xref: /openbmc/linux/fs/nfs/dir.c (revision 818a8dbe)
1 /*
2  *  linux/fs/nfs/dir.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  nfs directory handling functions
7  *
8  * 10 Apr 1996	Added silly rename for unlink	--okir
9  * 28 Sep 1996	Improved directory cache --okir
10  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
11  *              Re-implemented silly rename for unlink, newly implemented
12  *              silly rename for nfs_rename() following the suggestions
13  *              of Olaf Kirch (okir) found in this file.
14  *              Following Linus comments on my original hack, this version
15  *              depends only on the dcache stuff and doesn't touch the inode
16  *              layer (iput() and friends).
17  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
18  */
19 
20 #include <linux/module.h>
21 #include <linux/time.h>
22 #include <linux/errno.h>
23 #include <linux/stat.h>
24 #include <linux/fcntl.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/mm.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/nfs_fs.h>
31 #include <linux/nfs_mount.h>
32 #include <linux/pagemap.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/swap.h>
37 #include <linux/sched.h>
38 #include <linux/kmemleak.h>
39 #include <linux/xattr.h>
40 
41 #include "delegation.h"
42 #include "iostat.h"
43 #include "internal.h"
44 #include "fscache.h"
45 
46 #include "nfstrace.h"
47 
48 /* #define NFS_DEBUG_VERBOSE 1 */
49 
50 static int nfs_opendir(struct inode *, struct file *);
51 static int nfs_closedir(struct inode *, struct file *);
52 static int nfs_readdir(struct file *, struct dir_context *);
53 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
54 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
55 static void nfs_readdir_clear_array(struct page*);
56 
57 const struct file_operations nfs_dir_operations = {
58 	.llseek		= nfs_llseek_dir,
59 	.read		= generic_read_dir,
60 	.iterate	= nfs_readdir,
61 	.open		= nfs_opendir,
62 	.release	= nfs_closedir,
63 	.fsync		= nfs_fsync_dir,
64 };
65 
66 const struct address_space_operations nfs_dir_aops = {
67 	.freepage = nfs_readdir_clear_array,
68 };
69 
70 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
71 {
72 	struct nfs_inode *nfsi = NFS_I(dir);
73 	struct nfs_open_dir_context *ctx;
74 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
75 	if (ctx != NULL) {
76 		ctx->duped = 0;
77 		ctx->attr_gencount = nfsi->attr_gencount;
78 		ctx->dir_cookie = 0;
79 		ctx->dup_cookie = 0;
80 		ctx->cred = get_rpccred(cred);
81 		spin_lock(&dir->i_lock);
82 		list_add(&ctx->list, &nfsi->open_files);
83 		spin_unlock(&dir->i_lock);
84 		return ctx;
85 	}
86 	return  ERR_PTR(-ENOMEM);
87 }
88 
89 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
90 {
91 	spin_lock(&dir->i_lock);
92 	list_del(&ctx->list);
93 	spin_unlock(&dir->i_lock);
94 	put_rpccred(ctx->cred);
95 	kfree(ctx);
96 }
97 
98 /*
99  * Open file
100  */
101 static int
102 nfs_opendir(struct inode *inode, struct file *filp)
103 {
104 	int res = 0;
105 	struct nfs_open_dir_context *ctx;
106 	struct rpc_cred *cred;
107 
108 	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
109 
110 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
111 
112 	cred = rpc_lookup_cred();
113 	if (IS_ERR(cred))
114 		return PTR_ERR(cred);
115 	ctx = alloc_nfs_open_dir_context(inode, cred);
116 	if (IS_ERR(ctx)) {
117 		res = PTR_ERR(ctx);
118 		goto out;
119 	}
120 	filp->private_data = ctx;
121 	if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
122 		/* This is a mountpoint, so d_revalidate will never
123 		 * have been called, so we need to refresh the
124 		 * inode (for close-open consistency) ourselves.
125 		 */
126 		__nfs_revalidate_inode(NFS_SERVER(inode), inode);
127 	}
128 out:
129 	put_rpccred(cred);
130 	return res;
131 }
132 
133 static int
134 nfs_closedir(struct inode *inode, struct file *filp)
135 {
136 	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
137 	return 0;
138 }
139 
140 struct nfs_cache_array_entry {
141 	u64 cookie;
142 	u64 ino;
143 	struct qstr string;
144 	unsigned char d_type;
145 };
146 
147 struct nfs_cache_array {
148 	int size;
149 	int eof_index;
150 	u64 last_cookie;
151 	struct nfs_cache_array_entry array[0];
152 };
153 
154 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, bool);
155 typedef struct {
156 	struct file	*file;
157 	struct page	*page;
158 	struct dir_context *ctx;
159 	unsigned long	page_index;
160 	u64		*dir_cookie;
161 	u64		last_cookie;
162 	loff_t		current_index;
163 	decode_dirent_t	decode;
164 
165 	unsigned long	timestamp;
166 	unsigned long	gencount;
167 	unsigned int	cache_entry_index;
168 	bool plus;
169 	bool eof;
170 } nfs_readdir_descriptor_t;
171 
172 /*
173  * we are freeing strings created by nfs_add_to_readdir_array()
174  */
175 static
176 void nfs_readdir_clear_array(struct page *page)
177 {
178 	struct nfs_cache_array *array;
179 	int i;
180 
181 	array = kmap_atomic(page);
182 	for (i = 0; i < array->size; i++)
183 		kfree(array->array[i].string.name);
184 	kunmap_atomic(array);
185 }
186 
187 /*
188  * the caller is responsible for freeing qstr.name
189  * when called by nfs_readdir_add_to_array, the strings will be freed in
190  * nfs_clear_readdir_array()
191  */
192 static
193 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
194 {
195 	string->len = len;
196 	string->name = kmemdup(name, len, GFP_KERNEL);
197 	if (string->name == NULL)
198 		return -ENOMEM;
199 	/*
200 	 * Avoid a kmemleak false positive. The pointer to the name is stored
201 	 * in a page cache page which kmemleak does not scan.
202 	 */
203 	kmemleak_not_leak(string->name);
204 	string->hash = full_name_hash(NULL, name, len);
205 	return 0;
206 }
207 
208 static
209 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
210 {
211 	struct nfs_cache_array *array = kmap(page);
212 	struct nfs_cache_array_entry *cache_entry;
213 	int ret;
214 
215 	cache_entry = &array->array[array->size];
216 
217 	/* Check that this entry lies within the page bounds */
218 	ret = -ENOSPC;
219 	if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
220 		goto out;
221 
222 	cache_entry->cookie = entry->prev_cookie;
223 	cache_entry->ino = entry->ino;
224 	cache_entry->d_type = entry->d_type;
225 	ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
226 	if (ret)
227 		goto out;
228 	array->last_cookie = entry->cookie;
229 	array->size++;
230 	if (entry->eof != 0)
231 		array->eof_index = array->size;
232 out:
233 	kunmap(page);
234 	return ret;
235 }
236 
237 static
238 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
239 {
240 	loff_t diff = desc->ctx->pos - desc->current_index;
241 	unsigned int index;
242 
243 	if (diff < 0)
244 		goto out_eof;
245 	if (diff >= array->size) {
246 		if (array->eof_index >= 0)
247 			goto out_eof;
248 		return -EAGAIN;
249 	}
250 
251 	index = (unsigned int)diff;
252 	*desc->dir_cookie = array->array[index].cookie;
253 	desc->cache_entry_index = index;
254 	return 0;
255 out_eof:
256 	desc->eof = 1;
257 	return -EBADCOOKIE;
258 }
259 
260 static bool
261 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
262 {
263 	if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
264 		return false;
265 	smp_rmb();
266 	return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
267 }
268 
269 static
270 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
271 {
272 	int i;
273 	loff_t new_pos;
274 	int status = -EAGAIN;
275 
276 	for (i = 0; i < array->size; i++) {
277 		if (array->array[i].cookie == *desc->dir_cookie) {
278 			struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
279 			struct nfs_open_dir_context *ctx = desc->file->private_data;
280 
281 			new_pos = desc->current_index + i;
282 			if (ctx->attr_gencount != nfsi->attr_gencount ||
283 			    !nfs_readdir_inode_mapping_valid(nfsi)) {
284 				ctx->duped = 0;
285 				ctx->attr_gencount = nfsi->attr_gencount;
286 			} else if (new_pos < desc->ctx->pos) {
287 				if (ctx->duped > 0
288 				    && ctx->dup_cookie == *desc->dir_cookie) {
289 					if (printk_ratelimit()) {
290 						pr_notice("NFS: directory %pD2 contains a readdir loop."
291 								"Please contact your server vendor.  "
292 								"The file: %.*s has duplicate cookie %llu\n",
293 								desc->file, array->array[i].string.len,
294 								array->array[i].string.name, *desc->dir_cookie);
295 					}
296 					status = -ELOOP;
297 					goto out;
298 				}
299 				ctx->dup_cookie = *desc->dir_cookie;
300 				ctx->duped = -1;
301 			}
302 			desc->ctx->pos = new_pos;
303 			desc->cache_entry_index = i;
304 			return 0;
305 		}
306 	}
307 	if (array->eof_index >= 0) {
308 		status = -EBADCOOKIE;
309 		if (*desc->dir_cookie == array->last_cookie)
310 			desc->eof = 1;
311 	}
312 out:
313 	return status;
314 }
315 
316 static
317 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
318 {
319 	struct nfs_cache_array *array;
320 	int status;
321 
322 	array = kmap(desc->page);
323 
324 	if (*desc->dir_cookie == 0)
325 		status = nfs_readdir_search_for_pos(array, desc);
326 	else
327 		status = nfs_readdir_search_for_cookie(array, desc);
328 
329 	if (status == -EAGAIN) {
330 		desc->last_cookie = array->last_cookie;
331 		desc->current_index += array->size;
332 		desc->page_index++;
333 	}
334 	kunmap(desc->page);
335 	return status;
336 }
337 
338 /* Fill a page with xdr information before transferring to the cache page */
339 static
340 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
341 			struct nfs_entry *entry, struct file *file, struct inode *inode)
342 {
343 	struct nfs_open_dir_context *ctx = file->private_data;
344 	struct rpc_cred	*cred = ctx->cred;
345 	unsigned long	timestamp, gencount;
346 	int		error;
347 
348  again:
349 	timestamp = jiffies;
350 	gencount = nfs_inc_attr_generation_counter();
351 	error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
352 					  NFS_SERVER(inode)->dtsize, desc->plus);
353 	if (error < 0) {
354 		/* We requested READDIRPLUS, but the server doesn't grok it */
355 		if (error == -ENOTSUPP && desc->plus) {
356 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
357 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
358 			desc->plus = false;
359 			goto again;
360 		}
361 		goto error;
362 	}
363 	desc->timestamp = timestamp;
364 	desc->gencount = gencount;
365 error:
366 	return error;
367 }
368 
369 static int xdr_decode(nfs_readdir_descriptor_t *desc,
370 		      struct nfs_entry *entry, struct xdr_stream *xdr)
371 {
372 	int error;
373 
374 	error = desc->decode(xdr, entry, desc->plus);
375 	if (error)
376 		return error;
377 	entry->fattr->time_start = desc->timestamp;
378 	entry->fattr->gencount = desc->gencount;
379 	return 0;
380 }
381 
382 /* Match file and dirent using either filehandle or fileid
383  * Note: caller is responsible for checking the fsid
384  */
385 static
386 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
387 {
388 	struct inode *inode;
389 	struct nfs_inode *nfsi;
390 
391 	if (d_really_is_negative(dentry))
392 		return 0;
393 
394 	inode = d_inode(dentry);
395 	if (is_bad_inode(inode) || NFS_STALE(inode))
396 		return 0;
397 
398 	nfsi = NFS_I(inode);
399 	if (entry->fattr->fileid != nfsi->fileid)
400 		return 0;
401 	if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
402 		return 0;
403 	return 1;
404 }
405 
406 static
407 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
408 {
409 	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
410 		return false;
411 	if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
412 		return true;
413 	if (ctx->pos == 0)
414 		return true;
415 	return false;
416 }
417 
418 /*
419  * This function is called by the lookup and getattr code to request the
420  * use of readdirplus to accelerate any future lookups in the same
421  * directory.
422  */
423 void nfs_advise_use_readdirplus(struct inode *dir)
424 {
425 	struct nfs_inode *nfsi = NFS_I(dir);
426 
427 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
428 	    !list_empty(&nfsi->open_files))
429 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
430 }
431 
432 /*
433  * This function is mainly for use by nfs_getattr().
434  *
435  * If this is an 'ls -l', we want to force use of readdirplus.
436  * Do this by checking if there is an active file descriptor
437  * and calling nfs_advise_use_readdirplus, then forcing a
438  * cache flush.
439  */
440 void nfs_force_use_readdirplus(struct inode *dir)
441 {
442 	struct nfs_inode *nfsi = NFS_I(dir);
443 
444 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
445 	    !list_empty(&nfsi->open_files)) {
446 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
447 		invalidate_mapping_pages(dir->i_mapping, 0, -1);
448 	}
449 }
450 
451 static
452 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
453 {
454 	struct qstr filename = QSTR_INIT(entry->name, entry->len);
455 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
456 	struct dentry *dentry;
457 	struct dentry *alias;
458 	struct inode *dir = d_inode(parent);
459 	struct inode *inode;
460 	int status;
461 
462 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
463 		return;
464 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
465 		return;
466 	if (filename.len == 0)
467 		return;
468 	/* Validate that the name doesn't contain any illegal '\0' */
469 	if (strnlen(filename.name, filename.len) != filename.len)
470 		return;
471 	/* ...or '/' */
472 	if (strnchr(filename.name, filename.len, '/'))
473 		return;
474 	if (filename.name[0] == '.') {
475 		if (filename.len == 1)
476 			return;
477 		if (filename.len == 2 && filename.name[1] == '.')
478 			return;
479 	}
480 	filename.hash = full_name_hash(parent, filename.name, filename.len);
481 
482 	dentry = d_lookup(parent, &filename);
483 again:
484 	if (!dentry) {
485 		dentry = d_alloc_parallel(parent, &filename, &wq);
486 		if (IS_ERR(dentry))
487 			return;
488 	}
489 	if (!d_in_lookup(dentry)) {
490 		/* Is there a mountpoint here? If so, just exit */
491 		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
492 					&entry->fattr->fsid))
493 			goto out;
494 		if (nfs_same_file(dentry, entry)) {
495 			if (!entry->fh->size)
496 				goto out;
497 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
498 			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
499 			if (!status)
500 				nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
501 			goto out;
502 		} else {
503 			d_invalidate(dentry);
504 			dput(dentry);
505 			dentry = NULL;
506 			goto again;
507 		}
508 	}
509 	if (!entry->fh->size) {
510 		d_lookup_done(dentry);
511 		goto out;
512 	}
513 
514 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
515 	alias = d_splice_alias(inode, dentry);
516 	d_lookup_done(dentry);
517 	if (alias) {
518 		if (IS_ERR(alias))
519 			goto out;
520 		dput(dentry);
521 		dentry = alias;
522 	}
523 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
524 out:
525 	dput(dentry);
526 }
527 
528 /* Perform conversion from xdr to cache array */
529 static
530 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
531 				struct page **xdr_pages, struct page *page, unsigned int buflen)
532 {
533 	struct xdr_stream stream;
534 	struct xdr_buf buf;
535 	struct page *scratch;
536 	struct nfs_cache_array *array;
537 	unsigned int count = 0;
538 	int status;
539 
540 	scratch = alloc_page(GFP_KERNEL);
541 	if (scratch == NULL)
542 		return -ENOMEM;
543 
544 	if (buflen == 0)
545 		goto out_nopages;
546 
547 	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
548 	xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
549 
550 	do {
551 		status = xdr_decode(desc, entry, &stream);
552 		if (status != 0) {
553 			if (status == -EAGAIN)
554 				status = 0;
555 			break;
556 		}
557 
558 		count++;
559 
560 		if (desc->plus)
561 			nfs_prime_dcache(file_dentry(desc->file), entry);
562 
563 		status = nfs_readdir_add_to_array(entry, page);
564 		if (status != 0)
565 			break;
566 	} while (!entry->eof);
567 
568 out_nopages:
569 	if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
570 		array = kmap(page);
571 		array->eof_index = array->size;
572 		status = 0;
573 		kunmap(page);
574 	}
575 
576 	put_page(scratch);
577 	return status;
578 }
579 
580 static
581 void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
582 {
583 	unsigned int i;
584 	for (i = 0; i < npages; i++)
585 		put_page(pages[i]);
586 }
587 
588 /*
589  * nfs_readdir_large_page will allocate pages that must be freed with a call
590  * to nfs_readdir_free_pagearray
591  */
592 static
593 int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
594 {
595 	unsigned int i;
596 
597 	for (i = 0; i < npages; i++) {
598 		struct page *page = alloc_page(GFP_KERNEL);
599 		if (page == NULL)
600 			goto out_freepages;
601 		pages[i] = page;
602 	}
603 	return 0;
604 
605 out_freepages:
606 	nfs_readdir_free_pages(pages, i);
607 	return -ENOMEM;
608 }
609 
610 static
611 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
612 {
613 	struct page *pages[NFS_MAX_READDIR_PAGES];
614 	struct nfs_entry entry;
615 	struct file	*file = desc->file;
616 	struct nfs_cache_array *array;
617 	int status = -ENOMEM;
618 	unsigned int array_size = ARRAY_SIZE(pages);
619 
620 	entry.prev_cookie = 0;
621 	entry.cookie = desc->last_cookie;
622 	entry.eof = 0;
623 	entry.fh = nfs_alloc_fhandle();
624 	entry.fattr = nfs_alloc_fattr();
625 	entry.server = NFS_SERVER(inode);
626 	if (entry.fh == NULL || entry.fattr == NULL)
627 		goto out;
628 
629 	entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
630 	if (IS_ERR(entry.label)) {
631 		status = PTR_ERR(entry.label);
632 		goto out;
633 	}
634 
635 	array = kmap(page);
636 	memset(array, 0, sizeof(struct nfs_cache_array));
637 	array->eof_index = -1;
638 
639 	status = nfs_readdir_alloc_pages(pages, array_size);
640 	if (status < 0)
641 		goto out_release_array;
642 	do {
643 		unsigned int pglen;
644 		status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
645 
646 		if (status < 0)
647 			break;
648 		pglen = status;
649 		status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
650 		if (status < 0) {
651 			if (status == -ENOSPC)
652 				status = 0;
653 			break;
654 		}
655 	} while (array->eof_index < 0);
656 
657 	nfs_readdir_free_pages(pages, array_size);
658 out_release_array:
659 	kunmap(page);
660 	nfs4_label_free(entry.label);
661 out:
662 	nfs_free_fattr(entry.fattr);
663 	nfs_free_fhandle(entry.fh);
664 	return status;
665 }
666 
667 /*
668  * Now we cache directories properly, by converting xdr information
669  * to an array that can be used for lookups later.  This results in
670  * fewer cache pages, since we can store more information on each page.
671  * We only need to convert from xdr once so future lookups are much simpler
672  */
673 static
674 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
675 {
676 	struct inode	*inode = file_inode(desc->file);
677 	int ret;
678 
679 	ret = nfs_readdir_xdr_to_array(desc, page, inode);
680 	if (ret < 0)
681 		goto error;
682 	SetPageUptodate(page);
683 
684 	if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
685 		/* Should never happen */
686 		nfs_zap_mapping(inode, inode->i_mapping);
687 	}
688 	unlock_page(page);
689 	return 0;
690  error:
691 	unlock_page(page);
692 	return ret;
693 }
694 
695 static
696 void cache_page_release(nfs_readdir_descriptor_t *desc)
697 {
698 	if (!desc->page->mapping)
699 		nfs_readdir_clear_array(desc->page);
700 	put_page(desc->page);
701 	desc->page = NULL;
702 }
703 
704 static
705 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
706 {
707 	return read_cache_page(desc->file->f_mapping,
708 			desc->page_index, (filler_t *)nfs_readdir_filler, desc);
709 }
710 
711 /*
712  * Returns 0 if desc->dir_cookie was found on page desc->page_index
713  */
714 static
715 int find_cache_page(nfs_readdir_descriptor_t *desc)
716 {
717 	int res;
718 
719 	desc->page = get_cache_page(desc);
720 	if (IS_ERR(desc->page))
721 		return PTR_ERR(desc->page);
722 
723 	res = nfs_readdir_search_array(desc);
724 	if (res != 0)
725 		cache_page_release(desc);
726 	return res;
727 }
728 
729 /* Search for desc->dir_cookie from the beginning of the page cache */
730 static inline
731 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
732 {
733 	int res;
734 
735 	if (desc->page_index == 0) {
736 		desc->current_index = 0;
737 		desc->last_cookie = 0;
738 	}
739 	do {
740 		res = find_cache_page(desc);
741 	} while (res == -EAGAIN);
742 	return res;
743 }
744 
745 /*
746  * Once we've found the start of the dirent within a page: fill 'er up...
747  */
748 static
749 int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
750 {
751 	struct file	*file = desc->file;
752 	int i = 0;
753 	int res = 0;
754 	struct nfs_cache_array *array = NULL;
755 	struct nfs_open_dir_context *ctx = file->private_data;
756 
757 	array = kmap(desc->page);
758 	for (i = desc->cache_entry_index; i < array->size; i++) {
759 		struct nfs_cache_array_entry *ent;
760 
761 		ent = &array->array[i];
762 		if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
763 		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
764 			desc->eof = 1;
765 			break;
766 		}
767 		desc->ctx->pos++;
768 		if (i < (array->size-1))
769 			*desc->dir_cookie = array->array[i+1].cookie;
770 		else
771 			*desc->dir_cookie = array->last_cookie;
772 		if (ctx->duped != 0)
773 			ctx->duped = 1;
774 	}
775 	if (array->eof_index >= 0)
776 		desc->eof = 1;
777 
778 	kunmap(desc->page);
779 	cache_page_release(desc);
780 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
781 			(unsigned long long)*desc->dir_cookie, res);
782 	return res;
783 }
784 
785 /*
786  * If we cannot find a cookie in our cache, we suspect that this is
787  * because it points to a deleted file, so we ask the server to return
788  * whatever it thinks is the next entry. We then feed this to filldir.
789  * If all goes well, we should then be able to find our way round the
790  * cache on the next call to readdir_search_pagecache();
791  *
792  * NOTE: we cannot add the anonymous page to the pagecache because
793  *	 the data it contains might not be page aligned. Besides,
794  *	 we should already have a complete representation of the
795  *	 directory in the page cache by the time we get here.
796  */
797 static inline
798 int uncached_readdir(nfs_readdir_descriptor_t *desc)
799 {
800 	struct page	*page = NULL;
801 	int		status;
802 	struct inode *inode = file_inode(desc->file);
803 	struct nfs_open_dir_context *ctx = desc->file->private_data;
804 
805 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
806 			(unsigned long long)*desc->dir_cookie);
807 
808 	page = alloc_page(GFP_HIGHUSER);
809 	if (!page) {
810 		status = -ENOMEM;
811 		goto out;
812 	}
813 
814 	desc->page_index = 0;
815 	desc->last_cookie = *desc->dir_cookie;
816 	desc->page = page;
817 	ctx->duped = 0;
818 
819 	status = nfs_readdir_xdr_to_array(desc, page, inode);
820 	if (status < 0)
821 		goto out_release;
822 
823 	status = nfs_do_filldir(desc);
824 
825  out:
826 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
827 			__func__, status);
828 	return status;
829  out_release:
830 	cache_page_release(desc);
831 	goto out;
832 }
833 
834 /* The file offset position represents the dirent entry number.  A
835    last cookie cache takes care of the common case of reading the
836    whole directory.
837  */
838 static int nfs_readdir(struct file *file, struct dir_context *ctx)
839 {
840 	struct dentry	*dentry = file_dentry(file);
841 	struct inode	*inode = d_inode(dentry);
842 	nfs_readdir_descriptor_t my_desc,
843 			*desc = &my_desc;
844 	struct nfs_open_dir_context *dir_ctx = file->private_data;
845 	int res = 0;
846 
847 	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
848 			file, (long long)ctx->pos);
849 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
850 
851 	/*
852 	 * ctx->pos points to the dirent entry number.
853 	 * *desc->dir_cookie has the cookie for the next entry. We have
854 	 * to either find the entry with the appropriate number or
855 	 * revalidate the cookie.
856 	 */
857 	memset(desc, 0, sizeof(*desc));
858 
859 	desc->file = file;
860 	desc->ctx = ctx;
861 	desc->dir_cookie = &dir_ctx->dir_cookie;
862 	desc->decode = NFS_PROTO(inode)->decode_dirent;
863 	desc->plus = nfs_use_readdirplus(inode, ctx);
864 
865 	if (ctx->pos == 0 || nfs_attribute_cache_expired(inode))
866 		res = nfs_revalidate_mapping(inode, file->f_mapping);
867 	if (res < 0)
868 		goto out;
869 
870 	do {
871 		res = readdir_search_pagecache(desc);
872 
873 		if (res == -EBADCOOKIE) {
874 			res = 0;
875 			/* This means either end of directory */
876 			if (*desc->dir_cookie && desc->eof == 0) {
877 				/* Or that the server has 'lost' a cookie */
878 				res = uncached_readdir(desc);
879 				if (res == 0)
880 					continue;
881 			}
882 			break;
883 		}
884 		if (res == -ETOOSMALL && desc->plus) {
885 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
886 			nfs_zap_caches(inode);
887 			desc->page_index = 0;
888 			desc->plus = false;
889 			desc->eof = false;
890 			continue;
891 		}
892 		if (res < 0)
893 			break;
894 
895 		res = nfs_do_filldir(desc);
896 		if (res < 0)
897 			break;
898 	} while (!desc->eof);
899 out:
900 	if (res > 0)
901 		res = 0;
902 	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
903 	return res;
904 }
905 
906 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
907 {
908 	struct inode *inode = file_inode(filp);
909 	struct nfs_open_dir_context *dir_ctx = filp->private_data;
910 
911 	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
912 			filp, offset, whence);
913 
914 	inode_lock(inode);
915 	switch (whence) {
916 		case 1:
917 			offset += filp->f_pos;
918 		case 0:
919 			if (offset >= 0)
920 				break;
921 		default:
922 			offset = -EINVAL;
923 			goto out;
924 	}
925 	if (offset != filp->f_pos) {
926 		filp->f_pos = offset;
927 		dir_ctx->dir_cookie = 0;
928 		dir_ctx->duped = 0;
929 	}
930 out:
931 	inode_unlock(inode);
932 	return offset;
933 }
934 
935 /*
936  * All directory operations under NFS are synchronous, so fsync()
937  * is a dummy operation.
938  */
939 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
940 			 int datasync)
941 {
942 	struct inode *inode = file_inode(filp);
943 
944 	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
945 
946 	inode_lock(inode);
947 	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
948 	inode_unlock(inode);
949 	return 0;
950 }
951 
952 /**
953  * nfs_force_lookup_revalidate - Mark the directory as having changed
954  * @dir - pointer to directory inode
955  *
956  * This forces the revalidation code in nfs_lookup_revalidate() to do a
957  * full lookup on all child dentries of 'dir' whenever a change occurs
958  * on the server that might have invalidated our dcache.
959  *
960  * The caller should be holding dir->i_lock
961  */
962 void nfs_force_lookup_revalidate(struct inode *dir)
963 {
964 	NFS_I(dir)->cache_change_attribute++;
965 }
966 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
967 
968 /*
969  * A check for whether or not the parent directory has changed.
970  * In the case it has, we assume that the dentries are untrustworthy
971  * and may need to be looked up again.
972  * If rcu_walk prevents us from performing a full check, return 0.
973  */
974 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
975 			      int rcu_walk)
976 {
977 	if (IS_ROOT(dentry))
978 		return 1;
979 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
980 		return 0;
981 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
982 		return 0;
983 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
984 	if (nfs_mapping_need_revalidate_inode(dir)) {
985 		if (rcu_walk)
986 			return 0;
987 		if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
988 			return 0;
989 	}
990 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
991 		return 0;
992 	return 1;
993 }
994 
995 /*
996  * Use intent information to check whether or not we're going to do
997  * an O_EXCL create using this path component.
998  */
999 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1000 {
1001 	if (NFS_PROTO(dir)->version == 2)
1002 		return 0;
1003 	return flags & LOOKUP_EXCL;
1004 }
1005 
1006 /*
1007  * Inode and filehandle revalidation for lookups.
1008  *
1009  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1010  * or if the intent information indicates that we're about to open this
1011  * particular file and the "nocto" mount flag is not set.
1012  *
1013  */
1014 static
1015 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1016 {
1017 	struct nfs_server *server = NFS_SERVER(inode);
1018 	int ret;
1019 
1020 	if (IS_AUTOMOUNT(inode))
1021 		return 0;
1022 	/* VFS wants an on-the-wire revalidation */
1023 	if (flags & LOOKUP_REVAL)
1024 		goto out_force;
1025 	/* This is an open(2) */
1026 	if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) &&
1027 	    (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
1028 		goto out_force;
1029 out:
1030 	return (inode->i_nlink == 0) ? -ENOENT : 0;
1031 out_force:
1032 	if (flags & LOOKUP_RCU)
1033 		return -ECHILD;
1034 	ret = __nfs_revalidate_inode(server, inode);
1035 	if (ret != 0)
1036 		return ret;
1037 	goto out;
1038 }
1039 
1040 /*
1041  * We judge how long we want to trust negative
1042  * dentries by looking at the parent inode mtime.
1043  *
1044  * If parent mtime has changed, we revalidate, else we wait for a
1045  * period corresponding to the parent's attribute cache timeout value.
1046  *
1047  * If LOOKUP_RCU prevents us from performing a full check, return 1
1048  * suggesting a reval is needed.
1049  */
1050 static inline
1051 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1052 		       unsigned int flags)
1053 {
1054 	/* Don't revalidate a negative dentry if we're creating a new file */
1055 	if (flags & LOOKUP_CREATE)
1056 		return 0;
1057 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1058 		return 1;
1059 	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1060 }
1061 
1062 /*
1063  * This is called every time the dcache has a lookup hit,
1064  * and we should check whether we can really trust that
1065  * lookup.
1066  *
1067  * NOTE! The hit can be a negative hit too, don't assume
1068  * we have an inode!
1069  *
1070  * If the parent directory is seen to have changed, we throw out the
1071  * cached dentry and do a new lookup.
1072  */
1073 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1074 {
1075 	struct inode *dir;
1076 	struct inode *inode;
1077 	struct dentry *parent;
1078 	struct nfs_fh *fhandle = NULL;
1079 	struct nfs_fattr *fattr = NULL;
1080 	struct nfs4_label *label = NULL;
1081 	int error;
1082 
1083 	if (flags & LOOKUP_RCU) {
1084 		parent = ACCESS_ONCE(dentry->d_parent);
1085 		dir = d_inode_rcu(parent);
1086 		if (!dir)
1087 			return -ECHILD;
1088 	} else {
1089 		parent = dget_parent(dentry);
1090 		dir = d_inode(parent);
1091 	}
1092 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1093 	inode = d_inode(dentry);
1094 
1095 	if (!inode) {
1096 		if (nfs_neg_need_reval(dir, dentry, flags)) {
1097 			if (flags & LOOKUP_RCU)
1098 				return -ECHILD;
1099 			goto out_bad;
1100 		}
1101 		goto out_valid;
1102 	}
1103 
1104 	if (is_bad_inode(inode)) {
1105 		if (flags & LOOKUP_RCU)
1106 			return -ECHILD;
1107 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1108 				__func__, dentry);
1109 		goto out_bad;
1110 	}
1111 
1112 	if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1113 		goto out_set_verifier;
1114 
1115 	/* Force a full look up iff the parent directory has changed */
1116 	if (!nfs_is_exclusive_create(dir, flags) &&
1117 	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1118 
1119 		if (nfs_lookup_verify_inode(inode, flags)) {
1120 			if (flags & LOOKUP_RCU)
1121 				return -ECHILD;
1122 			goto out_zap_parent;
1123 		}
1124 		nfs_advise_use_readdirplus(dir);
1125 		goto out_valid;
1126 	}
1127 
1128 	if (flags & LOOKUP_RCU)
1129 		return -ECHILD;
1130 
1131 	if (NFS_STALE(inode))
1132 		goto out_bad;
1133 
1134 	error = -ENOMEM;
1135 	fhandle = nfs_alloc_fhandle();
1136 	fattr = nfs_alloc_fattr();
1137 	if (fhandle == NULL || fattr == NULL)
1138 		goto out_error;
1139 
1140 	label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
1141 	if (IS_ERR(label))
1142 		goto out_error;
1143 
1144 	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1145 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1146 	trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1147 	if (error)
1148 		goto out_bad;
1149 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1150 		goto out_bad;
1151 	if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1152 		goto out_bad;
1153 
1154 	nfs_setsecurity(inode, fattr, label);
1155 
1156 	nfs_free_fattr(fattr);
1157 	nfs_free_fhandle(fhandle);
1158 	nfs4_label_free(label);
1159 
1160 	/* set a readdirplus hint that we had a cache miss */
1161 	nfs_force_use_readdirplus(dir);
1162 
1163 out_set_verifier:
1164 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1165  out_valid:
1166 	if (flags & LOOKUP_RCU) {
1167 		if (parent != ACCESS_ONCE(dentry->d_parent))
1168 			return -ECHILD;
1169 	} else
1170 		dput(parent);
1171 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1172 			__func__, dentry);
1173 	return 1;
1174 out_zap_parent:
1175 	nfs_zap_caches(dir);
1176  out_bad:
1177 	WARN_ON(flags & LOOKUP_RCU);
1178 	nfs_free_fattr(fattr);
1179 	nfs_free_fhandle(fhandle);
1180 	nfs4_label_free(label);
1181 	nfs_mark_for_revalidate(dir);
1182 	if (inode && S_ISDIR(inode->i_mode)) {
1183 		/* Purge readdir caches. */
1184 		nfs_zap_caches(inode);
1185 		/*
1186 		 * We can't d_drop the root of a disconnected tree:
1187 		 * its d_hash is on the s_anon list and d_drop() would hide
1188 		 * it from shrink_dcache_for_unmount(), leading to busy
1189 		 * inodes on unmount and further oopses.
1190 		 */
1191 		if (IS_ROOT(dentry))
1192 			goto out_valid;
1193 	}
1194 	dput(parent);
1195 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1196 			__func__, dentry);
1197 	return 0;
1198 out_error:
1199 	WARN_ON(flags & LOOKUP_RCU);
1200 	nfs_free_fattr(fattr);
1201 	nfs_free_fhandle(fhandle);
1202 	nfs4_label_free(label);
1203 	dput(parent);
1204 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1205 			__func__, dentry, error);
1206 	return error;
1207 }
1208 
1209 /*
1210  * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1211  * when we don't really care about the dentry name. This is called when a
1212  * pathwalk ends on a dentry that was not found via a normal lookup in the
1213  * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1214  *
1215  * In this situation, we just want to verify that the inode itself is OK
1216  * since the dentry might have changed on the server.
1217  */
1218 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1219 {
1220 	struct inode *inode = d_inode(dentry);
1221 	int error = 0;
1222 
1223 	/*
1224 	 * I believe we can only get a negative dentry here in the case of a
1225 	 * procfs-style symlink. Just assume it's correct for now, but we may
1226 	 * eventually need to do something more here.
1227 	 */
1228 	if (!inode) {
1229 		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1230 				__func__, dentry);
1231 		return 1;
1232 	}
1233 
1234 	if (is_bad_inode(inode)) {
1235 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1236 				__func__, dentry);
1237 		return 0;
1238 	}
1239 
1240 	if (nfs_mapping_need_revalidate_inode(inode))
1241 		error = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
1242 	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1243 			__func__, inode->i_ino, error ? "invalid" : "valid");
1244 	return !error;
1245 }
1246 
1247 /*
1248  * This is called from dput() when d_count is going to 0.
1249  */
1250 static int nfs_dentry_delete(const struct dentry *dentry)
1251 {
1252 	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1253 		dentry, dentry->d_flags);
1254 
1255 	/* Unhash any dentry with a stale inode */
1256 	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1257 		return 1;
1258 
1259 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1260 		/* Unhash it, so that ->d_iput() would be called */
1261 		return 1;
1262 	}
1263 	if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1264 		/* Unhash it, so that ancestors of killed async unlink
1265 		 * files will be cleaned up during umount */
1266 		return 1;
1267 	}
1268 	return 0;
1269 
1270 }
1271 
1272 /* Ensure that we revalidate inode->i_nlink */
1273 static void nfs_drop_nlink(struct inode *inode)
1274 {
1275 	spin_lock(&inode->i_lock);
1276 	/* drop the inode if we're reasonably sure this is the last link */
1277 	if (inode->i_nlink == 1)
1278 		clear_nlink(inode);
1279 	NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR;
1280 	spin_unlock(&inode->i_lock);
1281 }
1282 
1283 /*
1284  * Called when the dentry loses inode.
1285  * We use it to clean up silly-renamed files.
1286  */
1287 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1288 {
1289 	if (S_ISDIR(inode->i_mode))
1290 		/* drop any readdir cache as it could easily be old */
1291 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1292 
1293 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1294 		nfs_complete_unlink(dentry, inode);
1295 		nfs_drop_nlink(inode);
1296 	}
1297 	iput(inode);
1298 }
1299 
1300 static void nfs_d_release(struct dentry *dentry)
1301 {
1302 	/* free cached devname value, if it survived that far */
1303 	if (unlikely(dentry->d_fsdata)) {
1304 		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1305 			WARN_ON(1);
1306 		else
1307 			kfree(dentry->d_fsdata);
1308 	}
1309 }
1310 
1311 const struct dentry_operations nfs_dentry_operations = {
1312 	.d_revalidate	= nfs_lookup_revalidate,
1313 	.d_weak_revalidate	= nfs_weak_revalidate,
1314 	.d_delete	= nfs_dentry_delete,
1315 	.d_iput		= nfs_dentry_iput,
1316 	.d_automount	= nfs_d_automount,
1317 	.d_release	= nfs_d_release,
1318 };
1319 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1320 
1321 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1322 {
1323 	struct dentry *res;
1324 	struct inode *inode = NULL;
1325 	struct nfs_fh *fhandle = NULL;
1326 	struct nfs_fattr *fattr = NULL;
1327 	struct nfs4_label *label = NULL;
1328 	int error;
1329 
1330 	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1331 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1332 
1333 	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1334 		return ERR_PTR(-ENAMETOOLONG);
1335 
1336 	/*
1337 	 * If we're doing an exclusive create, optimize away the lookup
1338 	 * but don't hash the dentry.
1339 	 */
1340 	if (nfs_is_exclusive_create(dir, flags))
1341 		return NULL;
1342 
1343 	res = ERR_PTR(-ENOMEM);
1344 	fhandle = nfs_alloc_fhandle();
1345 	fattr = nfs_alloc_fattr();
1346 	if (fhandle == NULL || fattr == NULL)
1347 		goto out;
1348 
1349 	label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1350 	if (IS_ERR(label))
1351 		goto out;
1352 
1353 	trace_nfs_lookup_enter(dir, dentry, flags);
1354 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1355 	if (error == -ENOENT)
1356 		goto no_entry;
1357 	if (error < 0) {
1358 		res = ERR_PTR(error);
1359 		goto out_label;
1360 	}
1361 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1362 	res = ERR_CAST(inode);
1363 	if (IS_ERR(res))
1364 		goto out_label;
1365 
1366 	/* Notify readdir to use READDIRPLUS */
1367 	nfs_force_use_readdirplus(dir);
1368 
1369 no_entry:
1370 	res = d_splice_alias(inode, dentry);
1371 	if (res != NULL) {
1372 		if (IS_ERR(res))
1373 			goto out_label;
1374 		dentry = res;
1375 	}
1376 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1377 out_label:
1378 	trace_nfs_lookup_exit(dir, dentry, flags, error);
1379 	nfs4_label_free(label);
1380 out:
1381 	nfs_free_fattr(fattr);
1382 	nfs_free_fhandle(fhandle);
1383 	return res;
1384 }
1385 EXPORT_SYMBOL_GPL(nfs_lookup);
1386 
1387 #if IS_ENABLED(CONFIG_NFS_V4)
1388 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1389 
1390 const struct dentry_operations nfs4_dentry_operations = {
1391 	.d_revalidate	= nfs4_lookup_revalidate,
1392 	.d_delete	= nfs_dentry_delete,
1393 	.d_iput		= nfs_dentry_iput,
1394 	.d_automount	= nfs_d_automount,
1395 	.d_release	= nfs_d_release,
1396 };
1397 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1398 
1399 static fmode_t flags_to_mode(int flags)
1400 {
1401 	fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1402 	if ((flags & O_ACCMODE) != O_WRONLY)
1403 		res |= FMODE_READ;
1404 	if ((flags & O_ACCMODE) != O_RDONLY)
1405 		res |= FMODE_WRITE;
1406 	return res;
1407 }
1408 
1409 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1410 {
1411 	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1412 }
1413 
1414 static int do_open(struct inode *inode, struct file *filp)
1415 {
1416 	nfs_fscache_open_file(inode, filp);
1417 	return 0;
1418 }
1419 
1420 static int nfs_finish_open(struct nfs_open_context *ctx,
1421 			   struct dentry *dentry,
1422 			   struct file *file, unsigned open_flags,
1423 			   int *opened)
1424 {
1425 	int err;
1426 
1427 	err = finish_open(file, dentry, do_open, opened);
1428 	if (err)
1429 		goto out;
1430 	nfs_file_set_open_context(file, ctx);
1431 
1432 out:
1433 	return err;
1434 }
1435 
1436 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1437 		    struct file *file, unsigned open_flags,
1438 		    umode_t mode, int *opened)
1439 {
1440 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1441 	struct nfs_open_context *ctx;
1442 	struct dentry *res;
1443 	struct iattr attr = { .ia_valid = ATTR_OPEN };
1444 	struct inode *inode;
1445 	unsigned int lookup_flags = 0;
1446 	bool switched = false;
1447 	int err;
1448 
1449 	/* Expect a negative dentry */
1450 	BUG_ON(d_inode(dentry));
1451 
1452 	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1453 			dir->i_sb->s_id, dir->i_ino, dentry);
1454 
1455 	err = nfs_check_flags(open_flags);
1456 	if (err)
1457 		return err;
1458 
1459 	/* NFS only supports OPEN on regular files */
1460 	if ((open_flags & O_DIRECTORY)) {
1461 		if (!d_in_lookup(dentry)) {
1462 			/*
1463 			 * Hashed negative dentry with O_DIRECTORY: dentry was
1464 			 * revalidated and is fine, no need to perform lookup
1465 			 * again
1466 			 */
1467 			return -ENOENT;
1468 		}
1469 		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1470 		goto no_open;
1471 	}
1472 
1473 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1474 		return -ENAMETOOLONG;
1475 
1476 	if (open_flags & O_CREAT) {
1477 		struct nfs_server *server = NFS_SERVER(dir);
1478 
1479 		if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1480 			mode &= ~current_umask();
1481 
1482 		attr.ia_valid |= ATTR_MODE;
1483 		attr.ia_mode = mode;
1484 	}
1485 	if (open_flags & O_TRUNC) {
1486 		attr.ia_valid |= ATTR_SIZE;
1487 		attr.ia_size = 0;
1488 	}
1489 
1490 	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1491 		d_drop(dentry);
1492 		switched = true;
1493 		dentry = d_alloc_parallel(dentry->d_parent,
1494 					  &dentry->d_name, &wq);
1495 		if (IS_ERR(dentry))
1496 			return PTR_ERR(dentry);
1497 		if (unlikely(!d_in_lookup(dentry)))
1498 			return finish_no_open(file, dentry);
1499 	}
1500 
1501 	ctx = create_nfs_open_context(dentry, open_flags, file);
1502 	err = PTR_ERR(ctx);
1503 	if (IS_ERR(ctx))
1504 		goto out;
1505 
1506 	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1507 	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, opened);
1508 	if (IS_ERR(inode)) {
1509 		err = PTR_ERR(inode);
1510 		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1511 		put_nfs_open_context(ctx);
1512 		d_drop(dentry);
1513 		switch (err) {
1514 		case -ENOENT:
1515 			d_add(dentry, NULL);
1516 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1517 			break;
1518 		case -EISDIR:
1519 		case -ENOTDIR:
1520 			goto no_open;
1521 		case -ELOOP:
1522 			if (!(open_flags & O_NOFOLLOW))
1523 				goto no_open;
1524 			break;
1525 			/* case -EINVAL: */
1526 		default:
1527 			break;
1528 		}
1529 		goto out;
1530 	}
1531 
1532 	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags, opened);
1533 	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1534 	put_nfs_open_context(ctx);
1535 out:
1536 	if (unlikely(switched)) {
1537 		d_lookup_done(dentry);
1538 		dput(dentry);
1539 	}
1540 	return err;
1541 
1542 no_open:
1543 	res = nfs_lookup(dir, dentry, lookup_flags);
1544 	if (switched) {
1545 		d_lookup_done(dentry);
1546 		if (!res)
1547 			res = dentry;
1548 		else
1549 			dput(dentry);
1550 	}
1551 	if (IS_ERR(res))
1552 		return PTR_ERR(res);
1553 	return finish_no_open(file, res);
1554 }
1555 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1556 
1557 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1558 {
1559 	struct inode *inode;
1560 	int ret = 0;
1561 
1562 	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1563 		goto no_open;
1564 	if (d_mountpoint(dentry))
1565 		goto no_open;
1566 	if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1)
1567 		goto no_open;
1568 
1569 	inode = d_inode(dentry);
1570 
1571 	/* We can't create new files in nfs_open_revalidate(), so we
1572 	 * optimize away revalidation of negative dentries.
1573 	 */
1574 	if (inode == NULL) {
1575 		struct dentry *parent;
1576 		struct inode *dir;
1577 
1578 		if (flags & LOOKUP_RCU) {
1579 			parent = ACCESS_ONCE(dentry->d_parent);
1580 			dir = d_inode_rcu(parent);
1581 			if (!dir)
1582 				return -ECHILD;
1583 		} else {
1584 			parent = dget_parent(dentry);
1585 			dir = d_inode(parent);
1586 		}
1587 		if (!nfs_neg_need_reval(dir, dentry, flags))
1588 			ret = 1;
1589 		else if (flags & LOOKUP_RCU)
1590 			ret = -ECHILD;
1591 		if (!(flags & LOOKUP_RCU))
1592 			dput(parent);
1593 		else if (parent != ACCESS_ONCE(dentry->d_parent))
1594 			return -ECHILD;
1595 		goto out;
1596 	}
1597 
1598 	/* NFS only supports OPEN on regular files */
1599 	if (!S_ISREG(inode->i_mode))
1600 		goto no_open;
1601 	/* We cannot do exclusive creation on a positive dentry */
1602 	if (flags & LOOKUP_EXCL)
1603 		goto no_open;
1604 
1605 	/* Let f_op->open() actually open (and revalidate) the file */
1606 	ret = 1;
1607 
1608 out:
1609 	return ret;
1610 
1611 no_open:
1612 	return nfs_lookup_revalidate(dentry, flags);
1613 }
1614 
1615 #endif /* CONFIG_NFSV4 */
1616 
1617 /*
1618  * Code common to create, mkdir, and mknod.
1619  */
1620 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1621 				struct nfs_fattr *fattr,
1622 				struct nfs4_label *label)
1623 {
1624 	struct dentry *parent = dget_parent(dentry);
1625 	struct inode *dir = d_inode(parent);
1626 	struct inode *inode;
1627 	int error = -EACCES;
1628 
1629 	d_drop(dentry);
1630 
1631 	/* We may have been initialized further down */
1632 	if (d_really_is_positive(dentry))
1633 		goto out;
1634 	if (fhandle->size == 0) {
1635 		error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1636 		if (error)
1637 			goto out_error;
1638 	}
1639 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1640 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1641 		struct nfs_server *server = NFS_SB(dentry->d_sb);
1642 		error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL);
1643 		if (error < 0)
1644 			goto out_error;
1645 	}
1646 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1647 	error = PTR_ERR(inode);
1648 	if (IS_ERR(inode))
1649 		goto out_error;
1650 	d_add(dentry, inode);
1651 out:
1652 	dput(parent);
1653 	return 0;
1654 out_error:
1655 	nfs_mark_for_revalidate(dir);
1656 	dput(parent);
1657 	return error;
1658 }
1659 EXPORT_SYMBOL_GPL(nfs_instantiate);
1660 
1661 /*
1662  * Following a failed create operation, we drop the dentry rather
1663  * than retain a negative dentry. This avoids a problem in the event
1664  * that the operation succeeded on the server, but an error in the
1665  * reply path made it appear to have failed.
1666  */
1667 int nfs_create(struct inode *dir, struct dentry *dentry,
1668 		umode_t mode, bool excl)
1669 {
1670 	struct iattr attr;
1671 	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1672 	int error;
1673 
1674 	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1675 			dir->i_sb->s_id, dir->i_ino, dentry);
1676 
1677 	attr.ia_mode = mode;
1678 	attr.ia_valid = ATTR_MODE;
1679 
1680 	trace_nfs_create_enter(dir, dentry, open_flags);
1681 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1682 	trace_nfs_create_exit(dir, dentry, open_flags, error);
1683 	if (error != 0)
1684 		goto out_err;
1685 	return 0;
1686 out_err:
1687 	d_drop(dentry);
1688 	return error;
1689 }
1690 EXPORT_SYMBOL_GPL(nfs_create);
1691 
1692 /*
1693  * See comments for nfs_proc_create regarding failed operations.
1694  */
1695 int
1696 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1697 {
1698 	struct iattr attr;
1699 	int status;
1700 
1701 	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1702 			dir->i_sb->s_id, dir->i_ino, dentry);
1703 
1704 	attr.ia_mode = mode;
1705 	attr.ia_valid = ATTR_MODE;
1706 
1707 	trace_nfs_mknod_enter(dir, dentry);
1708 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1709 	trace_nfs_mknod_exit(dir, dentry, status);
1710 	if (status != 0)
1711 		goto out_err;
1712 	return 0;
1713 out_err:
1714 	d_drop(dentry);
1715 	return status;
1716 }
1717 EXPORT_SYMBOL_GPL(nfs_mknod);
1718 
1719 /*
1720  * See comments for nfs_proc_create regarding failed operations.
1721  */
1722 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1723 {
1724 	struct iattr attr;
1725 	int error;
1726 
1727 	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1728 			dir->i_sb->s_id, dir->i_ino, dentry);
1729 
1730 	attr.ia_valid = ATTR_MODE;
1731 	attr.ia_mode = mode | S_IFDIR;
1732 
1733 	trace_nfs_mkdir_enter(dir, dentry);
1734 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1735 	trace_nfs_mkdir_exit(dir, dentry, error);
1736 	if (error != 0)
1737 		goto out_err;
1738 	return 0;
1739 out_err:
1740 	d_drop(dentry);
1741 	return error;
1742 }
1743 EXPORT_SYMBOL_GPL(nfs_mkdir);
1744 
1745 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1746 {
1747 	if (simple_positive(dentry))
1748 		d_delete(dentry);
1749 }
1750 
1751 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1752 {
1753 	int error;
1754 
1755 	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1756 			dir->i_sb->s_id, dir->i_ino, dentry);
1757 
1758 	trace_nfs_rmdir_enter(dir, dentry);
1759 	if (d_really_is_positive(dentry)) {
1760 		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1761 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1762 		/* Ensure the VFS deletes this inode */
1763 		switch (error) {
1764 		case 0:
1765 			clear_nlink(d_inode(dentry));
1766 			break;
1767 		case -ENOENT:
1768 			nfs_dentry_handle_enoent(dentry);
1769 		}
1770 		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1771 	} else
1772 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1773 	trace_nfs_rmdir_exit(dir, dentry, error);
1774 
1775 	return error;
1776 }
1777 EXPORT_SYMBOL_GPL(nfs_rmdir);
1778 
1779 /*
1780  * Remove a file after making sure there are no pending writes,
1781  * and after checking that the file has only one user.
1782  *
1783  * We invalidate the attribute cache and free the inode prior to the operation
1784  * to avoid possible races if the server reuses the inode.
1785  */
1786 static int nfs_safe_remove(struct dentry *dentry)
1787 {
1788 	struct inode *dir = d_inode(dentry->d_parent);
1789 	struct inode *inode = d_inode(dentry);
1790 	int error = -EBUSY;
1791 
1792 	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
1793 
1794 	/* If the dentry was sillyrenamed, we simply call d_delete() */
1795 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1796 		error = 0;
1797 		goto out;
1798 	}
1799 
1800 	trace_nfs_remove_enter(dir, dentry);
1801 	if (inode != NULL) {
1802 		NFS_PROTO(inode)->return_delegation(inode);
1803 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1804 		if (error == 0)
1805 			nfs_drop_nlink(inode);
1806 	} else
1807 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1808 	if (error == -ENOENT)
1809 		nfs_dentry_handle_enoent(dentry);
1810 	trace_nfs_remove_exit(dir, dentry, error);
1811 out:
1812 	return error;
1813 }
1814 
1815 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1816  *  belongs to an active ".nfs..." file and we return -EBUSY.
1817  *
1818  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1819  */
1820 int nfs_unlink(struct inode *dir, struct dentry *dentry)
1821 {
1822 	int error;
1823 	int need_rehash = 0;
1824 
1825 	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
1826 		dir->i_ino, dentry);
1827 
1828 	trace_nfs_unlink_enter(dir, dentry);
1829 	spin_lock(&dentry->d_lock);
1830 	if (d_count(dentry) > 1) {
1831 		spin_unlock(&dentry->d_lock);
1832 		/* Start asynchronous writeout of the inode */
1833 		write_inode_now(d_inode(dentry), 0);
1834 		error = nfs_sillyrename(dir, dentry);
1835 		goto out;
1836 	}
1837 	if (!d_unhashed(dentry)) {
1838 		__d_drop(dentry);
1839 		need_rehash = 1;
1840 	}
1841 	spin_unlock(&dentry->d_lock);
1842 	error = nfs_safe_remove(dentry);
1843 	if (!error || error == -ENOENT) {
1844 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1845 	} else if (need_rehash)
1846 		d_rehash(dentry);
1847 out:
1848 	trace_nfs_unlink_exit(dir, dentry, error);
1849 	return error;
1850 }
1851 EXPORT_SYMBOL_GPL(nfs_unlink);
1852 
1853 /*
1854  * To create a symbolic link, most file systems instantiate a new inode,
1855  * add a page to it containing the path, then write it out to the disk
1856  * using prepare_write/commit_write.
1857  *
1858  * Unfortunately the NFS client can't create the in-core inode first
1859  * because it needs a file handle to create an in-core inode (see
1860  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1861  * symlink request has completed on the server.
1862  *
1863  * So instead we allocate a raw page, copy the symname into it, then do
1864  * the SYMLINK request with the page as the buffer.  If it succeeds, we
1865  * now have a new file handle and can instantiate an in-core NFS inode
1866  * and move the raw page into its mapping.
1867  */
1868 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1869 {
1870 	struct page *page;
1871 	char *kaddr;
1872 	struct iattr attr;
1873 	unsigned int pathlen = strlen(symname);
1874 	int error;
1875 
1876 	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
1877 		dir->i_ino, dentry, symname);
1878 
1879 	if (pathlen > PAGE_SIZE)
1880 		return -ENAMETOOLONG;
1881 
1882 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
1883 	attr.ia_valid = ATTR_MODE;
1884 
1885 	page = alloc_page(GFP_USER);
1886 	if (!page)
1887 		return -ENOMEM;
1888 
1889 	kaddr = page_address(page);
1890 	memcpy(kaddr, symname, pathlen);
1891 	if (pathlen < PAGE_SIZE)
1892 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1893 
1894 	trace_nfs_symlink_enter(dir, dentry);
1895 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1896 	trace_nfs_symlink_exit(dir, dentry, error);
1897 	if (error != 0) {
1898 		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1899 			dir->i_sb->s_id, dir->i_ino,
1900 			dentry, symname, error);
1901 		d_drop(dentry);
1902 		__free_page(page);
1903 		return error;
1904 	}
1905 
1906 	/*
1907 	 * No big deal if we can't add this page to the page cache here.
1908 	 * READLINK will get the missing page from the server if needed.
1909 	 */
1910 	if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
1911 							GFP_KERNEL)) {
1912 		SetPageUptodate(page);
1913 		unlock_page(page);
1914 		/*
1915 		 * add_to_page_cache_lru() grabs an extra page refcount.
1916 		 * Drop it here to avoid leaking this page later.
1917 		 */
1918 		put_page(page);
1919 	} else
1920 		__free_page(page);
1921 
1922 	return 0;
1923 }
1924 EXPORT_SYMBOL_GPL(nfs_symlink);
1925 
1926 int
1927 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1928 {
1929 	struct inode *inode = d_inode(old_dentry);
1930 	int error;
1931 
1932 	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
1933 		old_dentry, dentry);
1934 
1935 	trace_nfs_link_enter(inode, dir, dentry);
1936 	NFS_PROTO(inode)->return_delegation(inode);
1937 
1938 	d_drop(dentry);
1939 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1940 	if (error == 0) {
1941 		ihold(inode);
1942 		d_add(dentry, inode);
1943 	}
1944 	trace_nfs_link_exit(inode, dir, dentry, error);
1945 	return error;
1946 }
1947 EXPORT_SYMBOL_GPL(nfs_link);
1948 
1949 static void
1950 nfs_complete_rename(struct rpc_task *task, struct nfs_renamedata *data)
1951 {
1952 	struct dentry *old_dentry = data->old_dentry;
1953 	struct dentry *new_dentry = data->new_dentry;
1954 	struct inode *old_inode = d_inode(old_dentry);
1955 	struct inode *new_inode = d_inode(new_dentry);
1956 
1957 	nfs_mark_for_revalidate(old_inode);
1958 
1959 	switch (task->tk_status) {
1960 	case 0:
1961 		if (new_inode != NULL)
1962 			nfs_drop_nlink(new_inode);
1963 		d_move(old_dentry, new_dentry);
1964 		nfs_set_verifier(new_dentry,
1965 					nfs_save_change_attribute(data->new_dir));
1966 		break;
1967 	case -ENOENT:
1968 		nfs_dentry_handle_enoent(old_dentry);
1969 	}
1970 }
1971 
1972 /*
1973  * RENAME
1974  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1975  * different file handle for the same inode after a rename (e.g. when
1976  * moving to a different directory). A fail-safe method to do so would
1977  * be to look up old_dir/old_name, create a link to new_dir/new_name and
1978  * rename the old file using the sillyrename stuff. This way, the original
1979  * file in old_dir will go away when the last process iput()s the inode.
1980  *
1981  * FIXED.
1982  *
1983  * It actually works quite well. One needs to have the possibility for
1984  * at least one ".nfs..." file in each directory the file ever gets
1985  * moved or linked to which happens automagically with the new
1986  * implementation that only depends on the dcache stuff instead of
1987  * using the inode layer
1988  *
1989  * Unfortunately, things are a little more complicated than indicated
1990  * above. For a cross-directory move, we want to make sure we can get
1991  * rid of the old inode after the operation.  This means there must be
1992  * no pending writes (if it's a file), and the use count must be 1.
1993  * If these conditions are met, we can drop the dentries before doing
1994  * the rename.
1995  */
1996 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1997 	       struct inode *new_dir, struct dentry *new_dentry,
1998 	       unsigned int flags)
1999 {
2000 	struct inode *old_inode = d_inode(old_dentry);
2001 	struct inode *new_inode = d_inode(new_dentry);
2002 	struct dentry *dentry = NULL;
2003 	struct rpc_task *task;
2004 	int error = -EBUSY;
2005 
2006 	if (flags)
2007 		return -EINVAL;
2008 
2009 	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2010 		 old_dentry, new_dentry,
2011 		 d_count(new_dentry));
2012 
2013 	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2014 	/*
2015 	 * For non-directories, check whether the target is busy and if so,
2016 	 * make a copy of the dentry and then do a silly-rename. If the
2017 	 * silly-rename succeeds, the copied dentry is hashed and becomes
2018 	 * the new target.
2019 	 */
2020 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2021 		/*
2022 		 * To prevent any new references to the target during the
2023 		 * rename, we unhash the dentry in advance.
2024 		 */
2025 		if (!d_unhashed(new_dentry))
2026 			d_drop(new_dentry);
2027 
2028 		if (d_count(new_dentry) > 2) {
2029 			int err;
2030 
2031 			/* copy the target dentry's name */
2032 			dentry = d_alloc(new_dentry->d_parent,
2033 					 &new_dentry->d_name);
2034 			if (!dentry)
2035 				goto out;
2036 
2037 			/* silly-rename the existing target ... */
2038 			err = nfs_sillyrename(new_dir, new_dentry);
2039 			if (err)
2040 				goto out;
2041 
2042 			new_dentry = dentry;
2043 			new_inode = NULL;
2044 		}
2045 	}
2046 
2047 	NFS_PROTO(old_inode)->return_delegation(old_inode);
2048 	if (new_inode != NULL)
2049 		NFS_PROTO(new_inode)->return_delegation(new_inode);
2050 
2051 	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry,
2052 					nfs_complete_rename);
2053 	if (IS_ERR(task)) {
2054 		error = PTR_ERR(task);
2055 		goto out;
2056 	}
2057 
2058 	error = rpc_wait_for_completion_task(task);
2059 	if (error != 0) {
2060 		((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2061 		/* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2062 		smp_wmb();
2063 	} else
2064 		error = task->tk_status;
2065 	rpc_put_task(task);
2066 out:
2067 	trace_nfs_rename_exit(old_dir, old_dentry,
2068 			new_dir, new_dentry, error);
2069 	/* new dentry created? */
2070 	if (dentry)
2071 		dput(dentry);
2072 	return error;
2073 }
2074 EXPORT_SYMBOL_GPL(nfs_rename);
2075 
2076 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2077 static LIST_HEAD(nfs_access_lru_list);
2078 static atomic_long_t nfs_access_nr_entries;
2079 
2080 static unsigned long nfs_access_max_cachesize = ULONG_MAX;
2081 module_param(nfs_access_max_cachesize, ulong, 0644);
2082 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2083 
2084 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2085 {
2086 	put_rpccred(entry->cred);
2087 	kfree_rcu(entry, rcu_head);
2088 	smp_mb__before_atomic();
2089 	atomic_long_dec(&nfs_access_nr_entries);
2090 	smp_mb__after_atomic();
2091 }
2092 
2093 static void nfs_access_free_list(struct list_head *head)
2094 {
2095 	struct nfs_access_entry *cache;
2096 
2097 	while (!list_empty(head)) {
2098 		cache = list_entry(head->next, struct nfs_access_entry, lru);
2099 		list_del(&cache->lru);
2100 		nfs_access_free_entry(cache);
2101 	}
2102 }
2103 
2104 static unsigned long
2105 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2106 {
2107 	LIST_HEAD(head);
2108 	struct nfs_inode *nfsi, *next;
2109 	struct nfs_access_entry *cache;
2110 	long freed = 0;
2111 
2112 	spin_lock(&nfs_access_lru_lock);
2113 	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2114 		struct inode *inode;
2115 
2116 		if (nr_to_scan-- == 0)
2117 			break;
2118 		inode = &nfsi->vfs_inode;
2119 		spin_lock(&inode->i_lock);
2120 		if (list_empty(&nfsi->access_cache_entry_lru))
2121 			goto remove_lru_entry;
2122 		cache = list_entry(nfsi->access_cache_entry_lru.next,
2123 				struct nfs_access_entry, lru);
2124 		list_move(&cache->lru, &head);
2125 		rb_erase(&cache->rb_node, &nfsi->access_cache);
2126 		freed++;
2127 		if (!list_empty(&nfsi->access_cache_entry_lru))
2128 			list_move_tail(&nfsi->access_cache_inode_lru,
2129 					&nfs_access_lru_list);
2130 		else {
2131 remove_lru_entry:
2132 			list_del_init(&nfsi->access_cache_inode_lru);
2133 			smp_mb__before_atomic();
2134 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2135 			smp_mb__after_atomic();
2136 		}
2137 		spin_unlock(&inode->i_lock);
2138 	}
2139 	spin_unlock(&nfs_access_lru_lock);
2140 	nfs_access_free_list(&head);
2141 	return freed;
2142 }
2143 
2144 unsigned long
2145 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2146 {
2147 	int nr_to_scan = sc->nr_to_scan;
2148 	gfp_t gfp_mask = sc->gfp_mask;
2149 
2150 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2151 		return SHRINK_STOP;
2152 	return nfs_do_access_cache_scan(nr_to_scan);
2153 }
2154 
2155 
2156 unsigned long
2157 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2158 {
2159 	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2160 }
2161 
2162 static void
2163 nfs_access_cache_enforce_limit(void)
2164 {
2165 	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2166 	unsigned long diff;
2167 	unsigned int nr_to_scan;
2168 
2169 	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2170 		return;
2171 	nr_to_scan = 100;
2172 	diff = nr_entries - nfs_access_max_cachesize;
2173 	if (diff < nr_to_scan)
2174 		nr_to_scan = diff;
2175 	nfs_do_access_cache_scan(nr_to_scan);
2176 }
2177 
2178 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2179 {
2180 	struct rb_root *root_node = &nfsi->access_cache;
2181 	struct rb_node *n;
2182 	struct nfs_access_entry *entry;
2183 
2184 	/* Unhook entries from the cache */
2185 	while ((n = rb_first(root_node)) != NULL) {
2186 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2187 		rb_erase(n, root_node);
2188 		list_move(&entry->lru, head);
2189 	}
2190 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2191 }
2192 
2193 void nfs_access_zap_cache(struct inode *inode)
2194 {
2195 	LIST_HEAD(head);
2196 
2197 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2198 		return;
2199 	/* Remove from global LRU init */
2200 	spin_lock(&nfs_access_lru_lock);
2201 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2202 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2203 
2204 	spin_lock(&inode->i_lock);
2205 	__nfs_access_zap_cache(NFS_I(inode), &head);
2206 	spin_unlock(&inode->i_lock);
2207 	spin_unlock(&nfs_access_lru_lock);
2208 	nfs_access_free_list(&head);
2209 }
2210 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2211 
2212 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2213 {
2214 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2215 	struct nfs_access_entry *entry;
2216 
2217 	while (n != NULL) {
2218 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2219 
2220 		if (cred < entry->cred)
2221 			n = n->rb_left;
2222 		else if (cred > entry->cred)
2223 			n = n->rb_right;
2224 		else
2225 			return entry;
2226 	}
2227 	return NULL;
2228 }
2229 
2230 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res, bool may_block)
2231 {
2232 	struct nfs_inode *nfsi = NFS_I(inode);
2233 	struct nfs_access_entry *cache;
2234 	bool retry = true;
2235 	int err;
2236 
2237 	spin_lock(&inode->i_lock);
2238 	for(;;) {
2239 		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2240 			goto out_zap;
2241 		cache = nfs_access_search_rbtree(inode, cred);
2242 		err = -ENOENT;
2243 		if (cache == NULL)
2244 			goto out;
2245 		/* Found an entry, is our attribute cache valid? */
2246 		if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2247 			break;
2248 		err = -ECHILD;
2249 		if (!may_block)
2250 			goto out;
2251 		if (!retry)
2252 			goto out_zap;
2253 		spin_unlock(&inode->i_lock);
2254 		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2255 		if (err)
2256 			return err;
2257 		spin_lock(&inode->i_lock);
2258 		retry = false;
2259 	}
2260 	res->jiffies = cache->jiffies;
2261 	res->cred = cache->cred;
2262 	res->mask = cache->mask;
2263 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2264 	err = 0;
2265 out:
2266 	spin_unlock(&inode->i_lock);
2267 	return err;
2268 out_zap:
2269 	spin_unlock(&inode->i_lock);
2270 	nfs_access_zap_cache(inode);
2271 	return -ENOENT;
2272 }
2273 
2274 static int nfs_access_get_cached_rcu(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2275 {
2276 	/* Only check the most recently returned cache entry,
2277 	 * but do it without locking.
2278 	 */
2279 	struct nfs_inode *nfsi = NFS_I(inode);
2280 	struct nfs_access_entry *cache;
2281 	int err = -ECHILD;
2282 	struct list_head *lh;
2283 
2284 	rcu_read_lock();
2285 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2286 		goto out;
2287 	lh = rcu_dereference(nfsi->access_cache_entry_lru.prev);
2288 	cache = list_entry(lh, struct nfs_access_entry, lru);
2289 	if (lh == &nfsi->access_cache_entry_lru ||
2290 	    cred != cache->cred)
2291 		cache = NULL;
2292 	if (cache == NULL)
2293 		goto out;
2294 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2295 		goto out;
2296 	res->jiffies = cache->jiffies;
2297 	res->cred = cache->cred;
2298 	res->mask = cache->mask;
2299 	err = 0;
2300 out:
2301 	rcu_read_unlock();
2302 	return err;
2303 }
2304 
2305 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2306 {
2307 	struct nfs_inode *nfsi = NFS_I(inode);
2308 	struct rb_root *root_node = &nfsi->access_cache;
2309 	struct rb_node **p = &root_node->rb_node;
2310 	struct rb_node *parent = NULL;
2311 	struct nfs_access_entry *entry;
2312 
2313 	spin_lock(&inode->i_lock);
2314 	while (*p != NULL) {
2315 		parent = *p;
2316 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2317 
2318 		if (set->cred < entry->cred)
2319 			p = &parent->rb_left;
2320 		else if (set->cred > entry->cred)
2321 			p = &parent->rb_right;
2322 		else
2323 			goto found;
2324 	}
2325 	rb_link_node(&set->rb_node, parent, p);
2326 	rb_insert_color(&set->rb_node, root_node);
2327 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2328 	spin_unlock(&inode->i_lock);
2329 	return;
2330 found:
2331 	rb_replace_node(parent, &set->rb_node, root_node);
2332 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2333 	list_del(&entry->lru);
2334 	spin_unlock(&inode->i_lock);
2335 	nfs_access_free_entry(entry);
2336 }
2337 
2338 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2339 {
2340 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2341 	if (cache == NULL)
2342 		return;
2343 	RB_CLEAR_NODE(&cache->rb_node);
2344 	cache->jiffies = set->jiffies;
2345 	cache->cred = get_rpccred(set->cred);
2346 	cache->mask = set->mask;
2347 
2348 	/* The above field assignments must be visible
2349 	 * before this item appears on the lru.  We cannot easily
2350 	 * use rcu_assign_pointer, so just force the memory barrier.
2351 	 */
2352 	smp_wmb();
2353 	nfs_access_add_rbtree(inode, cache);
2354 
2355 	/* Update accounting */
2356 	smp_mb__before_atomic();
2357 	atomic_long_inc(&nfs_access_nr_entries);
2358 	smp_mb__after_atomic();
2359 
2360 	/* Add inode to global LRU list */
2361 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2362 		spin_lock(&nfs_access_lru_lock);
2363 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2364 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2365 					&nfs_access_lru_list);
2366 		spin_unlock(&nfs_access_lru_lock);
2367 	}
2368 	nfs_access_cache_enforce_limit();
2369 }
2370 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2371 
2372 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2373 {
2374 	entry->mask = 0;
2375 	if (access_result & NFS4_ACCESS_READ)
2376 		entry->mask |= MAY_READ;
2377 	if (access_result &
2378 	    (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
2379 		entry->mask |= MAY_WRITE;
2380 	if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
2381 		entry->mask |= MAY_EXEC;
2382 }
2383 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2384 
2385 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2386 {
2387 	struct nfs_access_entry cache;
2388 	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2389 	int status;
2390 
2391 	trace_nfs_access_enter(inode);
2392 
2393 	status = nfs_access_get_cached_rcu(inode, cred, &cache);
2394 	if (status != 0)
2395 		status = nfs_access_get_cached(inode, cred, &cache, may_block);
2396 	if (status == 0)
2397 		goto out_cached;
2398 
2399 	status = -ECHILD;
2400 	if (!may_block)
2401 		goto out;
2402 
2403 	/* Be clever: ask server to check for all possible rights */
2404 	cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2405 	cache.cred = cred;
2406 	cache.jiffies = jiffies;
2407 	status = NFS_PROTO(inode)->access(inode, &cache);
2408 	if (status != 0) {
2409 		if (status == -ESTALE) {
2410 			nfs_zap_caches(inode);
2411 			if (!S_ISDIR(inode->i_mode))
2412 				set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2413 		}
2414 		goto out;
2415 	}
2416 	nfs_access_add_cache(inode, &cache);
2417 out_cached:
2418 	if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2419 		status = -EACCES;
2420 out:
2421 	trace_nfs_access_exit(inode, status);
2422 	return status;
2423 }
2424 
2425 static int nfs_open_permission_mask(int openflags)
2426 {
2427 	int mask = 0;
2428 
2429 	if (openflags & __FMODE_EXEC) {
2430 		/* ONLY check exec rights */
2431 		mask = MAY_EXEC;
2432 	} else {
2433 		if ((openflags & O_ACCMODE) != O_WRONLY)
2434 			mask |= MAY_READ;
2435 		if ((openflags & O_ACCMODE) != O_RDONLY)
2436 			mask |= MAY_WRITE;
2437 	}
2438 
2439 	return mask;
2440 }
2441 
2442 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2443 {
2444 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2445 }
2446 EXPORT_SYMBOL_GPL(nfs_may_open);
2447 
2448 static int nfs_execute_ok(struct inode *inode, int mask)
2449 {
2450 	struct nfs_server *server = NFS_SERVER(inode);
2451 	int ret = 0;
2452 
2453 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) {
2454 		if (mask & MAY_NOT_BLOCK)
2455 			return -ECHILD;
2456 		ret = __nfs_revalidate_inode(server, inode);
2457 	}
2458 	if (ret == 0 && !execute_ok(inode))
2459 		ret = -EACCES;
2460 	return ret;
2461 }
2462 
2463 int nfs_permission(struct inode *inode, int mask)
2464 {
2465 	struct rpc_cred *cred;
2466 	int res = 0;
2467 
2468 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2469 
2470 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2471 		goto out;
2472 	/* Is this sys_access() ? */
2473 	if (mask & (MAY_ACCESS | MAY_CHDIR))
2474 		goto force_lookup;
2475 
2476 	switch (inode->i_mode & S_IFMT) {
2477 		case S_IFLNK:
2478 			goto out;
2479 		case S_IFREG:
2480 			if ((mask & MAY_OPEN) &&
2481 			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2482 				return 0;
2483 			break;
2484 		case S_IFDIR:
2485 			/*
2486 			 * Optimize away all write operations, since the server
2487 			 * will check permissions when we perform the op.
2488 			 */
2489 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2490 				goto out;
2491 	}
2492 
2493 force_lookup:
2494 	if (!NFS_PROTO(inode)->access)
2495 		goto out_notsup;
2496 
2497 	/* Always try fast lookups first */
2498 	rcu_read_lock();
2499 	cred = rpc_lookup_cred_nonblock();
2500 	if (!IS_ERR(cred))
2501 		res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK);
2502 	else
2503 		res = PTR_ERR(cred);
2504 	rcu_read_unlock();
2505 	if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) {
2506 		/* Fast lookup failed, try the slow way */
2507 		cred = rpc_lookup_cred();
2508 		if (!IS_ERR(cred)) {
2509 			res = nfs_do_access(inode, cred, mask);
2510 			put_rpccred(cred);
2511 		} else
2512 			res = PTR_ERR(cred);
2513 	}
2514 out:
2515 	if (!res && (mask & MAY_EXEC))
2516 		res = nfs_execute_ok(inode, mask);
2517 
2518 	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2519 		inode->i_sb->s_id, inode->i_ino, mask, res);
2520 	return res;
2521 out_notsup:
2522 	if (mask & MAY_NOT_BLOCK)
2523 		return -ECHILD;
2524 
2525 	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2526 	if (res == 0)
2527 		res = generic_permission(inode, mask);
2528 	goto out;
2529 }
2530 EXPORT_SYMBOL_GPL(nfs_permission);
2531 
2532 /*
2533  * Local variables:
2534  *  version-control: t
2535  *  kept-new-versions: 5
2536  * End:
2537  */
2538