1 /* 2 * linux/fs/nfs/dir.c 3 * 4 * Copyright (C) 1992 Rick Sladkey 5 * 6 * nfs directory handling functions 7 * 8 * 10 Apr 1996 Added silly rename for unlink --okir 9 * 28 Sep 1996 Improved directory cache --okir 10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de 11 * Re-implemented silly rename for unlink, newly implemented 12 * silly rename for nfs_rename() following the suggestions 13 * of Olaf Kirch (okir) found in this file. 14 * Following Linus comments on my original hack, this version 15 * depends only on the dcache stuff and doesn't touch the inode 16 * layer (iput() and friends). 17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM 18 */ 19 20 #include <linux/time.h> 21 #include <linux/errno.h> 22 #include <linux/stat.h> 23 #include <linux/fcntl.h> 24 #include <linux/string.h> 25 #include <linux/kernel.h> 26 #include <linux/slab.h> 27 #include <linux/mm.h> 28 #include <linux/sunrpc/clnt.h> 29 #include <linux/nfs_fs.h> 30 #include <linux/nfs_mount.h> 31 #include <linux/pagemap.h> 32 #include <linux/pagevec.h> 33 #include <linux/namei.h> 34 #include <linux/mount.h> 35 #include <linux/sched.h> 36 #include <linux/kmemleak.h> 37 #include <linux/xattr.h> 38 39 #include "delegation.h" 40 #include "iostat.h" 41 #include "internal.h" 42 #include "fscache.h" 43 44 /* #define NFS_DEBUG_VERBOSE 1 */ 45 46 static int nfs_opendir(struct inode *, struct file *); 47 static int nfs_closedir(struct inode *, struct file *); 48 static int nfs_readdir(struct file *, void *, filldir_t); 49 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *); 50 static int nfs_create(struct inode *, struct dentry *, umode_t, struct nameidata *); 51 static int nfs_mkdir(struct inode *, struct dentry *, umode_t); 52 static int nfs_rmdir(struct inode *, struct dentry *); 53 static int nfs_unlink(struct inode *, struct dentry *); 54 static int nfs_symlink(struct inode *, struct dentry *, const char *); 55 static int nfs_link(struct dentry *, struct inode *, struct dentry *); 56 static int nfs_mknod(struct inode *, struct dentry *, umode_t, dev_t); 57 static int nfs_rename(struct inode *, struct dentry *, 58 struct inode *, struct dentry *); 59 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int); 60 static loff_t nfs_llseek_dir(struct file *, loff_t, int); 61 static void nfs_readdir_clear_array(struct page*); 62 63 const struct file_operations nfs_dir_operations = { 64 .llseek = nfs_llseek_dir, 65 .read = generic_read_dir, 66 .readdir = nfs_readdir, 67 .open = nfs_opendir, 68 .release = nfs_closedir, 69 .fsync = nfs_fsync_dir, 70 }; 71 72 const struct inode_operations nfs_dir_inode_operations = { 73 .create = nfs_create, 74 .lookup = nfs_lookup, 75 .link = nfs_link, 76 .unlink = nfs_unlink, 77 .symlink = nfs_symlink, 78 .mkdir = nfs_mkdir, 79 .rmdir = nfs_rmdir, 80 .mknod = nfs_mknod, 81 .rename = nfs_rename, 82 .permission = nfs_permission, 83 .getattr = nfs_getattr, 84 .setattr = nfs_setattr, 85 }; 86 87 const struct address_space_operations nfs_dir_aops = { 88 .freepage = nfs_readdir_clear_array, 89 }; 90 91 #ifdef CONFIG_NFS_V3 92 const struct inode_operations nfs3_dir_inode_operations = { 93 .create = nfs_create, 94 .lookup = nfs_lookup, 95 .link = nfs_link, 96 .unlink = nfs_unlink, 97 .symlink = nfs_symlink, 98 .mkdir = nfs_mkdir, 99 .rmdir = nfs_rmdir, 100 .mknod = nfs_mknod, 101 .rename = nfs_rename, 102 .permission = nfs_permission, 103 .getattr = nfs_getattr, 104 .setattr = nfs_setattr, 105 .listxattr = nfs3_listxattr, 106 .getxattr = nfs3_getxattr, 107 .setxattr = nfs3_setxattr, 108 .removexattr = nfs3_removexattr, 109 }; 110 #endif /* CONFIG_NFS_V3 */ 111 112 #ifdef CONFIG_NFS_V4 113 114 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *); 115 static int nfs_open_create(struct inode *dir, struct dentry *dentry, umode_t mode, struct nameidata *nd); 116 const struct inode_operations nfs4_dir_inode_operations = { 117 .create = nfs_open_create, 118 .lookup = nfs_atomic_lookup, 119 .link = nfs_link, 120 .unlink = nfs_unlink, 121 .symlink = nfs_symlink, 122 .mkdir = nfs_mkdir, 123 .rmdir = nfs_rmdir, 124 .mknod = nfs_mknod, 125 .rename = nfs_rename, 126 .permission = nfs_permission, 127 .getattr = nfs_getattr, 128 .setattr = nfs_setattr, 129 .getxattr = generic_getxattr, 130 .setxattr = generic_setxattr, 131 .listxattr = generic_listxattr, 132 .removexattr = generic_removexattr, 133 }; 134 135 #endif /* CONFIG_NFS_V4 */ 136 137 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred) 138 { 139 struct nfs_open_dir_context *ctx; 140 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); 141 if (ctx != NULL) { 142 ctx->duped = 0; 143 ctx->attr_gencount = NFS_I(dir)->attr_gencount; 144 ctx->dir_cookie = 0; 145 ctx->dup_cookie = 0; 146 ctx->cred = get_rpccred(cred); 147 return ctx; 148 } 149 return ERR_PTR(-ENOMEM); 150 } 151 152 static void put_nfs_open_dir_context(struct nfs_open_dir_context *ctx) 153 { 154 put_rpccred(ctx->cred); 155 kfree(ctx); 156 } 157 158 /* 159 * Open file 160 */ 161 static int 162 nfs_opendir(struct inode *inode, struct file *filp) 163 { 164 int res = 0; 165 struct nfs_open_dir_context *ctx; 166 struct rpc_cred *cred; 167 168 dfprintk(FILE, "NFS: open dir(%s/%s)\n", 169 filp->f_path.dentry->d_parent->d_name.name, 170 filp->f_path.dentry->d_name.name); 171 172 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 173 174 cred = rpc_lookup_cred(); 175 if (IS_ERR(cred)) 176 return PTR_ERR(cred); 177 ctx = alloc_nfs_open_dir_context(inode, cred); 178 if (IS_ERR(ctx)) { 179 res = PTR_ERR(ctx); 180 goto out; 181 } 182 filp->private_data = ctx; 183 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) { 184 /* This is a mountpoint, so d_revalidate will never 185 * have been called, so we need to refresh the 186 * inode (for close-open consistency) ourselves. 187 */ 188 __nfs_revalidate_inode(NFS_SERVER(inode), inode); 189 } 190 out: 191 put_rpccred(cred); 192 return res; 193 } 194 195 static int 196 nfs_closedir(struct inode *inode, struct file *filp) 197 { 198 put_nfs_open_dir_context(filp->private_data); 199 return 0; 200 } 201 202 struct nfs_cache_array_entry { 203 u64 cookie; 204 u64 ino; 205 struct qstr string; 206 unsigned char d_type; 207 }; 208 209 struct nfs_cache_array { 210 unsigned int size; 211 int eof_index; 212 u64 last_cookie; 213 struct nfs_cache_array_entry array[0]; 214 }; 215 216 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int); 217 typedef struct { 218 struct file *file; 219 struct page *page; 220 unsigned long page_index; 221 u64 *dir_cookie; 222 u64 last_cookie; 223 loff_t current_index; 224 decode_dirent_t decode; 225 226 unsigned long timestamp; 227 unsigned long gencount; 228 unsigned int cache_entry_index; 229 unsigned int plus:1; 230 unsigned int eof:1; 231 } nfs_readdir_descriptor_t; 232 233 /* 234 * The caller is responsible for calling nfs_readdir_release_array(page) 235 */ 236 static 237 struct nfs_cache_array *nfs_readdir_get_array(struct page *page) 238 { 239 void *ptr; 240 if (page == NULL) 241 return ERR_PTR(-EIO); 242 ptr = kmap(page); 243 if (ptr == NULL) 244 return ERR_PTR(-ENOMEM); 245 return ptr; 246 } 247 248 static 249 void nfs_readdir_release_array(struct page *page) 250 { 251 kunmap(page); 252 } 253 254 /* 255 * we are freeing strings created by nfs_add_to_readdir_array() 256 */ 257 static 258 void nfs_readdir_clear_array(struct page *page) 259 { 260 struct nfs_cache_array *array; 261 int i; 262 263 array = kmap_atomic(page); 264 for (i = 0; i < array->size; i++) 265 kfree(array->array[i].string.name); 266 kunmap_atomic(array); 267 } 268 269 /* 270 * the caller is responsible for freeing qstr.name 271 * when called by nfs_readdir_add_to_array, the strings will be freed in 272 * nfs_clear_readdir_array() 273 */ 274 static 275 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len) 276 { 277 string->len = len; 278 string->name = kmemdup(name, len, GFP_KERNEL); 279 if (string->name == NULL) 280 return -ENOMEM; 281 /* 282 * Avoid a kmemleak false positive. The pointer to the name is stored 283 * in a page cache page which kmemleak does not scan. 284 */ 285 kmemleak_not_leak(string->name); 286 string->hash = full_name_hash(name, len); 287 return 0; 288 } 289 290 static 291 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page) 292 { 293 struct nfs_cache_array *array = nfs_readdir_get_array(page); 294 struct nfs_cache_array_entry *cache_entry; 295 int ret; 296 297 if (IS_ERR(array)) 298 return PTR_ERR(array); 299 300 cache_entry = &array->array[array->size]; 301 302 /* Check that this entry lies within the page bounds */ 303 ret = -ENOSPC; 304 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE) 305 goto out; 306 307 cache_entry->cookie = entry->prev_cookie; 308 cache_entry->ino = entry->ino; 309 cache_entry->d_type = entry->d_type; 310 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len); 311 if (ret) 312 goto out; 313 array->last_cookie = entry->cookie; 314 array->size++; 315 if (entry->eof != 0) 316 array->eof_index = array->size; 317 out: 318 nfs_readdir_release_array(page); 319 return ret; 320 } 321 322 static 323 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 324 { 325 loff_t diff = desc->file->f_pos - desc->current_index; 326 unsigned int index; 327 328 if (diff < 0) 329 goto out_eof; 330 if (diff >= array->size) { 331 if (array->eof_index >= 0) 332 goto out_eof; 333 return -EAGAIN; 334 } 335 336 index = (unsigned int)diff; 337 *desc->dir_cookie = array->array[index].cookie; 338 desc->cache_entry_index = index; 339 return 0; 340 out_eof: 341 desc->eof = 1; 342 return -EBADCOOKIE; 343 } 344 345 static 346 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 347 { 348 int i; 349 loff_t new_pos; 350 int status = -EAGAIN; 351 352 for (i = 0; i < array->size; i++) { 353 if (array->array[i].cookie == *desc->dir_cookie) { 354 struct nfs_inode *nfsi = NFS_I(desc->file->f_path.dentry->d_inode); 355 struct nfs_open_dir_context *ctx = desc->file->private_data; 356 357 new_pos = desc->current_index + i; 358 if (ctx->attr_gencount != nfsi->attr_gencount 359 || (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))) { 360 ctx->duped = 0; 361 ctx->attr_gencount = nfsi->attr_gencount; 362 } else if (new_pos < desc->file->f_pos) { 363 if (ctx->duped > 0 364 && ctx->dup_cookie == *desc->dir_cookie) { 365 if (printk_ratelimit()) { 366 pr_notice("NFS: directory %s/%s contains a readdir loop." 367 "Please contact your server vendor. " 368 "The file: %s has duplicate cookie %llu\n", 369 desc->file->f_dentry->d_parent->d_name.name, 370 desc->file->f_dentry->d_name.name, 371 array->array[i].string.name, 372 *desc->dir_cookie); 373 } 374 status = -ELOOP; 375 goto out; 376 } 377 ctx->dup_cookie = *desc->dir_cookie; 378 ctx->duped = -1; 379 } 380 desc->file->f_pos = new_pos; 381 desc->cache_entry_index = i; 382 return 0; 383 } 384 } 385 if (array->eof_index >= 0) { 386 status = -EBADCOOKIE; 387 if (*desc->dir_cookie == array->last_cookie) 388 desc->eof = 1; 389 } 390 out: 391 return status; 392 } 393 394 static 395 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc) 396 { 397 struct nfs_cache_array *array; 398 int status; 399 400 array = nfs_readdir_get_array(desc->page); 401 if (IS_ERR(array)) { 402 status = PTR_ERR(array); 403 goto out; 404 } 405 406 if (*desc->dir_cookie == 0) 407 status = nfs_readdir_search_for_pos(array, desc); 408 else 409 status = nfs_readdir_search_for_cookie(array, desc); 410 411 if (status == -EAGAIN) { 412 desc->last_cookie = array->last_cookie; 413 desc->current_index += array->size; 414 desc->page_index++; 415 } 416 nfs_readdir_release_array(desc->page); 417 out: 418 return status; 419 } 420 421 /* Fill a page with xdr information before transferring to the cache page */ 422 static 423 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc, 424 struct nfs_entry *entry, struct file *file, struct inode *inode) 425 { 426 struct nfs_open_dir_context *ctx = file->private_data; 427 struct rpc_cred *cred = ctx->cred; 428 unsigned long timestamp, gencount; 429 int error; 430 431 again: 432 timestamp = jiffies; 433 gencount = nfs_inc_attr_generation_counter(); 434 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages, 435 NFS_SERVER(inode)->dtsize, desc->plus); 436 if (error < 0) { 437 /* We requested READDIRPLUS, but the server doesn't grok it */ 438 if (error == -ENOTSUPP && desc->plus) { 439 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS; 440 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 441 desc->plus = 0; 442 goto again; 443 } 444 goto error; 445 } 446 desc->timestamp = timestamp; 447 desc->gencount = gencount; 448 error: 449 return error; 450 } 451 452 static int xdr_decode(nfs_readdir_descriptor_t *desc, 453 struct nfs_entry *entry, struct xdr_stream *xdr) 454 { 455 int error; 456 457 error = desc->decode(xdr, entry, desc->plus); 458 if (error) 459 return error; 460 entry->fattr->time_start = desc->timestamp; 461 entry->fattr->gencount = desc->gencount; 462 return 0; 463 } 464 465 static 466 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry) 467 { 468 if (dentry->d_inode == NULL) 469 goto different; 470 if (nfs_compare_fh(entry->fh, NFS_FH(dentry->d_inode)) != 0) 471 goto different; 472 return 1; 473 different: 474 return 0; 475 } 476 477 static 478 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry) 479 { 480 struct qstr filename = { 481 .len = entry->len, 482 .name = entry->name, 483 }; 484 struct dentry *dentry; 485 struct dentry *alias; 486 struct inode *dir = parent->d_inode; 487 struct inode *inode; 488 489 if (filename.name[0] == '.') { 490 if (filename.len == 1) 491 return; 492 if (filename.len == 2 && filename.name[1] == '.') 493 return; 494 } 495 filename.hash = full_name_hash(filename.name, filename.len); 496 497 dentry = d_lookup(parent, &filename); 498 if (dentry != NULL) { 499 if (nfs_same_file(dentry, entry)) { 500 nfs_refresh_inode(dentry->d_inode, entry->fattr); 501 goto out; 502 } else { 503 d_drop(dentry); 504 dput(dentry); 505 } 506 } 507 508 dentry = d_alloc(parent, &filename); 509 if (dentry == NULL) 510 return; 511 512 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr); 513 if (IS_ERR(inode)) 514 goto out; 515 516 alias = d_materialise_unique(dentry, inode); 517 if (IS_ERR(alias)) 518 goto out; 519 else if (alias) { 520 nfs_set_verifier(alias, nfs_save_change_attribute(dir)); 521 dput(alias); 522 } else 523 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 524 525 out: 526 dput(dentry); 527 } 528 529 /* Perform conversion from xdr to cache array */ 530 static 531 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry, 532 struct page **xdr_pages, struct page *page, unsigned int buflen) 533 { 534 struct xdr_stream stream; 535 struct xdr_buf buf; 536 struct page *scratch; 537 struct nfs_cache_array *array; 538 unsigned int count = 0; 539 int status; 540 541 scratch = alloc_page(GFP_KERNEL); 542 if (scratch == NULL) 543 return -ENOMEM; 544 545 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen); 546 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE); 547 548 do { 549 status = xdr_decode(desc, entry, &stream); 550 if (status != 0) { 551 if (status == -EAGAIN) 552 status = 0; 553 break; 554 } 555 556 count++; 557 558 if (desc->plus != 0) 559 nfs_prime_dcache(desc->file->f_path.dentry, entry); 560 561 status = nfs_readdir_add_to_array(entry, page); 562 if (status != 0) 563 break; 564 } while (!entry->eof); 565 566 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) { 567 array = nfs_readdir_get_array(page); 568 if (!IS_ERR(array)) { 569 array->eof_index = array->size; 570 status = 0; 571 nfs_readdir_release_array(page); 572 } else 573 status = PTR_ERR(array); 574 } 575 576 put_page(scratch); 577 return status; 578 } 579 580 static 581 void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages) 582 { 583 unsigned int i; 584 for (i = 0; i < npages; i++) 585 put_page(pages[i]); 586 } 587 588 static 589 void nfs_readdir_free_large_page(void *ptr, struct page **pages, 590 unsigned int npages) 591 { 592 nfs_readdir_free_pagearray(pages, npages); 593 } 594 595 /* 596 * nfs_readdir_large_page will allocate pages that must be freed with a call 597 * to nfs_readdir_free_large_page 598 */ 599 static 600 int nfs_readdir_large_page(struct page **pages, unsigned int npages) 601 { 602 unsigned int i; 603 604 for (i = 0; i < npages; i++) { 605 struct page *page = alloc_page(GFP_KERNEL); 606 if (page == NULL) 607 goto out_freepages; 608 pages[i] = page; 609 } 610 return 0; 611 612 out_freepages: 613 nfs_readdir_free_pagearray(pages, i); 614 return -ENOMEM; 615 } 616 617 static 618 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode) 619 { 620 struct page *pages[NFS_MAX_READDIR_PAGES]; 621 void *pages_ptr = NULL; 622 struct nfs_entry entry; 623 struct file *file = desc->file; 624 struct nfs_cache_array *array; 625 int status = -ENOMEM; 626 unsigned int array_size = ARRAY_SIZE(pages); 627 628 entry.prev_cookie = 0; 629 entry.cookie = desc->last_cookie; 630 entry.eof = 0; 631 entry.fh = nfs_alloc_fhandle(); 632 entry.fattr = nfs_alloc_fattr(); 633 entry.server = NFS_SERVER(inode); 634 if (entry.fh == NULL || entry.fattr == NULL) 635 goto out; 636 637 array = nfs_readdir_get_array(page); 638 if (IS_ERR(array)) { 639 status = PTR_ERR(array); 640 goto out; 641 } 642 memset(array, 0, sizeof(struct nfs_cache_array)); 643 array->eof_index = -1; 644 645 status = nfs_readdir_large_page(pages, array_size); 646 if (status < 0) 647 goto out_release_array; 648 do { 649 unsigned int pglen; 650 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode); 651 652 if (status < 0) 653 break; 654 pglen = status; 655 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen); 656 if (status < 0) { 657 if (status == -ENOSPC) 658 status = 0; 659 break; 660 } 661 } while (array->eof_index < 0); 662 663 nfs_readdir_free_large_page(pages_ptr, pages, array_size); 664 out_release_array: 665 nfs_readdir_release_array(page); 666 out: 667 nfs_free_fattr(entry.fattr); 668 nfs_free_fhandle(entry.fh); 669 return status; 670 } 671 672 /* 673 * Now we cache directories properly, by converting xdr information 674 * to an array that can be used for lookups later. This results in 675 * fewer cache pages, since we can store more information on each page. 676 * We only need to convert from xdr once so future lookups are much simpler 677 */ 678 static 679 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page) 680 { 681 struct inode *inode = desc->file->f_path.dentry->d_inode; 682 int ret; 683 684 ret = nfs_readdir_xdr_to_array(desc, page, inode); 685 if (ret < 0) 686 goto error; 687 SetPageUptodate(page); 688 689 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) { 690 /* Should never happen */ 691 nfs_zap_mapping(inode, inode->i_mapping); 692 } 693 unlock_page(page); 694 return 0; 695 error: 696 unlock_page(page); 697 return ret; 698 } 699 700 static 701 void cache_page_release(nfs_readdir_descriptor_t *desc) 702 { 703 if (!desc->page->mapping) 704 nfs_readdir_clear_array(desc->page); 705 page_cache_release(desc->page); 706 desc->page = NULL; 707 } 708 709 static 710 struct page *get_cache_page(nfs_readdir_descriptor_t *desc) 711 { 712 return read_cache_page(desc->file->f_path.dentry->d_inode->i_mapping, 713 desc->page_index, (filler_t *)nfs_readdir_filler, desc); 714 } 715 716 /* 717 * Returns 0 if desc->dir_cookie was found on page desc->page_index 718 */ 719 static 720 int find_cache_page(nfs_readdir_descriptor_t *desc) 721 { 722 int res; 723 724 desc->page = get_cache_page(desc); 725 if (IS_ERR(desc->page)) 726 return PTR_ERR(desc->page); 727 728 res = nfs_readdir_search_array(desc); 729 if (res != 0) 730 cache_page_release(desc); 731 return res; 732 } 733 734 /* Search for desc->dir_cookie from the beginning of the page cache */ 735 static inline 736 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc) 737 { 738 int res; 739 740 if (desc->page_index == 0) { 741 desc->current_index = 0; 742 desc->last_cookie = 0; 743 } 744 do { 745 res = find_cache_page(desc); 746 } while (res == -EAGAIN); 747 return res; 748 } 749 750 /* 751 * Once we've found the start of the dirent within a page: fill 'er up... 752 */ 753 static 754 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent, 755 filldir_t filldir) 756 { 757 struct file *file = desc->file; 758 int i = 0; 759 int res = 0; 760 struct nfs_cache_array *array = NULL; 761 struct nfs_open_dir_context *ctx = file->private_data; 762 763 array = nfs_readdir_get_array(desc->page); 764 if (IS_ERR(array)) { 765 res = PTR_ERR(array); 766 goto out; 767 } 768 769 for (i = desc->cache_entry_index; i < array->size; i++) { 770 struct nfs_cache_array_entry *ent; 771 772 ent = &array->array[i]; 773 if (filldir(dirent, ent->string.name, ent->string.len, 774 file->f_pos, nfs_compat_user_ino64(ent->ino), 775 ent->d_type) < 0) { 776 desc->eof = 1; 777 break; 778 } 779 file->f_pos++; 780 if (i < (array->size-1)) 781 *desc->dir_cookie = array->array[i+1].cookie; 782 else 783 *desc->dir_cookie = array->last_cookie; 784 if (ctx->duped != 0) 785 ctx->duped = 1; 786 } 787 if (array->eof_index >= 0) 788 desc->eof = 1; 789 790 nfs_readdir_release_array(desc->page); 791 out: 792 cache_page_release(desc); 793 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n", 794 (unsigned long long)*desc->dir_cookie, res); 795 return res; 796 } 797 798 /* 799 * If we cannot find a cookie in our cache, we suspect that this is 800 * because it points to a deleted file, so we ask the server to return 801 * whatever it thinks is the next entry. We then feed this to filldir. 802 * If all goes well, we should then be able to find our way round the 803 * cache on the next call to readdir_search_pagecache(); 804 * 805 * NOTE: we cannot add the anonymous page to the pagecache because 806 * the data it contains might not be page aligned. Besides, 807 * we should already have a complete representation of the 808 * directory in the page cache by the time we get here. 809 */ 810 static inline 811 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent, 812 filldir_t filldir) 813 { 814 struct page *page = NULL; 815 int status; 816 struct inode *inode = desc->file->f_path.dentry->d_inode; 817 struct nfs_open_dir_context *ctx = desc->file->private_data; 818 819 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n", 820 (unsigned long long)*desc->dir_cookie); 821 822 page = alloc_page(GFP_HIGHUSER); 823 if (!page) { 824 status = -ENOMEM; 825 goto out; 826 } 827 828 desc->page_index = 0; 829 desc->last_cookie = *desc->dir_cookie; 830 desc->page = page; 831 ctx->duped = 0; 832 833 status = nfs_readdir_xdr_to_array(desc, page, inode); 834 if (status < 0) 835 goto out_release; 836 837 status = nfs_do_filldir(desc, dirent, filldir); 838 839 out: 840 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", 841 __func__, status); 842 return status; 843 out_release: 844 cache_page_release(desc); 845 goto out; 846 } 847 848 /* The file offset position represents the dirent entry number. A 849 last cookie cache takes care of the common case of reading the 850 whole directory. 851 */ 852 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir) 853 { 854 struct dentry *dentry = filp->f_path.dentry; 855 struct inode *inode = dentry->d_inode; 856 nfs_readdir_descriptor_t my_desc, 857 *desc = &my_desc; 858 struct nfs_open_dir_context *dir_ctx = filp->private_data; 859 int res; 860 861 dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n", 862 dentry->d_parent->d_name.name, dentry->d_name.name, 863 (long long)filp->f_pos); 864 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS); 865 866 /* 867 * filp->f_pos points to the dirent entry number. 868 * *desc->dir_cookie has the cookie for the next entry. We have 869 * to either find the entry with the appropriate number or 870 * revalidate the cookie. 871 */ 872 memset(desc, 0, sizeof(*desc)); 873 874 desc->file = filp; 875 desc->dir_cookie = &dir_ctx->dir_cookie; 876 desc->decode = NFS_PROTO(inode)->decode_dirent; 877 desc->plus = NFS_USE_READDIRPLUS(inode); 878 879 nfs_block_sillyrename(dentry); 880 res = nfs_revalidate_mapping(inode, filp->f_mapping); 881 if (res < 0) 882 goto out; 883 884 do { 885 res = readdir_search_pagecache(desc); 886 887 if (res == -EBADCOOKIE) { 888 res = 0; 889 /* This means either end of directory */ 890 if (*desc->dir_cookie && desc->eof == 0) { 891 /* Or that the server has 'lost' a cookie */ 892 res = uncached_readdir(desc, dirent, filldir); 893 if (res == 0) 894 continue; 895 } 896 break; 897 } 898 if (res == -ETOOSMALL && desc->plus) { 899 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 900 nfs_zap_caches(inode); 901 desc->page_index = 0; 902 desc->plus = 0; 903 desc->eof = 0; 904 continue; 905 } 906 if (res < 0) 907 break; 908 909 res = nfs_do_filldir(desc, dirent, filldir); 910 if (res < 0) 911 break; 912 } while (!desc->eof); 913 out: 914 nfs_unblock_sillyrename(dentry); 915 if (res > 0) 916 res = 0; 917 dfprintk(FILE, "NFS: readdir(%s/%s) returns %d\n", 918 dentry->d_parent->d_name.name, dentry->d_name.name, 919 res); 920 return res; 921 } 922 923 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin) 924 { 925 struct dentry *dentry = filp->f_path.dentry; 926 struct inode *inode = dentry->d_inode; 927 struct nfs_open_dir_context *dir_ctx = filp->private_data; 928 929 dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n", 930 dentry->d_parent->d_name.name, 931 dentry->d_name.name, 932 offset, origin); 933 934 mutex_lock(&inode->i_mutex); 935 switch (origin) { 936 case 1: 937 offset += filp->f_pos; 938 case 0: 939 if (offset >= 0) 940 break; 941 default: 942 offset = -EINVAL; 943 goto out; 944 } 945 if (offset != filp->f_pos) { 946 filp->f_pos = offset; 947 dir_ctx->dir_cookie = 0; 948 dir_ctx->duped = 0; 949 } 950 out: 951 mutex_unlock(&inode->i_mutex); 952 return offset; 953 } 954 955 /* 956 * All directory operations under NFS are synchronous, so fsync() 957 * is a dummy operation. 958 */ 959 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end, 960 int datasync) 961 { 962 struct dentry *dentry = filp->f_path.dentry; 963 struct inode *inode = dentry->d_inode; 964 965 dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n", 966 dentry->d_parent->d_name.name, dentry->d_name.name, 967 datasync); 968 969 mutex_lock(&inode->i_mutex); 970 nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC); 971 mutex_unlock(&inode->i_mutex); 972 return 0; 973 } 974 975 /** 976 * nfs_force_lookup_revalidate - Mark the directory as having changed 977 * @dir - pointer to directory inode 978 * 979 * This forces the revalidation code in nfs_lookup_revalidate() to do a 980 * full lookup on all child dentries of 'dir' whenever a change occurs 981 * on the server that might have invalidated our dcache. 982 * 983 * The caller should be holding dir->i_lock 984 */ 985 void nfs_force_lookup_revalidate(struct inode *dir) 986 { 987 NFS_I(dir)->cache_change_attribute++; 988 } 989 990 /* 991 * A check for whether or not the parent directory has changed. 992 * In the case it has, we assume that the dentries are untrustworthy 993 * and may need to be looked up again. 994 */ 995 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry) 996 { 997 if (IS_ROOT(dentry)) 998 return 1; 999 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE) 1000 return 0; 1001 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 1002 return 0; 1003 /* Revalidate nfsi->cache_change_attribute before we declare a match */ 1004 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0) 1005 return 0; 1006 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 1007 return 0; 1008 return 1; 1009 } 1010 1011 /* 1012 * Return the intent data that applies to this particular path component 1013 * 1014 * Note that the current set of intents only apply to the very last 1015 * component of the path and none of them is set before that last 1016 * component. 1017 */ 1018 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, 1019 unsigned int mask) 1020 { 1021 return nd->flags & mask; 1022 } 1023 1024 /* 1025 * Use intent information to check whether or not we're going to do 1026 * an O_EXCL create using this path component. 1027 */ 1028 static int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd) 1029 { 1030 if (NFS_PROTO(dir)->version == 2) 1031 return 0; 1032 return nd && nfs_lookup_check_intent(nd, LOOKUP_EXCL); 1033 } 1034 1035 /* 1036 * Inode and filehandle revalidation for lookups. 1037 * 1038 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL, 1039 * or if the intent information indicates that we're about to open this 1040 * particular file and the "nocto" mount flag is not set. 1041 * 1042 */ 1043 static inline 1044 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd) 1045 { 1046 struct nfs_server *server = NFS_SERVER(inode); 1047 1048 if (IS_AUTOMOUNT(inode)) 1049 return 0; 1050 if (nd != NULL) { 1051 /* VFS wants an on-the-wire revalidation */ 1052 if (nd->flags & LOOKUP_REVAL) 1053 goto out_force; 1054 /* This is an open(2) */ 1055 if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 && 1056 !(server->flags & NFS_MOUNT_NOCTO) && 1057 (S_ISREG(inode->i_mode) || 1058 S_ISDIR(inode->i_mode))) 1059 goto out_force; 1060 return 0; 1061 } 1062 return nfs_revalidate_inode(server, inode); 1063 out_force: 1064 return __nfs_revalidate_inode(server, inode); 1065 } 1066 1067 /* 1068 * We judge how long we want to trust negative 1069 * dentries by looking at the parent inode mtime. 1070 * 1071 * If parent mtime has changed, we revalidate, else we wait for a 1072 * period corresponding to the parent's attribute cache timeout value. 1073 */ 1074 static inline 1075 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry, 1076 struct nameidata *nd) 1077 { 1078 /* Don't revalidate a negative dentry if we're creating a new file */ 1079 if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0) 1080 return 0; 1081 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG) 1082 return 1; 1083 return !nfs_check_verifier(dir, dentry); 1084 } 1085 1086 /* 1087 * This is called every time the dcache has a lookup hit, 1088 * and we should check whether we can really trust that 1089 * lookup. 1090 * 1091 * NOTE! The hit can be a negative hit too, don't assume 1092 * we have an inode! 1093 * 1094 * If the parent directory is seen to have changed, we throw out the 1095 * cached dentry and do a new lookup. 1096 */ 1097 static int nfs_lookup_revalidate(struct dentry *dentry, struct nameidata *nd) 1098 { 1099 struct inode *dir; 1100 struct inode *inode; 1101 struct dentry *parent; 1102 struct nfs_fh *fhandle = NULL; 1103 struct nfs_fattr *fattr = NULL; 1104 int error; 1105 1106 if (nd->flags & LOOKUP_RCU) 1107 return -ECHILD; 1108 1109 parent = dget_parent(dentry); 1110 dir = parent->d_inode; 1111 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE); 1112 inode = dentry->d_inode; 1113 1114 if (!inode) { 1115 if (nfs_neg_need_reval(dir, dentry, nd)) 1116 goto out_bad; 1117 goto out_valid; 1118 } 1119 1120 if (is_bad_inode(inode)) { 1121 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n", 1122 __func__, dentry->d_parent->d_name.name, 1123 dentry->d_name.name); 1124 goto out_bad; 1125 } 1126 1127 if (nfs_have_delegation(inode, FMODE_READ)) 1128 goto out_set_verifier; 1129 1130 /* Force a full look up iff the parent directory has changed */ 1131 if (!nfs_is_exclusive_create(dir, nd) && nfs_check_verifier(dir, dentry)) { 1132 if (nfs_lookup_verify_inode(inode, nd)) 1133 goto out_zap_parent; 1134 goto out_valid; 1135 } 1136 1137 if (NFS_STALE(inode)) 1138 goto out_bad; 1139 1140 error = -ENOMEM; 1141 fhandle = nfs_alloc_fhandle(); 1142 fattr = nfs_alloc_fattr(); 1143 if (fhandle == NULL || fattr == NULL) 1144 goto out_error; 1145 1146 error = NFS_PROTO(dir)->lookup(NFS_SERVER(dir)->client, dir, &dentry->d_name, fhandle, fattr); 1147 if (error) 1148 goto out_bad; 1149 if (nfs_compare_fh(NFS_FH(inode), fhandle)) 1150 goto out_bad; 1151 if ((error = nfs_refresh_inode(inode, fattr)) != 0) 1152 goto out_bad; 1153 1154 nfs_free_fattr(fattr); 1155 nfs_free_fhandle(fhandle); 1156 out_set_verifier: 1157 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1158 out_valid: 1159 dput(parent); 1160 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n", 1161 __func__, dentry->d_parent->d_name.name, 1162 dentry->d_name.name); 1163 return 1; 1164 out_zap_parent: 1165 nfs_zap_caches(dir); 1166 out_bad: 1167 nfs_mark_for_revalidate(dir); 1168 if (inode && S_ISDIR(inode->i_mode)) { 1169 /* Purge readdir caches. */ 1170 nfs_zap_caches(inode); 1171 /* If we have submounts, don't unhash ! */ 1172 if (have_submounts(dentry)) 1173 goto out_valid; 1174 if (dentry->d_flags & DCACHE_DISCONNECTED) 1175 goto out_valid; 1176 shrink_dcache_parent(dentry); 1177 } 1178 d_drop(dentry); 1179 nfs_free_fattr(fattr); 1180 nfs_free_fhandle(fhandle); 1181 dput(parent); 1182 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n", 1183 __func__, dentry->d_parent->d_name.name, 1184 dentry->d_name.name); 1185 return 0; 1186 out_error: 1187 nfs_free_fattr(fattr); 1188 nfs_free_fhandle(fhandle); 1189 dput(parent); 1190 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n", 1191 __func__, dentry->d_parent->d_name.name, 1192 dentry->d_name.name, error); 1193 return error; 1194 } 1195 1196 /* 1197 * This is called from dput() when d_count is going to 0. 1198 */ 1199 static int nfs_dentry_delete(const struct dentry *dentry) 1200 { 1201 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n", 1202 dentry->d_parent->d_name.name, dentry->d_name.name, 1203 dentry->d_flags); 1204 1205 /* Unhash any dentry with a stale inode */ 1206 if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode)) 1207 return 1; 1208 1209 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1210 /* Unhash it, so that ->d_iput() would be called */ 1211 return 1; 1212 } 1213 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) { 1214 /* Unhash it, so that ancestors of killed async unlink 1215 * files will be cleaned up during umount */ 1216 return 1; 1217 } 1218 return 0; 1219 1220 } 1221 1222 static void nfs_drop_nlink(struct inode *inode) 1223 { 1224 spin_lock(&inode->i_lock); 1225 if (inode->i_nlink > 0) 1226 drop_nlink(inode); 1227 spin_unlock(&inode->i_lock); 1228 } 1229 1230 /* 1231 * Called when the dentry loses inode. 1232 * We use it to clean up silly-renamed files. 1233 */ 1234 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode) 1235 { 1236 if (S_ISDIR(inode->i_mode)) 1237 /* drop any readdir cache as it could easily be old */ 1238 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA; 1239 1240 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1241 drop_nlink(inode); 1242 nfs_complete_unlink(dentry, inode); 1243 } 1244 iput(inode); 1245 } 1246 1247 static void nfs_d_release(struct dentry *dentry) 1248 { 1249 /* free cached devname value, if it survived that far */ 1250 if (unlikely(dentry->d_fsdata)) { 1251 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1252 WARN_ON(1); 1253 else 1254 kfree(dentry->d_fsdata); 1255 } 1256 } 1257 1258 const struct dentry_operations nfs_dentry_operations = { 1259 .d_revalidate = nfs_lookup_revalidate, 1260 .d_delete = nfs_dentry_delete, 1261 .d_iput = nfs_dentry_iput, 1262 .d_automount = nfs_d_automount, 1263 .d_release = nfs_d_release, 1264 }; 1265 1266 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd) 1267 { 1268 struct dentry *res; 1269 struct dentry *parent; 1270 struct inode *inode = NULL; 1271 struct nfs_fh *fhandle = NULL; 1272 struct nfs_fattr *fattr = NULL; 1273 int error; 1274 1275 dfprintk(VFS, "NFS: lookup(%s/%s)\n", 1276 dentry->d_parent->d_name.name, dentry->d_name.name); 1277 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP); 1278 1279 res = ERR_PTR(-ENAMETOOLONG); 1280 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 1281 goto out; 1282 1283 /* 1284 * If we're doing an exclusive create, optimize away the lookup 1285 * but don't hash the dentry. 1286 */ 1287 if (nfs_is_exclusive_create(dir, nd)) { 1288 d_instantiate(dentry, NULL); 1289 res = NULL; 1290 goto out; 1291 } 1292 1293 res = ERR_PTR(-ENOMEM); 1294 fhandle = nfs_alloc_fhandle(); 1295 fattr = nfs_alloc_fattr(); 1296 if (fhandle == NULL || fattr == NULL) 1297 goto out; 1298 1299 parent = dentry->d_parent; 1300 /* Protect against concurrent sillydeletes */ 1301 nfs_block_sillyrename(parent); 1302 error = NFS_PROTO(dir)->lookup(NFS_SERVER(dir)->client, dir, &dentry->d_name, fhandle, fattr); 1303 if (error == -ENOENT) 1304 goto no_entry; 1305 if (error < 0) { 1306 res = ERR_PTR(error); 1307 goto out_unblock_sillyrename; 1308 } 1309 inode = nfs_fhget(dentry->d_sb, fhandle, fattr); 1310 res = ERR_CAST(inode); 1311 if (IS_ERR(res)) 1312 goto out_unblock_sillyrename; 1313 1314 no_entry: 1315 res = d_materialise_unique(dentry, inode); 1316 if (res != NULL) { 1317 if (IS_ERR(res)) 1318 goto out_unblock_sillyrename; 1319 dentry = res; 1320 } 1321 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1322 out_unblock_sillyrename: 1323 nfs_unblock_sillyrename(parent); 1324 out: 1325 nfs_free_fattr(fattr); 1326 nfs_free_fhandle(fhandle); 1327 return res; 1328 } 1329 1330 #ifdef CONFIG_NFS_V4 1331 static int nfs_open_revalidate(struct dentry *, struct nameidata *); 1332 1333 const struct dentry_operations nfs4_dentry_operations = { 1334 .d_revalidate = nfs_open_revalidate, 1335 .d_delete = nfs_dentry_delete, 1336 .d_iput = nfs_dentry_iput, 1337 .d_automount = nfs_d_automount, 1338 .d_release = nfs_d_release, 1339 }; 1340 1341 /* 1342 * Use intent information to determine whether we need to substitute 1343 * the NFSv4-style stateful OPEN for the LOOKUP call 1344 */ 1345 static int is_atomic_open(struct nameidata *nd) 1346 { 1347 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0) 1348 return 0; 1349 /* NFS does not (yet) have a stateful open for directories */ 1350 if (nd->flags & LOOKUP_DIRECTORY) 1351 return 0; 1352 /* Are we trying to write to a read only partition? */ 1353 if (__mnt_is_readonly(nd->path.mnt) && 1354 (nd->intent.open.flags & (O_CREAT|O_TRUNC|O_ACCMODE))) 1355 return 0; 1356 return 1; 1357 } 1358 1359 static fmode_t flags_to_mode(int flags) 1360 { 1361 fmode_t res = (__force fmode_t)flags & FMODE_EXEC; 1362 if ((flags & O_ACCMODE) != O_WRONLY) 1363 res |= FMODE_READ; 1364 if ((flags & O_ACCMODE) != O_RDONLY) 1365 res |= FMODE_WRITE; 1366 return res; 1367 } 1368 1369 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags) 1370 { 1371 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags)); 1372 } 1373 1374 static int do_open(struct inode *inode, struct file *filp) 1375 { 1376 nfs_fscache_set_inode_cookie(inode, filp); 1377 return 0; 1378 } 1379 1380 static int nfs_intent_set_file(struct nameidata *nd, struct nfs_open_context *ctx) 1381 { 1382 struct file *filp; 1383 int ret = 0; 1384 1385 /* If the open_intent is for execute, we have an extra check to make */ 1386 if (ctx->mode & FMODE_EXEC) { 1387 ret = nfs_may_open(ctx->dentry->d_inode, 1388 ctx->cred, 1389 nd->intent.open.flags); 1390 if (ret < 0) 1391 goto out; 1392 } 1393 filp = lookup_instantiate_filp(nd, ctx->dentry, do_open); 1394 if (IS_ERR(filp)) 1395 ret = PTR_ERR(filp); 1396 else 1397 nfs_file_set_open_context(filp, ctx); 1398 out: 1399 put_nfs_open_context(ctx); 1400 return ret; 1401 } 1402 1403 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd) 1404 { 1405 struct nfs_open_context *ctx; 1406 struct iattr attr; 1407 struct dentry *res = NULL; 1408 struct inode *inode; 1409 int open_flags; 1410 int err; 1411 1412 dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n", 1413 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1414 1415 /* Check that we are indeed trying to open this file */ 1416 if (!is_atomic_open(nd)) 1417 goto no_open; 1418 1419 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) { 1420 res = ERR_PTR(-ENAMETOOLONG); 1421 goto out; 1422 } 1423 1424 /* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash 1425 * the dentry. */ 1426 if (nd->flags & LOOKUP_EXCL) { 1427 d_instantiate(dentry, NULL); 1428 goto out; 1429 } 1430 1431 open_flags = nd->intent.open.flags; 1432 1433 ctx = create_nfs_open_context(dentry, open_flags); 1434 res = ERR_CAST(ctx); 1435 if (IS_ERR(ctx)) 1436 goto out; 1437 1438 if (nd->flags & LOOKUP_CREATE) { 1439 attr.ia_mode = nd->intent.open.create_mode; 1440 attr.ia_valid = ATTR_MODE; 1441 attr.ia_mode &= ~current_umask(); 1442 } else { 1443 open_flags &= ~(O_EXCL | O_CREAT); 1444 attr.ia_valid = 0; 1445 } 1446 1447 /* Open the file on the server */ 1448 nfs_block_sillyrename(dentry->d_parent); 1449 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr); 1450 if (IS_ERR(inode)) { 1451 nfs_unblock_sillyrename(dentry->d_parent); 1452 put_nfs_open_context(ctx); 1453 switch (PTR_ERR(inode)) { 1454 /* Make a negative dentry */ 1455 case -ENOENT: 1456 d_add(dentry, NULL); 1457 res = NULL; 1458 goto out; 1459 /* This turned out not to be a regular file */ 1460 case -EISDIR: 1461 case -ENOTDIR: 1462 goto no_open; 1463 case -ELOOP: 1464 if (!(nd->intent.open.flags & O_NOFOLLOW)) 1465 goto no_open; 1466 /* case -EINVAL: */ 1467 default: 1468 res = ERR_CAST(inode); 1469 goto out; 1470 } 1471 } 1472 res = d_add_unique(dentry, inode); 1473 nfs_unblock_sillyrename(dentry->d_parent); 1474 if (res != NULL) { 1475 dput(ctx->dentry); 1476 ctx->dentry = dget(res); 1477 dentry = res; 1478 } 1479 err = nfs_intent_set_file(nd, ctx); 1480 if (err < 0) { 1481 if (res != NULL) 1482 dput(res); 1483 return ERR_PTR(err); 1484 } 1485 out: 1486 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1487 return res; 1488 no_open: 1489 return nfs_lookup(dir, dentry, nd); 1490 } 1491 1492 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd) 1493 { 1494 struct dentry *parent = NULL; 1495 struct inode *inode; 1496 struct inode *dir; 1497 struct nfs_open_context *ctx; 1498 int openflags, ret = 0; 1499 1500 if (nd->flags & LOOKUP_RCU) 1501 return -ECHILD; 1502 1503 inode = dentry->d_inode; 1504 if (!is_atomic_open(nd) || d_mountpoint(dentry)) 1505 goto no_open; 1506 1507 parent = dget_parent(dentry); 1508 dir = parent->d_inode; 1509 1510 /* We can't create new files in nfs_open_revalidate(), so we 1511 * optimize away revalidation of negative dentries. 1512 */ 1513 if (inode == NULL) { 1514 if (!nfs_neg_need_reval(dir, dentry, nd)) 1515 ret = 1; 1516 goto out; 1517 } 1518 1519 /* NFS only supports OPEN on regular files */ 1520 if (!S_ISREG(inode->i_mode)) 1521 goto no_open_dput; 1522 openflags = nd->intent.open.flags; 1523 /* We cannot do exclusive creation on a positive dentry */ 1524 if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL)) 1525 goto no_open_dput; 1526 /* We can't create new files, or truncate existing ones here */ 1527 openflags &= ~(O_CREAT|O_EXCL|O_TRUNC); 1528 1529 ctx = create_nfs_open_context(dentry, openflags); 1530 ret = PTR_ERR(ctx); 1531 if (IS_ERR(ctx)) 1532 goto out; 1533 /* 1534 * Note: we're not holding inode->i_mutex and so may be racing with 1535 * operations that change the directory. We therefore save the 1536 * change attribute *before* we do the RPC call. 1537 */ 1538 inode = NFS_PROTO(dir)->open_context(dir, ctx, openflags, NULL); 1539 if (IS_ERR(inode)) { 1540 ret = PTR_ERR(inode); 1541 switch (ret) { 1542 case -EPERM: 1543 case -EACCES: 1544 case -EDQUOT: 1545 case -ENOSPC: 1546 case -EROFS: 1547 goto out_put_ctx; 1548 default: 1549 goto out_drop; 1550 } 1551 } 1552 iput(inode); 1553 if (inode != dentry->d_inode) 1554 goto out_drop; 1555 1556 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1557 ret = nfs_intent_set_file(nd, ctx); 1558 if (ret >= 0) 1559 ret = 1; 1560 out: 1561 dput(parent); 1562 return ret; 1563 out_drop: 1564 d_drop(dentry); 1565 ret = 0; 1566 out_put_ctx: 1567 put_nfs_open_context(ctx); 1568 goto out; 1569 1570 no_open_dput: 1571 dput(parent); 1572 no_open: 1573 return nfs_lookup_revalidate(dentry, nd); 1574 } 1575 1576 static int nfs_open_create(struct inode *dir, struct dentry *dentry, 1577 umode_t mode, struct nameidata *nd) 1578 { 1579 struct nfs_open_context *ctx = NULL; 1580 struct iattr attr; 1581 int error; 1582 int open_flags = O_CREAT|O_EXCL; 1583 1584 dfprintk(VFS, "NFS: create(%s/%ld), %s\n", 1585 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1586 1587 attr.ia_mode = mode; 1588 attr.ia_valid = ATTR_MODE; 1589 1590 if (nd) 1591 open_flags = nd->intent.open.flags; 1592 1593 ctx = create_nfs_open_context(dentry, open_flags); 1594 error = PTR_ERR(ctx); 1595 if (IS_ERR(ctx)) 1596 goto out_err_drop; 1597 1598 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, ctx); 1599 if (error != 0) 1600 goto out_put_ctx; 1601 if (nd) { 1602 error = nfs_intent_set_file(nd, ctx); 1603 if (error < 0) 1604 goto out_err; 1605 } else { 1606 put_nfs_open_context(ctx); 1607 } 1608 return 0; 1609 out_put_ctx: 1610 put_nfs_open_context(ctx); 1611 out_err_drop: 1612 d_drop(dentry); 1613 out_err: 1614 return error; 1615 } 1616 1617 #endif /* CONFIG_NFSV4 */ 1618 1619 /* 1620 * Code common to create, mkdir, and mknod. 1621 */ 1622 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle, 1623 struct nfs_fattr *fattr) 1624 { 1625 struct dentry *parent = dget_parent(dentry); 1626 struct inode *dir = parent->d_inode; 1627 struct inode *inode; 1628 int error = -EACCES; 1629 1630 d_drop(dentry); 1631 1632 /* We may have been initialized further down */ 1633 if (dentry->d_inode) 1634 goto out; 1635 if (fhandle->size == 0) { 1636 error = NFS_PROTO(dir)->lookup(NFS_SERVER(dir)->client, dir, &dentry->d_name, fhandle, fattr); 1637 if (error) 1638 goto out_error; 1639 } 1640 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1641 if (!(fattr->valid & NFS_ATTR_FATTR)) { 1642 struct nfs_server *server = NFS_SB(dentry->d_sb); 1643 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr); 1644 if (error < 0) 1645 goto out_error; 1646 } 1647 inode = nfs_fhget(dentry->d_sb, fhandle, fattr); 1648 error = PTR_ERR(inode); 1649 if (IS_ERR(inode)) 1650 goto out_error; 1651 d_add(dentry, inode); 1652 out: 1653 dput(parent); 1654 return 0; 1655 out_error: 1656 nfs_mark_for_revalidate(dir); 1657 dput(parent); 1658 return error; 1659 } 1660 1661 /* 1662 * Following a failed create operation, we drop the dentry rather 1663 * than retain a negative dentry. This avoids a problem in the event 1664 * that the operation succeeded on the server, but an error in the 1665 * reply path made it appear to have failed. 1666 */ 1667 static int nfs_create(struct inode *dir, struct dentry *dentry, 1668 umode_t mode, struct nameidata *nd) 1669 { 1670 struct iattr attr; 1671 int error; 1672 int open_flags = O_CREAT|O_EXCL; 1673 1674 dfprintk(VFS, "NFS: create(%s/%ld), %s\n", 1675 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1676 1677 attr.ia_mode = mode; 1678 attr.ia_valid = ATTR_MODE; 1679 1680 if (nd) 1681 open_flags = nd->intent.open.flags; 1682 1683 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, NULL); 1684 if (error != 0) 1685 goto out_err; 1686 return 0; 1687 out_err: 1688 d_drop(dentry); 1689 return error; 1690 } 1691 1692 /* 1693 * See comments for nfs_proc_create regarding failed operations. 1694 */ 1695 static int 1696 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev) 1697 { 1698 struct iattr attr; 1699 int status; 1700 1701 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n", 1702 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1703 1704 if (!new_valid_dev(rdev)) 1705 return -EINVAL; 1706 1707 attr.ia_mode = mode; 1708 attr.ia_valid = ATTR_MODE; 1709 1710 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev); 1711 if (status != 0) 1712 goto out_err; 1713 return 0; 1714 out_err: 1715 d_drop(dentry); 1716 return status; 1717 } 1718 1719 /* 1720 * See comments for nfs_proc_create regarding failed operations. 1721 */ 1722 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1723 { 1724 struct iattr attr; 1725 int error; 1726 1727 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n", 1728 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1729 1730 attr.ia_valid = ATTR_MODE; 1731 attr.ia_mode = mode | S_IFDIR; 1732 1733 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr); 1734 if (error != 0) 1735 goto out_err; 1736 return 0; 1737 out_err: 1738 d_drop(dentry); 1739 return error; 1740 } 1741 1742 static void nfs_dentry_handle_enoent(struct dentry *dentry) 1743 { 1744 if (dentry->d_inode != NULL && !d_unhashed(dentry)) 1745 d_delete(dentry); 1746 } 1747 1748 static int nfs_rmdir(struct inode *dir, struct dentry *dentry) 1749 { 1750 int error; 1751 1752 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n", 1753 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1754 1755 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1756 /* Ensure the VFS deletes this inode */ 1757 if (error == 0 && dentry->d_inode != NULL) 1758 clear_nlink(dentry->d_inode); 1759 else if (error == -ENOENT) 1760 nfs_dentry_handle_enoent(dentry); 1761 1762 return error; 1763 } 1764 1765 /* 1766 * Remove a file after making sure there are no pending writes, 1767 * and after checking that the file has only one user. 1768 * 1769 * We invalidate the attribute cache and free the inode prior to the operation 1770 * to avoid possible races if the server reuses the inode. 1771 */ 1772 static int nfs_safe_remove(struct dentry *dentry) 1773 { 1774 struct inode *dir = dentry->d_parent->d_inode; 1775 struct inode *inode = dentry->d_inode; 1776 int error = -EBUSY; 1777 1778 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n", 1779 dentry->d_parent->d_name.name, dentry->d_name.name); 1780 1781 /* If the dentry was sillyrenamed, we simply call d_delete() */ 1782 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1783 error = 0; 1784 goto out; 1785 } 1786 1787 if (inode != NULL) { 1788 nfs_inode_return_delegation(inode); 1789 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name); 1790 /* The VFS may want to delete this inode */ 1791 if (error == 0) 1792 nfs_drop_nlink(inode); 1793 nfs_mark_for_revalidate(inode); 1794 } else 1795 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name); 1796 if (error == -ENOENT) 1797 nfs_dentry_handle_enoent(dentry); 1798 out: 1799 return error; 1800 } 1801 1802 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode 1803 * belongs to an active ".nfs..." file and we return -EBUSY. 1804 * 1805 * If sillyrename() returns 0, we do nothing, otherwise we unlink. 1806 */ 1807 static int nfs_unlink(struct inode *dir, struct dentry *dentry) 1808 { 1809 int error; 1810 int need_rehash = 0; 1811 1812 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id, 1813 dir->i_ino, dentry->d_name.name); 1814 1815 spin_lock(&dentry->d_lock); 1816 if (dentry->d_count > 1) { 1817 spin_unlock(&dentry->d_lock); 1818 /* Start asynchronous writeout of the inode */ 1819 write_inode_now(dentry->d_inode, 0); 1820 error = nfs_sillyrename(dir, dentry); 1821 return error; 1822 } 1823 if (!d_unhashed(dentry)) { 1824 __d_drop(dentry); 1825 need_rehash = 1; 1826 } 1827 spin_unlock(&dentry->d_lock); 1828 error = nfs_safe_remove(dentry); 1829 if (!error || error == -ENOENT) { 1830 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1831 } else if (need_rehash) 1832 d_rehash(dentry); 1833 return error; 1834 } 1835 1836 /* 1837 * To create a symbolic link, most file systems instantiate a new inode, 1838 * add a page to it containing the path, then write it out to the disk 1839 * using prepare_write/commit_write. 1840 * 1841 * Unfortunately the NFS client can't create the in-core inode first 1842 * because it needs a file handle to create an in-core inode (see 1843 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the 1844 * symlink request has completed on the server. 1845 * 1846 * So instead we allocate a raw page, copy the symname into it, then do 1847 * the SYMLINK request with the page as the buffer. If it succeeds, we 1848 * now have a new file handle and can instantiate an in-core NFS inode 1849 * and move the raw page into its mapping. 1850 */ 1851 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 1852 { 1853 struct pagevec lru_pvec; 1854 struct page *page; 1855 char *kaddr; 1856 struct iattr attr; 1857 unsigned int pathlen = strlen(symname); 1858 int error; 1859 1860 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id, 1861 dir->i_ino, dentry->d_name.name, symname); 1862 1863 if (pathlen > PAGE_SIZE) 1864 return -ENAMETOOLONG; 1865 1866 attr.ia_mode = S_IFLNK | S_IRWXUGO; 1867 attr.ia_valid = ATTR_MODE; 1868 1869 page = alloc_page(GFP_HIGHUSER); 1870 if (!page) 1871 return -ENOMEM; 1872 1873 kaddr = kmap_atomic(page); 1874 memcpy(kaddr, symname, pathlen); 1875 if (pathlen < PAGE_SIZE) 1876 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen); 1877 kunmap_atomic(kaddr); 1878 1879 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr); 1880 if (error != 0) { 1881 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n", 1882 dir->i_sb->s_id, dir->i_ino, 1883 dentry->d_name.name, symname, error); 1884 d_drop(dentry); 1885 __free_page(page); 1886 return error; 1887 } 1888 1889 /* 1890 * No big deal if we can't add this page to the page cache here. 1891 * READLINK will get the missing page from the server if needed. 1892 */ 1893 pagevec_init(&lru_pvec, 0); 1894 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0, 1895 GFP_KERNEL)) { 1896 pagevec_add(&lru_pvec, page); 1897 pagevec_lru_add_file(&lru_pvec); 1898 SetPageUptodate(page); 1899 unlock_page(page); 1900 } else 1901 __free_page(page); 1902 1903 return 0; 1904 } 1905 1906 static int 1907 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 1908 { 1909 struct inode *inode = old_dentry->d_inode; 1910 int error; 1911 1912 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n", 1913 old_dentry->d_parent->d_name.name, old_dentry->d_name.name, 1914 dentry->d_parent->d_name.name, dentry->d_name.name); 1915 1916 nfs_inode_return_delegation(inode); 1917 1918 d_drop(dentry); 1919 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name); 1920 if (error == 0) { 1921 ihold(inode); 1922 d_add(dentry, inode); 1923 } 1924 return error; 1925 } 1926 1927 /* 1928 * RENAME 1929 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a 1930 * different file handle for the same inode after a rename (e.g. when 1931 * moving to a different directory). A fail-safe method to do so would 1932 * be to look up old_dir/old_name, create a link to new_dir/new_name and 1933 * rename the old file using the sillyrename stuff. This way, the original 1934 * file in old_dir will go away when the last process iput()s the inode. 1935 * 1936 * FIXED. 1937 * 1938 * It actually works quite well. One needs to have the possibility for 1939 * at least one ".nfs..." file in each directory the file ever gets 1940 * moved or linked to which happens automagically with the new 1941 * implementation that only depends on the dcache stuff instead of 1942 * using the inode layer 1943 * 1944 * Unfortunately, things are a little more complicated than indicated 1945 * above. For a cross-directory move, we want to make sure we can get 1946 * rid of the old inode after the operation. This means there must be 1947 * no pending writes (if it's a file), and the use count must be 1. 1948 * If these conditions are met, we can drop the dentries before doing 1949 * the rename. 1950 */ 1951 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry, 1952 struct inode *new_dir, struct dentry *new_dentry) 1953 { 1954 struct inode *old_inode = old_dentry->d_inode; 1955 struct inode *new_inode = new_dentry->d_inode; 1956 struct dentry *dentry = NULL, *rehash = NULL; 1957 int error = -EBUSY; 1958 1959 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n", 1960 old_dentry->d_parent->d_name.name, old_dentry->d_name.name, 1961 new_dentry->d_parent->d_name.name, new_dentry->d_name.name, 1962 new_dentry->d_count); 1963 1964 /* 1965 * For non-directories, check whether the target is busy and if so, 1966 * make a copy of the dentry and then do a silly-rename. If the 1967 * silly-rename succeeds, the copied dentry is hashed and becomes 1968 * the new target. 1969 */ 1970 if (new_inode && !S_ISDIR(new_inode->i_mode)) { 1971 /* 1972 * To prevent any new references to the target during the 1973 * rename, we unhash the dentry in advance. 1974 */ 1975 if (!d_unhashed(new_dentry)) { 1976 d_drop(new_dentry); 1977 rehash = new_dentry; 1978 } 1979 1980 if (new_dentry->d_count > 2) { 1981 int err; 1982 1983 /* copy the target dentry's name */ 1984 dentry = d_alloc(new_dentry->d_parent, 1985 &new_dentry->d_name); 1986 if (!dentry) 1987 goto out; 1988 1989 /* silly-rename the existing target ... */ 1990 err = nfs_sillyrename(new_dir, new_dentry); 1991 if (err) 1992 goto out; 1993 1994 new_dentry = dentry; 1995 rehash = NULL; 1996 new_inode = NULL; 1997 } 1998 } 1999 2000 nfs_inode_return_delegation(old_inode); 2001 if (new_inode != NULL) 2002 nfs_inode_return_delegation(new_inode); 2003 2004 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name, 2005 new_dir, &new_dentry->d_name); 2006 nfs_mark_for_revalidate(old_inode); 2007 out: 2008 if (rehash) 2009 d_rehash(rehash); 2010 if (!error) { 2011 if (new_inode != NULL) 2012 nfs_drop_nlink(new_inode); 2013 d_move(old_dentry, new_dentry); 2014 nfs_set_verifier(new_dentry, 2015 nfs_save_change_attribute(new_dir)); 2016 } else if (error == -ENOENT) 2017 nfs_dentry_handle_enoent(old_dentry); 2018 2019 /* new dentry created? */ 2020 if (dentry) 2021 dput(dentry); 2022 return error; 2023 } 2024 2025 static DEFINE_SPINLOCK(nfs_access_lru_lock); 2026 static LIST_HEAD(nfs_access_lru_list); 2027 static atomic_long_t nfs_access_nr_entries; 2028 2029 static void nfs_access_free_entry(struct nfs_access_entry *entry) 2030 { 2031 put_rpccred(entry->cred); 2032 kfree(entry); 2033 smp_mb__before_atomic_dec(); 2034 atomic_long_dec(&nfs_access_nr_entries); 2035 smp_mb__after_atomic_dec(); 2036 } 2037 2038 static void nfs_access_free_list(struct list_head *head) 2039 { 2040 struct nfs_access_entry *cache; 2041 2042 while (!list_empty(head)) { 2043 cache = list_entry(head->next, struct nfs_access_entry, lru); 2044 list_del(&cache->lru); 2045 nfs_access_free_entry(cache); 2046 } 2047 } 2048 2049 int nfs_access_cache_shrinker(struct shrinker *shrink, 2050 struct shrink_control *sc) 2051 { 2052 LIST_HEAD(head); 2053 struct nfs_inode *nfsi, *next; 2054 struct nfs_access_entry *cache; 2055 int nr_to_scan = sc->nr_to_scan; 2056 gfp_t gfp_mask = sc->gfp_mask; 2057 2058 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL) 2059 return (nr_to_scan == 0) ? 0 : -1; 2060 2061 spin_lock(&nfs_access_lru_lock); 2062 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) { 2063 struct inode *inode; 2064 2065 if (nr_to_scan-- == 0) 2066 break; 2067 inode = &nfsi->vfs_inode; 2068 spin_lock(&inode->i_lock); 2069 if (list_empty(&nfsi->access_cache_entry_lru)) 2070 goto remove_lru_entry; 2071 cache = list_entry(nfsi->access_cache_entry_lru.next, 2072 struct nfs_access_entry, lru); 2073 list_move(&cache->lru, &head); 2074 rb_erase(&cache->rb_node, &nfsi->access_cache); 2075 if (!list_empty(&nfsi->access_cache_entry_lru)) 2076 list_move_tail(&nfsi->access_cache_inode_lru, 2077 &nfs_access_lru_list); 2078 else { 2079 remove_lru_entry: 2080 list_del_init(&nfsi->access_cache_inode_lru); 2081 smp_mb__before_clear_bit(); 2082 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags); 2083 smp_mb__after_clear_bit(); 2084 } 2085 spin_unlock(&inode->i_lock); 2086 } 2087 spin_unlock(&nfs_access_lru_lock); 2088 nfs_access_free_list(&head); 2089 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure; 2090 } 2091 2092 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head) 2093 { 2094 struct rb_root *root_node = &nfsi->access_cache; 2095 struct rb_node *n; 2096 struct nfs_access_entry *entry; 2097 2098 /* Unhook entries from the cache */ 2099 while ((n = rb_first(root_node)) != NULL) { 2100 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2101 rb_erase(n, root_node); 2102 list_move(&entry->lru, head); 2103 } 2104 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS; 2105 } 2106 2107 void nfs_access_zap_cache(struct inode *inode) 2108 { 2109 LIST_HEAD(head); 2110 2111 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0) 2112 return; 2113 /* Remove from global LRU init */ 2114 spin_lock(&nfs_access_lru_lock); 2115 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2116 list_del_init(&NFS_I(inode)->access_cache_inode_lru); 2117 2118 spin_lock(&inode->i_lock); 2119 __nfs_access_zap_cache(NFS_I(inode), &head); 2120 spin_unlock(&inode->i_lock); 2121 spin_unlock(&nfs_access_lru_lock); 2122 nfs_access_free_list(&head); 2123 } 2124 2125 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred) 2126 { 2127 struct rb_node *n = NFS_I(inode)->access_cache.rb_node; 2128 struct nfs_access_entry *entry; 2129 2130 while (n != NULL) { 2131 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2132 2133 if (cred < entry->cred) 2134 n = n->rb_left; 2135 else if (cred > entry->cred) 2136 n = n->rb_right; 2137 else 2138 return entry; 2139 } 2140 return NULL; 2141 } 2142 2143 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res) 2144 { 2145 struct nfs_inode *nfsi = NFS_I(inode); 2146 struct nfs_access_entry *cache; 2147 int err = -ENOENT; 2148 2149 spin_lock(&inode->i_lock); 2150 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2151 goto out_zap; 2152 cache = nfs_access_search_rbtree(inode, cred); 2153 if (cache == NULL) 2154 goto out; 2155 if (!nfs_have_delegated_attributes(inode) && 2156 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo)) 2157 goto out_stale; 2158 res->jiffies = cache->jiffies; 2159 res->cred = cache->cred; 2160 res->mask = cache->mask; 2161 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru); 2162 err = 0; 2163 out: 2164 spin_unlock(&inode->i_lock); 2165 return err; 2166 out_stale: 2167 rb_erase(&cache->rb_node, &nfsi->access_cache); 2168 list_del(&cache->lru); 2169 spin_unlock(&inode->i_lock); 2170 nfs_access_free_entry(cache); 2171 return -ENOENT; 2172 out_zap: 2173 spin_unlock(&inode->i_lock); 2174 nfs_access_zap_cache(inode); 2175 return -ENOENT; 2176 } 2177 2178 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set) 2179 { 2180 struct nfs_inode *nfsi = NFS_I(inode); 2181 struct rb_root *root_node = &nfsi->access_cache; 2182 struct rb_node **p = &root_node->rb_node; 2183 struct rb_node *parent = NULL; 2184 struct nfs_access_entry *entry; 2185 2186 spin_lock(&inode->i_lock); 2187 while (*p != NULL) { 2188 parent = *p; 2189 entry = rb_entry(parent, struct nfs_access_entry, rb_node); 2190 2191 if (set->cred < entry->cred) 2192 p = &parent->rb_left; 2193 else if (set->cred > entry->cred) 2194 p = &parent->rb_right; 2195 else 2196 goto found; 2197 } 2198 rb_link_node(&set->rb_node, parent, p); 2199 rb_insert_color(&set->rb_node, root_node); 2200 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2201 spin_unlock(&inode->i_lock); 2202 return; 2203 found: 2204 rb_replace_node(parent, &set->rb_node, root_node); 2205 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2206 list_del(&entry->lru); 2207 spin_unlock(&inode->i_lock); 2208 nfs_access_free_entry(entry); 2209 } 2210 2211 static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set) 2212 { 2213 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL); 2214 if (cache == NULL) 2215 return; 2216 RB_CLEAR_NODE(&cache->rb_node); 2217 cache->jiffies = set->jiffies; 2218 cache->cred = get_rpccred(set->cred); 2219 cache->mask = set->mask; 2220 2221 nfs_access_add_rbtree(inode, cache); 2222 2223 /* Update accounting */ 2224 smp_mb__before_atomic_inc(); 2225 atomic_long_inc(&nfs_access_nr_entries); 2226 smp_mb__after_atomic_inc(); 2227 2228 /* Add inode to global LRU list */ 2229 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) { 2230 spin_lock(&nfs_access_lru_lock); 2231 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2232 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, 2233 &nfs_access_lru_list); 2234 spin_unlock(&nfs_access_lru_lock); 2235 } 2236 } 2237 2238 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask) 2239 { 2240 struct nfs_access_entry cache; 2241 int status; 2242 2243 status = nfs_access_get_cached(inode, cred, &cache); 2244 if (status == 0) 2245 goto out; 2246 2247 /* Be clever: ask server to check for all possible rights */ 2248 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ; 2249 cache.cred = cred; 2250 cache.jiffies = jiffies; 2251 status = NFS_PROTO(inode)->access(inode, &cache); 2252 if (status != 0) { 2253 if (status == -ESTALE) { 2254 nfs_zap_caches(inode); 2255 if (!S_ISDIR(inode->i_mode)) 2256 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags); 2257 } 2258 return status; 2259 } 2260 nfs_access_add_cache(inode, &cache); 2261 out: 2262 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 2263 return 0; 2264 return -EACCES; 2265 } 2266 2267 static int nfs_open_permission_mask(int openflags) 2268 { 2269 int mask = 0; 2270 2271 if ((openflags & O_ACCMODE) != O_WRONLY) 2272 mask |= MAY_READ; 2273 if ((openflags & O_ACCMODE) != O_RDONLY) 2274 mask |= MAY_WRITE; 2275 if (openflags & __FMODE_EXEC) 2276 mask |= MAY_EXEC; 2277 return mask; 2278 } 2279 2280 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags) 2281 { 2282 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags)); 2283 } 2284 2285 int nfs_permission(struct inode *inode, int mask) 2286 { 2287 struct rpc_cred *cred; 2288 int res = 0; 2289 2290 if (mask & MAY_NOT_BLOCK) 2291 return -ECHILD; 2292 2293 nfs_inc_stats(inode, NFSIOS_VFSACCESS); 2294 2295 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 2296 goto out; 2297 /* Is this sys_access() ? */ 2298 if (mask & (MAY_ACCESS | MAY_CHDIR)) 2299 goto force_lookup; 2300 2301 switch (inode->i_mode & S_IFMT) { 2302 case S_IFLNK: 2303 goto out; 2304 case S_IFREG: 2305 /* NFSv4 has atomic_open... */ 2306 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN) 2307 && (mask & MAY_OPEN) 2308 && !(mask & MAY_EXEC)) 2309 goto out; 2310 break; 2311 case S_IFDIR: 2312 /* 2313 * Optimize away all write operations, since the server 2314 * will check permissions when we perform the op. 2315 */ 2316 if ((mask & MAY_WRITE) && !(mask & MAY_READ)) 2317 goto out; 2318 } 2319 2320 force_lookup: 2321 if (!NFS_PROTO(inode)->access) 2322 goto out_notsup; 2323 2324 cred = rpc_lookup_cred(); 2325 if (!IS_ERR(cred)) { 2326 res = nfs_do_access(inode, cred, mask); 2327 put_rpccred(cred); 2328 } else 2329 res = PTR_ERR(cred); 2330 out: 2331 if (!res && (mask & MAY_EXEC) && !execute_ok(inode)) 2332 res = -EACCES; 2333 2334 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n", 2335 inode->i_sb->s_id, inode->i_ino, mask, res); 2336 return res; 2337 out_notsup: 2338 res = nfs_revalidate_inode(NFS_SERVER(inode), inode); 2339 if (res == 0) 2340 res = generic_permission(inode, mask); 2341 goto out; 2342 } 2343 2344 /* 2345 * Local variables: 2346 * version-control: t 2347 * kept-new-versions: 5 2348 * End: 2349 */ 2350