xref: /openbmc/linux/fs/nfs/dir.c (revision 803f6914)
1 /*
2  *  linux/fs/nfs/dir.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  nfs directory handling functions
7  *
8  * 10 Apr 1996	Added silly rename for unlink	--okir
9  * 28 Sep 1996	Improved directory cache --okir
10  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
11  *              Re-implemented silly rename for unlink, newly implemented
12  *              silly rename for nfs_rename() following the suggestions
13  *              of Olaf Kirch (okir) found in this file.
14  *              Following Linus comments on my original hack, this version
15  *              depends only on the dcache stuff and doesn't touch the inode
16  *              layer (iput() and friends).
17  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
18  */
19 
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/pagevec.h>
33 #include <linux/namei.h>
34 #include <linux/mount.h>
35 #include <linux/sched.h>
36 #include <linux/kmemleak.h>
37 #include <linux/xattr.h>
38 
39 #include "delegation.h"
40 #include "iostat.h"
41 #include "internal.h"
42 #include "fscache.h"
43 
44 /* #define NFS_DEBUG_VERBOSE 1 */
45 
46 static int nfs_opendir(struct inode *, struct file *);
47 static int nfs_closedir(struct inode *, struct file *);
48 static int nfs_readdir(struct file *, void *, filldir_t);
49 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
50 static int nfs_create(struct inode *, struct dentry *, umode_t, struct nameidata *);
51 static int nfs_mkdir(struct inode *, struct dentry *, umode_t);
52 static int nfs_rmdir(struct inode *, struct dentry *);
53 static int nfs_unlink(struct inode *, struct dentry *);
54 static int nfs_symlink(struct inode *, struct dentry *, const char *);
55 static int nfs_link(struct dentry *, struct inode *, struct dentry *);
56 static int nfs_mknod(struct inode *, struct dentry *, umode_t, dev_t);
57 static int nfs_rename(struct inode *, struct dentry *,
58 		      struct inode *, struct dentry *);
59 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
60 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
61 static void nfs_readdir_clear_array(struct page*);
62 
63 const struct file_operations nfs_dir_operations = {
64 	.llseek		= nfs_llseek_dir,
65 	.read		= generic_read_dir,
66 	.readdir	= nfs_readdir,
67 	.open		= nfs_opendir,
68 	.release	= nfs_closedir,
69 	.fsync		= nfs_fsync_dir,
70 };
71 
72 const struct inode_operations nfs_dir_inode_operations = {
73 	.create		= nfs_create,
74 	.lookup		= nfs_lookup,
75 	.link		= nfs_link,
76 	.unlink		= nfs_unlink,
77 	.symlink	= nfs_symlink,
78 	.mkdir		= nfs_mkdir,
79 	.rmdir		= nfs_rmdir,
80 	.mknod		= nfs_mknod,
81 	.rename		= nfs_rename,
82 	.permission	= nfs_permission,
83 	.getattr	= nfs_getattr,
84 	.setattr	= nfs_setattr,
85 };
86 
87 const struct address_space_operations nfs_dir_aops = {
88 	.freepage = nfs_readdir_clear_array,
89 };
90 
91 #ifdef CONFIG_NFS_V3
92 const struct inode_operations nfs3_dir_inode_operations = {
93 	.create		= nfs_create,
94 	.lookup		= nfs_lookup,
95 	.link		= nfs_link,
96 	.unlink		= nfs_unlink,
97 	.symlink	= nfs_symlink,
98 	.mkdir		= nfs_mkdir,
99 	.rmdir		= nfs_rmdir,
100 	.mknod		= nfs_mknod,
101 	.rename		= nfs_rename,
102 	.permission	= nfs_permission,
103 	.getattr	= nfs_getattr,
104 	.setattr	= nfs_setattr,
105 	.listxattr	= nfs3_listxattr,
106 	.getxattr	= nfs3_getxattr,
107 	.setxattr	= nfs3_setxattr,
108 	.removexattr	= nfs3_removexattr,
109 };
110 #endif  /* CONFIG_NFS_V3 */
111 
112 #ifdef CONFIG_NFS_V4
113 
114 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
115 static int nfs_open_create(struct inode *dir, struct dentry *dentry, umode_t mode, struct nameidata *nd);
116 const struct inode_operations nfs4_dir_inode_operations = {
117 	.create		= nfs_open_create,
118 	.lookup		= nfs_atomic_lookup,
119 	.link		= nfs_link,
120 	.unlink		= nfs_unlink,
121 	.symlink	= nfs_symlink,
122 	.mkdir		= nfs_mkdir,
123 	.rmdir		= nfs_rmdir,
124 	.mknod		= nfs_mknod,
125 	.rename		= nfs_rename,
126 	.permission	= nfs_permission,
127 	.getattr	= nfs_getattr,
128 	.setattr	= nfs_setattr,
129 	.getxattr	= generic_getxattr,
130 	.setxattr	= generic_setxattr,
131 	.listxattr	= generic_listxattr,
132 	.removexattr	= generic_removexattr,
133 };
134 
135 #endif /* CONFIG_NFS_V4 */
136 
137 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
138 {
139 	struct nfs_open_dir_context *ctx;
140 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
141 	if (ctx != NULL) {
142 		ctx->duped = 0;
143 		ctx->attr_gencount = NFS_I(dir)->attr_gencount;
144 		ctx->dir_cookie = 0;
145 		ctx->dup_cookie = 0;
146 		ctx->cred = get_rpccred(cred);
147 		return ctx;
148 	}
149 	return  ERR_PTR(-ENOMEM);
150 }
151 
152 static void put_nfs_open_dir_context(struct nfs_open_dir_context *ctx)
153 {
154 	put_rpccred(ctx->cred);
155 	kfree(ctx);
156 }
157 
158 /*
159  * Open file
160  */
161 static int
162 nfs_opendir(struct inode *inode, struct file *filp)
163 {
164 	int res = 0;
165 	struct nfs_open_dir_context *ctx;
166 	struct rpc_cred *cred;
167 
168 	dfprintk(FILE, "NFS: open dir(%s/%s)\n",
169 			filp->f_path.dentry->d_parent->d_name.name,
170 			filp->f_path.dentry->d_name.name);
171 
172 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
173 
174 	cred = rpc_lookup_cred();
175 	if (IS_ERR(cred))
176 		return PTR_ERR(cred);
177 	ctx = alloc_nfs_open_dir_context(inode, cred);
178 	if (IS_ERR(ctx)) {
179 		res = PTR_ERR(ctx);
180 		goto out;
181 	}
182 	filp->private_data = ctx;
183 	if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
184 		/* This is a mountpoint, so d_revalidate will never
185 		 * have been called, so we need to refresh the
186 		 * inode (for close-open consistency) ourselves.
187 		 */
188 		__nfs_revalidate_inode(NFS_SERVER(inode), inode);
189 	}
190 out:
191 	put_rpccred(cred);
192 	return res;
193 }
194 
195 static int
196 nfs_closedir(struct inode *inode, struct file *filp)
197 {
198 	put_nfs_open_dir_context(filp->private_data);
199 	return 0;
200 }
201 
202 struct nfs_cache_array_entry {
203 	u64 cookie;
204 	u64 ino;
205 	struct qstr string;
206 	unsigned char d_type;
207 };
208 
209 struct nfs_cache_array {
210 	unsigned int size;
211 	int eof_index;
212 	u64 last_cookie;
213 	struct nfs_cache_array_entry array[0];
214 };
215 
216 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
217 typedef struct {
218 	struct file	*file;
219 	struct page	*page;
220 	unsigned long	page_index;
221 	u64		*dir_cookie;
222 	u64		last_cookie;
223 	loff_t		current_index;
224 	decode_dirent_t	decode;
225 
226 	unsigned long	timestamp;
227 	unsigned long	gencount;
228 	unsigned int	cache_entry_index;
229 	unsigned int	plus:1;
230 	unsigned int	eof:1;
231 } nfs_readdir_descriptor_t;
232 
233 /*
234  * The caller is responsible for calling nfs_readdir_release_array(page)
235  */
236 static
237 struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
238 {
239 	void *ptr;
240 	if (page == NULL)
241 		return ERR_PTR(-EIO);
242 	ptr = kmap(page);
243 	if (ptr == NULL)
244 		return ERR_PTR(-ENOMEM);
245 	return ptr;
246 }
247 
248 static
249 void nfs_readdir_release_array(struct page *page)
250 {
251 	kunmap(page);
252 }
253 
254 /*
255  * we are freeing strings created by nfs_add_to_readdir_array()
256  */
257 static
258 void nfs_readdir_clear_array(struct page *page)
259 {
260 	struct nfs_cache_array *array;
261 	int i;
262 
263 	array = kmap_atomic(page);
264 	for (i = 0; i < array->size; i++)
265 		kfree(array->array[i].string.name);
266 	kunmap_atomic(array);
267 }
268 
269 /*
270  * the caller is responsible for freeing qstr.name
271  * when called by nfs_readdir_add_to_array, the strings will be freed in
272  * nfs_clear_readdir_array()
273  */
274 static
275 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
276 {
277 	string->len = len;
278 	string->name = kmemdup(name, len, GFP_KERNEL);
279 	if (string->name == NULL)
280 		return -ENOMEM;
281 	/*
282 	 * Avoid a kmemleak false positive. The pointer to the name is stored
283 	 * in a page cache page which kmemleak does not scan.
284 	 */
285 	kmemleak_not_leak(string->name);
286 	string->hash = full_name_hash(name, len);
287 	return 0;
288 }
289 
290 static
291 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
292 {
293 	struct nfs_cache_array *array = nfs_readdir_get_array(page);
294 	struct nfs_cache_array_entry *cache_entry;
295 	int ret;
296 
297 	if (IS_ERR(array))
298 		return PTR_ERR(array);
299 
300 	cache_entry = &array->array[array->size];
301 
302 	/* Check that this entry lies within the page bounds */
303 	ret = -ENOSPC;
304 	if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
305 		goto out;
306 
307 	cache_entry->cookie = entry->prev_cookie;
308 	cache_entry->ino = entry->ino;
309 	cache_entry->d_type = entry->d_type;
310 	ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
311 	if (ret)
312 		goto out;
313 	array->last_cookie = entry->cookie;
314 	array->size++;
315 	if (entry->eof != 0)
316 		array->eof_index = array->size;
317 out:
318 	nfs_readdir_release_array(page);
319 	return ret;
320 }
321 
322 static
323 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
324 {
325 	loff_t diff = desc->file->f_pos - desc->current_index;
326 	unsigned int index;
327 
328 	if (diff < 0)
329 		goto out_eof;
330 	if (diff >= array->size) {
331 		if (array->eof_index >= 0)
332 			goto out_eof;
333 		return -EAGAIN;
334 	}
335 
336 	index = (unsigned int)diff;
337 	*desc->dir_cookie = array->array[index].cookie;
338 	desc->cache_entry_index = index;
339 	return 0;
340 out_eof:
341 	desc->eof = 1;
342 	return -EBADCOOKIE;
343 }
344 
345 static
346 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
347 {
348 	int i;
349 	loff_t new_pos;
350 	int status = -EAGAIN;
351 
352 	for (i = 0; i < array->size; i++) {
353 		if (array->array[i].cookie == *desc->dir_cookie) {
354 			struct nfs_inode *nfsi = NFS_I(desc->file->f_path.dentry->d_inode);
355 			struct nfs_open_dir_context *ctx = desc->file->private_data;
356 
357 			new_pos = desc->current_index + i;
358 			if (ctx->attr_gencount != nfsi->attr_gencount
359 			    || (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))) {
360 				ctx->duped = 0;
361 				ctx->attr_gencount = nfsi->attr_gencount;
362 			} else if (new_pos < desc->file->f_pos) {
363 				if (ctx->duped > 0
364 				    && ctx->dup_cookie == *desc->dir_cookie) {
365 					if (printk_ratelimit()) {
366 						pr_notice("NFS: directory %s/%s contains a readdir loop."
367 								"Please contact your server vendor.  "
368 								"The file: %s has duplicate cookie %llu\n",
369 								desc->file->f_dentry->d_parent->d_name.name,
370 								desc->file->f_dentry->d_name.name,
371 								array->array[i].string.name,
372 								*desc->dir_cookie);
373 					}
374 					status = -ELOOP;
375 					goto out;
376 				}
377 				ctx->dup_cookie = *desc->dir_cookie;
378 				ctx->duped = -1;
379 			}
380 			desc->file->f_pos = new_pos;
381 			desc->cache_entry_index = i;
382 			return 0;
383 		}
384 	}
385 	if (array->eof_index >= 0) {
386 		status = -EBADCOOKIE;
387 		if (*desc->dir_cookie == array->last_cookie)
388 			desc->eof = 1;
389 	}
390 out:
391 	return status;
392 }
393 
394 static
395 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
396 {
397 	struct nfs_cache_array *array;
398 	int status;
399 
400 	array = nfs_readdir_get_array(desc->page);
401 	if (IS_ERR(array)) {
402 		status = PTR_ERR(array);
403 		goto out;
404 	}
405 
406 	if (*desc->dir_cookie == 0)
407 		status = nfs_readdir_search_for_pos(array, desc);
408 	else
409 		status = nfs_readdir_search_for_cookie(array, desc);
410 
411 	if (status == -EAGAIN) {
412 		desc->last_cookie = array->last_cookie;
413 		desc->current_index += array->size;
414 		desc->page_index++;
415 	}
416 	nfs_readdir_release_array(desc->page);
417 out:
418 	return status;
419 }
420 
421 /* Fill a page with xdr information before transferring to the cache page */
422 static
423 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
424 			struct nfs_entry *entry, struct file *file, struct inode *inode)
425 {
426 	struct nfs_open_dir_context *ctx = file->private_data;
427 	struct rpc_cred	*cred = ctx->cred;
428 	unsigned long	timestamp, gencount;
429 	int		error;
430 
431  again:
432 	timestamp = jiffies;
433 	gencount = nfs_inc_attr_generation_counter();
434 	error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages,
435 					  NFS_SERVER(inode)->dtsize, desc->plus);
436 	if (error < 0) {
437 		/* We requested READDIRPLUS, but the server doesn't grok it */
438 		if (error == -ENOTSUPP && desc->plus) {
439 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
440 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
441 			desc->plus = 0;
442 			goto again;
443 		}
444 		goto error;
445 	}
446 	desc->timestamp = timestamp;
447 	desc->gencount = gencount;
448 error:
449 	return error;
450 }
451 
452 static int xdr_decode(nfs_readdir_descriptor_t *desc,
453 		      struct nfs_entry *entry, struct xdr_stream *xdr)
454 {
455 	int error;
456 
457 	error = desc->decode(xdr, entry, desc->plus);
458 	if (error)
459 		return error;
460 	entry->fattr->time_start = desc->timestamp;
461 	entry->fattr->gencount = desc->gencount;
462 	return 0;
463 }
464 
465 static
466 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
467 {
468 	if (dentry->d_inode == NULL)
469 		goto different;
470 	if (nfs_compare_fh(entry->fh, NFS_FH(dentry->d_inode)) != 0)
471 		goto different;
472 	return 1;
473 different:
474 	return 0;
475 }
476 
477 static
478 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
479 {
480 	struct qstr filename = {
481 		.len = entry->len,
482 		.name = entry->name,
483 	};
484 	struct dentry *dentry;
485 	struct dentry *alias;
486 	struct inode *dir = parent->d_inode;
487 	struct inode *inode;
488 
489 	if (filename.name[0] == '.') {
490 		if (filename.len == 1)
491 			return;
492 		if (filename.len == 2 && filename.name[1] == '.')
493 			return;
494 	}
495 	filename.hash = full_name_hash(filename.name, filename.len);
496 
497 	dentry = d_lookup(parent, &filename);
498 	if (dentry != NULL) {
499 		if (nfs_same_file(dentry, entry)) {
500 			nfs_refresh_inode(dentry->d_inode, entry->fattr);
501 			goto out;
502 		} else {
503 			d_drop(dentry);
504 			dput(dentry);
505 		}
506 	}
507 
508 	dentry = d_alloc(parent, &filename);
509 	if (dentry == NULL)
510 		return;
511 
512 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
513 	if (IS_ERR(inode))
514 		goto out;
515 
516 	alias = d_materialise_unique(dentry, inode);
517 	if (IS_ERR(alias))
518 		goto out;
519 	else if (alias) {
520 		nfs_set_verifier(alias, nfs_save_change_attribute(dir));
521 		dput(alias);
522 	} else
523 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
524 
525 out:
526 	dput(dentry);
527 }
528 
529 /* Perform conversion from xdr to cache array */
530 static
531 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
532 				struct page **xdr_pages, struct page *page, unsigned int buflen)
533 {
534 	struct xdr_stream stream;
535 	struct xdr_buf buf;
536 	struct page *scratch;
537 	struct nfs_cache_array *array;
538 	unsigned int count = 0;
539 	int status;
540 
541 	scratch = alloc_page(GFP_KERNEL);
542 	if (scratch == NULL)
543 		return -ENOMEM;
544 
545 	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
546 	xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
547 
548 	do {
549 		status = xdr_decode(desc, entry, &stream);
550 		if (status != 0) {
551 			if (status == -EAGAIN)
552 				status = 0;
553 			break;
554 		}
555 
556 		count++;
557 
558 		if (desc->plus != 0)
559 			nfs_prime_dcache(desc->file->f_path.dentry, entry);
560 
561 		status = nfs_readdir_add_to_array(entry, page);
562 		if (status != 0)
563 			break;
564 	} while (!entry->eof);
565 
566 	if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
567 		array = nfs_readdir_get_array(page);
568 		if (!IS_ERR(array)) {
569 			array->eof_index = array->size;
570 			status = 0;
571 			nfs_readdir_release_array(page);
572 		} else
573 			status = PTR_ERR(array);
574 	}
575 
576 	put_page(scratch);
577 	return status;
578 }
579 
580 static
581 void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages)
582 {
583 	unsigned int i;
584 	for (i = 0; i < npages; i++)
585 		put_page(pages[i]);
586 }
587 
588 static
589 void nfs_readdir_free_large_page(void *ptr, struct page **pages,
590 		unsigned int npages)
591 {
592 	nfs_readdir_free_pagearray(pages, npages);
593 }
594 
595 /*
596  * nfs_readdir_large_page will allocate pages that must be freed with a call
597  * to nfs_readdir_free_large_page
598  */
599 static
600 int nfs_readdir_large_page(struct page **pages, unsigned int npages)
601 {
602 	unsigned int i;
603 
604 	for (i = 0; i < npages; i++) {
605 		struct page *page = alloc_page(GFP_KERNEL);
606 		if (page == NULL)
607 			goto out_freepages;
608 		pages[i] = page;
609 	}
610 	return 0;
611 
612 out_freepages:
613 	nfs_readdir_free_pagearray(pages, i);
614 	return -ENOMEM;
615 }
616 
617 static
618 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
619 {
620 	struct page *pages[NFS_MAX_READDIR_PAGES];
621 	void *pages_ptr = NULL;
622 	struct nfs_entry entry;
623 	struct file	*file = desc->file;
624 	struct nfs_cache_array *array;
625 	int status = -ENOMEM;
626 	unsigned int array_size = ARRAY_SIZE(pages);
627 
628 	entry.prev_cookie = 0;
629 	entry.cookie = desc->last_cookie;
630 	entry.eof = 0;
631 	entry.fh = nfs_alloc_fhandle();
632 	entry.fattr = nfs_alloc_fattr();
633 	entry.server = NFS_SERVER(inode);
634 	if (entry.fh == NULL || entry.fattr == NULL)
635 		goto out;
636 
637 	array = nfs_readdir_get_array(page);
638 	if (IS_ERR(array)) {
639 		status = PTR_ERR(array);
640 		goto out;
641 	}
642 	memset(array, 0, sizeof(struct nfs_cache_array));
643 	array->eof_index = -1;
644 
645 	status = nfs_readdir_large_page(pages, array_size);
646 	if (status < 0)
647 		goto out_release_array;
648 	do {
649 		unsigned int pglen;
650 		status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
651 
652 		if (status < 0)
653 			break;
654 		pglen = status;
655 		status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
656 		if (status < 0) {
657 			if (status == -ENOSPC)
658 				status = 0;
659 			break;
660 		}
661 	} while (array->eof_index < 0);
662 
663 	nfs_readdir_free_large_page(pages_ptr, pages, array_size);
664 out_release_array:
665 	nfs_readdir_release_array(page);
666 out:
667 	nfs_free_fattr(entry.fattr);
668 	nfs_free_fhandle(entry.fh);
669 	return status;
670 }
671 
672 /*
673  * Now we cache directories properly, by converting xdr information
674  * to an array that can be used for lookups later.  This results in
675  * fewer cache pages, since we can store more information on each page.
676  * We only need to convert from xdr once so future lookups are much simpler
677  */
678 static
679 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
680 {
681 	struct inode	*inode = desc->file->f_path.dentry->d_inode;
682 	int ret;
683 
684 	ret = nfs_readdir_xdr_to_array(desc, page, inode);
685 	if (ret < 0)
686 		goto error;
687 	SetPageUptodate(page);
688 
689 	if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
690 		/* Should never happen */
691 		nfs_zap_mapping(inode, inode->i_mapping);
692 	}
693 	unlock_page(page);
694 	return 0;
695  error:
696 	unlock_page(page);
697 	return ret;
698 }
699 
700 static
701 void cache_page_release(nfs_readdir_descriptor_t *desc)
702 {
703 	if (!desc->page->mapping)
704 		nfs_readdir_clear_array(desc->page);
705 	page_cache_release(desc->page);
706 	desc->page = NULL;
707 }
708 
709 static
710 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
711 {
712 	return read_cache_page(desc->file->f_path.dentry->d_inode->i_mapping,
713 			desc->page_index, (filler_t *)nfs_readdir_filler, desc);
714 }
715 
716 /*
717  * Returns 0 if desc->dir_cookie was found on page desc->page_index
718  */
719 static
720 int find_cache_page(nfs_readdir_descriptor_t *desc)
721 {
722 	int res;
723 
724 	desc->page = get_cache_page(desc);
725 	if (IS_ERR(desc->page))
726 		return PTR_ERR(desc->page);
727 
728 	res = nfs_readdir_search_array(desc);
729 	if (res != 0)
730 		cache_page_release(desc);
731 	return res;
732 }
733 
734 /* Search for desc->dir_cookie from the beginning of the page cache */
735 static inline
736 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
737 {
738 	int res;
739 
740 	if (desc->page_index == 0) {
741 		desc->current_index = 0;
742 		desc->last_cookie = 0;
743 	}
744 	do {
745 		res = find_cache_page(desc);
746 	} while (res == -EAGAIN);
747 	return res;
748 }
749 
750 /*
751  * Once we've found the start of the dirent within a page: fill 'er up...
752  */
753 static
754 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
755 		   filldir_t filldir)
756 {
757 	struct file	*file = desc->file;
758 	int i = 0;
759 	int res = 0;
760 	struct nfs_cache_array *array = NULL;
761 	struct nfs_open_dir_context *ctx = file->private_data;
762 
763 	array = nfs_readdir_get_array(desc->page);
764 	if (IS_ERR(array)) {
765 		res = PTR_ERR(array);
766 		goto out;
767 	}
768 
769 	for (i = desc->cache_entry_index; i < array->size; i++) {
770 		struct nfs_cache_array_entry *ent;
771 
772 		ent = &array->array[i];
773 		if (filldir(dirent, ent->string.name, ent->string.len,
774 		    file->f_pos, nfs_compat_user_ino64(ent->ino),
775 		    ent->d_type) < 0) {
776 			desc->eof = 1;
777 			break;
778 		}
779 		file->f_pos++;
780 		if (i < (array->size-1))
781 			*desc->dir_cookie = array->array[i+1].cookie;
782 		else
783 			*desc->dir_cookie = array->last_cookie;
784 		if (ctx->duped != 0)
785 			ctx->duped = 1;
786 	}
787 	if (array->eof_index >= 0)
788 		desc->eof = 1;
789 
790 	nfs_readdir_release_array(desc->page);
791 out:
792 	cache_page_release(desc);
793 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
794 			(unsigned long long)*desc->dir_cookie, res);
795 	return res;
796 }
797 
798 /*
799  * If we cannot find a cookie in our cache, we suspect that this is
800  * because it points to a deleted file, so we ask the server to return
801  * whatever it thinks is the next entry. We then feed this to filldir.
802  * If all goes well, we should then be able to find our way round the
803  * cache on the next call to readdir_search_pagecache();
804  *
805  * NOTE: we cannot add the anonymous page to the pagecache because
806  *	 the data it contains might not be page aligned. Besides,
807  *	 we should already have a complete representation of the
808  *	 directory in the page cache by the time we get here.
809  */
810 static inline
811 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
812 		     filldir_t filldir)
813 {
814 	struct page	*page = NULL;
815 	int		status;
816 	struct inode *inode = desc->file->f_path.dentry->d_inode;
817 	struct nfs_open_dir_context *ctx = desc->file->private_data;
818 
819 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
820 			(unsigned long long)*desc->dir_cookie);
821 
822 	page = alloc_page(GFP_HIGHUSER);
823 	if (!page) {
824 		status = -ENOMEM;
825 		goto out;
826 	}
827 
828 	desc->page_index = 0;
829 	desc->last_cookie = *desc->dir_cookie;
830 	desc->page = page;
831 	ctx->duped = 0;
832 
833 	status = nfs_readdir_xdr_to_array(desc, page, inode);
834 	if (status < 0)
835 		goto out_release;
836 
837 	status = nfs_do_filldir(desc, dirent, filldir);
838 
839  out:
840 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
841 			__func__, status);
842 	return status;
843  out_release:
844 	cache_page_release(desc);
845 	goto out;
846 }
847 
848 /* The file offset position represents the dirent entry number.  A
849    last cookie cache takes care of the common case of reading the
850    whole directory.
851  */
852 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
853 {
854 	struct dentry	*dentry = filp->f_path.dentry;
855 	struct inode	*inode = dentry->d_inode;
856 	nfs_readdir_descriptor_t my_desc,
857 			*desc = &my_desc;
858 	struct nfs_open_dir_context *dir_ctx = filp->private_data;
859 	int res;
860 
861 	dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n",
862 			dentry->d_parent->d_name.name, dentry->d_name.name,
863 			(long long)filp->f_pos);
864 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
865 
866 	/*
867 	 * filp->f_pos points to the dirent entry number.
868 	 * *desc->dir_cookie has the cookie for the next entry. We have
869 	 * to either find the entry with the appropriate number or
870 	 * revalidate the cookie.
871 	 */
872 	memset(desc, 0, sizeof(*desc));
873 
874 	desc->file = filp;
875 	desc->dir_cookie = &dir_ctx->dir_cookie;
876 	desc->decode = NFS_PROTO(inode)->decode_dirent;
877 	desc->plus = NFS_USE_READDIRPLUS(inode);
878 
879 	nfs_block_sillyrename(dentry);
880 	res = nfs_revalidate_mapping(inode, filp->f_mapping);
881 	if (res < 0)
882 		goto out;
883 
884 	do {
885 		res = readdir_search_pagecache(desc);
886 
887 		if (res == -EBADCOOKIE) {
888 			res = 0;
889 			/* This means either end of directory */
890 			if (*desc->dir_cookie && desc->eof == 0) {
891 				/* Or that the server has 'lost' a cookie */
892 				res = uncached_readdir(desc, dirent, filldir);
893 				if (res == 0)
894 					continue;
895 			}
896 			break;
897 		}
898 		if (res == -ETOOSMALL && desc->plus) {
899 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
900 			nfs_zap_caches(inode);
901 			desc->page_index = 0;
902 			desc->plus = 0;
903 			desc->eof = 0;
904 			continue;
905 		}
906 		if (res < 0)
907 			break;
908 
909 		res = nfs_do_filldir(desc, dirent, filldir);
910 		if (res < 0)
911 			break;
912 	} while (!desc->eof);
913 out:
914 	nfs_unblock_sillyrename(dentry);
915 	if (res > 0)
916 		res = 0;
917 	dfprintk(FILE, "NFS: readdir(%s/%s) returns %d\n",
918 			dentry->d_parent->d_name.name, dentry->d_name.name,
919 			res);
920 	return res;
921 }
922 
923 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
924 {
925 	struct dentry *dentry = filp->f_path.dentry;
926 	struct inode *inode = dentry->d_inode;
927 	struct nfs_open_dir_context *dir_ctx = filp->private_data;
928 
929 	dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n",
930 			dentry->d_parent->d_name.name,
931 			dentry->d_name.name,
932 			offset, origin);
933 
934 	mutex_lock(&inode->i_mutex);
935 	switch (origin) {
936 		case 1:
937 			offset += filp->f_pos;
938 		case 0:
939 			if (offset >= 0)
940 				break;
941 		default:
942 			offset = -EINVAL;
943 			goto out;
944 	}
945 	if (offset != filp->f_pos) {
946 		filp->f_pos = offset;
947 		dir_ctx->dir_cookie = 0;
948 		dir_ctx->duped = 0;
949 	}
950 out:
951 	mutex_unlock(&inode->i_mutex);
952 	return offset;
953 }
954 
955 /*
956  * All directory operations under NFS are synchronous, so fsync()
957  * is a dummy operation.
958  */
959 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
960 			 int datasync)
961 {
962 	struct dentry *dentry = filp->f_path.dentry;
963 	struct inode *inode = dentry->d_inode;
964 
965 	dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n",
966 			dentry->d_parent->d_name.name, dentry->d_name.name,
967 			datasync);
968 
969 	mutex_lock(&inode->i_mutex);
970 	nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC);
971 	mutex_unlock(&inode->i_mutex);
972 	return 0;
973 }
974 
975 /**
976  * nfs_force_lookup_revalidate - Mark the directory as having changed
977  * @dir - pointer to directory inode
978  *
979  * This forces the revalidation code in nfs_lookup_revalidate() to do a
980  * full lookup on all child dentries of 'dir' whenever a change occurs
981  * on the server that might have invalidated our dcache.
982  *
983  * The caller should be holding dir->i_lock
984  */
985 void nfs_force_lookup_revalidate(struct inode *dir)
986 {
987 	NFS_I(dir)->cache_change_attribute++;
988 }
989 
990 /*
991  * A check for whether or not the parent directory has changed.
992  * In the case it has, we assume that the dentries are untrustworthy
993  * and may need to be looked up again.
994  */
995 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
996 {
997 	if (IS_ROOT(dentry))
998 		return 1;
999 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1000 		return 0;
1001 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1002 		return 0;
1003 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1004 	if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1005 		return 0;
1006 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1007 		return 0;
1008 	return 1;
1009 }
1010 
1011 /*
1012  * Return the intent data that applies to this particular path component
1013  *
1014  * Note that the current set of intents only apply to the very last
1015  * component of the path and none of them is set before that last
1016  * component.
1017  */
1018 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd,
1019 						unsigned int mask)
1020 {
1021 	return nd->flags & mask;
1022 }
1023 
1024 /*
1025  * Use intent information to check whether or not we're going to do
1026  * an O_EXCL create using this path component.
1027  */
1028 static int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
1029 {
1030 	if (NFS_PROTO(dir)->version == 2)
1031 		return 0;
1032 	return nd && nfs_lookup_check_intent(nd, LOOKUP_EXCL);
1033 }
1034 
1035 /*
1036  * Inode and filehandle revalidation for lookups.
1037  *
1038  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1039  * or if the intent information indicates that we're about to open this
1040  * particular file and the "nocto" mount flag is not set.
1041  *
1042  */
1043 static inline
1044 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
1045 {
1046 	struct nfs_server *server = NFS_SERVER(inode);
1047 
1048 	if (IS_AUTOMOUNT(inode))
1049 		return 0;
1050 	if (nd != NULL) {
1051 		/* VFS wants an on-the-wire revalidation */
1052 		if (nd->flags & LOOKUP_REVAL)
1053 			goto out_force;
1054 		/* This is an open(2) */
1055 		if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
1056 				!(server->flags & NFS_MOUNT_NOCTO) &&
1057 				(S_ISREG(inode->i_mode) ||
1058 				 S_ISDIR(inode->i_mode)))
1059 			goto out_force;
1060 		return 0;
1061 	}
1062 	return nfs_revalidate_inode(server, inode);
1063 out_force:
1064 	return __nfs_revalidate_inode(server, inode);
1065 }
1066 
1067 /*
1068  * We judge how long we want to trust negative
1069  * dentries by looking at the parent inode mtime.
1070  *
1071  * If parent mtime has changed, we revalidate, else we wait for a
1072  * period corresponding to the parent's attribute cache timeout value.
1073  */
1074 static inline
1075 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1076 		       struct nameidata *nd)
1077 {
1078 	/* Don't revalidate a negative dentry if we're creating a new file */
1079 	if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
1080 		return 0;
1081 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1082 		return 1;
1083 	return !nfs_check_verifier(dir, dentry);
1084 }
1085 
1086 /*
1087  * This is called every time the dcache has a lookup hit,
1088  * and we should check whether we can really trust that
1089  * lookup.
1090  *
1091  * NOTE! The hit can be a negative hit too, don't assume
1092  * we have an inode!
1093  *
1094  * If the parent directory is seen to have changed, we throw out the
1095  * cached dentry and do a new lookup.
1096  */
1097 static int nfs_lookup_revalidate(struct dentry *dentry, struct nameidata *nd)
1098 {
1099 	struct inode *dir;
1100 	struct inode *inode;
1101 	struct dentry *parent;
1102 	struct nfs_fh *fhandle = NULL;
1103 	struct nfs_fattr *fattr = NULL;
1104 	int error;
1105 
1106 	if (nd->flags & LOOKUP_RCU)
1107 		return -ECHILD;
1108 
1109 	parent = dget_parent(dentry);
1110 	dir = parent->d_inode;
1111 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1112 	inode = dentry->d_inode;
1113 
1114 	if (!inode) {
1115 		if (nfs_neg_need_reval(dir, dentry, nd))
1116 			goto out_bad;
1117 		goto out_valid;
1118 	}
1119 
1120 	if (is_bad_inode(inode)) {
1121 		dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
1122 				__func__, dentry->d_parent->d_name.name,
1123 				dentry->d_name.name);
1124 		goto out_bad;
1125 	}
1126 
1127 	if (nfs_have_delegation(inode, FMODE_READ))
1128 		goto out_set_verifier;
1129 
1130 	/* Force a full look up iff the parent directory has changed */
1131 	if (!nfs_is_exclusive_create(dir, nd) && nfs_check_verifier(dir, dentry)) {
1132 		if (nfs_lookup_verify_inode(inode, nd))
1133 			goto out_zap_parent;
1134 		goto out_valid;
1135 	}
1136 
1137 	if (NFS_STALE(inode))
1138 		goto out_bad;
1139 
1140 	error = -ENOMEM;
1141 	fhandle = nfs_alloc_fhandle();
1142 	fattr = nfs_alloc_fattr();
1143 	if (fhandle == NULL || fattr == NULL)
1144 		goto out_error;
1145 
1146 	error = NFS_PROTO(dir)->lookup(NFS_SERVER(dir)->client, dir, &dentry->d_name, fhandle, fattr);
1147 	if (error)
1148 		goto out_bad;
1149 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1150 		goto out_bad;
1151 	if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1152 		goto out_bad;
1153 
1154 	nfs_free_fattr(fattr);
1155 	nfs_free_fhandle(fhandle);
1156 out_set_verifier:
1157 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1158  out_valid:
1159 	dput(parent);
1160 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
1161 			__func__, dentry->d_parent->d_name.name,
1162 			dentry->d_name.name);
1163 	return 1;
1164 out_zap_parent:
1165 	nfs_zap_caches(dir);
1166  out_bad:
1167 	nfs_mark_for_revalidate(dir);
1168 	if (inode && S_ISDIR(inode->i_mode)) {
1169 		/* Purge readdir caches. */
1170 		nfs_zap_caches(inode);
1171 		/* If we have submounts, don't unhash ! */
1172 		if (have_submounts(dentry))
1173 			goto out_valid;
1174 		if (dentry->d_flags & DCACHE_DISCONNECTED)
1175 			goto out_valid;
1176 		shrink_dcache_parent(dentry);
1177 	}
1178 	d_drop(dentry);
1179 	nfs_free_fattr(fattr);
1180 	nfs_free_fhandle(fhandle);
1181 	dput(parent);
1182 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
1183 			__func__, dentry->d_parent->d_name.name,
1184 			dentry->d_name.name);
1185 	return 0;
1186 out_error:
1187 	nfs_free_fattr(fattr);
1188 	nfs_free_fhandle(fhandle);
1189 	dput(parent);
1190 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n",
1191 			__func__, dentry->d_parent->d_name.name,
1192 			dentry->d_name.name, error);
1193 	return error;
1194 }
1195 
1196 /*
1197  * This is called from dput() when d_count is going to 0.
1198  */
1199 static int nfs_dentry_delete(const struct dentry *dentry)
1200 {
1201 	dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
1202 		dentry->d_parent->d_name.name, dentry->d_name.name,
1203 		dentry->d_flags);
1204 
1205 	/* Unhash any dentry with a stale inode */
1206 	if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
1207 		return 1;
1208 
1209 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1210 		/* Unhash it, so that ->d_iput() would be called */
1211 		return 1;
1212 	}
1213 	if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1214 		/* Unhash it, so that ancestors of killed async unlink
1215 		 * files will be cleaned up during umount */
1216 		return 1;
1217 	}
1218 	return 0;
1219 
1220 }
1221 
1222 static void nfs_drop_nlink(struct inode *inode)
1223 {
1224 	spin_lock(&inode->i_lock);
1225 	if (inode->i_nlink > 0)
1226 		drop_nlink(inode);
1227 	spin_unlock(&inode->i_lock);
1228 }
1229 
1230 /*
1231  * Called when the dentry loses inode.
1232  * We use it to clean up silly-renamed files.
1233  */
1234 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1235 {
1236 	if (S_ISDIR(inode->i_mode))
1237 		/* drop any readdir cache as it could easily be old */
1238 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1239 
1240 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1241 		drop_nlink(inode);
1242 		nfs_complete_unlink(dentry, inode);
1243 	}
1244 	iput(inode);
1245 }
1246 
1247 static void nfs_d_release(struct dentry *dentry)
1248 {
1249 	/* free cached devname value, if it survived that far */
1250 	if (unlikely(dentry->d_fsdata)) {
1251 		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1252 			WARN_ON(1);
1253 		else
1254 			kfree(dentry->d_fsdata);
1255 	}
1256 }
1257 
1258 const struct dentry_operations nfs_dentry_operations = {
1259 	.d_revalidate	= nfs_lookup_revalidate,
1260 	.d_delete	= nfs_dentry_delete,
1261 	.d_iput		= nfs_dentry_iput,
1262 	.d_automount	= nfs_d_automount,
1263 	.d_release	= nfs_d_release,
1264 };
1265 
1266 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
1267 {
1268 	struct dentry *res;
1269 	struct dentry *parent;
1270 	struct inode *inode = NULL;
1271 	struct nfs_fh *fhandle = NULL;
1272 	struct nfs_fattr *fattr = NULL;
1273 	int error;
1274 
1275 	dfprintk(VFS, "NFS: lookup(%s/%s)\n",
1276 		dentry->d_parent->d_name.name, dentry->d_name.name);
1277 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1278 
1279 	res = ERR_PTR(-ENAMETOOLONG);
1280 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1281 		goto out;
1282 
1283 	/*
1284 	 * If we're doing an exclusive create, optimize away the lookup
1285 	 * but don't hash the dentry.
1286 	 */
1287 	if (nfs_is_exclusive_create(dir, nd)) {
1288 		d_instantiate(dentry, NULL);
1289 		res = NULL;
1290 		goto out;
1291 	}
1292 
1293 	res = ERR_PTR(-ENOMEM);
1294 	fhandle = nfs_alloc_fhandle();
1295 	fattr = nfs_alloc_fattr();
1296 	if (fhandle == NULL || fattr == NULL)
1297 		goto out;
1298 
1299 	parent = dentry->d_parent;
1300 	/* Protect against concurrent sillydeletes */
1301 	nfs_block_sillyrename(parent);
1302 	error = NFS_PROTO(dir)->lookup(NFS_SERVER(dir)->client, dir, &dentry->d_name, fhandle, fattr);
1303 	if (error == -ENOENT)
1304 		goto no_entry;
1305 	if (error < 0) {
1306 		res = ERR_PTR(error);
1307 		goto out_unblock_sillyrename;
1308 	}
1309 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1310 	res = ERR_CAST(inode);
1311 	if (IS_ERR(res))
1312 		goto out_unblock_sillyrename;
1313 
1314 no_entry:
1315 	res = d_materialise_unique(dentry, inode);
1316 	if (res != NULL) {
1317 		if (IS_ERR(res))
1318 			goto out_unblock_sillyrename;
1319 		dentry = res;
1320 	}
1321 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1322 out_unblock_sillyrename:
1323 	nfs_unblock_sillyrename(parent);
1324 out:
1325 	nfs_free_fattr(fattr);
1326 	nfs_free_fhandle(fhandle);
1327 	return res;
1328 }
1329 
1330 #ifdef CONFIG_NFS_V4
1331 static int nfs_open_revalidate(struct dentry *, struct nameidata *);
1332 
1333 const struct dentry_operations nfs4_dentry_operations = {
1334 	.d_revalidate	= nfs_open_revalidate,
1335 	.d_delete	= nfs_dentry_delete,
1336 	.d_iput		= nfs_dentry_iput,
1337 	.d_automount	= nfs_d_automount,
1338 	.d_release	= nfs_d_release,
1339 };
1340 
1341 /*
1342  * Use intent information to determine whether we need to substitute
1343  * the NFSv4-style stateful OPEN for the LOOKUP call
1344  */
1345 static int is_atomic_open(struct nameidata *nd)
1346 {
1347 	if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
1348 		return 0;
1349 	/* NFS does not (yet) have a stateful open for directories */
1350 	if (nd->flags & LOOKUP_DIRECTORY)
1351 		return 0;
1352 	/* Are we trying to write to a read only partition? */
1353 	if (__mnt_is_readonly(nd->path.mnt) &&
1354 	    (nd->intent.open.flags & (O_CREAT|O_TRUNC|O_ACCMODE)))
1355 		return 0;
1356 	return 1;
1357 }
1358 
1359 static fmode_t flags_to_mode(int flags)
1360 {
1361 	fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1362 	if ((flags & O_ACCMODE) != O_WRONLY)
1363 		res |= FMODE_READ;
1364 	if ((flags & O_ACCMODE) != O_RDONLY)
1365 		res |= FMODE_WRITE;
1366 	return res;
1367 }
1368 
1369 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags)
1370 {
1371 	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags));
1372 }
1373 
1374 static int do_open(struct inode *inode, struct file *filp)
1375 {
1376 	nfs_fscache_set_inode_cookie(inode, filp);
1377 	return 0;
1378 }
1379 
1380 static int nfs_intent_set_file(struct nameidata *nd, struct nfs_open_context *ctx)
1381 {
1382 	struct file *filp;
1383 	int ret = 0;
1384 
1385 	/* If the open_intent is for execute, we have an extra check to make */
1386 	if (ctx->mode & FMODE_EXEC) {
1387 		ret = nfs_may_open(ctx->dentry->d_inode,
1388 				ctx->cred,
1389 				nd->intent.open.flags);
1390 		if (ret < 0)
1391 			goto out;
1392 	}
1393 	filp = lookup_instantiate_filp(nd, ctx->dentry, do_open);
1394 	if (IS_ERR(filp))
1395 		ret = PTR_ERR(filp);
1396 	else
1397 		nfs_file_set_open_context(filp, ctx);
1398 out:
1399 	put_nfs_open_context(ctx);
1400 	return ret;
1401 }
1402 
1403 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
1404 {
1405 	struct nfs_open_context *ctx;
1406 	struct iattr attr;
1407 	struct dentry *res = NULL;
1408 	struct inode *inode;
1409 	int open_flags;
1410 	int err;
1411 
1412 	dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
1413 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1414 
1415 	/* Check that we are indeed trying to open this file */
1416 	if (!is_atomic_open(nd))
1417 		goto no_open;
1418 
1419 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
1420 		res = ERR_PTR(-ENAMETOOLONG);
1421 		goto out;
1422 	}
1423 
1424 	/* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash
1425 	 * the dentry. */
1426 	if (nd->flags & LOOKUP_EXCL) {
1427 		d_instantiate(dentry, NULL);
1428 		goto out;
1429 	}
1430 
1431 	open_flags = nd->intent.open.flags;
1432 
1433 	ctx = create_nfs_open_context(dentry, open_flags);
1434 	res = ERR_CAST(ctx);
1435 	if (IS_ERR(ctx))
1436 		goto out;
1437 
1438 	if (nd->flags & LOOKUP_CREATE) {
1439 		attr.ia_mode = nd->intent.open.create_mode;
1440 		attr.ia_valid = ATTR_MODE;
1441 		attr.ia_mode &= ~current_umask();
1442 	} else {
1443 		open_flags &= ~(O_EXCL | O_CREAT);
1444 		attr.ia_valid = 0;
1445 	}
1446 
1447 	/* Open the file on the server */
1448 	nfs_block_sillyrename(dentry->d_parent);
1449 	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr);
1450 	if (IS_ERR(inode)) {
1451 		nfs_unblock_sillyrename(dentry->d_parent);
1452 		put_nfs_open_context(ctx);
1453 		switch (PTR_ERR(inode)) {
1454 			/* Make a negative dentry */
1455 			case -ENOENT:
1456 				d_add(dentry, NULL);
1457 				res = NULL;
1458 				goto out;
1459 			/* This turned out not to be a regular file */
1460 			case -EISDIR:
1461 			case -ENOTDIR:
1462 				goto no_open;
1463 			case -ELOOP:
1464 				if (!(nd->intent.open.flags & O_NOFOLLOW))
1465 					goto no_open;
1466 			/* case -EINVAL: */
1467 			default:
1468 				res = ERR_CAST(inode);
1469 				goto out;
1470 		}
1471 	}
1472 	res = d_add_unique(dentry, inode);
1473 	nfs_unblock_sillyrename(dentry->d_parent);
1474 	if (res != NULL) {
1475 		dput(ctx->dentry);
1476 		ctx->dentry = dget(res);
1477 		dentry = res;
1478 	}
1479 	err = nfs_intent_set_file(nd, ctx);
1480 	if (err < 0) {
1481 		if (res != NULL)
1482 			dput(res);
1483 		return ERR_PTR(err);
1484 	}
1485 out:
1486 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1487 	return res;
1488 no_open:
1489 	return nfs_lookup(dir, dentry, nd);
1490 }
1491 
1492 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1493 {
1494 	struct dentry *parent = NULL;
1495 	struct inode *inode;
1496 	struct inode *dir;
1497 	struct nfs_open_context *ctx;
1498 	int openflags, ret = 0;
1499 
1500 	if (nd->flags & LOOKUP_RCU)
1501 		return -ECHILD;
1502 
1503 	inode = dentry->d_inode;
1504 	if (!is_atomic_open(nd) || d_mountpoint(dentry))
1505 		goto no_open;
1506 
1507 	parent = dget_parent(dentry);
1508 	dir = parent->d_inode;
1509 
1510 	/* We can't create new files in nfs_open_revalidate(), so we
1511 	 * optimize away revalidation of negative dentries.
1512 	 */
1513 	if (inode == NULL) {
1514 		if (!nfs_neg_need_reval(dir, dentry, nd))
1515 			ret = 1;
1516 		goto out;
1517 	}
1518 
1519 	/* NFS only supports OPEN on regular files */
1520 	if (!S_ISREG(inode->i_mode))
1521 		goto no_open_dput;
1522 	openflags = nd->intent.open.flags;
1523 	/* We cannot do exclusive creation on a positive dentry */
1524 	if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1525 		goto no_open_dput;
1526 	/* We can't create new files, or truncate existing ones here */
1527 	openflags &= ~(O_CREAT|O_EXCL|O_TRUNC);
1528 
1529 	ctx = create_nfs_open_context(dentry, openflags);
1530 	ret = PTR_ERR(ctx);
1531 	if (IS_ERR(ctx))
1532 		goto out;
1533 	/*
1534 	 * Note: we're not holding inode->i_mutex and so may be racing with
1535 	 * operations that change the directory. We therefore save the
1536 	 * change attribute *before* we do the RPC call.
1537 	 */
1538 	inode = NFS_PROTO(dir)->open_context(dir, ctx, openflags, NULL);
1539 	if (IS_ERR(inode)) {
1540 		ret = PTR_ERR(inode);
1541 		switch (ret) {
1542 		case -EPERM:
1543 		case -EACCES:
1544 		case -EDQUOT:
1545 		case -ENOSPC:
1546 		case -EROFS:
1547 			goto out_put_ctx;
1548 		default:
1549 			goto out_drop;
1550 		}
1551 	}
1552 	iput(inode);
1553 	if (inode != dentry->d_inode)
1554 		goto out_drop;
1555 
1556 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1557 	ret = nfs_intent_set_file(nd, ctx);
1558 	if (ret >= 0)
1559 		ret = 1;
1560 out:
1561 	dput(parent);
1562 	return ret;
1563 out_drop:
1564 	d_drop(dentry);
1565 	ret = 0;
1566 out_put_ctx:
1567 	put_nfs_open_context(ctx);
1568 	goto out;
1569 
1570 no_open_dput:
1571 	dput(parent);
1572 no_open:
1573 	return nfs_lookup_revalidate(dentry, nd);
1574 }
1575 
1576 static int nfs_open_create(struct inode *dir, struct dentry *dentry,
1577 		umode_t mode, struct nameidata *nd)
1578 {
1579 	struct nfs_open_context *ctx = NULL;
1580 	struct iattr attr;
1581 	int error;
1582 	int open_flags = O_CREAT|O_EXCL;
1583 
1584 	dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1585 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1586 
1587 	attr.ia_mode = mode;
1588 	attr.ia_valid = ATTR_MODE;
1589 
1590 	if (nd)
1591 		open_flags = nd->intent.open.flags;
1592 
1593 	ctx = create_nfs_open_context(dentry, open_flags);
1594 	error = PTR_ERR(ctx);
1595 	if (IS_ERR(ctx))
1596 		goto out_err_drop;
1597 
1598 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, ctx);
1599 	if (error != 0)
1600 		goto out_put_ctx;
1601 	if (nd) {
1602 		error = nfs_intent_set_file(nd, ctx);
1603 		if (error < 0)
1604 			goto out_err;
1605 	} else {
1606 		put_nfs_open_context(ctx);
1607 	}
1608 	return 0;
1609 out_put_ctx:
1610 	put_nfs_open_context(ctx);
1611 out_err_drop:
1612 	d_drop(dentry);
1613 out_err:
1614 	return error;
1615 }
1616 
1617 #endif /* CONFIG_NFSV4 */
1618 
1619 /*
1620  * Code common to create, mkdir, and mknod.
1621  */
1622 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1623 				struct nfs_fattr *fattr)
1624 {
1625 	struct dentry *parent = dget_parent(dentry);
1626 	struct inode *dir = parent->d_inode;
1627 	struct inode *inode;
1628 	int error = -EACCES;
1629 
1630 	d_drop(dentry);
1631 
1632 	/* We may have been initialized further down */
1633 	if (dentry->d_inode)
1634 		goto out;
1635 	if (fhandle->size == 0) {
1636 		error = NFS_PROTO(dir)->lookup(NFS_SERVER(dir)->client, dir, &dentry->d_name, fhandle, fattr);
1637 		if (error)
1638 			goto out_error;
1639 	}
1640 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1641 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1642 		struct nfs_server *server = NFS_SB(dentry->d_sb);
1643 		error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1644 		if (error < 0)
1645 			goto out_error;
1646 	}
1647 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1648 	error = PTR_ERR(inode);
1649 	if (IS_ERR(inode))
1650 		goto out_error;
1651 	d_add(dentry, inode);
1652 out:
1653 	dput(parent);
1654 	return 0;
1655 out_error:
1656 	nfs_mark_for_revalidate(dir);
1657 	dput(parent);
1658 	return error;
1659 }
1660 
1661 /*
1662  * Following a failed create operation, we drop the dentry rather
1663  * than retain a negative dentry. This avoids a problem in the event
1664  * that the operation succeeded on the server, but an error in the
1665  * reply path made it appear to have failed.
1666  */
1667 static int nfs_create(struct inode *dir, struct dentry *dentry,
1668 		umode_t mode, struct nameidata *nd)
1669 {
1670 	struct iattr attr;
1671 	int error;
1672 	int open_flags = O_CREAT|O_EXCL;
1673 
1674 	dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1675 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1676 
1677 	attr.ia_mode = mode;
1678 	attr.ia_valid = ATTR_MODE;
1679 
1680 	if (nd)
1681 		open_flags = nd->intent.open.flags;
1682 
1683 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, NULL);
1684 	if (error != 0)
1685 		goto out_err;
1686 	return 0;
1687 out_err:
1688 	d_drop(dentry);
1689 	return error;
1690 }
1691 
1692 /*
1693  * See comments for nfs_proc_create regarding failed operations.
1694  */
1695 static int
1696 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1697 {
1698 	struct iattr attr;
1699 	int status;
1700 
1701 	dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1702 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1703 
1704 	if (!new_valid_dev(rdev))
1705 		return -EINVAL;
1706 
1707 	attr.ia_mode = mode;
1708 	attr.ia_valid = ATTR_MODE;
1709 
1710 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1711 	if (status != 0)
1712 		goto out_err;
1713 	return 0;
1714 out_err:
1715 	d_drop(dentry);
1716 	return status;
1717 }
1718 
1719 /*
1720  * See comments for nfs_proc_create regarding failed operations.
1721  */
1722 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1723 {
1724 	struct iattr attr;
1725 	int error;
1726 
1727 	dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1728 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1729 
1730 	attr.ia_valid = ATTR_MODE;
1731 	attr.ia_mode = mode | S_IFDIR;
1732 
1733 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1734 	if (error != 0)
1735 		goto out_err;
1736 	return 0;
1737 out_err:
1738 	d_drop(dentry);
1739 	return error;
1740 }
1741 
1742 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1743 {
1744 	if (dentry->d_inode != NULL && !d_unhashed(dentry))
1745 		d_delete(dentry);
1746 }
1747 
1748 static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1749 {
1750 	int error;
1751 
1752 	dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1753 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1754 
1755 	error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1756 	/* Ensure the VFS deletes this inode */
1757 	if (error == 0 && dentry->d_inode != NULL)
1758 		clear_nlink(dentry->d_inode);
1759 	else if (error == -ENOENT)
1760 		nfs_dentry_handle_enoent(dentry);
1761 
1762 	return error;
1763 }
1764 
1765 /*
1766  * Remove a file after making sure there are no pending writes,
1767  * and after checking that the file has only one user.
1768  *
1769  * We invalidate the attribute cache and free the inode prior to the operation
1770  * to avoid possible races if the server reuses the inode.
1771  */
1772 static int nfs_safe_remove(struct dentry *dentry)
1773 {
1774 	struct inode *dir = dentry->d_parent->d_inode;
1775 	struct inode *inode = dentry->d_inode;
1776 	int error = -EBUSY;
1777 
1778 	dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1779 		dentry->d_parent->d_name.name, dentry->d_name.name);
1780 
1781 	/* If the dentry was sillyrenamed, we simply call d_delete() */
1782 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1783 		error = 0;
1784 		goto out;
1785 	}
1786 
1787 	if (inode != NULL) {
1788 		nfs_inode_return_delegation(inode);
1789 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1790 		/* The VFS may want to delete this inode */
1791 		if (error == 0)
1792 			nfs_drop_nlink(inode);
1793 		nfs_mark_for_revalidate(inode);
1794 	} else
1795 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1796 	if (error == -ENOENT)
1797 		nfs_dentry_handle_enoent(dentry);
1798 out:
1799 	return error;
1800 }
1801 
1802 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1803  *  belongs to an active ".nfs..." file and we return -EBUSY.
1804  *
1805  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1806  */
1807 static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1808 {
1809 	int error;
1810 	int need_rehash = 0;
1811 
1812 	dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1813 		dir->i_ino, dentry->d_name.name);
1814 
1815 	spin_lock(&dentry->d_lock);
1816 	if (dentry->d_count > 1) {
1817 		spin_unlock(&dentry->d_lock);
1818 		/* Start asynchronous writeout of the inode */
1819 		write_inode_now(dentry->d_inode, 0);
1820 		error = nfs_sillyrename(dir, dentry);
1821 		return error;
1822 	}
1823 	if (!d_unhashed(dentry)) {
1824 		__d_drop(dentry);
1825 		need_rehash = 1;
1826 	}
1827 	spin_unlock(&dentry->d_lock);
1828 	error = nfs_safe_remove(dentry);
1829 	if (!error || error == -ENOENT) {
1830 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1831 	} else if (need_rehash)
1832 		d_rehash(dentry);
1833 	return error;
1834 }
1835 
1836 /*
1837  * To create a symbolic link, most file systems instantiate a new inode,
1838  * add a page to it containing the path, then write it out to the disk
1839  * using prepare_write/commit_write.
1840  *
1841  * Unfortunately the NFS client can't create the in-core inode first
1842  * because it needs a file handle to create an in-core inode (see
1843  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1844  * symlink request has completed on the server.
1845  *
1846  * So instead we allocate a raw page, copy the symname into it, then do
1847  * the SYMLINK request with the page as the buffer.  If it succeeds, we
1848  * now have a new file handle and can instantiate an in-core NFS inode
1849  * and move the raw page into its mapping.
1850  */
1851 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1852 {
1853 	struct pagevec lru_pvec;
1854 	struct page *page;
1855 	char *kaddr;
1856 	struct iattr attr;
1857 	unsigned int pathlen = strlen(symname);
1858 	int error;
1859 
1860 	dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1861 		dir->i_ino, dentry->d_name.name, symname);
1862 
1863 	if (pathlen > PAGE_SIZE)
1864 		return -ENAMETOOLONG;
1865 
1866 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
1867 	attr.ia_valid = ATTR_MODE;
1868 
1869 	page = alloc_page(GFP_HIGHUSER);
1870 	if (!page)
1871 		return -ENOMEM;
1872 
1873 	kaddr = kmap_atomic(page);
1874 	memcpy(kaddr, symname, pathlen);
1875 	if (pathlen < PAGE_SIZE)
1876 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1877 	kunmap_atomic(kaddr);
1878 
1879 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1880 	if (error != 0) {
1881 		dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1882 			dir->i_sb->s_id, dir->i_ino,
1883 			dentry->d_name.name, symname, error);
1884 		d_drop(dentry);
1885 		__free_page(page);
1886 		return error;
1887 	}
1888 
1889 	/*
1890 	 * No big deal if we can't add this page to the page cache here.
1891 	 * READLINK will get the missing page from the server if needed.
1892 	 */
1893 	pagevec_init(&lru_pvec, 0);
1894 	if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1895 							GFP_KERNEL)) {
1896 		pagevec_add(&lru_pvec, page);
1897 		pagevec_lru_add_file(&lru_pvec);
1898 		SetPageUptodate(page);
1899 		unlock_page(page);
1900 	} else
1901 		__free_page(page);
1902 
1903 	return 0;
1904 }
1905 
1906 static int
1907 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1908 {
1909 	struct inode *inode = old_dentry->d_inode;
1910 	int error;
1911 
1912 	dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1913 		old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1914 		dentry->d_parent->d_name.name, dentry->d_name.name);
1915 
1916 	nfs_inode_return_delegation(inode);
1917 
1918 	d_drop(dentry);
1919 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1920 	if (error == 0) {
1921 		ihold(inode);
1922 		d_add(dentry, inode);
1923 	}
1924 	return error;
1925 }
1926 
1927 /*
1928  * RENAME
1929  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1930  * different file handle for the same inode after a rename (e.g. when
1931  * moving to a different directory). A fail-safe method to do so would
1932  * be to look up old_dir/old_name, create a link to new_dir/new_name and
1933  * rename the old file using the sillyrename stuff. This way, the original
1934  * file in old_dir will go away when the last process iput()s the inode.
1935  *
1936  * FIXED.
1937  *
1938  * It actually works quite well. One needs to have the possibility for
1939  * at least one ".nfs..." file in each directory the file ever gets
1940  * moved or linked to which happens automagically with the new
1941  * implementation that only depends on the dcache stuff instead of
1942  * using the inode layer
1943  *
1944  * Unfortunately, things are a little more complicated than indicated
1945  * above. For a cross-directory move, we want to make sure we can get
1946  * rid of the old inode after the operation.  This means there must be
1947  * no pending writes (if it's a file), and the use count must be 1.
1948  * If these conditions are met, we can drop the dentries before doing
1949  * the rename.
1950  */
1951 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1952 		      struct inode *new_dir, struct dentry *new_dentry)
1953 {
1954 	struct inode *old_inode = old_dentry->d_inode;
1955 	struct inode *new_inode = new_dentry->d_inode;
1956 	struct dentry *dentry = NULL, *rehash = NULL;
1957 	int error = -EBUSY;
1958 
1959 	dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1960 		 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1961 		 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1962 		 new_dentry->d_count);
1963 
1964 	/*
1965 	 * For non-directories, check whether the target is busy and if so,
1966 	 * make a copy of the dentry and then do a silly-rename. If the
1967 	 * silly-rename succeeds, the copied dentry is hashed and becomes
1968 	 * the new target.
1969 	 */
1970 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
1971 		/*
1972 		 * To prevent any new references to the target during the
1973 		 * rename, we unhash the dentry in advance.
1974 		 */
1975 		if (!d_unhashed(new_dentry)) {
1976 			d_drop(new_dentry);
1977 			rehash = new_dentry;
1978 		}
1979 
1980 		if (new_dentry->d_count > 2) {
1981 			int err;
1982 
1983 			/* copy the target dentry's name */
1984 			dentry = d_alloc(new_dentry->d_parent,
1985 					 &new_dentry->d_name);
1986 			if (!dentry)
1987 				goto out;
1988 
1989 			/* silly-rename the existing target ... */
1990 			err = nfs_sillyrename(new_dir, new_dentry);
1991 			if (err)
1992 				goto out;
1993 
1994 			new_dentry = dentry;
1995 			rehash = NULL;
1996 			new_inode = NULL;
1997 		}
1998 	}
1999 
2000 	nfs_inode_return_delegation(old_inode);
2001 	if (new_inode != NULL)
2002 		nfs_inode_return_delegation(new_inode);
2003 
2004 	error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
2005 					   new_dir, &new_dentry->d_name);
2006 	nfs_mark_for_revalidate(old_inode);
2007 out:
2008 	if (rehash)
2009 		d_rehash(rehash);
2010 	if (!error) {
2011 		if (new_inode != NULL)
2012 			nfs_drop_nlink(new_inode);
2013 		d_move(old_dentry, new_dentry);
2014 		nfs_set_verifier(new_dentry,
2015 					nfs_save_change_attribute(new_dir));
2016 	} else if (error == -ENOENT)
2017 		nfs_dentry_handle_enoent(old_dentry);
2018 
2019 	/* new dentry created? */
2020 	if (dentry)
2021 		dput(dentry);
2022 	return error;
2023 }
2024 
2025 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2026 static LIST_HEAD(nfs_access_lru_list);
2027 static atomic_long_t nfs_access_nr_entries;
2028 
2029 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2030 {
2031 	put_rpccred(entry->cred);
2032 	kfree(entry);
2033 	smp_mb__before_atomic_dec();
2034 	atomic_long_dec(&nfs_access_nr_entries);
2035 	smp_mb__after_atomic_dec();
2036 }
2037 
2038 static void nfs_access_free_list(struct list_head *head)
2039 {
2040 	struct nfs_access_entry *cache;
2041 
2042 	while (!list_empty(head)) {
2043 		cache = list_entry(head->next, struct nfs_access_entry, lru);
2044 		list_del(&cache->lru);
2045 		nfs_access_free_entry(cache);
2046 	}
2047 }
2048 
2049 int nfs_access_cache_shrinker(struct shrinker *shrink,
2050 			      struct shrink_control *sc)
2051 {
2052 	LIST_HEAD(head);
2053 	struct nfs_inode *nfsi, *next;
2054 	struct nfs_access_entry *cache;
2055 	int nr_to_scan = sc->nr_to_scan;
2056 	gfp_t gfp_mask = sc->gfp_mask;
2057 
2058 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2059 		return (nr_to_scan == 0) ? 0 : -1;
2060 
2061 	spin_lock(&nfs_access_lru_lock);
2062 	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2063 		struct inode *inode;
2064 
2065 		if (nr_to_scan-- == 0)
2066 			break;
2067 		inode = &nfsi->vfs_inode;
2068 		spin_lock(&inode->i_lock);
2069 		if (list_empty(&nfsi->access_cache_entry_lru))
2070 			goto remove_lru_entry;
2071 		cache = list_entry(nfsi->access_cache_entry_lru.next,
2072 				struct nfs_access_entry, lru);
2073 		list_move(&cache->lru, &head);
2074 		rb_erase(&cache->rb_node, &nfsi->access_cache);
2075 		if (!list_empty(&nfsi->access_cache_entry_lru))
2076 			list_move_tail(&nfsi->access_cache_inode_lru,
2077 					&nfs_access_lru_list);
2078 		else {
2079 remove_lru_entry:
2080 			list_del_init(&nfsi->access_cache_inode_lru);
2081 			smp_mb__before_clear_bit();
2082 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2083 			smp_mb__after_clear_bit();
2084 		}
2085 		spin_unlock(&inode->i_lock);
2086 	}
2087 	spin_unlock(&nfs_access_lru_lock);
2088 	nfs_access_free_list(&head);
2089 	return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
2090 }
2091 
2092 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2093 {
2094 	struct rb_root *root_node = &nfsi->access_cache;
2095 	struct rb_node *n;
2096 	struct nfs_access_entry *entry;
2097 
2098 	/* Unhook entries from the cache */
2099 	while ((n = rb_first(root_node)) != NULL) {
2100 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2101 		rb_erase(n, root_node);
2102 		list_move(&entry->lru, head);
2103 	}
2104 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2105 }
2106 
2107 void nfs_access_zap_cache(struct inode *inode)
2108 {
2109 	LIST_HEAD(head);
2110 
2111 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2112 		return;
2113 	/* Remove from global LRU init */
2114 	spin_lock(&nfs_access_lru_lock);
2115 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2116 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2117 
2118 	spin_lock(&inode->i_lock);
2119 	__nfs_access_zap_cache(NFS_I(inode), &head);
2120 	spin_unlock(&inode->i_lock);
2121 	spin_unlock(&nfs_access_lru_lock);
2122 	nfs_access_free_list(&head);
2123 }
2124 
2125 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2126 {
2127 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2128 	struct nfs_access_entry *entry;
2129 
2130 	while (n != NULL) {
2131 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2132 
2133 		if (cred < entry->cred)
2134 			n = n->rb_left;
2135 		else if (cred > entry->cred)
2136 			n = n->rb_right;
2137 		else
2138 			return entry;
2139 	}
2140 	return NULL;
2141 }
2142 
2143 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2144 {
2145 	struct nfs_inode *nfsi = NFS_I(inode);
2146 	struct nfs_access_entry *cache;
2147 	int err = -ENOENT;
2148 
2149 	spin_lock(&inode->i_lock);
2150 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2151 		goto out_zap;
2152 	cache = nfs_access_search_rbtree(inode, cred);
2153 	if (cache == NULL)
2154 		goto out;
2155 	if (!nfs_have_delegated_attributes(inode) &&
2156 	    !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2157 		goto out_stale;
2158 	res->jiffies = cache->jiffies;
2159 	res->cred = cache->cred;
2160 	res->mask = cache->mask;
2161 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2162 	err = 0;
2163 out:
2164 	spin_unlock(&inode->i_lock);
2165 	return err;
2166 out_stale:
2167 	rb_erase(&cache->rb_node, &nfsi->access_cache);
2168 	list_del(&cache->lru);
2169 	spin_unlock(&inode->i_lock);
2170 	nfs_access_free_entry(cache);
2171 	return -ENOENT;
2172 out_zap:
2173 	spin_unlock(&inode->i_lock);
2174 	nfs_access_zap_cache(inode);
2175 	return -ENOENT;
2176 }
2177 
2178 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2179 {
2180 	struct nfs_inode *nfsi = NFS_I(inode);
2181 	struct rb_root *root_node = &nfsi->access_cache;
2182 	struct rb_node **p = &root_node->rb_node;
2183 	struct rb_node *parent = NULL;
2184 	struct nfs_access_entry *entry;
2185 
2186 	spin_lock(&inode->i_lock);
2187 	while (*p != NULL) {
2188 		parent = *p;
2189 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2190 
2191 		if (set->cred < entry->cred)
2192 			p = &parent->rb_left;
2193 		else if (set->cred > entry->cred)
2194 			p = &parent->rb_right;
2195 		else
2196 			goto found;
2197 	}
2198 	rb_link_node(&set->rb_node, parent, p);
2199 	rb_insert_color(&set->rb_node, root_node);
2200 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2201 	spin_unlock(&inode->i_lock);
2202 	return;
2203 found:
2204 	rb_replace_node(parent, &set->rb_node, root_node);
2205 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2206 	list_del(&entry->lru);
2207 	spin_unlock(&inode->i_lock);
2208 	nfs_access_free_entry(entry);
2209 }
2210 
2211 static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2212 {
2213 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2214 	if (cache == NULL)
2215 		return;
2216 	RB_CLEAR_NODE(&cache->rb_node);
2217 	cache->jiffies = set->jiffies;
2218 	cache->cred = get_rpccred(set->cred);
2219 	cache->mask = set->mask;
2220 
2221 	nfs_access_add_rbtree(inode, cache);
2222 
2223 	/* Update accounting */
2224 	smp_mb__before_atomic_inc();
2225 	atomic_long_inc(&nfs_access_nr_entries);
2226 	smp_mb__after_atomic_inc();
2227 
2228 	/* Add inode to global LRU list */
2229 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2230 		spin_lock(&nfs_access_lru_lock);
2231 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2232 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2233 					&nfs_access_lru_list);
2234 		spin_unlock(&nfs_access_lru_lock);
2235 	}
2236 }
2237 
2238 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2239 {
2240 	struct nfs_access_entry cache;
2241 	int status;
2242 
2243 	status = nfs_access_get_cached(inode, cred, &cache);
2244 	if (status == 0)
2245 		goto out;
2246 
2247 	/* Be clever: ask server to check for all possible rights */
2248 	cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2249 	cache.cred = cred;
2250 	cache.jiffies = jiffies;
2251 	status = NFS_PROTO(inode)->access(inode, &cache);
2252 	if (status != 0) {
2253 		if (status == -ESTALE) {
2254 			nfs_zap_caches(inode);
2255 			if (!S_ISDIR(inode->i_mode))
2256 				set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2257 		}
2258 		return status;
2259 	}
2260 	nfs_access_add_cache(inode, &cache);
2261 out:
2262 	if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2263 		return 0;
2264 	return -EACCES;
2265 }
2266 
2267 static int nfs_open_permission_mask(int openflags)
2268 {
2269 	int mask = 0;
2270 
2271 	if ((openflags & O_ACCMODE) != O_WRONLY)
2272 		mask |= MAY_READ;
2273 	if ((openflags & O_ACCMODE) != O_RDONLY)
2274 		mask |= MAY_WRITE;
2275 	if (openflags & __FMODE_EXEC)
2276 		mask |= MAY_EXEC;
2277 	return mask;
2278 }
2279 
2280 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2281 {
2282 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2283 }
2284 
2285 int nfs_permission(struct inode *inode, int mask)
2286 {
2287 	struct rpc_cred *cred;
2288 	int res = 0;
2289 
2290 	if (mask & MAY_NOT_BLOCK)
2291 		return -ECHILD;
2292 
2293 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2294 
2295 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2296 		goto out;
2297 	/* Is this sys_access() ? */
2298 	if (mask & (MAY_ACCESS | MAY_CHDIR))
2299 		goto force_lookup;
2300 
2301 	switch (inode->i_mode & S_IFMT) {
2302 		case S_IFLNK:
2303 			goto out;
2304 		case S_IFREG:
2305 			/* NFSv4 has atomic_open... */
2306 			if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
2307 					&& (mask & MAY_OPEN)
2308 					&& !(mask & MAY_EXEC))
2309 				goto out;
2310 			break;
2311 		case S_IFDIR:
2312 			/*
2313 			 * Optimize away all write operations, since the server
2314 			 * will check permissions when we perform the op.
2315 			 */
2316 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2317 				goto out;
2318 	}
2319 
2320 force_lookup:
2321 	if (!NFS_PROTO(inode)->access)
2322 		goto out_notsup;
2323 
2324 	cred = rpc_lookup_cred();
2325 	if (!IS_ERR(cred)) {
2326 		res = nfs_do_access(inode, cred, mask);
2327 		put_rpccred(cred);
2328 	} else
2329 		res = PTR_ERR(cred);
2330 out:
2331 	if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
2332 		res = -EACCES;
2333 
2334 	dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
2335 		inode->i_sb->s_id, inode->i_ino, mask, res);
2336 	return res;
2337 out_notsup:
2338 	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2339 	if (res == 0)
2340 		res = generic_permission(inode, mask);
2341 	goto out;
2342 }
2343 
2344 /*
2345  * Local variables:
2346  *  version-control: t
2347  *  kept-new-versions: 5
2348  * End:
2349  */
2350