1 /* 2 * linux/fs/nfs/dir.c 3 * 4 * Copyright (C) 1992 Rick Sladkey 5 * 6 * nfs directory handling functions 7 * 8 * 10 Apr 1996 Added silly rename for unlink --okir 9 * 28 Sep 1996 Improved directory cache --okir 10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de 11 * Re-implemented silly rename for unlink, newly implemented 12 * silly rename for nfs_rename() following the suggestions 13 * of Olaf Kirch (okir) found in this file. 14 * Following Linus comments on my original hack, this version 15 * depends only on the dcache stuff and doesn't touch the inode 16 * layer (iput() and friends). 17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM 18 */ 19 20 #include <linux/module.h> 21 #include <linux/time.h> 22 #include <linux/errno.h> 23 #include <linux/stat.h> 24 #include <linux/fcntl.h> 25 #include <linux/string.h> 26 #include <linux/kernel.h> 27 #include <linux/slab.h> 28 #include <linux/mm.h> 29 #include <linux/sunrpc/clnt.h> 30 #include <linux/nfs_fs.h> 31 #include <linux/nfs_mount.h> 32 #include <linux/pagemap.h> 33 #include <linux/pagevec.h> 34 #include <linux/namei.h> 35 #include <linux/mount.h> 36 #include <linux/swap.h> 37 #include <linux/sched.h> 38 #include <linux/kmemleak.h> 39 #include <linux/xattr.h> 40 41 #include "delegation.h" 42 #include "iostat.h" 43 #include "internal.h" 44 #include "fscache.h" 45 46 #include "nfstrace.h" 47 48 /* #define NFS_DEBUG_VERBOSE 1 */ 49 50 static int nfs_opendir(struct inode *, struct file *); 51 static int nfs_closedir(struct inode *, struct file *); 52 static int nfs_readdir(struct file *, struct dir_context *); 53 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int); 54 static loff_t nfs_llseek_dir(struct file *, loff_t, int); 55 static void nfs_readdir_clear_array(struct page*); 56 57 const struct file_operations nfs_dir_operations = { 58 .llseek = nfs_llseek_dir, 59 .read = generic_read_dir, 60 .iterate = nfs_readdir, 61 .open = nfs_opendir, 62 .release = nfs_closedir, 63 .fsync = nfs_fsync_dir, 64 }; 65 66 const struct address_space_operations nfs_dir_aops = { 67 .freepage = nfs_readdir_clear_array, 68 }; 69 70 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred) 71 { 72 struct nfs_open_dir_context *ctx; 73 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); 74 if (ctx != NULL) { 75 ctx->duped = 0; 76 ctx->attr_gencount = NFS_I(dir)->attr_gencount; 77 ctx->dir_cookie = 0; 78 ctx->dup_cookie = 0; 79 ctx->cred = get_rpccred(cred); 80 return ctx; 81 } 82 return ERR_PTR(-ENOMEM); 83 } 84 85 static void put_nfs_open_dir_context(struct nfs_open_dir_context *ctx) 86 { 87 put_rpccred(ctx->cred); 88 kfree(ctx); 89 } 90 91 /* 92 * Open file 93 */ 94 static int 95 nfs_opendir(struct inode *inode, struct file *filp) 96 { 97 int res = 0; 98 struct nfs_open_dir_context *ctx; 99 struct rpc_cred *cred; 100 101 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp); 102 103 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 104 105 cred = rpc_lookup_cred(); 106 if (IS_ERR(cred)) 107 return PTR_ERR(cred); 108 ctx = alloc_nfs_open_dir_context(inode, cred); 109 if (IS_ERR(ctx)) { 110 res = PTR_ERR(ctx); 111 goto out; 112 } 113 filp->private_data = ctx; 114 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) { 115 /* This is a mountpoint, so d_revalidate will never 116 * have been called, so we need to refresh the 117 * inode (for close-open consistency) ourselves. 118 */ 119 __nfs_revalidate_inode(NFS_SERVER(inode), inode); 120 } 121 out: 122 put_rpccred(cred); 123 return res; 124 } 125 126 static int 127 nfs_closedir(struct inode *inode, struct file *filp) 128 { 129 put_nfs_open_dir_context(filp->private_data); 130 return 0; 131 } 132 133 struct nfs_cache_array_entry { 134 u64 cookie; 135 u64 ino; 136 struct qstr string; 137 unsigned char d_type; 138 }; 139 140 struct nfs_cache_array { 141 int size; 142 int eof_index; 143 u64 last_cookie; 144 struct nfs_cache_array_entry array[0]; 145 }; 146 147 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int); 148 typedef struct { 149 struct file *file; 150 struct page *page; 151 struct dir_context *ctx; 152 unsigned long page_index; 153 u64 *dir_cookie; 154 u64 last_cookie; 155 loff_t current_index; 156 decode_dirent_t decode; 157 158 unsigned long timestamp; 159 unsigned long gencount; 160 unsigned int cache_entry_index; 161 unsigned int plus:1; 162 unsigned int eof:1; 163 } nfs_readdir_descriptor_t; 164 165 /* 166 * The caller is responsible for calling nfs_readdir_release_array(page) 167 */ 168 static 169 struct nfs_cache_array *nfs_readdir_get_array(struct page *page) 170 { 171 void *ptr; 172 if (page == NULL) 173 return ERR_PTR(-EIO); 174 ptr = kmap(page); 175 if (ptr == NULL) 176 return ERR_PTR(-ENOMEM); 177 return ptr; 178 } 179 180 static 181 void nfs_readdir_release_array(struct page *page) 182 { 183 kunmap(page); 184 } 185 186 /* 187 * we are freeing strings created by nfs_add_to_readdir_array() 188 */ 189 static 190 void nfs_readdir_clear_array(struct page *page) 191 { 192 struct nfs_cache_array *array; 193 int i; 194 195 array = kmap_atomic(page); 196 for (i = 0; i < array->size; i++) 197 kfree(array->array[i].string.name); 198 kunmap_atomic(array); 199 } 200 201 /* 202 * the caller is responsible for freeing qstr.name 203 * when called by nfs_readdir_add_to_array, the strings will be freed in 204 * nfs_clear_readdir_array() 205 */ 206 static 207 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len) 208 { 209 string->len = len; 210 string->name = kmemdup(name, len, GFP_KERNEL); 211 if (string->name == NULL) 212 return -ENOMEM; 213 /* 214 * Avoid a kmemleak false positive. The pointer to the name is stored 215 * in a page cache page which kmemleak does not scan. 216 */ 217 kmemleak_not_leak(string->name); 218 string->hash = full_name_hash(name, len); 219 return 0; 220 } 221 222 static 223 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page) 224 { 225 struct nfs_cache_array *array = nfs_readdir_get_array(page); 226 struct nfs_cache_array_entry *cache_entry; 227 int ret; 228 229 if (IS_ERR(array)) 230 return PTR_ERR(array); 231 232 cache_entry = &array->array[array->size]; 233 234 /* Check that this entry lies within the page bounds */ 235 ret = -ENOSPC; 236 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE) 237 goto out; 238 239 cache_entry->cookie = entry->prev_cookie; 240 cache_entry->ino = entry->ino; 241 cache_entry->d_type = entry->d_type; 242 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len); 243 if (ret) 244 goto out; 245 array->last_cookie = entry->cookie; 246 array->size++; 247 if (entry->eof != 0) 248 array->eof_index = array->size; 249 out: 250 nfs_readdir_release_array(page); 251 return ret; 252 } 253 254 static 255 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 256 { 257 loff_t diff = desc->ctx->pos - desc->current_index; 258 unsigned int index; 259 260 if (diff < 0) 261 goto out_eof; 262 if (diff >= array->size) { 263 if (array->eof_index >= 0) 264 goto out_eof; 265 return -EAGAIN; 266 } 267 268 index = (unsigned int)diff; 269 *desc->dir_cookie = array->array[index].cookie; 270 desc->cache_entry_index = index; 271 return 0; 272 out_eof: 273 desc->eof = 1; 274 return -EBADCOOKIE; 275 } 276 277 static 278 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 279 { 280 int i; 281 loff_t new_pos; 282 int status = -EAGAIN; 283 284 for (i = 0; i < array->size; i++) { 285 if (array->array[i].cookie == *desc->dir_cookie) { 286 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file)); 287 struct nfs_open_dir_context *ctx = desc->file->private_data; 288 289 new_pos = desc->current_index + i; 290 if (ctx->attr_gencount != nfsi->attr_gencount 291 || (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))) { 292 ctx->duped = 0; 293 ctx->attr_gencount = nfsi->attr_gencount; 294 } else if (new_pos < desc->ctx->pos) { 295 if (ctx->duped > 0 296 && ctx->dup_cookie == *desc->dir_cookie) { 297 if (printk_ratelimit()) { 298 pr_notice("NFS: directory %pD2 contains a readdir loop." 299 "Please contact your server vendor. " 300 "The file: %s has duplicate cookie %llu\n", 301 desc->file, 302 array->array[i].string.name, 303 *desc->dir_cookie); 304 } 305 status = -ELOOP; 306 goto out; 307 } 308 ctx->dup_cookie = *desc->dir_cookie; 309 ctx->duped = -1; 310 } 311 desc->ctx->pos = new_pos; 312 desc->cache_entry_index = i; 313 return 0; 314 } 315 } 316 if (array->eof_index >= 0) { 317 status = -EBADCOOKIE; 318 if (*desc->dir_cookie == array->last_cookie) 319 desc->eof = 1; 320 } 321 out: 322 return status; 323 } 324 325 static 326 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc) 327 { 328 struct nfs_cache_array *array; 329 int status; 330 331 array = nfs_readdir_get_array(desc->page); 332 if (IS_ERR(array)) { 333 status = PTR_ERR(array); 334 goto out; 335 } 336 337 if (*desc->dir_cookie == 0) 338 status = nfs_readdir_search_for_pos(array, desc); 339 else 340 status = nfs_readdir_search_for_cookie(array, desc); 341 342 if (status == -EAGAIN) { 343 desc->last_cookie = array->last_cookie; 344 desc->current_index += array->size; 345 desc->page_index++; 346 } 347 nfs_readdir_release_array(desc->page); 348 out: 349 return status; 350 } 351 352 /* Fill a page with xdr information before transferring to the cache page */ 353 static 354 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc, 355 struct nfs_entry *entry, struct file *file, struct inode *inode) 356 { 357 struct nfs_open_dir_context *ctx = file->private_data; 358 struct rpc_cred *cred = ctx->cred; 359 unsigned long timestamp, gencount; 360 int error; 361 362 again: 363 timestamp = jiffies; 364 gencount = nfs_inc_attr_generation_counter(); 365 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages, 366 NFS_SERVER(inode)->dtsize, desc->plus); 367 if (error < 0) { 368 /* We requested READDIRPLUS, but the server doesn't grok it */ 369 if (error == -ENOTSUPP && desc->plus) { 370 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS; 371 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 372 desc->plus = 0; 373 goto again; 374 } 375 goto error; 376 } 377 desc->timestamp = timestamp; 378 desc->gencount = gencount; 379 error: 380 return error; 381 } 382 383 static int xdr_decode(nfs_readdir_descriptor_t *desc, 384 struct nfs_entry *entry, struct xdr_stream *xdr) 385 { 386 int error; 387 388 error = desc->decode(xdr, entry, desc->plus); 389 if (error) 390 return error; 391 entry->fattr->time_start = desc->timestamp; 392 entry->fattr->gencount = desc->gencount; 393 return 0; 394 } 395 396 static 397 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry) 398 { 399 if (dentry->d_inode == NULL) 400 goto different; 401 if (nfs_compare_fh(entry->fh, NFS_FH(dentry->d_inode)) != 0) 402 goto different; 403 return 1; 404 different: 405 return 0; 406 } 407 408 static 409 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx) 410 { 411 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS)) 412 return false; 413 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags)) 414 return true; 415 if (ctx->pos == 0) 416 return true; 417 return false; 418 } 419 420 /* 421 * This function is called by the lookup code to request the use of 422 * readdirplus to accelerate any future lookups in the same 423 * directory. 424 */ 425 static 426 void nfs_advise_use_readdirplus(struct inode *dir) 427 { 428 set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags); 429 } 430 431 static 432 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry) 433 { 434 struct qstr filename = QSTR_INIT(entry->name, entry->len); 435 struct dentry *dentry; 436 struct dentry *alias; 437 struct inode *dir = parent->d_inode; 438 struct inode *inode; 439 int status; 440 441 if (filename.name[0] == '.') { 442 if (filename.len == 1) 443 return; 444 if (filename.len == 2 && filename.name[1] == '.') 445 return; 446 } 447 filename.hash = full_name_hash(filename.name, filename.len); 448 449 dentry = d_lookup(parent, &filename); 450 if (dentry != NULL) { 451 if (nfs_same_file(dentry, entry)) { 452 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 453 status = nfs_refresh_inode(dentry->d_inode, entry->fattr); 454 if (!status) 455 nfs_setsecurity(dentry->d_inode, entry->fattr, entry->label); 456 goto out; 457 } else { 458 if (d_invalidate(dentry) != 0) 459 goto out; 460 dput(dentry); 461 } 462 } 463 464 dentry = d_alloc(parent, &filename); 465 if (dentry == NULL) 466 return; 467 468 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label); 469 if (IS_ERR(inode)) 470 goto out; 471 472 alias = d_materialise_unique(dentry, inode); 473 if (IS_ERR(alias)) 474 goto out; 475 else if (alias) { 476 nfs_set_verifier(alias, nfs_save_change_attribute(dir)); 477 dput(alias); 478 } else 479 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 480 481 out: 482 dput(dentry); 483 } 484 485 /* Perform conversion from xdr to cache array */ 486 static 487 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry, 488 struct page **xdr_pages, struct page *page, unsigned int buflen) 489 { 490 struct xdr_stream stream; 491 struct xdr_buf buf; 492 struct page *scratch; 493 struct nfs_cache_array *array; 494 unsigned int count = 0; 495 int status; 496 497 scratch = alloc_page(GFP_KERNEL); 498 if (scratch == NULL) 499 return -ENOMEM; 500 501 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen); 502 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE); 503 504 do { 505 status = xdr_decode(desc, entry, &stream); 506 if (status != 0) { 507 if (status == -EAGAIN) 508 status = 0; 509 break; 510 } 511 512 count++; 513 514 if (desc->plus != 0) 515 nfs_prime_dcache(desc->file->f_path.dentry, entry); 516 517 status = nfs_readdir_add_to_array(entry, page); 518 if (status != 0) 519 break; 520 } while (!entry->eof); 521 522 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) { 523 array = nfs_readdir_get_array(page); 524 if (!IS_ERR(array)) { 525 array->eof_index = array->size; 526 status = 0; 527 nfs_readdir_release_array(page); 528 } else 529 status = PTR_ERR(array); 530 } 531 532 put_page(scratch); 533 return status; 534 } 535 536 static 537 void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages) 538 { 539 unsigned int i; 540 for (i = 0; i < npages; i++) 541 put_page(pages[i]); 542 } 543 544 static 545 void nfs_readdir_free_large_page(void *ptr, struct page **pages, 546 unsigned int npages) 547 { 548 nfs_readdir_free_pagearray(pages, npages); 549 } 550 551 /* 552 * nfs_readdir_large_page will allocate pages that must be freed with a call 553 * to nfs_readdir_free_large_page 554 */ 555 static 556 int nfs_readdir_large_page(struct page **pages, unsigned int npages) 557 { 558 unsigned int i; 559 560 for (i = 0; i < npages; i++) { 561 struct page *page = alloc_page(GFP_KERNEL); 562 if (page == NULL) 563 goto out_freepages; 564 pages[i] = page; 565 } 566 return 0; 567 568 out_freepages: 569 nfs_readdir_free_pagearray(pages, i); 570 return -ENOMEM; 571 } 572 573 static 574 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode) 575 { 576 struct page *pages[NFS_MAX_READDIR_PAGES]; 577 void *pages_ptr = NULL; 578 struct nfs_entry entry; 579 struct file *file = desc->file; 580 struct nfs_cache_array *array; 581 int status = -ENOMEM; 582 unsigned int array_size = ARRAY_SIZE(pages); 583 584 entry.prev_cookie = 0; 585 entry.cookie = desc->last_cookie; 586 entry.eof = 0; 587 entry.fh = nfs_alloc_fhandle(); 588 entry.fattr = nfs_alloc_fattr(); 589 entry.server = NFS_SERVER(inode); 590 if (entry.fh == NULL || entry.fattr == NULL) 591 goto out; 592 593 entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT); 594 if (IS_ERR(entry.label)) { 595 status = PTR_ERR(entry.label); 596 goto out; 597 } 598 599 array = nfs_readdir_get_array(page); 600 if (IS_ERR(array)) { 601 status = PTR_ERR(array); 602 goto out_label_free; 603 } 604 memset(array, 0, sizeof(struct nfs_cache_array)); 605 array->eof_index = -1; 606 607 status = nfs_readdir_large_page(pages, array_size); 608 if (status < 0) 609 goto out_release_array; 610 do { 611 unsigned int pglen; 612 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode); 613 614 if (status < 0) 615 break; 616 pglen = status; 617 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen); 618 if (status < 0) { 619 if (status == -ENOSPC) 620 status = 0; 621 break; 622 } 623 } while (array->eof_index < 0); 624 625 nfs_readdir_free_large_page(pages_ptr, pages, array_size); 626 out_release_array: 627 nfs_readdir_release_array(page); 628 out_label_free: 629 nfs4_label_free(entry.label); 630 out: 631 nfs_free_fattr(entry.fattr); 632 nfs_free_fhandle(entry.fh); 633 return status; 634 } 635 636 /* 637 * Now we cache directories properly, by converting xdr information 638 * to an array that can be used for lookups later. This results in 639 * fewer cache pages, since we can store more information on each page. 640 * We only need to convert from xdr once so future lookups are much simpler 641 */ 642 static 643 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page) 644 { 645 struct inode *inode = file_inode(desc->file); 646 int ret; 647 648 ret = nfs_readdir_xdr_to_array(desc, page, inode); 649 if (ret < 0) 650 goto error; 651 SetPageUptodate(page); 652 653 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) { 654 /* Should never happen */ 655 nfs_zap_mapping(inode, inode->i_mapping); 656 } 657 unlock_page(page); 658 return 0; 659 error: 660 unlock_page(page); 661 return ret; 662 } 663 664 static 665 void cache_page_release(nfs_readdir_descriptor_t *desc) 666 { 667 if (!desc->page->mapping) 668 nfs_readdir_clear_array(desc->page); 669 page_cache_release(desc->page); 670 desc->page = NULL; 671 } 672 673 static 674 struct page *get_cache_page(nfs_readdir_descriptor_t *desc) 675 { 676 return read_cache_page(file_inode(desc->file)->i_mapping, 677 desc->page_index, (filler_t *)nfs_readdir_filler, desc); 678 } 679 680 /* 681 * Returns 0 if desc->dir_cookie was found on page desc->page_index 682 */ 683 static 684 int find_cache_page(nfs_readdir_descriptor_t *desc) 685 { 686 int res; 687 688 desc->page = get_cache_page(desc); 689 if (IS_ERR(desc->page)) 690 return PTR_ERR(desc->page); 691 692 res = nfs_readdir_search_array(desc); 693 if (res != 0) 694 cache_page_release(desc); 695 return res; 696 } 697 698 /* Search for desc->dir_cookie from the beginning of the page cache */ 699 static inline 700 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc) 701 { 702 int res; 703 704 if (desc->page_index == 0) { 705 desc->current_index = 0; 706 desc->last_cookie = 0; 707 } 708 do { 709 res = find_cache_page(desc); 710 } while (res == -EAGAIN); 711 return res; 712 } 713 714 /* 715 * Once we've found the start of the dirent within a page: fill 'er up... 716 */ 717 static 718 int nfs_do_filldir(nfs_readdir_descriptor_t *desc) 719 { 720 struct file *file = desc->file; 721 int i = 0; 722 int res = 0; 723 struct nfs_cache_array *array = NULL; 724 struct nfs_open_dir_context *ctx = file->private_data; 725 726 array = nfs_readdir_get_array(desc->page); 727 if (IS_ERR(array)) { 728 res = PTR_ERR(array); 729 goto out; 730 } 731 732 for (i = desc->cache_entry_index; i < array->size; i++) { 733 struct nfs_cache_array_entry *ent; 734 735 ent = &array->array[i]; 736 if (!dir_emit(desc->ctx, ent->string.name, ent->string.len, 737 nfs_compat_user_ino64(ent->ino), ent->d_type)) { 738 desc->eof = 1; 739 break; 740 } 741 desc->ctx->pos++; 742 if (i < (array->size-1)) 743 *desc->dir_cookie = array->array[i+1].cookie; 744 else 745 *desc->dir_cookie = array->last_cookie; 746 if (ctx->duped != 0) 747 ctx->duped = 1; 748 } 749 if (array->eof_index >= 0) 750 desc->eof = 1; 751 752 nfs_readdir_release_array(desc->page); 753 out: 754 cache_page_release(desc); 755 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n", 756 (unsigned long long)*desc->dir_cookie, res); 757 return res; 758 } 759 760 /* 761 * If we cannot find a cookie in our cache, we suspect that this is 762 * because it points to a deleted file, so we ask the server to return 763 * whatever it thinks is the next entry. We then feed this to filldir. 764 * If all goes well, we should then be able to find our way round the 765 * cache on the next call to readdir_search_pagecache(); 766 * 767 * NOTE: we cannot add the anonymous page to the pagecache because 768 * the data it contains might not be page aligned. Besides, 769 * we should already have a complete representation of the 770 * directory in the page cache by the time we get here. 771 */ 772 static inline 773 int uncached_readdir(nfs_readdir_descriptor_t *desc) 774 { 775 struct page *page = NULL; 776 int status; 777 struct inode *inode = file_inode(desc->file); 778 struct nfs_open_dir_context *ctx = desc->file->private_data; 779 780 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n", 781 (unsigned long long)*desc->dir_cookie); 782 783 page = alloc_page(GFP_HIGHUSER); 784 if (!page) { 785 status = -ENOMEM; 786 goto out; 787 } 788 789 desc->page_index = 0; 790 desc->last_cookie = *desc->dir_cookie; 791 desc->page = page; 792 ctx->duped = 0; 793 794 status = nfs_readdir_xdr_to_array(desc, page, inode); 795 if (status < 0) 796 goto out_release; 797 798 status = nfs_do_filldir(desc); 799 800 out: 801 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", 802 __func__, status); 803 return status; 804 out_release: 805 cache_page_release(desc); 806 goto out; 807 } 808 809 /* The file offset position represents the dirent entry number. A 810 last cookie cache takes care of the common case of reading the 811 whole directory. 812 */ 813 static int nfs_readdir(struct file *file, struct dir_context *ctx) 814 { 815 struct dentry *dentry = file->f_path.dentry; 816 struct inode *inode = dentry->d_inode; 817 nfs_readdir_descriptor_t my_desc, 818 *desc = &my_desc; 819 struct nfs_open_dir_context *dir_ctx = file->private_data; 820 int res = 0; 821 822 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n", 823 file, (long long)ctx->pos); 824 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS); 825 826 /* 827 * ctx->pos points to the dirent entry number. 828 * *desc->dir_cookie has the cookie for the next entry. We have 829 * to either find the entry with the appropriate number or 830 * revalidate the cookie. 831 */ 832 memset(desc, 0, sizeof(*desc)); 833 834 desc->file = file; 835 desc->ctx = ctx; 836 desc->dir_cookie = &dir_ctx->dir_cookie; 837 desc->decode = NFS_PROTO(inode)->decode_dirent; 838 desc->plus = nfs_use_readdirplus(inode, ctx) ? 1 : 0; 839 840 nfs_block_sillyrename(dentry); 841 if (ctx->pos == 0 || nfs_attribute_cache_expired(inode)) 842 res = nfs_revalidate_mapping(inode, file->f_mapping); 843 if (res < 0) 844 goto out; 845 846 do { 847 res = readdir_search_pagecache(desc); 848 849 if (res == -EBADCOOKIE) { 850 res = 0; 851 /* This means either end of directory */ 852 if (*desc->dir_cookie && desc->eof == 0) { 853 /* Or that the server has 'lost' a cookie */ 854 res = uncached_readdir(desc); 855 if (res == 0) 856 continue; 857 } 858 break; 859 } 860 if (res == -ETOOSMALL && desc->plus) { 861 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 862 nfs_zap_caches(inode); 863 desc->page_index = 0; 864 desc->plus = 0; 865 desc->eof = 0; 866 continue; 867 } 868 if (res < 0) 869 break; 870 871 res = nfs_do_filldir(desc); 872 if (res < 0) 873 break; 874 } while (!desc->eof); 875 out: 876 nfs_unblock_sillyrename(dentry); 877 if (res > 0) 878 res = 0; 879 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res); 880 return res; 881 } 882 883 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence) 884 { 885 struct inode *inode = file_inode(filp); 886 struct nfs_open_dir_context *dir_ctx = filp->private_data; 887 888 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n", 889 filp, offset, whence); 890 891 mutex_lock(&inode->i_mutex); 892 switch (whence) { 893 case 1: 894 offset += filp->f_pos; 895 case 0: 896 if (offset >= 0) 897 break; 898 default: 899 offset = -EINVAL; 900 goto out; 901 } 902 if (offset != filp->f_pos) { 903 filp->f_pos = offset; 904 dir_ctx->dir_cookie = 0; 905 dir_ctx->duped = 0; 906 } 907 out: 908 mutex_unlock(&inode->i_mutex); 909 return offset; 910 } 911 912 /* 913 * All directory operations under NFS are synchronous, so fsync() 914 * is a dummy operation. 915 */ 916 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end, 917 int datasync) 918 { 919 struct inode *inode = file_inode(filp); 920 921 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync); 922 923 mutex_lock(&inode->i_mutex); 924 nfs_inc_stats(inode, NFSIOS_VFSFSYNC); 925 mutex_unlock(&inode->i_mutex); 926 return 0; 927 } 928 929 /** 930 * nfs_force_lookup_revalidate - Mark the directory as having changed 931 * @dir - pointer to directory inode 932 * 933 * This forces the revalidation code in nfs_lookup_revalidate() to do a 934 * full lookup on all child dentries of 'dir' whenever a change occurs 935 * on the server that might have invalidated our dcache. 936 * 937 * The caller should be holding dir->i_lock 938 */ 939 void nfs_force_lookup_revalidate(struct inode *dir) 940 { 941 NFS_I(dir)->cache_change_attribute++; 942 } 943 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate); 944 945 /* 946 * A check for whether or not the parent directory has changed. 947 * In the case it has, we assume that the dentries are untrustworthy 948 * and may need to be looked up again. 949 */ 950 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry) 951 { 952 if (IS_ROOT(dentry)) 953 return 1; 954 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE) 955 return 0; 956 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 957 return 0; 958 /* Revalidate nfsi->cache_change_attribute before we declare a match */ 959 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0) 960 return 0; 961 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 962 return 0; 963 return 1; 964 } 965 966 /* 967 * Use intent information to check whether or not we're going to do 968 * an O_EXCL create using this path component. 969 */ 970 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags) 971 { 972 if (NFS_PROTO(dir)->version == 2) 973 return 0; 974 return flags & LOOKUP_EXCL; 975 } 976 977 /* 978 * Inode and filehandle revalidation for lookups. 979 * 980 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL, 981 * or if the intent information indicates that we're about to open this 982 * particular file and the "nocto" mount flag is not set. 983 * 984 */ 985 static 986 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags) 987 { 988 struct nfs_server *server = NFS_SERVER(inode); 989 int ret; 990 991 if (IS_AUTOMOUNT(inode)) 992 return 0; 993 /* VFS wants an on-the-wire revalidation */ 994 if (flags & LOOKUP_REVAL) 995 goto out_force; 996 /* This is an open(2) */ 997 if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) && 998 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode))) 999 goto out_force; 1000 out: 1001 return (inode->i_nlink == 0) ? -ENOENT : 0; 1002 out_force: 1003 ret = __nfs_revalidate_inode(server, inode); 1004 if (ret != 0) 1005 return ret; 1006 goto out; 1007 } 1008 1009 /* 1010 * We judge how long we want to trust negative 1011 * dentries by looking at the parent inode mtime. 1012 * 1013 * If parent mtime has changed, we revalidate, else we wait for a 1014 * period corresponding to the parent's attribute cache timeout value. 1015 */ 1016 static inline 1017 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry, 1018 unsigned int flags) 1019 { 1020 /* Don't revalidate a negative dentry if we're creating a new file */ 1021 if (flags & LOOKUP_CREATE) 1022 return 0; 1023 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG) 1024 return 1; 1025 return !nfs_check_verifier(dir, dentry); 1026 } 1027 1028 /* 1029 * This is called every time the dcache has a lookup hit, 1030 * and we should check whether we can really trust that 1031 * lookup. 1032 * 1033 * NOTE! The hit can be a negative hit too, don't assume 1034 * we have an inode! 1035 * 1036 * If the parent directory is seen to have changed, we throw out the 1037 * cached dentry and do a new lookup. 1038 */ 1039 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1040 { 1041 struct inode *dir; 1042 struct inode *inode; 1043 struct dentry *parent; 1044 struct nfs_fh *fhandle = NULL; 1045 struct nfs_fattr *fattr = NULL; 1046 struct nfs4_label *label = NULL; 1047 int error; 1048 1049 if (flags & LOOKUP_RCU) 1050 return -ECHILD; 1051 1052 parent = dget_parent(dentry); 1053 dir = parent->d_inode; 1054 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE); 1055 inode = dentry->d_inode; 1056 1057 if (!inode) { 1058 if (nfs_neg_need_reval(dir, dentry, flags)) 1059 goto out_bad; 1060 goto out_valid_noent; 1061 } 1062 1063 if (is_bad_inode(inode)) { 1064 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1065 __func__, dentry); 1066 goto out_bad; 1067 } 1068 1069 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ)) 1070 goto out_set_verifier; 1071 1072 /* Force a full look up iff the parent directory has changed */ 1073 if (!nfs_is_exclusive_create(dir, flags) && nfs_check_verifier(dir, dentry)) { 1074 if (nfs_lookup_verify_inode(inode, flags)) 1075 goto out_zap_parent; 1076 goto out_valid; 1077 } 1078 1079 if (NFS_STALE(inode)) 1080 goto out_bad; 1081 1082 error = -ENOMEM; 1083 fhandle = nfs_alloc_fhandle(); 1084 fattr = nfs_alloc_fattr(); 1085 if (fhandle == NULL || fattr == NULL) 1086 goto out_error; 1087 1088 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT); 1089 if (IS_ERR(label)) 1090 goto out_error; 1091 1092 trace_nfs_lookup_revalidate_enter(dir, dentry, flags); 1093 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label); 1094 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error); 1095 if (error) 1096 goto out_bad; 1097 if (nfs_compare_fh(NFS_FH(inode), fhandle)) 1098 goto out_bad; 1099 if ((error = nfs_refresh_inode(inode, fattr)) != 0) 1100 goto out_bad; 1101 1102 nfs_setsecurity(inode, fattr, label); 1103 1104 nfs_free_fattr(fattr); 1105 nfs_free_fhandle(fhandle); 1106 nfs4_label_free(label); 1107 1108 out_set_verifier: 1109 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1110 out_valid: 1111 /* Success: notify readdir to use READDIRPLUS */ 1112 nfs_advise_use_readdirplus(dir); 1113 out_valid_noent: 1114 dput(parent); 1115 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n", 1116 __func__, dentry); 1117 return 1; 1118 out_zap_parent: 1119 nfs_zap_caches(dir); 1120 out_bad: 1121 nfs_free_fattr(fattr); 1122 nfs_free_fhandle(fhandle); 1123 nfs4_label_free(label); 1124 nfs_mark_for_revalidate(dir); 1125 if (inode && S_ISDIR(inode->i_mode)) { 1126 /* Purge readdir caches. */ 1127 nfs_zap_caches(inode); 1128 /* 1129 * We can't d_drop the root of a disconnected tree: 1130 * its d_hash is on the s_anon list and d_drop() would hide 1131 * it from shrink_dcache_for_unmount(), leading to busy 1132 * inodes on unmount and further oopses. 1133 */ 1134 if (IS_ROOT(dentry)) 1135 goto out_valid; 1136 } 1137 /* If we have submounts, don't unhash ! */ 1138 if (check_submounts_and_drop(dentry) != 0) 1139 goto out_valid; 1140 1141 dput(parent); 1142 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n", 1143 __func__, dentry); 1144 return 0; 1145 out_error: 1146 nfs_free_fattr(fattr); 1147 nfs_free_fhandle(fhandle); 1148 nfs4_label_free(label); 1149 dput(parent); 1150 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n", 1151 __func__, dentry, error); 1152 return error; 1153 } 1154 1155 /* 1156 * A weaker form of d_revalidate for revalidating just the dentry->d_inode 1157 * when we don't really care about the dentry name. This is called when a 1158 * pathwalk ends on a dentry that was not found via a normal lookup in the 1159 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals). 1160 * 1161 * In this situation, we just want to verify that the inode itself is OK 1162 * since the dentry might have changed on the server. 1163 */ 1164 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags) 1165 { 1166 int error; 1167 struct inode *inode = dentry->d_inode; 1168 1169 /* 1170 * I believe we can only get a negative dentry here in the case of a 1171 * procfs-style symlink. Just assume it's correct for now, but we may 1172 * eventually need to do something more here. 1173 */ 1174 if (!inode) { 1175 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n", 1176 __func__, dentry); 1177 return 1; 1178 } 1179 1180 if (is_bad_inode(inode)) { 1181 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1182 __func__, dentry); 1183 return 0; 1184 } 1185 1186 error = nfs_revalidate_inode(NFS_SERVER(inode), inode); 1187 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n", 1188 __func__, inode->i_ino, error ? "invalid" : "valid"); 1189 return !error; 1190 } 1191 1192 /* 1193 * This is called from dput() when d_count is going to 0. 1194 */ 1195 static int nfs_dentry_delete(const struct dentry *dentry) 1196 { 1197 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n", 1198 dentry, dentry->d_flags); 1199 1200 /* Unhash any dentry with a stale inode */ 1201 if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode)) 1202 return 1; 1203 1204 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1205 /* Unhash it, so that ->d_iput() would be called */ 1206 return 1; 1207 } 1208 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) { 1209 /* Unhash it, so that ancestors of killed async unlink 1210 * files will be cleaned up during umount */ 1211 return 1; 1212 } 1213 return 0; 1214 1215 } 1216 1217 /* Ensure that we revalidate inode->i_nlink */ 1218 static void nfs_drop_nlink(struct inode *inode) 1219 { 1220 spin_lock(&inode->i_lock); 1221 /* drop the inode if we're reasonably sure this is the last link */ 1222 if (inode->i_nlink == 1) 1223 clear_nlink(inode); 1224 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR; 1225 spin_unlock(&inode->i_lock); 1226 } 1227 1228 /* 1229 * Called when the dentry loses inode. 1230 * We use it to clean up silly-renamed files. 1231 */ 1232 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode) 1233 { 1234 if (S_ISDIR(inode->i_mode)) 1235 /* drop any readdir cache as it could easily be old */ 1236 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA; 1237 1238 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1239 nfs_complete_unlink(dentry, inode); 1240 nfs_drop_nlink(inode); 1241 } 1242 iput(inode); 1243 } 1244 1245 static void nfs_d_release(struct dentry *dentry) 1246 { 1247 /* free cached devname value, if it survived that far */ 1248 if (unlikely(dentry->d_fsdata)) { 1249 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1250 WARN_ON(1); 1251 else 1252 kfree(dentry->d_fsdata); 1253 } 1254 } 1255 1256 const struct dentry_operations nfs_dentry_operations = { 1257 .d_revalidate = nfs_lookup_revalidate, 1258 .d_weak_revalidate = nfs_weak_revalidate, 1259 .d_delete = nfs_dentry_delete, 1260 .d_iput = nfs_dentry_iput, 1261 .d_automount = nfs_d_automount, 1262 .d_release = nfs_d_release, 1263 }; 1264 EXPORT_SYMBOL_GPL(nfs_dentry_operations); 1265 1266 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 1267 { 1268 struct dentry *res; 1269 struct dentry *parent; 1270 struct inode *inode = NULL; 1271 struct nfs_fh *fhandle = NULL; 1272 struct nfs_fattr *fattr = NULL; 1273 struct nfs4_label *label = NULL; 1274 int error; 1275 1276 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry); 1277 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP); 1278 1279 res = ERR_PTR(-ENAMETOOLONG); 1280 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 1281 goto out; 1282 1283 /* 1284 * If we're doing an exclusive create, optimize away the lookup 1285 * but don't hash the dentry. 1286 */ 1287 if (nfs_is_exclusive_create(dir, flags)) { 1288 d_instantiate(dentry, NULL); 1289 res = NULL; 1290 goto out; 1291 } 1292 1293 res = ERR_PTR(-ENOMEM); 1294 fhandle = nfs_alloc_fhandle(); 1295 fattr = nfs_alloc_fattr(); 1296 if (fhandle == NULL || fattr == NULL) 1297 goto out; 1298 1299 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT); 1300 if (IS_ERR(label)) 1301 goto out; 1302 1303 parent = dentry->d_parent; 1304 /* Protect against concurrent sillydeletes */ 1305 trace_nfs_lookup_enter(dir, dentry, flags); 1306 nfs_block_sillyrename(parent); 1307 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label); 1308 if (error == -ENOENT) 1309 goto no_entry; 1310 if (error < 0) { 1311 res = ERR_PTR(error); 1312 goto out_unblock_sillyrename; 1313 } 1314 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label); 1315 res = ERR_CAST(inode); 1316 if (IS_ERR(res)) 1317 goto out_unblock_sillyrename; 1318 1319 /* Success: notify readdir to use READDIRPLUS */ 1320 nfs_advise_use_readdirplus(dir); 1321 1322 no_entry: 1323 res = d_materialise_unique(dentry, inode); 1324 if (res != NULL) { 1325 if (IS_ERR(res)) 1326 goto out_unblock_sillyrename; 1327 dentry = res; 1328 } 1329 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1330 out_unblock_sillyrename: 1331 nfs_unblock_sillyrename(parent); 1332 trace_nfs_lookup_exit(dir, dentry, flags, error); 1333 nfs4_label_free(label); 1334 out: 1335 nfs_free_fattr(fattr); 1336 nfs_free_fhandle(fhandle); 1337 return res; 1338 } 1339 EXPORT_SYMBOL_GPL(nfs_lookup); 1340 1341 #if IS_ENABLED(CONFIG_NFS_V4) 1342 static int nfs4_lookup_revalidate(struct dentry *, unsigned int); 1343 1344 const struct dentry_operations nfs4_dentry_operations = { 1345 .d_revalidate = nfs4_lookup_revalidate, 1346 .d_delete = nfs_dentry_delete, 1347 .d_iput = nfs_dentry_iput, 1348 .d_automount = nfs_d_automount, 1349 .d_release = nfs_d_release, 1350 }; 1351 EXPORT_SYMBOL_GPL(nfs4_dentry_operations); 1352 1353 static fmode_t flags_to_mode(int flags) 1354 { 1355 fmode_t res = (__force fmode_t)flags & FMODE_EXEC; 1356 if ((flags & O_ACCMODE) != O_WRONLY) 1357 res |= FMODE_READ; 1358 if ((flags & O_ACCMODE) != O_RDONLY) 1359 res |= FMODE_WRITE; 1360 return res; 1361 } 1362 1363 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags) 1364 { 1365 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags)); 1366 } 1367 1368 static int do_open(struct inode *inode, struct file *filp) 1369 { 1370 nfs_fscache_open_file(inode, filp); 1371 return 0; 1372 } 1373 1374 static int nfs_finish_open(struct nfs_open_context *ctx, 1375 struct dentry *dentry, 1376 struct file *file, unsigned open_flags, 1377 int *opened) 1378 { 1379 int err; 1380 1381 if ((open_flags & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL)) 1382 *opened |= FILE_CREATED; 1383 1384 err = finish_open(file, dentry, do_open, opened); 1385 if (err) 1386 goto out; 1387 nfs_file_set_open_context(file, ctx); 1388 1389 out: 1390 return err; 1391 } 1392 1393 int nfs_atomic_open(struct inode *dir, struct dentry *dentry, 1394 struct file *file, unsigned open_flags, 1395 umode_t mode, int *opened) 1396 { 1397 struct nfs_open_context *ctx; 1398 struct dentry *res; 1399 struct iattr attr = { .ia_valid = ATTR_OPEN }; 1400 struct inode *inode; 1401 unsigned int lookup_flags = 0; 1402 int err; 1403 1404 /* Expect a negative dentry */ 1405 BUG_ON(dentry->d_inode); 1406 1407 dfprintk(VFS, "NFS: atomic_open(%s/%ld), %pd\n", 1408 dir->i_sb->s_id, dir->i_ino, dentry); 1409 1410 err = nfs_check_flags(open_flags); 1411 if (err) 1412 return err; 1413 1414 /* NFS only supports OPEN on regular files */ 1415 if ((open_flags & O_DIRECTORY)) { 1416 if (!d_unhashed(dentry)) { 1417 /* 1418 * Hashed negative dentry with O_DIRECTORY: dentry was 1419 * revalidated and is fine, no need to perform lookup 1420 * again 1421 */ 1422 return -ENOENT; 1423 } 1424 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY; 1425 goto no_open; 1426 } 1427 1428 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 1429 return -ENAMETOOLONG; 1430 1431 if (open_flags & O_CREAT) { 1432 attr.ia_valid |= ATTR_MODE; 1433 attr.ia_mode = mode & ~current_umask(); 1434 } 1435 if (open_flags & O_TRUNC) { 1436 attr.ia_valid |= ATTR_SIZE; 1437 attr.ia_size = 0; 1438 } 1439 1440 ctx = create_nfs_open_context(dentry, open_flags); 1441 err = PTR_ERR(ctx); 1442 if (IS_ERR(ctx)) 1443 goto out; 1444 1445 trace_nfs_atomic_open_enter(dir, ctx, open_flags); 1446 nfs_block_sillyrename(dentry->d_parent); 1447 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, opened); 1448 nfs_unblock_sillyrename(dentry->d_parent); 1449 if (IS_ERR(inode)) { 1450 err = PTR_ERR(inode); 1451 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 1452 put_nfs_open_context(ctx); 1453 switch (err) { 1454 case -ENOENT: 1455 d_drop(dentry); 1456 d_add(dentry, NULL); 1457 break; 1458 case -EISDIR: 1459 case -ENOTDIR: 1460 goto no_open; 1461 case -ELOOP: 1462 if (!(open_flags & O_NOFOLLOW)) 1463 goto no_open; 1464 break; 1465 /* case -EINVAL: */ 1466 default: 1467 break; 1468 } 1469 goto out; 1470 } 1471 1472 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags, opened); 1473 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 1474 put_nfs_open_context(ctx); 1475 out: 1476 return err; 1477 1478 no_open: 1479 res = nfs_lookup(dir, dentry, lookup_flags); 1480 err = PTR_ERR(res); 1481 if (IS_ERR(res)) 1482 goto out; 1483 1484 return finish_no_open(file, res); 1485 } 1486 EXPORT_SYMBOL_GPL(nfs_atomic_open); 1487 1488 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1489 { 1490 struct dentry *parent = NULL; 1491 struct inode *inode; 1492 struct inode *dir; 1493 int ret = 0; 1494 1495 if (flags & LOOKUP_RCU) 1496 return -ECHILD; 1497 1498 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY)) 1499 goto no_open; 1500 if (d_mountpoint(dentry)) 1501 goto no_open; 1502 if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1) 1503 goto no_open; 1504 1505 inode = dentry->d_inode; 1506 parent = dget_parent(dentry); 1507 dir = parent->d_inode; 1508 1509 /* We can't create new files in nfs_open_revalidate(), so we 1510 * optimize away revalidation of negative dentries. 1511 */ 1512 if (inode == NULL) { 1513 if (!nfs_neg_need_reval(dir, dentry, flags)) 1514 ret = 1; 1515 goto out; 1516 } 1517 1518 /* NFS only supports OPEN on regular files */ 1519 if (!S_ISREG(inode->i_mode)) 1520 goto no_open_dput; 1521 /* We cannot do exclusive creation on a positive dentry */ 1522 if (flags & LOOKUP_EXCL) 1523 goto no_open_dput; 1524 1525 /* Let f_op->open() actually open (and revalidate) the file */ 1526 ret = 1; 1527 1528 out: 1529 dput(parent); 1530 return ret; 1531 1532 no_open_dput: 1533 dput(parent); 1534 no_open: 1535 return nfs_lookup_revalidate(dentry, flags); 1536 } 1537 1538 #endif /* CONFIG_NFSV4 */ 1539 1540 /* 1541 * Code common to create, mkdir, and mknod. 1542 */ 1543 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle, 1544 struct nfs_fattr *fattr, 1545 struct nfs4_label *label) 1546 { 1547 struct dentry *parent = dget_parent(dentry); 1548 struct inode *dir = parent->d_inode; 1549 struct inode *inode; 1550 int error = -EACCES; 1551 1552 d_drop(dentry); 1553 1554 /* We may have been initialized further down */ 1555 if (dentry->d_inode) 1556 goto out; 1557 if (fhandle->size == 0) { 1558 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL); 1559 if (error) 1560 goto out_error; 1561 } 1562 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1563 if (!(fattr->valid & NFS_ATTR_FATTR)) { 1564 struct nfs_server *server = NFS_SB(dentry->d_sb); 1565 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL); 1566 if (error < 0) 1567 goto out_error; 1568 } 1569 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label); 1570 error = PTR_ERR(inode); 1571 if (IS_ERR(inode)) 1572 goto out_error; 1573 d_add(dentry, inode); 1574 out: 1575 dput(parent); 1576 return 0; 1577 out_error: 1578 nfs_mark_for_revalidate(dir); 1579 dput(parent); 1580 return error; 1581 } 1582 EXPORT_SYMBOL_GPL(nfs_instantiate); 1583 1584 /* 1585 * Following a failed create operation, we drop the dentry rather 1586 * than retain a negative dentry. This avoids a problem in the event 1587 * that the operation succeeded on the server, but an error in the 1588 * reply path made it appear to have failed. 1589 */ 1590 int nfs_create(struct inode *dir, struct dentry *dentry, 1591 umode_t mode, bool excl) 1592 { 1593 struct iattr attr; 1594 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT; 1595 int error; 1596 1597 dfprintk(VFS, "NFS: create(%s/%ld), %pd\n", 1598 dir->i_sb->s_id, dir->i_ino, dentry); 1599 1600 attr.ia_mode = mode; 1601 attr.ia_valid = ATTR_MODE; 1602 1603 trace_nfs_create_enter(dir, dentry, open_flags); 1604 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags); 1605 trace_nfs_create_exit(dir, dentry, open_flags, error); 1606 if (error != 0) 1607 goto out_err; 1608 return 0; 1609 out_err: 1610 d_drop(dentry); 1611 return error; 1612 } 1613 EXPORT_SYMBOL_GPL(nfs_create); 1614 1615 /* 1616 * See comments for nfs_proc_create regarding failed operations. 1617 */ 1618 int 1619 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev) 1620 { 1621 struct iattr attr; 1622 int status; 1623 1624 dfprintk(VFS, "NFS: mknod(%s/%ld), %pd\n", 1625 dir->i_sb->s_id, dir->i_ino, dentry); 1626 1627 if (!new_valid_dev(rdev)) 1628 return -EINVAL; 1629 1630 attr.ia_mode = mode; 1631 attr.ia_valid = ATTR_MODE; 1632 1633 trace_nfs_mknod_enter(dir, dentry); 1634 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev); 1635 trace_nfs_mknod_exit(dir, dentry, status); 1636 if (status != 0) 1637 goto out_err; 1638 return 0; 1639 out_err: 1640 d_drop(dentry); 1641 return status; 1642 } 1643 EXPORT_SYMBOL_GPL(nfs_mknod); 1644 1645 /* 1646 * See comments for nfs_proc_create regarding failed operations. 1647 */ 1648 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1649 { 1650 struct iattr attr; 1651 int error; 1652 1653 dfprintk(VFS, "NFS: mkdir(%s/%ld), %pd\n", 1654 dir->i_sb->s_id, dir->i_ino, dentry); 1655 1656 attr.ia_valid = ATTR_MODE; 1657 attr.ia_mode = mode | S_IFDIR; 1658 1659 trace_nfs_mkdir_enter(dir, dentry); 1660 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr); 1661 trace_nfs_mkdir_exit(dir, dentry, error); 1662 if (error != 0) 1663 goto out_err; 1664 return 0; 1665 out_err: 1666 d_drop(dentry); 1667 return error; 1668 } 1669 EXPORT_SYMBOL_GPL(nfs_mkdir); 1670 1671 static void nfs_dentry_handle_enoent(struct dentry *dentry) 1672 { 1673 if (dentry->d_inode != NULL && !d_unhashed(dentry)) 1674 d_delete(dentry); 1675 } 1676 1677 int nfs_rmdir(struct inode *dir, struct dentry *dentry) 1678 { 1679 int error; 1680 1681 dfprintk(VFS, "NFS: rmdir(%s/%ld), %pd\n", 1682 dir->i_sb->s_id, dir->i_ino, dentry); 1683 1684 trace_nfs_rmdir_enter(dir, dentry); 1685 if (dentry->d_inode) { 1686 nfs_wait_on_sillyrename(dentry); 1687 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1688 /* Ensure the VFS deletes this inode */ 1689 switch (error) { 1690 case 0: 1691 clear_nlink(dentry->d_inode); 1692 break; 1693 case -ENOENT: 1694 nfs_dentry_handle_enoent(dentry); 1695 } 1696 } else 1697 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1698 trace_nfs_rmdir_exit(dir, dentry, error); 1699 1700 return error; 1701 } 1702 EXPORT_SYMBOL_GPL(nfs_rmdir); 1703 1704 /* 1705 * Remove a file after making sure there are no pending writes, 1706 * and after checking that the file has only one user. 1707 * 1708 * We invalidate the attribute cache and free the inode prior to the operation 1709 * to avoid possible races if the server reuses the inode. 1710 */ 1711 static int nfs_safe_remove(struct dentry *dentry) 1712 { 1713 struct inode *dir = dentry->d_parent->d_inode; 1714 struct inode *inode = dentry->d_inode; 1715 int error = -EBUSY; 1716 1717 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry); 1718 1719 /* If the dentry was sillyrenamed, we simply call d_delete() */ 1720 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1721 error = 0; 1722 goto out; 1723 } 1724 1725 trace_nfs_remove_enter(dir, dentry); 1726 if (inode != NULL) { 1727 NFS_PROTO(inode)->return_delegation(inode); 1728 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name); 1729 if (error == 0) 1730 nfs_drop_nlink(inode); 1731 } else 1732 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name); 1733 if (error == -ENOENT) 1734 nfs_dentry_handle_enoent(dentry); 1735 trace_nfs_remove_exit(dir, dentry, error); 1736 out: 1737 return error; 1738 } 1739 1740 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode 1741 * belongs to an active ".nfs..." file and we return -EBUSY. 1742 * 1743 * If sillyrename() returns 0, we do nothing, otherwise we unlink. 1744 */ 1745 int nfs_unlink(struct inode *dir, struct dentry *dentry) 1746 { 1747 int error; 1748 int need_rehash = 0; 1749 1750 dfprintk(VFS, "NFS: unlink(%s/%ld, %pd)\n", dir->i_sb->s_id, 1751 dir->i_ino, dentry); 1752 1753 trace_nfs_unlink_enter(dir, dentry); 1754 spin_lock(&dentry->d_lock); 1755 if (d_count(dentry) > 1) { 1756 spin_unlock(&dentry->d_lock); 1757 /* Start asynchronous writeout of the inode */ 1758 write_inode_now(dentry->d_inode, 0); 1759 error = nfs_sillyrename(dir, dentry); 1760 goto out; 1761 } 1762 if (!d_unhashed(dentry)) { 1763 __d_drop(dentry); 1764 need_rehash = 1; 1765 } 1766 spin_unlock(&dentry->d_lock); 1767 error = nfs_safe_remove(dentry); 1768 if (!error || error == -ENOENT) { 1769 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1770 } else if (need_rehash) 1771 d_rehash(dentry); 1772 out: 1773 trace_nfs_unlink_exit(dir, dentry, error); 1774 return error; 1775 } 1776 EXPORT_SYMBOL_GPL(nfs_unlink); 1777 1778 /* 1779 * To create a symbolic link, most file systems instantiate a new inode, 1780 * add a page to it containing the path, then write it out to the disk 1781 * using prepare_write/commit_write. 1782 * 1783 * Unfortunately the NFS client can't create the in-core inode first 1784 * because it needs a file handle to create an in-core inode (see 1785 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the 1786 * symlink request has completed on the server. 1787 * 1788 * So instead we allocate a raw page, copy the symname into it, then do 1789 * the SYMLINK request with the page as the buffer. If it succeeds, we 1790 * now have a new file handle and can instantiate an in-core NFS inode 1791 * and move the raw page into its mapping. 1792 */ 1793 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 1794 { 1795 struct page *page; 1796 char *kaddr; 1797 struct iattr attr; 1798 unsigned int pathlen = strlen(symname); 1799 int error; 1800 1801 dfprintk(VFS, "NFS: symlink(%s/%ld, %pd, %s)\n", dir->i_sb->s_id, 1802 dir->i_ino, dentry, symname); 1803 1804 if (pathlen > PAGE_SIZE) 1805 return -ENAMETOOLONG; 1806 1807 attr.ia_mode = S_IFLNK | S_IRWXUGO; 1808 attr.ia_valid = ATTR_MODE; 1809 1810 page = alloc_page(GFP_HIGHUSER); 1811 if (!page) 1812 return -ENOMEM; 1813 1814 kaddr = kmap_atomic(page); 1815 memcpy(kaddr, symname, pathlen); 1816 if (pathlen < PAGE_SIZE) 1817 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen); 1818 kunmap_atomic(kaddr); 1819 1820 trace_nfs_symlink_enter(dir, dentry); 1821 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr); 1822 trace_nfs_symlink_exit(dir, dentry, error); 1823 if (error != 0) { 1824 dfprintk(VFS, "NFS: symlink(%s/%ld, %pd, %s) error %d\n", 1825 dir->i_sb->s_id, dir->i_ino, 1826 dentry, symname, error); 1827 d_drop(dentry); 1828 __free_page(page); 1829 return error; 1830 } 1831 1832 /* 1833 * No big deal if we can't add this page to the page cache here. 1834 * READLINK will get the missing page from the server if needed. 1835 */ 1836 if (!add_to_page_cache_lru(page, dentry->d_inode->i_mapping, 0, 1837 GFP_KERNEL)) { 1838 SetPageUptodate(page); 1839 unlock_page(page); 1840 } else 1841 __free_page(page); 1842 1843 return 0; 1844 } 1845 EXPORT_SYMBOL_GPL(nfs_symlink); 1846 1847 int 1848 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 1849 { 1850 struct inode *inode = old_dentry->d_inode; 1851 int error; 1852 1853 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n", 1854 old_dentry, dentry); 1855 1856 trace_nfs_link_enter(inode, dir, dentry); 1857 NFS_PROTO(inode)->return_delegation(inode); 1858 1859 d_drop(dentry); 1860 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name); 1861 if (error == 0) { 1862 ihold(inode); 1863 d_add(dentry, inode); 1864 } 1865 trace_nfs_link_exit(inode, dir, dentry, error); 1866 return error; 1867 } 1868 EXPORT_SYMBOL_GPL(nfs_link); 1869 1870 /* 1871 * RENAME 1872 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a 1873 * different file handle for the same inode after a rename (e.g. when 1874 * moving to a different directory). A fail-safe method to do so would 1875 * be to look up old_dir/old_name, create a link to new_dir/new_name and 1876 * rename the old file using the sillyrename stuff. This way, the original 1877 * file in old_dir will go away when the last process iput()s the inode. 1878 * 1879 * FIXED. 1880 * 1881 * It actually works quite well. One needs to have the possibility for 1882 * at least one ".nfs..." file in each directory the file ever gets 1883 * moved or linked to which happens automagically with the new 1884 * implementation that only depends on the dcache stuff instead of 1885 * using the inode layer 1886 * 1887 * Unfortunately, things are a little more complicated than indicated 1888 * above. For a cross-directory move, we want to make sure we can get 1889 * rid of the old inode after the operation. This means there must be 1890 * no pending writes (if it's a file), and the use count must be 1. 1891 * If these conditions are met, we can drop the dentries before doing 1892 * the rename. 1893 */ 1894 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry, 1895 struct inode *new_dir, struct dentry *new_dentry) 1896 { 1897 struct inode *old_inode = old_dentry->d_inode; 1898 struct inode *new_inode = new_dentry->d_inode; 1899 struct dentry *dentry = NULL, *rehash = NULL; 1900 int error = -EBUSY; 1901 1902 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n", 1903 old_dentry, new_dentry, 1904 d_count(new_dentry)); 1905 1906 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry); 1907 /* 1908 * For non-directories, check whether the target is busy and if so, 1909 * make a copy of the dentry and then do a silly-rename. If the 1910 * silly-rename succeeds, the copied dentry is hashed and becomes 1911 * the new target. 1912 */ 1913 if (new_inode && !S_ISDIR(new_inode->i_mode)) { 1914 /* 1915 * To prevent any new references to the target during the 1916 * rename, we unhash the dentry in advance. 1917 */ 1918 if (!d_unhashed(new_dentry)) { 1919 d_drop(new_dentry); 1920 rehash = new_dentry; 1921 } 1922 1923 if (d_count(new_dentry) > 2) { 1924 int err; 1925 1926 /* copy the target dentry's name */ 1927 dentry = d_alloc(new_dentry->d_parent, 1928 &new_dentry->d_name); 1929 if (!dentry) 1930 goto out; 1931 1932 /* silly-rename the existing target ... */ 1933 err = nfs_sillyrename(new_dir, new_dentry); 1934 if (err) 1935 goto out; 1936 1937 new_dentry = dentry; 1938 rehash = NULL; 1939 new_inode = NULL; 1940 } 1941 } 1942 1943 NFS_PROTO(old_inode)->return_delegation(old_inode); 1944 if (new_inode != NULL) 1945 NFS_PROTO(new_inode)->return_delegation(new_inode); 1946 1947 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name, 1948 new_dir, &new_dentry->d_name); 1949 nfs_mark_for_revalidate(old_inode); 1950 out: 1951 if (rehash) 1952 d_rehash(rehash); 1953 trace_nfs_rename_exit(old_dir, old_dentry, 1954 new_dir, new_dentry, error); 1955 if (!error) { 1956 if (new_inode != NULL) 1957 nfs_drop_nlink(new_inode); 1958 d_move(old_dentry, new_dentry); 1959 nfs_set_verifier(new_dentry, 1960 nfs_save_change_attribute(new_dir)); 1961 } else if (error == -ENOENT) 1962 nfs_dentry_handle_enoent(old_dentry); 1963 1964 /* new dentry created? */ 1965 if (dentry) 1966 dput(dentry); 1967 return error; 1968 } 1969 EXPORT_SYMBOL_GPL(nfs_rename); 1970 1971 static DEFINE_SPINLOCK(nfs_access_lru_lock); 1972 static LIST_HEAD(nfs_access_lru_list); 1973 static atomic_long_t nfs_access_nr_entries; 1974 1975 static void nfs_access_free_entry(struct nfs_access_entry *entry) 1976 { 1977 put_rpccred(entry->cred); 1978 kfree(entry); 1979 smp_mb__before_atomic_dec(); 1980 atomic_long_dec(&nfs_access_nr_entries); 1981 smp_mb__after_atomic_dec(); 1982 } 1983 1984 static void nfs_access_free_list(struct list_head *head) 1985 { 1986 struct nfs_access_entry *cache; 1987 1988 while (!list_empty(head)) { 1989 cache = list_entry(head->next, struct nfs_access_entry, lru); 1990 list_del(&cache->lru); 1991 nfs_access_free_entry(cache); 1992 } 1993 } 1994 1995 unsigned long 1996 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc) 1997 { 1998 LIST_HEAD(head); 1999 struct nfs_inode *nfsi, *next; 2000 struct nfs_access_entry *cache; 2001 int nr_to_scan = sc->nr_to_scan; 2002 gfp_t gfp_mask = sc->gfp_mask; 2003 long freed = 0; 2004 2005 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL) 2006 return SHRINK_STOP; 2007 2008 spin_lock(&nfs_access_lru_lock); 2009 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) { 2010 struct inode *inode; 2011 2012 if (nr_to_scan-- == 0) 2013 break; 2014 inode = &nfsi->vfs_inode; 2015 spin_lock(&inode->i_lock); 2016 if (list_empty(&nfsi->access_cache_entry_lru)) 2017 goto remove_lru_entry; 2018 cache = list_entry(nfsi->access_cache_entry_lru.next, 2019 struct nfs_access_entry, lru); 2020 list_move(&cache->lru, &head); 2021 rb_erase(&cache->rb_node, &nfsi->access_cache); 2022 freed++; 2023 if (!list_empty(&nfsi->access_cache_entry_lru)) 2024 list_move_tail(&nfsi->access_cache_inode_lru, 2025 &nfs_access_lru_list); 2026 else { 2027 remove_lru_entry: 2028 list_del_init(&nfsi->access_cache_inode_lru); 2029 smp_mb__before_clear_bit(); 2030 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags); 2031 smp_mb__after_clear_bit(); 2032 } 2033 spin_unlock(&inode->i_lock); 2034 } 2035 spin_unlock(&nfs_access_lru_lock); 2036 nfs_access_free_list(&head); 2037 return freed; 2038 } 2039 2040 unsigned long 2041 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc) 2042 { 2043 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries)); 2044 } 2045 2046 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head) 2047 { 2048 struct rb_root *root_node = &nfsi->access_cache; 2049 struct rb_node *n; 2050 struct nfs_access_entry *entry; 2051 2052 /* Unhook entries from the cache */ 2053 while ((n = rb_first(root_node)) != NULL) { 2054 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2055 rb_erase(n, root_node); 2056 list_move(&entry->lru, head); 2057 } 2058 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS; 2059 } 2060 2061 void nfs_access_zap_cache(struct inode *inode) 2062 { 2063 LIST_HEAD(head); 2064 2065 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0) 2066 return; 2067 /* Remove from global LRU init */ 2068 spin_lock(&nfs_access_lru_lock); 2069 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2070 list_del_init(&NFS_I(inode)->access_cache_inode_lru); 2071 2072 spin_lock(&inode->i_lock); 2073 __nfs_access_zap_cache(NFS_I(inode), &head); 2074 spin_unlock(&inode->i_lock); 2075 spin_unlock(&nfs_access_lru_lock); 2076 nfs_access_free_list(&head); 2077 } 2078 EXPORT_SYMBOL_GPL(nfs_access_zap_cache); 2079 2080 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred) 2081 { 2082 struct rb_node *n = NFS_I(inode)->access_cache.rb_node; 2083 struct nfs_access_entry *entry; 2084 2085 while (n != NULL) { 2086 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2087 2088 if (cred < entry->cred) 2089 n = n->rb_left; 2090 else if (cred > entry->cred) 2091 n = n->rb_right; 2092 else 2093 return entry; 2094 } 2095 return NULL; 2096 } 2097 2098 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res) 2099 { 2100 struct nfs_inode *nfsi = NFS_I(inode); 2101 struct nfs_access_entry *cache; 2102 int err = -ENOENT; 2103 2104 spin_lock(&inode->i_lock); 2105 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2106 goto out_zap; 2107 cache = nfs_access_search_rbtree(inode, cred); 2108 if (cache == NULL) 2109 goto out; 2110 if (!nfs_have_delegated_attributes(inode) && 2111 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo)) 2112 goto out_stale; 2113 res->jiffies = cache->jiffies; 2114 res->cred = cache->cred; 2115 res->mask = cache->mask; 2116 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru); 2117 err = 0; 2118 out: 2119 spin_unlock(&inode->i_lock); 2120 return err; 2121 out_stale: 2122 rb_erase(&cache->rb_node, &nfsi->access_cache); 2123 list_del(&cache->lru); 2124 spin_unlock(&inode->i_lock); 2125 nfs_access_free_entry(cache); 2126 return -ENOENT; 2127 out_zap: 2128 spin_unlock(&inode->i_lock); 2129 nfs_access_zap_cache(inode); 2130 return -ENOENT; 2131 } 2132 2133 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set) 2134 { 2135 struct nfs_inode *nfsi = NFS_I(inode); 2136 struct rb_root *root_node = &nfsi->access_cache; 2137 struct rb_node **p = &root_node->rb_node; 2138 struct rb_node *parent = NULL; 2139 struct nfs_access_entry *entry; 2140 2141 spin_lock(&inode->i_lock); 2142 while (*p != NULL) { 2143 parent = *p; 2144 entry = rb_entry(parent, struct nfs_access_entry, rb_node); 2145 2146 if (set->cred < entry->cred) 2147 p = &parent->rb_left; 2148 else if (set->cred > entry->cred) 2149 p = &parent->rb_right; 2150 else 2151 goto found; 2152 } 2153 rb_link_node(&set->rb_node, parent, p); 2154 rb_insert_color(&set->rb_node, root_node); 2155 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2156 spin_unlock(&inode->i_lock); 2157 return; 2158 found: 2159 rb_replace_node(parent, &set->rb_node, root_node); 2160 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2161 list_del(&entry->lru); 2162 spin_unlock(&inode->i_lock); 2163 nfs_access_free_entry(entry); 2164 } 2165 2166 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set) 2167 { 2168 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL); 2169 if (cache == NULL) 2170 return; 2171 RB_CLEAR_NODE(&cache->rb_node); 2172 cache->jiffies = set->jiffies; 2173 cache->cred = get_rpccred(set->cred); 2174 cache->mask = set->mask; 2175 2176 nfs_access_add_rbtree(inode, cache); 2177 2178 /* Update accounting */ 2179 smp_mb__before_atomic_inc(); 2180 atomic_long_inc(&nfs_access_nr_entries); 2181 smp_mb__after_atomic_inc(); 2182 2183 /* Add inode to global LRU list */ 2184 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) { 2185 spin_lock(&nfs_access_lru_lock); 2186 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2187 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, 2188 &nfs_access_lru_list); 2189 spin_unlock(&nfs_access_lru_lock); 2190 } 2191 } 2192 EXPORT_SYMBOL_GPL(nfs_access_add_cache); 2193 2194 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result) 2195 { 2196 entry->mask = 0; 2197 if (access_result & NFS4_ACCESS_READ) 2198 entry->mask |= MAY_READ; 2199 if (access_result & 2200 (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE)) 2201 entry->mask |= MAY_WRITE; 2202 if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE)) 2203 entry->mask |= MAY_EXEC; 2204 } 2205 EXPORT_SYMBOL_GPL(nfs_access_set_mask); 2206 2207 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask) 2208 { 2209 struct nfs_access_entry cache; 2210 int status; 2211 2212 trace_nfs_access_enter(inode); 2213 2214 status = nfs_access_get_cached(inode, cred, &cache); 2215 if (status == 0) 2216 goto out_cached; 2217 2218 /* Be clever: ask server to check for all possible rights */ 2219 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ; 2220 cache.cred = cred; 2221 cache.jiffies = jiffies; 2222 status = NFS_PROTO(inode)->access(inode, &cache); 2223 if (status != 0) { 2224 if (status == -ESTALE) { 2225 nfs_zap_caches(inode); 2226 if (!S_ISDIR(inode->i_mode)) 2227 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags); 2228 } 2229 goto out; 2230 } 2231 nfs_access_add_cache(inode, &cache); 2232 out_cached: 2233 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0) 2234 status = -EACCES; 2235 out: 2236 trace_nfs_access_exit(inode, status); 2237 return status; 2238 } 2239 2240 static int nfs_open_permission_mask(int openflags) 2241 { 2242 int mask = 0; 2243 2244 if (openflags & __FMODE_EXEC) { 2245 /* ONLY check exec rights */ 2246 mask = MAY_EXEC; 2247 } else { 2248 if ((openflags & O_ACCMODE) != O_WRONLY) 2249 mask |= MAY_READ; 2250 if ((openflags & O_ACCMODE) != O_RDONLY) 2251 mask |= MAY_WRITE; 2252 } 2253 2254 return mask; 2255 } 2256 2257 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags) 2258 { 2259 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags)); 2260 } 2261 EXPORT_SYMBOL_GPL(nfs_may_open); 2262 2263 int nfs_permission(struct inode *inode, int mask) 2264 { 2265 struct rpc_cred *cred; 2266 int res = 0; 2267 2268 if (mask & MAY_NOT_BLOCK) 2269 return -ECHILD; 2270 2271 nfs_inc_stats(inode, NFSIOS_VFSACCESS); 2272 2273 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 2274 goto out; 2275 /* Is this sys_access() ? */ 2276 if (mask & (MAY_ACCESS | MAY_CHDIR)) 2277 goto force_lookup; 2278 2279 switch (inode->i_mode & S_IFMT) { 2280 case S_IFLNK: 2281 goto out; 2282 case S_IFREG: 2283 break; 2284 case S_IFDIR: 2285 /* 2286 * Optimize away all write operations, since the server 2287 * will check permissions when we perform the op. 2288 */ 2289 if ((mask & MAY_WRITE) && !(mask & MAY_READ)) 2290 goto out; 2291 } 2292 2293 force_lookup: 2294 if (!NFS_PROTO(inode)->access) 2295 goto out_notsup; 2296 2297 cred = rpc_lookup_cred(); 2298 if (!IS_ERR(cred)) { 2299 res = nfs_do_access(inode, cred, mask); 2300 put_rpccred(cred); 2301 } else 2302 res = PTR_ERR(cred); 2303 out: 2304 if (!res && (mask & MAY_EXEC) && !execute_ok(inode)) 2305 res = -EACCES; 2306 2307 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n", 2308 inode->i_sb->s_id, inode->i_ino, mask, res); 2309 return res; 2310 out_notsup: 2311 res = nfs_revalidate_inode(NFS_SERVER(inode), inode); 2312 if (res == 0) 2313 res = generic_permission(inode, mask); 2314 goto out; 2315 } 2316 EXPORT_SYMBOL_GPL(nfs_permission); 2317 2318 /* 2319 * Local variables: 2320 * version-control: t 2321 * kept-new-versions: 5 2322 * End: 2323 */ 2324