1 /* 2 * linux/fs/nfs/dir.c 3 * 4 * Copyright (C) 1992 Rick Sladkey 5 * 6 * nfs directory handling functions 7 * 8 * 10 Apr 1996 Added silly rename for unlink --okir 9 * 28 Sep 1996 Improved directory cache --okir 10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de 11 * Re-implemented silly rename for unlink, newly implemented 12 * silly rename for nfs_rename() following the suggestions 13 * of Olaf Kirch (okir) found in this file. 14 * Following Linus comments on my original hack, this version 15 * depends only on the dcache stuff and doesn't touch the inode 16 * layer (iput() and friends). 17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM 18 */ 19 20 #include <linux/module.h> 21 #include <linux/time.h> 22 #include <linux/errno.h> 23 #include <linux/stat.h> 24 #include <linux/fcntl.h> 25 #include <linux/string.h> 26 #include <linux/kernel.h> 27 #include <linux/slab.h> 28 #include <linux/mm.h> 29 #include <linux/sunrpc/clnt.h> 30 #include <linux/nfs_fs.h> 31 #include <linux/nfs_mount.h> 32 #include <linux/pagemap.h> 33 #include <linux/pagevec.h> 34 #include <linux/namei.h> 35 #include <linux/mount.h> 36 #include <linux/swap.h> 37 #include <linux/sched.h> 38 #include <linux/kmemleak.h> 39 #include <linux/xattr.h> 40 41 #include "delegation.h" 42 #include "iostat.h" 43 #include "internal.h" 44 #include "fscache.h" 45 46 #include "nfstrace.h" 47 48 /* #define NFS_DEBUG_VERBOSE 1 */ 49 50 static int nfs_opendir(struct inode *, struct file *); 51 static int nfs_closedir(struct inode *, struct file *); 52 static int nfs_readdir(struct file *, struct dir_context *); 53 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int); 54 static loff_t nfs_llseek_dir(struct file *, loff_t, int); 55 static void nfs_readdir_clear_array(struct page*); 56 57 const struct file_operations nfs_dir_operations = { 58 .llseek = nfs_llseek_dir, 59 .read = generic_read_dir, 60 .iterate = nfs_readdir, 61 .open = nfs_opendir, 62 .release = nfs_closedir, 63 .fsync = nfs_fsync_dir, 64 }; 65 66 const struct address_space_operations nfs_dir_aops = { 67 .freepage = nfs_readdir_clear_array, 68 }; 69 70 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred) 71 { 72 struct nfs_inode *nfsi = NFS_I(dir); 73 struct nfs_open_dir_context *ctx; 74 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); 75 if (ctx != NULL) { 76 ctx->duped = 0; 77 ctx->attr_gencount = nfsi->attr_gencount; 78 ctx->dir_cookie = 0; 79 ctx->dup_cookie = 0; 80 ctx->cred = get_rpccred(cred); 81 spin_lock(&dir->i_lock); 82 list_add(&ctx->list, &nfsi->open_files); 83 spin_unlock(&dir->i_lock); 84 return ctx; 85 } 86 return ERR_PTR(-ENOMEM); 87 } 88 89 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx) 90 { 91 spin_lock(&dir->i_lock); 92 list_del(&ctx->list); 93 spin_unlock(&dir->i_lock); 94 put_rpccred(ctx->cred); 95 kfree(ctx); 96 } 97 98 /* 99 * Open file 100 */ 101 static int 102 nfs_opendir(struct inode *inode, struct file *filp) 103 { 104 int res = 0; 105 struct nfs_open_dir_context *ctx; 106 struct rpc_cred *cred; 107 108 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp); 109 110 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 111 112 cred = rpc_lookup_cred(); 113 if (IS_ERR(cred)) 114 return PTR_ERR(cred); 115 ctx = alloc_nfs_open_dir_context(inode, cred); 116 if (IS_ERR(ctx)) { 117 res = PTR_ERR(ctx); 118 goto out; 119 } 120 filp->private_data = ctx; 121 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) { 122 /* This is a mountpoint, so d_revalidate will never 123 * have been called, so we need to refresh the 124 * inode (for close-open consistency) ourselves. 125 */ 126 __nfs_revalidate_inode(NFS_SERVER(inode), inode); 127 } 128 out: 129 put_rpccred(cred); 130 return res; 131 } 132 133 static int 134 nfs_closedir(struct inode *inode, struct file *filp) 135 { 136 put_nfs_open_dir_context(file_inode(filp), filp->private_data); 137 return 0; 138 } 139 140 struct nfs_cache_array_entry { 141 u64 cookie; 142 u64 ino; 143 struct qstr string; 144 unsigned char d_type; 145 }; 146 147 struct nfs_cache_array { 148 int size; 149 int eof_index; 150 u64 last_cookie; 151 struct nfs_cache_array_entry array[0]; 152 }; 153 154 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int); 155 typedef struct { 156 struct file *file; 157 struct page *page; 158 struct dir_context *ctx; 159 unsigned long page_index; 160 u64 *dir_cookie; 161 u64 last_cookie; 162 loff_t current_index; 163 decode_dirent_t decode; 164 165 unsigned long timestamp; 166 unsigned long gencount; 167 unsigned int cache_entry_index; 168 unsigned int plus:1; 169 unsigned int eof:1; 170 } nfs_readdir_descriptor_t; 171 172 /* 173 * The caller is responsible for calling nfs_readdir_release_array(page) 174 */ 175 static 176 struct nfs_cache_array *nfs_readdir_get_array(struct page *page) 177 { 178 void *ptr; 179 if (page == NULL) 180 return ERR_PTR(-EIO); 181 ptr = kmap(page); 182 if (ptr == NULL) 183 return ERR_PTR(-ENOMEM); 184 return ptr; 185 } 186 187 static 188 void nfs_readdir_release_array(struct page *page) 189 { 190 kunmap(page); 191 } 192 193 /* 194 * we are freeing strings created by nfs_add_to_readdir_array() 195 */ 196 static 197 void nfs_readdir_clear_array(struct page *page) 198 { 199 struct nfs_cache_array *array; 200 int i; 201 202 array = kmap_atomic(page); 203 for (i = 0; i < array->size; i++) 204 kfree(array->array[i].string.name); 205 kunmap_atomic(array); 206 } 207 208 /* 209 * the caller is responsible for freeing qstr.name 210 * when called by nfs_readdir_add_to_array, the strings will be freed in 211 * nfs_clear_readdir_array() 212 */ 213 static 214 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len) 215 { 216 string->len = len; 217 string->name = kmemdup(name, len, GFP_KERNEL); 218 if (string->name == NULL) 219 return -ENOMEM; 220 /* 221 * Avoid a kmemleak false positive. The pointer to the name is stored 222 * in a page cache page which kmemleak does not scan. 223 */ 224 kmemleak_not_leak(string->name); 225 string->hash = full_name_hash(name, len); 226 return 0; 227 } 228 229 static 230 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page) 231 { 232 struct nfs_cache_array *array = nfs_readdir_get_array(page); 233 struct nfs_cache_array_entry *cache_entry; 234 int ret; 235 236 if (IS_ERR(array)) 237 return PTR_ERR(array); 238 239 cache_entry = &array->array[array->size]; 240 241 /* Check that this entry lies within the page bounds */ 242 ret = -ENOSPC; 243 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE) 244 goto out; 245 246 cache_entry->cookie = entry->prev_cookie; 247 cache_entry->ino = entry->ino; 248 cache_entry->d_type = entry->d_type; 249 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len); 250 if (ret) 251 goto out; 252 array->last_cookie = entry->cookie; 253 array->size++; 254 if (entry->eof != 0) 255 array->eof_index = array->size; 256 out: 257 nfs_readdir_release_array(page); 258 return ret; 259 } 260 261 static 262 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 263 { 264 loff_t diff = desc->ctx->pos - desc->current_index; 265 unsigned int index; 266 267 if (diff < 0) 268 goto out_eof; 269 if (diff >= array->size) { 270 if (array->eof_index >= 0) 271 goto out_eof; 272 return -EAGAIN; 273 } 274 275 index = (unsigned int)diff; 276 *desc->dir_cookie = array->array[index].cookie; 277 desc->cache_entry_index = index; 278 return 0; 279 out_eof: 280 desc->eof = 1; 281 return -EBADCOOKIE; 282 } 283 284 static bool 285 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi) 286 { 287 if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA)) 288 return false; 289 smp_rmb(); 290 return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags); 291 } 292 293 static 294 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 295 { 296 int i; 297 loff_t new_pos; 298 int status = -EAGAIN; 299 300 for (i = 0; i < array->size; i++) { 301 if (array->array[i].cookie == *desc->dir_cookie) { 302 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file)); 303 struct nfs_open_dir_context *ctx = desc->file->private_data; 304 305 new_pos = desc->current_index + i; 306 if (ctx->attr_gencount != nfsi->attr_gencount || 307 !nfs_readdir_inode_mapping_valid(nfsi)) { 308 ctx->duped = 0; 309 ctx->attr_gencount = nfsi->attr_gencount; 310 } else if (new_pos < desc->ctx->pos) { 311 if (ctx->duped > 0 312 && ctx->dup_cookie == *desc->dir_cookie) { 313 if (printk_ratelimit()) { 314 pr_notice("NFS: directory %pD2 contains a readdir loop." 315 "Please contact your server vendor. " 316 "The file: %.*s has duplicate cookie %llu\n", 317 desc->file, array->array[i].string.len, 318 array->array[i].string.name, *desc->dir_cookie); 319 } 320 status = -ELOOP; 321 goto out; 322 } 323 ctx->dup_cookie = *desc->dir_cookie; 324 ctx->duped = -1; 325 } 326 desc->ctx->pos = new_pos; 327 desc->cache_entry_index = i; 328 return 0; 329 } 330 } 331 if (array->eof_index >= 0) { 332 status = -EBADCOOKIE; 333 if (*desc->dir_cookie == array->last_cookie) 334 desc->eof = 1; 335 } 336 out: 337 return status; 338 } 339 340 static 341 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc) 342 { 343 struct nfs_cache_array *array; 344 int status; 345 346 array = nfs_readdir_get_array(desc->page); 347 if (IS_ERR(array)) { 348 status = PTR_ERR(array); 349 goto out; 350 } 351 352 if (*desc->dir_cookie == 0) 353 status = nfs_readdir_search_for_pos(array, desc); 354 else 355 status = nfs_readdir_search_for_cookie(array, desc); 356 357 if (status == -EAGAIN) { 358 desc->last_cookie = array->last_cookie; 359 desc->current_index += array->size; 360 desc->page_index++; 361 } 362 nfs_readdir_release_array(desc->page); 363 out: 364 return status; 365 } 366 367 /* Fill a page with xdr information before transferring to the cache page */ 368 static 369 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc, 370 struct nfs_entry *entry, struct file *file, struct inode *inode) 371 { 372 struct nfs_open_dir_context *ctx = file->private_data; 373 struct rpc_cred *cred = ctx->cred; 374 unsigned long timestamp, gencount; 375 int error; 376 377 again: 378 timestamp = jiffies; 379 gencount = nfs_inc_attr_generation_counter(); 380 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages, 381 NFS_SERVER(inode)->dtsize, desc->plus); 382 if (error < 0) { 383 /* We requested READDIRPLUS, but the server doesn't grok it */ 384 if (error == -ENOTSUPP && desc->plus) { 385 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS; 386 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 387 desc->plus = 0; 388 goto again; 389 } 390 goto error; 391 } 392 desc->timestamp = timestamp; 393 desc->gencount = gencount; 394 error: 395 return error; 396 } 397 398 static int xdr_decode(nfs_readdir_descriptor_t *desc, 399 struct nfs_entry *entry, struct xdr_stream *xdr) 400 { 401 int error; 402 403 error = desc->decode(xdr, entry, desc->plus); 404 if (error) 405 return error; 406 entry->fattr->time_start = desc->timestamp; 407 entry->fattr->gencount = desc->gencount; 408 return 0; 409 } 410 411 /* Match file and dirent using either filehandle or fileid 412 * Note: caller is responsible for checking the fsid 413 */ 414 static 415 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry) 416 { 417 struct nfs_inode *nfsi; 418 419 if (d_really_is_negative(dentry)) 420 return 0; 421 422 nfsi = NFS_I(d_inode(dentry)); 423 if (entry->fattr->fileid == nfsi->fileid) 424 return 1; 425 if (nfs_compare_fh(entry->fh, &nfsi->fh) == 0) 426 return 1; 427 return 0; 428 } 429 430 static 431 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx) 432 { 433 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS)) 434 return false; 435 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags)) 436 return true; 437 if (ctx->pos == 0) 438 return true; 439 return false; 440 } 441 442 /* 443 * This function is called by the lookup code to request the use of 444 * readdirplus to accelerate any future lookups in the same 445 * directory. 446 */ 447 static 448 void nfs_advise_use_readdirplus(struct inode *dir) 449 { 450 set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags); 451 } 452 453 /* 454 * This function is mainly for use by nfs_getattr(). 455 * 456 * If this is an 'ls -l', we want to force use of readdirplus. 457 * Do this by checking if there is an active file descriptor 458 * and calling nfs_advise_use_readdirplus, then forcing a 459 * cache flush. 460 */ 461 void nfs_force_use_readdirplus(struct inode *dir) 462 { 463 if (!list_empty(&NFS_I(dir)->open_files)) { 464 nfs_advise_use_readdirplus(dir); 465 nfs_zap_mapping(dir, dir->i_mapping); 466 } 467 } 468 469 static 470 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry) 471 { 472 struct qstr filename = QSTR_INIT(entry->name, entry->len); 473 struct dentry *dentry; 474 struct dentry *alias; 475 struct inode *dir = d_inode(parent); 476 struct inode *inode; 477 int status; 478 479 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID)) 480 return; 481 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID)) 482 return; 483 if (filename.name[0] == '.') { 484 if (filename.len == 1) 485 return; 486 if (filename.len == 2 && filename.name[1] == '.') 487 return; 488 } 489 filename.hash = full_name_hash(filename.name, filename.len); 490 491 dentry = d_lookup(parent, &filename); 492 if (dentry != NULL) { 493 /* Is there a mountpoint here? If so, just exit */ 494 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid, 495 &entry->fattr->fsid)) 496 goto out; 497 if (nfs_same_file(dentry, entry)) { 498 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 499 status = nfs_refresh_inode(d_inode(dentry), entry->fattr); 500 if (!status) 501 nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label); 502 goto out; 503 } else { 504 d_invalidate(dentry); 505 dput(dentry); 506 } 507 } 508 509 dentry = d_alloc(parent, &filename); 510 if (dentry == NULL) 511 return; 512 513 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label); 514 if (IS_ERR(inode)) 515 goto out; 516 517 alias = d_splice_alias(inode, dentry); 518 if (IS_ERR(alias)) 519 goto out; 520 else if (alias) { 521 nfs_set_verifier(alias, nfs_save_change_attribute(dir)); 522 dput(alias); 523 } else 524 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 525 526 out: 527 dput(dentry); 528 } 529 530 /* Perform conversion from xdr to cache array */ 531 static 532 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry, 533 struct page **xdr_pages, struct page *page, unsigned int buflen) 534 { 535 struct xdr_stream stream; 536 struct xdr_buf buf; 537 struct page *scratch; 538 struct nfs_cache_array *array; 539 unsigned int count = 0; 540 int status; 541 542 scratch = alloc_page(GFP_KERNEL); 543 if (scratch == NULL) 544 return -ENOMEM; 545 546 if (buflen == 0) 547 goto out_nopages; 548 549 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen); 550 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE); 551 552 do { 553 status = xdr_decode(desc, entry, &stream); 554 if (status != 0) { 555 if (status == -EAGAIN) 556 status = 0; 557 break; 558 } 559 560 count++; 561 562 if (desc->plus != 0) 563 nfs_prime_dcache(desc->file->f_path.dentry, entry); 564 565 status = nfs_readdir_add_to_array(entry, page); 566 if (status != 0) 567 break; 568 } while (!entry->eof); 569 570 out_nopages: 571 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) { 572 array = nfs_readdir_get_array(page); 573 if (!IS_ERR(array)) { 574 array->eof_index = array->size; 575 status = 0; 576 nfs_readdir_release_array(page); 577 } else 578 status = PTR_ERR(array); 579 } 580 581 put_page(scratch); 582 return status; 583 } 584 585 static 586 void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages) 587 { 588 unsigned int i; 589 for (i = 0; i < npages; i++) 590 put_page(pages[i]); 591 } 592 593 static 594 void nfs_readdir_free_large_page(void *ptr, struct page **pages, 595 unsigned int npages) 596 { 597 nfs_readdir_free_pagearray(pages, npages); 598 } 599 600 /* 601 * nfs_readdir_large_page will allocate pages that must be freed with a call 602 * to nfs_readdir_free_large_page 603 */ 604 static 605 int nfs_readdir_large_page(struct page **pages, unsigned int npages) 606 { 607 unsigned int i; 608 609 for (i = 0; i < npages; i++) { 610 struct page *page = alloc_page(GFP_KERNEL); 611 if (page == NULL) 612 goto out_freepages; 613 pages[i] = page; 614 } 615 return 0; 616 617 out_freepages: 618 nfs_readdir_free_pagearray(pages, i); 619 return -ENOMEM; 620 } 621 622 static 623 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode) 624 { 625 struct page *pages[NFS_MAX_READDIR_PAGES]; 626 void *pages_ptr = NULL; 627 struct nfs_entry entry; 628 struct file *file = desc->file; 629 struct nfs_cache_array *array; 630 int status = -ENOMEM; 631 unsigned int array_size = ARRAY_SIZE(pages); 632 633 entry.prev_cookie = 0; 634 entry.cookie = desc->last_cookie; 635 entry.eof = 0; 636 entry.fh = nfs_alloc_fhandle(); 637 entry.fattr = nfs_alloc_fattr(); 638 entry.server = NFS_SERVER(inode); 639 if (entry.fh == NULL || entry.fattr == NULL) 640 goto out; 641 642 entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT); 643 if (IS_ERR(entry.label)) { 644 status = PTR_ERR(entry.label); 645 goto out; 646 } 647 648 array = nfs_readdir_get_array(page); 649 if (IS_ERR(array)) { 650 status = PTR_ERR(array); 651 goto out_label_free; 652 } 653 memset(array, 0, sizeof(struct nfs_cache_array)); 654 array->eof_index = -1; 655 656 status = nfs_readdir_large_page(pages, array_size); 657 if (status < 0) 658 goto out_release_array; 659 do { 660 unsigned int pglen; 661 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode); 662 663 if (status < 0) 664 break; 665 pglen = status; 666 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen); 667 if (status < 0) { 668 if (status == -ENOSPC) 669 status = 0; 670 break; 671 } 672 } while (array->eof_index < 0); 673 674 nfs_readdir_free_large_page(pages_ptr, pages, array_size); 675 out_release_array: 676 nfs_readdir_release_array(page); 677 out_label_free: 678 nfs4_label_free(entry.label); 679 out: 680 nfs_free_fattr(entry.fattr); 681 nfs_free_fhandle(entry.fh); 682 return status; 683 } 684 685 /* 686 * Now we cache directories properly, by converting xdr information 687 * to an array that can be used for lookups later. This results in 688 * fewer cache pages, since we can store more information on each page. 689 * We only need to convert from xdr once so future lookups are much simpler 690 */ 691 static 692 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page) 693 { 694 struct inode *inode = file_inode(desc->file); 695 int ret; 696 697 ret = nfs_readdir_xdr_to_array(desc, page, inode); 698 if (ret < 0) 699 goto error; 700 SetPageUptodate(page); 701 702 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) { 703 /* Should never happen */ 704 nfs_zap_mapping(inode, inode->i_mapping); 705 } 706 unlock_page(page); 707 return 0; 708 error: 709 unlock_page(page); 710 return ret; 711 } 712 713 static 714 void cache_page_release(nfs_readdir_descriptor_t *desc) 715 { 716 if (!desc->page->mapping) 717 nfs_readdir_clear_array(desc->page); 718 page_cache_release(desc->page); 719 desc->page = NULL; 720 } 721 722 static 723 struct page *get_cache_page(nfs_readdir_descriptor_t *desc) 724 { 725 return read_cache_page(file_inode(desc->file)->i_mapping, 726 desc->page_index, (filler_t *)nfs_readdir_filler, desc); 727 } 728 729 /* 730 * Returns 0 if desc->dir_cookie was found on page desc->page_index 731 */ 732 static 733 int find_cache_page(nfs_readdir_descriptor_t *desc) 734 { 735 int res; 736 737 desc->page = get_cache_page(desc); 738 if (IS_ERR(desc->page)) 739 return PTR_ERR(desc->page); 740 741 res = nfs_readdir_search_array(desc); 742 if (res != 0) 743 cache_page_release(desc); 744 return res; 745 } 746 747 /* Search for desc->dir_cookie from the beginning of the page cache */ 748 static inline 749 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc) 750 { 751 int res; 752 753 if (desc->page_index == 0) { 754 desc->current_index = 0; 755 desc->last_cookie = 0; 756 } 757 do { 758 res = find_cache_page(desc); 759 } while (res == -EAGAIN); 760 return res; 761 } 762 763 /* 764 * Once we've found the start of the dirent within a page: fill 'er up... 765 */ 766 static 767 int nfs_do_filldir(nfs_readdir_descriptor_t *desc) 768 { 769 struct file *file = desc->file; 770 int i = 0; 771 int res = 0; 772 struct nfs_cache_array *array = NULL; 773 struct nfs_open_dir_context *ctx = file->private_data; 774 775 array = nfs_readdir_get_array(desc->page); 776 if (IS_ERR(array)) { 777 res = PTR_ERR(array); 778 goto out; 779 } 780 781 for (i = desc->cache_entry_index; i < array->size; i++) { 782 struct nfs_cache_array_entry *ent; 783 784 ent = &array->array[i]; 785 if (!dir_emit(desc->ctx, ent->string.name, ent->string.len, 786 nfs_compat_user_ino64(ent->ino), ent->d_type)) { 787 desc->eof = 1; 788 break; 789 } 790 desc->ctx->pos++; 791 if (i < (array->size-1)) 792 *desc->dir_cookie = array->array[i+1].cookie; 793 else 794 *desc->dir_cookie = array->last_cookie; 795 if (ctx->duped != 0) 796 ctx->duped = 1; 797 } 798 if (array->eof_index >= 0) 799 desc->eof = 1; 800 801 nfs_readdir_release_array(desc->page); 802 out: 803 cache_page_release(desc); 804 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n", 805 (unsigned long long)*desc->dir_cookie, res); 806 return res; 807 } 808 809 /* 810 * If we cannot find a cookie in our cache, we suspect that this is 811 * because it points to a deleted file, so we ask the server to return 812 * whatever it thinks is the next entry. We then feed this to filldir. 813 * If all goes well, we should then be able to find our way round the 814 * cache on the next call to readdir_search_pagecache(); 815 * 816 * NOTE: we cannot add the anonymous page to the pagecache because 817 * the data it contains might not be page aligned. Besides, 818 * we should already have a complete representation of the 819 * directory in the page cache by the time we get here. 820 */ 821 static inline 822 int uncached_readdir(nfs_readdir_descriptor_t *desc) 823 { 824 struct page *page = NULL; 825 int status; 826 struct inode *inode = file_inode(desc->file); 827 struct nfs_open_dir_context *ctx = desc->file->private_data; 828 829 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n", 830 (unsigned long long)*desc->dir_cookie); 831 832 page = alloc_page(GFP_HIGHUSER); 833 if (!page) { 834 status = -ENOMEM; 835 goto out; 836 } 837 838 desc->page_index = 0; 839 desc->last_cookie = *desc->dir_cookie; 840 desc->page = page; 841 ctx->duped = 0; 842 843 status = nfs_readdir_xdr_to_array(desc, page, inode); 844 if (status < 0) 845 goto out_release; 846 847 status = nfs_do_filldir(desc); 848 849 out: 850 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", 851 __func__, status); 852 return status; 853 out_release: 854 cache_page_release(desc); 855 goto out; 856 } 857 858 static bool nfs_dir_mapping_need_revalidate(struct inode *dir) 859 { 860 struct nfs_inode *nfsi = NFS_I(dir); 861 862 if (nfs_attribute_cache_expired(dir)) 863 return true; 864 if (nfsi->cache_validity & NFS_INO_INVALID_DATA) 865 return true; 866 return false; 867 } 868 869 /* The file offset position represents the dirent entry number. A 870 last cookie cache takes care of the common case of reading the 871 whole directory. 872 */ 873 static int nfs_readdir(struct file *file, struct dir_context *ctx) 874 { 875 struct dentry *dentry = file->f_path.dentry; 876 struct inode *inode = d_inode(dentry); 877 nfs_readdir_descriptor_t my_desc, 878 *desc = &my_desc; 879 struct nfs_open_dir_context *dir_ctx = file->private_data; 880 int res = 0; 881 882 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n", 883 file, (long long)ctx->pos); 884 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS); 885 886 /* 887 * ctx->pos points to the dirent entry number. 888 * *desc->dir_cookie has the cookie for the next entry. We have 889 * to either find the entry with the appropriate number or 890 * revalidate the cookie. 891 */ 892 memset(desc, 0, sizeof(*desc)); 893 894 desc->file = file; 895 desc->ctx = ctx; 896 desc->dir_cookie = &dir_ctx->dir_cookie; 897 desc->decode = NFS_PROTO(inode)->decode_dirent; 898 desc->plus = nfs_use_readdirplus(inode, ctx) ? 1 : 0; 899 900 nfs_block_sillyrename(dentry); 901 if (ctx->pos == 0 || nfs_dir_mapping_need_revalidate(inode)) 902 res = nfs_revalidate_mapping(inode, file->f_mapping); 903 if (res < 0) 904 goto out; 905 906 do { 907 res = readdir_search_pagecache(desc); 908 909 if (res == -EBADCOOKIE) { 910 res = 0; 911 /* This means either end of directory */ 912 if (*desc->dir_cookie && desc->eof == 0) { 913 /* Or that the server has 'lost' a cookie */ 914 res = uncached_readdir(desc); 915 if (res == 0) 916 continue; 917 } 918 break; 919 } 920 if (res == -ETOOSMALL && desc->plus) { 921 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 922 nfs_zap_caches(inode); 923 desc->page_index = 0; 924 desc->plus = 0; 925 desc->eof = 0; 926 continue; 927 } 928 if (res < 0) 929 break; 930 931 res = nfs_do_filldir(desc); 932 if (res < 0) 933 break; 934 } while (!desc->eof); 935 out: 936 nfs_unblock_sillyrename(dentry); 937 if (res > 0) 938 res = 0; 939 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res); 940 return res; 941 } 942 943 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence) 944 { 945 struct inode *inode = file_inode(filp); 946 struct nfs_open_dir_context *dir_ctx = filp->private_data; 947 948 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n", 949 filp, offset, whence); 950 951 mutex_lock(&inode->i_mutex); 952 switch (whence) { 953 case 1: 954 offset += filp->f_pos; 955 case 0: 956 if (offset >= 0) 957 break; 958 default: 959 offset = -EINVAL; 960 goto out; 961 } 962 if (offset != filp->f_pos) { 963 filp->f_pos = offset; 964 dir_ctx->dir_cookie = 0; 965 dir_ctx->duped = 0; 966 } 967 out: 968 mutex_unlock(&inode->i_mutex); 969 return offset; 970 } 971 972 /* 973 * All directory operations under NFS are synchronous, so fsync() 974 * is a dummy operation. 975 */ 976 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end, 977 int datasync) 978 { 979 struct inode *inode = file_inode(filp); 980 981 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync); 982 983 mutex_lock(&inode->i_mutex); 984 nfs_inc_stats(inode, NFSIOS_VFSFSYNC); 985 mutex_unlock(&inode->i_mutex); 986 return 0; 987 } 988 989 /** 990 * nfs_force_lookup_revalidate - Mark the directory as having changed 991 * @dir - pointer to directory inode 992 * 993 * This forces the revalidation code in nfs_lookup_revalidate() to do a 994 * full lookup on all child dentries of 'dir' whenever a change occurs 995 * on the server that might have invalidated our dcache. 996 * 997 * The caller should be holding dir->i_lock 998 */ 999 void nfs_force_lookup_revalidate(struct inode *dir) 1000 { 1001 NFS_I(dir)->cache_change_attribute++; 1002 } 1003 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate); 1004 1005 /* 1006 * A check for whether or not the parent directory has changed. 1007 * In the case it has, we assume that the dentries are untrustworthy 1008 * and may need to be looked up again. 1009 * If rcu_walk prevents us from performing a full check, return 0. 1010 */ 1011 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry, 1012 int rcu_walk) 1013 { 1014 int ret; 1015 1016 if (IS_ROOT(dentry)) 1017 return 1; 1018 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE) 1019 return 0; 1020 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 1021 return 0; 1022 /* Revalidate nfsi->cache_change_attribute before we declare a match */ 1023 if (rcu_walk) 1024 ret = nfs_revalidate_inode_rcu(NFS_SERVER(dir), dir); 1025 else 1026 ret = nfs_revalidate_inode(NFS_SERVER(dir), dir); 1027 if (ret < 0) 1028 return 0; 1029 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 1030 return 0; 1031 return 1; 1032 } 1033 1034 /* 1035 * Use intent information to check whether or not we're going to do 1036 * an O_EXCL create using this path component. 1037 */ 1038 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags) 1039 { 1040 if (NFS_PROTO(dir)->version == 2) 1041 return 0; 1042 return flags & LOOKUP_EXCL; 1043 } 1044 1045 /* 1046 * Inode and filehandle revalidation for lookups. 1047 * 1048 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL, 1049 * or if the intent information indicates that we're about to open this 1050 * particular file and the "nocto" mount flag is not set. 1051 * 1052 */ 1053 static 1054 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags) 1055 { 1056 struct nfs_server *server = NFS_SERVER(inode); 1057 int ret; 1058 1059 if (IS_AUTOMOUNT(inode)) 1060 return 0; 1061 /* VFS wants an on-the-wire revalidation */ 1062 if (flags & LOOKUP_REVAL) 1063 goto out_force; 1064 /* This is an open(2) */ 1065 if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) && 1066 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode))) 1067 goto out_force; 1068 out: 1069 return (inode->i_nlink == 0) ? -ENOENT : 0; 1070 out_force: 1071 if (flags & LOOKUP_RCU) 1072 return -ECHILD; 1073 ret = __nfs_revalidate_inode(server, inode); 1074 if (ret != 0) 1075 return ret; 1076 goto out; 1077 } 1078 1079 /* 1080 * We judge how long we want to trust negative 1081 * dentries by looking at the parent inode mtime. 1082 * 1083 * If parent mtime has changed, we revalidate, else we wait for a 1084 * period corresponding to the parent's attribute cache timeout value. 1085 * 1086 * If LOOKUP_RCU prevents us from performing a full check, return 1 1087 * suggesting a reval is needed. 1088 */ 1089 static inline 1090 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry, 1091 unsigned int flags) 1092 { 1093 /* Don't revalidate a negative dentry if we're creating a new file */ 1094 if (flags & LOOKUP_CREATE) 1095 return 0; 1096 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG) 1097 return 1; 1098 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU); 1099 } 1100 1101 /* 1102 * This is called every time the dcache has a lookup hit, 1103 * and we should check whether we can really trust that 1104 * lookup. 1105 * 1106 * NOTE! The hit can be a negative hit too, don't assume 1107 * we have an inode! 1108 * 1109 * If the parent directory is seen to have changed, we throw out the 1110 * cached dentry and do a new lookup. 1111 */ 1112 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1113 { 1114 struct inode *dir; 1115 struct inode *inode; 1116 struct dentry *parent; 1117 struct nfs_fh *fhandle = NULL; 1118 struct nfs_fattr *fattr = NULL; 1119 struct nfs4_label *label = NULL; 1120 int error; 1121 1122 if (flags & LOOKUP_RCU) { 1123 parent = ACCESS_ONCE(dentry->d_parent); 1124 dir = d_inode_rcu(parent); 1125 if (!dir) 1126 return -ECHILD; 1127 } else { 1128 parent = dget_parent(dentry); 1129 dir = d_inode(parent); 1130 } 1131 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE); 1132 inode = d_inode(dentry); 1133 1134 if (!inode) { 1135 if (nfs_neg_need_reval(dir, dentry, flags)) { 1136 if (flags & LOOKUP_RCU) 1137 return -ECHILD; 1138 goto out_bad; 1139 } 1140 goto out_valid_noent; 1141 } 1142 1143 if (is_bad_inode(inode)) { 1144 if (flags & LOOKUP_RCU) 1145 return -ECHILD; 1146 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1147 __func__, dentry); 1148 goto out_bad; 1149 } 1150 1151 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ)) 1152 goto out_set_verifier; 1153 1154 /* Force a full look up iff the parent directory has changed */ 1155 if (!nfs_is_exclusive_create(dir, flags) && 1156 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) { 1157 1158 if (nfs_lookup_verify_inode(inode, flags)) { 1159 if (flags & LOOKUP_RCU) 1160 return -ECHILD; 1161 goto out_zap_parent; 1162 } 1163 goto out_valid; 1164 } 1165 1166 if (flags & LOOKUP_RCU) 1167 return -ECHILD; 1168 1169 if (NFS_STALE(inode)) 1170 goto out_bad; 1171 1172 error = -ENOMEM; 1173 fhandle = nfs_alloc_fhandle(); 1174 fattr = nfs_alloc_fattr(); 1175 if (fhandle == NULL || fattr == NULL) 1176 goto out_error; 1177 1178 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT); 1179 if (IS_ERR(label)) 1180 goto out_error; 1181 1182 trace_nfs_lookup_revalidate_enter(dir, dentry, flags); 1183 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label); 1184 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error); 1185 if (error) 1186 goto out_bad; 1187 if (nfs_compare_fh(NFS_FH(inode), fhandle)) 1188 goto out_bad; 1189 if ((error = nfs_refresh_inode(inode, fattr)) != 0) 1190 goto out_bad; 1191 1192 nfs_setsecurity(inode, fattr, label); 1193 1194 nfs_free_fattr(fattr); 1195 nfs_free_fhandle(fhandle); 1196 nfs4_label_free(label); 1197 1198 out_set_verifier: 1199 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1200 out_valid: 1201 /* Success: notify readdir to use READDIRPLUS */ 1202 nfs_advise_use_readdirplus(dir); 1203 out_valid_noent: 1204 if (flags & LOOKUP_RCU) { 1205 if (parent != ACCESS_ONCE(dentry->d_parent)) 1206 return -ECHILD; 1207 } else 1208 dput(parent); 1209 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n", 1210 __func__, dentry); 1211 return 1; 1212 out_zap_parent: 1213 nfs_zap_caches(dir); 1214 out_bad: 1215 WARN_ON(flags & LOOKUP_RCU); 1216 nfs_free_fattr(fattr); 1217 nfs_free_fhandle(fhandle); 1218 nfs4_label_free(label); 1219 nfs_mark_for_revalidate(dir); 1220 if (inode && S_ISDIR(inode->i_mode)) { 1221 /* Purge readdir caches. */ 1222 nfs_zap_caches(inode); 1223 /* 1224 * We can't d_drop the root of a disconnected tree: 1225 * its d_hash is on the s_anon list and d_drop() would hide 1226 * it from shrink_dcache_for_unmount(), leading to busy 1227 * inodes on unmount and further oopses. 1228 */ 1229 if (IS_ROOT(dentry)) 1230 goto out_valid; 1231 } 1232 dput(parent); 1233 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n", 1234 __func__, dentry); 1235 return 0; 1236 out_error: 1237 WARN_ON(flags & LOOKUP_RCU); 1238 nfs_free_fattr(fattr); 1239 nfs_free_fhandle(fhandle); 1240 nfs4_label_free(label); 1241 dput(parent); 1242 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n", 1243 __func__, dentry, error); 1244 return error; 1245 } 1246 1247 /* 1248 * A weaker form of d_revalidate for revalidating just the d_inode(dentry) 1249 * when we don't really care about the dentry name. This is called when a 1250 * pathwalk ends on a dentry that was not found via a normal lookup in the 1251 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals). 1252 * 1253 * In this situation, we just want to verify that the inode itself is OK 1254 * since the dentry might have changed on the server. 1255 */ 1256 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags) 1257 { 1258 int error; 1259 struct inode *inode = d_inode(dentry); 1260 1261 /* 1262 * I believe we can only get a negative dentry here in the case of a 1263 * procfs-style symlink. Just assume it's correct for now, but we may 1264 * eventually need to do something more here. 1265 */ 1266 if (!inode) { 1267 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n", 1268 __func__, dentry); 1269 return 1; 1270 } 1271 1272 if (is_bad_inode(inode)) { 1273 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1274 __func__, dentry); 1275 return 0; 1276 } 1277 1278 error = nfs_revalidate_inode(NFS_SERVER(inode), inode); 1279 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n", 1280 __func__, inode->i_ino, error ? "invalid" : "valid"); 1281 return !error; 1282 } 1283 1284 /* 1285 * This is called from dput() when d_count is going to 0. 1286 */ 1287 static int nfs_dentry_delete(const struct dentry *dentry) 1288 { 1289 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n", 1290 dentry, dentry->d_flags); 1291 1292 /* Unhash any dentry with a stale inode */ 1293 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry))) 1294 return 1; 1295 1296 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1297 /* Unhash it, so that ->d_iput() would be called */ 1298 return 1; 1299 } 1300 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) { 1301 /* Unhash it, so that ancestors of killed async unlink 1302 * files will be cleaned up during umount */ 1303 return 1; 1304 } 1305 return 0; 1306 1307 } 1308 1309 /* Ensure that we revalidate inode->i_nlink */ 1310 static void nfs_drop_nlink(struct inode *inode) 1311 { 1312 spin_lock(&inode->i_lock); 1313 /* drop the inode if we're reasonably sure this is the last link */ 1314 if (inode->i_nlink == 1) 1315 clear_nlink(inode); 1316 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR; 1317 spin_unlock(&inode->i_lock); 1318 } 1319 1320 /* 1321 * Called when the dentry loses inode. 1322 * We use it to clean up silly-renamed files. 1323 */ 1324 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode) 1325 { 1326 if (S_ISDIR(inode->i_mode)) 1327 /* drop any readdir cache as it could easily be old */ 1328 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA; 1329 1330 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1331 nfs_complete_unlink(dentry, inode); 1332 nfs_drop_nlink(inode); 1333 } 1334 iput(inode); 1335 } 1336 1337 static void nfs_d_release(struct dentry *dentry) 1338 { 1339 /* free cached devname value, if it survived that far */ 1340 if (unlikely(dentry->d_fsdata)) { 1341 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1342 WARN_ON(1); 1343 else 1344 kfree(dentry->d_fsdata); 1345 } 1346 } 1347 1348 const struct dentry_operations nfs_dentry_operations = { 1349 .d_revalidate = nfs_lookup_revalidate, 1350 .d_weak_revalidate = nfs_weak_revalidate, 1351 .d_delete = nfs_dentry_delete, 1352 .d_iput = nfs_dentry_iput, 1353 .d_automount = nfs_d_automount, 1354 .d_release = nfs_d_release, 1355 }; 1356 EXPORT_SYMBOL_GPL(nfs_dentry_operations); 1357 1358 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 1359 { 1360 struct dentry *res; 1361 struct dentry *parent; 1362 struct inode *inode = NULL; 1363 struct nfs_fh *fhandle = NULL; 1364 struct nfs_fattr *fattr = NULL; 1365 struct nfs4_label *label = NULL; 1366 int error; 1367 1368 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry); 1369 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP); 1370 1371 res = ERR_PTR(-ENAMETOOLONG); 1372 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 1373 goto out; 1374 1375 /* 1376 * If we're doing an exclusive create, optimize away the lookup 1377 * but don't hash the dentry. 1378 */ 1379 if (nfs_is_exclusive_create(dir, flags)) { 1380 d_instantiate(dentry, NULL); 1381 res = NULL; 1382 goto out; 1383 } 1384 1385 res = ERR_PTR(-ENOMEM); 1386 fhandle = nfs_alloc_fhandle(); 1387 fattr = nfs_alloc_fattr(); 1388 if (fhandle == NULL || fattr == NULL) 1389 goto out; 1390 1391 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT); 1392 if (IS_ERR(label)) 1393 goto out; 1394 1395 parent = dentry->d_parent; 1396 /* Protect against concurrent sillydeletes */ 1397 trace_nfs_lookup_enter(dir, dentry, flags); 1398 nfs_block_sillyrename(parent); 1399 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label); 1400 if (error == -ENOENT) 1401 goto no_entry; 1402 if (error < 0) { 1403 res = ERR_PTR(error); 1404 goto out_unblock_sillyrename; 1405 } 1406 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label); 1407 res = ERR_CAST(inode); 1408 if (IS_ERR(res)) 1409 goto out_unblock_sillyrename; 1410 1411 /* Success: notify readdir to use READDIRPLUS */ 1412 nfs_advise_use_readdirplus(dir); 1413 1414 no_entry: 1415 res = d_splice_alias(inode, dentry); 1416 if (res != NULL) { 1417 if (IS_ERR(res)) 1418 goto out_unblock_sillyrename; 1419 dentry = res; 1420 } 1421 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1422 out_unblock_sillyrename: 1423 nfs_unblock_sillyrename(parent); 1424 trace_nfs_lookup_exit(dir, dentry, flags, error); 1425 nfs4_label_free(label); 1426 out: 1427 nfs_free_fattr(fattr); 1428 nfs_free_fhandle(fhandle); 1429 return res; 1430 } 1431 EXPORT_SYMBOL_GPL(nfs_lookup); 1432 1433 #if IS_ENABLED(CONFIG_NFS_V4) 1434 static int nfs4_lookup_revalidate(struct dentry *, unsigned int); 1435 1436 const struct dentry_operations nfs4_dentry_operations = { 1437 .d_revalidate = nfs4_lookup_revalidate, 1438 .d_delete = nfs_dentry_delete, 1439 .d_iput = nfs_dentry_iput, 1440 .d_automount = nfs_d_automount, 1441 .d_release = nfs_d_release, 1442 }; 1443 EXPORT_SYMBOL_GPL(nfs4_dentry_operations); 1444 1445 static fmode_t flags_to_mode(int flags) 1446 { 1447 fmode_t res = (__force fmode_t)flags & FMODE_EXEC; 1448 if ((flags & O_ACCMODE) != O_WRONLY) 1449 res |= FMODE_READ; 1450 if ((flags & O_ACCMODE) != O_RDONLY) 1451 res |= FMODE_WRITE; 1452 return res; 1453 } 1454 1455 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags) 1456 { 1457 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags)); 1458 } 1459 1460 static int do_open(struct inode *inode, struct file *filp) 1461 { 1462 nfs_fscache_open_file(inode, filp); 1463 return 0; 1464 } 1465 1466 static int nfs_finish_open(struct nfs_open_context *ctx, 1467 struct dentry *dentry, 1468 struct file *file, unsigned open_flags, 1469 int *opened) 1470 { 1471 int err; 1472 1473 if ((open_flags & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL)) 1474 *opened |= FILE_CREATED; 1475 1476 err = finish_open(file, dentry, do_open, opened); 1477 if (err) 1478 goto out; 1479 nfs_file_set_open_context(file, ctx); 1480 1481 out: 1482 return err; 1483 } 1484 1485 int nfs_atomic_open(struct inode *dir, struct dentry *dentry, 1486 struct file *file, unsigned open_flags, 1487 umode_t mode, int *opened) 1488 { 1489 struct nfs_open_context *ctx; 1490 struct dentry *res; 1491 struct iattr attr = { .ia_valid = ATTR_OPEN }; 1492 struct inode *inode; 1493 unsigned int lookup_flags = 0; 1494 int err; 1495 1496 /* Expect a negative dentry */ 1497 BUG_ON(d_inode(dentry)); 1498 1499 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n", 1500 dir->i_sb->s_id, dir->i_ino, dentry); 1501 1502 err = nfs_check_flags(open_flags); 1503 if (err) 1504 return err; 1505 1506 /* NFS only supports OPEN on regular files */ 1507 if ((open_flags & O_DIRECTORY)) { 1508 if (!d_unhashed(dentry)) { 1509 /* 1510 * Hashed negative dentry with O_DIRECTORY: dentry was 1511 * revalidated and is fine, no need to perform lookup 1512 * again 1513 */ 1514 return -ENOENT; 1515 } 1516 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY; 1517 goto no_open; 1518 } 1519 1520 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 1521 return -ENAMETOOLONG; 1522 1523 if (open_flags & O_CREAT) { 1524 attr.ia_valid |= ATTR_MODE; 1525 attr.ia_mode = mode & ~current_umask(); 1526 } 1527 if (open_flags & O_TRUNC) { 1528 attr.ia_valid |= ATTR_SIZE; 1529 attr.ia_size = 0; 1530 } 1531 1532 ctx = create_nfs_open_context(dentry, open_flags); 1533 err = PTR_ERR(ctx); 1534 if (IS_ERR(ctx)) 1535 goto out; 1536 1537 trace_nfs_atomic_open_enter(dir, ctx, open_flags); 1538 nfs_block_sillyrename(dentry->d_parent); 1539 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, opened); 1540 nfs_unblock_sillyrename(dentry->d_parent); 1541 if (IS_ERR(inode)) { 1542 err = PTR_ERR(inode); 1543 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 1544 put_nfs_open_context(ctx); 1545 switch (err) { 1546 case -ENOENT: 1547 d_drop(dentry); 1548 d_add(dentry, NULL); 1549 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1550 break; 1551 case -EISDIR: 1552 case -ENOTDIR: 1553 goto no_open; 1554 case -ELOOP: 1555 if (!(open_flags & O_NOFOLLOW)) 1556 goto no_open; 1557 break; 1558 /* case -EINVAL: */ 1559 default: 1560 break; 1561 } 1562 goto out; 1563 } 1564 1565 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags, opened); 1566 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 1567 put_nfs_open_context(ctx); 1568 out: 1569 return err; 1570 1571 no_open: 1572 res = nfs_lookup(dir, dentry, lookup_flags); 1573 err = PTR_ERR(res); 1574 if (IS_ERR(res)) 1575 goto out; 1576 1577 return finish_no_open(file, res); 1578 } 1579 EXPORT_SYMBOL_GPL(nfs_atomic_open); 1580 1581 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1582 { 1583 struct inode *inode; 1584 int ret = 0; 1585 1586 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY)) 1587 goto no_open; 1588 if (d_mountpoint(dentry)) 1589 goto no_open; 1590 if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1) 1591 goto no_open; 1592 1593 inode = d_inode(dentry); 1594 1595 /* We can't create new files in nfs_open_revalidate(), so we 1596 * optimize away revalidation of negative dentries. 1597 */ 1598 if (inode == NULL) { 1599 struct dentry *parent; 1600 struct inode *dir; 1601 1602 if (flags & LOOKUP_RCU) { 1603 parent = ACCESS_ONCE(dentry->d_parent); 1604 dir = d_inode_rcu(parent); 1605 if (!dir) 1606 return -ECHILD; 1607 } else { 1608 parent = dget_parent(dentry); 1609 dir = d_inode(parent); 1610 } 1611 if (!nfs_neg_need_reval(dir, dentry, flags)) 1612 ret = 1; 1613 else if (flags & LOOKUP_RCU) 1614 ret = -ECHILD; 1615 if (!(flags & LOOKUP_RCU)) 1616 dput(parent); 1617 else if (parent != ACCESS_ONCE(dentry->d_parent)) 1618 return -ECHILD; 1619 goto out; 1620 } 1621 1622 /* NFS only supports OPEN on regular files */ 1623 if (!S_ISREG(inode->i_mode)) 1624 goto no_open; 1625 /* We cannot do exclusive creation on a positive dentry */ 1626 if (flags & LOOKUP_EXCL) 1627 goto no_open; 1628 1629 /* Let f_op->open() actually open (and revalidate) the file */ 1630 ret = 1; 1631 1632 out: 1633 return ret; 1634 1635 no_open: 1636 return nfs_lookup_revalidate(dentry, flags); 1637 } 1638 1639 #endif /* CONFIG_NFSV4 */ 1640 1641 /* 1642 * Code common to create, mkdir, and mknod. 1643 */ 1644 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle, 1645 struct nfs_fattr *fattr, 1646 struct nfs4_label *label) 1647 { 1648 struct dentry *parent = dget_parent(dentry); 1649 struct inode *dir = d_inode(parent); 1650 struct inode *inode; 1651 int error = -EACCES; 1652 1653 d_drop(dentry); 1654 1655 /* We may have been initialized further down */ 1656 if (d_really_is_positive(dentry)) 1657 goto out; 1658 if (fhandle->size == 0) { 1659 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL); 1660 if (error) 1661 goto out_error; 1662 } 1663 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1664 if (!(fattr->valid & NFS_ATTR_FATTR)) { 1665 struct nfs_server *server = NFS_SB(dentry->d_sb); 1666 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL); 1667 if (error < 0) 1668 goto out_error; 1669 } 1670 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label); 1671 error = PTR_ERR(inode); 1672 if (IS_ERR(inode)) 1673 goto out_error; 1674 d_add(dentry, inode); 1675 out: 1676 dput(parent); 1677 return 0; 1678 out_error: 1679 nfs_mark_for_revalidate(dir); 1680 dput(parent); 1681 return error; 1682 } 1683 EXPORT_SYMBOL_GPL(nfs_instantiate); 1684 1685 /* 1686 * Following a failed create operation, we drop the dentry rather 1687 * than retain a negative dentry. This avoids a problem in the event 1688 * that the operation succeeded on the server, but an error in the 1689 * reply path made it appear to have failed. 1690 */ 1691 int nfs_create(struct inode *dir, struct dentry *dentry, 1692 umode_t mode, bool excl) 1693 { 1694 struct iattr attr; 1695 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT; 1696 int error; 1697 1698 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n", 1699 dir->i_sb->s_id, dir->i_ino, dentry); 1700 1701 attr.ia_mode = mode; 1702 attr.ia_valid = ATTR_MODE; 1703 1704 trace_nfs_create_enter(dir, dentry, open_flags); 1705 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags); 1706 trace_nfs_create_exit(dir, dentry, open_flags, error); 1707 if (error != 0) 1708 goto out_err; 1709 return 0; 1710 out_err: 1711 d_drop(dentry); 1712 return error; 1713 } 1714 EXPORT_SYMBOL_GPL(nfs_create); 1715 1716 /* 1717 * See comments for nfs_proc_create regarding failed operations. 1718 */ 1719 int 1720 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev) 1721 { 1722 struct iattr attr; 1723 int status; 1724 1725 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n", 1726 dir->i_sb->s_id, dir->i_ino, dentry); 1727 1728 if (!new_valid_dev(rdev)) 1729 return -EINVAL; 1730 1731 attr.ia_mode = mode; 1732 attr.ia_valid = ATTR_MODE; 1733 1734 trace_nfs_mknod_enter(dir, dentry); 1735 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev); 1736 trace_nfs_mknod_exit(dir, dentry, status); 1737 if (status != 0) 1738 goto out_err; 1739 return 0; 1740 out_err: 1741 d_drop(dentry); 1742 return status; 1743 } 1744 EXPORT_SYMBOL_GPL(nfs_mknod); 1745 1746 /* 1747 * See comments for nfs_proc_create regarding failed operations. 1748 */ 1749 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1750 { 1751 struct iattr attr; 1752 int error; 1753 1754 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n", 1755 dir->i_sb->s_id, dir->i_ino, dentry); 1756 1757 attr.ia_valid = ATTR_MODE; 1758 attr.ia_mode = mode | S_IFDIR; 1759 1760 trace_nfs_mkdir_enter(dir, dentry); 1761 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr); 1762 trace_nfs_mkdir_exit(dir, dentry, error); 1763 if (error != 0) 1764 goto out_err; 1765 return 0; 1766 out_err: 1767 d_drop(dentry); 1768 return error; 1769 } 1770 EXPORT_SYMBOL_GPL(nfs_mkdir); 1771 1772 static void nfs_dentry_handle_enoent(struct dentry *dentry) 1773 { 1774 if (d_really_is_positive(dentry) && !d_unhashed(dentry)) 1775 d_delete(dentry); 1776 } 1777 1778 int nfs_rmdir(struct inode *dir, struct dentry *dentry) 1779 { 1780 int error; 1781 1782 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n", 1783 dir->i_sb->s_id, dir->i_ino, dentry); 1784 1785 trace_nfs_rmdir_enter(dir, dentry); 1786 if (d_really_is_positive(dentry)) { 1787 nfs_wait_on_sillyrename(dentry); 1788 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1789 /* Ensure the VFS deletes this inode */ 1790 switch (error) { 1791 case 0: 1792 clear_nlink(d_inode(dentry)); 1793 break; 1794 case -ENOENT: 1795 nfs_dentry_handle_enoent(dentry); 1796 } 1797 } else 1798 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1799 trace_nfs_rmdir_exit(dir, dentry, error); 1800 1801 return error; 1802 } 1803 EXPORT_SYMBOL_GPL(nfs_rmdir); 1804 1805 /* 1806 * Remove a file after making sure there are no pending writes, 1807 * and after checking that the file has only one user. 1808 * 1809 * We invalidate the attribute cache and free the inode prior to the operation 1810 * to avoid possible races if the server reuses the inode. 1811 */ 1812 static int nfs_safe_remove(struct dentry *dentry) 1813 { 1814 struct inode *dir = d_inode(dentry->d_parent); 1815 struct inode *inode = d_inode(dentry); 1816 int error = -EBUSY; 1817 1818 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry); 1819 1820 /* If the dentry was sillyrenamed, we simply call d_delete() */ 1821 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1822 error = 0; 1823 goto out; 1824 } 1825 1826 trace_nfs_remove_enter(dir, dentry); 1827 if (inode != NULL) { 1828 NFS_PROTO(inode)->return_delegation(inode); 1829 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name); 1830 if (error == 0) 1831 nfs_drop_nlink(inode); 1832 } else 1833 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name); 1834 if (error == -ENOENT) 1835 nfs_dentry_handle_enoent(dentry); 1836 trace_nfs_remove_exit(dir, dentry, error); 1837 out: 1838 return error; 1839 } 1840 1841 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode 1842 * belongs to an active ".nfs..." file and we return -EBUSY. 1843 * 1844 * If sillyrename() returns 0, we do nothing, otherwise we unlink. 1845 */ 1846 int nfs_unlink(struct inode *dir, struct dentry *dentry) 1847 { 1848 int error; 1849 int need_rehash = 0; 1850 1851 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id, 1852 dir->i_ino, dentry); 1853 1854 trace_nfs_unlink_enter(dir, dentry); 1855 spin_lock(&dentry->d_lock); 1856 if (d_count(dentry) > 1) { 1857 spin_unlock(&dentry->d_lock); 1858 /* Start asynchronous writeout of the inode */ 1859 write_inode_now(d_inode(dentry), 0); 1860 error = nfs_sillyrename(dir, dentry); 1861 goto out; 1862 } 1863 if (!d_unhashed(dentry)) { 1864 __d_drop(dentry); 1865 need_rehash = 1; 1866 } 1867 spin_unlock(&dentry->d_lock); 1868 error = nfs_safe_remove(dentry); 1869 if (!error || error == -ENOENT) { 1870 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1871 } else if (need_rehash) 1872 d_rehash(dentry); 1873 out: 1874 trace_nfs_unlink_exit(dir, dentry, error); 1875 return error; 1876 } 1877 EXPORT_SYMBOL_GPL(nfs_unlink); 1878 1879 /* 1880 * To create a symbolic link, most file systems instantiate a new inode, 1881 * add a page to it containing the path, then write it out to the disk 1882 * using prepare_write/commit_write. 1883 * 1884 * Unfortunately the NFS client can't create the in-core inode first 1885 * because it needs a file handle to create an in-core inode (see 1886 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the 1887 * symlink request has completed on the server. 1888 * 1889 * So instead we allocate a raw page, copy the symname into it, then do 1890 * the SYMLINK request with the page as the buffer. If it succeeds, we 1891 * now have a new file handle and can instantiate an in-core NFS inode 1892 * and move the raw page into its mapping. 1893 */ 1894 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 1895 { 1896 struct page *page; 1897 char *kaddr; 1898 struct iattr attr; 1899 unsigned int pathlen = strlen(symname); 1900 int error; 1901 1902 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id, 1903 dir->i_ino, dentry, symname); 1904 1905 if (pathlen > PAGE_SIZE) 1906 return -ENAMETOOLONG; 1907 1908 attr.ia_mode = S_IFLNK | S_IRWXUGO; 1909 attr.ia_valid = ATTR_MODE; 1910 1911 page = alloc_page(GFP_HIGHUSER); 1912 if (!page) 1913 return -ENOMEM; 1914 1915 kaddr = kmap_atomic(page); 1916 memcpy(kaddr, symname, pathlen); 1917 if (pathlen < PAGE_SIZE) 1918 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen); 1919 kunmap_atomic(kaddr); 1920 1921 trace_nfs_symlink_enter(dir, dentry); 1922 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr); 1923 trace_nfs_symlink_exit(dir, dentry, error); 1924 if (error != 0) { 1925 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n", 1926 dir->i_sb->s_id, dir->i_ino, 1927 dentry, symname, error); 1928 d_drop(dentry); 1929 __free_page(page); 1930 return error; 1931 } 1932 1933 /* 1934 * No big deal if we can't add this page to the page cache here. 1935 * READLINK will get the missing page from the server if needed. 1936 */ 1937 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0, 1938 GFP_KERNEL)) { 1939 SetPageUptodate(page); 1940 unlock_page(page); 1941 /* 1942 * add_to_page_cache_lru() grabs an extra page refcount. 1943 * Drop it here to avoid leaking this page later. 1944 */ 1945 page_cache_release(page); 1946 } else 1947 __free_page(page); 1948 1949 return 0; 1950 } 1951 EXPORT_SYMBOL_GPL(nfs_symlink); 1952 1953 int 1954 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 1955 { 1956 struct inode *inode = d_inode(old_dentry); 1957 int error; 1958 1959 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n", 1960 old_dentry, dentry); 1961 1962 trace_nfs_link_enter(inode, dir, dentry); 1963 NFS_PROTO(inode)->return_delegation(inode); 1964 1965 d_drop(dentry); 1966 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name); 1967 if (error == 0) { 1968 ihold(inode); 1969 d_add(dentry, inode); 1970 } 1971 trace_nfs_link_exit(inode, dir, dentry, error); 1972 return error; 1973 } 1974 EXPORT_SYMBOL_GPL(nfs_link); 1975 1976 /* 1977 * RENAME 1978 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a 1979 * different file handle for the same inode after a rename (e.g. when 1980 * moving to a different directory). A fail-safe method to do so would 1981 * be to look up old_dir/old_name, create a link to new_dir/new_name and 1982 * rename the old file using the sillyrename stuff. This way, the original 1983 * file in old_dir will go away when the last process iput()s the inode. 1984 * 1985 * FIXED. 1986 * 1987 * It actually works quite well. One needs to have the possibility for 1988 * at least one ".nfs..." file in each directory the file ever gets 1989 * moved or linked to which happens automagically with the new 1990 * implementation that only depends on the dcache stuff instead of 1991 * using the inode layer 1992 * 1993 * Unfortunately, things are a little more complicated than indicated 1994 * above. For a cross-directory move, we want to make sure we can get 1995 * rid of the old inode after the operation. This means there must be 1996 * no pending writes (if it's a file), and the use count must be 1. 1997 * If these conditions are met, we can drop the dentries before doing 1998 * the rename. 1999 */ 2000 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry, 2001 struct inode *new_dir, struct dentry *new_dentry) 2002 { 2003 struct inode *old_inode = d_inode(old_dentry); 2004 struct inode *new_inode = d_inode(new_dentry); 2005 struct dentry *dentry = NULL, *rehash = NULL; 2006 struct rpc_task *task; 2007 int error = -EBUSY; 2008 2009 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n", 2010 old_dentry, new_dentry, 2011 d_count(new_dentry)); 2012 2013 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry); 2014 /* 2015 * For non-directories, check whether the target is busy and if so, 2016 * make a copy of the dentry and then do a silly-rename. If the 2017 * silly-rename succeeds, the copied dentry is hashed and becomes 2018 * the new target. 2019 */ 2020 if (new_inode && !S_ISDIR(new_inode->i_mode)) { 2021 /* 2022 * To prevent any new references to the target during the 2023 * rename, we unhash the dentry in advance. 2024 */ 2025 if (!d_unhashed(new_dentry)) { 2026 d_drop(new_dentry); 2027 rehash = new_dentry; 2028 } 2029 2030 if (d_count(new_dentry) > 2) { 2031 int err; 2032 2033 /* copy the target dentry's name */ 2034 dentry = d_alloc(new_dentry->d_parent, 2035 &new_dentry->d_name); 2036 if (!dentry) 2037 goto out; 2038 2039 /* silly-rename the existing target ... */ 2040 err = nfs_sillyrename(new_dir, new_dentry); 2041 if (err) 2042 goto out; 2043 2044 new_dentry = dentry; 2045 rehash = NULL; 2046 new_inode = NULL; 2047 } 2048 } 2049 2050 NFS_PROTO(old_inode)->return_delegation(old_inode); 2051 if (new_inode != NULL) 2052 NFS_PROTO(new_inode)->return_delegation(new_inode); 2053 2054 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL); 2055 if (IS_ERR(task)) { 2056 error = PTR_ERR(task); 2057 goto out; 2058 } 2059 2060 error = rpc_wait_for_completion_task(task); 2061 if (error == 0) 2062 error = task->tk_status; 2063 rpc_put_task(task); 2064 nfs_mark_for_revalidate(old_inode); 2065 out: 2066 if (rehash) 2067 d_rehash(rehash); 2068 trace_nfs_rename_exit(old_dir, old_dentry, 2069 new_dir, new_dentry, error); 2070 if (!error) { 2071 if (new_inode != NULL) 2072 nfs_drop_nlink(new_inode); 2073 d_move(old_dentry, new_dentry); 2074 nfs_set_verifier(new_dentry, 2075 nfs_save_change_attribute(new_dir)); 2076 } else if (error == -ENOENT) 2077 nfs_dentry_handle_enoent(old_dentry); 2078 2079 /* new dentry created? */ 2080 if (dentry) 2081 dput(dentry); 2082 return error; 2083 } 2084 EXPORT_SYMBOL_GPL(nfs_rename); 2085 2086 static DEFINE_SPINLOCK(nfs_access_lru_lock); 2087 static LIST_HEAD(nfs_access_lru_list); 2088 static atomic_long_t nfs_access_nr_entries; 2089 2090 static unsigned long nfs_access_max_cachesize = ULONG_MAX; 2091 module_param(nfs_access_max_cachesize, ulong, 0644); 2092 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length"); 2093 2094 static void nfs_access_free_entry(struct nfs_access_entry *entry) 2095 { 2096 put_rpccred(entry->cred); 2097 kfree_rcu(entry, rcu_head); 2098 smp_mb__before_atomic(); 2099 atomic_long_dec(&nfs_access_nr_entries); 2100 smp_mb__after_atomic(); 2101 } 2102 2103 static void nfs_access_free_list(struct list_head *head) 2104 { 2105 struct nfs_access_entry *cache; 2106 2107 while (!list_empty(head)) { 2108 cache = list_entry(head->next, struct nfs_access_entry, lru); 2109 list_del(&cache->lru); 2110 nfs_access_free_entry(cache); 2111 } 2112 } 2113 2114 static unsigned long 2115 nfs_do_access_cache_scan(unsigned int nr_to_scan) 2116 { 2117 LIST_HEAD(head); 2118 struct nfs_inode *nfsi, *next; 2119 struct nfs_access_entry *cache; 2120 long freed = 0; 2121 2122 spin_lock(&nfs_access_lru_lock); 2123 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) { 2124 struct inode *inode; 2125 2126 if (nr_to_scan-- == 0) 2127 break; 2128 inode = &nfsi->vfs_inode; 2129 spin_lock(&inode->i_lock); 2130 if (list_empty(&nfsi->access_cache_entry_lru)) 2131 goto remove_lru_entry; 2132 cache = list_entry(nfsi->access_cache_entry_lru.next, 2133 struct nfs_access_entry, lru); 2134 list_move(&cache->lru, &head); 2135 rb_erase(&cache->rb_node, &nfsi->access_cache); 2136 freed++; 2137 if (!list_empty(&nfsi->access_cache_entry_lru)) 2138 list_move_tail(&nfsi->access_cache_inode_lru, 2139 &nfs_access_lru_list); 2140 else { 2141 remove_lru_entry: 2142 list_del_init(&nfsi->access_cache_inode_lru); 2143 smp_mb__before_atomic(); 2144 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags); 2145 smp_mb__after_atomic(); 2146 } 2147 spin_unlock(&inode->i_lock); 2148 } 2149 spin_unlock(&nfs_access_lru_lock); 2150 nfs_access_free_list(&head); 2151 return freed; 2152 } 2153 2154 unsigned long 2155 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc) 2156 { 2157 int nr_to_scan = sc->nr_to_scan; 2158 gfp_t gfp_mask = sc->gfp_mask; 2159 2160 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL) 2161 return SHRINK_STOP; 2162 return nfs_do_access_cache_scan(nr_to_scan); 2163 } 2164 2165 2166 unsigned long 2167 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc) 2168 { 2169 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries)); 2170 } 2171 2172 static void 2173 nfs_access_cache_enforce_limit(void) 2174 { 2175 long nr_entries = atomic_long_read(&nfs_access_nr_entries); 2176 unsigned long diff; 2177 unsigned int nr_to_scan; 2178 2179 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize) 2180 return; 2181 nr_to_scan = 100; 2182 diff = nr_entries - nfs_access_max_cachesize; 2183 if (diff < nr_to_scan) 2184 nr_to_scan = diff; 2185 nfs_do_access_cache_scan(nr_to_scan); 2186 } 2187 2188 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head) 2189 { 2190 struct rb_root *root_node = &nfsi->access_cache; 2191 struct rb_node *n; 2192 struct nfs_access_entry *entry; 2193 2194 /* Unhook entries from the cache */ 2195 while ((n = rb_first(root_node)) != NULL) { 2196 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2197 rb_erase(n, root_node); 2198 list_move(&entry->lru, head); 2199 } 2200 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS; 2201 } 2202 2203 void nfs_access_zap_cache(struct inode *inode) 2204 { 2205 LIST_HEAD(head); 2206 2207 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0) 2208 return; 2209 /* Remove from global LRU init */ 2210 spin_lock(&nfs_access_lru_lock); 2211 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2212 list_del_init(&NFS_I(inode)->access_cache_inode_lru); 2213 2214 spin_lock(&inode->i_lock); 2215 __nfs_access_zap_cache(NFS_I(inode), &head); 2216 spin_unlock(&inode->i_lock); 2217 spin_unlock(&nfs_access_lru_lock); 2218 nfs_access_free_list(&head); 2219 } 2220 EXPORT_SYMBOL_GPL(nfs_access_zap_cache); 2221 2222 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred) 2223 { 2224 struct rb_node *n = NFS_I(inode)->access_cache.rb_node; 2225 struct nfs_access_entry *entry; 2226 2227 while (n != NULL) { 2228 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2229 2230 if (cred < entry->cred) 2231 n = n->rb_left; 2232 else if (cred > entry->cred) 2233 n = n->rb_right; 2234 else 2235 return entry; 2236 } 2237 return NULL; 2238 } 2239 2240 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res) 2241 { 2242 struct nfs_inode *nfsi = NFS_I(inode); 2243 struct nfs_access_entry *cache; 2244 int err = -ENOENT; 2245 2246 spin_lock(&inode->i_lock); 2247 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2248 goto out_zap; 2249 cache = nfs_access_search_rbtree(inode, cred); 2250 if (cache == NULL) 2251 goto out; 2252 if (!nfs_have_delegated_attributes(inode) && 2253 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo)) 2254 goto out_stale; 2255 res->jiffies = cache->jiffies; 2256 res->cred = cache->cred; 2257 res->mask = cache->mask; 2258 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru); 2259 err = 0; 2260 out: 2261 spin_unlock(&inode->i_lock); 2262 return err; 2263 out_stale: 2264 rb_erase(&cache->rb_node, &nfsi->access_cache); 2265 list_del(&cache->lru); 2266 spin_unlock(&inode->i_lock); 2267 nfs_access_free_entry(cache); 2268 return -ENOENT; 2269 out_zap: 2270 spin_unlock(&inode->i_lock); 2271 nfs_access_zap_cache(inode); 2272 return -ENOENT; 2273 } 2274 2275 static int nfs_access_get_cached_rcu(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res) 2276 { 2277 /* Only check the most recently returned cache entry, 2278 * but do it without locking. 2279 */ 2280 struct nfs_inode *nfsi = NFS_I(inode); 2281 struct nfs_access_entry *cache; 2282 int err = -ECHILD; 2283 struct list_head *lh; 2284 2285 rcu_read_lock(); 2286 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2287 goto out; 2288 lh = rcu_dereference(nfsi->access_cache_entry_lru.prev); 2289 cache = list_entry(lh, struct nfs_access_entry, lru); 2290 if (lh == &nfsi->access_cache_entry_lru || 2291 cred != cache->cred) 2292 cache = NULL; 2293 if (cache == NULL) 2294 goto out; 2295 if (!nfs_have_delegated_attributes(inode) && 2296 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo)) 2297 goto out; 2298 res->jiffies = cache->jiffies; 2299 res->cred = cache->cred; 2300 res->mask = cache->mask; 2301 err = 0; 2302 out: 2303 rcu_read_unlock(); 2304 return err; 2305 } 2306 2307 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set) 2308 { 2309 struct nfs_inode *nfsi = NFS_I(inode); 2310 struct rb_root *root_node = &nfsi->access_cache; 2311 struct rb_node **p = &root_node->rb_node; 2312 struct rb_node *parent = NULL; 2313 struct nfs_access_entry *entry; 2314 2315 spin_lock(&inode->i_lock); 2316 while (*p != NULL) { 2317 parent = *p; 2318 entry = rb_entry(parent, struct nfs_access_entry, rb_node); 2319 2320 if (set->cred < entry->cred) 2321 p = &parent->rb_left; 2322 else if (set->cred > entry->cred) 2323 p = &parent->rb_right; 2324 else 2325 goto found; 2326 } 2327 rb_link_node(&set->rb_node, parent, p); 2328 rb_insert_color(&set->rb_node, root_node); 2329 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2330 spin_unlock(&inode->i_lock); 2331 return; 2332 found: 2333 rb_replace_node(parent, &set->rb_node, root_node); 2334 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2335 list_del(&entry->lru); 2336 spin_unlock(&inode->i_lock); 2337 nfs_access_free_entry(entry); 2338 } 2339 2340 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set) 2341 { 2342 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL); 2343 if (cache == NULL) 2344 return; 2345 RB_CLEAR_NODE(&cache->rb_node); 2346 cache->jiffies = set->jiffies; 2347 cache->cred = get_rpccred(set->cred); 2348 cache->mask = set->mask; 2349 2350 /* The above field assignments must be visible 2351 * before this item appears on the lru. We cannot easily 2352 * use rcu_assign_pointer, so just force the memory barrier. 2353 */ 2354 smp_wmb(); 2355 nfs_access_add_rbtree(inode, cache); 2356 2357 /* Update accounting */ 2358 smp_mb__before_atomic(); 2359 atomic_long_inc(&nfs_access_nr_entries); 2360 smp_mb__after_atomic(); 2361 2362 /* Add inode to global LRU list */ 2363 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) { 2364 spin_lock(&nfs_access_lru_lock); 2365 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2366 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, 2367 &nfs_access_lru_list); 2368 spin_unlock(&nfs_access_lru_lock); 2369 } 2370 nfs_access_cache_enforce_limit(); 2371 } 2372 EXPORT_SYMBOL_GPL(nfs_access_add_cache); 2373 2374 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result) 2375 { 2376 entry->mask = 0; 2377 if (access_result & NFS4_ACCESS_READ) 2378 entry->mask |= MAY_READ; 2379 if (access_result & 2380 (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE)) 2381 entry->mask |= MAY_WRITE; 2382 if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE)) 2383 entry->mask |= MAY_EXEC; 2384 } 2385 EXPORT_SYMBOL_GPL(nfs_access_set_mask); 2386 2387 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask) 2388 { 2389 struct nfs_access_entry cache; 2390 int status; 2391 2392 trace_nfs_access_enter(inode); 2393 2394 status = nfs_access_get_cached_rcu(inode, cred, &cache); 2395 if (status != 0) 2396 status = nfs_access_get_cached(inode, cred, &cache); 2397 if (status == 0) 2398 goto out_cached; 2399 2400 status = -ECHILD; 2401 if (mask & MAY_NOT_BLOCK) 2402 goto out; 2403 2404 /* Be clever: ask server to check for all possible rights */ 2405 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ; 2406 cache.cred = cred; 2407 cache.jiffies = jiffies; 2408 status = NFS_PROTO(inode)->access(inode, &cache); 2409 if (status != 0) { 2410 if (status == -ESTALE) { 2411 nfs_zap_caches(inode); 2412 if (!S_ISDIR(inode->i_mode)) 2413 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags); 2414 } 2415 goto out; 2416 } 2417 nfs_access_add_cache(inode, &cache); 2418 out_cached: 2419 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0) 2420 status = -EACCES; 2421 out: 2422 trace_nfs_access_exit(inode, status); 2423 return status; 2424 } 2425 2426 static int nfs_open_permission_mask(int openflags) 2427 { 2428 int mask = 0; 2429 2430 if (openflags & __FMODE_EXEC) { 2431 /* ONLY check exec rights */ 2432 mask = MAY_EXEC; 2433 } else { 2434 if ((openflags & O_ACCMODE) != O_WRONLY) 2435 mask |= MAY_READ; 2436 if ((openflags & O_ACCMODE) != O_RDONLY) 2437 mask |= MAY_WRITE; 2438 } 2439 2440 return mask; 2441 } 2442 2443 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags) 2444 { 2445 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags)); 2446 } 2447 EXPORT_SYMBOL_GPL(nfs_may_open); 2448 2449 int nfs_permission(struct inode *inode, int mask) 2450 { 2451 struct rpc_cred *cred; 2452 int res = 0; 2453 2454 nfs_inc_stats(inode, NFSIOS_VFSACCESS); 2455 2456 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 2457 goto out; 2458 /* Is this sys_access() ? */ 2459 if (mask & (MAY_ACCESS | MAY_CHDIR)) 2460 goto force_lookup; 2461 2462 switch (inode->i_mode & S_IFMT) { 2463 case S_IFLNK: 2464 goto out; 2465 case S_IFREG: 2466 break; 2467 case S_IFDIR: 2468 /* 2469 * Optimize away all write operations, since the server 2470 * will check permissions when we perform the op. 2471 */ 2472 if ((mask & MAY_WRITE) && !(mask & MAY_READ)) 2473 goto out; 2474 } 2475 2476 force_lookup: 2477 if (!NFS_PROTO(inode)->access) 2478 goto out_notsup; 2479 2480 /* Always try fast lookups first */ 2481 rcu_read_lock(); 2482 cred = rpc_lookup_cred_nonblock(); 2483 if (!IS_ERR(cred)) 2484 res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK); 2485 else 2486 res = PTR_ERR(cred); 2487 rcu_read_unlock(); 2488 if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) { 2489 /* Fast lookup failed, try the slow way */ 2490 cred = rpc_lookup_cred(); 2491 if (!IS_ERR(cred)) { 2492 res = nfs_do_access(inode, cred, mask); 2493 put_rpccred(cred); 2494 } else 2495 res = PTR_ERR(cred); 2496 } 2497 out: 2498 if (!res && (mask & MAY_EXEC) && !execute_ok(inode)) 2499 res = -EACCES; 2500 2501 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n", 2502 inode->i_sb->s_id, inode->i_ino, mask, res); 2503 return res; 2504 out_notsup: 2505 if (mask & MAY_NOT_BLOCK) 2506 return -ECHILD; 2507 2508 res = nfs_revalidate_inode(NFS_SERVER(inode), inode); 2509 if (res == 0) 2510 res = generic_permission(inode, mask); 2511 goto out; 2512 } 2513 EXPORT_SYMBOL_GPL(nfs_permission); 2514 2515 /* 2516 * Local variables: 2517 * version-control: t 2518 * kept-new-versions: 5 2519 * End: 2520 */ 2521