xref: /openbmc/linux/fs/nfs/dir.c (revision 80a491fd)
1 /*
2  *  linux/fs/nfs/dir.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  nfs directory handling functions
7  *
8  * 10 Apr 1996	Added silly rename for unlink	--okir
9  * 28 Sep 1996	Improved directory cache --okir
10  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
11  *              Re-implemented silly rename for unlink, newly implemented
12  *              silly rename for nfs_rename() following the suggestions
13  *              of Olaf Kirch (okir) found in this file.
14  *              Following Linus comments on my original hack, this version
15  *              depends only on the dcache stuff and doesn't touch the inode
16  *              layer (iput() and friends).
17  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
18  */
19 
20 #include <linux/module.h>
21 #include <linux/time.h>
22 #include <linux/errno.h>
23 #include <linux/stat.h>
24 #include <linux/fcntl.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/mm.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/nfs_fs.h>
31 #include <linux/nfs_mount.h>
32 #include <linux/pagemap.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/swap.h>
37 #include <linux/sched.h>
38 #include <linux/kmemleak.h>
39 #include <linux/xattr.h>
40 
41 #include "delegation.h"
42 #include "iostat.h"
43 #include "internal.h"
44 #include "fscache.h"
45 
46 #include "nfstrace.h"
47 
48 /* #define NFS_DEBUG_VERBOSE 1 */
49 
50 static int nfs_opendir(struct inode *, struct file *);
51 static int nfs_closedir(struct inode *, struct file *);
52 static int nfs_readdir(struct file *, struct dir_context *);
53 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
54 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
55 static void nfs_readdir_clear_array(struct page*);
56 
57 const struct file_operations nfs_dir_operations = {
58 	.llseek		= nfs_llseek_dir,
59 	.read		= generic_read_dir,
60 	.iterate	= nfs_readdir,
61 	.open		= nfs_opendir,
62 	.release	= nfs_closedir,
63 	.fsync		= nfs_fsync_dir,
64 };
65 
66 const struct address_space_operations nfs_dir_aops = {
67 	.freepage = nfs_readdir_clear_array,
68 };
69 
70 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
71 {
72 	struct nfs_inode *nfsi = NFS_I(dir);
73 	struct nfs_open_dir_context *ctx;
74 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
75 	if (ctx != NULL) {
76 		ctx->duped = 0;
77 		ctx->attr_gencount = nfsi->attr_gencount;
78 		ctx->dir_cookie = 0;
79 		ctx->dup_cookie = 0;
80 		ctx->cred = get_rpccred(cred);
81 		spin_lock(&dir->i_lock);
82 		list_add(&ctx->list, &nfsi->open_files);
83 		spin_unlock(&dir->i_lock);
84 		return ctx;
85 	}
86 	return  ERR_PTR(-ENOMEM);
87 }
88 
89 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
90 {
91 	spin_lock(&dir->i_lock);
92 	list_del(&ctx->list);
93 	spin_unlock(&dir->i_lock);
94 	put_rpccred(ctx->cred);
95 	kfree(ctx);
96 }
97 
98 /*
99  * Open file
100  */
101 static int
102 nfs_opendir(struct inode *inode, struct file *filp)
103 {
104 	int res = 0;
105 	struct nfs_open_dir_context *ctx;
106 	struct rpc_cred *cred;
107 
108 	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
109 
110 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
111 
112 	cred = rpc_lookup_cred();
113 	if (IS_ERR(cred))
114 		return PTR_ERR(cred);
115 	ctx = alloc_nfs_open_dir_context(inode, cred);
116 	if (IS_ERR(ctx)) {
117 		res = PTR_ERR(ctx);
118 		goto out;
119 	}
120 	filp->private_data = ctx;
121 	if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
122 		/* This is a mountpoint, so d_revalidate will never
123 		 * have been called, so we need to refresh the
124 		 * inode (for close-open consistency) ourselves.
125 		 */
126 		__nfs_revalidate_inode(NFS_SERVER(inode), inode);
127 	}
128 out:
129 	put_rpccred(cred);
130 	return res;
131 }
132 
133 static int
134 nfs_closedir(struct inode *inode, struct file *filp)
135 {
136 	put_nfs_open_dir_context(filp->f_path.dentry->d_inode, filp->private_data);
137 	return 0;
138 }
139 
140 struct nfs_cache_array_entry {
141 	u64 cookie;
142 	u64 ino;
143 	struct qstr string;
144 	unsigned char d_type;
145 };
146 
147 struct nfs_cache_array {
148 	int size;
149 	int eof_index;
150 	u64 last_cookie;
151 	struct nfs_cache_array_entry array[0];
152 };
153 
154 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
155 typedef struct {
156 	struct file	*file;
157 	struct page	*page;
158 	struct dir_context *ctx;
159 	unsigned long	page_index;
160 	u64		*dir_cookie;
161 	u64		last_cookie;
162 	loff_t		current_index;
163 	decode_dirent_t	decode;
164 
165 	unsigned long	timestamp;
166 	unsigned long	gencount;
167 	unsigned int	cache_entry_index;
168 	unsigned int	plus:1;
169 	unsigned int	eof:1;
170 } nfs_readdir_descriptor_t;
171 
172 /*
173  * The caller is responsible for calling nfs_readdir_release_array(page)
174  */
175 static
176 struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
177 {
178 	void *ptr;
179 	if (page == NULL)
180 		return ERR_PTR(-EIO);
181 	ptr = kmap(page);
182 	if (ptr == NULL)
183 		return ERR_PTR(-ENOMEM);
184 	return ptr;
185 }
186 
187 static
188 void nfs_readdir_release_array(struct page *page)
189 {
190 	kunmap(page);
191 }
192 
193 /*
194  * we are freeing strings created by nfs_add_to_readdir_array()
195  */
196 static
197 void nfs_readdir_clear_array(struct page *page)
198 {
199 	struct nfs_cache_array *array;
200 	int i;
201 
202 	array = kmap_atomic(page);
203 	for (i = 0; i < array->size; i++)
204 		kfree(array->array[i].string.name);
205 	kunmap_atomic(array);
206 }
207 
208 /*
209  * the caller is responsible for freeing qstr.name
210  * when called by nfs_readdir_add_to_array, the strings will be freed in
211  * nfs_clear_readdir_array()
212  */
213 static
214 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
215 {
216 	string->len = len;
217 	string->name = kmemdup(name, len, GFP_KERNEL);
218 	if (string->name == NULL)
219 		return -ENOMEM;
220 	/*
221 	 * Avoid a kmemleak false positive. The pointer to the name is stored
222 	 * in a page cache page which kmemleak does not scan.
223 	 */
224 	kmemleak_not_leak(string->name);
225 	string->hash = full_name_hash(name, len);
226 	return 0;
227 }
228 
229 static
230 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
231 {
232 	struct nfs_cache_array *array = nfs_readdir_get_array(page);
233 	struct nfs_cache_array_entry *cache_entry;
234 	int ret;
235 
236 	if (IS_ERR(array))
237 		return PTR_ERR(array);
238 
239 	cache_entry = &array->array[array->size];
240 
241 	/* Check that this entry lies within the page bounds */
242 	ret = -ENOSPC;
243 	if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
244 		goto out;
245 
246 	cache_entry->cookie = entry->prev_cookie;
247 	cache_entry->ino = entry->ino;
248 	cache_entry->d_type = entry->d_type;
249 	ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
250 	if (ret)
251 		goto out;
252 	array->last_cookie = entry->cookie;
253 	array->size++;
254 	if (entry->eof != 0)
255 		array->eof_index = array->size;
256 out:
257 	nfs_readdir_release_array(page);
258 	return ret;
259 }
260 
261 static
262 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
263 {
264 	loff_t diff = desc->ctx->pos - desc->current_index;
265 	unsigned int index;
266 
267 	if (diff < 0)
268 		goto out_eof;
269 	if (diff >= array->size) {
270 		if (array->eof_index >= 0)
271 			goto out_eof;
272 		return -EAGAIN;
273 	}
274 
275 	index = (unsigned int)diff;
276 	*desc->dir_cookie = array->array[index].cookie;
277 	desc->cache_entry_index = index;
278 	return 0;
279 out_eof:
280 	desc->eof = 1;
281 	return -EBADCOOKIE;
282 }
283 
284 static bool
285 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
286 {
287 	if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
288 		return false;
289 	smp_rmb();
290 	return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
291 }
292 
293 static
294 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
295 {
296 	int i;
297 	loff_t new_pos;
298 	int status = -EAGAIN;
299 
300 	for (i = 0; i < array->size; i++) {
301 		if (array->array[i].cookie == *desc->dir_cookie) {
302 			struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
303 			struct nfs_open_dir_context *ctx = desc->file->private_data;
304 
305 			new_pos = desc->current_index + i;
306 			if (ctx->attr_gencount != nfsi->attr_gencount ||
307 			    !nfs_readdir_inode_mapping_valid(nfsi)) {
308 				ctx->duped = 0;
309 				ctx->attr_gencount = nfsi->attr_gencount;
310 			} else if (new_pos < desc->ctx->pos) {
311 				if (ctx->duped > 0
312 				    && ctx->dup_cookie == *desc->dir_cookie) {
313 					if (printk_ratelimit()) {
314 						pr_notice("NFS: directory %pD2 contains a readdir loop."
315 								"Please contact your server vendor.  "
316 								"The file: %s has duplicate cookie %llu\n",
317 								desc->file,
318 								array->array[i].string.name,
319 								*desc->dir_cookie);
320 					}
321 					status = -ELOOP;
322 					goto out;
323 				}
324 				ctx->dup_cookie = *desc->dir_cookie;
325 				ctx->duped = -1;
326 			}
327 			desc->ctx->pos = new_pos;
328 			desc->cache_entry_index = i;
329 			return 0;
330 		}
331 	}
332 	if (array->eof_index >= 0) {
333 		status = -EBADCOOKIE;
334 		if (*desc->dir_cookie == array->last_cookie)
335 			desc->eof = 1;
336 	}
337 out:
338 	return status;
339 }
340 
341 static
342 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
343 {
344 	struct nfs_cache_array *array;
345 	int status;
346 
347 	array = nfs_readdir_get_array(desc->page);
348 	if (IS_ERR(array)) {
349 		status = PTR_ERR(array);
350 		goto out;
351 	}
352 
353 	if (*desc->dir_cookie == 0)
354 		status = nfs_readdir_search_for_pos(array, desc);
355 	else
356 		status = nfs_readdir_search_for_cookie(array, desc);
357 
358 	if (status == -EAGAIN) {
359 		desc->last_cookie = array->last_cookie;
360 		desc->current_index += array->size;
361 		desc->page_index++;
362 	}
363 	nfs_readdir_release_array(desc->page);
364 out:
365 	return status;
366 }
367 
368 /* Fill a page with xdr information before transferring to the cache page */
369 static
370 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
371 			struct nfs_entry *entry, struct file *file, struct inode *inode)
372 {
373 	struct nfs_open_dir_context *ctx = file->private_data;
374 	struct rpc_cred	*cred = ctx->cred;
375 	unsigned long	timestamp, gencount;
376 	int		error;
377 
378  again:
379 	timestamp = jiffies;
380 	gencount = nfs_inc_attr_generation_counter();
381 	error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages,
382 					  NFS_SERVER(inode)->dtsize, desc->plus);
383 	if (error < 0) {
384 		/* We requested READDIRPLUS, but the server doesn't grok it */
385 		if (error == -ENOTSUPP && desc->plus) {
386 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
387 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
388 			desc->plus = 0;
389 			goto again;
390 		}
391 		goto error;
392 	}
393 	desc->timestamp = timestamp;
394 	desc->gencount = gencount;
395 error:
396 	return error;
397 }
398 
399 static int xdr_decode(nfs_readdir_descriptor_t *desc,
400 		      struct nfs_entry *entry, struct xdr_stream *xdr)
401 {
402 	int error;
403 
404 	error = desc->decode(xdr, entry, desc->plus);
405 	if (error)
406 		return error;
407 	entry->fattr->time_start = desc->timestamp;
408 	entry->fattr->gencount = desc->gencount;
409 	return 0;
410 }
411 
412 static
413 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
414 {
415 	if (dentry->d_inode == NULL)
416 		goto different;
417 	if (nfs_compare_fh(entry->fh, NFS_FH(dentry->d_inode)) != 0)
418 		goto different;
419 	return 1;
420 different:
421 	return 0;
422 }
423 
424 static
425 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
426 {
427 	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
428 		return false;
429 	if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
430 		return true;
431 	if (ctx->pos == 0)
432 		return true;
433 	return false;
434 }
435 
436 /*
437  * This function is called by the lookup code to request the use of
438  * readdirplus to accelerate any future lookups in the same
439  * directory.
440  */
441 static
442 void nfs_advise_use_readdirplus(struct inode *dir)
443 {
444 	set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags);
445 }
446 
447 /*
448  * This function is mainly for use by nfs_getattr().
449  *
450  * If this is an 'ls -l', we want to force use of readdirplus.
451  * Do this by checking if there is an active file descriptor
452  * and calling nfs_advise_use_readdirplus, then forcing a
453  * cache flush.
454  */
455 void nfs_force_use_readdirplus(struct inode *dir)
456 {
457 	if (!list_empty(&NFS_I(dir)->open_files)) {
458 		nfs_advise_use_readdirplus(dir);
459 		nfs_zap_mapping(dir, dir->i_mapping);
460 	}
461 }
462 
463 static
464 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
465 {
466 	struct qstr filename = QSTR_INIT(entry->name, entry->len);
467 	struct dentry *dentry;
468 	struct dentry *alias;
469 	struct inode *dir = parent->d_inode;
470 	struct inode *inode;
471 	int status;
472 
473 	if (filename.name[0] == '.') {
474 		if (filename.len == 1)
475 			return;
476 		if (filename.len == 2 && filename.name[1] == '.')
477 			return;
478 	}
479 	filename.hash = full_name_hash(filename.name, filename.len);
480 
481 	dentry = d_lookup(parent, &filename);
482 	if (dentry != NULL) {
483 		if (nfs_same_file(dentry, entry)) {
484 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
485 			status = nfs_refresh_inode(dentry->d_inode, entry->fattr);
486 			if (!status)
487 				nfs_setsecurity(dentry->d_inode, entry->fattr, entry->label);
488 			goto out;
489 		} else {
490 			if (d_invalidate(dentry) != 0)
491 				goto out;
492 			dput(dentry);
493 		}
494 	}
495 
496 	dentry = d_alloc(parent, &filename);
497 	if (dentry == NULL)
498 		return;
499 
500 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
501 	if (IS_ERR(inode))
502 		goto out;
503 
504 	alias = d_materialise_unique(dentry, inode);
505 	if (IS_ERR(alias))
506 		goto out;
507 	else if (alias) {
508 		nfs_set_verifier(alias, nfs_save_change_attribute(dir));
509 		dput(alias);
510 	} else
511 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
512 
513 out:
514 	dput(dentry);
515 }
516 
517 /* Perform conversion from xdr to cache array */
518 static
519 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
520 				struct page **xdr_pages, struct page *page, unsigned int buflen)
521 {
522 	struct xdr_stream stream;
523 	struct xdr_buf buf;
524 	struct page *scratch;
525 	struct nfs_cache_array *array;
526 	unsigned int count = 0;
527 	int status;
528 
529 	scratch = alloc_page(GFP_KERNEL);
530 	if (scratch == NULL)
531 		return -ENOMEM;
532 
533 	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
534 	xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
535 
536 	do {
537 		status = xdr_decode(desc, entry, &stream);
538 		if (status != 0) {
539 			if (status == -EAGAIN)
540 				status = 0;
541 			break;
542 		}
543 
544 		count++;
545 
546 		if (desc->plus != 0)
547 			nfs_prime_dcache(desc->file->f_path.dentry, entry);
548 
549 		status = nfs_readdir_add_to_array(entry, page);
550 		if (status != 0)
551 			break;
552 	} while (!entry->eof);
553 
554 	if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
555 		array = nfs_readdir_get_array(page);
556 		if (!IS_ERR(array)) {
557 			array->eof_index = array->size;
558 			status = 0;
559 			nfs_readdir_release_array(page);
560 		} else
561 			status = PTR_ERR(array);
562 	}
563 
564 	put_page(scratch);
565 	return status;
566 }
567 
568 static
569 void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages)
570 {
571 	unsigned int i;
572 	for (i = 0; i < npages; i++)
573 		put_page(pages[i]);
574 }
575 
576 static
577 void nfs_readdir_free_large_page(void *ptr, struct page **pages,
578 		unsigned int npages)
579 {
580 	nfs_readdir_free_pagearray(pages, npages);
581 }
582 
583 /*
584  * nfs_readdir_large_page will allocate pages that must be freed with a call
585  * to nfs_readdir_free_large_page
586  */
587 static
588 int nfs_readdir_large_page(struct page **pages, unsigned int npages)
589 {
590 	unsigned int i;
591 
592 	for (i = 0; i < npages; i++) {
593 		struct page *page = alloc_page(GFP_KERNEL);
594 		if (page == NULL)
595 			goto out_freepages;
596 		pages[i] = page;
597 	}
598 	return 0;
599 
600 out_freepages:
601 	nfs_readdir_free_pagearray(pages, i);
602 	return -ENOMEM;
603 }
604 
605 static
606 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
607 {
608 	struct page *pages[NFS_MAX_READDIR_PAGES];
609 	void *pages_ptr = NULL;
610 	struct nfs_entry entry;
611 	struct file	*file = desc->file;
612 	struct nfs_cache_array *array;
613 	int status = -ENOMEM;
614 	unsigned int array_size = ARRAY_SIZE(pages);
615 
616 	entry.prev_cookie = 0;
617 	entry.cookie = desc->last_cookie;
618 	entry.eof = 0;
619 	entry.fh = nfs_alloc_fhandle();
620 	entry.fattr = nfs_alloc_fattr();
621 	entry.server = NFS_SERVER(inode);
622 	if (entry.fh == NULL || entry.fattr == NULL)
623 		goto out;
624 
625 	entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
626 	if (IS_ERR(entry.label)) {
627 		status = PTR_ERR(entry.label);
628 		goto out;
629 	}
630 
631 	array = nfs_readdir_get_array(page);
632 	if (IS_ERR(array)) {
633 		status = PTR_ERR(array);
634 		goto out_label_free;
635 	}
636 	memset(array, 0, sizeof(struct nfs_cache_array));
637 	array->eof_index = -1;
638 
639 	status = nfs_readdir_large_page(pages, array_size);
640 	if (status < 0)
641 		goto out_release_array;
642 	do {
643 		unsigned int pglen;
644 		status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
645 
646 		if (status < 0)
647 			break;
648 		pglen = status;
649 		status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
650 		if (status < 0) {
651 			if (status == -ENOSPC)
652 				status = 0;
653 			break;
654 		}
655 	} while (array->eof_index < 0);
656 
657 	nfs_readdir_free_large_page(pages_ptr, pages, array_size);
658 out_release_array:
659 	nfs_readdir_release_array(page);
660 out_label_free:
661 	nfs4_label_free(entry.label);
662 out:
663 	nfs_free_fattr(entry.fattr);
664 	nfs_free_fhandle(entry.fh);
665 	return status;
666 }
667 
668 /*
669  * Now we cache directories properly, by converting xdr information
670  * to an array that can be used for lookups later.  This results in
671  * fewer cache pages, since we can store more information on each page.
672  * We only need to convert from xdr once so future lookups are much simpler
673  */
674 static
675 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
676 {
677 	struct inode	*inode = file_inode(desc->file);
678 	int ret;
679 
680 	ret = nfs_readdir_xdr_to_array(desc, page, inode);
681 	if (ret < 0)
682 		goto error;
683 	SetPageUptodate(page);
684 
685 	if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
686 		/* Should never happen */
687 		nfs_zap_mapping(inode, inode->i_mapping);
688 	}
689 	unlock_page(page);
690 	return 0;
691  error:
692 	unlock_page(page);
693 	return ret;
694 }
695 
696 static
697 void cache_page_release(nfs_readdir_descriptor_t *desc)
698 {
699 	if (!desc->page->mapping)
700 		nfs_readdir_clear_array(desc->page);
701 	page_cache_release(desc->page);
702 	desc->page = NULL;
703 }
704 
705 static
706 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
707 {
708 	return read_cache_page(file_inode(desc->file)->i_mapping,
709 			desc->page_index, (filler_t *)nfs_readdir_filler, desc);
710 }
711 
712 /*
713  * Returns 0 if desc->dir_cookie was found on page desc->page_index
714  */
715 static
716 int find_cache_page(nfs_readdir_descriptor_t *desc)
717 {
718 	int res;
719 
720 	desc->page = get_cache_page(desc);
721 	if (IS_ERR(desc->page))
722 		return PTR_ERR(desc->page);
723 
724 	res = nfs_readdir_search_array(desc);
725 	if (res != 0)
726 		cache_page_release(desc);
727 	return res;
728 }
729 
730 /* Search for desc->dir_cookie from the beginning of the page cache */
731 static inline
732 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
733 {
734 	int res;
735 
736 	if (desc->page_index == 0) {
737 		desc->current_index = 0;
738 		desc->last_cookie = 0;
739 	}
740 	do {
741 		res = find_cache_page(desc);
742 	} while (res == -EAGAIN);
743 	return res;
744 }
745 
746 /*
747  * Once we've found the start of the dirent within a page: fill 'er up...
748  */
749 static
750 int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
751 {
752 	struct file	*file = desc->file;
753 	int i = 0;
754 	int res = 0;
755 	struct nfs_cache_array *array = NULL;
756 	struct nfs_open_dir_context *ctx = file->private_data;
757 
758 	array = nfs_readdir_get_array(desc->page);
759 	if (IS_ERR(array)) {
760 		res = PTR_ERR(array);
761 		goto out;
762 	}
763 
764 	for (i = desc->cache_entry_index; i < array->size; i++) {
765 		struct nfs_cache_array_entry *ent;
766 
767 		ent = &array->array[i];
768 		if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
769 		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
770 			desc->eof = 1;
771 			break;
772 		}
773 		desc->ctx->pos++;
774 		if (i < (array->size-1))
775 			*desc->dir_cookie = array->array[i+1].cookie;
776 		else
777 			*desc->dir_cookie = array->last_cookie;
778 		if (ctx->duped != 0)
779 			ctx->duped = 1;
780 	}
781 	if (array->eof_index >= 0)
782 		desc->eof = 1;
783 
784 	nfs_readdir_release_array(desc->page);
785 out:
786 	cache_page_release(desc);
787 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
788 			(unsigned long long)*desc->dir_cookie, res);
789 	return res;
790 }
791 
792 /*
793  * If we cannot find a cookie in our cache, we suspect that this is
794  * because it points to a deleted file, so we ask the server to return
795  * whatever it thinks is the next entry. We then feed this to filldir.
796  * If all goes well, we should then be able to find our way round the
797  * cache on the next call to readdir_search_pagecache();
798  *
799  * NOTE: we cannot add the anonymous page to the pagecache because
800  *	 the data it contains might not be page aligned. Besides,
801  *	 we should already have a complete representation of the
802  *	 directory in the page cache by the time we get here.
803  */
804 static inline
805 int uncached_readdir(nfs_readdir_descriptor_t *desc)
806 {
807 	struct page	*page = NULL;
808 	int		status;
809 	struct inode *inode = file_inode(desc->file);
810 	struct nfs_open_dir_context *ctx = desc->file->private_data;
811 
812 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
813 			(unsigned long long)*desc->dir_cookie);
814 
815 	page = alloc_page(GFP_HIGHUSER);
816 	if (!page) {
817 		status = -ENOMEM;
818 		goto out;
819 	}
820 
821 	desc->page_index = 0;
822 	desc->last_cookie = *desc->dir_cookie;
823 	desc->page = page;
824 	ctx->duped = 0;
825 
826 	status = nfs_readdir_xdr_to_array(desc, page, inode);
827 	if (status < 0)
828 		goto out_release;
829 
830 	status = nfs_do_filldir(desc);
831 
832  out:
833 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
834 			__func__, status);
835 	return status;
836  out_release:
837 	cache_page_release(desc);
838 	goto out;
839 }
840 
841 static bool nfs_dir_mapping_need_revalidate(struct inode *dir)
842 {
843 	struct nfs_inode *nfsi = NFS_I(dir);
844 
845 	if (nfs_attribute_cache_expired(dir))
846 		return true;
847 	if (nfsi->cache_validity & NFS_INO_INVALID_DATA)
848 		return true;
849 	return false;
850 }
851 
852 /* The file offset position represents the dirent entry number.  A
853    last cookie cache takes care of the common case of reading the
854    whole directory.
855  */
856 static int nfs_readdir(struct file *file, struct dir_context *ctx)
857 {
858 	struct dentry	*dentry = file->f_path.dentry;
859 	struct inode	*inode = dentry->d_inode;
860 	nfs_readdir_descriptor_t my_desc,
861 			*desc = &my_desc;
862 	struct nfs_open_dir_context *dir_ctx = file->private_data;
863 	int res = 0;
864 
865 	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
866 			file, (long long)ctx->pos);
867 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
868 
869 	/*
870 	 * ctx->pos points to the dirent entry number.
871 	 * *desc->dir_cookie has the cookie for the next entry. We have
872 	 * to either find the entry with the appropriate number or
873 	 * revalidate the cookie.
874 	 */
875 	memset(desc, 0, sizeof(*desc));
876 
877 	desc->file = file;
878 	desc->ctx = ctx;
879 	desc->dir_cookie = &dir_ctx->dir_cookie;
880 	desc->decode = NFS_PROTO(inode)->decode_dirent;
881 	desc->plus = nfs_use_readdirplus(inode, ctx) ? 1 : 0;
882 
883 	nfs_block_sillyrename(dentry);
884 	if (ctx->pos == 0 || nfs_dir_mapping_need_revalidate(inode))
885 		res = nfs_revalidate_mapping(inode, file->f_mapping);
886 	if (res < 0)
887 		goto out;
888 
889 	do {
890 		res = readdir_search_pagecache(desc);
891 
892 		if (res == -EBADCOOKIE) {
893 			res = 0;
894 			/* This means either end of directory */
895 			if (*desc->dir_cookie && desc->eof == 0) {
896 				/* Or that the server has 'lost' a cookie */
897 				res = uncached_readdir(desc);
898 				if (res == 0)
899 					continue;
900 			}
901 			break;
902 		}
903 		if (res == -ETOOSMALL && desc->plus) {
904 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
905 			nfs_zap_caches(inode);
906 			desc->page_index = 0;
907 			desc->plus = 0;
908 			desc->eof = 0;
909 			continue;
910 		}
911 		if (res < 0)
912 			break;
913 
914 		res = nfs_do_filldir(desc);
915 		if (res < 0)
916 			break;
917 	} while (!desc->eof);
918 out:
919 	nfs_unblock_sillyrename(dentry);
920 	if (res > 0)
921 		res = 0;
922 	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
923 	return res;
924 }
925 
926 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
927 {
928 	struct inode *inode = file_inode(filp);
929 	struct nfs_open_dir_context *dir_ctx = filp->private_data;
930 
931 	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
932 			filp, offset, whence);
933 
934 	mutex_lock(&inode->i_mutex);
935 	switch (whence) {
936 		case 1:
937 			offset += filp->f_pos;
938 		case 0:
939 			if (offset >= 0)
940 				break;
941 		default:
942 			offset = -EINVAL;
943 			goto out;
944 	}
945 	if (offset != filp->f_pos) {
946 		filp->f_pos = offset;
947 		dir_ctx->dir_cookie = 0;
948 		dir_ctx->duped = 0;
949 	}
950 out:
951 	mutex_unlock(&inode->i_mutex);
952 	return offset;
953 }
954 
955 /*
956  * All directory operations under NFS are synchronous, so fsync()
957  * is a dummy operation.
958  */
959 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
960 			 int datasync)
961 {
962 	struct inode *inode = file_inode(filp);
963 
964 	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
965 
966 	mutex_lock(&inode->i_mutex);
967 	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
968 	mutex_unlock(&inode->i_mutex);
969 	return 0;
970 }
971 
972 /**
973  * nfs_force_lookup_revalidate - Mark the directory as having changed
974  * @dir - pointer to directory inode
975  *
976  * This forces the revalidation code in nfs_lookup_revalidate() to do a
977  * full lookup on all child dentries of 'dir' whenever a change occurs
978  * on the server that might have invalidated our dcache.
979  *
980  * The caller should be holding dir->i_lock
981  */
982 void nfs_force_lookup_revalidate(struct inode *dir)
983 {
984 	NFS_I(dir)->cache_change_attribute++;
985 }
986 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
987 
988 /*
989  * A check for whether or not the parent directory has changed.
990  * In the case it has, we assume that the dentries are untrustworthy
991  * and may need to be looked up again.
992  */
993 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
994 {
995 	if (IS_ROOT(dentry))
996 		return 1;
997 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
998 		return 0;
999 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1000 		return 0;
1001 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1002 	if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1003 		return 0;
1004 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1005 		return 0;
1006 	return 1;
1007 }
1008 
1009 /*
1010  * Use intent information to check whether or not we're going to do
1011  * an O_EXCL create using this path component.
1012  */
1013 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1014 {
1015 	if (NFS_PROTO(dir)->version == 2)
1016 		return 0;
1017 	return flags & LOOKUP_EXCL;
1018 }
1019 
1020 /*
1021  * Inode and filehandle revalidation for lookups.
1022  *
1023  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1024  * or if the intent information indicates that we're about to open this
1025  * particular file and the "nocto" mount flag is not set.
1026  *
1027  */
1028 static
1029 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1030 {
1031 	struct nfs_server *server = NFS_SERVER(inode);
1032 	int ret;
1033 
1034 	if (IS_AUTOMOUNT(inode))
1035 		return 0;
1036 	/* VFS wants an on-the-wire revalidation */
1037 	if (flags & LOOKUP_REVAL)
1038 		goto out_force;
1039 	/* This is an open(2) */
1040 	if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) &&
1041 	    (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
1042 		goto out_force;
1043 out:
1044 	return (inode->i_nlink == 0) ? -ENOENT : 0;
1045 out_force:
1046 	ret = __nfs_revalidate_inode(server, inode);
1047 	if (ret != 0)
1048 		return ret;
1049 	goto out;
1050 }
1051 
1052 /*
1053  * We judge how long we want to trust negative
1054  * dentries by looking at the parent inode mtime.
1055  *
1056  * If parent mtime has changed, we revalidate, else we wait for a
1057  * period corresponding to the parent's attribute cache timeout value.
1058  */
1059 static inline
1060 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1061 		       unsigned int flags)
1062 {
1063 	/* Don't revalidate a negative dentry if we're creating a new file */
1064 	if (flags & LOOKUP_CREATE)
1065 		return 0;
1066 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1067 		return 1;
1068 	return !nfs_check_verifier(dir, dentry);
1069 }
1070 
1071 /*
1072  * This is called every time the dcache has a lookup hit,
1073  * and we should check whether we can really trust that
1074  * lookup.
1075  *
1076  * NOTE! The hit can be a negative hit too, don't assume
1077  * we have an inode!
1078  *
1079  * If the parent directory is seen to have changed, we throw out the
1080  * cached dentry and do a new lookup.
1081  */
1082 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1083 {
1084 	struct inode *dir;
1085 	struct inode *inode;
1086 	struct dentry *parent;
1087 	struct nfs_fh *fhandle = NULL;
1088 	struct nfs_fattr *fattr = NULL;
1089 	struct nfs4_label *label = NULL;
1090 	int error;
1091 
1092 	if (flags & LOOKUP_RCU)
1093 		return -ECHILD;
1094 
1095 	parent = dget_parent(dentry);
1096 	dir = parent->d_inode;
1097 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1098 	inode = dentry->d_inode;
1099 
1100 	if (!inode) {
1101 		if (nfs_neg_need_reval(dir, dentry, flags))
1102 			goto out_bad;
1103 		goto out_valid_noent;
1104 	}
1105 
1106 	if (is_bad_inode(inode)) {
1107 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1108 				__func__, dentry);
1109 		goto out_bad;
1110 	}
1111 
1112 	if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1113 		goto out_set_verifier;
1114 
1115 	/* Force a full look up iff the parent directory has changed */
1116 	if (!nfs_is_exclusive_create(dir, flags) && nfs_check_verifier(dir, dentry)) {
1117 		if (nfs_lookup_verify_inode(inode, flags))
1118 			goto out_zap_parent;
1119 		goto out_valid;
1120 	}
1121 
1122 	if (NFS_STALE(inode))
1123 		goto out_bad;
1124 
1125 	error = -ENOMEM;
1126 	fhandle = nfs_alloc_fhandle();
1127 	fattr = nfs_alloc_fattr();
1128 	if (fhandle == NULL || fattr == NULL)
1129 		goto out_error;
1130 
1131 	label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
1132 	if (IS_ERR(label))
1133 		goto out_error;
1134 
1135 	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1136 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1137 	trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1138 	if (error)
1139 		goto out_bad;
1140 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1141 		goto out_bad;
1142 	if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1143 		goto out_bad;
1144 
1145 	nfs_setsecurity(inode, fattr, label);
1146 
1147 	nfs_free_fattr(fattr);
1148 	nfs_free_fhandle(fhandle);
1149 	nfs4_label_free(label);
1150 
1151 out_set_verifier:
1152 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1153  out_valid:
1154 	/* Success: notify readdir to use READDIRPLUS */
1155 	nfs_advise_use_readdirplus(dir);
1156  out_valid_noent:
1157 	dput(parent);
1158 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1159 			__func__, dentry);
1160 	return 1;
1161 out_zap_parent:
1162 	nfs_zap_caches(dir);
1163  out_bad:
1164 	nfs_free_fattr(fattr);
1165 	nfs_free_fhandle(fhandle);
1166 	nfs4_label_free(label);
1167 	nfs_mark_for_revalidate(dir);
1168 	if (inode && S_ISDIR(inode->i_mode)) {
1169 		/* Purge readdir caches. */
1170 		nfs_zap_caches(inode);
1171 		/*
1172 		 * We can't d_drop the root of a disconnected tree:
1173 		 * its d_hash is on the s_anon list and d_drop() would hide
1174 		 * it from shrink_dcache_for_unmount(), leading to busy
1175 		 * inodes on unmount and further oopses.
1176 		 */
1177 		if (IS_ROOT(dentry))
1178 			goto out_valid;
1179 	}
1180 	/* If we have submounts, don't unhash ! */
1181 	if (check_submounts_and_drop(dentry) != 0)
1182 		goto out_valid;
1183 
1184 	dput(parent);
1185 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1186 			__func__, dentry);
1187 	return 0;
1188 out_error:
1189 	nfs_free_fattr(fattr);
1190 	nfs_free_fhandle(fhandle);
1191 	nfs4_label_free(label);
1192 	dput(parent);
1193 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1194 			__func__, dentry, error);
1195 	return error;
1196 }
1197 
1198 /*
1199  * A weaker form of d_revalidate for revalidating just the dentry->d_inode
1200  * when we don't really care about the dentry name. This is called when a
1201  * pathwalk ends on a dentry that was not found via a normal lookup in the
1202  * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1203  *
1204  * In this situation, we just want to verify that the inode itself is OK
1205  * since the dentry might have changed on the server.
1206  */
1207 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1208 {
1209 	int error;
1210 	struct inode *inode = dentry->d_inode;
1211 
1212 	/*
1213 	 * I believe we can only get a negative dentry here in the case of a
1214 	 * procfs-style symlink. Just assume it's correct for now, but we may
1215 	 * eventually need to do something more here.
1216 	 */
1217 	if (!inode) {
1218 		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1219 				__func__, dentry);
1220 		return 1;
1221 	}
1222 
1223 	if (is_bad_inode(inode)) {
1224 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1225 				__func__, dentry);
1226 		return 0;
1227 	}
1228 
1229 	error = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1230 	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1231 			__func__, inode->i_ino, error ? "invalid" : "valid");
1232 	return !error;
1233 }
1234 
1235 /*
1236  * This is called from dput() when d_count is going to 0.
1237  */
1238 static int nfs_dentry_delete(const struct dentry *dentry)
1239 {
1240 	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1241 		dentry, dentry->d_flags);
1242 
1243 	/* Unhash any dentry with a stale inode */
1244 	if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
1245 		return 1;
1246 
1247 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1248 		/* Unhash it, so that ->d_iput() would be called */
1249 		return 1;
1250 	}
1251 	if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1252 		/* Unhash it, so that ancestors of killed async unlink
1253 		 * files will be cleaned up during umount */
1254 		return 1;
1255 	}
1256 	return 0;
1257 
1258 }
1259 
1260 /* Ensure that we revalidate inode->i_nlink */
1261 static void nfs_drop_nlink(struct inode *inode)
1262 {
1263 	spin_lock(&inode->i_lock);
1264 	/* drop the inode if we're reasonably sure this is the last link */
1265 	if (inode->i_nlink == 1)
1266 		clear_nlink(inode);
1267 	NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR;
1268 	spin_unlock(&inode->i_lock);
1269 }
1270 
1271 /*
1272  * Called when the dentry loses inode.
1273  * We use it to clean up silly-renamed files.
1274  */
1275 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1276 {
1277 	if (S_ISDIR(inode->i_mode))
1278 		/* drop any readdir cache as it could easily be old */
1279 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1280 
1281 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1282 		nfs_complete_unlink(dentry, inode);
1283 		nfs_drop_nlink(inode);
1284 	}
1285 	iput(inode);
1286 }
1287 
1288 static void nfs_d_release(struct dentry *dentry)
1289 {
1290 	/* free cached devname value, if it survived that far */
1291 	if (unlikely(dentry->d_fsdata)) {
1292 		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1293 			WARN_ON(1);
1294 		else
1295 			kfree(dentry->d_fsdata);
1296 	}
1297 }
1298 
1299 const struct dentry_operations nfs_dentry_operations = {
1300 	.d_revalidate	= nfs_lookup_revalidate,
1301 	.d_weak_revalidate	= nfs_weak_revalidate,
1302 	.d_delete	= nfs_dentry_delete,
1303 	.d_iput		= nfs_dentry_iput,
1304 	.d_automount	= nfs_d_automount,
1305 	.d_release	= nfs_d_release,
1306 };
1307 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1308 
1309 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1310 {
1311 	struct dentry *res;
1312 	struct dentry *parent;
1313 	struct inode *inode = NULL;
1314 	struct nfs_fh *fhandle = NULL;
1315 	struct nfs_fattr *fattr = NULL;
1316 	struct nfs4_label *label = NULL;
1317 	int error;
1318 
1319 	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1320 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1321 
1322 	res = ERR_PTR(-ENAMETOOLONG);
1323 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1324 		goto out;
1325 
1326 	/*
1327 	 * If we're doing an exclusive create, optimize away the lookup
1328 	 * but don't hash the dentry.
1329 	 */
1330 	if (nfs_is_exclusive_create(dir, flags)) {
1331 		d_instantiate(dentry, NULL);
1332 		res = NULL;
1333 		goto out;
1334 	}
1335 
1336 	res = ERR_PTR(-ENOMEM);
1337 	fhandle = nfs_alloc_fhandle();
1338 	fattr = nfs_alloc_fattr();
1339 	if (fhandle == NULL || fattr == NULL)
1340 		goto out;
1341 
1342 	label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1343 	if (IS_ERR(label))
1344 		goto out;
1345 
1346 	parent = dentry->d_parent;
1347 	/* Protect against concurrent sillydeletes */
1348 	trace_nfs_lookup_enter(dir, dentry, flags);
1349 	nfs_block_sillyrename(parent);
1350 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1351 	if (error == -ENOENT)
1352 		goto no_entry;
1353 	if (error < 0) {
1354 		res = ERR_PTR(error);
1355 		goto out_unblock_sillyrename;
1356 	}
1357 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1358 	res = ERR_CAST(inode);
1359 	if (IS_ERR(res))
1360 		goto out_unblock_sillyrename;
1361 
1362 	/* Success: notify readdir to use READDIRPLUS */
1363 	nfs_advise_use_readdirplus(dir);
1364 
1365 no_entry:
1366 	res = d_materialise_unique(dentry, inode);
1367 	if (res != NULL) {
1368 		if (IS_ERR(res))
1369 			goto out_unblock_sillyrename;
1370 		dentry = res;
1371 	}
1372 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1373 out_unblock_sillyrename:
1374 	nfs_unblock_sillyrename(parent);
1375 	trace_nfs_lookup_exit(dir, dentry, flags, error);
1376 	nfs4_label_free(label);
1377 out:
1378 	nfs_free_fattr(fattr);
1379 	nfs_free_fhandle(fhandle);
1380 	return res;
1381 }
1382 EXPORT_SYMBOL_GPL(nfs_lookup);
1383 
1384 #if IS_ENABLED(CONFIG_NFS_V4)
1385 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1386 
1387 const struct dentry_operations nfs4_dentry_operations = {
1388 	.d_revalidate	= nfs4_lookup_revalidate,
1389 	.d_delete	= nfs_dentry_delete,
1390 	.d_iput		= nfs_dentry_iput,
1391 	.d_automount	= nfs_d_automount,
1392 	.d_release	= nfs_d_release,
1393 };
1394 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1395 
1396 static fmode_t flags_to_mode(int flags)
1397 {
1398 	fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1399 	if ((flags & O_ACCMODE) != O_WRONLY)
1400 		res |= FMODE_READ;
1401 	if ((flags & O_ACCMODE) != O_RDONLY)
1402 		res |= FMODE_WRITE;
1403 	return res;
1404 }
1405 
1406 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags)
1407 {
1408 	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags));
1409 }
1410 
1411 static int do_open(struct inode *inode, struct file *filp)
1412 {
1413 	nfs_fscache_open_file(inode, filp);
1414 	return 0;
1415 }
1416 
1417 static int nfs_finish_open(struct nfs_open_context *ctx,
1418 			   struct dentry *dentry,
1419 			   struct file *file, unsigned open_flags,
1420 			   int *opened)
1421 {
1422 	int err;
1423 
1424 	if ((open_flags & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL))
1425 		*opened |= FILE_CREATED;
1426 
1427 	err = finish_open(file, dentry, do_open, opened);
1428 	if (err)
1429 		goto out;
1430 	nfs_file_set_open_context(file, ctx);
1431 
1432 out:
1433 	return err;
1434 }
1435 
1436 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1437 		    struct file *file, unsigned open_flags,
1438 		    umode_t mode, int *opened)
1439 {
1440 	struct nfs_open_context *ctx;
1441 	struct dentry *res;
1442 	struct iattr attr = { .ia_valid = ATTR_OPEN };
1443 	struct inode *inode;
1444 	unsigned int lookup_flags = 0;
1445 	int err;
1446 
1447 	/* Expect a negative dentry */
1448 	BUG_ON(dentry->d_inode);
1449 
1450 	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1451 			dir->i_sb->s_id, dir->i_ino, dentry);
1452 
1453 	err = nfs_check_flags(open_flags);
1454 	if (err)
1455 		return err;
1456 
1457 	/* NFS only supports OPEN on regular files */
1458 	if ((open_flags & O_DIRECTORY)) {
1459 		if (!d_unhashed(dentry)) {
1460 			/*
1461 			 * Hashed negative dentry with O_DIRECTORY: dentry was
1462 			 * revalidated and is fine, no need to perform lookup
1463 			 * again
1464 			 */
1465 			return -ENOENT;
1466 		}
1467 		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1468 		goto no_open;
1469 	}
1470 
1471 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1472 		return -ENAMETOOLONG;
1473 
1474 	if (open_flags & O_CREAT) {
1475 		attr.ia_valid |= ATTR_MODE;
1476 		attr.ia_mode = mode & ~current_umask();
1477 	}
1478 	if (open_flags & O_TRUNC) {
1479 		attr.ia_valid |= ATTR_SIZE;
1480 		attr.ia_size = 0;
1481 	}
1482 
1483 	ctx = create_nfs_open_context(dentry, open_flags);
1484 	err = PTR_ERR(ctx);
1485 	if (IS_ERR(ctx))
1486 		goto out;
1487 
1488 	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1489 	nfs_block_sillyrename(dentry->d_parent);
1490 	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, opened);
1491 	nfs_unblock_sillyrename(dentry->d_parent);
1492 	if (IS_ERR(inode)) {
1493 		err = PTR_ERR(inode);
1494 		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1495 		put_nfs_open_context(ctx);
1496 		switch (err) {
1497 		case -ENOENT:
1498 			d_drop(dentry);
1499 			d_add(dentry, NULL);
1500 			break;
1501 		case -EISDIR:
1502 		case -ENOTDIR:
1503 			goto no_open;
1504 		case -ELOOP:
1505 			if (!(open_flags & O_NOFOLLOW))
1506 				goto no_open;
1507 			break;
1508 			/* case -EINVAL: */
1509 		default:
1510 			break;
1511 		}
1512 		goto out;
1513 	}
1514 
1515 	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags, opened);
1516 	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1517 	put_nfs_open_context(ctx);
1518 out:
1519 	return err;
1520 
1521 no_open:
1522 	res = nfs_lookup(dir, dentry, lookup_flags);
1523 	err = PTR_ERR(res);
1524 	if (IS_ERR(res))
1525 		goto out;
1526 
1527 	return finish_no_open(file, res);
1528 }
1529 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1530 
1531 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1532 {
1533 	struct dentry *parent = NULL;
1534 	struct inode *inode;
1535 	struct inode *dir;
1536 	int ret = 0;
1537 
1538 	if (flags & LOOKUP_RCU)
1539 		return -ECHILD;
1540 
1541 	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1542 		goto no_open;
1543 	if (d_mountpoint(dentry))
1544 		goto no_open;
1545 	if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1)
1546 		goto no_open;
1547 
1548 	inode = dentry->d_inode;
1549 	parent = dget_parent(dentry);
1550 	dir = parent->d_inode;
1551 
1552 	/* We can't create new files in nfs_open_revalidate(), so we
1553 	 * optimize away revalidation of negative dentries.
1554 	 */
1555 	if (inode == NULL) {
1556 		if (!nfs_neg_need_reval(dir, dentry, flags))
1557 			ret = 1;
1558 		goto out;
1559 	}
1560 
1561 	/* NFS only supports OPEN on regular files */
1562 	if (!S_ISREG(inode->i_mode))
1563 		goto no_open_dput;
1564 	/* We cannot do exclusive creation on a positive dentry */
1565 	if (flags & LOOKUP_EXCL)
1566 		goto no_open_dput;
1567 
1568 	/* Let f_op->open() actually open (and revalidate) the file */
1569 	ret = 1;
1570 
1571 out:
1572 	dput(parent);
1573 	return ret;
1574 
1575 no_open_dput:
1576 	dput(parent);
1577 no_open:
1578 	return nfs_lookup_revalidate(dentry, flags);
1579 }
1580 
1581 #endif /* CONFIG_NFSV4 */
1582 
1583 /*
1584  * Code common to create, mkdir, and mknod.
1585  */
1586 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1587 				struct nfs_fattr *fattr,
1588 				struct nfs4_label *label)
1589 {
1590 	struct dentry *parent = dget_parent(dentry);
1591 	struct inode *dir = parent->d_inode;
1592 	struct inode *inode;
1593 	int error = -EACCES;
1594 
1595 	d_drop(dentry);
1596 
1597 	/* We may have been initialized further down */
1598 	if (dentry->d_inode)
1599 		goto out;
1600 	if (fhandle->size == 0) {
1601 		error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1602 		if (error)
1603 			goto out_error;
1604 	}
1605 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1606 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1607 		struct nfs_server *server = NFS_SB(dentry->d_sb);
1608 		error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL);
1609 		if (error < 0)
1610 			goto out_error;
1611 	}
1612 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1613 	error = PTR_ERR(inode);
1614 	if (IS_ERR(inode))
1615 		goto out_error;
1616 	d_add(dentry, inode);
1617 out:
1618 	dput(parent);
1619 	return 0;
1620 out_error:
1621 	nfs_mark_for_revalidate(dir);
1622 	dput(parent);
1623 	return error;
1624 }
1625 EXPORT_SYMBOL_GPL(nfs_instantiate);
1626 
1627 /*
1628  * Following a failed create operation, we drop the dentry rather
1629  * than retain a negative dentry. This avoids a problem in the event
1630  * that the operation succeeded on the server, but an error in the
1631  * reply path made it appear to have failed.
1632  */
1633 int nfs_create(struct inode *dir, struct dentry *dentry,
1634 		umode_t mode, bool excl)
1635 {
1636 	struct iattr attr;
1637 	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1638 	int error;
1639 
1640 	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1641 			dir->i_sb->s_id, dir->i_ino, dentry);
1642 
1643 	attr.ia_mode = mode;
1644 	attr.ia_valid = ATTR_MODE;
1645 
1646 	trace_nfs_create_enter(dir, dentry, open_flags);
1647 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1648 	trace_nfs_create_exit(dir, dentry, open_flags, error);
1649 	if (error != 0)
1650 		goto out_err;
1651 	return 0;
1652 out_err:
1653 	d_drop(dentry);
1654 	return error;
1655 }
1656 EXPORT_SYMBOL_GPL(nfs_create);
1657 
1658 /*
1659  * See comments for nfs_proc_create regarding failed operations.
1660  */
1661 int
1662 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1663 {
1664 	struct iattr attr;
1665 	int status;
1666 
1667 	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1668 			dir->i_sb->s_id, dir->i_ino, dentry);
1669 
1670 	if (!new_valid_dev(rdev))
1671 		return -EINVAL;
1672 
1673 	attr.ia_mode = mode;
1674 	attr.ia_valid = ATTR_MODE;
1675 
1676 	trace_nfs_mknod_enter(dir, dentry);
1677 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1678 	trace_nfs_mknod_exit(dir, dentry, status);
1679 	if (status != 0)
1680 		goto out_err;
1681 	return 0;
1682 out_err:
1683 	d_drop(dentry);
1684 	return status;
1685 }
1686 EXPORT_SYMBOL_GPL(nfs_mknod);
1687 
1688 /*
1689  * See comments for nfs_proc_create regarding failed operations.
1690  */
1691 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1692 {
1693 	struct iattr attr;
1694 	int error;
1695 
1696 	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1697 			dir->i_sb->s_id, dir->i_ino, dentry);
1698 
1699 	attr.ia_valid = ATTR_MODE;
1700 	attr.ia_mode = mode | S_IFDIR;
1701 
1702 	trace_nfs_mkdir_enter(dir, dentry);
1703 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1704 	trace_nfs_mkdir_exit(dir, dentry, error);
1705 	if (error != 0)
1706 		goto out_err;
1707 	return 0;
1708 out_err:
1709 	d_drop(dentry);
1710 	return error;
1711 }
1712 EXPORT_SYMBOL_GPL(nfs_mkdir);
1713 
1714 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1715 {
1716 	if (dentry->d_inode != NULL && !d_unhashed(dentry))
1717 		d_delete(dentry);
1718 }
1719 
1720 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1721 {
1722 	int error;
1723 
1724 	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1725 			dir->i_sb->s_id, dir->i_ino, dentry);
1726 
1727 	trace_nfs_rmdir_enter(dir, dentry);
1728 	if (dentry->d_inode) {
1729 		nfs_wait_on_sillyrename(dentry);
1730 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1731 		/* Ensure the VFS deletes this inode */
1732 		switch (error) {
1733 		case 0:
1734 			clear_nlink(dentry->d_inode);
1735 			break;
1736 		case -ENOENT:
1737 			nfs_dentry_handle_enoent(dentry);
1738 		}
1739 	} else
1740 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1741 	trace_nfs_rmdir_exit(dir, dentry, error);
1742 
1743 	return error;
1744 }
1745 EXPORT_SYMBOL_GPL(nfs_rmdir);
1746 
1747 /*
1748  * Remove a file after making sure there are no pending writes,
1749  * and after checking that the file has only one user.
1750  *
1751  * We invalidate the attribute cache and free the inode prior to the operation
1752  * to avoid possible races if the server reuses the inode.
1753  */
1754 static int nfs_safe_remove(struct dentry *dentry)
1755 {
1756 	struct inode *dir = dentry->d_parent->d_inode;
1757 	struct inode *inode = dentry->d_inode;
1758 	int error = -EBUSY;
1759 
1760 	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
1761 
1762 	/* If the dentry was sillyrenamed, we simply call d_delete() */
1763 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1764 		error = 0;
1765 		goto out;
1766 	}
1767 
1768 	trace_nfs_remove_enter(dir, dentry);
1769 	if (inode != NULL) {
1770 		NFS_PROTO(inode)->return_delegation(inode);
1771 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1772 		if (error == 0)
1773 			nfs_drop_nlink(inode);
1774 	} else
1775 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1776 	if (error == -ENOENT)
1777 		nfs_dentry_handle_enoent(dentry);
1778 	trace_nfs_remove_exit(dir, dentry, error);
1779 out:
1780 	return error;
1781 }
1782 
1783 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1784  *  belongs to an active ".nfs..." file and we return -EBUSY.
1785  *
1786  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1787  */
1788 int nfs_unlink(struct inode *dir, struct dentry *dentry)
1789 {
1790 	int error;
1791 	int need_rehash = 0;
1792 
1793 	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
1794 		dir->i_ino, dentry);
1795 
1796 	trace_nfs_unlink_enter(dir, dentry);
1797 	spin_lock(&dentry->d_lock);
1798 	if (d_count(dentry) > 1) {
1799 		spin_unlock(&dentry->d_lock);
1800 		/* Start asynchronous writeout of the inode */
1801 		write_inode_now(dentry->d_inode, 0);
1802 		error = nfs_sillyrename(dir, dentry);
1803 		goto out;
1804 	}
1805 	if (!d_unhashed(dentry)) {
1806 		__d_drop(dentry);
1807 		need_rehash = 1;
1808 	}
1809 	spin_unlock(&dentry->d_lock);
1810 	error = nfs_safe_remove(dentry);
1811 	if (!error || error == -ENOENT) {
1812 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1813 	} else if (need_rehash)
1814 		d_rehash(dentry);
1815 out:
1816 	trace_nfs_unlink_exit(dir, dentry, error);
1817 	return error;
1818 }
1819 EXPORT_SYMBOL_GPL(nfs_unlink);
1820 
1821 /*
1822  * To create a symbolic link, most file systems instantiate a new inode,
1823  * add a page to it containing the path, then write it out to the disk
1824  * using prepare_write/commit_write.
1825  *
1826  * Unfortunately the NFS client can't create the in-core inode first
1827  * because it needs a file handle to create an in-core inode (see
1828  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1829  * symlink request has completed on the server.
1830  *
1831  * So instead we allocate a raw page, copy the symname into it, then do
1832  * the SYMLINK request with the page as the buffer.  If it succeeds, we
1833  * now have a new file handle and can instantiate an in-core NFS inode
1834  * and move the raw page into its mapping.
1835  */
1836 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1837 {
1838 	struct page *page;
1839 	char *kaddr;
1840 	struct iattr attr;
1841 	unsigned int pathlen = strlen(symname);
1842 	int error;
1843 
1844 	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
1845 		dir->i_ino, dentry, symname);
1846 
1847 	if (pathlen > PAGE_SIZE)
1848 		return -ENAMETOOLONG;
1849 
1850 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
1851 	attr.ia_valid = ATTR_MODE;
1852 
1853 	page = alloc_page(GFP_HIGHUSER);
1854 	if (!page)
1855 		return -ENOMEM;
1856 
1857 	kaddr = kmap_atomic(page);
1858 	memcpy(kaddr, symname, pathlen);
1859 	if (pathlen < PAGE_SIZE)
1860 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1861 	kunmap_atomic(kaddr);
1862 
1863 	trace_nfs_symlink_enter(dir, dentry);
1864 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1865 	trace_nfs_symlink_exit(dir, dentry, error);
1866 	if (error != 0) {
1867 		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1868 			dir->i_sb->s_id, dir->i_ino,
1869 			dentry, symname, error);
1870 		d_drop(dentry);
1871 		__free_page(page);
1872 		return error;
1873 	}
1874 
1875 	/*
1876 	 * No big deal if we can't add this page to the page cache here.
1877 	 * READLINK will get the missing page from the server if needed.
1878 	 */
1879 	if (!add_to_page_cache_lru(page, dentry->d_inode->i_mapping, 0,
1880 							GFP_KERNEL)) {
1881 		SetPageUptodate(page);
1882 		unlock_page(page);
1883 	} else
1884 		__free_page(page);
1885 
1886 	return 0;
1887 }
1888 EXPORT_SYMBOL_GPL(nfs_symlink);
1889 
1890 int
1891 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1892 {
1893 	struct inode *inode = old_dentry->d_inode;
1894 	int error;
1895 
1896 	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
1897 		old_dentry, dentry);
1898 
1899 	trace_nfs_link_enter(inode, dir, dentry);
1900 	NFS_PROTO(inode)->return_delegation(inode);
1901 
1902 	d_drop(dentry);
1903 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1904 	if (error == 0) {
1905 		ihold(inode);
1906 		d_add(dentry, inode);
1907 	}
1908 	trace_nfs_link_exit(inode, dir, dentry, error);
1909 	return error;
1910 }
1911 EXPORT_SYMBOL_GPL(nfs_link);
1912 
1913 /*
1914  * RENAME
1915  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1916  * different file handle for the same inode after a rename (e.g. when
1917  * moving to a different directory). A fail-safe method to do so would
1918  * be to look up old_dir/old_name, create a link to new_dir/new_name and
1919  * rename the old file using the sillyrename stuff. This way, the original
1920  * file in old_dir will go away when the last process iput()s the inode.
1921  *
1922  * FIXED.
1923  *
1924  * It actually works quite well. One needs to have the possibility for
1925  * at least one ".nfs..." file in each directory the file ever gets
1926  * moved or linked to which happens automagically with the new
1927  * implementation that only depends on the dcache stuff instead of
1928  * using the inode layer
1929  *
1930  * Unfortunately, things are a little more complicated than indicated
1931  * above. For a cross-directory move, we want to make sure we can get
1932  * rid of the old inode after the operation.  This means there must be
1933  * no pending writes (if it's a file), and the use count must be 1.
1934  * If these conditions are met, we can drop the dentries before doing
1935  * the rename.
1936  */
1937 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1938 		      struct inode *new_dir, struct dentry *new_dentry)
1939 {
1940 	struct inode *old_inode = old_dentry->d_inode;
1941 	struct inode *new_inode = new_dentry->d_inode;
1942 	struct dentry *dentry = NULL, *rehash = NULL;
1943 	struct rpc_task *task;
1944 	int error = -EBUSY;
1945 
1946 	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
1947 		 old_dentry, new_dentry,
1948 		 d_count(new_dentry));
1949 
1950 	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
1951 	/*
1952 	 * For non-directories, check whether the target is busy and if so,
1953 	 * make a copy of the dentry and then do a silly-rename. If the
1954 	 * silly-rename succeeds, the copied dentry is hashed and becomes
1955 	 * the new target.
1956 	 */
1957 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
1958 		/*
1959 		 * To prevent any new references to the target during the
1960 		 * rename, we unhash the dentry in advance.
1961 		 */
1962 		if (!d_unhashed(new_dentry)) {
1963 			d_drop(new_dentry);
1964 			rehash = new_dentry;
1965 		}
1966 
1967 		if (d_count(new_dentry) > 2) {
1968 			int err;
1969 
1970 			/* copy the target dentry's name */
1971 			dentry = d_alloc(new_dentry->d_parent,
1972 					 &new_dentry->d_name);
1973 			if (!dentry)
1974 				goto out;
1975 
1976 			/* silly-rename the existing target ... */
1977 			err = nfs_sillyrename(new_dir, new_dentry);
1978 			if (err)
1979 				goto out;
1980 
1981 			new_dentry = dentry;
1982 			rehash = NULL;
1983 			new_inode = NULL;
1984 		}
1985 	}
1986 
1987 	NFS_PROTO(old_inode)->return_delegation(old_inode);
1988 	if (new_inode != NULL)
1989 		NFS_PROTO(new_inode)->return_delegation(new_inode);
1990 
1991 	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
1992 	if (IS_ERR(task)) {
1993 		error = PTR_ERR(task);
1994 		goto out;
1995 	}
1996 
1997 	error = rpc_wait_for_completion_task(task);
1998 	if (error == 0)
1999 		error = task->tk_status;
2000 	rpc_put_task(task);
2001 	nfs_mark_for_revalidate(old_inode);
2002 out:
2003 	if (rehash)
2004 		d_rehash(rehash);
2005 	trace_nfs_rename_exit(old_dir, old_dentry,
2006 			new_dir, new_dentry, error);
2007 	if (!error) {
2008 		if (new_inode != NULL)
2009 			nfs_drop_nlink(new_inode);
2010 		d_move(old_dentry, new_dentry);
2011 		nfs_set_verifier(new_dentry,
2012 					nfs_save_change_attribute(new_dir));
2013 	} else if (error == -ENOENT)
2014 		nfs_dentry_handle_enoent(old_dentry);
2015 
2016 	/* new dentry created? */
2017 	if (dentry)
2018 		dput(dentry);
2019 	return error;
2020 }
2021 EXPORT_SYMBOL_GPL(nfs_rename);
2022 
2023 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2024 static LIST_HEAD(nfs_access_lru_list);
2025 static atomic_long_t nfs_access_nr_entries;
2026 
2027 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2028 {
2029 	put_rpccred(entry->cred);
2030 	kfree(entry);
2031 	smp_mb__before_atomic_dec();
2032 	atomic_long_dec(&nfs_access_nr_entries);
2033 	smp_mb__after_atomic_dec();
2034 }
2035 
2036 static void nfs_access_free_list(struct list_head *head)
2037 {
2038 	struct nfs_access_entry *cache;
2039 
2040 	while (!list_empty(head)) {
2041 		cache = list_entry(head->next, struct nfs_access_entry, lru);
2042 		list_del(&cache->lru);
2043 		nfs_access_free_entry(cache);
2044 	}
2045 }
2046 
2047 unsigned long
2048 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2049 {
2050 	LIST_HEAD(head);
2051 	struct nfs_inode *nfsi, *next;
2052 	struct nfs_access_entry *cache;
2053 	int nr_to_scan = sc->nr_to_scan;
2054 	gfp_t gfp_mask = sc->gfp_mask;
2055 	long freed = 0;
2056 
2057 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2058 		return SHRINK_STOP;
2059 
2060 	spin_lock(&nfs_access_lru_lock);
2061 	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2062 		struct inode *inode;
2063 
2064 		if (nr_to_scan-- == 0)
2065 			break;
2066 		inode = &nfsi->vfs_inode;
2067 		spin_lock(&inode->i_lock);
2068 		if (list_empty(&nfsi->access_cache_entry_lru))
2069 			goto remove_lru_entry;
2070 		cache = list_entry(nfsi->access_cache_entry_lru.next,
2071 				struct nfs_access_entry, lru);
2072 		list_move(&cache->lru, &head);
2073 		rb_erase(&cache->rb_node, &nfsi->access_cache);
2074 		freed++;
2075 		if (!list_empty(&nfsi->access_cache_entry_lru))
2076 			list_move_tail(&nfsi->access_cache_inode_lru,
2077 					&nfs_access_lru_list);
2078 		else {
2079 remove_lru_entry:
2080 			list_del_init(&nfsi->access_cache_inode_lru);
2081 			smp_mb__before_clear_bit();
2082 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2083 			smp_mb__after_clear_bit();
2084 		}
2085 		spin_unlock(&inode->i_lock);
2086 	}
2087 	spin_unlock(&nfs_access_lru_lock);
2088 	nfs_access_free_list(&head);
2089 	return freed;
2090 }
2091 
2092 unsigned long
2093 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2094 {
2095 	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2096 }
2097 
2098 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2099 {
2100 	struct rb_root *root_node = &nfsi->access_cache;
2101 	struct rb_node *n;
2102 	struct nfs_access_entry *entry;
2103 
2104 	/* Unhook entries from the cache */
2105 	while ((n = rb_first(root_node)) != NULL) {
2106 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2107 		rb_erase(n, root_node);
2108 		list_move(&entry->lru, head);
2109 	}
2110 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2111 }
2112 
2113 void nfs_access_zap_cache(struct inode *inode)
2114 {
2115 	LIST_HEAD(head);
2116 
2117 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2118 		return;
2119 	/* Remove from global LRU init */
2120 	spin_lock(&nfs_access_lru_lock);
2121 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2122 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2123 
2124 	spin_lock(&inode->i_lock);
2125 	__nfs_access_zap_cache(NFS_I(inode), &head);
2126 	spin_unlock(&inode->i_lock);
2127 	spin_unlock(&nfs_access_lru_lock);
2128 	nfs_access_free_list(&head);
2129 }
2130 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2131 
2132 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2133 {
2134 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2135 	struct nfs_access_entry *entry;
2136 
2137 	while (n != NULL) {
2138 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2139 
2140 		if (cred < entry->cred)
2141 			n = n->rb_left;
2142 		else if (cred > entry->cred)
2143 			n = n->rb_right;
2144 		else
2145 			return entry;
2146 	}
2147 	return NULL;
2148 }
2149 
2150 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2151 {
2152 	struct nfs_inode *nfsi = NFS_I(inode);
2153 	struct nfs_access_entry *cache;
2154 	int err = -ENOENT;
2155 
2156 	spin_lock(&inode->i_lock);
2157 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2158 		goto out_zap;
2159 	cache = nfs_access_search_rbtree(inode, cred);
2160 	if (cache == NULL)
2161 		goto out;
2162 	if (!nfs_have_delegated_attributes(inode) &&
2163 	    !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2164 		goto out_stale;
2165 	res->jiffies = cache->jiffies;
2166 	res->cred = cache->cred;
2167 	res->mask = cache->mask;
2168 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2169 	err = 0;
2170 out:
2171 	spin_unlock(&inode->i_lock);
2172 	return err;
2173 out_stale:
2174 	rb_erase(&cache->rb_node, &nfsi->access_cache);
2175 	list_del(&cache->lru);
2176 	spin_unlock(&inode->i_lock);
2177 	nfs_access_free_entry(cache);
2178 	return -ENOENT;
2179 out_zap:
2180 	spin_unlock(&inode->i_lock);
2181 	nfs_access_zap_cache(inode);
2182 	return -ENOENT;
2183 }
2184 
2185 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2186 {
2187 	struct nfs_inode *nfsi = NFS_I(inode);
2188 	struct rb_root *root_node = &nfsi->access_cache;
2189 	struct rb_node **p = &root_node->rb_node;
2190 	struct rb_node *parent = NULL;
2191 	struct nfs_access_entry *entry;
2192 
2193 	spin_lock(&inode->i_lock);
2194 	while (*p != NULL) {
2195 		parent = *p;
2196 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2197 
2198 		if (set->cred < entry->cred)
2199 			p = &parent->rb_left;
2200 		else if (set->cred > entry->cred)
2201 			p = &parent->rb_right;
2202 		else
2203 			goto found;
2204 	}
2205 	rb_link_node(&set->rb_node, parent, p);
2206 	rb_insert_color(&set->rb_node, root_node);
2207 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2208 	spin_unlock(&inode->i_lock);
2209 	return;
2210 found:
2211 	rb_replace_node(parent, &set->rb_node, root_node);
2212 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2213 	list_del(&entry->lru);
2214 	spin_unlock(&inode->i_lock);
2215 	nfs_access_free_entry(entry);
2216 }
2217 
2218 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2219 {
2220 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2221 	if (cache == NULL)
2222 		return;
2223 	RB_CLEAR_NODE(&cache->rb_node);
2224 	cache->jiffies = set->jiffies;
2225 	cache->cred = get_rpccred(set->cred);
2226 	cache->mask = set->mask;
2227 
2228 	nfs_access_add_rbtree(inode, cache);
2229 
2230 	/* Update accounting */
2231 	smp_mb__before_atomic_inc();
2232 	atomic_long_inc(&nfs_access_nr_entries);
2233 	smp_mb__after_atomic_inc();
2234 
2235 	/* Add inode to global LRU list */
2236 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2237 		spin_lock(&nfs_access_lru_lock);
2238 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2239 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2240 					&nfs_access_lru_list);
2241 		spin_unlock(&nfs_access_lru_lock);
2242 	}
2243 }
2244 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2245 
2246 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2247 {
2248 	entry->mask = 0;
2249 	if (access_result & NFS4_ACCESS_READ)
2250 		entry->mask |= MAY_READ;
2251 	if (access_result &
2252 	    (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
2253 		entry->mask |= MAY_WRITE;
2254 	if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
2255 		entry->mask |= MAY_EXEC;
2256 }
2257 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2258 
2259 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2260 {
2261 	struct nfs_access_entry cache;
2262 	int status;
2263 
2264 	trace_nfs_access_enter(inode);
2265 
2266 	status = nfs_access_get_cached(inode, cred, &cache);
2267 	if (status == 0)
2268 		goto out_cached;
2269 
2270 	/* Be clever: ask server to check for all possible rights */
2271 	cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2272 	cache.cred = cred;
2273 	cache.jiffies = jiffies;
2274 	status = NFS_PROTO(inode)->access(inode, &cache);
2275 	if (status != 0) {
2276 		if (status == -ESTALE) {
2277 			nfs_zap_caches(inode);
2278 			if (!S_ISDIR(inode->i_mode))
2279 				set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2280 		}
2281 		goto out;
2282 	}
2283 	nfs_access_add_cache(inode, &cache);
2284 out_cached:
2285 	if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2286 		status = -EACCES;
2287 out:
2288 	trace_nfs_access_exit(inode, status);
2289 	return status;
2290 }
2291 
2292 static int nfs_open_permission_mask(int openflags)
2293 {
2294 	int mask = 0;
2295 
2296 	if (openflags & __FMODE_EXEC) {
2297 		/* ONLY check exec rights */
2298 		mask = MAY_EXEC;
2299 	} else {
2300 		if ((openflags & O_ACCMODE) != O_WRONLY)
2301 			mask |= MAY_READ;
2302 		if ((openflags & O_ACCMODE) != O_RDONLY)
2303 			mask |= MAY_WRITE;
2304 	}
2305 
2306 	return mask;
2307 }
2308 
2309 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2310 {
2311 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2312 }
2313 EXPORT_SYMBOL_GPL(nfs_may_open);
2314 
2315 int nfs_permission(struct inode *inode, int mask)
2316 {
2317 	struct rpc_cred *cred;
2318 	int res = 0;
2319 
2320 	if (mask & MAY_NOT_BLOCK)
2321 		return -ECHILD;
2322 
2323 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2324 
2325 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2326 		goto out;
2327 	/* Is this sys_access() ? */
2328 	if (mask & (MAY_ACCESS | MAY_CHDIR))
2329 		goto force_lookup;
2330 
2331 	switch (inode->i_mode & S_IFMT) {
2332 		case S_IFLNK:
2333 			goto out;
2334 		case S_IFREG:
2335 			break;
2336 		case S_IFDIR:
2337 			/*
2338 			 * Optimize away all write operations, since the server
2339 			 * will check permissions when we perform the op.
2340 			 */
2341 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2342 				goto out;
2343 	}
2344 
2345 force_lookup:
2346 	if (!NFS_PROTO(inode)->access)
2347 		goto out_notsup;
2348 
2349 	cred = rpc_lookup_cred();
2350 	if (!IS_ERR(cred)) {
2351 		res = nfs_do_access(inode, cred, mask);
2352 		put_rpccred(cred);
2353 	} else
2354 		res = PTR_ERR(cred);
2355 out:
2356 	if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
2357 		res = -EACCES;
2358 
2359 	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2360 		inode->i_sb->s_id, inode->i_ino, mask, res);
2361 	return res;
2362 out_notsup:
2363 	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2364 	if (res == 0)
2365 		res = generic_permission(inode, mask);
2366 	goto out;
2367 }
2368 EXPORT_SYMBOL_GPL(nfs_permission);
2369 
2370 /*
2371  * Local variables:
2372  *  version-control: t
2373  *  kept-new-versions: 5
2374  * End:
2375  */
2376