xref: /openbmc/linux/fs/nfs/dir.c (revision 79f08d9e)
1 /*
2  *  linux/fs/nfs/dir.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  nfs directory handling functions
7  *
8  * 10 Apr 1996	Added silly rename for unlink	--okir
9  * 28 Sep 1996	Improved directory cache --okir
10  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
11  *              Re-implemented silly rename for unlink, newly implemented
12  *              silly rename for nfs_rename() following the suggestions
13  *              of Olaf Kirch (okir) found in this file.
14  *              Following Linus comments on my original hack, this version
15  *              depends only on the dcache stuff and doesn't touch the inode
16  *              layer (iput() and friends).
17  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
18  */
19 
20 #include <linux/module.h>
21 #include <linux/time.h>
22 #include <linux/errno.h>
23 #include <linux/stat.h>
24 #include <linux/fcntl.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/mm.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/nfs_fs.h>
31 #include <linux/nfs_mount.h>
32 #include <linux/pagemap.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/swap.h>
37 #include <linux/sched.h>
38 #include <linux/kmemleak.h>
39 #include <linux/xattr.h>
40 
41 #include "delegation.h"
42 #include "iostat.h"
43 #include "internal.h"
44 #include "fscache.h"
45 
46 #include "nfstrace.h"
47 
48 /* #define NFS_DEBUG_VERBOSE 1 */
49 
50 static int nfs_opendir(struct inode *, struct file *);
51 static int nfs_closedir(struct inode *, struct file *);
52 static int nfs_readdir(struct file *, struct dir_context *);
53 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
54 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
55 static void nfs_readdir_clear_array(struct page*);
56 
57 const struct file_operations nfs_dir_operations = {
58 	.llseek		= nfs_llseek_dir,
59 	.read		= generic_read_dir,
60 	.iterate	= nfs_readdir,
61 	.open		= nfs_opendir,
62 	.release	= nfs_closedir,
63 	.fsync		= nfs_fsync_dir,
64 };
65 
66 const struct address_space_operations nfs_dir_aops = {
67 	.freepage = nfs_readdir_clear_array,
68 };
69 
70 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
71 {
72 	struct nfs_open_dir_context *ctx;
73 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
74 	if (ctx != NULL) {
75 		ctx->duped = 0;
76 		ctx->attr_gencount = NFS_I(dir)->attr_gencount;
77 		ctx->dir_cookie = 0;
78 		ctx->dup_cookie = 0;
79 		ctx->cred = get_rpccred(cred);
80 		return ctx;
81 	}
82 	return  ERR_PTR(-ENOMEM);
83 }
84 
85 static void put_nfs_open_dir_context(struct nfs_open_dir_context *ctx)
86 {
87 	put_rpccred(ctx->cred);
88 	kfree(ctx);
89 }
90 
91 /*
92  * Open file
93  */
94 static int
95 nfs_opendir(struct inode *inode, struct file *filp)
96 {
97 	int res = 0;
98 	struct nfs_open_dir_context *ctx;
99 	struct rpc_cred *cred;
100 
101 	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
102 
103 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
104 
105 	cred = rpc_lookup_cred();
106 	if (IS_ERR(cred))
107 		return PTR_ERR(cred);
108 	ctx = alloc_nfs_open_dir_context(inode, cred);
109 	if (IS_ERR(ctx)) {
110 		res = PTR_ERR(ctx);
111 		goto out;
112 	}
113 	filp->private_data = ctx;
114 	if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
115 		/* This is a mountpoint, so d_revalidate will never
116 		 * have been called, so we need to refresh the
117 		 * inode (for close-open consistency) ourselves.
118 		 */
119 		__nfs_revalidate_inode(NFS_SERVER(inode), inode);
120 	}
121 out:
122 	put_rpccred(cred);
123 	return res;
124 }
125 
126 static int
127 nfs_closedir(struct inode *inode, struct file *filp)
128 {
129 	put_nfs_open_dir_context(filp->private_data);
130 	return 0;
131 }
132 
133 struct nfs_cache_array_entry {
134 	u64 cookie;
135 	u64 ino;
136 	struct qstr string;
137 	unsigned char d_type;
138 };
139 
140 struct nfs_cache_array {
141 	int size;
142 	int eof_index;
143 	u64 last_cookie;
144 	struct nfs_cache_array_entry array[0];
145 };
146 
147 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
148 typedef struct {
149 	struct file	*file;
150 	struct page	*page;
151 	struct dir_context *ctx;
152 	unsigned long	page_index;
153 	u64		*dir_cookie;
154 	u64		last_cookie;
155 	loff_t		current_index;
156 	decode_dirent_t	decode;
157 
158 	unsigned long	timestamp;
159 	unsigned long	gencount;
160 	unsigned int	cache_entry_index;
161 	unsigned int	plus:1;
162 	unsigned int	eof:1;
163 } nfs_readdir_descriptor_t;
164 
165 /*
166  * The caller is responsible for calling nfs_readdir_release_array(page)
167  */
168 static
169 struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
170 {
171 	void *ptr;
172 	if (page == NULL)
173 		return ERR_PTR(-EIO);
174 	ptr = kmap(page);
175 	if (ptr == NULL)
176 		return ERR_PTR(-ENOMEM);
177 	return ptr;
178 }
179 
180 static
181 void nfs_readdir_release_array(struct page *page)
182 {
183 	kunmap(page);
184 }
185 
186 /*
187  * we are freeing strings created by nfs_add_to_readdir_array()
188  */
189 static
190 void nfs_readdir_clear_array(struct page *page)
191 {
192 	struct nfs_cache_array *array;
193 	int i;
194 
195 	array = kmap_atomic(page);
196 	for (i = 0; i < array->size; i++)
197 		kfree(array->array[i].string.name);
198 	kunmap_atomic(array);
199 }
200 
201 /*
202  * the caller is responsible for freeing qstr.name
203  * when called by nfs_readdir_add_to_array, the strings will be freed in
204  * nfs_clear_readdir_array()
205  */
206 static
207 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
208 {
209 	string->len = len;
210 	string->name = kmemdup(name, len, GFP_KERNEL);
211 	if (string->name == NULL)
212 		return -ENOMEM;
213 	/*
214 	 * Avoid a kmemleak false positive. The pointer to the name is stored
215 	 * in a page cache page which kmemleak does not scan.
216 	 */
217 	kmemleak_not_leak(string->name);
218 	string->hash = full_name_hash(name, len);
219 	return 0;
220 }
221 
222 static
223 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
224 {
225 	struct nfs_cache_array *array = nfs_readdir_get_array(page);
226 	struct nfs_cache_array_entry *cache_entry;
227 	int ret;
228 
229 	if (IS_ERR(array))
230 		return PTR_ERR(array);
231 
232 	cache_entry = &array->array[array->size];
233 
234 	/* Check that this entry lies within the page bounds */
235 	ret = -ENOSPC;
236 	if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
237 		goto out;
238 
239 	cache_entry->cookie = entry->prev_cookie;
240 	cache_entry->ino = entry->ino;
241 	cache_entry->d_type = entry->d_type;
242 	ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
243 	if (ret)
244 		goto out;
245 	array->last_cookie = entry->cookie;
246 	array->size++;
247 	if (entry->eof != 0)
248 		array->eof_index = array->size;
249 out:
250 	nfs_readdir_release_array(page);
251 	return ret;
252 }
253 
254 static
255 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
256 {
257 	loff_t diff = desc->ctx->pos - desc->current_index;
258 	unsigned int index;
259 
260 	if (diff < 0)
261 		goto out_eof;
262 	if (diff >= array->size) {
263 		if (array->eof_index >= 0)
264 			goto out_eof;
265 		return -EAGAIN;
266 	}
267 
268 	index = (unsigned int)diff;
269 	*desc->dir_cookie = array->array[index].cookie;
270 	desc->cache_entry_index = index;
271 	return 0;
272 out_eof:
273 	desc->eof = 1;
274 	return -EBADCOOKIE;
275 }
276 
277 static
278 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
279 {
280 	int i;
281 	loff_t new_pos;
282 	int status = -EAGAIN;
283 
284 	for (i = 0; i < array->size; i++) {
285 		if (array->array[i].cookie == *desc->dir_cookie) {
286 			struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
287 			struct nfs_open_dir_context *ctx = desc->file->private_data;
288 
289 			new_pos = desc->current_index + i;
290 			if (ctx->attr_gencount != nfsi->attr_gencount
291 			    || (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))) {
292 				ctx->duped = 0;
293 				ctx->attr_gencount = nfsi->attr_gencount;
294 			} else if (new_pos < desc->ctx->pos) {
295 				if (ctx->duped > 0
296 				    && ctx->dup_cookie == *desc->dir_cookie) {
297 					if (printk_ratelimit()) {
298 						pr_notice("NFS: directory %pD2 contains a readdir loop."
299 								"Please contact your server vendor.  "
300 								"The file: %s has duplicate cookie %llu\n",
301 								desc->file,
302 								array->array[i].string.name,
303 								*desc->dir_cookie);
304 					}
305 					status = -ELOOP;
306 					goto out;
307 				}
308 				ctx->dup_cookie = *desc->dir_cookie;
309 				ctx->duped = -1;
310 			}
311 			desc->ctx->pos = new_pos;
312 			desc->cache_entry_index = i;
313 			return 0;
314 		}
315 	}
316 	if (array->eof_index >= 0) {
317 		status = -EBADCOOKIE;
318 		if (*desc->dir_cookie == array->last_cookie)
319 			desc->eof = 1;
320 	}
321 out:
322 	return status;
323 }
324 
325 static
326 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
327 {
328 	struct nfs_cache_array *array;
329 	int status;
330 
331 	array = nfs_readdir_get_array(desc->page);
332 	if (IS_ERR(array)) {
333 		status = PTR_ERR(array);
334 		goto out;
335 	}
336 
337 	if (*desc->dir_cookie == 0)
338 		status = nfs_readdir_search_for_pos(array, desc);
339 	else
340 		status = nfs_readdir_search_for_cookie(array, desc);
341 
342 	if (status == -EAGAIN) {
343 		desc->last_cookie = array->last_cookie;
344 		desc->current_index += array->size;
345 		desc->page_index++;
346 	}
347 	nfs_readdir_release_array(desc->page);
348 out:
349 	return status;
350 }
351 
352 /* Fill a page with xdr information before transferring to the cache page */
353 static
354 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
355 			struct nfs_entry *entry, struct file *file, struct inode *inode)
356 {
357 	struct nfs_open_dir_context *ctx = file->private_data;
358 	struct rpc_cred	*cred = ctx->cred;
359 	unsigned long	timestamp, gencount;
360 	int		error;
361 
362  again:
363 	timestamp = jiffies;
364 	gencount = nfs_inc_attr_generation_counter();
365 	error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages,
366 					  NFS_SERVER(inode)->dtsize, desc->plus);
367 	if (error < 0) {
368 		/* We requested READDIRPLUS, but the server doesn't grok it */
369 		if (error == -ENOTSUPP && desc->plus) {
370 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
371 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
372 			desc->plus = 0;
373 			goto again;
374 		}
375 		goto error;
376 	}
377 	desc->timestamp = timestamp;
378 	desc->gencount = gencount;
379 error:
380 	return error;
381 }
382 
383 static int xdr_decode(nfs_readdir_descriptor_t *desc,
384 		      struct nfs_entry *entry, struct xdr_stream *xdr)
385 {
386 	int error;
387 
388 	error = desc->decode(xdr, entry, desc->plus);
389 	if (error)
390 		return error;
391 	entry->fattr->time_start = desc->timestamp;
392 	entry->fattr->gencount = desc->gencount;
393 	return 0;
394 }
395 
396 static
397 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
398 {
399 	if (dentry->d_inode == NULL)
400 		goto different;
401 	if (nfs_compare_fh(entry->fh, NFS_FH(dentry->d_inode)) != 0)
402 		goto different;
403 	return 1;
404 different:
405 	return 0;
406 }
407 
408 static
409 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
410 {
411 	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
412 		return false;
413 	if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
414 		return true;
415 	if (ctx->pos == 0)
416 		return true;
417 	return false;
418 }
419 
420 /*
421  * This function is called by the lookup code to request the use of
422  * readdirplus to accelerate any future lookups in the same
423  * directory.
424  */
425 static
426 void nfs_advise_use_readdirplus(struct inode *dir)
427 {
428 	set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags);
429 }
430 
431 static
432 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
433 {
434 	struct qstr filename = QSTR_INIT(entry->name, entry->len);
435 	struct dentry *dentry;
436 	struct dentry *alias;
437 	struct inode *dir = parent->d_inode;
438 	struct inode *inode;
439 	int status;
440 
441 	if (filename.name[0] == '.') {
442 		if (filename.len == 1)
443 			return;
444 		if (filename.len == 2 && filename.name[1] == '.')
445 			return;
446 	}
447 	filename.hash = full_name_hash(filename.name, filename.len);
448 
449 	dentry = d_lookup(parent, &filename);
450 	if (dentry != NULL) {
451 		if (nfs_same_file(dentry, entry)) {
452 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
453 			status = nfs_refresh_inode(dentry->d_inode, entry->fattr);
454 			if (!status)
455 				nfs_setsecurity(dentry->d_inode, entry->fattr, entry->label);
456 			goto out;
457 		} else {
458 			if (d_invalidate(dentry) != 0)
459 				goto out;
460 			dput(dentry);
461 		}
462 	}
463 
464 	dentry = d_alloc(parent, &filename);
465 	if (dentry == NULL)
466 		return;
467 
468 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
469 	if (IS_ERR(inode))
470 		goto out;
471 
472 	alias = d_materialise_unique(dentry, inode);
473 	if (IS_ERR(alias))
474 		goto out;
475 	else if (alias) {
476 		nfs_set_verifier(alias, nfs_save_change_attribute(dir));
477 		dput(alias);
478 	} else
479 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
480 
481 out:
482 	dput(dentry);
483 }
484 
485 /* Perform conversion from xdr to cache array */
486 static
487 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
488 				struct page **xdr_pages, struct page *page, unsigned int buflen)
489 {
490 	struct xdr_stream stream;
491 	struct xdr_buf buf;
492 	struct page *scratch;
493 	struct nfs_cache_array *array;
494 	unsigned int count = 0;
495 	int status;
496 
497 	scratch = alloc_page(GFP_KERNEL);
498 	if (scratch == NULL)
499 		return -ENOMEM;
500 
501 	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
502 	xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
503 
504 	do {
505 		status = xdr_decode(desc, entry, &stream);
506 		if (status != 0) {
507 			if (status == -EAGAIN)
508 				status = 0;
509 			break;
510 		}
511 
512 		count++;
513 
514 		if (desc->plus != 0)
515 			nfs_prime_dcache(desc->file->f_path.dentry, entry);
516 
517 		status = nfs_readdir_add_to_array(entry, page);
518 		if (status != 0)
519 			break;
520 	} while (!entry->eof);
521 
522 	if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
523 		array = nfs_readdir_get_array(page);
524 		if (!IS_ERR(array)) {
525 			array->eof_index = array->size;
526 			status = 0;
527 			nfs_readdir_release_array(page);
528 		} else
529 			status = PTR_ERR(array);
530 	}
531 
532 	put_page(scratch);
533 	return status;
534 }
535 
536 static
537 void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages)
538 {
539 	unsigned int i;
540 	for (i = 0; i < npages; i++)
541 		put_page(pages[i]);
542 }
543 
544 static
545 void nfs_readdir_free_large_page(void *ptr, struct page **pages,
546 		unsigned int npages)
547 {
548 	nfs_readdir_free_pagearray(pages, npages);
549 }
550 
551 /*
552  * nfs_readdir_large_page will allocate pages that must be freed with a call
553  * to nfs_readdir_free_large_page
554  */
555 static
556 int nfs_readdir_large_page(struct page **pages, unsigned int npages)
557 {
558 	unsigned int i;
559 
560 	for (i = 0; i < npages; i++) {
561 		struct page *page = alloc_page(GFP_KERNEL);
562 		if (page == NULL)
563 			goto out_freepages;
564 		pages[i] = page;
565 	}
566 	return 0;
567 
568 out_freepages:
569 	nfs_readdir_free_pagearray(pages, i);
570 	return -ENOMEM;
571 }
572 
573 static
574 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
575 {
576 	struct page *pages[NFS_MAX_READDIR_PAGES];
577 	void *pages_ptr = NULL;
578 	struct nfs_entry entry;
579 	struct file	*file = desc->file;
580 	struct nfs_cache_array *array;
581 	int status = -ENOMEM;
582 	unsigned int array_size = ARRAY_SIZE(pages);
583 
584 	entry.prev_cookie = 0;
585 	entry.cookie = desc->last_cookie;
586 	entry.eof = 0;
587 	entry.fh = nfs_alloc_fhandle();
588 	entry.fattr = nfs_alloc_fattr();
589 	entry.server = NFS_SERVER(inode);
590 	if (entry.fh == NULL || entry.fattr == NULL)
591 		goto out;
592 
593 	entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
594 	if (IS_ERR(entry.label)) {
595 		status = PTR_ERR(entry.label);
596 		goto out;
597 	}
598 
599 	array = nfs_readdir_get_array(page);
600 	if (IS_ERR(array)) {
601 		status = PTR_ERR(array);
602 		goto out_label_free;
603 	}
604 	memset(array, 0, sizeof(struct nfs_cache_array));
605 	array->eof_index = -1;
606 
607 	status = nfs_readdir_large_page(pages, array_size);
608 	if (status < 0)
609 		goto out_release_array;
610 	do {
611 		unsigned int pglen;
612 		status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
613 
614 		if (status < 0)
615 			break;
616 		pglen = status;
617 		status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
618 		if (status < 0) {
619 			if (status == -ENOSPC)
620 				status = 0;
621 			break;
622 		}
623 	} while (array->eof_index < 0);
624 
625 	nfs_readdir_free_large_page(pages_ptr, pages, array_size);
626 out_release_array:
627 	nfs_readdir_release_array(page);
628 out_label_free:
629 	nfs4_label_free(entry.label);
630 out:
631 	nfs_free_fattr(entry.fattr);
632 	nfs_free_fhandle(entry.fh);
633 	return status;
634 }
635 
636 /*
637  * Now we cache directories properly, by converting xdr information
638  * to an array that can be used for lookups later.  This results in
639  * fewer cache pages, since we can store more information on each page.
640  * We only need to convert from xdr once so future lookups are much simpler
641  */
642 static
643 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
644 {
645 	struct inode	*inode = file_inode(desc->file);
646 	int ret;
647 
648 	ret = nfs_readdir_xdr_to_array(desc, page, inode);
649 	if (ret < 0)
650 		goto error;
651 	SetPageUptodate(page);
652 
653 	if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
654 		/* Should never happen */
655 		nfs_zap_mapping(inode, inode->i_mapping);
656 	}
657 	unlock_page(page);
658 	return 0;
659  error:
660 	unlock_page(page);
661 	return ret;
662 }
663 
664 static
665 void cache_page_release(nfs_readdir_descriptor_t *desc)
666 {
667 	if (!desc->page->mapping)
668 		nfs_readdir_clear_array(desc->page);
669 	page_cache_release(desc->page);
670 	desc->page = NULL;
671 }
672 
673 static
674 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
675 {
676 	return read_cache_page(file_inode(desc->file)->i_mapping,
677 			desc->page_index, (filler_t *)nfs_readdir_filler, desc);
678 }
679 
680 /*
681  * Returns 0 if desc->dir_cookie was found on page desc->page_index
682  */
683 static
684 int find_cache_page(nfs_readdir_descriptor_t *desc)
685 {
686 	int res;
687 
688 	desc->page = get_cache_page(desc);
689 	if (IS_ERR(desc->page))
690 		return PTR_ERR(desc->page);
691 
692 	res = nfs_readdir_search_array(desc);
693 	if (res != 0)
694 		cache_page_release(desc);
695 	return res;
696 }
697 
698 /* Search for desc->dir_cookie from the beginning of the page cache */
699 static inline
700 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
701 {
702 	int res;
703 
704 	if (desc->page_index == 0) {
705 		desc->current_index = 0;
706 		desc->last_cookie = 0;
707 	}
708 	do {
709 		res = find_cache_page(desc);
710 	} while (res == -EAGAIN);
711 	return res;
712 }
713 
714 /*
715  * Once we've found the start of the dirent within a page: fill 'er up...
716  */
717 static
718 int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
719 {
720 	struct file	*file = desc->file;
721 	int i = 0;
722 	int res = 0;
723 	struct nfs_cache_array *array = NULL;
724 	struct nfs_open_dir_context *ctx = file->private_data;
725 
726 	array = nfs_readdir_get_array(desc->page);
727 	if (IS_ERR(array)) {
728 		res = PTR_ERR(array);
729 		goto out;
730 	}
731 
732 	for (i = desc->cache_entry_index; i < array->size; i++) {
733 		struct nfs_cache_array_entry *ent;
734 
735 		ent = &array->array[i];
736 		if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
737 		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
738 			desc->eof = 1;
739 			break;
740 		}
741 		desc->ctx->pos++;
742 		if (i < (array->size-1))
743 			*desc->dir_cookie = array->array[i+1].cookie;
744 		else
745 			*desc->dir_cookie = array->last_cookie;
746 		if (ctx->duped != 0)
747 			ctx->duped = 1;
748 	}
749 	if (array->eof_index >= 0)
750 		desc->eof = 1;
751 
752 	nfs_readdir_release_array(desc->page);
753 out:
754 	cache_page_release(desc);
755 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
756 			(unsigned long long)*desc->dir_cookie, res);
757 	return res;
758 }
759 
760 /*
761  * If we cannot find a cookie in our cache, we suspect that this is
762  * because it points to a deleted file, so we ask the server to return
763  * whatever it thinks is the next entry. We then feed this to filldir.
764  * If all goes well, we should then be able to find our way round the
765  * cache on the next call to readdir_search_pagecache();
766  *
767  * NOTE: we cannot add the anonymous page to the pagecache because
768  *	 the data it contains might not be page aligned. Besides,
769  *	 we should already have a complete representation of the
770  *	 directory in the page cache by the time we get here.
771  */
772 static inline
773 int uncached_readdir(nfs_readdir_descriptor_t *desc)
774 {
775 	struct page	*page = NULL;
776 	int		status;
777 	struct inode *inode = file_inode(desc->file);
778 	struct nfs_open_dir_context *ctx = desc->file->private_data;
779 
780 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
781 			(unsigned long long)*desc->dir_cookie);
782 
783 	page = alloc_page(GFP_HIGHUSER);
784 	if (!page) {
785 		status = -ENOMEM;
786 		goto out;
787 	}
788 
789 	desc->page_index = 0;
790 	desc->last_cookie = *desc->dir_cookie;
791 	desc->page = page;
792 	ctx->duped = 0;
793 
794 	status = nfs_readdir_xdr_to_array(desc, page, inode);
795 	if (status < 0)
796 		goto out_release;
797 
798 	status = nfs_do_filldir(desc);
799 
800  out:
801 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
802 			__func__, status);
803 	return status;
804  out_release:
805 	cache_page_release(desc);
806 	goto out;
807 }
808 
809 /* The file offset position represents the dirent entry number.  A
810    last cookie cache takes care of the common case of reading the
811    whole directory.
812  */
813 static int nfs_readdir(struct file *file, struct dir_context *ctx)
814 {
815 	struct dentry	*dentry = file->f_path.dentry;
816 	struct inode	*inode = dentry->d_inode;
817 	nfs_readdir_descriptor_t my_desc,
818 			*desc = &my_desc;
819 	struct nfs_open_dir_context *dir_ctx = file->private_data;
820 	int res = 0;
821 
822 	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
823 			file, (long long)ctx->pos);
824 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
825 
826 	/*
827 	 * ctx->pos points to the dirent entry number.
828 	 * *desc->dir_cookie has the cookie for the next entry. We have
829 	 * to either find the entry with the appropriate number or
830 	 * revalidate the cookie.
831 	 */
832 	memset(desc, 0, sizeof(*desc));
833 
834 	desc->file = file;
835 	desc->ctx = ctx;
836 	desc->dir_cookie = &dir_ctx->dir_cookie;
837 	desc->decode = NFS_PROTO(inode)->decode_dirent;
838 	desc->plus = nfs_use_readdirplus(inode, ctx) ? 1 : 0;
839 
840 	nfs_block_sillyrename(dentry);
841 	if (ctx->pos == 0 || nfs_attribute_cache_expired(inode))
842 		res = nfs_revalidate_mapping(inode, file->f_mapping);
843 	if (res < 0)
844 		goto out;
845 
846 	do {
847 		res = readdir_search_pagecache(desc);
848 
849 		if (res == -EBADCOOKIE) {
850 			res = 0;
851 			/* This means either end of directory */
852 			if (*desc->dir_cookie && desc->eof == 0) {
853 				/* Or that the server has 'lost' a cookie */
854 				res = uncached_readdir(desc);
855 				if (res == 0)
856 					continue;
857 			}
858 			break;
859 		}
860 		if (res == -ETOOSMALL && desc->plus) {
861 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
862 			nfs_zap_caches(inode);
863 			desc->page_index = 0;
864 			desc->plus = 0;
865 			desc->eof = 0;
866 			continue;
867 		}
868 		if (res < 0)
869 			break;
870 
871 		res = nfs_do_filldir(desc);
872 		if (res < 0)
873 			break;
874 	} while (!desc->eof);
875 out:
876 	nfs_unblock_sillyrename(dentry);
877 	if (res > 0)
878 		res = 0;
879 	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
880 	return res;
881 }
882 
883 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
884 {
885 	struct inode *inode = file_inode(filp);
886 	struct nfs_open_dir_context *dir_ctx = filp->private_data;
887 
888 	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
889 			filp, offset, whence);
890 
891 	mutex_lock(&inode->i_mutex);
892 	switch (whence) {
893 		case 1:
894 			offset += filp->f_pos;
895 		case 0:
896 			if (offset >= 0)
897 				break;
898 		default:
899 			offset = -EINVAL;
900 			goto out;
901 	}
902 	if (offset != filp->f_pos) {
903 		filp->f_pos = offset;
904 		dir_ctx->dir_cookie = 0;
905 		dir_ctx->duped = 0;
906 	}
907 out:
908 	mutex_unlock(&inode->i_mutex);
909 	return offset;
910 }
911 
912 /*
913  * All directory operations under NFS are synchronous, so fsync()
914  * is a dummy operation.
915  */
916 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
917 			 int datasync)
918 {
919 	struct inode *inode = file_inode(filp);
920 
921 	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
922 
923 	mutex_lock(&inode->i_mutex);
924 	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
925 	mutex_unlock(&inode->i_mutex);
926 	return 0;
927 }
928 
929 /**
930  * nfs_force_lookup_revalidate - Mark the directory as having changed
931  * @dir - pointer to directory inode
932  *
933  * This forces the revalidation code in nfs_lookup_revalidate() to do a
934  * full lookup on all child dentries of 'dir' whenever a change occurs
935  * on the server that might have invalidated our dcache.
936  *
937  * The caller should be holding dir->i_lock
938  */
939 void nfs_force_lookup_revalidate(struct inode *dir)
940 {
941 	NFS_I(dir)->cache_change_attribute++;
942 }
943 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
944 
945 /*
946  * A check for whether or not the parent directory has changed.
947  * In the case it has, we assume that the dentries are untrustworthy
948  * and may need to be looked up again.
949  */
950 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
951 {
952 	if (IS_ROOT(dentry))
953 		return 1;
954 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
955 		return 0;
956 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
957 		return 0;
958 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
959 	if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
960 		return 0;
961 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
962 		return 0;
963 	return 1;
964 }
965 
966 /*
967  * Use intent information to check whether or not we're going to do
968  * an O_EXCL create using this path component.
969  */
970 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
971 {
972 	if (NFS_PROTO(dir)->version == 2)
973 		return 0;
974 	return flags & LOOKUP_EXCL;
975 }
976 
977 /*
978  * Inode and filehandle revalidation for lookups.
979  *
980  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
981  * or if the intent information indicates that we're about to open this
982  * particular file and the "nocto" mount flag is not set.
983  *
984  */
985 static
986 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
987 {
988 	struct nfs_server *server = NFS_SERVER(inode);
989 	int ret;
990 
991 	if (IS_AUTOMOUNT(inode))
992 		return 0;
993 	/* VFS wants an on-the-wire revalidation */
994 	if (flags & LOOKUP_REVAL)
995 		goto out_force;
996 	/* This is an open(2) */
997 	if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) &&
998 	    (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
999 		goto out_force;
1000 out:
1001 	return (inode->i_nlink == 0) ? -ENOENT : 0;
1002 out_force:
1003 	ret = __nfs_revalidate_inode(server, inode);
1004 	if (ret != 0)
1005 		return ret;
1006 	goto out;
1007 }
1008 
1009 /*
1010  * We judge how long we want to trust negative
1011  * dentries by looking at the parent inode mtime.
1012  *
1013  * If parent mtime has changed, we revalidate, else we wait for a
1014  * period corresponding to the parent's attribute cache timeout value.
1015  */
1016 static inline
1017 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1018 		       unsigned int flags)
1019 {
1020 	/* Don't revalidate a negative dentry if we're creating a new file */
1021 	if (flags & LOOKUP_CREATE)
1022 		return 0;
1023 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1024 		return 1;
1025 	return !nfs_check_verifier(dir, dentry);
1026 }
1027 
1028 /*
1029  * This is called every time the dcache has a lookup hit,
1030  * and we should check whether we can really trust that
1031  * lookup.
1032  *
1033  * NOTE! The hit can be a negative hit too, don't assume
1034  * we have an inode!
1035  *
1036  * If the parent directory is seen to have changed, we throw out the
1037  * cached dentry and do a new lookup.
1038  */
1039 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1040 {
1041 	struct inode *dir;
1042 	struct inode *inode;
1043 	struct dentry *parent;
1044 	struct nfs_fh *fhandle = NULL;
1045 	struct nfs_fattr *fattr = NULL;
1046 	struct nfs4_label *label = NULL;
1047 	int error;
1048 
1049 	if (flags & LOOKUP_RCU)
1050 		return -ECHILD;
1051 
1052 	parent = dget_parent(dentry);
1053 	dir = parent->d_inode;
1054 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1055 	inode = dentry->d_inode;
1056 
1057 	if (!inode) {
1058 		if (nfs_neg_need_reval(dir, dentry, flags))
1059 			goto out_bad;
1060 		goto out_valid_noent;
1061 	}
1062 
1063 	if (is_bad_inode(inode)) {
1064 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1065 				__func__, dentry);
1066 		goto out_bad;
1067 	}
1068 
1069 	if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1070 		goto out_set_verifier;
1071 
1072 	/* Force a full look up iff the parent directory has changed */
1073 	if (!nfs_is_exclusive_create(dir, flags) && nfs_check_verifier(dir, dentry)) {
1074 		if (nfs_lookup_verify_inode(inode, flags))
1075 			goto out_zap_parent;
1076 		goto out_valid;
1077 	}
1078 
1079 	if (NFS_STALE(inode))
1080 		goto out_bad;
1081 
1082 	error = -ENOMEM;
1083 	fhandle = nfs_alloc_fhandle();
1084 	fattr = nfs_alloc_fattr();
1085 	if (fhandle == NULL || fattr == NULL)
1086 		goto out_error;
1087 
1088 	label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
1089 	if (IS_ERR(label))
1090 		goto out_error;
1091 
1092 	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1093 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1094 	trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1095 	if (error)
1096 		goto out_bad;
1097 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1098 		goto out_bad;
1099 	if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1100 		goto out_bad;
1101 
1102 	nfs_setsecurity(inode, fattr, label);
1103 
1104 	nfs_free_fattr(fattr);
1105 	nfs_free_fhandle(fhandle);
1106 	nfs4_label_free(label);
1107 
1108 out_set_verifier:
1109 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1110  out_valid:
1111 	/* Success: notify readdir to use READDIRPLUS */
1112 	nfs_advise_use_readdirplus(dir);
1113  out_valid_noent:
1114 	dput(parent);
1115 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1116 			__func__, dentry);
1117 	return 1;
1118 out_zap_parent:
1119 	nfs_zap_caches(dir);
1120  out_bad:
1121 	nfs_free_fattr(fattr);
1122 	nfs_free_fhandle(fhandle);
1123 	nfs4_label_free(label);
1124 	nfs_mark_for_revalidate(dir);
1125 	if (inode && S_ISDIR(inode->i_mode)) {
1126 		/* Purge readdir caches. */
1127 		nfs_zap_caches(inode);
1128 		/*
1129 		 * We can't d_drop the root of a disconnected tree:
1130 		 * its d_hash is on the s_anon list and d_drop() would hide
1131 		 * it from shrink_dcache_for_unmount(), leading to busy
1132 		 * inodes on unmount and further oopses.
1133 		 */
1134 		if (IS_ROOT(dentry))
1135 			goto out_valid;
1136 	}
1137 	/* If we have submounts, don't unhash ! */
1138 	if (check_submounts_and_drop(dentry) != 0)
1139 		goto out_valid;
1140 
1141 	dput(parent);
1142 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1143 			__func__, dentry);
1144 	return 0;
1145 out_error:
1146 	nfs_free_fattr(fattr);
1147 	nfs_free_fhandle(fhandle);
1148 	nfs4_label_free(label);
1149 	dput(parent);
1150 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1151 			__func__, dentry, error);
1152 	return error;
1153 }
1154 
1155 /*
1156  * A weaker form of d_revalidate for revalidating just the dentry->d_inode
1157  * when we don't really care about the dentry name. This is called when a
1158  * pathwalk ends on a dentry that was not found via a normal lookup in the
1159  * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1160  *
1161  * In this situation, we just want to verify that the inode itself is OK
1162  * since the dentry might have changed on the server.
1163  */
1164 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1165 {
1166 	int error;
1167 	struct inode *inode = dentry->d_inode;
1168 
1169 	/*
1170 	 * I believe we can only get a negative dentry here in the case of a
1171 	 * procfs-style symlink. Just assume it's correct for now, but we may
1172 	 * eventually need to do something more here.
1173 	 */
1174 	if (!inode) {
1175 		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1176 				__func__, dentry);
1177 		return 1;
1178 	}
1179 
1180 	if (is_bad_inode(inode)) {
1181 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1182 				__func__, dentry);
1183 		return 0;
1184 	}
1185 
1186 	error = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1187 	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1188 			__func__, inode->i_ino, error ? "invalid" : "valid");
1189 	return !error;
1190 }
1191 
1192 /*
1193  * This is called from dput() when d_count is going to 0.
1194  */
1195 static int nfs_dentry_delete(const struct dentry *dentry)
1196 {
1197 	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1198 		dentry, dentry->d_flags);
1199 
1200 	/* Unhash any dentry with a stale inode */
1201 	if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
1202 		return 1;
1203 
1204 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1205 		/* Unhash it, so that ->d_iput() would be called */
1206 		return 1;
1207 	}
1208 	if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1209 		/* Unhash it, so that ancestors of killed async unlink
1210 		 * files will be cleaned up during umount */
1211 		return 1;
1212 	}
1213 	return 0;
1214 
1215 }
1216 
1217 /* Ensure that we revalidate inode->i_nlink */
1218 static void nfs_drop_nlink(struct inode *inode)
1219 {
1220 	spin_lock(&inode->i_lock);
1221 	/* drop the inode if we're reasonably sure this is the last link */
1222 	if (inode->i_nlink == 1)
1223 		clear_nlink(inode);
1224 	NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR;
1225 	spin_unlock(&inode->i_lock);
1226 }
1227 
1228 /*
1229  * Called when the dentry loses inode.
1230  * We use it to clean up silly-renamed files.
1231  */
1232 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1233 {
1234 	if (S_ISDIR(inode->i_mode))
1235 		/* drop any readdir cache as it could easily be old */
1236 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1237 
1238 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1239 		nfs_complete_unlink(dentry, inode);
1240 		nfs_drop_nlink(inode);
1241 	}
1242 	iput(inode);
1243 }
1244 
1245 static void nfs_d_release(struct dentry *dentry)
1246 {
1247 	/* free cached devname value, if it survived that far */
1248 	if (unlikely(dentry->d_fsdata)) {
1249 		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1250 			WARN_ON(1);
1251 		else
1252 			kfree(dentry->d_fsdata);
1253 	}
1254 }
1255 
1256 const struct dentry_operations nfs_dentry_operations = {
1257 	.d_revalidate	= nfs_lookup_revalidate,
1258 	.d_weak_revalidate	= nfs_weak_revalidate,
1259 	.d_delete	= nfs_dentry_delete,
1260 	.d_iput		= nfs_dentry_iput,
1261 	.d_automount	= nfs_d_automount,
1262 	.d_release	= nfs_d_release,
1263 };
1264 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1265 
1266 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1267 {
1268 	struct dentry *res;
1269 	struct dentry *parent;
1270 	struct inode *inode = NULL;
1271 	struct nfs_fh *fhandle = NULL;
1272 	struct nfs_fattr *fattr = NULL;
1273 	struct nfs4_label *label = NULL;
1274 	int error;
1275 
1276 	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1277 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1278 
1279 	res = ERR_PTR(-ENAMETOOLONG);
1280 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1281 		goto out;
1282 
1283 	/*
1284 	 * If we're doing an exclusive create, optimize away the lookup
1285 	 * but don't hash the dentry.
1286 	 */
1287 	if (nfs_is_exclusive_create(dir, flags)) {
1288 		d_instantiate(dentry, NULL);
1289 		res = NULL;
1290 		goto out;
1291 	}
1292 
1293 	res = ERR_PTR(-ENOMEM);
1294 	fhandle = nfs_alloc_fhandle();
1295 	fattr = nfs_alloc_fattr();
1296 	if (fhandle == NULL || fattr == NULL)
1297 		goto out;
1298 
1299 	label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1300 	if (IS_ERR(label))
1301 		goto out;
1302 
1303 	parent = dentry->d_parent;
1304 	/* Protect against concurrent sillydeletes */
1305 	trace_nfs_lookup_enter(dir, dentry, flags);
1306 	nfs_block_sillyrename(parent);
1307 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1308 	if (error == -ENOENT)
1309 		goto no_entry;
1310 	if (error < 0) {
1311 		res = ERR_PTR(error);
1312 		goto out_unblock_sillyrename;
1313 	}
1314 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1315 	res = ERR_CAST(inode);
1316 	if (IS_ERR(res))
1317 		goto out_unblock_sillyrename;
1318 
1319 	/* Success: notify readdir to use READDIRPLUS */
1320 	nfs_advise_use_readdirplus(dir);
1321 
1322 no_entry:
1323 	res = d_materialise_unique(dentry, inode);
1324 	if (res != NULL) {
1325 		if (IS_ERR(res))
1326 			goto out_unblock_sillyrename;
1327 		dentry = res;
1328 	}
1329 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1330 out_unblock_sillyrename:
1331 	nfs_unblock_sillyrename(parent);
1332 	trace_nfs_lookup_exit(dir, dentry, flags, error);
1333 	nfs4_label_free(label);
1334 out:
1335 	nfs_free_fattr(fattr);
1336 	nfs_free_fhandle(fhandle);
1337 	return res;
1338 }
1339 EXPORT_SYMBOL_GPL(nfs_lookup);
1340 
1341 #if IS_ENABLED(CONFIG_NFS_V4)
1342 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1343 
1344 const struct dentry_operations nfs4_dentry_operations = {
1345 	.d_revalidate	= nfs4_lookup_revalidate,
1346 	.d_delete	= nfs_dentry_delete,
1347 	.d_iput		= nfs_dentry_iput,
1348 	.d_automount	= nfs_d_automount,
1349 	.d_release	= nfs_d_release,
1350 };
1351 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1352 
1353 static fmode_t flags_to_mode(int flags)
1354 {
1355 	fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1356 	if ((flags & O_ACCMODE) != O_WRONLY)
1357 		res |= FMODE_READ;
1358 	if ((flags & O_ACCMODE) != O_RDONLY)
1359 		res |= FMODE_WRITE;
1360 	return res;
1361 }
1362 
1363 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags)
1364 {
1365 	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags));
1366 }
1367 
1368 static int do_open(struct inode *inode, struct file *filp)
1369 {
1370 	nfs_fscache_open_file(inode, filp);
1371 	return 0;
1372 }
1373 
1374 static int nfs_finish_open(struct nfs_open_context *ctx,
1375 			   struct dentry *dentry,
1376 			   struct file *file, unsigned open_flags,
1377 			   int *opened)
1378 {
1379 	int err;
1380 
1381 	if ((open_flags & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL))
1382 		*opened |= FILE_CREATED;
1383 
1384 	err = finish_open(file, dentry, do_open, opened);
1385 	if (err)
1386 		goto out;
1387 	nfs_file_set_open_context(file, ctx);
1388 
1389 out:
1390 	return err;
1391 }
1392 
1393 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1394 		    struct file *file, unsigned open_flags,
1395 		    umode_t mode, int *opened)
1396 {
1397 	struct nfs_open_context *ctx;
1398 	struct dentry *res;
1399 	struct iattr attr = { .ia_valid = ATTR_OPEN };
1400 	struct inode *inode;
1401 	unsigned int lookup_flags = 0;
1402 	int err;
1403 
1404 	/* Expect a negative dentry */
1405 	BUG_ON(dentry->d_inode);
1406 
1407 	dfprintk(VFS, "NFS: atomic_open(%s/%ld), %pd\n",
1408 			dir->i_sb->s_id, dir->i_ino, dentry);
1409 
1410 	err = nfs_check_flags(open_flags);
1411 	if (err)
1412 		return err;
1413 
1414 	/* NFS only supports OPEN on regular files */
1415 	if ((open_flags & O_DIRECTORY)) {
1416 		if (!d_unhashed(dentry)) {
1417 			/*
1418 			 * Hashed negative dentry with O_DIRECTORY: dentry was
1419 			 * revalidated and is fine, no need to perform lookup
1420 			 * again
1421 			 */
1422 			return -ENOENT;
1423 		}
1424 		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1425 		goto no_open;
1426 	}
1427 
1428 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1429 		return -ENAMETOOLONG;
1430 
1431 	if (open_flags & O_CREAT) {
1432 		attr.ia_valid |= ATTR_MODE;
1433 		attr.ia_mode = mode & ~current_umask();
1434 	}
1435 	if (open_flags & O_TRUNC) {
1436 		attr.ia_valid |= ATTR_SIZE;
1437 		attr.ia_size = 0;
1438 	}
1439 
1440 	ctx = create_nfs_open_context(dentry, open_flags);
1441 	err = PTR_ERR(ctx);
1442 	if (IS_ERR(ctx))
1443 		goto out;
1444 
1445 	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1446 	nfs_block_sillyrename(dentry->d_parent);
1447 	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, opened);
1448 	nfs_unblock_sillyrename(dentry->d_parent);
1449 	if (IS_ERR(inode)) {
1450 		err = PTR_ERR(inode);
1451 		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1452 		put_nfs_open_context(ctx);
1453 		switch (err) {
1454 		case -ENOENT:
1455 			d_drop(dentry);
1456 			d_add(dentry, NULL);
1457 			break;
1458 		case -EISDIR:
1459 		case -ENOTDIR:
1460 			goto no_open;
1461 		case -ELOOP:
1462 			if (!(open_flags & O_NOFOLLOW))
1463 				goto no_open;
1464 			break;
1465 			/* case -EINVAL: */
1466 		default:
1467 			break;
1468 		}
1469 		goto out;
1470 	}
1471 
1472 	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags, opened);
1473 	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1474 	put_nfs_open_context(ctx);
1475 out:
1476 	return err;
1477 
1478 no_open:
1479 	res = nfs_lookup(dir, dentry, lookup_flags);
1480 	err = PTR_ERR(res);
1481 	if (IS_ERR(res))
1482 		goto out;
1483 
1484 	return finish_no_open(file, res);
1485 }
1486 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1487 
1488 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1489 {
1490 	struct dentry *parent = NULL;
1491 	struct inode *inode;
1492 	struct inode *dir;
1493 	int ret = 0;
1494 
1495 	if (flags & LOOKUP_RCU)
1496 		return -ECHILD;
1497 
1498 	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1499 		goto no_open;
1500 	if (d_mountpoint(dentry))
1501 		goto no_open;
1502 	if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1)
1503 		goto no_open;
1504 
1505 	inode = dentry->d_inode;
1506 	parent = dget_parent(dentry);
1507 	dir = parent->d_inode;
1508 
1509 	/* We can't create new files in nfs_open_revalidate(), so we
1510 	 * optimize away revalidation of negative dentries.
1511 	 */
1512 	if (inode == NULL) {
1513 		if (!nfs_neg_need_reval(dir, dentry, flags))
1514 			ret = 1;
1515 		goto out;
1516 	}
1517 
1518 	/* NFS only supports OPEN on regular files */
1519 	if (!S_ISREG(inode->i_mode))
1520 		goto no_open_dput;
1521 	/* We cannot do exclusive creation on a positive dentry */
1522 	if (flags & LOOKUP_EXCL)
1523 		goto no_open_dput;
1524 
1525 	/* Let f_op->open() actually open (and revalidate) the file */
1526 	ret = 1;
1527 
1528 out:
1529 	dput(parent);
1530 	return ret;
1531 
1532 no_open_dput:
1533 	dput(parent);
1534 no_open:
1535 	return nfs_lookup_revalidate(dentry, flags);
1536 }
1537 
1538 #endif /* CONFIG_NFSV4 */
1539 
1540 /*
1541  * Code common to create, mkdir, and mknod.
1542  */
1543 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1544 				struct nfs_fattr *fattr,
1545 				struct nfs4_label *label)
1546 {
1547 	struct dentry *parent = dget_parent(dentry);
1548 	struct inode *dir = parent->d_inode;
1549 	struct inode *inode;
1550 	int error = -EACCES;
1551 
1552 	d_drop(dentry);
1553 
1554 	/* We may have been initialized further down */
1555 	if (dentry->d_inode)
1556 		goto out;
1557 	if (fhandle->size == 0) {
1558 		error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1559 		if (error)
1560 			goto out_error;
1561 	}
1562 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1563 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1564 		struct nfs_server *server = NFS_SB(dentry->d_sb);
1565 		error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL);
1566 		if (error < 0)
1567 			goto out_error;
1568 	}
1569 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1570 	error = PTR_ERR(inode);
1571 	if (IS_ERR(inode))
1572 		goto out_error;
1573 	d_add(dentry, inode);
1574 out:
1575 	dput(parent);
1576 	return 0;
1577 out_error:
1578 	nfs_mark_for_revalidate(dir);
1579 	dput(parent);
1580 	return error;
1581 }
1582 EXPORT_SYMBOL_GPL(nfs_instantiate);
1583 
1584 /*
1585  * Following a failed create operation, we drop the dentry rather
1586  * than retain a negative dentry. This avoids a problem in the event
1587  * that the operation succeeded on the server, but an error in the
1588  * reply path made it appear to have failed.
1589  */
1590 int nfs_create(struct inode *dir, struct dentry *dentry,
1591 		umode_t mode, bool excl)
1592 {
1593 	struct iattr attr;
1594 	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1595 	int error;
1596 
1597 	dfprintk(VFS, "NFS: create(%s/%ld), %pd\n",
1598 			dir->i_sb->s_id, dir->i_ino, dentry);
1599 
1600 	attr.ia_mode = mode;
1601 	attr.ia_valid = ATTR_MODE;
1602 
1603 	trace_nfs_create_enter(dir, dentry, open_flags);
1604 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1605 	trace_nfs_create_exit(dir, dentry, open_flags, error);
1606 	if (error != 0)
1607 		goto out_err;
1608 	return 0;
1609 out_err:
1610 	d_drop(dentry);
1611 	return error;
1612 }
1613 EXPORT_SYMBOL_GPL(nfs_create);
1614 
1615 /*
1616  * See comments for nfs_proc_create regarding failed operations.
1617  */
1618 int
1619 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1620 {
1621 	struct iattr attr;
1622 	int status;
1623 
1624 	dfprintk(VFS, "NFS: mknod(%s/%ld), %pd\n",
1625 			dir->i_sb->s_id, dir->i_ino, dentry);
1626 
1627 	if (!new_valid_dev(rdev))
1628 		return -EINVAL;
1629 
1630 	attr.ia_mode = mode;
1631 	attr.ia_valid = ATTR_MODE;
1632 
1633 	trace_nfs_mknod_enter(dir, dentry);
1634 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1635 	trace_nfs_mknod_exit(dir, dentry, status);
1636 	if (status != 0)
1637 		goto out_err;
1638 	return 0;
1639 out_err:
1640 	d_drop(dentry);
1641 	return status;
1642 }
1643 EXPORT_SYMBOL_GPL(nfs_mknod);
1644 
1645 /*
1646  * See comments for nfs_proc_create regarding failed operations.
1647  */
1648 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1649 {
1650 	struct iattr attr;
1651 	int error;
1652 
1653 	dfprintk(VFS, "NFS: mkdir(%s/%ld), %pd\n",
1654 			dir->i_sb->s_id, dir->i_ino, dentry);
1655 
1656 	attr.ia_valid = ATTR_MODE;
1657 	attr.ia_mode = mode | S_IFDIR;
1658 
1659 	trace_nfs_mkdir_enter(dir, dentry);
1660 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1661 	trace_nfs_mkdir_exit(dir, dentry, error);
1662 	if (error != 0)
1663 		goto out_err;
1664 	return 0;
1665 out_err:
1666 	d_drop(dentry);
1667 	return error;
1668 }
1669 EXPORT_SYMBOL_GPL(nfs_mkdir);
1670 
1671 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1672 {
1673 	if (dentry->d_inode != NULL && !d_unhashed(dentry))
1674 		d_delete(dentry);
1675 }
1676 
1677 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1678 {
1679 	int error;
1680 
1681 	dfprintk(VFS, "NFS: rmdir(%s/%ld), %pd\n",
1682 			dir->i_sb->s_id, dir->i_ino, dentry);
1683 
1684 	trace_nfs_rmdir_enter(dir, dentry);
1685 	if (dentry->d_inode) {
1686 		nfs_wait_on_sillyrename(dentry);
1687 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1688 		/* Ensure the VFS deletes this inode */
1689 		switch (error) {
1690 		case 0:
1691 			clear_nlink(dentry->d_inode);
1692 			break;
1693 		case -ENOENT:
1694 			nfs_dentry_handle_enoent(dentry);
1695 		}
1696 	} else
1697 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1698 	trace_nfs_rmdir_exit(dir, dentry, error);
1699 
1700 	return error;
1701 }
1702 EXPORT_SYMBOL_GPL(nfs_rmdir);
1703 
1704 /*
1705  * Remove a file after making sure there are no pending writes,
1706  * and after checking that the file has only one user.
1707  *
1708  * We invalidate the attribute cache and free the inode prior to the operation
1709  * to avoid possible races if the server reuses the inode.
1710  */
1711 static int nfs_safe_remove(struct dentry *dentry)
1712 {
1713 	struct inode *dir = dentry->d_parent->d_inode;
1714 	struct inode *inode = dentry->d_inode;
1715 	int error = -EBUSY;
1716 
1717 	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
1718 
1719 	/* If the dentry was sillyrenamed, we simply call d_delete() */
1720 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1721 		error = 0;
1722 		goto out;
1723 	}
1724 
1725 	trace_nfs_remove_enter(dir, dentry);
1726 	if (inode != NULL) {
1727 		NFS_PROTO(inode)->return_delegation(inode);
1728 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1729 		if (error == 0)
1730 			nfs_drop_nlink(inode);
1731 	} else
1732 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1733 	if (error == -ENOENT)
1734 		nfs_dentry_handle_enoent(dentry);
1735 	trace_nfs_remove_exit(dir, dentry, error);
1736 out:
1737 	return error;
1738 }
1739 
1740 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1741  *  belongs to an active ".nfs..." file and we return -EBUSY.
1742  *
1743  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1744  */
1745 int nfs_unlink(struct inode *dir, struct dentry *dentry)
1746 {
1747 	int error;
1748 	int need_rehash = 0;
1749 
1750 	dfprintk(VFS, "NFS: unlink(%s/%ld, %pd)\n", dir->i_sb->s_id,
1751 		dir->i_ino, dentry);
1752 
1753 	trace_nfs_unlink_enter(dir, dentry);
1754 	spin_lock(&dentry->d_lock);
1755 	if (d_count(dentry) > 1) {
1756 		spin_unlock(&dentry->d_lock);
1757 		/* Start asynchronous writeout of the inode */
1758 		write_inode_now(dentry->d_inode, 0);
1759 		error = nfs_sillyrename(dir, dentry);
1760 		goto out;
1761 	}
1762 	if (!d_unhashed(dentry)) {
1763 		__d_drop(dentry);
1764 		need_rehash = 1;
1765 	}
1766 	spin_unlock(&dentry->d_lock);
1767 	error = nfs_safe_remove(dentry);
1768 	if (!error || error == -ENOENT) {
1769 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1770 	} else if (need_rehash)
1771 		d_rehash(dentry);
1772 out:
1773 	trace_nfs_unlink_exit(dir, dentry, error);
1774 	return error;
1775 }
1776 EXPORT_SYMBOL_GPL(nfs_unlink);
1777 
1778 /*
1779  * To create a symbolic link, most file systems instantiate a new inode,
1780  * add a page to it containing the path, then write it out to the disk
1781  * using prepare_write/commit_write.
1782  *
1783  * Unfortunately the NFS client can't create the in-core inode first
1784  * because it needs a file handle to create an in-core inode (see
1785  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1786  * symlink request has completed on the server.
1787  *
1788  * So instead we allocate a raw page, copy the symname into it, then do
1789  * the SYMLINK request with the page as the buffer.  If it succeeds, we
1790  * now have a new file handle and can instantiate an in-core NFS inode
1791  * and move the raw page into its mapping.
1792  */
1793 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1794 {
1795 	struct page *page;
1796 	char *kaddr;
1797 	struct iattr attr;
1798 	unsigned int pathlen = strlen(symname);
1799 	int error;
1800 
1801 	dfprintk(VFS, "NFS: symlink(%s/%ld, %pd, %s)\n", dir->i_sb->s_id,
1802 		dir->i_ino, dentry, symname);
1803 
1804 	if (pathlen > PAGE_SIZE)
1805 		return -ENAMETOOLONG;
1806 
1807 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
1808 	attr.ia_valid = ATTR_MODE;
1809 
1810 	page = alloc_page(GFP_HIGHUSER);
1811 	if (!page)
1812 		return -ENOMEM;
1813 
1814 	kaddr = kmap_atomic(page);
1815 	memcpy(kaddr, symname, pathlen);
1816 	if (pathlen < PAGE_SIZE)
1817 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1818 	kunmap_atomic(kaddr);
1819 
1820 	trace_nfs_symlink_enter(dir, dentry);
1821 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1822 	trace_nfs_symlink_exit(dir, dentry, error);
1823 	if (error != 0) {
1824 		dfprintk(VFS, "NFS: symlink(%s/%ld, %pd, %s) error %d\n",
1825 			dir->i_sb->s_id, dir->i_ino,
1826 			dentry, symname, error);
1827 		d_drop(dentry);
1828 		__free_page(page);
1829 		return error;
1830 	}
1831 
1832 	/*
1833 	 * No big deal if we can't add this page to the page cache here.
1834 	 * READLINK will get the missing page from the server if needed.
1835 	 */
1836 	if (!add_to_page_cache_lru(page, dentry->d_inode->i_mapping, 0,
1837 							GFP_KERNEL)) {
1838 		SetPageUptodate(page);
1839 		unlock_page(page);
1840 	} else
1841 		__free_page(page);
1842 
1843 	return 0;
1844 }
1845 EXPORT_SYMBOL_GPL(nfs_symlink);
1846 
1847 int
1848 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1849 {
1850 	struct inode *inode = old_dentry->d_inode;
1851 	int error;
1852 
1853 	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
1854 		old_dentry, dentry);
1855 
1856 	trace_nfs_link_enter(inode, dir, dentry);
1857 	NFS_PROTO(inode)->return_delegation(inode);
1858 
1859 	d_drop(dentry);
1860 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1861 	if (error == 0) {
1862 		ihold(inode);
1863 		d_add(dentry, inode);
1864 	}
1865 	trace_nfs_link_exit(inode, dir, dentry, error);
1866 	return error;
1867 }
1868 EXPORT_SYMBOL_GPL(nfs_link);
1869 
1870 /*
1871  * RENAME
1872  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1873  * different file handle for the same inode after a rename (e.g. when
1874  * moving to a different directory). A fail-safe method to do so would
1875  * be to look up old_dir/old_name, create a link to new_dir/new_name and
1876  * rename the old file using the sillyrename stuff. This way, the original
1877  * file in old_dir will go away when the last process iput()s the inode.
1878  *
1879  * FIXED.
1880  *
1881  * It actually works quite well. One needs to have the possibility for
1882  * at least one ".nfs..." file in each directory the file ever gets
1883  * moved or linked to which happens automagically with the new
1884  * implementation that only depends on the dcache stuff instead of
1885  * using the inode layer
1886  *
1887  * Unfortunately, things are a little more complicated than indicated
1888  * above. For a cross-directory move, we want to make sure we can get
1889  * rid of the old inode after the operation.  This means there must be
1890  * no pending writes (if it's a file), and the use count must be 1.
1891  * If these conditions are met, we can drop the dentries before doing
1892  * the rename.
1893  */
1894 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1895 		      struct inode *new_dir, struct dentry *new_dentry)
1896 {
1897 	struct inode *old_inode = old_dentry->d_inode;
1898 	struct inode *new_inode = new_dentry->d_inode;
1899 	struct dentry *dentry = NULL, *rehash = NULL;
1900 	int error = -EBUSY;
1901 
1902 	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
1903 		 old_dentry, new_dentry,
1904 		 d_count(new_dentry));
1905 
1906 	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
1907 	/*
1908 	 * For non-directories, check whether the target is busy and if so,
1909 	 * make a copy of the dentry and then do a silly-rename. If the
1910 	 * silly-rename succeeds, the copied dentry is hashed and becomes
1911 	 * the new target.
1912 	 */
1913 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
1914 		/*
1915 		 * To prevent any new references to the target during the
1916 		 * rename, we unhash the dentry in advance.
1917 		 */
1918 		if (!d_unhashed(new_dentry)) {
1919 			d_drop(new_dentry);
1920 			rehash = new_dentry;
1921 		}
1922 
1923 		if (d_count(new_dentry) > 2) {
1924 			int err;
1925 
1926 			/* copy the target dentry's name */
1927 			dentry = d_alloc(new_dentry->d_parent,
1928 					 &new_dentry->d_name);
1929 			if (!dentry)
1930 				goto out;
1931 
1932 			/* silly-rename the existing target ... */
1933 			err = nfs_sillyrename(new_dir, new_dentry);
1934 			if (err)
1935 				goto out;
1936 
1937 			new_dentry = dentry;
1938 			rehash = NULL;
1939 			new_inode = NULL;
1940 		}
1941 	}
1942 
1943 	NFS_PROTO(old_inode)->return_delegation(old_inode);
1944 	if (new_inode != NULL)
1945 		NFS_PROTO(new_inode)->return_delegation(new_inode);
1946 
1947 	error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1948 					   new_dir, &new_dentry->d_name);
1949 	nfs_mark_for_revalidate(old_inode);
1950 out:
1951 	if (rehash)
1952 		d_rehash(rehash);
1953 	trace_nfs_rename_exit(old_dir, old_dentry,
1954 			new_dir, new_dentry, error);
1955 	if (!error) {
1956 		if (new_inode != NULL)
1957 			nfs_drop_nlink(new_inode);
1958 		d_move(old_dentry, new_dentry);
1959 		nfs_set_verifier(new_dentry,
1960 					nfs_save_change_attribute(new_dir));
1961 	} else if (error == -ENOENT)
1962 		nfs_dentry_handle_enoent(old_dentry);
1963 
1964 	/* new dentry created? */
1965 	if (dentry)
1966 		dput(dentry);
1967 	return error;
1968 }
1969 EXPORT_SYMBOL_GPL(nfs_rename);
1970 
1971 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1972 static LIST_HEAD(nfs_access_lru_list);
1973 static atomic_long_t nfs_access_nr_entries;
1974 
1975 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1976 {
1977 	put_rpccred(entry->cred);
1978 	kfree(entry);
1979 	smp_mb__before_atomic_dec();
1980 	atomic_long_dec(&nfs_access_nr_entries);
1981 	smp_mb__after_atomic_dec();
1982 }
1983 
1984 static void nfs_access_free_list(struct list_head *head)
1985 {
1986 	struct nfs_access_entry *cache;
1987 
1988 	while (!list_empty(head)) {
1989 		cache = list_entry(head->next, struct nfs_access_entry, lru);
1990 		list_del(&cache->lru);
1991 		nfs_access_free_entry(cache);
1992 	}
1993 }
1994 
1995 unsigned long
1996 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
1997 {
1998 	LIST_HEAD(head);
1999 	struct nfs_inode *nfsi, *next;
2000 	struct nfs_access_entry *cache;
2001 	int nr_to_scan = sc->nr_to_scan;
2002 	gfp_t gfp_mask = sc->gfp_mask;
2003 	long freed = 0;
2004 
2005 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2006 		return SHRINK_STOP;
2007 
2008 	spin_lock(&nfs_access_lru_lock);
2009 	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2010 		struct inode *inode;
2011 
2012 		if (nr_to_scan-- == 0)
2013 			break;
2014 		inode = &nfsi->vfs_inode;
2015 		spin_lock(&inode->i_lock);
2016 		if (list_empty(&nfsi->access_cache_entry_lru))
2017 			goto remove_lru_entry;
2018 		cache = list_entry(nfsi->access_cache_entry_lru.next,
2019 				struct nfs_access_entry, lru);
2020 		list_move(&cache->lru, &head);
2021 		rb_erase(&cache->rb_node, &nfsi->access_cache);
2022 		freed++;
2023 		if (!list_empty(&nfsi->access_cache_entry_lru))
2024 			list_move_tail(&nfsi->access_cache_inode_lru,
2025 					&nfs_access_lru_list);
2026 		else {
2027 remove_lru_entry:
2028 			list_del_init(&nfsi->access_cache_inode_lru);
2029 			smp_mb__before_clear_bit();
2030 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2031 			smp_mb__after_clear_bit();
2032 		}
2033 		spin_unlock(&inode->i_lock);
2034 	}
2035 	spin_unlock(&nfs_access_lru_lock);
2036 	nfs_access_free_list(&head);
2037 	return freed;
2038 }
2039 
2040 unsigned long
2041 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2042 {
2043 	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2044 }
2045 
2046 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2047 {
2048 	struct rb_root *root_node = &nfsi->access_cache;
2049 	struct rb_node *n;
2050 	struct nfs_access_entry *entry;
2051 
2052 	/* Unhook entries from the cache */
2053 	while ((n = rb_first(root_node)) != NULL) {
2054 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2055 		rb_erase(n, root_node);
2056 		list_move(&entry->lru, head);
2057 	}
2058 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2059 }
2060 
2061 void nfs_access_zap_cache(struct inode *inode)
2062 {
2063 	LIST_HEAD(head);
2064 
2065 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2066 		return;
2067 	/* Remove from global LRU init */
2068 	spin_lock(&nfs_access_lru_lock);
2069 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2070 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2071 
2072 	spin_lock(&inode->i_lock);
2073 	__nfs_access_zap_cache(NFS_I(inode), &head);
2074 	spin_unlock(&inode->i_lock);
2075 	spin_unlock(&nfs_access_lru_lock);
2076 	nfs_access_free_list(&head);
2077 }
2078 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2079 
2080 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2081 {
2082 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2083 	struct nfs_access_entry *entry;
2084 
2085 	while (n != NULL) {
2086 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2087 
2088 		if (cred < entry->cred)
2089 			n = n->rb_left;
2090 		else if (cred > entry->cred)
2091 			n = n->rb_right;
2092 		else
2093 			return entry;
2094 	}
2095 	return NULL;
2096 }
2097 
2098 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2099 {
2100 	struct nfs_inode *nfsi = NFS_I(inode);
2101 	struct nfs_access_entry *cache;
2102 	int err = -ENOENT;
2103 
2104 	spin_lock(&inode->i_lock);
2105 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2106 		goto out_zap;
2107 	cache = nfs_access_search_rbtree(inode, cred);
2108 	if (cache == NULL)
2109 		goto out;
2110 	if (!nfs_have_delegated_attributes(inode) &&
2111 	    !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2112 		goto out_stale;
2113 	res->jiffies = cache->jiffies;
2114 	res->cred = cache->cred;
2115 	res->mask = cache->mask;
2116 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2117 	err = 0;
2118 out:
2119 	spin_unlock(&inode->i_lock);
2120 	return err;
2121 out_stale:
2122 	rb_erase(&cache->rb_node, &nfsi->access_cache);
2123 	list_del(&cache->lru);
2124 	spin_unlock(&inode->i_lock);
2125 	nfs_access_free_entry(cache);
2126 	return -ENOENT;
2127 out_zap:
2128 	spin_unlock(&inode->i_lock);
2129 	nfs_access_zap_cache(inode);
2130 	return -ENOENT;
2131 }
2132 
2133 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2134 {
2135 	struct nfs_inode *nfsi = NFS_I(inode);
2136 	struct rb_root *root_node = &nfsi->access_cache;
2137 	struct rb_node **p = &root_node->rb_node;
2138 	struct rb_node *parent = NULL;
2139 	struct nfs_access_entry *entry;
2140 
2141 	spin_lock(&inode->i_lock);
2142 	while (*p != NULL) {
2143 		parent = *p;
2144 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2145 
2146 		if (set->cred < entry->cred)
2147 			p = &parent->rb_left;
2148 		else if (set->cred > entry->cred)
2149 			p = &parent->rb_right;
2150 		else
2151 			goto found;
2152 	}
2153 	rb_link_node(&set->rb_node, parent, p);
2154 	rb_insert_color(&set->rb_node, root_node);
2155 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2156 	spin_unlock(&inode->i_lock);
2157 	return;
2158 found:
2159 	rb_replace_node(parent, &set->rb_node, root_node);
2160 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2161 	list_del(&entry->lru);
2162 	spin_unlock(&inode->i_lock);
2163 	nfs_access_free_entry(entry);
2164 }
2165 
2166 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2167 {
2168 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2169 	if (cache == NULL)
2170 		return;
2171 	RB_CLEAR_NODE(&cache->rb_node);
2172 	cache->jiffies = set->jiffies;
2173 	cache->cred = get_rpccred(set->cred);
2174 	cache->mask = set->mask;
2175 
2176 	nfs_access_add_rbtree(inode, cache);
2177 
2178 	/* Update accounting */
2179 	smp_mb__before_atomic_inc();
2180 	atomic_long_inc(&nfs_access_nr_entries);
2181 	smp_mb__after_atomic_inc();
2182 
2183 	/* Add inode to global LRU list */
2184 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2185 		spin_lock(&nfs_access_lru_lock);
2186 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2187 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2188 					&nfs_access_lru_list);
2189 		spin_unlock(&nfs_access_lru_lock);
2190 	}
2191 }
2192 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2193 
2194 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2195 {
2196 	entry->mask = 0;
2197 	if (access_result & NFS4_ACCESS_READ)
2198 		entry->mask |= MAY_READ;
2199 	if (access_result &
2200 	    (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
2201 		entry->mask |= MAY_WRITE;
2202 	if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
2203 		entry->mask |= MAY_EXEC;
2204 }
2205 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2206 
2207 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2208 {
2209 	struct nfs_access_entry cache;
2210 	int status;
2211 
2212 	trace_nfs_access_enter(inode);
2213 
2214 	status = nfs_access_get_cached(inode, cred, &cache);
2215 	if (status == 0)
2216 		goto out_cached;
2217 
2218 	/* Be clever: ask server to check for all possible rights */
2219 	cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2220 	cache.cred = cred;
2221 	cache.jiffies = jiffies;
2222 	status = NFS_PROTO(inode)->access(inode, &cache);
2223 	if (status != 0) {
2224 		if (status == -ESTALE) {
2225 			nfs_zap_caches(inode);
2226 			if (!S_ISDIR(inode->i_mode))
2227 				set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2228 		}
2229 		goto out;
2230 	}
2231 	nfs_access_add_cache(inode, &cache);
2232 out_cached:
2233 	if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2234 		status = -EACCES;
2235 out:
2236 	trace_nfs_access_exit(inode, status);
2237 	return status;
2238 }
2239 
2240 static int nfs_open_permission_mask(int openflags)
2241 {
2242 	int mask = 0;
2243 
2244 	if (openflags & __FMODE_EXEC) {
2245 		/* ONLY check exec rights */
2246 		mask = MAY_EXEC;
2247 	} else {
2248 		if ((openflags & O_ACCMODE) != O_WRONLY)
2249 			mask |= MAY_READ;
2250 		if ((openflags & O_ACCMODE) != O_RDONLY)
2251 			mask |= MAY_WRITE;
2252 	}
2253 
2254 	return mask;
2255 }
2256 
2257 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2258 {
2259 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2260 }
2261 EXPORT_SYMBOL_GPL(nfs_may_open);
2262 
2263 int nfs_permission(struct inode *inode, int mask)
2264 {
2265 	struct rpc_cred *cred;
2266 	int res = 0;
2267 
2268 	if (mask & MAY_NOT_BLOCK)
2269 		return -ECHILD;
2270 
2271 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2272 
2273 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2274 		goto out;
2275 	/* Is this sys_access() ? */
2276 	if (mask & (MAY_ACCESS | MAY_CHDIR))
2277 		goto force_lookup;
2278 
2279 	switch (inode->i_mode & S_IFMT) {
2280 		case S_IFLNK:
2281 			goto out;
2282 		case S_IFREG:
2283 			break;
2284 		case S_IFDIR:
2285 			/*
2286 			 * Optimize away all write operations, since the server
2287 			 * will check permissions when we perform the op.
2288 			 */
2289 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2290 				goto out;
2291 	}
2292 
2293 force_lookup:
2294 	if (!NFS_PROTO(inode)->access)
2295 		goto out_notsup;
2296 
2297 	cred = rpc_lookup_cred();
2298 	if (!IS_ERR(cred)) {
2299 		res = nfs_do_access(inode, cred, mask);
2300 		put_rpccred(cred);
2301 	} else
2302 		res = PTR_ERR(cred);
2303 out:
2304 	if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
2305 		res = -EACCES;
2306 
2307 	dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
2308 		inode->i_sb->s_id, inode->i_ino, mask, res);
2309 	return res;
2310 out_notsup:
2311 	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2312 	if (res == 0)
2313 		res = generic_permission(inode, mask);
2314 	goto out;
2315 }
2316 EXPORT_SYMBOL_GPL(nfs_permission);
2317 
2318 /*
2319  * Local variables:
2320  *  version-control: t
2321  *  kept-new-versions: 5
2322  * End:
2323  */
2324