
1728 
1729 	ctx = create_nfs_open_context(dentry, open_flags, file);
1730 	err = PTR_ERR(ctx);
1731 	if (IS_ERR(ctx))
1732 		goto out;
1733 
1734 	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1735 	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
1736 	if (created)
1737 		file->f_mode |= FMODE_CREATED;
1738 	if (IS_ERR(inode)) {
1739 		err = PTR_ERR(inode);
1740 		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1741 		put_nfs_open_context(ctx);
1742 		d_drop(dentry);
1743 		switch (err) {
1744 		case -ENOENT:
1745 			d_splice_alias(NULL, dentry);
1746 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1747 			break;
1748 		case -EISDIR:
1749 		case -ENOTDIR:
1750 			goto no_open;
1751 		case -ELOOP:
1752 			if (!(open_flags & O_NOFOLLOW))
1753 				goto no_open;
1754 			break;
1755 			/* case -EINVAL: */
1756 		default:
1757 			break;
1758 		}
1759 		goto out;
1760 	}
1761 
1762 	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
1763 	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1764 	put_nfs_open_context(ctx);
1765 out:
1766 	if (unlikely(switched)) {
1767 		d_lookup_done(dentry);
1768 		dput(dentry);
1769 	}
1770 	return err;
1771 
1772 no_open:
1773 	res = nfs_lookup(dir, dentry, lookup_flags);
1774 	if (switched) {
1775 		d_lookup_done(dentry);
1776 		if (!res)
1777 			res = dentry;
1778 		else
1779 			dput(dentry);
1780 	}
1781 	if (IS_ERR(res))
1782 		return PTR_ERR(res);
1783 	return finish_no_open(file, res);
1784 }
1785 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1786 
1787 static int
1788 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1789 			  unsigned int flags)
1790 {
1791 	struct inode *inode;
1792 
1793 	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1794 		goto full_reval;
1795 	if (d_mountpoint(dentry))
1796 		goto full_reval;
1797 
1798 	inode = d_inode(dentry);
1799 
1800 	/* We can't create new files in nfs_open_revalidate(), so we
1801 	 * optimize away revalidation of negative dentries.
1802 	 */
1803 	if (inode == NULL)
1804 		goto full_reval;
1805 
1806 	if (nfs_verifier_is_delegated(dentry))
1807 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1808 
1809 	/* NFS only supports OPEN on regular files */
1810 	if (!S_ISREG(inode->i_mode))
1811 		goto full_reval;
1812 
1813 	/* We cannot do exclusive creation on a positive dentry */
1814 	if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
1815 		goto reval_dentry;
1816 
1817 	/* Check if the directory changed */
1818 	if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
1819 		goto reval_dentry;
1820 
1821 	/* Let f_op->open() actually open (and revalidate) the file */
1822 	return 1;
1823 reval_dentry:
1824 	if (flags & LOOKUP_RCU)
1825 		return -ECHILD;
1826 	return nfs_lookup_revalidate_dentry(dir, dentry, inode);
1827 
1828 full_reval:
1829 	return nfs_do_lookup_revalidate(dir, dentry, flags);
1830 }
1831 
1832 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1833 {
1834 	return __nfs_lookup_revalidate(dentry, flags,
1835 			nfs4_do_lookup_revalidate);
1836 }
1837 
1838 #endif /* CONFIG_NFSV4 */
1839 
1840 struct dentry *
1841 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
1842 				struct nfs_fattr *fattr,
1843 				struct nfs4_label *label)
1844 {
1845 	struct dentry *parent = dget_parent(dentry);
1846 	struct inode *dir = d_inode(parent);
1847 	struct inode *inode;
1848 	struct dentry *d;
1849 	int error;
1850 
1851 	d_drop(dentry);
1852 
1853 	if (fhandle->size == 0) {
1854 		error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, NULL);
1855 		if (error)
1856 			goto out_error;
1857 	}
1858 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1859 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1860 		struct nfs_server *server = NFS_SB(dentry->d_sb);
1861 		error = server->nfs_client->rpc_ops->getattr(server, fhandle,
1862 				fattr, NULL, NULL);
1863 		if (error < 0)
1864 			goto out_error;
1865 	}
1866 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1867 	d = d_splice_alias(inode, dentry);
1868 out:
1869 	dput(parent);
1870 	return d;
1871 out_error:
1872 	nfs_mark_for_revalidate(dir);
1873 	d = ERR_PTR(error);
1874 	goto out;
1875 }
1876 EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
1877 
1878 /*
1879  * Code common to create, mkdir, and mknod.
1880  */
1881 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1882 				struct nfs_fattr *fattr,
1883 				struct nfs4_label *label)
1884 {
1885 	struct dentry *d;
1886 
1887 	d = nfs_add_or_obtain(dentry, fhandle, fattr, label);
1888 	if (IS_ERR(d))
1889 		return PTR_ERR(d);
1890 
1891 	/* Callers don't care */
1892 	dput(d);
1893 	return 0;
1894 }
1895 EXPORT_SYMBOL_GPL(nfs_instantiate);
1896 
1897 /*
1898  * Following a failed create operation, we drop the dentry rather
1899  * than retain a negative dentry. This avoids a problem in the event
1900  * that the operation succeeded on the server, but an error in the
1901  * reply path made it appear to have failed.
1902  */
1903 int nfs_create(struct inode *dir, struct dentry *dentry,
1904 		umode_t mode, bool excl)
1905 {
1906 	struct iattr attr;
1907 	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1908 	int error;
1909 
1910 	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1911 			dir->i_sb->s_id, dir->i_ino, dentry);
1912 
1913 	attr.ia_mode = mode;
1914 	attr.ia_valid = ATTR_MODE;
1915 
1916 	trace_nfs_create_enter(dir, dentry, open_flags);
1917 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1918 	trace_nfs_create_exit(dir, dentry, open_flags, error);
1919 	if (error != 0)
1920 		goto out_err;
1921 	return 0;
1922 out_err:
1923 	d_drop(dentry);
1924 	return error;
1925 }
1926 EXPORT_SYMBOL_GPL(nfs_create);
1927 
1928 /*
1929  * See comments for nfs_proc_create regarding failed operations.
1930  */
1931 int
1932 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1933 {
1934 	struct iattr attr;
1935 	int status;
1936 
1937 	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1938 			dir->i_sb->s_id, dir->i_ino, dentry);
1939 
1940 	attr.ia_mode = mode;
1941 	attr.ia_valid = ATTR_MODE;
1942 
1943 	trace_nfs_mknod_enter(dir, dentry);
1944 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1945 	trace_nfs_mknod_exit(dir, dentry, status);
1946 	if (status != 0)
1947 		goto out_err;
1948 	return 0;
1949 out_err:
1950 	d_drop(dentry);
1951 	return status;
1952 }
1953 EXPORT_SYMBOL_GPL(nfs_mknod);
1954 
1955 /*
1956  * See comments for nfs_proc_create regarding failed operations.
1957  */
1958 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1959 {
1960 	struct iattr attr;
1961 	int error;
1962 
1963 	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1964 			dir->i_sb->s_id, dir->i_ino, dentry);
1965 
1966 	attr.ia_valid = ATTR_MODE;
1967 	attr.ia_mode = mode | S_IFDIR;
1968 
1969 	trace_nfs_mkdir_enter(dir, dentry);
1970 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1971 	trace_nfs_mkdir_exit(dir, dentry, error);
1972 	if (error != 0)
1973 		goto out_err;
1974 	return 0;
1975 out_err:
1976 	d_drop(dentry);
1977 	return error;
1978 }
1979 EXPORT_SYMBOL_GPL(nfs_mkdir);
1980 
1981 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1982 {
1983 	if (simple_positive(dentry))
1984 		d_delete(dentry);
1985 }
1986 
1987 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1988 {
1989 	int error;
1990 
1991 	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1992 			dir->i_sb->s_id, dir->i_ino, dentry);
1993 
1994 	trace_nfs_rmdir_enter(dir, dentry);
1995 	if (d_really_is_positive(dentry)) {
1996 		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1997 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1998 		/* Ensure the VFS deletes this inode */
1999 		switch (error) {
2000 		case 0:
2001 			clear_nlink(d_inode(dentry));
2002 			break;
2003 		case -ENOENT:
2004 			nfs_dentry_handle_enoent(dentry);
2005 		}
2006 		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2007 	} else
2008 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2009 	trace_nfs_rmdir_exit(dir, dentry, error);
2010 
2011 	return error;
2012 }
2013 EXPORT_SYMBOL_GPL(nfs_rmdir);
2014 
2015 /*
2016  * Remove a file after making sure there are no pending writes,
2017  * and after checking that the file has only one user.
2018  *
2019  * We invalidate the attribute cache and free the inode prior to the operation
2020  * to avoid possible races if the server reuses the inode.
2021  */
2022 static int nfs_safe_remove(struct dentry *dentry)
2023 {
2024 	struct inode *dir = d_inode(dentry->d_parent);
2025 	struct inode *inode = d_inode(dentry);
2026 	int error = -EBUSY;
2027 
2028 	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2029 
2030 	/* If the dentry was sillyrenamed, we simply call d_delete() */
2031 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2032 		error = 0;
2033 		goto out;
2034 	}
2035 
2036 	trace_nfs_remove_enter(dir, dentry);
2037 	if (inode != NULL) {
2038 		error = NFS_PROTO(dir)->remove(dir, dentry);
2039 		if (error == 0)
2040 			nfs_drop_nlink(inode);
2041 	} else
2042 		error = NFS_PROTO(dir)->remove(dir, dentry);
2043 	if (error == -ENOENT)
2044 		nfs_dentry_handle_enoent(dentry);
2045 	trace_nfs_remove_exit(dir, dentry, error);
2046 out:
2047 	return error;
2048 }
2049 
2050 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
2051  *  belongs to an active ".nfs..." file and we return -EBUSY.
2052  *
2053  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
2054  */
2055 int nfs_unlink(struct inode *dir, struct dentry *dentry)
2056 {
2057 	int error;
2058 	int need_rehash = 0;
2059 
2060 	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2061 		dir->i_ino, dentry);
2062 
2063 	trace_nfs_unlink_enter(dir, dentry);
2064 	spin_lock(&dentry->d_lock);
2065 	if (d_count(dentry) > 1) {
2066 		spin_unlock(&dentry->d_lock);
2067 		/* Start asynchronous writeout of the inode */
2068 		write_inode_now(d_inode(dentry), 0);
2069 		error = nfs_sillyrename(dir, dentry);
2070 		goto out;
2071 	}
2072 	if (!d_unhashed(dentry)) {
2073 		__d_drop(dentry);
2074 		need_rehash = 1;
2075 	}
2076 	spin_unlock(&dentry->d_lock);
2077 	error = nfs_safe_remove(dentry);
2078 	if (!error || error == -ENOENT) {
2079 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2080 	} else if (need_rehash)
2081 		d_rehash(dentry);
2082 out:
2083 	trace_nfs_unlink_exit(dir, dentry, error);
2084 	return error;
2085 }
2086 EXPORT_SYMBOL_GPL(nfs_unlink);
2087 
2088 /*
2089  * To create a symbolic link, most file systems instantiate a new inode,
2090  * add a page to it containing the path, then write it out to the disk
2091  * using prepare_write/commit_write.
2092  *
2093  * Unfortunately the NFS client can't create the in-core inode first
2094  * because it needs a file handle to create an in-core inode (see
2095  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
2096  * symlink request has completed on the server.
2097  *
2098  * So instead we allocate a raw page, copy the symname into it, then do
2099  * the SYMLINK request with the page as the buffer.  If it succeeds, we
2100  * now have a new file handle and can instantiate an in-core NFS inode
2101  * and move the raw page into its mapping.
2102  */
2103 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2104 {
2105 	struct page *page;
2106 	char *kaddr;
2107 	struct iattr attr;
2108 	unsigned int pathlen = strlen(symname);
2109 	int error;
2110 
2111 	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2112 		dir->i_ino, dentry, symname);
2113 
2114 	if (pathlen > PAGE_SIZE)
2115 		return -ENAMETOOLONG;
2116 
2117 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
2118 	attr.ia_valid = ATTR_MODE;
2119 
2120 	page = alloc_page(GFP_USER);
2121 	if (!page)
2122 		return -ENOMEM;
2123 
2124 	kaddr = page_address(page);
2125 	memcpy(kaddr, symname, pathlen);
2126 	if (pathlen < PAGE_SIZE)
2127 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2128 
2129 	trace_nfs_symlink_enter(dir, dentry);
2130 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
2131 	trace_nfs_symlink_exit(dir, dentry, error);
2132 	if (error != 0) {
2133 		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2134 			dir->i_sb->s_id, dir->i_ino,
2135 			dentry, symname, error);
2136 		d_drop(dentry);
2137 		__free_page(page);
2138 		return error;
2139 	}
2140 
2141 	/*
2142 	 * No big deal if we can't add this page to the page cache here.
2143 	 * READLINK will get the missing page from the server if needed.
2144 	 */
2145 	if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2146 							GFP_KERNEL)) {
2147 		SetPageUptodate(page);
2148 		unlock_page(page);
2149 		/*
2150 		 * add_to_page_cache_lru() grabs an extra page refcount.
2151 		 * Drop it here to avoid leaking this page later.
2152 		 */
2153 		put_page(page);
2154 	} else
2155 		__free_page(page);
2156 
2157 	return 0;
2158 }
2159 EXPORT_SYMBOL_GPL(nfs_symlink);
2160 
2161 int
2162 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2163 {
2164 	struct inode *inode = d_inode(old_dentry);
2165 	int error;
2166 
2167 	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2168 		old_dentry, dentry);
2169 
2170 	trace_nfs_link_enter(inode, dir, dentry);
2171 	d_drop(dentry);
2172 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2173 	if (error == 0) {
2174 		ihold(inode);
2175 		d_add(dentry, inode);
2176 	}
2177 	trace_nfs_link_exit(inode, dir, dentry, error);
2178 	return error;
2179 }
2180 EXPORT_SYMBOL_GPL(nfs_link);
2181 
2182 /*
2183  * RENAME
2184  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2185  * different file handle for the same inode after a rename (e.g. when
2186  * moving to a different directory). A fail-safe method to do so would
2187  * be to look up old_dir/old_name, create a link to new_dir/new_name and
2188  * rename the old file using the sillyrename stuff. This way, the original
2189  * file in old_dir will go away when the last process iput()s the inode.
2190  *
2191  * FIXED.
2192  *
2193  * It actually works quite well. One needs to have the possibility for
2194  * at least one ".nfs..." file in each directory the file ever gets
2195  * moved or linked to which happens automagically with the new
2196  * implementation that only depends on the dcache stuff instead of
2197  * using the inode layer
2198  *
2199  * Unfortunately, things are a little more complicated than indicated
2200  * above. For a cross-directory move, we want to make sure we can get
2201  * rid of the old inode after the operation.  This means there must be
2202  * no pending writes (if it's a file), and the use count must be 1.
2203  * If these conditions are met, we can drop the dentries before doing
2204  * the rename.
2205  */
2206 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2207 	       struct inode *new_dir, struct dentry *new_dentry,
2208 	       unsigned int flags)
2209 {
2210 	struct inode *old_inode = d_inode(old_dentry);
2211 	struct inode *new_inode = d_inode(new_dentry);
2212 	struct dentry *dentry = NULL, *rehash = NULL;
2213 	struct rpc_task *task;
2214 	int error = -EBUSY;
2215 
2216 	if (flags)
2217 		return -EINVAL;
2218 
2219 	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2220 		 old_dentry, new_dentry,
2221 		 d_count(new_dentry));
2222 
2223 	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2224 	/*
2225 	 * For non-directories, check whether the target is busy and if so,
2226 	 * make a copy of the dentry and then do a silly-rename. If the
2227 	 * silly-rename succeeds, the copied dentry is hashed and becomes
2228 	 * the new target.
2229 	 */
2230 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2231 		/*
2232 		 * To prevent any new references to the target during the
2233 		 * rename, we unhash the dentry in advance.
2234 		 */
2235 		if (!d_unhashed(new_dentry)) {
2236 			d_drop(new_dentry);
2237 			rehash = new_dentry;
2238 		}
2239 
2240 		if (d_count(new_dentry) > 2) {
2241 			int err;
2242 
2243 			/* copy the target dentry's name */
2244 			dentry = d_alloc(new_dentry->d_parent,
2245 					 &new_dentry->d_name);
2246 			if (!dentry)
2247 				goto out;
2248 
2249 			/* silly-rename the existing target ... */
2250 			err = nfs_sillyrename(new_dir, new_dentry);
2251 			if (err)
2252 				goto out;
2253 
2254 			new_dentry = dentry;
2255 			rehash = NULL;
2256 			new_inode = NULL;
2257 		}
2258 	}
2259 
2260 	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2261 	if (IS_ERR(task)) {
2262 		error = PTR_ERR(task);
2263 		goto out;
2264 	}
2265 
2266 	error = rpc_wait_for_completion_task(task);
2267 	if (error != 0) {
2268 		((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2269 		/* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2270 		smp_wmb();
2271 	} else
2272 		error = task->tk_status;
2273 	rpc_put_task(task);
2274 	/* Ensure the inode attributes are revalidated */
2275 	if (error == 0) {
2276 		spin_lock(&old_inode->i_lock);
2277 		NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2278 		NFS_I(old_inode)->cache_validity |= NFS_INO_INVALID_CHANGE
2279 			| NFS_INO_INVALID_CTIME
2280 			| NFS_INO_REVAL_FORCED;
2281 		spin_unlock(&old_inode->i_lock);
2282 	}
2283 out:
2284 	if (rehash)
2285 		d_rehash(rehash);
2286 	trace_nfs_rename_exit(old_dir, old_dentry,
2287 			new_dir, new_dentry, error);
2288 	if (!error) {
2289 		if (new_inode != NULL)
2290 			nfs_drop_nlink(new_inode);
2291 		/*
2292 		 * The d_move() should be here instead of in an async RPC completion
2293 		 * handler because we need the proper locks to move the dentry.  If
2294 		 * we're interrupted by a signal, the async RPC completion handler
2295 		 * should mark the directories for revalidation.
2296 		 */
2297 		d_move(old_dentry, new_dentry);
2298 		nfs_set_verifier(old_dentry,
2299 					nfs_save_change_attribute(new_dir));
2300 	} else if (error == -ENOENT)
2301 		nfs_dentry_handle_enoent(old_dentry);
2302 
2303 	/* new dentry created? */
2304 	if (dentry)
2305 		dput(dentry);
2306 	return error;
2307 }
2308 EXPORT_SYMBOL_GPL(nfs_rename);
2309 
2310 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2311 static LIST_HEAD(nfs_access_lru_list);
2312 static atomic_long_t nfs_access_nr_entries;
2313 
2314 static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2315 module_param(nfs_access_max_cachesize, ulong, 0644);
2316 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2317 
2318 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2319 {
2320 	put_cred(entry->cred);
2321 	kfree_rcu(entry, rcu_head);
2322 	smp_mb__before_atomic();
2323 	atomic_long_dec(&nfs_access_nr_entries);
2324 	smp_mb__after_atomic();
2325 }
2326 
2327 static void nfs_access_free_list(struct list_head *head)
2328 {
2329 	struct nfs_access_entry *cache;
2330 
2331 	while (!list_empty(head)) {
2332 		cache = list_entry(head->next, struct nfs_access_entry, lru);
2333 		list_del(&cache->lru);
2334 		nfs_access_free_entry(cache);
2335 	}
2336 }
2337 
2338 static unsigned long
2339 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2340 {
2341 	LIST_HEAD(head);
2342 	struct nfs_inode *nfsi, *next;
2343 	struct nfs_access_entry *cache;
2344 	long freed = 0;
2345 
2346 	spin_lock(&nfs_access_lru_lock);
2347 	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2348 		struct inode *inode;
2349 
2350 		if (nr_to_scan-- == 0)
2351 			break;
2352 		inode = &nfsi->vfs_inode;
2353 		spin_lock(&inode->i_lock);
2354 		if (list_empty(&nfsi->access_cache_entry_lru))
2355 			goto remove_lru_entry;
2356 		cache = list_entry(nfsi->access_cache_entry_lru.next,
2357 				struct nfs_access_entry, lru);
2358 		list_move(&cache->lru, &head);
2359 		rb_erase(&cache->rb_node, &nfsi->access_cache);
2360 		freed++;
2361 		if (!list_empty(&nfsi->access_cache_entry_lru))
2362 			list_move_tail(&nfsi->access_cache_inode_lru,
2363 					&nfs_access_lru_list);
2364 		else {
2365 remove_lru_entry:
2366 			list_del_init(&nfsi->access_cache_inode_lru);
2367 			smp_mb__before_atomic();
2368 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2369 			smp_mb__after_atomic();
2370 		}
2371 		spin_unlock(&inode->i_lock);
2372 	}
2373 	spin_unlock(&nfs_access_lru_lock);
2374 	nfs_access_free_list(&head);
2375 	return freed;
2376 }
2377 
2378 unsigned long
2379 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2380 {
2381 	int nr_to_scan = sc->nr_to_scan;
2382 	gfp_t gfp_mask = sc->gfp_mask;
2383 
2384 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2385 		return SHRINK_STOP;
2386 	return nfs_do_access_cache_scan(nr_to_scan);
2387 }
2388 
2389 
2390 unsigned long
2391 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2392 {
2393 	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2394 }
2395 
2396 static void
2397 nfs_access_cache_enforce_limit(void)
2398 {
2399 	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2400 	unsigned long diff;
2401 	unsigned int nr_to_scan;
2402 
2403 	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2404 		return;
2405 	nr_to_scan = 100;
2406 	diff = nr_entries - nfs_access_max_cachesize;
2407 	if (diff < nr_to_scan)
2408 		nr_to_scan = diff;
2409 	nfs_do_access_cache_scan(nr_to_scan);
2410 }
2411 
2412 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2413 {
2414 	struct rb_root *root_node = &nfsi->access_cache;
2415 	struct rb_node *n;
2416 	struct nfs_access_entry *entry;
2417 
2418 	/* Unhook entries from the cache */
2419 	while ((n = rb_first(root_node)) != NULL) {
2420 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2421 		rb_erase(n, root_node);
2422 		list_move(&entry->lru, head);
2423 	}
2424 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2425 }
2426 
2427 void nfs_access_zap_cache(struct inode *inode)
2428 {
2429 	LIST_HEAD(head);
2430 
2431 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2432 		return;
2433 	/* Remove from global LRU init */
2434 	spin_lock(&nfs_access_lru_lock);
2435 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2436 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2437 
2438 	spin_lock(&inode->i_lock);
2439 	__nfs_access_zap_cache(NFS_I(inode), &head);
2440 	spin_unlock(&inode->i_lock);
2441 	spin_unlock(&nfs_access_lru_lock);
2442 	nfs_access_free_list(&head);
2443 }
2444 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2445 
2446 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2447 {
2448 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2449 
2450 	while (n != NULL) {
2451 		struct nfs_access_entry *entry =
2452 			rb_entry(n, struct nfs_access_entry, rb_node);
2453 		int cmp = cred_fscmp(cred, entry->cred);
2454 
2455 		if (cmp < 0)
2456 			n = n->rb_left;
2457 		else if (cmp > 0)
2458 			n = n->rb_right;
2459 		else
2460 			return entry;
2461 	}
2462 	return NULL;
2463 }
2464 
2465 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res, bool may_block)
2466 {
2467 	struct nfs_inode *nfsi = NFS_I(inode);
2468 	struct nfs_access_entry *cache;
2469 	bool retry = true;
2470 	int err;
2471 
2472 	spin_lock(&inode->i_lock);
2473 	for(;;) {
2474 		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2475 			goto out_zap;
2476 		cache = nfs_access_search_rbtree(inode, cred);
2477 		err = -ENOENT;
2478 		if (cache == NULL)
2479 			goto out;
2480 		/* Found an entry, is our attribute cache valid? */
2481 		if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2482 			break;
2483 		if (!retry)
2484 			break;
2485 		err = -ECHILD;
2486 		if (!may_block)
2487 			goto out;
2488 		spin_unlock(&inode->i_lock);
2489 		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2490 		if (err)
2491 			return err;
2492 		spin_lock(&inode->i_lock);
2493 		retry = false;
2494 	}
2495 	res->cred = cache->cred;
2496 	res->mask = cache->mask;
2497 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2498 	err = 0;
2499 out:
2500 	spin_unlock(&inode->i_lock);
2501 	return err;
2502 out_zap:
2503 	spin_unlock(&inode->i_lock);
2504 	nfs_access_zap_cache(inode);
2505 	return -ENOENT;
2506 }
2507 
2508 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res)
2509 {
2510 	/* Only check the most recently returned cache entry,
2511 	 * but do it without locking.
2512 	 */
2513 	struct nfs_inode *nfsi = NFS_I(inode);
2514 	struct nfs_access_entry *cache;
2515 	int err = -ECHILD;
2516 	struct list_head *lh;
2517 
2518 	rcu_read_lock();
2519 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2520 		goto out;
2521 	lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
2522 	cache = list_entry(lh, struct nfs_access_entry, lru);
2523 	if (lh == &nfsi->access_cache_entry_lru ||
2524 	    cred_fscmp(cred, cache->cred) != 0)
2525 		cache = NULL;
2526 	if (cache == NULL)
2527 		goto out;
2528 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2529 		goto out;
2530 	res->cred = cache->cred;
2531 	res->mask = cache->mask;
2532 	err = 0;
2533 out:
2534 	rcu_read_unlock();
2535 	return err;
2536 }
2537 
2538 int nfs_access_get_cached(struct inode *inode, const struct cred *cred, struct
2539 nfs_access_entry *res, bool may_block)
2540 {
2541 	int status;
2542 
2543 	status = nfs_access_get_cached_rcu(inode, cred, res);
2544 	if (status != 0)
2545 		status = nfs_access_get_cached_locked(inode, cred, res,
2546 		    may_block);
2547 
2548 	return status;
2549 }
2550 EXPORT_SYMBOL_GPL(nfs_access_get_cached);
2551 
2552 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2553 {
2554 	struct nfs_inode *nfsi = NFS_I(inode);
2555 	struct rb_root *root_node = &nfsi->access_cache;
2556 	struct rb_node **p = &root_node->rb_node;
2557 	struct rb_node *parent = NULL;
2558 	struct nfs_access_entry *entry;
2559 	int cmp;
2560 
2561 	spin_lock(&inode->i_lock);
2562 	while (*p != NULL) {
2563 		parent = *p;
2564 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2565 		cmp = cred_fscmp(set->cred, entry->cred);
2566 
2567 		if (cmp < 0)
2568 			p = &parent->rb_left;
2569 		else if (cmp > 0)
2570 			p = &parent->rb_right;
2571 		else
2572 			goto found;
2573 	}
2574 	rb_link_node(&set->rb_node, parent, p);
2575 	rb_insert_color(&set->rb_node, root_node);
2576 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2577 	spin_unlock(&inode->i_lock);
2578 	return;
2579 found:
2580 	rb_replace_node(parent, &set->rb_node, root_node);
2581 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2582 	list_del(&entry->lru);
2583 	spin_unlock(&inode->i_lock);
2584 	nfs_access_free_entry(entry);
2585 }
2586 
2587 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2588 {
2589 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2590 	if (cache == NULL)
2591 		return;
2592 	RB_CLEAR_NODE(&cache->rb_node);
2593 	cache->cred = get_cred(set->cred);
2594 	cache->mask = set->mask;
2595 
2596 	/* The above field assignments must be visible
2597 	 * before this item appears on the lru.  We cannot easily
2598 	 * use rcu_assign_pointer, so just force the memory barrier.
2599 	 */
2600 	smp_wmb();
2601 	nfs_access_add_rbtree(inode, cache);
2602 
2603 	/* Update accounting */
2604 	smp_mb__before_atomic();
2605 	atomic_long_inc(&nfs_access_nr_entries);
2606 	smp_mb__after_atomic();
2607 
2608 	/* Add inode to global LRU list */
2609 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2610 		spin_lock(&nfs_access_lru_lock);
2611 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2612 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2613 					&nfs_access_lru_list);
2614 		spin_unlock(&nfs_access_lru_lock);
2615 	}
2616 	nfs_access_cache_enforce_limit();
2617 }
2618 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2619 
2620 #define NFS_MAY_READ (NFS_ACCESS_READ)
2621 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2622 		NFS_ACCESS_EXTEND | \
2623 		NFS_ACCESS_DELETE)
2624 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2625 		NFS_ACCESS_EXTEND)
2626 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2627 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2628 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2629 static int
2630 nfs_access_calc_mask(u32 access_result, umode_t umode)
2631 {
2632 	int mask = 0;
2633 
2634 	if (access_result & NFS_MAY_READ)
2635 		mask |= MAY_READ;
2636 	if (S_ISDIR(umode)) {
2637 		if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2638 			mask |= MAY_WRITE;
2639 		if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2640 			mask |= MAY_EXEC;
2641 	} else if (S_ISREG(umode)) {
2642 		if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2643 			mask |= MAY_WRITE;
2644 		if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2645 			mask |= MAY_EXEC;
2646 	} else if (access_result & NFS_MAY_WRITE)
2647 			mask |= MAY_WRITE;
2648 	return mask;
2649 }
2650 
2651 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2652 {
2653 	entry->mask = access_result;
2654 }
2655 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2656 
2657 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
2658 {
2659 	struct nfs_access_entry cache;
2660 	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2661 	int cache_mask = -1;
2662 	int status;
2663 
2664 	trace_nfs_access_enter(inode);
2665 
2666 	status = nfs_access_get_cached(inode, cred, &cache, may_block);
2667 	if (status == 0)
2668 		goto out_cached;
2669 
2670 	status = -ECHILD;
2671 	if (!may_block)
2672 		goto out;
2673 
2674 	/*
2675 	 * Determine which access bits we want to ask for...
2676 	 */
2677 	cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND;
2678 	if (nfs_server_capable(inode, NFS_CAP_XATTR)) {
2679 		cache.mask |= NFS_ACCESS_XAREAD | NFS_ACCESS_XAWRITE |
2680 		    NFS_ACCESS_XALIST;
2681 	}
2682 	if (S_ISDIR(inode->i_mode))
2683 		cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
2684 	else
2685 		cache.mask |= NFS_ACCESS_EXECUTE;
2686 	cache.cred = cred;
2687 	status = NFS_PROTO(inode)->access(inode, &cache);
2688 	if (status != 0) {
2689 		if (status == -ESTALE) {
2690 			if (!S_ISDIR(inode->i_mode))
2691 				nfs_set_inode_stale(inode);
2692 			else
2693 				nfs_zap_caches(inode);
2694 		}
2695 		goto out;
2696 	}
2697 	nfs_access_add_cache(inode, &cache);
2698 out_cached:
2699 	cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
2700 	if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2701 		status = -EACCES;
2702 out:
2703 	trace_nfs_access_exit(inode, mask, cache_mask, status);
2704 	return status;
2705 }
2706 
2707 static int nfs_open_permission_mask(int openflags)
2708 {
2709 	int mask = 0;
2710 
2711 	if (openflags & __FMODE_EXEC) {
2712 		/* ONLY check exec rights */
2713 		mask = MAY_EXEC;
2714 	} else {
2715 		if ((openflags & O_ACCMODE) != O_WRONLY)
2716 			mask |= MAY_READ;
2717 		if ((openflags & O_ACCMODE) != O_RDONLY)
2718 			mask |= MAY_WRITE;
2719 	}
2720 
2721 	return mask;
2722 }
2723 
2724 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
2725 {
2726 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2727 }
2728 EXPORT_SYMBOL_GPL(nfs_may_open);
2729 
2730 static int nfs_execute_ok(struct inode *inode, int mask)
2731 {
2732 	struct nfs_server *server = NFS_SERVER(inode);
2733 	int ret = 0;
2734 
2735 	if (S_ISDIR(inode->i_mode))
2736 		return 0;
2737 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_OTHER)) {
2738 		if (mask & MAY_NOT_BLOCK)
2739 			return -ECHILD;
2740 		ret = __nfs_revalidate_inode(server, inode);
2741 	}
2742 	if (ret == 0 && !execute_ok(inode))
2743 		ret = -EACCES;
2744 	return ret;
2745 }
2746 
2747 int nfs_permission(struct inode *inode, int mask)
2748 {
2749 	const struct cred *cred = current_cred();
2750 	int res = 0;
2751 
2752 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2753 
2754 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2755 		goto out;
2756 	/* Is this sys_access() ? */
2757 	if (mask & (MAY_ACCESS | MAY_CHDIR))
2758 		goto force_lookup;
2759 
2760 	switch (inode->i_mode & S_IFMT) {
2761 		case S_IFLNK:
2762 			goto out;
2763 		case S_IFREG:
2764 			if ((mask & MAY_OPEN) &&
2765 			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2766 				return 0;
2767 			break;
2768 		case S_IFDIR:
2769 			/*
2770 			 * Optimize away all write operations, since the server
2771 			 * will check permissions when we perform the op.
2772 			 */
2773 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2774 				goto out;
2775 	}
2776 
2777 force_lookup:
2778 	if (!NFS_PROTO(inode)->access)
2779 		goto out_notsup;
2780 
2781 	res = nfs_do_access(inode, cred, mask);
2782 out:
2783 	if (!res && (mask & MAY_EXEC))
2784 		res = nfs_execute_ok(inode, mask);
2785 
2786 	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2787 		inode->i_sb->s_id, inode->i_ino, mask, res);
2788 	return res;
2789 out_notsup:
2790 	if (mask & MAY_NOT_BLOCK)
2791 		return -ECHILD;
2792 
2793 	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2794 	if (res == 0)
2795 		res = generic_permission(inode, mask);
2796 	goto out;
2797 }
2798 EXPORT_SYMBOL_GPL(nfs_permission);
2799 
2800 /*
2801  * Local variables:
2802  *  version-control: t
2803  *  kept-new-versions: 5
2804  * End:
2805  */
2806