1 /* 2 * linux/fs/nfs/dir.c 3 * 4 * Copyright (C) 1992 Rick Sladkey 5 * 6 * nfs directory handling functions 7 * 8 * 10 Apr 1996 Added silly rename for unlink --okir 9 * 28 Sep 1996 Improved directory cache --okir 10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de 11 * Re-implemented silly rename for unlink, newly implemented 12 * silly rename for nfs_rename() following the suggestions 13 * of Olaf Kirch (okir) found in this file. 14 * Following Linus comments on my original hack, this version 15 * depends only on the dcache stuff and doesn't touch the inode 16 * layer (iput() and friends). 17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM 18 */ 19 20 #include <linux/time.h> 21 #include <linux/errno.h> 22 #include <linux/stat.h> 23 #include <linux/fcntl.h> 24 #include <linux/string.h> 25 #include <linux/kernel.h> 26 #include <linux/slab.h> 27 #include <linux/mm.h> 28 #include <linux/sunrpc/clnt.h> 29 #include <linux/nfs_fs.h> 30 #include <linux/nfs_mount.h> 31 #include <linux/pagemap.h> 32 #include <linux/pagevec.h> 33 #include <linux/namei.h> 34 #include <linux/mount.h> 35 #include <linux/sched.h> 36 #include <linux/kmemleak.h> 37 #include <linux/xattr.h> 38 39 #include "delegation.h" 40 #include "iostat.h" 41 #include "internal.h" 42 #include "fscache.h" 43 44 /* #define NFS_DEBUG_VERBOSE 1 */ 45 46 static int nfs_opendir(struct inode *, struct file *); 47 static int nfs_closedir(struct inode *, struct file *); 48 static int nfs_readdir(struct file *, void *, filldir_t); 49 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *); 50 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *); 51 static int nfs_mkdir(struct inode *, struct dentry *, int); 52 static int nfs_rmdir(struct inode *, struct dentry *); 53 static int nfs_unlink(struct inode *, struct dentry *); 54 static int nfs_symlink(struct inode *, struct dentry *, const char *); 55 static int nfs_link(struct dentry *, struct inode *, struct dentry *); 56 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t); 57 static int nfs_rename(struct inode *, struct dentry *, 58 struct inode *, struct dentry *); 59 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int); 60 static loff_t nfs_llseek_dir(struct file *, loff_t, int); 61 static void nfs_readdir_clear_array(struct page*); 62 63 const struct file_operations nfs_dir_operations = { 64 .llseek = nfs_llseek_dir, 65 .read = generic_read_dir, 66 .readdir = nfs_readdir, 67 .open = nfs_opendir, 68 .release = nfs_closedir, 69 .fsync = nfs_fsync_dir, 70 }; 71 72 const struct inode_operations nfs_dir_inode_operations = { 73 .create = nfs_create, 74 .lookup = nfs_lookup, 75 .link = nfs_link, 76 .unlink = nfs_unlink, 77 .symlink = nfs_symlink, 78 .mkdir = nfs_mkdir, 79 .rmdir = nfs_rmdir, 80 .mknod = nfs_mknod, 81 .rename = nfs_rename, 82 .permission = nfs_permission, 83 .getattr = nfs_getattr, 84 .setattr = nfs_setattr, 85 }; 86 87 const struct address_space_operations nfs_dir_aops = { 88 .freepage = nfs_readdir_clear_array, 89 }; 90 91 #ifdef CONFIG_NFS_V3 92 const struct inode_operations nfs3_dir_inode_operations = { 93 .create = nfs_create, 94 .lookup = nfs_lookup, 95 .link = nfs_link, 96 .unlink = nfs_unlink, 97 .symlink = nfs_symlink, 98 .mkdir = nfs_mkdir, 99 .rmdir = nfs_rmdir, 100 .mknod = nfs_mknod, 101 .rename = nfs_rename, 102 .permission = nfs_permission, 103 .getattr = nfs_getattr, 104 .setattr = nfs_setattr, 105 .listxattr = nfs3_listxattr, 106 .getxattr = nfs3_getxattr, 107 .setxattr = nfs3_setxattr, 108 .removexattr = nfs3_removexattr, 109 }; 110 #endif /* CONFIG_NFS_V3 */ 111 112 #ifdef CONFIG_NFS_V4 113 114 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *); 115 static int nfs_open_create(struct inode *dir, struct dentry *dentry, int mode, struct nameidata *nd); 116 const struct inode_operations nfs4_dir_inode_operations = { 117 .create = nfs_open_create, 118 .lookup = nfs_atomic_lookup, 119 .link = nfs_link, 120 .unlink = nfs_unlink, 121 .symlink = nfs_symlink, 122 .mkdir = nfs_mkdir, 123 .rmdir = nfs_rmdir, 124 .mknod = nfs_mknod, 125 .rename = nfs_rename, 126 .permission = nfs_permission, 127 .getattr = nfs_getattr, 128 .setattr = nfs_setattr, 129 .getxattr = generic_getxattr, 130 .setxattr = generic_setxattr, 131 .listxattr = generic_listxattr, 132 .removexattr = generic_removexattr, 133 }; 134 135 #endif /* CONFIG_NFS_V4 */ 136 137 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct rpc_cred *cred) 138 { 139 struct nfs_open_dir_context *ctx; 140 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); 141 if (ctx != NULL) { 142 ctx->duped = 0; 143 ctx->dir_cookie = 0; 144 ctx->dup_cookie = 0; 145 ctx->cred = get_rpccred(cred); 146 } else 147 ctx = ERR_PTR(-ENOMEM); 148 return ctx; 149 } 150 151 static void put_nfs_open_dir_context(struct nfs_open_dir_context *ctx) 152 { 153 put_rpccred(ctx->cred); 154 kfree(ctx); 155 } 156 157 /* 158 * Open file 159 */ 160 static int 161 nfs_opendir(struct inode *inode, struct file *filp) 162 { 163 int res = 0; 164 struct nfs_open_dir_context *ctx; 165 struct rpc_cred *cred; 166 167 dfprintk(FILE, "NFS: open dir(%s/%s)\n", 168 filp->f_path.dentry->d_parent->d_name.name, 169 filp->f_path.dentry->d_name.name); 170 171 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 172 173 cred = rpc_lookup_cred(); 174 if (IS_ERR(cred)) 175 return PTR_ERR(cred); 176 ctx = alloc_nfs_open_dir_context(cred); 177 if (IS_ERR(ctx)) { 178 res = PTR_ERR(ctx); 179 goto out; 180 } 181 filp->private_data = ctx; 182 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) { 183 /* This is a mountpoint, so d_revalidate will never 184 * have been called, so we need to refresh the 185 * inode (for close-open consistency) ourselves. 186 */ 187 __nfs_revalidate_inode(NFS_SERVER(inode), inode); 188 } 189 out: 190 put_rpccred(cred); 191 return res; 192 } 193 194 static int 195 nfs_closedir(struct inode *inode, struct file *filp) 196 { 197 put_nfs_open_dir_context(filp->private_data); 198 return 0; 199 } 200 201 struct nfs_cache_array_entry { 202 u64 cookie; 203 u64 ino; 204 struct qstr string; 205 unsigned char d_type; 206 }; 207 208 struct nfs_cache_array { 209 unsigned int size; 210 int eof_index; 211 u64 last_cookie; 212 struct nfs_cache_array_entry array[0]; 213 }; 214 215 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int); 216 typedef struct { 217 struct file *file; 218 struct page *page; 219 unsigned long page_index; 220 u64 *dir_cookie; 221 u64 last_cookie; 222 loff_t current_index; 223 decode_dirent_t decode; 224 225 unsigned long timestamp; 226 unsigned long gencount; 227 unsigned int cache_entry_index; 228 unsigned int plus:1; 229 unsigned int eof:1; 230 } nfs_readdir_descriptor_t; 231 232 /* 233 * The caller is responsible for calling nfs_readdir_release_array(page) 234 */ 235 static 236 struct nfs_cache_array *nfs_readdir_get_array(struct page *page) 237 { 238 void *ptr; 239 if (page == NULL) 240 return ERR_PTR(-EIO); 241 ptr = kmap(page); 242 if (ptr == NULL) 243 return ERR_PTR(-ENOMEM); 244 return ptr; 245 } 246 247 static 248 void nfs_readdir_release_array(struct page *page) 249 { 250 kunmap(page); 251 } 252 253 /* 254 * we are freeing strings created by nfs_add_to_readdir_array() 255 */ 256 static 257 void nfs_readdir_clear_array(struct page *page) 258 { 259 struct nfs_cache_array *array; 260 int i; 261 262 array = kmap_atomic(page, KM_USER0); 263 for (i = 0; i < array->size; i++) 264 kfree(array->array[i].string.name); 265 kunmap_atomic(array, KM_USER0); 266 } 267 268 /* 269 * the caller is responsible for freeing qstr.name 270 * when called by nfs_readdir_add_to_array, the strings will be freed in 271 * nfs_clear_readdir_array() 272 */ 273 static 274 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len) 275 { 276 string->len = len; 277 string->name = kmemdup(name, len, GFP_KERNEL); 278 if (string->name == NULL) 279 return -ENOMEM; 280 /* 281 * Avoid a kmemleak false positive. The pointer to the name is stored 282 * in a page cache page which kmemleak does not scan. 283 */ 284 kmemleak_not_leak(string->name); 285 string->hash = full_name_hash(name, len); 286 return 0; 287 } 288 289 static 290 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page) 291 { 292 struct nfs_cache_array *array = nfs_readdir_get_array(page); 293 struct nfs_cache_array_entry *cache_entry; 294 int ret; 295 296 if (IS_ERR(array)) 297 return PTR_ERR(array); 298 299 cache_entry = &array->array[array->size]; 300 301 /* Check that this entry lies within the page bounds */ 302 ret = -ENOSPC; 303 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE) 304 goto out; 305 306 cache_entry->cookie = entry->prev_cookie; 307 cache_entry->ino = entry->ino; 308 cache_entry->d_type = entry->d_type; 309 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len); 310 if (ret) 311 goto out; 312 array->last_cookie = entry->cookie; 313 array->size++; 314 if (entry->eof != 0) 315 array->eof_index = array->size; 316 out: 317 nfs_readdir_release_array(page); 318 return ret; 319 } 320 321 static 322 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 323 { 324 loff_t diff = desc->file->f_pos - desc->current_index; 325 unsigned int index; 326 struct nfs_open_dir_context *ctx = desc->file->private_data; 327 328 if (diff < 0) 329 goto out_eof; 330 if (diff >= array->size) { 331 if (array->eof_index >= 0) 332 goto out_eof; 333 return -EAGAIN; 334 } 335 336 index = (unsigned int)diff; 337 *desc->dir_cookie = array->array[index].cookie; 338 desc->cache_entry_index = index; 339 ctx->duped = 0; 340 return 0; 341 out_eof: 342 desc->eof = 1; 343 return -EBADCOOKIE; 344 } 345 346 static 347 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 348 { 349 int i; 350 loff_t new_pos; 351 int status = -EAGAIN; 352 struct nfs_open_dir_context *ctx = desc->file->private_data; 353 354 for (i = 0; i < array->size; i++) { 355 if (array->array[i].cookie == *desc->dir_cookie) { 356 new_pos = desc->current_index + i; 357 if (new_pos < desc->file->f_pos) { 358 ctx->dup_cookie = *desc->dir_cookie; 359 ctx->duped = 1; 360 } 361 desc->file->f_pos = new_pos; 362 desc->cache_entry_index = i; 363 return 0; 364 } 365 } 366 if (array->eof_index >= 0) { 367 status = -EBADCOOKIE; 368 if (*desc->dir_cookie == array->last_cookie) 369 desc->eof = 1; 370 } 371 return status; 372 } 373 374 static 375 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc) 376 { 377 struct nfs_cache_array *array; 378 int status; 379 380 array = nfs_readdir_get_array(desc->page); 381 if (IS_ERR(array)) { 382 status = PTR_ERR(array); 383 goto out; 384 } 385 386 if (*desc->dir_cookie == 0) 387 status = nfs_readdir_search_for_pos(array, desc); 388 else 389 status = nfs_readdir_search_for_cookie(array, desc); 390 391 if (status == -EAGAIN) { 392 desc->last_cookie = array->last_cookie; 393 desc->current_index += array->size; 394 desc->page_index++; 395 } 396 nfs_readdir_release_array(desc->page); 397 out: 398 return status; 399 } 400 401 /* Fill a page with xdr information before transferring to the cache page */ 402 static 403 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc, 404 struct nfs_entry *entry, struct file *file, struct inode *inode) 405 { 406 struct nfs_open_dir_context *ctx = file->private_data; 407 struct rpc_cred *cred = ctx->cred; 408 unsigned long timestamp, gencount; 409 int error; 410 411 again: 412 timestamp = jiffies; 413 gencount = nfs_inc_attr_generation_counter(); 414 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages, 415 NFS_SERVER(inode)->dtsize, desc->plus); 416 if (error < 0) { 417 /* We requested READDIRPLUS, but the server doesn't grok it */ 418 if (error == -ENOTSUPP && desc->plus) { 419 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS; 420 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 421 desc->plus = 0; 422 goto again; 423 } 424 goto error; 425 } 426 desc->timestamp = timestamp; 427 desc->gencount = gencount; 428 error: 429 return error; 430 } 431 432 static int xdr_decode(nfs_readdir_descriptor_t *desc, 433 struct nfs_entry *entry, struct xdr_stream *xdr) 434 { 435 int error; 436 437 error = desc->decode(xdr, entry, desc->plus); 438 if (error) 439 return error; 440 entry->fattr->time_start = desc->timestamp; 441 entry->fattr->gencount = desc->gencount; 442 return 0; 443 } 444 445 static 446 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry) 447 { 448 if (dentry->d_inode == NULL) 449 goto different; 450 if (nfs_compare_fh(entry->fh, NFS_FH(dentry->d_inode)) != 0) 451 goto different; 452 return 1; 453 different: 454 return 0; 455 } 456 457 static 458 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry) 459 { 460 struct qstr filename = { 461 .len = entry->len, 462 .name = entry->name, 463 }; 464 struct dentry *dentry; 465 struct dentry *alias; 466 struct inode *dir = parent->d_inode; 467 struct inode *inode; 468 469 if (filename.name[0] == '.') { 470 if (filename.len == 1) 471 return; 472 if (filename.len == 2 && filename.name[1] == '.') 473 return; 474 } 475 filename.hash = full_name_hash(filename.name, filename.len); 476 477 dentry = d_lookup(parent, &filename); 478 if (dentry != NULL) { 479 if (nfs_same_file(dentry, entry)) { 480 nfs_refresh_inode(dentry->d_inode, entry->fattr); 481 goto out; 482 } else { 483 d_drop(dentry); 484 dput(dentry); 485 } 486 } 487 488 dentry = d_alloc(parent, &filename); 489 if (dentry == NULL) 490 return; 491 492 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr); 493 if (IS_ERR(inode)) 494 goto out; 495 496 alias = d_materialise_unique(dentry, inode); 497 if (IS_ERR(alias)) 498 goto out; 499 else if (alias) { 500 nfs_set_verifier(alias, nfs_save_change_attribute(dir)); 501 dput(alias); 502 } else 503 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 504 505 out: 506 dput(dentry); 507 } 508 509 /* Perform conversion from xdr to cache array */ 510 static 511 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry, 512 struct page **xdr_pages, struct page *page, unsigned int buflen) 513 { 514 struct xdr_stream stream; 515 struct xdr_buf buf; 516 struct page *scratch; 517 struct nfs_cache_array *array; 518 unsigned int count = 0; 519 int status; 520 521 scratch = alloc_page(GFP_KERNEL); 522 if (scratch == NULL) 523 return -ENOMEM; 524 525 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen); 526 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE); 527 528 do { 529 status = xdr_decode(desc, entry, &stream); 530 if (status != 0) { 531 if (status == -EAGAIN) 532 status = 0; 533 break; 534 } 535 536 count++; 537 538 if (desc->plus != 0) 539 nfs_prime_dcache(desc->file->f_path.dentry, entry); 540 541 status = nfs_readdir_add_to_array(entry, page); 542 if (status != 0) 543 break; 544 } while (!entry->eof); 545 546 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) { 547 array = nfs_readdir_get_array(page); 548 if (!IS_ERR(array)) { 549 array->eof_index = array->size; 550 status = 0; 551 nfs_readdir_release_array(page); 552 } else 553 status = PTR_ERR(array); 554 } 555 556 put_page(scratch); 557 return status; 558 } 559 560 static 561 void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages) 562 { 563 unsigned int i; 564 for (i = 0; i < npages; i++) 565 put_page(pages[i]); 566 } 567 568 static 569 void nfs_readdir_free_large_page(void *ptr, struct page **pages, 570 unsigned int npages) 571 { 572 nfs_readdir_free_pagearray(pages, npages); 573 } 574 575 /* 576 * nfs_readdir_large_page will allocate pages that must be freed with a call 577 * to nfs_readdir_free_large_page 578 */ 579 static 580 int nfs_readdir_large_page(struct page **pages, unsigned int npages) 581 { 582 unsigned int i; 583 584 for (i = 0; i < npages; i++) { 585 struct page *page = alloc_page(GFP_KERNEL); 586 if (page == NULL) 587 goto out_freepages; 588 pages[i] = page; 589 } 590 return 0; 591 592 out_freepages: 593 nfs_readdir_free_pagearray(pages, i); 594 return -ENOMEM; 595 } 596 597 static 598 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode) 599 { 600 struct page *pages[NFS_MAX_READDIR_PAGES]; 601 void *pages_ptr = NULL; 602 struct nfs_entry entry; 603 struct file *file = desc->file; 604 struct nfs_cache_array *array; 605 int status = -ENOMEM; 606 unsigned int array_size = ARRAY_SIZE(pages); 607 608 entry.prev_cookie = 0; 609 entry.cookie = desc->last_cookie; 610 entry.eof = 0; 611 entry.fh = nfs_alloc_fhandle(); 612 entry.fattr = nfs_alloc_fattr(); 613 entry.server = NFS_SERVER(inode); 614 if (entry.fh == NULL || entry.fattr == NULL) 615 goto out; 616 617 array = nfs_readdir_get_array(page); 618 if (IS_ERR(array)) { 619 status = PTR_ERR(array); 620 goto out; 621 } 622 memset(array, 0, sizeof(struct nfs_cache_array)); 623 array->eof_index = -1; 624 625 status = nfs_readdir_large_page(pages, array_size); 626 if (status < 0) 627 goto out_release_array; 628 do { 629 unsigned int pglen; 630 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode); 631 632 if (status < 0) 633 break; 634 pglen = status; 635 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen); 636 if (status < 0) { 637 if (status == -ENOSPC) 638 status = 0; 639 break; 640 } 641 } while (array->eof_index < 0); 642 643 nfs_readdir_free_large_page(pages_ptr, pages, array_size); 644 out_release_array: 645 nfs_readdir_release_array(page); 646 out: 647 nfs_free_fattr(entry.fattr); 648 nfs_free_fhandle(entry.fh); 649 return status; 650 } 651 652 /* 653 * Now we cache directories properly, by converting xdr information 654 * to an array that can be used for lookups later. This results in 655 * fewer cache pages, since we can store more information on each page. 656 * We only need to convert from xdr once so future lookups are much simpler 657 */ 658 static 659 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page) 660 { 661 struct inode *inode = desc->file->f_path.dentry->d_inode; 662 int ret; 663 664 ret = nfs_readdir_xdr_to_array(desc, page, inode); 665 if (ret < 0) 666 goto error; 667 SetPageUptodate(page); 668 669 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) { 670 /* Should never happen */ 671 nfs_zap_mapping(inode, inode->i_mapping); 672 } 673 unlock_page(page); 674 return 0; 675 error: 676 unlock_page(page); 677 return ret; 678 } 679 680 static 681 void cache_page_release(nfs_readdir_descriptor_t *desc) 682 { 683 if (!desc->page->mapping) 684 nfs_readdir_clear_array(desc->page); 685 page_cache_release(desc->page); 686 desc->page = NULL; 687 } 688 689 static 690 struct page *get_cache_page(nfs_readdir_descriptor_t *desc) 691 { 692 return read_cache_page(desc->file->f_path.dentry->d_inode->i_mapping, 693 desc->page_index, (filler_t *)nfs_readdir_filler, desc); 694 } 695 696 /* 697 * Returns 0 if desc->dir_cookie was found on page desc->page_index 698 */ 699 static 700 int find_cache_page(nfs_readdir_descriptor_t *desc) 701 { 702 int res; 703 704 desc->page = get_cache_page(desc); 705 if (IS_ERR(desc->page)) 706 return PTR_ERR(desc->page); 707 708 res = nfs_readdir_search_array(desc); 709 if (res != 0) 710 cache_page_release(desc); 711 return res; 712 } 713 714 /* Search for desc->dir_cookie from the beginning of the page cache */ 715 static inline 716 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc) 717 { 718 int res; 719 720 if (desc->page_index == 0) { 721 desc->current_index = 0; 722 desc->last_cookie = 0; 723 } 724 do { 725 res = find_cache_page(desc); 726 } while (res == -EAGAIN); 727 return res; 728 } 729 730 /* 731 * Once we've found the start of the dirent within a page: fill 'er up... 732 */ 733 static 734 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent, 735 filldir_t filldir) 736 { 737 struct file *file = desc->file; 738 int i = 0; 739 int res = 0; 740 struct nfs_cache_array *array = NULL; 741 struct nfs_open_dir_context *ctx = file->private_data; 742 743 if (ctx->duped != 0 && ctx->dup_cookie == *desc->dir_cookie) { 744 if (printk_ratelimit()) { 745 pr_notice("NFS: directory %s/%s contains a readdir loop. " 746 "Please contact your server vendor. " 747 "Offending cookie: %llu\n", 748 file->f_dentry->d_parent->d_name.name, 749 file->f_dentry->d_name.name, 750 *desc->dir_cookie); 751 } 752 res = -ELOOP; 753 goto out; 754 } 755 756 array = nfs_readdir_get_array(desc->page); 757 if (IS_ERR(array)) { 758 res = PTR_ERR(array); 759 goto out; 760 } 761 762 for (i = desc->cache_entry_index; i < array->size; i++) { 763 struct nfs_cache_array_entry *ent; 764 765 ent = &array->array[i]; 766 if (filldir(dirent, ent->string.name, ent->string.len, 767 file->f_pos, nfs_compat_user_ino64(ent->ino), 768 ent->d_type) < 0) { 769 desc->eof = 1; 770 break; 771 } 772 file->f_pos++; 773 if (i < (array->size-1)) 774 *desc->dir_cookie = array->array[i+1].cookie; 775 else 776 *desc->dir_cookie = array->last_cookie; 777 } 778 if (array->eof_index >= 0) 779 desc->eof = 1; 780 781 nfs_readdir_release_array(desc->page); 782 out: 783 cache_page_release(desc); 784 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n", 785 (unsigned long long)*desc->dir_cookie, res); 786 return res; 787 } 788 789 /* 790 * If we cannot find a cookie in our cache, we suspect that this is 791 * because it points to a deleted file, so we ask the server to return 792 * whatever it thinks is the next entry. We then feed this to filldir. 793 * If all goes well, we should then be able to find our way round the 794 * cache on the next call to readdir_search_pagecache(); 795 * 796 * NOTE: we cannot add the anonymous page to the pagecache because 797 * the data it contains might not be page aligned. Besides, 798 * we should already have a complete representation of the 799 * directory in the page cache by the time we get here. 800 */ 801 static inline 802 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent, 803 filldir_t filldir) 804 { 805 struct page *page = NULL; 806 int status; 807 struct inode *inode = desc->file->f_path.dentry->d_inode; 808 809 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n", 810 (unsigned long long)*desc->dir_cookie); 811 812 page = alloc_page(GFP_HIGHUSER); 813 if (!page) { 814 status = -ENOMEM; 815 goto out; 816 } 817 818 desc->page_index = 0; 819 desc->last_cookie = *desc->dir_cookie; 820 desc->page = page; 821 822 status = nfs_readdir_xdr_to_array(desc, page, inode); 823 if (status < 0) 824 goto out_release; 825 826 status = nfs_do_filldir(desc, dirent, filldir); 827 828 out: 829 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", 830 __func__, status); 831 return status; 832 out_release: 833 cache_page_release(desc); 834 goto out; 835 } 836 837 /* The file offset position represents the dirent entry number. A 838 last cookie cache takes care of the common case of reading the 839 whole directory. 840 */ 841 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir) 842 { 843 struct dentry *dentry = filp->f_path.dentry; 844 struct inode *inode = dentry->d_inode; 845 nfs_readdir_descriptor_t my_desc, 846 *desc = &my_desc; 847 struct nfs_open_dir_context *dir_ctx = filp->private_data; 848 int res; 849 850 dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n", 851 dentry->d_parent->d_name.name, dentry->d_name.name, 852 (long long)filp->f_pos); 853 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS); 854 855 /* 856 * filp->f_pos points to the dirent entry number. 857 * *desc->dir_cookie has the cookie for the next entry. We have 858 * to either find the entry with the appropriate number or 859 * revalidate the cookie. 860 */ 861 memset(desc, 0, sizeof(*desc)); 862 863 desc->file = filp; 864 desc->dir_cookie = &dir_ctx->dir_cookie; 865 desc->decode = NFS_PROTO(inode)->decode_dirent; 866 desc->plus = NFS_USE_READDIRPLUS(inode); 867 868 nfs_block_sillyrename(dentry); 869 res = nfs_revalidate_mapping(inode, filp->f_mapping); 870 if (res < 0) 871 goto out; 872 873 do { 874 res = readdir_search_pagecache(desc); 875 876 if (res == -EBADCOOKIE) { 877 res = 0; 878 /* This means either end of directory */ 879 if (*desc->dir_cookie && desc->eof == 0) { 880 /* Or that the server has 'lost' a cookie */ 881 res = uncached_readdir(desc, dirent, filldir); 882 if (res == 0) 883 continue; 884 } 885 break; 886 } 887 if (res == -ETOOSMALL && desc->plus) { 888 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 889 nfs_zap_caches(inode); 890 desc->page_index = 0; 891 desc->plus = 0; 892 desc->eof = 0; 893 continue; 894 } 895 if (res < 0) 896 break; 897 898 res = nfs_do_filldir(desc, dirent, filldir); 899 if (res < 0) 900 break; 901 } while (!desc->eof); 902 out: 903 nfs_unblock_sillyrename(dentry); 904 if (res > 0) 905 res = 0; 906 dfprintk(FILE, "NFS: readdir(%s/%s) returns %d\n", 907 dentry->d_parent->d_name.name, dentry->d_name.name, 908 res); 909 return res; 910 } 911 912 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin) 913 { 914 struct dentry *dentry = filp->f_path.dentry; 915 struct inode *inode = dentry->d_inode; 916 struct nfs_open_dir_context *dir_ctx = filp->private_data; 917 918 dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n", 919 dentry->d_parent->d_name.name, 920 dentry->d_name.name, 921 offset, origin); 922 923 mutex_lock(&inode->i_mutex); 924 switch (origin) { 925 case 1: 926 offset += filp->f_pos; 927 case 0: 928 if (offset >= 0) 929 break; 930 default: 931 offset = -EINVAL; 932 goto out; 933 } 934 if (offset != filp->f_pos) { 935 filp->f_pos = offset; 936 dir_ctx->dir_cookie = 0; 937 dir_ctx->duped = 0; 938 } 939 out: 940 mutex_unlock(&inode->i_mutex); 941 return offset; 942 } 943 944 /* 945 * All directory operations under NFS are synchronous, so fsync() 946 * is a dummy operation. 947 */ 948 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end, 949 int datasync) 950 { 951 struct dentry *dentry = filp->f_path.dentry; 952 struct inode *inode = dentry->d_inode; 953 954 dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n", 955 dentry->d_parent->d_name.name, dentry->d_name.name, 956 datasync); 957 958 mutex_lock(&inode->i_mutex); 959 nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC); 960 mutex_unlock(&inode->i_mutex); 961 return 0; 962 } 963 964 /** 965 * nfs_force_lookup_revalidate - Mark the directory as having changed 966 * @dir - pointer to directory inode 967 * 968 * This forces the revalidation code in nfs_lookup_revalidate() to do a 969 * full lookup on all child dentries of 'dir' whenever a change occurs 970 * on the server that might have invalidated our dcache. 971 * 972 * The caller should be holding dir->i_lock 973 */ 974 void nfs_force_lookup_revalidate(struct inode *dir) 975 { 976 NFS_I(dir)->cache_change_attribute++; 977 } 978 979 /* 980 * A check for whether or not the parent directory has changed. 981 * In the case it has, we assume that the dentries are untrustworthy 982 * and may need to be looked up again. 983 */ 984 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry) 985 { 986 if (IS_ROOT(dentry)) 987 return 1; 988 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE) 989 return 0; 990 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 991 return 0; 992 /* Revalidate nfsi->cache_change_attribute before we declare a match */ 993 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0) 994 return 0; 995 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 996 return 0; 997 return 1; 998 } 999 1000 /* 1001 * Return the intent data that applies to this particular path component 1002 * 1003 * Note that the current set of intents only apply to the very last 1004 * component of the path and none of them is set before that last 1005 * component. 1006 */ 1007 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, 1008 unsigned int mask) 1009 { 1010 return nd->flags & mask; 1011 } 1012 1013 /* 1014 * Use intent information to check whether or not we're going to do 1015 * an O_EXCL create using this path component. 1016 */ 1017 static int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd) 1018 { 1019 if (NFS_PROTO(dir)->version == 2) 1020 return 0; 1021 return nd && nfs_lookup_check_intent(nd, LOOKUP_EXCL); 1022 } 1023 1024 /* 1025 * Inode and filehandle revalidation for lookups. 1026 * 1027 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL, 1028 * or if the intent information indicates that we're about to open this 1029 * particular file and the "nocto" mount flag is not set. 1030 * 1031 */ 1032 static inline 1033 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd) 1034 { 1035 struct nfs_server *server = NFS_SERVER(inode); 1036 1037 if (IS_AUTOMOUNT(inode)) 1038 return 0; 1039 if (nd != NULL) { 1040 /* VFS wants an on-the-wire revalidation */ 1041 if (nd->flags & LOOKUP_REVAL) 1042 goto out_force; 1043 /* This is an open(2) */ 1044 if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 && 1045 !(server->flags & NFS_MOUNT_NOCTO) && 1046 (S_ISREG(inode->i_mode) || 1047 S_ISDIR(inode->i_mode))) 1048 goto out_force; 1049 return 0; 1050 } 1051 return nfs_revalidate_inode(server, inode); 1052 out_force: 1053 return __nfs_revalidate_inode(server, inode); 1054 } 1055 1056 /* 1057 * We judge how long we want to trust negative 1058 * dentries by looking at the parent inode mtime. 1059 * 1060 * If parent mtime has changed, we revalidate, else we wait for a 1061 * period corresponding to the parent's attribute cache timeout value. 1062 */ 1063 static inline 1064 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry, 1065 struct nameidata *nd) 1066 { 1067 /* Don't revalidate a negative dentry if we're creating a new file */ 1068 if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0) 1069 return 0; 1070 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG) 1071 return 1; 1072 return !nfs_check_verifier(dir, dentry); 1073 } 1074 1075 /* 1076 * This is called every time the dcache has a lookup hit, 1077 * and we should check whether we can really trust that 1078 * lookup. 1079 * 1080 * NOTE! The hit can be a negative hit too, don't assume 1081 * we have an inode! 1082 * 1083 * If the parent directory is seen to have changed, we throw out the 1084 * cached dentry and do a new lookup. 1085 */ 1086 static int nfs_lookup_revalidate(struct dentry *dentry, struct nameidata *nd) 1087 { 1088 struct inode *dir; 1089 struct inode *inode; 1090 struct dentry *parent; 1091 struct nfs_fh *fhandle = NULL; 1092 struct nfs_fattr *fattr = NULL; 1093 int error; 1094 1095 if (nd->flags & LOOKUP_RCU) 1096 return -ECHILD; 1097 1098 parent = dget_parent(dentry); 1099 dir = parent->d_inode; 1100 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE); 1101 inode = dentry->d_inode; 1102 1103 if (!inode) { 1104 if (nfs_neg_need_reval(dir, dentry, nd)) 1105 goto out_bad; 1106 goto out_valid; 1107 } 1108 1109 if (is_bad_inode(inode)) { 1110 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n", 1111 __func__, dentry->d_parent->d_name.name, 1112 dentry->d_name.name); 1113 goto out_bad; 1114 } 1115 1116 if (nfs_have_delegation(inode, FMODE_READ)) 1117 goto out_set_verifier; 1118 1119 /* Force a full look up iff the parent directory has changed */ 1120 if (!nfs_is_exclusive_create(dir, nd) && nfs_check_verifier(dir, dentry)) { 1121 if (nfs_lookup_verify_inode(inode, nd)) 1122 goto out_zap_parent; 1123 goto out_valid; 1124 } 1125 1126 if (NFS_STALE(inode)) 1127 goto out_bad; 1128 1129 error = -ENOMEM; 1130 fhandle = nfs_alloc_fhandle(); 1131 fattr = nfs_alloc_fattr(); 1132 if (fhandle == NULL || fattr == NULL) 1133 goto out_error; 1134 1135 error = NFS_PROTO(dir)->lookup(NFS_SERVER(dir)->client, dir, &dentry->d_name, fhandle, fattr); 1136 if (error) 1137 goto out_bad; 1138 if (nfs_compare_fh(NFS_FH(inode), fhandle)) 1139 goto out_bad; 1140 if ((error = nfs_refresh_inode(inode, fattr)) != 0) 1141 goto out_bad; 1142 1143 nfs_free_fattr(fattr); 1144 nfs_free_fhandle(fhandle); 1145 out_set_verifier: 1146 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1147 out_valid: 1148 dput(parent); 1149 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n", 1150 __func__, dentry->d_parent->d_name.name, 1151 dentry->d_name.name); 1152 return 1; 1153 out_zap_parent: 1154 nfs_zap_caches(dir); 1155 out_bad: 1156 nfs_mark_for_revalidate(dir); 1157 if (inode && S_ISDIR(inode->i_mode)) { 1158 /* Purge readdir caches. */ 1159 nfs_zap_caches(inode); 1160 /* If we have submounts, don't unhash ! */ 1161 if (have_submounts(dentry)) 1162 goto out_valid; 1163 if (dentry->d_flags & DCACHE_DISCONNECTED) 1164 goto out_valid; 1165 shrink_dcache_parent(dentry); 1166 } 1167 d_drop(dentry); 1168 nfs_free_fattr(fattr); 1169 nfs_free_fhandle(fhandle); 1170 dput(parent); 1171 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n", 1172 __func__, dentry->d_parent->d_name.name, 1173 dentry->d_name.name); 1174 return 0; 1175 out_error: 1176 nfs_free_fattr(fattr); 1177 nfs_free_fhandle(fhandle); 1178 dput(parent); 1179 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n", 1180 __func__, dentry->d_parent->d_name.name, 1181 dentry->d_name.name, error); 1182 return error; 1183 } 1184 1185 /* 1186 * This is called from dput() when d_count is going to 0. 1187 */ 1188 static int nfs_dentry_delete(const struct dentry *dentry) 1189 { 1190 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n", 1191 dentry->d_parent->d_name.name, dentry->d_name.name, 1192 dentry->d_flags); 1193 1194 /* Unhash any dentry with a stale inode */ 1195 if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode)) 1196 return 1; 1197 1198 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1199 /* Unhash it, so that ->d_iput() would be called */ 1200 return 1; 1201 } 1202 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) { 1203 /* Unhash it, so that ancestors of killed async unlink 1204 * files will be cleaned up during umount */ 1205 return 1; 1206 } 1207 return 0; 1208 1209 } 1210 1211 static void nfs_drop_nlink(struct inode *inode) 1212 { 1213 spin_lock(&inode->i_lock); 1214 if (inode->i_nlink > 0) 1215 drop_nlink(inode); 1216 spin_unlock(&inode->i_lock); 1217 } 1218 1219 /* 1220 * Called when the dentry loses inode. 1221 * We use it to clean up silly-renamed files. 1222 */ 1223 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode) 1224 { 1225 if (S_ISDIR(inode->i_mode)) 1226 /* drop any readdir cache as it could easily be old */ 1227 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA; 1228 1229 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1230 drop_nlink(inode); 1231 nfs_complete_unlink(dentry, inode); 1232 } 1233 iput(inode); 1234 } 1235 1236 static void nfs_d_release(struct dentry *dentry) 1237 { 1238 /* free cached devname value, if it survived that far */ 1239 if (unlikely(dentry->d_fsdata)) { 1240 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1241 WARN_ON(1); 1242 else 1243 kfree(dentry->d_fsdata); 1244 } 1245 } 1246 1247 const struct dentry_operations nfs_dentry_operations = { 1248 .d_revalidate = nfs_lookup_revalidate, 1249 .d_delete = nfs_dentry_delete, 1250 .d_iput = nfs_dentry_iput, 1251 .d_automount = nfs_d_automount, 1252 .d_release = nfs_d_release, 1253 }; 1254 1255 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd) 1256 { 1257 struct dentry *res; 1258 struct dentry *parent; 1259 struct inode *inode = NULL; 1260 struct nfs_fh *fhandle = NULL; 1261 struct nfs_fattr *fattr = NULL; 1262 int error; 1263 1264 dfprintk(VFS, "NFS: lookup(%s/%s)\n", 1265 dentry->d_parent->d_name.name, dentry->d_name.name); 1266 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP); 1267 1268 res = ERR_PTR(-ENAMETOOLONG); 1269 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 1270 goto out; 1271 1272 /* 1273 * If we're doing an exclusive create, optimize away the lookup 1274 * but don't hash the dentry. 1275 */ 1276 if (nfs_is_exclusive_create(dir, nd)) { 1277 d_instantiate(dentry, NULL); 1278 res = NULL; 1279 goto out; 1280 } 1281 1282 res = ERR_PTR(-ENOMEM); 1283 fhandle = nfs_alloc_fhandle(); 1284 fattr = nfs_alloc_fattr(); 1285 if (fhandle == NULL || fattr == NULL) 1286 goto out; 1287 1288 parent = dentry->d_parent; 1289 /* Protect against concurrent sillydeletes */ 1290 nfs_block_sillyrename(parent); 1291 error = NFS_PROTO(dir)->lookup(NFS_SERVER(dir)->client, dir, &dentry->d_name, fhandle, fattr); 1292 if (error == -ENOENT) 1293 goto no_entry; 1294 if (error < 0) { 1295 res = ERR_PTR(error); 1296 goto out_unblock_sillyrename; 1297 } 1298 inode = nfs_fhget(dentry->d_sb, fhandle, fattr); 1299 res = ERR_CAST(inode); 1300 if (IS_ERR(res)) 1301 goto out_unblock_sillyrename; 1302 1303 no_entry: 1304 res = d_materialise_unique(dentry, inode); 1305 if (res != NULL) { 1306 if (IS_ERR(res)) 1307 goto out_unblock_sillyrename; 1308 dentry = res; 1309 } 1310 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1311 out_unblock_sillyrename: 1312 nfs_unblock_sillyrename(parent); 1313 out: 1314 nfs_free_fattr(fattr); 1315 nfs_free_fhandle(fhandle); 1316 return res; 1317 } 1318 1319 #ifdef CONFIG_NFS_V4 1320 static int nfs_open_revalidate(struct dentry *, struct nameidata *); 1321 1322 const struct dentry_operations nfs4_dentry_operations = { 1323 .d_revalidate = nfs_open_revalidate, 1324 .d_delete = nfs_dentry_delete, 1325 .d_iput = nfs_dentry_iput, 1326 .d_automount = nfs_d_automount, 1327 .d_release = nfs_d_release, 1328 }; 1329 1330 /* 1331 * Use intent information to determine whether we need to substitute 1332 * the NFSv4-style stateful OPEN for the LOOKUP call 1333 */ 1334 static int is_atomic_open(struct nameidata *nd) 1335 { 1336 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0) 1337 return 0; 1338 /* NFS does not (yet) have a stateful open for directories */ 1339 if (nd->flags & LOOKUP_DIRECTORY) 1340 return 0; 1341 /* Are we trying to write to a read only partition? */ 1342 if (__mnt_is_readonly(nd->path.mnt) && 1343 (nd->intent.open.flags & (O_CREAT|O_TRUNC|O_ACCMODE))) 1344 return 0; 1345 return 1; 1346 } 1347 1348 static fmode_t flags_to_mode(int flags) 1349 { 1350 fmode_t res = (__force fmode_t)flags & FMODE_EXEC; 1351 if ((flags & O_ACCMODE) != O_WRONLY) 1352 res |= FMODE_READ; 1353 if ((flags & O_ACCMODE) != O_RDONLY) 1354 res |= FMODE_WRITE; 1355 return res; 1356 } 1357 1358 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags) 1359 { 1360 struct nfs_open_context *ctx; 1361 struct rpc_cred *cred; 1362 fmode_t fmode = flags_to_mode(open_flags); 1363 1364 cred = rpc_lookup_cred(); 1365 if (IS_ERR(cred)) 1366 return ERR_CAST(cred); 1367 ctx = alloc_nfs_open_context(dentry, cred, fmode); 1368 put_rpccred(cred); 1369 if (ctx == NULL) 1370 return ERR_PTR(-ENOMEM); 1371 return ctx; 1372 } 1373 1374 static int do_open(struct inode *inode, struct file *filp) 1375 { 1376 nfs_fscache_set_inode_cookie(inode, filp); 1377 return 0; 1378 } 1379 1380 static int nfs_intent_set_file(struct nameidata *nd, struct nfs_open_context *ctx) 1381 { 1382 struct file *filp; 1383 int ret = 0; 1384 1385 /* If the open_intent is for execute, we have an extra check to make */ 1386 if (ctx->mode & FMODE_EXEC) { 1387 ret = nfs_may_open(ctx->dentry->d_inode, 1388 ctx->cred, 1389 nd->intent.open.flags); 1390 if (ret < 0) 1391 goto out; 1392 } 1393 filp = lookup_instantiate_filp(nd, ctx->dentry, do_open); 1394 if (IS_ERR(filp)) 1395 ret = PTR_ERR(filp); 1396 else 1397 nfs_file_set_open_context(filp, ctx); 1398 out: 1399 put_nfs_open_context(ctx); 1400 return ret; 1401 } 1402 1403 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd) 1404 { 1405 struct nfs_open_context *ctx; 1406 struct iattr attr; 1407 struct dentry *res = NULL; 1408 struct inode *inode; 1409 int open_flags; 1410 int err; 1411 1412 dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n", 1413 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1414 1415 /* Check that we are indeed trying to open this file */ 1416 if (!is_atomic_open(nd)) 1417 goto no_open; 1418 1419 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) { 1420 res = ERR_PTR(-ENAMETOOLONG); 1421 goto out; 1422 } 1423 1424 /* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash 1425 * the dentry. */ 1426 if (nd->flags & LOOKUP_EXCL) { 1427 d_instantiate(dentry, NULL); 1428 goto out; 1429 } 1430 1431 open_flags = nd->intent.open.flags; 1432 1433 ctx = create_nfs_open_context(dentry, open_flags); 1434 res = ERR_CAST(ctx); 1435 if (IS_ERR(ctx)) 1436 goto out; 1437 1438 if (nd->flags & LOOKUP_CREATE) { 1439 attr.ia_mode = nd->intent.open.create_mode; 1440 attr.ia_valid = ATTR_MODE; 1441 attr.ia_mode &= ~current_umask(); 1442 } else { 1443 open_flags &= ~(O_EXCL | O_CREAT); 1444 attr.ia_valid = 0; 1445 } 1446 1447 /* Open the file on the server */ 1448 nfs_block_sillyrename(dentry->d_parent); 1449 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr); 1450 if (IS_ERR(inode)) { 1451 nfs_unblock_sillyrename(dentry->d_parent); 1452 put_nfs_open_context(ctx); 1453 switch (PTR_ERR(inode)) { 1454 /* Make a negative dentry */ 1455 case -ENOENT: 1456 d_add(dentry, NULL); 1457 res = NULL; 1458 goto out; 1459 /* This turned out not to be a regular file */ 1460 case -ENOTDIR: 1461 goto no_open; 1462 case -ELOOP: 1463 if (!(nd->intent.open.flags & O_NOFOLLOW)) 1464 goto no_open; 1465 /* case -EISDIR: */ 1466 /* case -EINVAL: */ 1467 default: 1468 res = ERR_CAST(inode); 1469 goto out; 1470 } 1471 } 1472 res = d_add_unique(dentry, inode); 1473 nfs_unblock_sillyrename(dentry->d_parent); 1474 if (res != NULL) { 1475 dput(ctx->dentry); 1476 ctx->dentry = dget(res); 1477 dentry = res; 1478 } 1479 err = nfs_intent_set_file(nd, ctx); 1480 if (err < 0) { 1481 if (res != NULL) 1482 dput(res); 1483 return ERR_PTR(err); 1484 } 1485 out: 1486 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1487 return res; 1488 no_open: 1489 return nfs_lookup(dir, dentry, nd); 1490 } 1491 1492 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd) 1493 { 1494 struct dentry *parent = NULL; 1495 struct inode *inode; 1496 struct inode *dir; 1497 struct nfs_open_context *ctx; 1498 int openflags, ret = 0; 1499 1500 if (nd->flags & LOOKUP_RCU) 1501 return -ECHILD; 1502 1503 inode = dentry->d_inode; 1504 if (!is_atomic_open(nd) || d_mountpoint(dentry)) 1505 goto no_open; 1506 1507 parent = dget_parent(dentry); 1508 dir = parent->d_inode; 1509 1510 /* We can't create new files in nfs_open_revalidate(), so we 1511 * optimize away revalidation of negative dentries. 1512 */ 1513 if (inode == NULL) { 1514 if (!nfs_neg_need_reval(dir, dentry, nd)) 1515 ret = 1; 1516 goto out; 1517 } 1518 1519 /* NFS only supports OPEN on regular files */ 1520 if (!S_ISREG(inode->i_mode)) 1521 goto no_open_dput; 1522 openflags = nd->intent.open.flags; 1523 /* We cannot do exclusive creation on a positive dentry */ 1524 if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL)) 1525 goto no_open_dput; 1526 /* We can't create new files, or truncate existing ones here */ 1527 openflags &= ~(O_CREAT|O_EXCL|O_TRUNC); 1528 1529 ctx = create_nfs_open_context(dentry, openflags); 1530 ret = PTR_ERR(ctx); 1531 if (IS_ERR(ctx)) 1532 goto out; 1533 /* 1534 * Note: we're not holding inode->i_mutex and so may be racing with 1535 * operations that change the directory. We therefore save the 1536 * change attribute *before* we do the RPC call. 1537 */ 1538 inode = NFS_PROTO(dir)->open_context(dir, ctx, openflags, NULL); 1539 if (IS_ERR(inode)) { 1540 ret = PTR_ERR(inode); 1541 switch (ret) { 1542 case -EPERM: 1543 case -EACCES: 1544 case -EDQUOT: 1545 case -ENOSPC: 1546 case -EROFS: 1547 goto out_put_ctx; 1548 default: 1549 goto out_drop; 1550 } 1551 } 1552 iput(inode); 1553 if (inode != dentry->d_inode) 1554 goto out_drop; 1555 1556 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1557 ret = nfs_intent_set_file(nd, ctx); 1558 if (ret >= 0) 1559 ret = 1; 1560 out: 1561 dput(parent); 1562 return ret; 1563 out_drop: 1564 d_drop(dentry); 1565 ret = 0; 1566 out_put_ctx: 1567 put_nfs_open_context(ctx); 1568 goto out; 1569 1570 no_open_dput: 1571 dput(parent); 1572 no_open: 1573 return nfs_lookup_revalidate(dentry, nd); 1574 } 1575 1576 static int nfs_open_create(struct inode *dir, struct dentry *dentry, int mode, 1577 struct nameidata *nd) 1578 { 1579 struct nfs_open_context *ctx = NULL; 1580 struct iattr attr; 1581 int error; 1582 int open_flags = O_CREAT|O_EXCL; 1583 1584 dfprintk(VFS, "NFS: create(%s/%ld), %s\n", 1585 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1586 1587 attr.ia_mode = mode; 1588 attr.ia_valid = ATTR_MODE; 1589 1590 if (nd) 1591 open_flags = nd->intent.open.flags; 1592 1593 ctx = create_nfs_open_context(dentry, open_flags); 1594 error = PTR_ERR(ctx); 1595 if (IS_ERR(ctx)) 1596 goto out_err_drop; 1597 1598 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, ctx); 1599 if (error != 0) 1600 goto out_put_ctx; 1601 if (nd) { 1602 error = nfs_intent_set_file(nd, ctx); 1603 if (error < 0) 1604 goto out_err; 1605 } else { 1606 put_nfs_open_context(ctx); 1607 } 1608 return 0; 1609 out_put_ctx: 1610 put_nfs_open_context(ctx); 1611 out_err_drop: 1612 d_drop(dentry); 1613 out_err: 1614 return error; 1615 } 1616 1617 #endif /* CONFIG_NFSV4 */ 1618 1619 /* 1620 * Code common to create, mkdir, and mknod. 1621 */ 1622 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle, 1623 struct nfs_fattr *fattr) 1624 { 1625 struct dentry *parent = dget_parent(dentry); 1626 struct inode *dir = parent->d_inode; 1627 struct inode *inode; 1628 int error = -EACCES; 1629 1630 d_drop(dentry); 1631 1632 /* We may have been initialized further down */ 1633 if (dentry->d_inode) 1634 goto out; 1635 if (fhandle->size == 0) { 1636 error = NFS_PROTO(dir)->lookup(NFS_SERVER(dir)->client, dir, &dentry->d_name, fhandle, fattr); 1637 if (error) 1638 goto out_error; 1639 } 1640 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1641 if (!(fattr->valid & NFS_ATTR_FATTR)) { 1642 struct nfs_server *server = NFS_SB(dentry->d_sb); 1643 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr); 1644 if (error < 0) 1645 goto out_error; 1646 } 1647 inode = nfs_fhget(dentry->d_sb, fhandle, fattr); 1648 error = PTR_ERR(inode); 1649 if (IS_ERR(inode)) 1650 goto out_error; 1651 d_add(dentry, inode); 1652 out: 1653 dput(parent); 1654 return 0; 1655 out_error: 1656 nfs_mark_for_revalidate(dir); 1657 dput(parent); 1658 return error; 1659 } 1660 1661 /* 1662 * Following a failed create operation, we drop the dentry rather 1663 * than retain a negative dentry. This avoids a problem in the event 1664 * that the operation succeeded on the server, but an error in the 1665 * reply path made it appear to have failed. 1666 */ 1667 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode, 1668 struct nameidata *nd) 1669 { 1670 struct iattr attr; 1671 int error; 1672 int open_flags = O_CREAT|O_EXCL; 1673 1674 dfprintk(VFS, "NFS: create(%s/%ld), %s\n", 1675 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1676 1677 attr.ia_mode = mode; 1678 attr.ia_valid = ATTR_MODE; 1679 1680 if (nd) 1681 open_flags = nd->intent.open.flags; 1682 1683 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, NULL); 1684 if (error != 0) 1685 goto out_err; 1686 return 0; 1687 out_err: 1688 d_drop(dentry); 1689 return error; 1690 } 1691 1692 /* 1693 * See comments for nfs_proc_create regarding failed operations. 1694 */ 1695 static int 1696 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev) 1697 { 1698 struct iattr attr; 1699 int status; 1700 1701 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n", 1702 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1703 1704 if (!new_valid_dev(rdev)) 1705 return -EINVAL; 1706 1707 attr.ia_mode = mode; 1708 attr.ia_valid = ATTR_MODE; 1709 1710 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev); 1711 if (status != 0) 1712 goto out_err; 1713 return 0; 1714 out_err: 1715 d_drop(dentry); 1716 return status; 1717 } 1718 1719 /* 1720 * See comments for nfs_proc_create regarding failed operations. 1721 */ 1722 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 1723 { 1724 struct iattr attr; 1725 int error; 1726 1727 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n", 1728 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1729 1730 attr.ia_valid = ATTR_MODE; 1731 attr.ia_mode = mode | S_IFDIR; 1732 1733 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr); 1734 if (error != 0) 1735 goto out_err; 1736 return 0; 1737 out_err: 1738 d_drop(dentry); 1739 return error; 1740 } 1741 1742 static void nfs_dentry_handle_enoent(struct dentry *dentry) 1743 { 1744 if (dentry->d_inode != NULL && !d_unhashed(dentry)) 1745 d_delete(dentry); 1746 } 1747 1748 static int nfs_rmdir(struct inode *dir, struct dentry *dentry) 1749 { 1750 int error; 1751 1752 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n", 1753 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1754 1755 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1756 /* Ensure the VFS deletes this inode */ 1757 if (error == 0 && dentry->d_inode != NULL) 1758 clear_nlink(dentry->d_inode); 1759 else if (error == -ENOENT) 1760 nfs_dentry_handle_enoent(dentry); 1761 1762 return error; 1763 } 1764 1765 /* 1766 * Remove a file after making sure there are no pending writes, 1767 * and after checking that the file has only one user. 1768 * 1769 * We invalidate the attribute cache and free the inode prior to the operation 1770 * to avoid possible races if the server reuses the inode. 1771 */ 1772 static int nfs_safe_remove(struct dentry *dentry) 1773 { 1774 struct inode *dir = dentry->d_parent->d_inode; 1775 struct inode *inode = dentry->d_inode; 1776 int error = -EBUSY; 1777 1778 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n", 1779 dentry->d_parent->d_name.name, dentry->d_name.name); 1780 1781 /* If the dentry was sillyrenamed, we simply call d_delete() */ 1782 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1783 error = 0; 1784 goto out; 1785 } 1786 1787 if (inode != NULL) { 1788 nfs_inode_return_delegation(inode); 1789 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name); 1790 /* The VFS may want to delete this inode */ 1791 if (error == 0) 1792 nfs_drop_nlink(inode); 1793 nfs_mark_for_revalidate(inode); 1794 } else 1795 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name); 1796 if (error == -ENOENT) 1797 nfs_dentry_handle_enoent(dentry); 1798 out: 1799 return error; 1800 } 1801 1802 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode 1803 * belongs to an active ".nfs..." file and we return -EBUSY. 1804 * 1805 * If sillyrename() returns 0, we do nothing, otherwise we unlink. 1806 */ 1807 static int nfs_unlink(struct inode *dir, struct dentry *dentry) 1808 { 1809 int error; 1810 int need_rehash = 0; 1811 1812 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id, 1813 dir->i_ino, dentry->d_name.name); 1814 1815 spin_lock(&dentry->d_lock); 1816 if (dentry->d_count > 1) { 1817 spin_unlock(&dentry->d_lock); 1818 /* Start asynchronous writeout of the inode */ 1819 write_inode_now(dentry->d_inode, 0); 1820 error = nfs_sillyrename(dir, dentry); 1821 return error; 1822 } 1823 if (!d_unhashed(dentry)) { 1824 __d_drop(dentry); 1825 need_rehash = 1; 1826 } 1827 spin_unlock(&dentry->d_lock); 1828 error = nfs_safe_remove(dentry); 1829 if (!error || error == -ENOENT) { 1830 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1831 } else if (need_rehash) 1832 d_rehash(dentry); 1833 return error; 1834 } 1835 1836 /* 1837 * To create a symbolic link, most file systems instantiate a new inode, 1838 * add a page to it containing the path, then write it out to the disk 1839 * using prepare_write/commit_write. 1840 * 1841 * Unfortunately the NFS client can't create the in-core inode first 1842 * because it needs a file handle to create an in-core inode (see 1843 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the 1844 * symlink request has completed on the server. 1845 * 1846 * So instead we allocate a raw page, copy the symname into it, then do 1847 * the SYMLINK request with the page as the buffer. If it succeeds, we 1848 * now have a new file handle and can instantiate an in-core NFS inode 1849 * and move the raw page into its mapping. 1850 */ 1851 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 1852 { 1853 struct pagevec lru_pvec; 1854 struct page *page; 1855 char *kaddr; 1856 struct iattr attr; 1857 unsigned int pathlen = strlen(symname); 1858 int error; 1859 1860 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id, 1861 dir->i_ino, dentry->d_name.name, symname); 1862 1863 if (pathlen > PAGE_SIZE) 1864 return -ENAMETOOLONG; 1865 1866 attr.ia_mode = S_IFLNK | S_IRWXUGO; 1867 attr.ia_valid = ATTR_MODE; 1868 1869 page = alloc_page(GFP_HIGHUSER); 1870 if (!page) 1871 return -ENOMEM; 1872 1873 kaddr = kmap_atomic(page, KM_USER0); 1874 memcpy(kaddr, symname, pathlen); 1875 if (pathlen < PAGE_SIZE) 1876 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen); 1877 kunmap_atomic(kaddr, KM_USER0); 1878 1879 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr); 1880 if (error != 0) { 1881 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n", 1882 dir->i_sb->s_id, dir->i_ino, 1883 dentry->d_name.name, symname, error); 1884 d_drop(dentry); 1885 __free_page(page); 1886 return error; 1887 } 1888 1889 /* 1890 * No big deal if we can't add this page to the page cache here. 1891 * READLINK will get the missing page from the server if needed. 1892 */ 1893 pagevec_init(&lru_pvec, 0); 1894 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0, 1895 GFP_KERNEL)) { 1896 pagevec_add(&lru_pvec, page); 1897 pagevec_lru_add_file(&lru_pvec); 1898 SetPageUptodate(page); 1899 unlock_page(page); 1900 } else 1901 __free_page(page); 1902 1903 return 0; 1904 } 1905 1906 static int 1907 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 1908 { 1909 struct inode *inode = old_dentry->d_inode; 1910 int error; 1911 1912 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n", 1913 old_dentry->d_parent->d_name.name, old_dentry->d_name.name, 1914 dentry->d_parent->d_name.name, dentry->d_name.name); 1915 1916 nfs_inode_return_delegation(inode); 1917 1918 d_drop(dentry); 1919 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name); 1920 if (error == 0) { 1921 ihold(inode); 1922 d_add(dentry, inode); 1923 } 1924 return error; 1925 } 1926 1927 /* 1928 * RENAME 1929 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a 1930 * different file handle for the same inode after a rename (e.g. when 1931 * moving to a different directory). A fail-safe method to do so would 1932 * be to look up old_dir/old_name, create a link to new_dir/new_name and 1933 * rename the old file using the sillyrename stuff. This way, the original 1934 * file in old_dir will go away when the last process iput()s the inode. 1935 * 1936 * FIXED. 1937 * 1938 * It actually works quite well. One needs to have the possibility for 1939 * at least one ".nfs..." file in each directory the file ever gets 1940 * moved or linked to which happens automagically with the new 1941 * implementation that only depends on the dcache stuff instead of 1942 * using the inode layer 1943 * 1944 * Unfortunately, things are a little more complicated than indicated 1945 * above. For a cross-directory move, we want to make sure we can get 1946 * rid of the old inode after the operation. This means there must be 1947 * no pending writes (if it's a file), and the use count must be 1. 1948 * If these conditions are met, we can drop the dentries before doing 1949 * the rename. 1950 */ 1951 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry, 1952 struct inode *new_dir, struct dentry *new_dentry) 1953 { 1954 struct inode *old_inode = old_dentry->d_inode; 1955 struct inode *new_inode = new_dentry->d_inode; 1956 struct dentry *dentry = NULL, *rehash = NULL; 1957 int error = -EBUSY; 1958 1959 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n", 1960 old_dentry->d_parent->d_name.name, old_dentry->d_name.name, 1961 new_dentry->d_parent->d_name.name, new_dentry->d_name.name, 1962 new_dentry->d_count); 1963 1964 /* 1965 * For non-directories, check whether the target is busy and if so, 1966 * make a copy of the dentry and then do a silly-rename. If the 1967 * silly-rename succeeds, the copied dentry is hashed and becomes 1968 * the new target. 1969 */ 1970 if (new_inode && !S_ISDIR(new_inode->i_mode)) { 1971 /* 1972 * To prevent any new references to the target during the 1973 * rename, we unhash the dentry in advance. 1974 */ 1975 if (!d_unhashed(new_dentry)) { 1976 d_drop(new_dentry); 1977 rehash = new_dentry; 1978 } 1979 1980 if (new_dentry->d_count > 2) { 1981 int err; 1982 1983 /* copy the target dentry's name */ 1984 dentry = d_alloc(new_dentry->d_parent, 1985 &new_dentry->d_name); 1986 if (!dentry) 1987 goto out; 1988 1989 /* silly-rename the existing target ... */ 1990 err = nfs_sillyrename(new_dir, new_dentry); 1991 if (err) 1992 goto out; 1993 1994 new_dentry = dentry; 1995 rehash = NULL; 1996 new_inode = NULL; 1997 } 1998 } 1999 2000 nfs_inode_return_delegation(old_inode); 2001 if (new_inode != NULL) 2002 nfs_inode_return_delegation(new_inode); 2003 2004 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name, 2005 new_dir, &new_dentry->d_name); 2006 nfs_mark_for_revalidate(old_inode); 2007 out: 2008 if (rehash) 2009 d_rehash(rehash); 2010 if (!error) { 2011 if (new_inode != NULL) 2012 nfs_drop_nlink(new_inode); 2013 d_move(old_dentry, new_dentry); 2014 nfs_set_verifier(new_dentry, 2015 nfs_save_change_attribute(new_dir)); 2016 } else if (error == -ENOENT) 2017 nfs_dentry_handle_enoent(old_dentry); 2018 2019 /* new dentry created? */ 2020 if (dentry) 2021 dput(dentry); 2022 return error; 2023 } 2024 2025 static DEFINE_SPINLOCK(nfs_access_lru_lock); 2026 static LIST_HEAD(nfs_access_lru_list); 2027 static atomic_long_t nfs_access_nr_entries; 2028 2029 static void nfs_access_free_entry(struct nfs_access_entry *entry) 2030 { 2031 put_rpccred(entry->cred); 2032 kfree(entry); 2033 smp_mb__before_atomic_dec(); 2034 atomic_long_dec(&nfs_access_nr_entries); 2035 smp_mb__after_atomic_dec(); 2036 } 2037 2038 static void nfs_access_free_list(struct list_head *head) 2039 { 2040 struct nfs_access_entry *cache; 2041 2042 while (!list_empty(head)) { 2043 cache = list_entry(head->next, struct nfs_access_entry, lru); 2044 list_del(&cache->lru); 2045 nfs_access_free_entry(cache); 2046 } 2047 } 2048 2049 int nfs_access_cache_shrinker(struct shrinker *shrink, 2050 struct shrink_control *sc) 2051 { 2052 LIST_HEAD(head); 2053 struct nfs_inode *nfsi, *next; 2054 struct nfs_access_entry *cache; 2055 int nr_to_scan = sc->nr_to_scan; 2056 gfp_t gfp_mask = sc->gfp_mask; 2057 2058 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL) 2059 return (nr_to_scan == 0) ? 0 : -1; 2060 2061 spin_lock(&nfs_access_lru_lock); 2062 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) { 2063 struct inode *inode; 2064 2065 if (nr_to_scan-- == 0) 2066 break; 2067 inode = &nfsi->vfs_inode; 2068 spin_lock(&inode->i_lock); 2069 if (list_empty(&nfsi->access_cache_entry_lru)) 2070 goto remove_lru_entry; 2071 cache = list_entry(nfsi->access_cache_entry_lru.next, 2072 struct nfs_access_entry, lru); 2073 list_move(&cache->lru, &head); 2074 rb_erase(&cache->rb_node, &nfsi->access_cache); 2075 if (!list_empty(&nfsi->access_cache_entry_lru)) 2076 list_move_tail(&nfsi->access_cache_inode_lru, 2077 &nfs_access_lru_list); 2078 else { 2079 remove_lru_entry: 2080 list_del_init(&nfsi->access_cache_inode_lru); 2081 smp_mb__before_clear_bit(); 2082 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags); 2083 smp_mb__after_clear_bit(); 2084 } 2085 spin_unlock(&inode->i_lock); 2086 } 2087 spin_unlock(&nfs_access_lru_lock); 2088 nfs_access_free_list(&head); 2089 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure; 2090 } 2091 2092 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head) 2093 { 2094 struct rb_root *root_node = &nfsi->access_cache; 2095 struct rb_node *n; 2096 struct nfs_access_entry *entry; 2097 2098 /* Unhook entries from the cache */ 2099 while ((n = rb_first(root_node)) != NULL) { 2100 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2101 rb_erase(n, root_node); 2102 list_move(&entry->lru, head); 2103 } 2104 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS; 2105 } 2106 2107 void nfs_access_zap_cache(struct inode *inode) 2108 { 2109 LIST_HEAD(head); 2110 2111 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0) 2112 return; 2113 /* Remove from global LRU init */ 2114 spin_lock(&nfs_access_lru_lock); 2115 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2116 list_del_init(&NFS_I(inode)->access_cache_inode_lru); 2117 2118 spin_lock(&inode->i_lock); 2119 __nfs_access_zap_cache(NFS_I(inode), &head); 2120 spin_unlock(&inode->i_lock); 2121 spin_unlock(&nfs_access_lru_lock); 2122 nfs_access_free_list(&head); 2123 } 2124 2125 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred) 2126 { 2127 struct rb_node *n = NFS_I(inode)->access_cache.rb_node; 2128 struct nfs_access_entry *entry; 2129 2130 while (n != NULL) { 2131 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2132 2133 if (cred < entry->cred) 2134 n = n->rb_left; 2135 else if (cred > entry->cred) 2136 n = n->rb_right; 2137 else 2138 return entry; 2139 } 2140 return NULL; 2141 } 2142 2143 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res) 2144 { 2145 struct nfs_inode *nfsi = NFS_I(inode); 2146 struct nfs_access_entry *cache; 2147 int err = -ENOENT; 2148 2149 spin_lock(&inode->i_lock); 2150 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2151 goto out_zap; 2152 cache = nfs_access_search_rbtree(inode, cred); 2153 if (cache == NULL) 2154 goto out; 2155 if (!nfs_have_delegated_attributes(inode) && 2156 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo)) 2157 goto out_stale; 2158 res->jiffies = cache->jiffies; 2159 res->cred = cache->cred; 2160 res->mask = cache->mask; 2161 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru); 2162 err = 0; 2163 out: 2164 spin_unlock(&inode->i_lock); 2165 return err; 2166 out_stale: 2167 rb_erase(&cache->rb_node, &nfsi->access_cache); 2168 list_del(&cache->lru); 2169 spin_unlock(&inode->i_lock); 2170 nfs_access_free_entry(cache); 2171 return -ENOENT; 2172 out_zap: 2173 spin_unlock(&inode->i_lock); 2174 nfs_access_zap_cache(inode); 2175 return -ENOENT; 2176 } 2177 2178 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set) 2179 { 2180 struct nfs_inode *nfsi = NFS_I(inode); 2181 struct rb_root *root_node = &nfsi->access_cache; 2182 struct rb_node **p = &root_node->rb_node; 2183 struct rb_node *parent = NULL; 2184 struct nfs_access_entry *entry; 2185 2186 spin_lock(&inode->i_lock); 2187 while (*p != NULL) { 2188 parent = *p; 2189 entry = rb_entry(parent, struct nfs_access_entry, rb_node); 2190 2191 if (set->cred < entry->cred) 2192 p = &parent->rb_left; 2193 else if (set->cred > entry->cred) 2194 p = &parent->rb_right; 2195 else 2196 goto found; 2197 } 2198 rb_link_node(&set->rb_node, parent, p); 2199 rb_insert_color(&set->rb_node, root_node); 2200 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2201 spin_unlock(&inode->i_lock); 2202 return; 2203 found: 2204 rb_replace_node(parent, &set->rb_node, root_node); 2205 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2206 list_del(&entry->lru); 2207 spin_unlock(&inode->i_lock); 2208 nfs_access_free_entry(entry); 2209 } 2210 2211 static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set) 2212 { 2213 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL); 2214 if (cache == NULL) 2215 return; 2216 RB_CLEAR_NODE(&cache->rb_node); 2217 cache->jiffies = set->jiffies; 2218 cache->cred = get_rpccred(set->cred); 2219 cache->mask = set->mask; 2220 2221 nfs_access_add_rbtree(inode, cache); 2222 2223 /* Update accounting */ 2224 smp_mb__before_atomic_inc(); 2225 atomic_long_inc(&nfs_access_nr_entries); 2226 smp_mb__after_atomic_inc(); 2227 2228 /* Add inode to global LRU list */ 2229 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) { 2230 spin_lock(&nfs_access_lru_lock); 2231 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2232 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, 2233 &nfs_access_lru_list); 2234 spin_unlock(&nfs_access_lru_lock); 2235 } 2236 } 2237 2238 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask) 2239 { 2240 struct nfs_access_entry cache; 2241 int status; 2242 2243 status = nfs_access_get_cached(inode, cred, &cache); 2244 if (status == 0) 2245 goto out; 2246 2247 /* Be clever: ask server to check for all possible rights */ 2248 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ; 2249 cache.cred = cred; 2250 cache.jiffies = jiffies; 2251 status = NFS_PROTO(inode)->access(inode, &cache); 2252 if (status != 0) { 2253 if (status == -ESTALE) { 2254 nfs_zap_caches(inode); 2255 if (!S_ISDIR(inode->i_mode)) 2256 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags); 2257 } 2258 return status; 2259 } 2260 nfs_access_add_cache(inode, &cache); 2261 out: 2262 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 2263 return 0; 2264 return -EACCES; 2265 } 2266 2267 static int nfs_open_permission_mask(int openflags) 2268 { 2269 int mask = 0; 2270 2271 if ((openflags & O_ACCMODE) != O_WRONLY) 2272 mask |= MAY_READ; 2273 if ((openflags & O_ACCMODE) != O_RDONLY) 2274 mask |= MAY_WRITE; 2275 if (openflags & __FMODE_EXEC) 2276 mask |= MAY_EXEC; 2277 return mask; 2278 } 2279 2280 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags) 2281 { 2282 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags)); 2283 } 2284 2285 int nfs_permission(struct inode *inode, int mask) 2286 { 2287 struct rpc_cred *cred; 2288 int res = 0; 2289 2290 if (mask & MAY_NOT_BLOCK) 2291 return -ECHILD; 2292 2293 nfs_inc_stats(inode, NFSIOS_VFSACCESS); 2294 2295 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 2296 goto out; 2297 /* Is this sys_access() ? */ 2298 if (mask & (MAY_ACCESS | MAY_CHDIR)) 2299 goto force_lookup; 2300 2301 switch (inode->i_mode & S_IFMT) { 2302 case S_IFLNK: 2303 goto out; 2304 case S_IFREG: 2305 /* NFSv4 has atomic_open... */ 2306 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN) 2307 && (mask & MAY_OPEN) 2308 && !(mask & MAY_EXEC)) 2309 goto out; 2310 break; 2311 case S_IFDIR: 2312 /* 2313 * Optimize away all write operations, since the server 2314 * will check permissions when we perform the op. 2315 */ 2316 if ((mask & MAY_WRITE) && !(mask & MAY_READ)) 2317 goto out; 2318 } 2319 2320 force_lookup: 2321 if (!NFS_PROTO(inode)->access) 2322 goto out_notsup; 2323 2324 cred = rpc_lookup_cred(); 2325 if (!IS_ERR(cred)) { 2326 res = nfs_do_access(inode, cred, mask); 2327 put_rpccred(cred); 2328 } else 2329 res = PTR_ERR(cred); 2330 out: 2331 if (!res && (mask & MAY_EXEC) && !execute_ok(inode)) 2332 res = -EACCES; 2333 2334 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n", 2335 inode->i_sb->s_id, inode->i_ino, mask, res); 2336 return res; 2337 out_notsup: 2338 res = nfs_revalidate_inode(NFS_SERVER(inode), inode); 2339 if (res == 0) 2340 res = generic_permission(inode, mask); 2341 goto out; 2342 } 2343 2344 /* 2345 * Local variables: 2346 * version-control: t 2347 * kept-new-versions: 5 2348 * End: 2349 */ 2350