1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/nfs/dir.c 4 * 5 * Copyright (C) 1992 Rick Sladkey 6 * 7 * nfs directory handling functions 8 * 9 * 10 Apr 1996 Added silly rename for unlink --okir 10 * 28 Sep 1996 Improved directory cache --okir 11 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de 12 * Re-implemented silly rename for unlink, newly implemented 13 * silly rename for nfs_rename() following the suggestions 14 * of Olaf Kirch (okir) found in this file. 15 * Following Linus comments on my original hack, this version 16 * depends only on the dcache stuff and doesn't touch the inode 17 * layer (iput() and friends). 18 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM 19 */ 20 21 #include <linux/module.h> 22 #include <linux/time.h> 23 #include <linux/errno.h> 24 #include <linux/stat.h> 25 #include <linux/fcntl.h> 26 #include <linux/string.h> 27 #include <linux/kernel.h> 28 #include <linux/slab.h> 29 #include <linux/mm.h> 30 #include <linux/sunrpc/clnt.h> 31 #include <linux/nfs_fs.h> 32 #include <linux/nfs_mount.h> 33 #include <linux/pagemap.h> 34 #include <linux/pagevec.h> 35 #include <linux/namei.h> 36 #include <linux/mount.h> 37 #include <linux/swap.h> 38 #include <linux/sched.h> 39 #include <linux/kmemleak.h> 40 #include <linux/xattr.h> 41 42 #include "delegation.h" 43 #include "iostat.h" 44 #include "internal.h" 45 #include "fscache.h" 46 47 #include "nfstrace.h" 48 49 /* #define NFS_DEBUG_VERBOSE 1 */ 50 51 static int nfs_opendir(struct inode *, struct file *); 52 static int nfs_closedir(struct inode *, struct file *); 53 static int nfs_readdir(struct file *, struct dir_context *); 54 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int); 55 static loff_t nfs_llseek_dir(struct file *, loff_t, int); 56 static void nfs_readdir_clear_array(struct page*); 57 58 const struct file_operations nfs_dir_operations = { 59 .llseek = nfs_llseek_dir, 60 .read = generic_read_dir, 61 .iterate = nfs_readdir, 62 .open = nfs_opendir, 63 .release = nfs_closedir, 64 .fsync = nfs_fsync_dir, 65 }; 66 67 const struct address_space_operations nfs_dir_aops = { 68 .freepage = nfs_readdir_clear_array, 69 }; 70 71 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, const struct cred *cred) 72 { 73 struct nfs_inode *nfsi = NFS_I(dir); 74 struct nfs_open_dir_context *ctx; 75 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); 76 if (ctx != NULL) { 77 ctx->duped = 0; 78 ctx->attr_gencount = nfsi->attr_gencount; 79 ctx->dir_cookie = 0; 80 ctx->dup_cookie = 0; 81 ctx->cred = get_cred(cred); 82 spin_lock(&dir->i_lock); 83 if (list_empty(&nfsi->open_files) && 84 (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER)) 85 nfsi->cache_validity |= NFS_INO_INVALID_DATA | 86 NFS_INO_REVAL_FORCED; 87 list_add(&ctx->list, &nfsi->open_files); 88 spin_unlock(&dir->i_lock); 89 return ctx; 90 } 91 return ERR_PTR(-ENOMEM); 92 } 93 94 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx) 95 { 96 spin_lock(&dir->i_lock); 97 list_del(&ctx->list); 98 spin_unlock(&dir->i_lock); 99 put_cred(ctx->cred); 100 kfree(ctx); 101 } 102 103 /* 104 * Open file 105 */ 106 static int 107 nfs_opendir(struct inode *inode, struct file *filp) 108 { 109 int res = 0; 110 struct nfs_open_dir_context *ctx; 111 112 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp); 113 114 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 115 116 ctx = alloc_nfs_open_dir_context(inode, current_cred()); 117 if (IS_ERR(ctx)) { 118 res = PTR_ERR(ctx); 119 goto out; 120 } 121 filp->private_data = ctx; 122 out: 123 return res; 124 } 125 126 static int 127 nfs_closedir(struct inode *inode, struct file *filp) 128 { 129 put_nfs_open_dir_context(file_inode(filp), filp->private_data); 130 return 0; 131 } 132 133 struct nfs_cache_array_entry { 134 u64 cookie; 135 u64 ino; 136 struct qstr string; 137 unsigned char d_type; 138 }; 139 140 struct nfs_cache_array { 141 int size; 142 int eof_index; 143 u64 last_cookie; 144 struct nfs_cache_array_entry array[0]; 145 }; 146 147 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, bool); 148 typedef struct { 149 struct file *file; 150 struct page *page; 151 struct dir_context *ctx; 152 unsigned long page_index; 153 u64 *dir_cookie; 154 u64 last_cookie; 155 loff_t current_index; 156 decode_dirent_t decode; 157 158 unsigned long timestamp; 159 unsigned long gencount; 160 unsigned int cache_entry_index; 161 bool plus; 162 bool eof; 163 } nfs_readdir_descriptor_t; 164 165 /* 166 * we are freeing strings created by nfs_add_to_readdir_array() 167 */ 168 static 169 void nfs_readdir_clear_array(struct page *page) 170 { 171 struct nfs_cache_array *array; 172 int i; 173 174 array = kmap_atomic(page); 175 for (i = 0; i < array->size; i++) 176 kfree(array->array[i].string.name); 177 kunmap_atomic(array); 178 } 179 180 /* 181 * the caller is responsible for freeing qstr.name 182 * when called by nfs_readdir_add_to_array, the strings will be freed in 183 * nfs_clear_readdir_array() 184 */ 185 static 186 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len) 187 { 188 string->len = len; 189 string->name = kmemdup(name, len, GFP_KERNEL); 190 if (string->name == NULL) 191 return -ENOMEM; 192 /* 193 * Avoid a kmemleak false positive. The pointer to the name is stored 194 * in a page cache page which kmemleak does not scan. 195 */ 196 kmemleak_not_leak(string->name); 197 string->hash = full_name_hash(NULL, name, len); 198 return 0; 199 } 200 201 static 202 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page) 203 { 204 struct nfs_cache_array *array = kmap(page); 205 struct nfs_cache_array_entry *cache_entry; 206 int ret; 207 208 cache_entry = &array->array[array->size]; 209 210 /* Check that this entry lies within the page bounds */ 211 ret = -ENOSPC; 212 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE) 213 goto out; 214 215 cache_entry->cookie = entry->prev_cookie; 216 cache_entry->ino = entry->ino; 217 cache_entry->d_type = entry->d_type; 218 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len); 219 if (ret) 220 goto out; 221 array->last_cookie = entry->cookie; 222 array->size++; 223 if (entry->eof != 0) 224 array->eof_index = array->size; 225 out: 226 kunmap(page); 227 return ret; 228 } 229 230 static 231 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 232 { 233 loff_t diff = desc->ctx->pos - desc->current_index; 234 unsigned int index; 235 236 if (diff < 0) 237 goto out_eof; 238 if (diff >= array->size) { 239 if (array->eof_index >= 0) 240 goto out_eof; 241 return -EAGAIN; 242 } 243 244 index = (unsigned int)diff; 245 *desc->dir_cookie = array->array[index].cookie; 246 desc->cache_entry_index = index; 247 return 0; 248 out_eof: 249 desc->eof = true; 250 return -EBADCOOKIE; 251 } 252 253 static bool 254 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi) 255 { 256 if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA)) 257 return false; 258 smp_rmb(); 259 return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags); 260 } 261 262 static 263 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 264 { 265 int i; 266 loff_t new_pos; 267 int status = -EAGAIN; 268 269 for (i = 0; i < array->size; i++) { 270 if (array->array[i].cookie == *desc->dir_cookie) { 271 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file)); 272 struct nfs_open_dir_context *ctx = desc->file->private_data; 273 274 new_pos = desc->current_index + i; 275 if (ctx->attr_gencount != nfsi->attr_gencount || 276 !nfs_readdir_inode_mapping_valid(nfsi)) { 277 ctx->duped = 0; 278 ctx->attr_gencount = nfsi->attr_gencount; 279 } else if (new_pos < desc->ctx->pos) { 280 if (ctx->duped > 0 281 && ctx->dup_cookie == *desc->dir_cookie) { 282 if (printk_ratelimit()) { 283 pr_notice("NFS: directory %pD2 contains a readdir loop." 284 "Please contact your server vendor. " 285 "The file: %.*s has duplicate cookie %llu\n", 286 desc->file, array->array[i].string.len, 287 array->array[i].string.name, *desc->dir_cookie); 288 } 289 status = -ELOOP; 290 goto out; 291 } 292 ctx->dup_cookie = *desc->dir_cookie; 293 ctx->duped = -1; 294 } 295 desc->ctx->pos = new_pos; 296 desc->cache_entry_index = i; 297 return 0; 298 } 299 } 300 if (array->eof_index >= 0) { 301 status = -EBADCOOKIE; 302 if (*desc->dir_cookie == array->last_cookie) 303 desc->eof = true; 304 } 305 out: 306 return status; 307 } 308 309 static 310 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc) 311 { 312 struct nfs_cache_array *array; 313 int status; 314 315 array = kmap(desc->page); 316 317 if (*desc->dir_cookie == 0) 318 status = nfs_readdir_search_for_pos(array, desc); 319 else 320 status = nfs_readdir_search_for_cookie(array, desc); 321 322 if (status == -EAGAIN) { 323 desc->last_cookie = array->last_cookie; 324 desc->current_index += array->size; 325 desc->page_index++; 326 } 327 kunmap(desc->page); 328 return status; 329 } 330 331 /* Fill a page with xdr information before transferring to the cache page */ 332 static 333 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc, 334 struct nfs_entry *entry, struct file *file, struct inode *inode) 335 { 336 struct nfs_open_dir_context *ctx = file->private_data; 337 const struct cred *cred = ctx->cred; 338 unsigned long timestamp, gencount; 339 int error; 340 341 again: 342 timestamp = jiffies; 343 gencount = nfs_inc_attr_generation_counter(); 344 error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages, 345 NFS_SERVER(inode)->dtsize, desc->plus); 346 if (error < 0) { 347 /* We requested READDIRPLUS, but the server doesn't grok it */ 348 if (error == -ENOTSUPP && desc->plus) { 349 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS; 350 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 351 desc->plus = false; 352 goto again; 353 } 354 goto error; 355 } 356 desc->timestamp = timestamp; 357 desc->gencount = gencount; 358 error: 359 return error; 360 } 361 362 static int xdr_decode(nfs_readdir_descriptor_t *desc, 363 struct nfs_entry *entry, struct xdr_stream *xdr) 364 { 365 int error; 366 367 error = desc->decode(xdr, entry, desc->plus); 368 if (error) 369 return error; 370 entry->fattr->time_start = desc->timestamp; 371 entry->fattr->gencount = desc->gencount; 372 return 0; 373 } 374 375 /* Match file and dirent using either filehandle or fileid 376 * Note: caller is responsible for checking the fsid 377 */ 378 static 379 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry) 380 { 381 struct inode *inode; 382 struct nfs_inode *nfsi; 383 384 if (d_really_is_negative(dentry)) 385 return 0; 386 387 inode = d_inode(dentry); 388 if (is_bad_inode(inode) || NFS_STALE(inode)) 389 return 0; 390 391 nfsi = NFS_I(inode); 392 if (entry->fattr->fileid != nfsi->fileid) 393 return 0; 394 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0) 395 return 0; 396 return 1; 397 } 398 399 static 400 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx) 401 { 402 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS)) 403 return false; 404 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags)) 405 return true; 406 if (ctx->pos == 0) 407 return true; 408 return false; 409 } 410 411 /* 412 * This function is called by the lookup and getattr code to request the 413 * use of readdirplus to accelerate any future lookups in the same 414 * directory. 415 */ 416 void nfs_advise_use_readdirplus(struct inode *dir) 417 { 418 struct nfs_inode *nfsi = NFS_I(dir); 419 420 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) && 421 !list_empty(&nfsi->open_files)) 422 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags); 423 } 424 425 /* 426 * This function is mainly for use by nfs_getattr(). 427 * 428 * If this is an 'ls -l', we want to force use of readdirplus. 429 * Do this by checking if there is an active file descriptor 430 * and calling nfs_advise_use_readdirplus, then forcing a 431 * cache flush. 432 */ 433 void nfs_force_use_readdirplus(struct inode *dir) 434 { 435 struct nfs_inode *nfsi = NFS_I(dir); 436 437 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) && 438 !list_empty(&nfsi->open_files)) { 439 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags); 440 invalidate_mapping_pages(dir->i_mapping, 0, -1); 441 } 442 } 443 444 static 445 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry) 446 { 447 struct qstr filename = QSTR_INIT(entry->name, entry->len); 448 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 449 struct dentry *dentry; 450 struct dentry *alias; 451 struct inode *dir = d_inode(parent); 452 struct inode *inode; 453 int status; 454 455 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID)) 456 return; 457 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID)) 458 return; 459 if (filename.len == 0) 460 return; 461 /* Validate that the name doesn't contain any illegal '\0' */ 462 if (strnlen(filename.name, filename.len) != filename.len) 463 return; 464 /* ...or '/' */ 465 if (strnchr(filename.name, filename.len, '/')) 466 return; 467 if (filename.name[0] == '.') { 468 if (filename.len == 1) 469 return; 470 if (filename.len == 2 && filename.name[1] == '.') 471 return; 472 } 473 filename.hash = full_name_hash(parent, filename.name, filename.len); 474 475 dentry = d_lookup(parent, &filename); 476 again: 477 if (!dentry) { 478 dentry = d_alloc_parallel(parent, &filename, &wq); 479 if (IS_ERR(dentry)) 480 return; 481 } 482 if (!d_in_lookup(dentry)) { 483 /* Is there a mountpoint here? If so, just exit */ 484 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid, 485 &entry->fattr->fsid)) 486 goto out; 487 if (nfs_same_file(dentry, entry)) { 488 if (!entry->fh->size) 489 goto out; 490 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 491 status = nfs_refresh_inode(d_inode(dentry), entry->fattr); 492 if (!status) 493 nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label); 494 goto out; 495 } else { 496 d_invalidate(dentry); 497 dput(dentry); 498 dentry = NULL; 499 goto again; 500 } 501 } 502 if (!entry->fh->size) { 503 d_lookup_done(dentry); 504 goto out; 505 } 506 507 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label); 508 alias = d_splice_alias(inode, dentry); 509 d_lookup_done(dentry); 510 if (alias) { 511 if (IS_ERR(alias)) 512 goto out; 513 dput(dentry); 514 dentry = alias; 515 } 516 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 517 out: 518 dput(dentry); 519 } 520 521 /* Perform conversion from xdr to cache array */ 522 static 523 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry, 524 struct page **xdr_pages, struct page *page, unsigned int buflen) 525 { 526 struct xdr_stream stream; 527 struct xdr_buf buf; 528 struct page *scratch; 529 struct nfs_cache_array *array; 530 unsigned int count = 0; 531 int status; 532 533 scratch = alloc_page(GFP_KERNEL); 534 if (scratch == NULL) 535 return -ENOMEM; 536 537 if (buflen == 0) 538 goto out_nopages; 539 540 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen); 541 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE); 542 543 do { 544 status = xdr_decode(desc, entry, &stream); 545 if (status != 0) { 546 if (status == -EAGAIN) 547 status = 0; 548 break; 549 } 550 551 count++; 552 553 if (desc->plus) 554 nfs_prime_dcache(file_dentry(desc->file), entry); 555 556 status = nfs_readdir_add_to_array(entry, page); 557 if (status != 0) 558 break; 559 } while (!entry->eof); 560 561 out_nopages: 562 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) { 563 array = kmap(page); 564 array->eof_index = array->size; 565 status = 0; 566 kunmap(page); 567 } 568 569 put_page(scratch); 570 return status; 571 } 572 573 static 574 void nfs_readdir_free_pages(struct page **pages, unsigned int npages) 575 { 576 unsigned int i; 577 for (i = 0; i < npages; i++) 578 put_page(pages[i]); 579 } 580 581 /* 582 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call 583 * to nfs_readdir_free_pages() 584 */ 585 static 586 int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages) 587 { 588 unsigned int i; 589 590 for (i = 0; i < npages; i++) { 591 struct page *page = alloc_page(GFP_KERNEL); 592 if (page == NULL) 593 goto out_freepages; 594 pages[i] = page; 595 } 596 return 0; 597 598 out_freepages: 599 nfs_readdir_free_pages(pages, i); 600 return -ENOMEM; 601 } 602 603 static 604 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode) 605 { 606 struct page *pages[NFS_MAX_READDIR_PAGES]; 607 struct nfs_entry entry; 608 struct file *file = desc->file; 609 struct nfs_cache_array *array; 610 int status = -ENOMEM; 611 unsigned int array_size = ARRAY_SIZE(pages); 612 613 entry.prev_cookie = 0; 614 entry.cookie = desc->last_cookie; 615 entry.eof = 0; 616 entry.fh = nfs_alloc_fhandle(); 617 entry.fattr = nfs_alloc_fattr(); 618 entry.server = NFS_SERVER(inode); 619 if (entry.fh == NULL || entry.fattr == NULL) 620 goto out; 621 622 entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT); 623 if (IS_ERR(entry.label)) { 624 status = PTR_ERR(entry.label); 625 goto out; 626 } 627 628 array = kmap(page); 629 memset(array, 0, sizeof(struct nfs_cache_array)); 630 array->eof_index = -1; 631 632 status = nfs_readdir_alloc_pages(pages, array_size); 633 if (status < 0) 634 goto out_release_array; 635 do { 636 unsigned int pglen; 637 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode); 638 639 if (status < 0) 640 break; 641 pglen = status; 642 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen); 643 if (status < 0) { 644 if (status == -ENOSPC) 645 status = 0; 646 break; 647 } 648 } while (array->eof_index < 0); 649 650 nfs_readdir_free_pages(pages, array_size); 651 out_release_array: 652 kunmap(page); 653 nfs4_label_free(entry.label); 654 out: 655 nfs_free_fattr(entry.fattr); 656 nfs_free_fhandle(entry.fh); 657 return status; 658 } 659 660 /* 661 * Now we cache directories properly, by converting xdr information 662 * to an array that can be used for lookups later. This results in 663 * fewer cache pages, since we can store more information on each page. 664 * We only need to convert from xdr once so future lookups are much simpler 665 */ 666 static 667 int nfs_readdir_filler(void *data, struct page* page) 668 { 669 nfs_readdir_descriptor_t *desc = data; 670 struct inode *inode = file_inode(desc->file); 671 int ret; 672 673 ret = nfs_readdir_xdr_to_array(desc, page, inode); 674 if (ret < 0) 675 goto error; 676 SetPageUptodate(page); 677 678 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) { 679 /* Should never happen */ 680 nfs_zap_mapping(inode, inode->i_mapping); 681 } 682 unlock_page(page); 683 return 0; 684 error: 685 unlock_page(page); 686 return ret; 687 } 688 689 static 690 void cache_page_release(nfs_readdir_descriptor_t *desc) 691 { 692 if (!desc->page->mapping) 693 nfs_readdir_clear_array(desc->page); 694 put_page(desc->page); 695 desc->page = NULL; 696 } 697 698 static 699 struct page *get_cache_page(nfs_readdir_descriptor_t *desc) 700 { 701 return read_cache_page(desc->file->f_mapping, desc->page_index, 702 nfs_readdir_filler, desc); 703 } 704 705 /* 706 * Returns 0 if desc->dir_cookie was found on page desc->page_index 707 */ 708 static 709 int find_cache_page(nfs_readdir_descriptor_t *desc) 710 { 711 int res; 712 713 desc->page = get_cache_page(desc); 714 if (IS_ERR(desc->page)) 715 return PTR_ERR(desc->page); 716 717 res = nfs_readdir_search_array(desc); 718 if (res != 0) 719 cache_page_release(desc); 720 return res; 721 } 722 723 /* Search for desc->dir_cookie from the beginning of the page cache */ 724 static inline 725 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc) 726 { 727 int res; 728 729 if (desc->page_index == 0) { 730 desc->current_index = 0; 731 desc->last_cookie = 0; 732 } 733 do { 734 res = find_cache_page(desc); 735 } while (res == -EAGAIN); 736 return res; 737 } 738 739 /* 740 * Once we've found the start of the dirent within a page: fill 'er up... 741 */ 742 static 743 int nfs_do_filldir(nfs_readdir_descriptor_t *desc) 744 { 745 struct file *file = desc->file; 746 int i = 0; 747 int res = 0; 748 struct nfs_cache_array *array = NULL; 749 struct nfs_open_dir_context *ctx = file->private_data; 750 751 array = kmap(desc->page); 752 for (i = desc->cache_entry_index; i < array->size; i++) { 753 struct nfs_cache_array_entry *ent; 754 755 ent = &array->array[i]; 756 if (!dir_emit(desc->ctx, ent->string.name, ent->string.len, 757 nfs_compat_user_ino64(ent->ino), ent->d_type)) { 758 desc->eof = true; 759 break; 760 } 761 desc->ctx->pos++; 762 if (i < (array->size-1)) 763 *desc->dir_cookie = array->array[i+1].cookie; 764 else 765 *desc->dir_cookie = array->last_cookie; 766 if (ctx->duped != 0) 767 ctx->duped = 1; 768 } 769 if (array->eof_index >= 0) 770 desc->eof = true; 771 772 kunmap(desc->page); 773 cache_page_release(desc); 774 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n", 775 (unsigned long long)*desc->dir_cookie, res); 776 return res; 777 } 778 779 /* 780 * If we cannot find a cookie in our cache, we suspect that this is 781 * because it points to a deleted file, so we ask the server to return 782 * whatever it thinks is the next entry. We then feed this to filldir. 783 * If all goes well, we should then be able to find our way round the 784 * cache on the next call to readdir_search_pagecache(); 785 * 786 * NOTE: we cannot add the anonymous page to the pagecache because 787 * the data it contains might not be page aligned. Besides, 788 * we should already have a complete representation of the 789 * directory in the page cache by the time we get here. 790 */ 791 static inline 792 int uncached_readdir(nfs_readdir_descriptor_t *desc) 793 { 794 struct page *page = NULL; 795 int status; 796 struct inode *inode = file_inode(desc->file); 797 struct nfs_open_dir_context *ctx = desc->file->private_data; 798 799 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n", 800 (unsigned long long)*desc->dir_cookie); 801 802 page = alloc_page(GFP_HIGHUSER); 803 if (!page) { 804 status = -ENOMEM; 805 goto out; 806 } 807 808 desc->page_index = 0; 809 desc->last_cookie = *desc->dir_cookie; 810 desc->page = page; 811 ctx->duped = 0; 812 813 status = nfs_readdir_xdr_to_array(desc, page, inode); 814 if (status < 0) 815 goto out_release; 816 817 status = nfs_do_filldir(desc); 818 819 out: 820 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", 821 __func__, status); 822 return status; 823 out_release: 824 cache_page_release(desc); 825 goto out; 826 } 827 828 /* The file offset position represents the dirent entry number. A 829 last cookie cache takes care of the common case of reading the 830 whole directory. 831 */ 832 static int nfs_readdir(struct file *file, struct dir_context *ctx) 833 { 834 struct dentry *dentry = file_dentry(file); 835 struct inode *inode = d_inode(dentry); 836 nfs_readdir_descriptor_t my_desc, 837 *desc = &my_desc; 838 struct nfs_open_dir_context *dir_ctx = file->private_data; 839 int res = 0; 840 841 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n", 842 file, (long long)ctx->pos); 843 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS); 844 845 /* 846 * ctx->pos points to the dirent entry number. 847 * *desc->dir_cookie has the cookie for the next entry. We have 848 * to either find the entry with the appropriate number or 849 * revalidate the cookie. 850 */ 851 memset(desc, 0, sizeof(*desc)); 852 853 desc->file = file; 854 desc->ctx = ctx; 855 desc->dir_cookie = &dir_ctx->dir_cookie; 856 desc->decode = NFS_PROTO(inode)->decode_dirent; 857 desc->plus = nfs_use_readdirplus(inode, ctx); 858 859 if (ctx->pos == 0 || nfs_attribute_cache_expired(inode)) 860 res = nfs_revalidate_mapping(inode, file->f_mapping); 861 if (res < 0) 862 goto out; 863 864 do { 865 res = readdir_search_pagecache(desc); 866 867 if (res == -EBADCOOKIE) { 868 res = 0; 869 /* This means either end of directory */ 870 if (*desc->dir_cookie && !desc->eof) { 871 /* Or that the server has 'lost' a cookie */ 872 res = uncached_readdir(desc); 873 if (res == 0) 874 continue; 875 } 876 break; 877 } 878 if (res == -ETOOSMALL && desc->plus) { 879 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 880 nfs_zap_caches(inode); 881 desc->page_index = 0; 882 desc->plus = false; 883 desc->eof = false; 884 continue; 885 } 886 if (res < 0) 887 break; 888 889 res = nfs_do_filldir(desc); 890 if (res < 0) 891 break; 892 } while (!desc->eof); 893 out: 894 if (res > 0) 895 res = 0; 896 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res); 897 return res; 898 } 899 900 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence) 901 { 902 struct inode *inode = file_inode(filp); 903 struct nfs_open_dir_context *dir_ctx = filp->private_data; 904 905 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n", 906 filp, offset, whence); 907 908 switch (whence) { 909 default: 910 return -EINVAL; 911 case SEEK_SET: 912 if (offset < 0) 913 return -EINVAL; 914 inode_lock(inode); 915 break; 916 case SEEK_CUR: 917 if (offset == 0) 918 return filp->f_pos; 919 inode_lock(inode); 920 offset += filp->f_pos; 921 if (offset < 0) { 922 inode_unlock(inode); 923 return -EINVAL; 924 } 925 } 926 if (offset != filp->f_pos) { 927 filp->f_pos = offset; 928 dir_ctx->dir_cookie = 0; 929 dir_ctx->duped = 0; 930 } 931 inode_unlock(inode); 932 return offset; 933 } 934 935 /* 936 * All directory operations under NFS are synchronous, so fsync() 937 * is a dummy operation. 938 */ 939 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end, 940 int datasync) 941 { 942 struct inode *inode = file_inode(filp); 943 944 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync); 945 946 inode_lock(inode); 947 nfs_inc_stats(inode, NFSIOS_VFSFSYNC); 948 inode_unlock(inode); 949 return 0; 950 } 951 952 /** 953 * nfs_force_lookup_revalidate - Mark the directory as having changed 954 * @dir: pointer to directory inode 955 * 956 * This forces the revalidation code in nfs_lookup_revalidate() to do a 957 * full lookup on all child dentries of 'dir' whenever a change occurs 958 * on the server that might have invalidated our dcache. 959 * 960 * The caller should be holding dir->i_lock 961 */ 962 void nfs_force_lookup_revalidate(struct inode *dir) 963 { 964 NFS_I(dir)->cache_change_attribute++; 965 } 966 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate); 967 968 /* 969 * A check for whether or not the parent directory has changed. 970 * In the case it has, we assume that the dentries are untrustworthy 971 * and may need to be looked up again. 972 * If rcu_walk prevents us from performing a full check, return 0. 973 */ 974 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry, 975 int rcu_walk) 976 { 977 if (IS_ROOT(dentry)) 978 return 1; 979 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE) 980 return 0; 981 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 982 return 0; 983 /* Revalidate nfsi->cache_change_attribute before we declare a match */ 984 if (nfs_mapping_need_revalidate_inode(dir)) { 985 if (rcu_walk) 986 return 0; 987 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0) 988 return 0; 989 } 990 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 991 return 0; 992 return 1; 993 } 994 995 /* 996 * Use intent information to check whether or not we're going to do 997 * an O_EXCL create using this path component. 998 */ 999 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags) 1000 { 1001 if (NFS_PROTO(dir)->version == 2) 1002 return 0; 1003 return flags & LOOKUP_EXCL; 1004 } 1005 1006 /* 1007 * Inode and filehandle revalidation for lookups. 1008 * 1009 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL, 1010 * or if the intent information indicates that we're about to open this 1011 * particular file and the "nocto" mount flag is not set. 1012 * 1013 */ 1014 static 1015 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags) 1016 { 1017 struct nfs_server *server = NFS_SERVER(inode); 1018 int ret; 1019 1020 if (IS_AUTOMOUNT(inode)) 1021 return 0; 1022 1023 if (flags & LOOKUP_OPEN) { 1024 switch (inode->i_mode & S_IFMT) { 1025 case S_IFREG: 1026 /* A NFSv4 OPEN will revalidate later */ 1027 if (server->caps & NFS_CAP_ATOMIC_OPEN) 1028 goto out; 1029 /* Fallthrough */ 1030 case S_IFDIR: 1031 if (server->flags & NFS_MOUNT_NOCTO) 1032 break; 1033 /* NFS close-to-open cache consistency validation */ 1034 goto out_force; 1035 } 1036 } 1037 1038 /* VFS wants an on-the-wire revalidation */ 1039 if (flags & LOOKUP_REVAL) 1040 goto out_force; 1041 out: 1042 return (inode->i_nlink == 0) ? -ESTALE : 0; 1043 out_force: 1044 if (flags & LOOKUP_RCU) 1045 return -ECHILD; 1046 ret = __nfs_revalidate_inode(server, inode); 1047 if (ret != 0) 1048 return ret; 1049 goto out; 1050 } 1051 1052 /* 1053 * We judge how long we want to trust negative 1054 * dentries by looking at the parent inode mtime. 1055 * 1056 * If parent mtime has changed, we revalidate, else we wait for a 1057 * period corresponding to the parent's attribute cache timeout value. 1058 * 1059 * If LOOKUP_RCU prevents us from performing a full check, return 1 1060 * suggesting a reval is needed. 1061 * 1062 * Note that when creating a new file, or looking up a rename target, 1063 * then it shouldn't be necessary to revalidate a negative dentry. 1064 */ 1065 static inline 1066 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry, 1067 unsigned int flags) 1068 { 1069 if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET)) 1070 return 0; 1071 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG) 1072 return 1; 1073 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU); 1074 } 1075 1076 static int 1077 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry, 1078 struct inode *inode, int error) 1079 { 1080 switch (error) { 1081 case 1: 1082 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n", 1083 __func__, dentry); 1084 return 1; 1085 case 0: 1086 nfs_mark_for_revalidate(dir); 1087 if (inode && S_ISDIR(inode->i_mode)) { 1088 /* Purge readdir caches. */ 1089 nfs_zap_caches(inode); 1090 /* 1091 * We can't d_drop the root of a disconnected tree: 1092 * its d_hash is on the s_anon list and d_drop() would hide 1093 * it from shrink_dcache_for_unmount(), leading to busy 1094 * inodes on unmount and further oopses. 1095 */ 1096 if (IS_ROOT(dentry)) 1097 return 1; 1098 } 1099 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n", 1100 __func__, dentry); 1101 return 0; 1102 } 1103 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n", 1104 __func__, dentry, error); 1105 return error; 1106 } 1107 1108 static int 1109 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry, 1110 unsigned int flags) 1111 { 1112 int ret = 1; 1113 if (nfs_neg_need_reval(dir, dentry, flags)) { 1114 if (flags & LOOKUP_RCU) 1115 return -ECHILD; 1116 ret = 0; 1117 } 1118 return nfs_lookup_revalidate_done(dir, dentry, NULL, ret); 1119 } 1120 1121 static int 1122 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry, 1123 struct inode *inode) 1124 { 1125 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1126 return nfs_lookup_revalidate_done(dir, dentry, inode, 1); 1127 } 1128 1129 static int 1130 nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry, 1131 struct inode *inode) 1132 { 1133 struct nfs_fh *fhandle; 1134 struct nfs_fattr *fattr; 1135 struct nfs4_label *label; 1136 int ret; 1137 1138 ret = -ENOMEM; 1139 fhandle = nfs_alloc_fhandle(); 1140 fattr = nfs_alloc_fattr(); 1141 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL); 1142 if (fhandle == NULL || fattr == NULL || IS_ERR(label)) 1143 goto out; 1144 1145 ret = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label); 1146 if (ret < 0) { 1147 if (ret == -ESTALE || ret == -ENOENT) 1148 ret = 0; 1149 goto out; 1150 } 1151 ret = 0; 1152 if (nfs_compare_fh(NFS_FH(inode), fhandle)) 1153 goto out; 1154 if (nfs_refresh_inode(inode, fattr) < 0) 1155 goto out; 1156 1157 nfs_setsecurity(inode, fattr, label); 1158 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1159 1160 /* set a readdirplus hint that we had a cache miss */ 1161 nfs_force_use_readdirplus(dir); 1162 ret = 1; 1163 out: 1164 nfs_free_fattr(fattr); 1165 nfs_free_fhandle(fhandle); 1166 nfs4_label_free(label); 1167 return nfs_lookup_revalidate_done(dir, dentry, inode, ret); 1168 } 1169 1170 /* 1171 * This is called every time the dcache has a lookup hit, 1172 * and we should check whether we can really trust that 1173 * lookup. 1174 * 1175 * NOTE! The hit can be a negative hit too, don't assume 1176 * we have an inode! 1177 * 1178 * If the parent directory is seen to have changed, we throw out the 1179 * cached dentry and do a new lookup. 1180 */ 1181 static int 1182 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry, 1183 unsigned int flags) 1184 { 1185 struct inode *inode; 1186 int error; 1187 1188 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE); 1189 inode = d_inode(dentry); 1190 1191 if (!inode) 1192 return nfs_lookup_revalidate_negative(dir, dentry, flags); 1193 1194 if (is_bad_inode(inode)) { 1195 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1196 __func__, dentry); 1197 goto out_bad; 1198 } 1199 1200 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ)) 1201 return nfs_lookup_revalidate_delegated(dir, dentry, inode); 1202 1203 /* Force a full look up iff the parent directory has changed */ 1204 if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) && 1205 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) { 1206 error = nfs_lookup_verify_inode(inode, flags); 1207 if (error) { 1208 if (error == -ESTALE) 1209 nfs_zap_caches(dir); 1210 goto out_bad; 1211 } 1212 nfs_advise_use_readdirplus(dir); 1213 goto out_valid; 1214 } 1215 1216 if (flags & LOOKUP_RCU) 1217 return -ECHILD; 1218 1219 if (NFS_STALE(inode)) 1220 goto out_bad; 1221 1222 trace_nfs_lookup_revalidate_enter(dir, dentry, flags); 1223 error = nfs_lookup_revalidate_dentry(dir, dentry, inode); 1224 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error); 1225 return error; 1226 out_valid: 1227 return nfs_lookup_revalidate_done(dir, dentry, inode, 1); 1228 out_bad: 1229 if (flags & LOOKUP_RCU) 1230 return -ECHILD; 1231 return nfs_lookup_revalidate_done(dir, dentry, inode, 0); 1232 } 1233 1234 static int 1235 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags, 1236 int (*reval)(struct inode *, struct dentry *, unsigned int)) 1237 { 1238 struct dentry *parent; 1239 struct inode *dir; 1240 int ret; 1241 1242 if (flags & LOOKUP_RCU) { 1243 parent = READ_ONCE(dentry->d_parent); 1244 dir = d_inode_rcu(parent); 1245 if (!dir) 1246 return -ECHILD; 1247 ret = reval(dir, dentry, flags); 1248 if (parent != READ_ONCE(dentry->d_parent)) 1249 return -ECHILD; 1250 } else { 1251 parent = dget_parent(dentry); 1252 ret = reval(d_inode(parent), dentry, flags); 1253 dput(parent); 1254 } 1255 return ret; 1256 } 1257 1258 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1259 { 1260 return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate); 1261 } 1262 1263 /* 1264 * A weaker form of d_revalidate for revalidating just the d_inode(dentry) 1265 * when we don't really care about the dentry name. This is called when a 1266 * pathwalk ends on a dentry that was not found via a normal lookup in the 1267 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals). 1268 * 1269 * In this situation, we just want to verify that the inode itself is OK 1270 * since the dentry might have changed on the server. 1271 */ 1272 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags) 1273 { 1274 struct inode *inode = d_inode(dentry); 1275 int error = 0; 1276 1277 /* 1278 * I believe we can only get a negative dentry here in the case of a 1279 * procfs-style symlink. Just assume it's correct for now, but we may 1280 * eventually need to do something more here. 1281 */ 1282 if (!inode) { 1283 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n", 1284 __func__, dentry); 1285 return 1; 1286 } 1287 1288 if (is_bad_inode(inode)) { 1289 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1290 __func__, dentry); 1291 return 0; 1292 } 1293 1294 error = nfs_lookup_verify_inode(inode, flags); 1295 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n", 1296 __func__, inode->i_ino, error ? "invalid" : "valid"); 1297 return !error; 1298 } 1299 1300 /* 1301 * This is called from dput() when d_count is going to 0. 1302 */ 1303 static int nfs_dentry_delete(const struct dentry *dentry) 1304 { 1305 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n", 1306 dentry, dentry->d_flags); 1307 1308 /* Unhash any dentry with a stale inode */ 1309 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry))) 1310 return 1; 1311 1312 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1313 /* Unhash it, so that ->d_iput() would be called */ 1314 return 1; 1315 } 1316 if (!(dentry->d_sb->s_flags & SB_ACTIVE)) { 1317 /* Unhash it, so that ancestors of killed async unlink 1318 * files will be cleaned up during umount */ 1319 return 1; 1320 } 1321 return 0; 1322 1323 } 1324 1325 /* Ensure that we revalidate inode->i_nlink */ 1326 static void nfs_drop_nlink(struct inode *inode) 1327 { 1328 spin_lock(&inode->i_lock); 1329 /* drop the inode if we're reasonably sure this is the last link */ 1330 if (inode->i_nlink > 0) 1331 drop_nlink(inode); 1332 NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter(); 1333 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_CHANGE 1334 | NFS_INO_INVALID_CTIME 1335 | NFS_INO_INVALID_OTHER 1336 | NFS_INO_REVAL_FORCED; 1337 spin_unlock(&inode->i_lock); 1338 } 1339 1340 /* 1341 * Called when the dentry loses inode. 1342 * We use it to clean up silly-renamed files. 1343 */ 1344 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode) 1345 { 1346 if (S_ISDIR(inode->i_mode)) 1347 /* drop any readdir cache as it could easily be old */ 1348 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA; 1349 1350 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1351 nfs_complete_unlink(dentry, inode); 1352 nfs_drop_nlink(inode); 1353 } 1354 iput(inode); 1355 } 1356 1357 static void nfs_d_release(struct dentry *dentry) 1358 { 1359 /* free cached devname value, if it survived that far */ 1360 if (unlikely(dentry->d_fsdata)) { 1361 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1362 WARN_ON(1); 1363 else 1364 kfree(dentry->d_fsdata); 1365 } 1366 } 1367 1368 const struct dentry_operations nfs_dentry_operations = { 1369 .d_revalidate = nfs_lookup_revalidate, 1370 .d_weak_revalidate = nfs_weak_revalidate, 1371 .d_delete = nfs_dentry_delete, 1372 .d_iput = nfs_dentry_iput, 1373 .d_automount = nfs_d_automount, 1374 .d_release = nfs_d_release, 1375 }; 1376 EXPORT_SYMBOL_GPL(nfs_dentry_operations); 1377 1378 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 1379 { 1380 struct dentry *res; 1381 struct inode *inode = NULL; 1382 struct nfs_fh *fhandle = NULL; 1383 struct nfs_fattr *fattr = NULL; 1384 struct nfs4_label *label = NULL; 1385 int error; 1386 1387 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry); 1388 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP); 1389 1390 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen)) 1391 return ERR_PTR(-ENAMETOOLONG); 1392 1393 /* 1394 * If we're doing an exclusive create, optimize away the lookup 1395 * but don't hash the dentry. 1396 */ 1397 if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET) 1398 return NULL; 1399 1400 res = ERR_PTR(-ENOMEM); 1401 fhandle = nfs_alloc_fhandle(); 1402 fattr = nfs_alloc_fattr(); 1403 if (fhandle == NULL || fattr == NULL) 1404 goto out; 1405 1406 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT); 1407 if (IS_ERR(label)) 1408 goto out; 1409 1410 trace_nfs_lookup_enter(dir, dentry, flags); 1411 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label); 1412 if (error == -ENOENT) 1413 goto no_entry; 1414 if (error < 0) { 1415 res = ERR_PTR(error); 1416 goto out_label; 1417 } 1418 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label); 1419 res = ERR_CAST(inode); 1420 if (IS_ERR(res)) 1421 goto out_label; 1422 1423 /* Notify readdir to use READDIRPLUS */ 1424 nfs_force_use_readdirplus(dir); 1425 1426 no_entry: 1427 res = d_splice_alias(inode, dentry); 1428 if (res != NULL) { 1429 if (IS_ERR(res)) 1430 goto out_label; 1431 dentry = res; 1432 } 1433 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1434 out_label: 1435 trace_nfs_lookup_exit(dir, dentry, flags, error); 1436 nfs4_label_free(label); 1437 out: 1438 nfs_free_fattr(fattr); 1439 nfs_free_fhandle(fhandle); 1440 return res; 1441 } 1442 EXPORT_SYMBOL_GPL(nfs_lookup); 1443 1444 #if IS_ENABLED(CONFIG_NFS_V4) 1445 static int nfs4_lookup_revalidate(struct dentry *, unsigned int); 1446 1447 const struct dentry_operations nfs4_dentry_operations = { 1448 .d_revalidate = nfs4_lookup_revalidate, 1449 .d_weak_revalidate = nfs_weak_revalidate, 1450 .d_delete = nfs_dentry_delete, 1451 .d_iput = nfs_dentry_iput, 1452 .d_automount = nfs_d_automount, 1453 .d_release = nfs_d_release, 1454 }; 1455 EXPORT_SYMBOL_GPL(nfs4_dentry_operations); 1456 1457 static fmode_t flags_to_mode(int flags) 1458 { 1459 fmode_t res = (__force fmode_t)flags & FMODE_EXEC; 1460 if ((flags & O_ACCMODE) != O_WRONLY) 1461 res |= FMODE_READ; 1462 if ((flags & O_ACCMODE) != O_RDONLY) 1463 res |= FMODE_WRITE; 1464 return res; 1465 } 1466 1467 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp) 1468 { 1469 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp); 1470 } 1471 1472 static int do_open(struct inode *inode, struct file *filp) 1473 { 1474 nfs_fscache_open_file(inode, filp); 1475 return 0; 1476 } 1477 1478 static int nfs_finish_open(struct nfs_open_context *ctx, 1479 struct dentry *dentry, 1480 struct file *file, unsigned open_flags) 1481 { 1482 int err; 1483 1484 err = finish_open(file, dentry, do_open); 1485 if (err) 1486 goto out; 1487 if (S_ISREG(file->f_path.dentry->d_inode->i_mode)) 1488 nfs_file_set_open_context(file, ctx); 1489 else 1490 err = -EOPENSTALE; 1491 out: 1492 return err; 1493 } 1494 1495 int nfs_atomic_open(struct inode *dir, struct dentry *dentry, 1496 struct file *file, unsigned open_flags, 1497 umode_t mode) 1498 { 1499 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1500 struct nfs_open_context *ctx; 1501 struct dentry *res; 1502 struct iattr attr = { .ia_valid = ATTR_OPEN }; 1503 struct inode *inode; 1504 unsigned int lookup_flags = 0; 1505 bool switched = false; 1506 int created = 0; 1507 int err; 1508 1509 /* Expect a negative dentry */ 1510 BUG_ON(d_inode(dentry)); 1511 1512 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n", 1513 dir->i_sb->s_id, dir->i_ino, dentry); 1514 1515 err = nfs_check_flags(open_flags); 1516 if (err) 1517 return err; 1518 1519 /* NFS only supports OPEN on regular files */ 1520 if ((open_flags & O_DIRECTORY)) { 1521 if (!d_in_lookup(dentry)) { 1522 /* 1523 * Hashed negative dentry with O_DIRECTORY: dentry was 1524 * revalidated and is fine, no need to perform lookup 1525 * again 1526 */ 1527 return -ENOENT; 1528 } 1529 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY; 1530 goto no_open; 1531 } 1532 1533 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 1534 return -ENAMETOOLONG; 1535 1536 if (open_flags & O_CREAT) { 1537 struct nfs_server *server = NFS_SERVER(dir); 1538 1539 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK)) 1540 mode &= ~current_umask(); 1541 1542 attr.ia_valid |= ATTR_MODE; 1543 attr.ia_mode = mode; 1544 } 1545 if (open_flags & O_TRUNC) { 1546 attr.ia_valid |= ATTR_SIZE; 1547 attr.ia_size = 0; 1548 } 1549 1550 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) { 1551 d_drop(dentry); 1552 switched = true; 1553 dentry = d_alloc_parallel(dentry->d_parent, 1554 &dentry->d_name, &wq); 1555 if (IS_ERR(dentry)) 1556 return PTR_ERR(dentry); 1557 if (unlikely(!d_in_lookup(dentry))) 1558 return finish_no_open(file, dentry); 1559 } 1560 1561 ctx = create_nfs_open_context(dentry, open_flags, file); 1562 err = PTR_ERR(ctx); 1563 if (IS_ERR(ctx)) 1564 goto out; 1565 1566 trace_nfs_atomic_open_enter(dir, ctx, open_flags); 1567 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created); 1568 if (created) 1569 file->f_mode |= FMODE_CREATED; 1570 if (IS_ERR(inode)) { 1571 err = PTR_ERR(inode); 1572 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 1573 put_nfs_open_context(ctx); 1574 d_drop(dentry); 1575 switch (err) { 1576 case -ENOENT: 1577 d_splice_alias(NULL, dentry); 1578 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1579 break; 1580 case -EISDIR: 1581 case -ENOTDIR: 1582 goto no_open; 1583 case -ELOOP: 1584 if (!(open_flags & O_NOFOLLOW)) 1585 goto no_open; 1586 break; 1587 /* case -EINVAL: */ 1588 default: 1589 break; 1590 } 1591 goto out; 1592 } 1593 1594 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags); 1595 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 1596 put_nfs_open_context(ctx); 1597 out: 1598 if (unlikely(switched)) { 1599 d_lookup_done(dentry); 1600 dput(dentry); 1601 } 1602 return err; 1603 1604 no_open: 1605 res = nfs_lookup(dir, dentry, lookup_flags); 1606 if (switched) { 1607 d_lookup_done(dentry); 1608 if (!res) 1609 res = dentry; 1610 else 1611 dput(dentry); 1612 } 1613 if (IS_ERR(res)) 1614 return PTR_ERR(res); 1615 return finish_no_open(file, res); 1616 } 1617 EXPORT_SYMBOL_GPL(nfs_atomic_open); 1618 1619 static int 1620 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry, 1621 unsigned int flags) 1622 { 1623 struct inode *inode; 1624 1625 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY)) 1626 goto full_reval; 1627 if (d_mountpoint(dentry)) 1628 goto full_reval; 1629 1630 inode = d_inode(dentry); 1631 1632 /* We can't create new files in nfs_open_revalidate(), so we 1633 * optimize away revalidation of negative dentries. 1634 */ 1635 if (inode == NULL) 1636 goto full_reval; 1637 1638 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ)) 1639 return nfs_lookup_revalidate_delegated(dir, dentry, inode); 1640 1641 /* NFS only supports OPEN on regular files */ 1642 if (!S_ISREG(inode->i_mode)) 1643 goto full_reval; 1644 1645 /* We cannot do exclusive creation on a positive dentry */ 1646 if (flags & (LOOKUP_EXCL | LOOKUP_REVAL)) 1647 goto reval_dentry; 1648 1649 /* Check if the directory changed */ 1650 if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) 1651 goto reval_dentry; 1652 1653 /* Let f_op->open() actually open (and revalidate) the file */ 1654 return 1; 1655 reval_dentry: 1656 if (flags & LOOKUP_RCU) 1657 return -ECHILD; 1658 return nfs_lookup_revalidate_dentry(dir, dentry, inode); 1659 1660 full_reval: 1661 return nfs_do_lookup_revalidate(dir, dentry, flags); 1662 } 1663 1664 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1665 { 1666 return __nfs_lookup_revalidate(dentry, flags, 1667 nfs4_do_lookup_revalidate); 1668 } 1669 1670 #endif /* CONFIG_NFSV4 */ 1671 1672 /* 1673 * Code common to create, mkdir, and mknod. 1674 */ 1675 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle, 1676 struct nfs_fattr *fattr, 1677 struct nfs4_label *label) 1678 { 1679 struct dentry *parent = dget_parent(dentry); 1680 struct inode *dir = d_inode(parent); 1681 struct inode *inode; 1682 struct dentry *d; 1683 int error = -EACCES; 1684 1685 d_drop(dentry); 1686 1687 /* We may have been initialized further down */ 1688 if (d_really_is_positive(dentry)) 1689 goto out; 1690 if (fhandle->size == 0) { 1691 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL); 1692 if (error) 1693 goto out_error; 1694 } 1695 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1696 if (!(fattr->valid & NFS_ATTR_FATTR)) { 1697 struct nfs_server *server = NFS_SB(dentry->d_sb); 1698 error = server->nfs_client->rpc_ops->getattr(server, fhandle, 1699 fattr, NULL, NULL); 1700 if (error < 0) 1701 goto out_error; 1702 } 1703 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label); 1704 d = d_splice_alias(inode, dentry); 1705 if (IS_ERR(d)) { 1706 error = PTR_ERR(d); 1707 goto out_error; 1708 } 1709 dput(d); 1710 out: 1711 dput(parent); 1712 return 0; 1713 out_error: 1714 nfs_mark_for_revalidate(dir); 1715 dput(parent); 1716 return error; 1717 } 1718 EXPORT_SYMBOL_GPL(nfs_instantiate); 1719 1720 /* 1721 * Following a failed create operation, we drop the dentry rather 1722 * than retain a negative dentry. This avoids a problem in the event 1723 * that the operation succeeded on the server, but an error in the 1724 * reply path made it appear to have failed. 1725 */ 1726 int nfs_create(struct inode *dir, struct dentry *dentry, 1727 umode_t mode, bool excl) 1728 { 1729 struct iattr attr; 1730 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT; 1731 int error; 1732 1733 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n", 1734 dir->i_sb->s_id, dir->i_ino, dentry); 1735 1736 attr.ia_mode = mode; 1737 attr.ia_valid = ATTR_MODE; 1738 1739 trace_nfs_create_enter(dir, dentry, open_flags); 1740 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags); 1741 trace_nfs_create_exit(dir, dentry, open_flags, error); 1742 if (error != 0) 1743 goto out_err; 1744 return 0; 1745 out_err: 1746 d_drop(dentry); 1747 return error; 1748 } 1749 EXPORT_SYMBOL_GPL(nfs_create); 1750 1751 /* 1752 * See comments for nfs_proc_create regarding failed operations. 1753 */ 1754 int 1755 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev) 1756 { 1757 struct iattr attr; 1758 int status; 1759 1760 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n", 1761 dir->i_sb->s_id, dir->i_ino, dentry); 1762 1763 attr.ia_mode = mode; 1764 attr.ia_valid = ATTR_MODE; 1765 1766 trace_nfs_mknod_enter(dir, dentry); 1767 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev); 1768 trace_nfs_mknod_exit(dir, dentry, status); 1769 if (status != 0) 1770 goto out_err; 1771 return 0; 1772 out_err: 1773 d_drop(dentry); 1774 return status; 1775 } 1776 EXPORT_SYMBOL_GPL(nfs_mknod); 1777 1778 /* 1779 * See comments for nfs_proc_create regarding failed operations. 1780 */ 1781 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1782 { 1783 struct iattr attr; 1784 int error; 1785 1786 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n", 1787 dir->i_sb->s_id, dir->i_ino, dentry); 1788 1789 attr.ia_valid = ATTR_MODE; 1790 attr.ia_mode = mode | S_IFDIR; 1791 1792 trace_nfs_mkdir_enter(dir, dentry); 1793 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr); 1794 trace_nfs_mkdir_exit(dir, dentry, error); 1795 if (error != 0) 1796 goto out_err; 1797 return 0; 1798 out_err: 1799 d_drop(dentry); 1800 return error; 1801 } 1802 EXPORT_SYMBOL_GPL(nfs_mkdir); 1803 1804 static void nfs_dentry_handle_enoent(struct dentry *dentry) 1805 { 1806 if (simple_positive(dentry)) 1807 d_delete(dentry); 1808 } 1809 1810 int nfs_rmdir(struct inode *dir, struct dentry *dentry) 1811 { 1812 int error; 1813 1814 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n", 1815 dir->i_sb->s_id, dir->i_ino, dentry); 1816 1817 trace_nfs_rmdir_enter(dir, dentry); 1818 if (d_really_is_positive(dentry)) { 1819 down_write(&NFS_I(d_inode(dentry))->rmdir_sem); 1820 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1821 /* Ensure the VFS deletes this inode */ 1822 switch (error) { 1823 case 0: 1824 clear_nlink(d_inode(dentry)); 1825 break; 1826 case -ENOENT: 1827 nfs_dentry_handle_enoent(dentry); 1828 } 1829 up_write(&NFS_I(d_inode(dentry))->rmdir_sem); 1830 } else 1831 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1832 trace_nfs_rmdir_exit(dir, dentry, error); 1833 1834 return error; 1835 } 1836 EXPORT_SYMBOL_GPL(nfs_rmdir); 1837 1838 /* 1839 * Remove a file after making sure there are no pending writes, 1840 * and after checking that the file has only one user. 1841 * 1842 * We invalidate the attribute cache and free the inode prior to the operation 1843 * to avoid possible races if the server reuses the inode. 1844 */ 1845 static int nfs_safe_remove(struct dentry *dentry) 1846 { 1847 struct inode *dir = d_inode(dentry->d_parent); 1848 struct inode *inode = d_inode(dentry); 1849 int error = -EBUSY; 1850 1851 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry); 1852 1853 /* If the dentry was sillyrenamed, we simply call d_delete() */ 1854 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1855 error = 0; 1856 goto out; 1857 } 1858 1859 trace_nfs_remove_enter(dir, dentry); 1860 if (inode != NULL) { 1861 error = NFS_PROTO(dir)->remove(dir, dentry); 1862 if (error == 0) 1863 nfs_drop_nlink(inode); 1864 } else 1865 error = NFS_PROTO(dir)->remove(dir, dentry); 1866 if (error == -ENOENT) 1867 nfs_dentry_handle_enoent(dentry); 1868 trace_nfs_remove_exit(dir, dentry, error); 1869 out: 1870 return error; 1871 } 1872 1873 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode 1874 * belongs to an active ".nfs..." file and we return -EBUSY. 1875 * 1876 * If sillyrename() returns 0, we do nothing, otherwise we unlink. 1877 */ 1878 int nfs_unlink(struct inode *dir, struct dentry *dentry) 1879 { 1880 int error; 1881 int need_rehash = 0; 1882 1883 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id, 1884 dir->i_ino, dentry); 1885 1886 trace_nfs_unlink_enter(dir, dentry); 1887 spin_lock(&dentry->d_lock); 1888 if (d_count(dentry) > 1) { 1889 spin_unlock(&dentry->d_lock); 1890 /* Start asynchronous writeout of the inode */ 1891 write_inode_now(d_inode(dentry), 0); 1892 error = nfs_sillyrename(dir, dentry); 1893 goto out; 1894 } 1895 if (!d_unhashed(dentry)) { 1896 __d_drop(dentry); 1897 need_rehash = 1; 1898 } 1899 spin_unlock(&dentry->d_lock); 1900 error = nfs_safe_remove(dentry); 1901 if (!error || error == -ENOENT) { 1902 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1903 } else if (need_rehash) 1904 d_rehash(dentry); 1905 out: 1906 trace_nfs_unlink_exit(dir, dentry, error); 1907 return error; 1908 } 1909 EXPORT_SYMBOL_GPL(nfs_unlink); 1910 1911 /* 1912 * To create a symbolic link, most file systems instantiate a new inode, 1913 * add a page to it containing the path, then write it out to the disk 1914 * using prepare_write/commit_write. 1915 * 1916 * Unfortunately the NFS client can't create the in-core inode first 1917 * because it needs a file handle to create an in-core inode (see 1918 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the 1919 * symlink request has completed on the server. 1920 * 1921 * So instead we allocate a raw page, copy the symname into it, then do 1922 * the SYMLINK request with the page as the buffer. If it succeeds, we 1923 * now have a new file handle and can instantiate an in-core NFS inode 1924 * and move the raw page into its mapping. 1925 */ 1926 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 1927 { 1928 struct page *page; 1929 char *kaddr; 1930 struct iattr attr; 1931 unsigned int pathlen = strlen(symname); 1932 int error; 1933 1934 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id, 1935 dir->i_ino, dentry, symname); 1936 1937 if (pathlen > PAGE_SIZE) 1938 return -ENAMETOOLONG; 1939 1940 attr.ia_mode = S_IFLNK | S_IRWXUGO; 1941 attr.ia_valid = ATTR_MODE; 1942 1943 page = alloc_page(GFP_USER); 1944 if (!page) 1945 return -ENOMEM; 1946 1947 kaddr = page_address(page); 1948 memcpy(kaddr, symname, pathlen); 1949 if (pathlen < PAGE_SIZE) 1950 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen); 1951 1952 trace_nfs_symlink_enter(dir, dentry); 1953 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr); 1954 trace_nfs_symlink_exit(dir, dentry, error); 1955 if (error != 0) { 1956 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n", 1957 dir->i_sb->s_id, dir->i_ino, 1958 dentry, symname, error); 1959 d_drop(dentry); 1960 __free_page(page); 1961 return error; 1962 } 1963 1964 /* 1965 * No big deal if we can't add this page to the page cache here. 1966 * READLINK will get the missing page from the server if needed. 1967 */ 1968 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0, 1969 GFP_KERNEL)) { 1970 SetPageUptodate(page); 1971 unlock_page(page); 1972 /* 1973 * add_to_page_cache_lru() grabs an extra page refcount. 1974 * Drop it here to avoid leaking this page later. 1975 */ 1976 put_page(page); 1977 } else 1978 __free_page(page); 1979 1980 return 0; 1981 } 1982 EXPORT_SYMBOL_GPL(nfs_symlink); 1983 1984 int 1985 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 1986 { 1987 struct inode *inode = d_inode(old_dentry); 1988 int error; 1989 1990 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n", 1991 old_dentry, dentry); 1992 1993 trace_nfs_link_enter(inode, dir, dentry); 1994 d_drop(dentry); 1995 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name); 1996 if (error == 0) { 1997 ihold(inode); 1998 d_add(dentry, inode); 1999 } 2000 trace_nfs_link_exit(inode, dir, dentry, error); 2001 return error; 2002 } 2003 EXPORT_SYMBOL_GPL(nfs_link); 2004 2005 /* 2006 * RENAME 2007 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a 2008 * different file handle for the same inode after a rename (e.g. when 2009 * moving to a different directory). A fail-safe method to do so would 2010 * be to look up old_dir/old_name, create a link to new_dir/new_name and 2011 * rename the old file using the sillyrename stuff. This way, the original 2012 * file in old_dir will go away when the last process iput()s the inode. 2013 * 2014 * FIXED. 2015 * 2016 * It actually works quite well. One needs to have the possibility for 2017 * at least one ".nfs..." file in each directory the file ever gets 2018 * moved or linked to which happens automagically with the new 2019 * implementation that only depends on the dcache stuff instead of 2020 * using the inode layer 2021 * 2022 * Unfortunately, things are a little more complicated than indicated 2023 * above. For a cross-directory move, we want to make sure we can get 2024 * rid of the old inode after the operation. This means there must be 2025 * no pending writes (if it's a file), and the use count must be 1. 2026 * If these conditions are met, we can drop the dentries before doing 2027 * the rename. 2028 */ 2029 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry, 2030 struct inode *new_dir, struct dentry *new_dentry, 2031 unsigned int flags) 2032 { 2033 struct inode *old_inode = d_inode(old_dentry); 2034 struct inode *new_inode = d_inode(new_dentry); 2035 struct dentry *dentry = NULL, *rehash = NULL; 2036 struct rpc_task *task; 2037 int error = -EBUSY; 2038 2039 if (flags) 2040 return -EINVAL; 2041 2042 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n", 2043 old_dentry, new_dentry, 2044 d_count(new_dentry)); 2045 2046 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry); 2047 /* 2048 * For non-directories, check whether the target is busy and if so, 2049 * make a copy of the dentry and then do a silly-rename. If the 2050 * silly-rename succeeds, the copied dentry is hashed and becomes 2051 * the new target. 2052 */ 2053 if (new_inode && !S_ISDIR(new_inode->i_mode)) { 2054 /* 2055 * To prevent any new references to the target during the 2056 * rename, we unhash the dentry in advance. 2057 */ 2058 if (!d_unhashed(new_dentry)) { 2059 d_drop(new_dentry); 2060 rehash = new_dentry; 2061 } 2062 2063 if (d_count(new_dentry) > 2) { 2064 int err; 2065 2066 /* copy the target dentry's name */ 2067 dentry = d_alloc(new_dentry->d_parent, 2068 &new_dentry->d_name); 2069 if (!dentry) 2070 goto out; 2071 2072 /* silly-rename the existing target ... */ 2073 err = nfs_sillyrename(new_dir, new_dentry); 2074 if (err) 2075 goto out; 2076 2077 new_dentry = dentry; 2078 rehash = NULL; 2079 new_inode = NULL; 2080 } 2081 } 2082 2083 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL); 2084 if (IS_ERR(task)) { 2085 error = PTR_ERR(task); 2086 goto out; 2087 } 2088 2089 error = rpc_wait_for_completion_task(task); 2090 if (error != 0) { 2091 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1; 2092 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */ 2093 smp_wmb(); 2094 } else 2095 error = task->tk_status; 2096 rpc_put_task(task); 2097 /* Ensure the inode attributes are revalidated */ 2098 if (error == 0) { 2099 spin_lock(&old_inode->i_lock); 2100 NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter(); 2101 NFS_I(old_inode)->cache_validity |= NFS_INO_INVALID_CHANGE 2102 | NFS_INO_INVALID_CTIME 2103 | NFS_INO_REVAL_FORCED; 2104 spin_unlock(&old_inode->i_lock); 2105 } 2106 out: 2107 if (rehash) 2108 d_rehash(rehash); 2109 trace_nfs_rename_exit(old_dir, old_dentry, 2110 new_dir, new_dentry, error); 2111 if (!error) { 2112 if (new_inode != NULL) 2113 nfs_drop_nlink(new_inode); 2114 /* 2115 * The d_move() should be here instead of in an async RPC completion 2116 * handler because we need the proper locks to move the dentry. If 2117 * we're interrupted by a signal, the async RPC completion handler 2118 * should mark the directories for revalidation. 2119 */ 2120 d_move(old_dentry, new_dentry); 2121 nfs_set_verifier(old_dentry, 2122 nfs_save_change_attribute(new_dir)); 2123 } else if (error == -ENOENT) 2124 nfs_dentry_handle_enoent(old_dentry); 2125 2126 /* new dentry created? */ 2127 if (dentry) 2128 dput(dentry); 2129 return error; 2130 } 2131 EXPORT_SYMBOL_GPL(nfs_rename); 2132 2133 static DEFINE_SPINLOCK(nfs_access_lru_lock); 2134 static LIST_HEAD(nfs_access_lru_list); 2135 static atomic_long_t nfs_access_nr_entries; 2136 2137 static unsigned long nfs_access_max_cachesize = ULONG_MAX; 2138 module_param(nfs_access_max_cachesize, ulong, 0644); 2139 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length"); 2140 2141 static void nfs_access_free_entry(struct nfs_access_entry *entry) 2142 { 2143 put_cred(entry->cred); 2144 kfree_rcu(entry, rcu_head); 2145 smp_mb__before_atomic(); 2146 atomic_long_dec(&nfs_access_nr_entries); 2147 smp_mb__after_atomic(); 2148 } 2149 2150 static void nfs_access_free_list(struct list_head *head) 2151 { 2152 struct nfs_access_entry *cache; 2153 2154 while (!list_empty(head)) { 2155 cache = list_entry(head->next, struct nfs_access_entry, lru); 2156 list_del(&cache->lru); 2157 nfs_access_free_entry(cache); 2158 } 2159 } 2160 2161 static unsigned long 2162 nfs_do_access_cache_scan(unsigned int nr_to_scan) 2163 { 2164 LIST_HEAD(head); 2165 struct nfs_inode *nfsi, *next; 2166 struct nfs_access_entry *cache; 2167 long freed = 0; 2168 2169 spin_lock(&nfs_access_lru_lock); 2170 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) { 2171 struct inode *inode; 2172 2173 if (nr_to_scan-- == 0) 2174 break; 2175 inode = &nfsi->vfs_inode; 2176 spin_lock(&inode->i_lock); 2177 if (list_empty(&nfsi->access_cache_entry_lru)) 2178 goto remove_lru_entry; 2179 cache = list_entry(nfsi->access_cache_entry_lru.next, 2180 struct nfs_access_entry, lru); 2181 list_move(&cache->lru, &head); 2182 rb_erase(&cache->rb_node, &nfsi->access_cache); 2183 freed++; 2184 if (!list_empty(&nfsi->access_cache_entry_lru)) 2185 list_move_tail(&nfsi->access_cache_inode_lru, 2186 &nfs_access_lru_list); 2187 else { 2188 remove_lru_entry: 2189 list_del_init(&nfsi->access_cache_inode_lru); 2190 smp_mb__before_atomic(); 2191 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags); 2192 smp_mb__after_atomic(); 2193 } 2194 spin_unlock(&inode->i_lock); 2195 } 2196 spin_unlock(&nfs_access_lru_lock); 2197 nfs_access_free_list(&head); 2198 return freed; 2199 } 2200 2201 unsigned long 2202 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc) 2203 { 2204 int nr_to_scan = sc->nr_to_scan; 2205 gfp_t gfp_mask = sc->gfp_mask; 2206 2207 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL) 2208 return SHRINK_STOP; 2209 return nfs_do_access_cache_scan(nr_to_scan); 2210 } 2211 2212 2213 unsigned long 2214 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc) 2215 { 2216 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries)); 2217 } 2218 2219 static void 2220 nfs_access_cache_enforce_limit(void) 2221 { 2222 long nr_entries = atomic_long_read(&nfs_access_nr_entries); 2223 unsigned long diff; 2224 unsigned int nr_to_scan; 2225 2226 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize) 2227 return; 2228 nr_to_scan = 100; 2229 diff = nr_entries - nfs_access_max_cachesize; 2230 if (diff < nr_to_scan) 2231 nr_to_scan = diff; 2232 nfs_do_access_cache_scan(nr_to_scan); 2233 } 2234 2235 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head) 2236 { 2237 struct rb_root *root_node = &nfsi->access_cache; 2238 struct rb_node *n; 2239 struct nfs_access_entry *entry; 2240 2241 /* Unhook entries from the cache */ 2242 while ((n = rb_first(root_node)) != NULL) { 2243 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2244 rb_erase(n, root_node); 2245 list_move(&entry->lru, head); 2246 } 2247 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS; 2248 } 2249 2250 void nfs_access_zap_cache(struct inode *inode) 2251 { 2252 LIST_HEAD(head); 2253 2254 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0) 2255 return; 2256 /* Remove from global LRU init */ 2257 spin_lock(&nfs_access_lru_lock); 2258 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2259 list_del_init(&NFS_I(inode)->access_cache_inode_lru); 2260 2261 spin_lock(&inode->i_lock); 2262 __nfs_access_zap_cache(NFS_I(inode), &head); 2263 spin_unlock(&inode->i_lock); 2264 spin_unlock(&nfs_access_lru_lock); 2265 nfs_access_free_list(&head); 2266 } 2267 EXPORT_SYMBOL_GPL(nfs_access_zap_cache); 2268 2269 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred) 2270 { 2271 struct rb_node *n = NFS_I(inode)->access_cache.rb_node; 2272 2273 while (n != NULL) { 2274 struct nfs_access_entry *entry = 2275 rb_entry(n, struct nfs_access_entry, rb_node); 2276 int cmp = cred_fscmp(cred, entry->cred); 2277 2278 if (cmp < 0) 2279 n = n->rb_left; 2280 else if (cmp > 0) 2281 n = n->rb_right; 2282 else 2283 return entry; 2284 } 2285 return NULL; 2286 } 2287 2288 static int nfs_access_get_cached(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res, bool may_block) 2289 { 2290 struct nfs_inode *nfsi = NFS_I(inode); 2291 struct nfs_access_entry *cache; 2292 bool retry = true; 2293 int err; 2294 2295 spin_lock(&inode->i_lock); 2296 for(;;) { 2297 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2298 goto out_zap; 2299 cache = nfs_access_search_rbtree(inode, cred); 2300 err = -ENOENT; 2301 if (cache == NULL) 2302 goto out; 2303 /* Found an entry, is our attribute cache valid? */ 2304 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) 2305 break; 2306 err = -ECHILD; 2307 if (!may_block) 2308 goto out; 2309 if (!retry) 2310 goto out_zap; 2311 spin_unlock(&inode->i_lock); 2312 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode); 2313 if (err) 2314 return err; 2315 spin_lock(&inode->i_lock); 2316 retry = false; 2317 } 2318 res->cred = cache->cred; 2319 res->mask = cache->mask; 2320 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru); 2321 err = 0; 2322 out: 2323 spin_unlock(&inode->i_lock); 2324 return err; 2325 out_zap: 2326 spin_unlock(&inode->i_lock); 2327 nfs_access_zap_cache(inode); 2328 return -ENOENT; 2329 } 2330 2331 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res) 2332 { 2333 /* Only check the most recently returned cache entry, 2334 * but do it without locking. 2335 */ 2336 struct nfs_inode *nfsi = NFS_I(inode); 2337 struct nfs_access_entry *cache; 2338 int err = -ECHILD; 2339 struct list_head *lh; 2340 2341 rcu_read_lock(); 2342 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2343 goto out; 2344 lh = rcu_dereference(nfsi->access_cache_entry_lru.prev); 2345 cache = list_entry(lh, struct nfs_access_entry, lru); 2346 if (lh == &nfsi->access_cache_entry_lru || 2347 cred != cache->cred) 2348 cache = NULL; 2349 if (cache == NULL) 2350 goto out; 2351 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) 2352 goto out; 2353 res->cred = cache->cred; 2354 res->mask = cache->mask; 2355 err = 0; 2356 out: 2357 rcu_read_unlock(); 2358 return err; 2359 } 2360 2361 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set) 2362 { 2363 struct nfs_inode *nfsi = NFS_I(inode); 2364 struct rb_root *root_node = &nfsi->access_cache; 2365 struct rb_node **p = &root_node->rb_node; 2366 struct rb_node *parent = NULL; 2367 struct nfs_access_entry *entry; 2368 int cmp; 2369 2370 spin_lock(&inode->i_lock); 2371 while (*p != NULL) { 2372 parent = *p; 2373 entry = rb_entry(parent, struct nfs_access_entry, rb_node); 2374 cmp = cred_fscmp(set->cred, entry->cred); 2375 2376 if (cmp < 0) 2377 p = &parent->rb_left; 2378 else if (cmp > 0) 2379 p = &parent->rb_right; 2380 else 2381 goto found; 2382 } 2383 rb_link_node(&set->rb_node, parent, p); 2384 rb_insert_color(&set->rb_node, root_node); 2385 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2386 spin_unlock(&inode->i_lock); 2387 return; 2388 found: 2389 rb_replace_node(parent, &set->rb_node, root_node); 2390 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2391 list_del(&entry->lru); 2392 spin_unlock(&inode->i_lock); 2393 nfs_access_free_entry(entry); 2394 } 2395 2396 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set) 2397 { 2398 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL); 2399 if (cache == NULL) 2400 return; 2401 RB_CLEAR_NODE(&cache->rb_node); 2402 cache->cred = get_cred(set->cred); 2403 cache->mask = set->mask; 2404 2405 /* The above field assignments must be visible 2406 * before this item appears on the lru. We cannot easily 2407 * use rcu_assign_pointer, so just force the memory barrier. 2408 */ 2409 smp_wmb(); 2410 nfs_access_add_rbtree(inode, cache); 2411 2412 /* Update accounting */ 2413 smp_mb__before_atomic(); 2414 atomic_long_inc(&nfs_access_nr_entries); 2415 smp_mb__after_atomic(); 2416 2417 /* Add inode to global LRU list */ 2418 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) { 2419 spin_lock(&nfs_access_lru_lock); 2420 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2421 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, 2422 &nfs_access_lru_list); 2423 spin_unlock(&nfs_access_lru_lock); 2424 } 2425 nfs_access_cache_enforce_limit(); 2426 } 2427 EXPORT_SYMBOL_GPL(nfs_access_add_cache); 2428 2429 #define NFS_MAY_READ (NFS_ACCESS_READ) 2430 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \ 2431 NFS_ACCESS_EXTEND | \ 2432 NFS_ACCESS_DELETE) 2433 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \ 2434 NFS_ACCESS_EXTEND) 2435 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE 2436 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP) 2437 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE) 2438 static int 2439 nfs_access_calc_mask(u32 access_result, umode_t umode) 2440 { 2441 int mask = 0; 2442 2443 if (access_result & NFS_MAY_READ) 2444 mask |= MAY_READ; 2445 if (S_ISDIR(umode)) { 2446 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE) 2447 mask |= MAY_WRITE; 2448 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP) 2449 mask |= MAY_EXEC; 2450 } else if (S_ISREG(umode)) { 2451 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE) 2452 mask |= MAY_WRITE; 2453 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE) 2454 mask |= MAY_EXEC; 2455 } else if (access_result & NFS_MAY_WRITE) 2456 mask |= MAY_WRITE; 2457 return mask; 2458 } 2459 2460 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result) 2461 { 2462 entry->mask = access_result; 2463 } 2464 EXPORT_SYMBOL_GPL(nfs_access_set_mask); 2465 2466 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask) 2467 { 2468 struct nfs_access_entry cache; 2469 bool may_block = (mask & MAY_NOT_BLOCK) == 0; 2470 int cache_mask; 2471 int status; 2472 2473 trace_nfs_access_enter(inode); 2474 2475 status = nfs_access_get_cached_rcu(inode, cred, &cache); 2476 if (status != 0) 2477 status = nfs_access_get_cached(inode, cred, &cache, may_block); 2478 if (status == 0) 2479 goto out_cached; 2480 2481 status = -ECHILD; 2482 if (!may_block) 2483 goto out; 2484 2485 /* 2486 * Determine which access bits we want to ask for... 2487 */ 2488 cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND; 2489 if (S_ISDIR(inode->i_mode)) 2490 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP; 2491 else 2492 cache.mask |= NFS_ACCESS_EXECUTE; 2493 cache.cred = cred; 2494 status = NFS_PROTO(inode)->access(inode, &cache); 2495 if (status != 0) { 2496 if (status == -ESTALE) { 2497 nfs_zap_caches(inode); 2498 if (!S_ISDIR(inode->i_mode)) 2499 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags); 2500 } 2501 goto out; 2502 } 2503 nfs_access_add_cache(inode, &cache); 2504 out_cached: 2505 cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode); 2506 if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0) 2507 status = -EACCES; 2508 out: 2509 trace_nfs_access_exit(inode, status); 2510 return status; 2511 } 2512 2513 static int nfs_open_permission_mask(int openflags) 2514 { 2515 int mask = 0; 2516 2517 if (openflags & __FMODE_EXEC) { 2518 /* ONLY check exec rights */ 2519 mask = MAY_EXEC; 2520 } else { 2521 if ((openflags & O_ACCMODE) != O_WRONLY) 2522 mask |= MAY_READ; 2523 if ((openflags & O_ACCMODE) != O_RDONLY) 2524 mask |= MAY_WRITE; 2525 } 2526 2527 return mask; 2528 } 2529 2530 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags) 2531 { 2532 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags)); 2533 } 2534 EXPORT_SYMBOL_GPL(nfs_may_open); 2535 2536 static int nfs_execute_ok(struct inode *inode, int mask) 2537 { 2538 struct nfs_server *server = NFS_SERVER(inode); 2539 int ret = 0; 2540 2541 if (S_ISDIR(inode->i_mode)) 2542 return 0; 2543 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_OTHER)) { 2544 if (mask & MAY_NOT_BLOCK) 2545 return -ECHILD; 2546 ret = __nfs_revalidate_inode(server, inode); 2547 } 2548 if (ret == 0 && !execute_ok(inode)) 2549 ret = -EACCES; 2550 return ret; 2551 } 2552 2553 int nfs_permission(struct inode *inode, int mask) 2554 { 2555 const struct cred *cred = current_cred(); 2556 int res = 0; 2557 2558 nfs_inc_stats(inode, NFSIOS_VFSACCESS); 2559 2560 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 2561 goto out; 2562 /* Is this sys_access() ? */ 2563 if (mask & (MAY_ACCESS | MAY_CHDIR)) 2564 goto force_lookup; 2565 2566 switch (inode->i_mode & S_IFMT) { 2567 case S_IFLNK: 2568 goto out; 2569 case S_IFREG: 2570 if ((mask & MAY_OPEN) && 2571 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)) 2572 return 0; 2573 break; 2574 case S_IFDIR: 2575 /* 2576 * Optimize away all write operations, since the server 2577 * will check permissions when we perform the op. 2578 */ 2579 if ((mask & MAY_WRITE) && !(mask & MAY_READ)) 2580 goto out; 2581 } 2582 2583 force_lookup: 2584 if (!NFS_PROTO(inode)->access) 2585 goto out_notsup; 2586 2587 /* Always try fast lookups first */ 2588 rcu_read_lock(); 2589 res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK); 2590 rcu_read_unlock(); 2591 if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) { 2592 /* Fast lookup failed, try the slow way */ 2593 res = nfs_do_access(inode, cred, mask); 2594 } 2595 out: 2596 if (!res && (mask & MAY_EXEC)) 2597 res = nfs_execute_ok(inode, mask); 2598 2599 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n", 2600 inode->i_sb->s_id, inode->i_ino, mask, res); 2601 return res; 2602 out_notsup: 2603 if (mask & MAY_NOT_BLOCK) 2604 return -ECHILD; 2605 2606 res = nfs_revalidate_inode(NFS_SERVER(inode), inode); 2607 if (res == 0) 2608 res = generic_permission(inode, mask); 2609 goto out; 2610 } 2611 EXPORT_SYMBOL_GPL(nfs_permission); 2612 2613 /* 2614 * Local variables: 2615 * version-control: t 2616 * kept-new-versions: 5 2617 * End: 2618 */ 2619