xref: /openbmc/linux/fs/nfs/dir.c (revision 77f11192)
1 /*
2  *  linux/fs/nfs/dir.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  nfs directory handling functions
7  *
8  * 10 Apr 1996	Added silly rename for unlink	--okir
9  * 28 Sep 1996	Improved directory cache --okir
10  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
11  *              Re-implemented silly rename for unlink, newly implemented
12  *              silly rename for nfs_rename() following the suggestions
13  *              of Olaf Kirch (okir) found in this file.
14  *              Following Linus comments on my original hack, this version
15  *              depends only on the dcache stuff and doesn't touch the inode
16  *              layer (iput() and friends).
17  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
18  */
19 
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/smp_lock.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/sched.h>
37 
38 #include "nfs4_fs.h"
39 #include "delegation.h"
40 #include "iostat.h"
41 #include "internal.h"
42 
43 /* #define NFS_DEBUG_VERBOSE 1 */
44 
45 static int nfs_opendir(struct inode *, struct file *);
46 static int nfs_readdir(struct file *, void *, filldir_t);
47 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
48 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *);
49 static int nfs_mkdir(struct inode *, struct dentry *, int);
50 static int nfs_rmdir(struct inode *, struct dentry *);
51 static int nfs_unlink(struct inode *, struct dentry *);
52 static int nfs_symlink(struct inode *, struct dentry *, const char *);
53 static int nfs_link(struct dentry *, struct inode *, struct dentry *);
54 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t);
55 static int nfs_rename(struct inode *, struct dentry *,
56 		      struct inode *, struct dentry *);
57 static int nfs_fsync_dir(struct file *, struct dentry *, int);
58 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
59 
60 const struct file_operations nfs_dir_operations = {
61 	.llseek		= nfs_llseek_dir,
62 	.read		= generic_read_dir,
63 	.readdir	= nfs_readdir,
64 	.open		= nfs_opendir,
65 	.release	= nfs_release,
66 	.fsync		= nfs_fsync_dir,
67 };
68 
69 const struct inode_operations nfs_dir_inode_operations = {
70 	.create		= nfs_create,
71 	.lookup		= nfs_lookup,
72 	.link		= nfs_link,
73 	.unlink		= nfs_unlink,
74 	.symlink	= nfs_symlink,
75 	.mkdir		= nfs_mkdir,
76 	.rmdir		= nfs_rmdir,
77 	.mknod		= nfs_mknod,
78 	.rename		= nfs_rename,
79 	.permission	= nfs_permission,
80 	.getattr	= nfs_getattr,
81 	.setattr	= nfs_setattr,
82 };
83 
84 #ifdef CONFIG_NFS_V3
85 const struct inode_operations nfs3_dir_inode_operations = {
86 	.create		= nfs_create,
87 	.lookup		= nfs_lookup,
88 	.link		= nfs_link,
89 	.unlink		= nfs_unlink,
90 	.symlink	= nfs_symlink,
91 	.mkdir		= nfs_mkdir,
92 	.rmdir		= nfs_rmdir,
93 	.mknod		= nfs_mknod,
94 	.rename		= nfs_rename,
95 	.permission	= nfs_permission,
96 	.getattr	= nfs_getattr,
97 	.setattr	= nfs_setattr,
98 	.listxattr	= nfs3_listxattr,
99 	.getxattr	= nfs3_getxattr,
100 	.setxattr	= nfs3_setxattr,
101 	.removexattr	= nfs3_removexattr,
102 };
103 #endif  /* CONFIG_NFS_V3 */
104 
105 #ifdef CONFIG_NFS_V4
106 
107 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
108 const struct inode_operations nfs4_dir_inode_operations = {
109 	.create		= nfs_create,
110 	.lookup		= nfs_atomic_lookup,
111 	.link		= nfs_link,
112 	.unlink		= nfs_unlink,
113 	.symlink	= nfs_symlink,
114 	.mkdir		= nfs_mkdir,
115 	.rmdir		= nfs_rmdir,
116 	.mknod		= nfs_mknod,
117 	.rename		= nfs_rename,
118 	.permission	= nfs_permission,
119 	.getattr	= nfs_getattr,
120 	.setattr	= nfs_setattr,
121 	.getxattr       = nfs4_getxattr,
122 	.setxattr       = nfs4_setxattr,
123 	.listxattr      = nfs4_listxattr,
124 };
125 
126 #endif /* CONFIG_NFS_V4 */
127 
128 /*
129  * Open file
130  */
131 static int
132 nfs_opendir(struct inode *inode, struct file *filp)
133 {
134 	int res;
135 
136 	dfprintk(VFS, "NFS: opendir(%s/%ld)\n",
137 			inode->i_sb->s_id, inode->i_ino);
138 
139 	lock_kernel();
140 	/* Call generic open code in order to cache credentials */
141 	res = nfs_open(inode, filp);
142 	unlock_kernel();
143 	return res;
144 }
145 
146 typedef __be32 * (*decode_dirent_t)(__be32 *, struct nfs_entry *, int);
147 typedef struct {
148 	struct file	*file;
149 	struct page	*page;
150 	unsigned long	page_index;
151 	__be32		*ptr;
152 	u64		*dir_cookie;
153 	loff_t		current_index;
154 	struct nfs_entry *entry;
155 	decode_dirent_t	decode;
156 	int		plus;
157 	int		error;
158 	unsigned long	timestamp;
159 	int		timestamp_valid;
160 } nfs_readdir_descriptor_t;
161 
162 /* Now we cache directories properly, by stuffing the dirent
163  * data directly in the page cache.
164  *
165  * Inode invalidation due to refresh etc. takes care of
166  * _everything_, no sloppy entry flushing logic, no extraneous
167  * copying, network direct to page cache, the way it was meant
168  * to be.
169  *
170  * NOTE: Dirent information verification is done always by the
171  *	 page-in of the RPC reply, nowhere else, this simplies
172  *	 things substantially.
173  */
174 static
175 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page *page)
176 {
177 	struct file	*file = desc->file;
178 	struct inode	*inode = file->f_path.dentry->d_inode;
179 	struct rpc_cred	*cred = nfs_file_cred(file);
180 	unsigned long	timestamp;
181 	int		error;
182 
183 	dfprintk(DIRCACHE, "NFS: %s: reading cookie %Lu into page %lu\n",
184 			__FUNCTION__, (long long)desc->entry->cookie,
185 			page->index);
186 
187  again:
188 	timestamp = jiffies;
189 	error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, desc->entry->cookie, page,
190 					  NFS_SERVER(inode)->dtsize, desc->plus);
191 	if (error < 0) {
192 		/* We requested READDIRPLUS, but the server doesn't grok it */
193 		if (error == -ENOTSUPP && desc->plus) {
194 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
195 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_FLAGS(inode));
196 			desc->plus = 0;
197 			goto again;
198 		}
199 		goto error;
200 	}
201 	desc->timestamp = timestamp;
202 	desc->timestamp_valid = 1;
203 	SetPageUptodate(page);
204 	/* Ensure consistent page alignment of the data.
205 	 * Note: assumes we have exclusive access to this mapping either
206 	 *	 through inode->i_mutex or some other mechanism.
207 	 */
208 	if (page->index == 0 && invalidate_inode_pages2_range(inode->i_mapping, PAGE_CACHE_SIZE, -1) < 0) {
209 		/* Should never happen */
210 		nfs_zap_mapping(inode, inode->i_mapping);
211 	}
212 	unlock_page(page);
213 	return 0;
214  error:
215 	unlock_page(page);
216 	desc->error = error;
217 	return -EIO;
218 }
219 
220 static inline
221 int dir_decode(nfs_readdir_descriptor_t *desc)
222 {
223 	__be32	*p = desc->ptr;
224 	p = desc->decode(p, desc->entry, desc->plus);
225 	if (IS_ERR(p))
226 		return PTR_ERR(p);
227 	desc->ptr = p;
228 	if (desc->timestamp_valid)
229 		desc->entry->fattr->time_start = desc->timestamp;
230 	else
231 		desc->entry->fattr->valid &= ~NFS_ATTR_FATTR;
232 	return 0;
233 }
234 
235 static inline
236 void dir_page_release(nfs_readdir_descriptor_t *desc)
237 {
238 	kunmap(desc->page);
239 	page_cache_release(desc->page);
240 	desc->page = NULL;
241 	desc->ptr = NULL;
242 }
243 
244 /*
245  * Given a pointer to a buffer that has already been filled by a call
246  * to readdir, find the next entry with cookie '*desc->dir_cookie'.
247  *
248  * If the end of the buffer has been reached, return -EAGAIN, if not,
249  * return the offset within the buffer of the next entry to be
250  * read.
251  */
252 static inline
253 int find_dirent(nfs_readdir_descriptor_t *desc)
254 {
255 	struct nfs_entry *entry = desc->entry;
256 	int		loop_count = 0,
257 			status;
258 
259 	while((status = dir_decode(desc)) == 0) {
260 		dfprintk(DIRCACHE, "NFS: %s: examining cookie %Lu\n",
261 				__FUNCTION__, (unsigned long long)entry->cookie);
262 		if (entry->prev_cookie == *desc->dir_cookie)
263 			break;
264 		if (loop_count++ > 200) {
265 			loop_count = 0;
266 			schedule();
267 		}
268 	}
269 	return status;
270 }
271 
272 /*
273  * Given a pointer to a buffer that has already been filled by a call
274  * to readdir, find the entry at offset 'desc->file->f_pos'.
275  *
276  * If the end of the buffer has been reached, return -EAGAIN, if not,
277  * return the offset within the buffer of the next entry to be
278  * read.
279  */
280 static inline
281 int find_dirent_index(nfs_readdir_descriptor_t *desc)
282 {
283 	struct nfs_entry *entry = desc->entry;
284 	int		loop_count = 0,
285 			status;
286 
287 	for(;;) {
288 		status = dir_decode(desc);
289 		if (status)
290 			break;
291 
292 		dfprintk(DIRCACHE, "NFS: found cookie %Lu at index %Ld\n",
293 				(unsigned long long)entry->cookie, desc->current_index);
294 
295 		if (desc->file->f_pos == desc->current_index) {
296 			*desc->dir_cookie = entry->cookie;
297 			break;
298 		}
299 		desc->current_index++;
300 		if (loop_count++ > 200) {
301 			loop_count = 0;
302 			schedule();
303 		}
304 	}
305 	return status;
306 }
307 
308 /*
309  * Find the given page, and call find_dirent() or find_dirent_index in
310  * order to try to return the next entry.
311  */
312 static inline
313 int find_dirent_page(nfs_readdir_descriptor_t *desc)
314 {
315 	struct inode	*inode = desc->file->f_path.dentry->d_inode;
316 	struct page	*page;
317 	int		status;
318 
319 	dfprintk(DIRCACHE, "NFS: %s: searching page %ld for target %Lu\n",
320 			__FUNCTION__, desc->page_index,
321 			(long long) *desc->dir_cookie);
322 
323 	/* If we find the page in the page_cache, we cannot be sure
324 	 * how fresh the data is, so we will ignore readdir_plus attributes.
325 	 */
326 	desc->timestamp_valid = 0;
327 	page = read_cache_page(inode->i_mapping, desc->page_index,
328 			       (filler_t *)nfs_readdir_filler, desc);
329 	if (IS_ERR(page)) {
330 		status = PTR_ERR(page);
331 		goto out;
332 	}
333 
334 	/* NOTE: Someone else may have changed the READDIRPLUS flag */
335 	desc->page = page;
336 	desc->ptr = kmap(page);		/* matching kunmap in nfs_do_filldir */
337 	if (*desc->dir_cookie != 0)
338 		status = find_dirent(desc);
339 	else
340 		status = find_dirent_index(desc);
341 	if (status < 0)
342 		dir_page_release(desc);
343  out:
344 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, status);
345 	return status;
346 }
347 
348 /*
349  * Recurse through the page cache pages, and return a
350  * filled nfs_entry structure of the next directory entry if possible.
351  *
352  * The target for the search is '*desc->dir_cookie' if non-0,
353  * 'desc->file->f_pos' otherwise
354  */
355 static inline
356 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
357 {
358 	int		loop_count = 0;
359 	int		res;
360 
361 	/* Always search-by-index from the beginning of the cache */
362 	if (*desc->dir_cookie == 0) {
363 		dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for offset %Ld\n",
364 				(long long)desc->file->f_pos);
365 		desc->page_index = 0;
366 		desc->entry->cookie = desc->entry->prev_cookie = 0;
367 		desc->entry->eof = 0;
368 		desc->current_index = 0;
369 	} else
370 		dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for cookie %Lu\n",
371 				(unsigned long long)*desc->dir_cookie);
372 
373 	for (;;) {
374 		res = find_dirent_page(desc);
375 		if (res != -EAGAIN)
376 			break;
377 		/* Align to beginning of next page */
378 		desc->page_index ++;
379 		if (loop_count++ > 200) {
380 			loop_count = 0;
381 			schedule();
382 		}
383 	}
384 
385 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, res);
386 	return res;
387 }
388 
389 static inline unsigned int dt_type(struct inode *inode)
390 {
391 	return (inode->i_mode >> 12) & 15;
392 }
393 
394 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc);
395 
396 /*
397  * Once we've found the start of the dirent within a page: fill 'er up...
398  */
399 static
400 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
401 		   filldir_t filldir)
402 {
403 	struct file	*file = desc->file;
404 	struct nfs_entry *entry = desc->entry;
405 	struct dentry	*dentry = NULL;
406 	u64		fileid;
407 	int		loop_count = 0,
408 			res;
409 
410 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling starting @ cookie %Lu\n",
411 			(unsigned long long)entry->cookie);
412 
413 	for(;;) {
414 		unsigned d_type = DT_UNKNOWN;
415 		/* Note: entry->prev_cookie contains the cookie for
416 		 *	 retrieving the current dirent on the server */
417 		fileid = entry->ino;
418 
419 		/* Get a dentry if we have one */
420 		if (dentry != NULL)
421 			dput(dentry);
422 		dentry = nfs_readdir_lookup(desc);
423 
424 		/* Use readdirplus info */
425 		if (dentry != NULL && dentry->d_inode != NULL) {
426 			d_type = dt_type(dentry->d_inode);
427 			fileid = NFS_FILEID(dentry->d_inode);
428 		}
429 
430 		res = filldir(dirent, entry->name, entry->len,
431 			      file->f_pos, nfs_compat_user_ino64(fileid),
432 			      d_type);
433 		if (res < 0)
434 			break;
435 		file->f_pos++;
436 		*desc->dir_cookie = entry->cookie;
437 		if (dir_decode(desc) != 0) {
438 			desc->page_index ++;
439 			break;
440 		}
441 		if (loop_count++ > 200) {
442 			loop_count = 0;
443 			schedule();
444 		}
445 	}
446 	dir_page_release(desc);
447 	if (dentry != NULL)
448 		dput(dentry);
449 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
450 			(unsigned long long)*desc->dir_cookie, res);
451 	return res;
452 }
453 
454 /*
455  * If we cannot find a cookie in our cache, we suspect that this is
456  * because it points to a deleted file, so we ask the server to return
457  * whatever it thinks is the next entry. We then feed this to filldir.
458  * If all goes well, we should then be able to find our way round the
459  * cache on the next call to readdir_search_pagecache();
460  *
461  * NOTE: we cannot add the anonymous page to the pagecache because
462  *	 the data it contains might not be page aligned. Besides,
463  *	 we should already have a complete representation of the
464  *	 directory in the page cache by the time we get here.
465  */
466 static inline
467 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
468 		     filldir_t filldir)
469 {
470 	struct file	*file = desc->file;
471 	struct inode	*inode = file->f_path.dentry->d_inode;
472 	struct rpc_cred	*cred = nfs_file_cred(file);
473 	struct page	*page = NULL;
474 	int		status;
475 	unsigned long	timestamp;
476 
477 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
478 			(unsigned long long)*desc->dir_cookie);
479 
480 	page = alloc_page(GFP_HIGHUSER);
481 	if (!page) {
482 		status = -ENOMEM;
483 		goto out;
484 	}
485 	timestamp = jiffies;
486 	desc->error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, *desc->dir_cookie,
487 						page,
488 						NFS_SERVER(inode)->dtsize,
489 						desc->plus);
490 	desc->page = page;
491 	desc->ptr = kmap(page);		/* matching kunmap in nfs_do_filldir */
492 	if (desc->error >= 0) {
493 		desc->timestamp = timestamp;
494 		desc->timestamp_valid = 1;
495 		if ((status = dir_decode(desc)) == 0)
496 			desc->entry->prev_cookie = *desc->dir_cookie;
497 	} else
498 		status = -EIO;
499 	if (status < 0)
500 		goto out_release;
501 
502 	status = nfs_do_filldir(desc, dirent, filldir);
503 
504 	/* Reset read descriptor so it searches the page cache from
505 	 * the start upon the next call to readdir_search_pagecache() */
506 	desc->page_index = 0;
507 	desc->entry->cookie = desc->entry->prev_cookie = 0;
508 	desc->entry->eof = 0;
509  out:
510 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
511 			__FUNCTION__, status);
512 	return status;
513  out_release:
514 	dir_page_release(desc);
515 	goto out;
516 }
517 
518 /* The file offset position represents the dirent entry number.  A
519    last cookie cache takes care of the common case of reading the
520    whole directory.
521  */
522 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
523 {
524 	struct dentry	*dentry = filp->f_path.dentry;
525 	struct inode	*inode = dentry->d_inode;
526 	nfs_readdir_descriptor_t my_desc,
527 			*desc = &my_desc;
528 	struct nfs_entry my_entry;
529 	struct nfs_fh	 fh;
530 	struct nfs_fattr fattr;
531 	long		res;
532 
533 	dfprintk(VFS, "NFS: readdir(%s/%s) starting at cookie %Lu\n",
534 			dentry->d_parent->d_name.name, dentry->d_name.name,
535 			(long long)filp->f_pos);
536 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
537 
538 	lock_kernel();
539 
540 	/*
541 	 * filp->f_pos points to the dirent entry number.
542 	 * *desc->dir_cookie has the cookie for the next entry. We have
543 	 * to either find the entry with the appropriate number or
544 	 * revalidate the cookie.
545 	 */
546 	memset(desc, 0, sizeof(*desc));
547 
548 	desc->file = filp;
549 	desc->dir_cookie = &nfs_file_open_context(filp)->dir_cookie;
550 	desc->decode = NFS_PROTO(inode)->decode_dirent;
551 	desc->plus = NFS_USE_READDIRPLUS(inode);
552 
553 	my_entry.cookie = my_entry.prev_cookie = 0;
554 	my_entry.eof = 0;
555 	my_entry.fh = &fh;
556 	my_entry.fattr = &fattr;
557 	nfs_fattr_init(&fattr);
558 	desc->entry = &my_entry;
559 
560 	nfs_block_sillyrename(dentry);
561 	res = nfs_revalidate_mapping_nolock(inode, filp->f_mapping);
562 	if (res < 0)
563 		goto out;
564 
565 	while(!desc->entry->eof) {
566 		res = readdir_search_pagecache(desc);
567 
568 		if (res == -EBADCOOKIE) {
569 			/* This means either end of directory */
570 			if (*desc->dir_cookie && desc->entry->cookie != *desc->dir_cookie) {
571 				/* Or that the server has 'lost' a cookie */
572 				res = uncached_readdir(desc, dirent, filldir);
573 				if (res >= 0)
574 					continue;
575 			}
576 			res = 0;
577 			break;
578 		}
579 		if (res == -ETOOSMALL && desc->plus) {
580 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_FLAGS(inode));
581 			nfs_zap_caches(inode);
582 			desc->plus = 0;
583 			desc->entry->eof = 0;
584 			continue;
585 		}
586 		if (res < 0)
587 			break;
588 
589 		res = nfs_do_filldir(desc, dirent, filldir);
590 		if (res < 0) {
591 			res = 0;
592 			break;
593 		}
594 	}
595 out:
596 	nfs_unblock_sillyrename(dentry);
597 	unlock_kernel();
598 	if (res > 0)
599 		res = 0;
600 	dfprintk(VFS, "NFS: readdir(%s/%s) returns %ld\n",
601 			dentry->d_parent->d_name.name, dentry->d_name.name,
602 			res);
603 	return res;
604 }
605 
606 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
607 {
608 	mutex_lock(&filp->f_path.dentry->d_inode->i_mutex);
609 	switch (origin) {
610 		case 1:
611 			offset += filp->f_pos;
612 		case 0:
613 			if (offset >= 0)
614 				break;
615 		default:
616 			offset = -EINVAL;
617 			goto out;
618 	}
619 	if (offset != filp->f_pos) {
620 		filp->f_pos = offset;
621 		nfs_file_open_context(filp)->dir_cookie = 0;
622 	}
623 out:
624 	mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex);
625 	return offset;
626 }
627 
628 /*
629  * All directory operations under NFS are synchronous, so fsync()
630  * is a dummy operation.
631  */
632 static int nfs_fsync_dir(struct file *filp, struct dentry *dentry, int datasync)
633 {
634 	dfprintk(VFS, "NFS: fsync_dir(%s/%s) datasync %d\n",
635 			dentry->d_parent->d_name.name, dentry->d_name.name,
636 			datasync);
637 
638 	return 0;
639 }
640 
641 /*
642  * A check for whether or not the parent directory has changed.
643  * In the case it has, we assume that the dentries are untrustworthy
644  * and may need to be looked up again.
645  */
646 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
647 {
648 	if (IS_ROOT(dentry))
649 		return 1;
650 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
651 		return 0;
652 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
653 	if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
654 		return 0;
655 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
656 		return 0;
657 	return 1;
658 }
659 
660 /*
661  * Return the intent data that applies to this particular path component
662  *
663  * Note that the current set of intents only apply to the very last
664  * component of the path.
665  * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
666  */
667 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask)
668 {
669 	if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT))
670 		return 0;
671 	return nd->flags & mask;
672 }
673 
674 /*
675  * Use intent information to check whether or not we're going to do
676  * an O_EXCL create using this path component.
677  */
678 static int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
679 {
680 	if (NFS_PROTO(dir)->version == 2)
681 		return 0;
682 	if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_CREATE) == 0)
683 		return 0;
684 	return (nd->intent.open.flags & O_EXCL) != 0;
685 }
686 
687 /*
688  * Inode and filehandle revalidation for lookups.
689  *
690  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
691  * or if the intent information indicates that we're about to open this
692  * particular file and the "nocto" mount flag is not set.
693  *
694  */
695 static inline
696 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
697 {
698 	struct nfs_server *server = NFS_SERVER(inode);
699 
700 	if (nd != NULL) {
701 		/* VFS wants an on-the-wire revalidation */
702 		if (nd->flags & LOOKUP_REVAL)
703 			goto out_force;
704 		/* This is an open(2) */
705 		if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
706 				!(server->flags & NFS_MOUNT_NOCTO) &&
707 				(S_ISREG(inode->i_mode) ||
708 				 S_ISDIR(inode->i_mode)))
709 			goto out_force;
710 		return 0;
711 	}
712 	return nfs_revalidate_inode(server, inode);
713 out_force:
714 	return __nfs_revalidate_inode(server, inode);
715 }
716 
717 /*
718  * We judge how long we want to trust negative
719  * dentries by looking at the parent inode mtime.
720  *
721  * If parent mtime has changed, we revalidate, else we wait for a
722  * period corresponding to the parent's attribute cache timeout value.
723  */
724 static inline
725 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
726 		       struct nameidata *nd)
727 {
728 	/* Don't revalidate a negative dentry if we're creating a new file */
729 	if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
730 		return 0;
731 	return !nfs_check_verifier(dir, dentry);
732 }
733 
734 /*
735  * This is called every time the dcache has a lookup hit,
736  * and we should check whether we can really trust that
737  * lookup.
738  *
739  * NOTE! The hit can be a negative hit too, don't assume
740  * we have an inode!
741  *
742  * If the parent directory is seen to have changed, we throw out the
743  * cached dentry and do a new lookup.
744  */
745 static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd)
746 {
747 	struct inode *dir;
748 	struct inode *inode;
749 	struct dentry *parent;
750 	int error;
751 	struct nfs_fh fhandle;
752 	struct nfs_fattr fattr;
753 
754 	parent = dget_parent(dentry);
755 	lock_kernel();
756 	dir = parent->d_inode;
757 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
758 	inode = dentry->d_inode;
759 
760 	if (!inode) {
761 		if (nfs_neg_need_reval(dir, dentry, nd))
762 			goto out_bad;
763 		goto out_valid;
764 	}
765 
766 	if (is_bad_inode(inode)) {
767 		dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
768 				__FUNCTION__, dentry->d_parent->d_name.name,
769 				dentry->d_name.name);
770 		goto out_bad;
771 	}
772 
773 	/* Force a full look up iff the parent directory has changed */
774 	if (!nfs_is_exclusive_create(dir, nd) && nfs_check_verifier(dir, dentry)) {
775 		if (nfs_lookup_verify_inode(inode, nd))
776 			goto out_zap_parent;
777 		goto out_valid;
778 	}
779 
780 	if (NFS_STALE(inode))
781 		goto out_bad;
782 
783 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
784 	if (error)
785 		goto out_bad;
786 	if (nfs_compare_fh(NFS_FH(inode), &fhandle))
787 		goto out_bad;
788 	if ((error = nfs_refresh_inode(inode, &fattr)) != 0)
789 		goto out_bad;
790 
791 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
792  out_valid:
793 	unlock_kernel();
794 	dput(parent);
795 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
796 			__FUNCTION__, dentry->d_parent->d_name.name,
797 			dentry->d_name.name);
798 	return 1;
799 out_zap_parent:
800 	nfs_zap_caches(dir);
801  out_bad:
802 	nfs_mark_for_revalidate(dir);
803 	if (inode && S_ISDIR(inode->i_mode)) {
804 		/* Purge readdir caches. */
805 		nfs_zap_caches(inode);
806 		/* If we have submounts, don't unhash ! */
807 		if (have_submounts(dentry))
808 			goto out_valid;
809 		shrink_dcache_parent(dentry);
810 	}
811 	d_drop(dentry);
812 	unlock_kernel();
813 	dput(parent);
814 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
815 			__FUNCTION__, dentry->d_parent->d_name.name,
816 			dentry->d_name.name);
817 	return 0;
818 }
819 
820 /*
821  * This is called from dput() when d_count is going to 0.
822  */
823 static int nfs_dentry_delete(struct dentry *dentry)
824 {
825 	dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
826 		dentry->d_parent->d_name.name, dentry->d_name.name,
827 		dentry->d_flags);
828 
829 	/* Unhash any dentry with a stale inode */
830 	if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
831 		return 1;
832 
833 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
834 		/* Unhash it, so that ->d_iput() would be called */
835 		return 1;
836 	}
837 	if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
838 		/* Unhash it, so that ancestors of killed async unlink
839 		 * files will be cleaned up during umount */
840 		return 1;
841 	}
842 	return 0;
843 
844 }
845 
846 /*
847  * Called when the dentry loses inode.
848  * We use it to clean up silly-renamed files.
849  */
850 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
851 {
852 	nfs_inode_return_delegation(inode);
853 	if (S_ISDIR(inode->i_mode))
854 		/* drop any readdir cache as it could easily be old */
855 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
856 
857 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
858 		lock_kernel();
859 		drop_nlink(inode);
860 		nfs_complete_unlink(dentry, inode);
861 		unlock_kernel();
862 	}
863 	iput(inode);
864 }
865 
866 struct dentry_operations nfs_dentry_operations = {
867 	.d_revalidate	= nfs_lookup_revalidate,
868 	.d_delete	= nfs_dentry_delete,
869 	.d_iput		= nfs_dentry_iput,
870 };
871 
872 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
873 {
874 	struct dentry *res;
875 	struct dentry *parent;
876 	struct inode *inode = NULL;
877 	int error;
878 	struct nfs_fh fhandle;
879 	struct nfs_fattr fattr;
880 
881 	dfprintk(VFS, "NFS: lookup(%s/%s)\n",
882 		dentry->d_parent->d_name.name, dentry->d_name.name);
883 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
884 
885 	res = ERR_PTR(-ENAMETOOLONG);
886 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
887 		goto out;
888 
889 	res = ERR_PTR(-ENOMEM);
890 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
891 
892 	lock_kernel();
893 
894 	/*
895 	 * If we're doing an exclusive create, optimize away the lookup
896 	 * but don't hash the dentry.
897 	 */
898 	if (nfs_is_exclusive_create(dir, nd)) {
899 		d_instantiate(dentry, NULL);
900 		res = NULL;
901 		goto out_unlock;
902 	}
903 
904 	parent = dentry->d_parent;
905 	/* Protect against concurrent sillydeletes */
906 	nfs_block_sillyrename(parent);
907 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
908 	if (error == -ENOENT)
909 		goto no_entry;
910 	if (error < 0) {
911 		res = ERR_PTR(error);
912 		goto out_unblock_sillyrename;
913 	}
914 	inode = nfs_fhget(dentry->d_sb, &fhandle, &fattr);
915 	res = (struct dentry *)inode;
916 	if (IS_ERR(res))
917 		goto out_unblock_sillyrename;
918 
919 no_entry:
920 	res = d_materialise_unique(dentry, inode);
921 	if (res != NULL) {
922 		if (IS_ERR(res))
923 			goto out_unblock_sillyrename;
924 		dentry = res;
925 	}
926 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
927 out_unblock_sillyrename:
928 	nfs_unblock_sillyrename(parent);
929 out_unlock:
930 	unlock_kernel();
931 out:
932 	return res;
933 }
934 
935 #ifdef CONFIG_NFS_V4
936 static int nfs_open_revalidate(struct dentry *, struct nameidata *);
937 
938 struct dentry_operations nfs4_dentry_operations = {
939 	.d_revalidate	= nfs_open_revalidate,
940 	.d_delete	= nfs_dentry_delete,
941 	.d_iput		= nfs_dentry_iput,
942 };
943 
944 /*
945  * Use intent information to determine whether we need to substitute
946  * the NFSv4-style stateful OPEN for the LOOKUP call
947  */
948 static int is_atomic_open(struct inode *dir, struct nameidata *nd)
949 {
950 	if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
951 		return 0;
952 	/* NFS does not (yet) have a stateful open for directories */
953 	if (nd->flags & LOOKUP_DIRECTORY)
954 		return 0;
955 	/* Are we trying to write to a read only partition? */
956 	if (IS_RDONLY(dir) && (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE)))
957 		return 0;
958 	return 1;
959 }
960 
961 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
962 {
963 	struct dentry *res = NULL;
964 	int error;
965 
966 	dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
967 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
968 
969 	/* Check that we are indeed trying to open this file */
970 	if (!is_atomic_open(dir, nd))
971 		goto no_open;
972 
973 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
974 		res = ERR_PTR(-ENAMETOOLONG);
975 		goto out;
976 	}
977 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
978 
979 	/* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash
980 	 * the dentry. */
981 	if (nd->intent.open.flags & O_EXCL) {
982 		d_instantiate(dentry, NULL);
983 		goto out;
984 	}
985 
986 	/* Open the file on the server */
987 	lock_kernel();
988 	res = nfs4_atomic_open(dir, dentry, nd);
989 	unlock_kernel();
990 	if (IS_ERR(res)) {
991 		error = PTR_ERR(res);
992 		switch (error) {
993 			/* Make a negative dentry */
994 			case -ENOENT:
995 				res = NULL;
996 				goto out;
997 			/* This turned out not to be a regular file */
998 			case -EISDIR:
999 			case -ENOTDIR:
1000 				goto no_open;
1001 			case -ELOOP:
1002 				if (!(nd->intent.open.flags & O_NOFOLLOW))
1003 					goto no_open;
1004 			/* case -EINVAL: */
1005 			default:
1006 				goto out;
1007 		}
1008 	} else if (res != NULL)
1009 		dentry = res;
1010 out:
1011 	return res;
1012 no_open:
1013 	return nfs_lookup(dir, dentry, nd);
1014 }
1015 
1016 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1017 {
1018 	struct dentry *parent = NULL;
1019 	struct inode *inode = dentry->d_inode;
1020 	struct inode *dir;
1021 	int openflags, ret = 0;
1022 
1023 	parent = dget_parent(dentry);
1024 	dir = parent->d_inode;
1025 	if (!is_atomic_open(dir, nd))
1026 		goto no_open;
1027 	/* We can't create new files in nfs_open_revalidate(), so we
1028 	 * optimize away revalidation of negative dentries.
1029 	 */
1030 	if (inode == NULL) {
1031 		if (!nfs_neg_need_reval(dir, dentry, nd))
1032 			ret = 1;
1033 		goto out;
1034 	}
1035 
1036 	/* NFS only supports OPEN on regular files */
1037 	if (!S_ISREG(inode->i_mode))
1038 		goto no_open;
1039 	openflags = nd->intent.open.flags;
1040 	/* We cannot do exclusive creation on a positive dentry */
1041 	if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1042 		goto no_open;
1043 	/* We can't create new files, or truncate existing ones here */
1044 	openflags &= ~(O_CREAT|O_TRUNC);
1045 
1046 	/*
1047 	 * Note: we're not holding inode->i_mutex and so may be racing with
1048 	 * operations that change the directory. We therefore save the
1049 	 * change attribute *before* we do the RPC call.
1050 	 */
1051 	lock_kernel();
1052 	ret = nfs4_open_revalidate(dir, dentry, openflags, nd);
1053 	unlock_kernel();
1054 out:
1055 	dput(parent);
1056 	if (!ret)
1057 		d_drop(dentry);
1058 	return ret;
1059 no_open:
1060 	dput(parent);
1061 	if (inode != NULL && nfs_have_delegation(inode, FMODE_READ))
1062 		return 1;
1063 	return nfs_lookup_revalidate(dentry, nd);
1064 }
1065 #endif /* CONFIG_NFSV4 */
1066 
1067 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc)
1068 {
1069 	struct dentry *parent = desc->file->f_path.dentry;
1070 	struct inode *dir = parent->d_inode;
1071 	struct nfs_entry *entry = desc->entry;
1072 	struct dentry *dentry, *alias;
1073 	struct qstr name = {
1074 		.name = entry->name,
1075 		.len = entry->len,
1076 	};
1077 	struct inode *inode;
1078 	unsigned long verf = nfs_save_change_attribute(dir);
1079 
1080 	switch (name.len) {
1081 		case 2:
1082 			if (name.name[0] == '.' && name.name[1] == '.')
1083 				return dget_parent(parent);
1084 			break;
1085 		case 1:
1086 			if (name.name[0] == '.')
1087 				return dget(parent);
1088 	}
1089 
1090 	spin_lock(&dir->i_lock);
1091 	if (NFS_I(dir)->cache_validity & NFS_INO_INVALID_DATA) {
1092 		spin_unlock(&dir->i_lock);
1093 		return NULL;
1094 	}
1095 	spin_unlock(&dir->i_lock);
1096 
1097 	name.hash = full_name_hash(name.name, name.len);
1098 	dentry = d_lookup(parent, &name);
1099 	if (dentry != NULL) {
1100 		/* Is this a positive dentry that matches the readdir info? */
1101 		if (dentry->d_inode != NULL &&
1102 				(NFS_FILEID(dentry->d_inode) == entry->ino ||
1103 				d_mountpoint(dentry))) {
1104 			if (!desc->plus || entry->fh->size == 0)
1105 				return dentry;
1106 			if (nfs_compare_fh(NFS_FH(dentry->d_inode),
1107 						entry->fh) == 0)
1108 				goto out_renew;
1109 		}
1110 		/* No, so d_drop to allow one to be created */
1111 		d_drop(dentry);
1112 		dput(dentry);
1113 	}
1114 	if (!desc->plus || !(entry->fattr->valid & NFS_ATTR_FATTR))
1115 		return NULL;
1116 	if (name.len > NFS_SERVER(dir)->namelen)
1117 		return NULL;
1118 	/* Note: caller is already holding the dir->i_mutex! */
1119 	dentry = d_alloc(parent, &name);
1120 	if (dentry == NULL)
1121 		return NULL;
1122 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1123 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
1124 	if (IS_ERR(inode)) {
1125 		dput(dentry);
1126 		return NULL;
1127 	}
1128 
1129 	alias = d_materialise_unique(dentry, inode);
1130 	if (alias != NULL) {
1131 		dput(dentry);
1132 		if (IS_ERR(alias))
1133 			return NULL;
1134 		dentry = alias;
1135 	}
1136 
1137 out_renew:
1138 	nfs_set_verifier(dentry, verf);
1139 	return dentry;
1140 }
1141 
1142 /*
1143  * Code common to create, mkdir, and mknod.
1144  */
1145 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1146 				struct nfs_fattr *fattr)
1147 {
1148 	struct dentry *parent = dget_parent(dentry);
1149 	struct inode *dir = parent->d_inode;
1150 	struct inode *inode;
1151 	int error = -EACCES;
1152 
1153 	d_drop(dentry);
1154 
1155 	/* We may have been initialized further down */
1156 	if (dentry->d_inode)
1157 		goto out;
1158 	if (fhandle->size == 0) {
1159 		error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1160 		if (error)
1161 			goto out_error;
1162 	}
1163 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1164 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1165 		struct nfs_server *server = NFS_SB(dentry->d_sb);
1166 		error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1167 		if (error < 0)
1168 			goto out_error;
1169 	}
1170 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1171 	error = PTR_ERR(inode);
1172 	if (IS_ERR(inode))
1173 		goto out_error;
1174 	d_add(dentry, inode);
1175 out:
1176 	dput(parent);
1177 	return 0;
1178 out_error:
1179 	nfs_mark_for_revalidate(dir);
1180 	dput(parent);
1181 	return error;
1182 }
1183 
1184 /*
1185  * Following a failed create operation, we drop the dentry rather
1186  * than retain a negative dentry. This avoids a problem in the event
1187  * that the operation succeeded on the server, but an error in the
1188  * reply path made it appear to have failed.
1189  */
1190 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode,
1191 		struct nameidata *nd)
1192 {
1193 	struct iattr attr;
1194 	int error;
1195 	int open_flags = 0;
1196 
1197 	dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1198 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1199 
1200 	attr.ia_mode = mode;
1201 	attr.ia_valid = ATTR_MODE;
1202 
1203 	if ((nd->flags & LOOKUP_CREATE) != 0)
1204 		open_flags = nd->intent.open.flags;
1205 
1206 	lock_kernel();
1207 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, nd);
1208 	if (error != 0)
1209 		goto out_err;
1210 	unlock_kernel();
1211 	return 0;
1212 out_err:
1213 	unlock_kernel();
1214 	d_drop(dentry);
1215 	return error;
1216 }
1217 
1218 /*
1219  * See comments for nfs_proc_create regarding failed operations.
1220  */
1221 static int
1222 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev)
1223 {
1224 	struct iattr attr;
1225 	int status;
1226 
1227 	dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1228 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1229 
1230 	if (!new_valid_dev(rdev))
1231 		return -EINVAL;
1232 
1233 	attr.ia_mode = mode;
1234 	attr.ia_valid = ATTR_MODE;
1235 
1236 	lock_kernel();
1237 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1238 	if (status != 0)
1239 		goto out_err;
1240 	unlock_kernel();
1241 	return 0;
1242 out_err:
1243 	unlock_kernel();
1244 	d_drop(dentry);
1245 	return status;
1246 }
1247 
1248 /*
1249  * See comments for nfs_proc_create regarding failed operations.
1250  */
1251 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1252 {
1253 	struct iattr attr;
1254 	int error;
1255 
1256 	dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1257 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1258 
1259 	attr.ia_valid = ATTR_MODE;
1260 	attr.ia_mode = mode | S_IFDIR;
1261 
1262 	lock_kernel();
1263 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1264 	if (error != 0)
1265 		goto out_err;
1266 	unlock_kernel();
1267 	return 0;
1268 out_err:
1269 	d_drop(dentry);
1270 	unlock_kernel();
1271 	return error;
1272 }
1273 
1274 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1275 {
1276 	if (dentry->d_inode != NULL && !d_unhashed(dentry))
1277 		d_delete(dentry);
1278 }
1279 
1280 static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1281 {
1282 	int error;
1283 
1284 	dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1285 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1286 
1287 	lock_kernel();
1288 	error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1289 	/* Ensure the VFS deletes this inode */
1290 	if (error == 0 && dentry->d_inode != NULL)
1291 		clear_nlink(dentry->d_inode);
1292 	else if (error == -ENOENT)
1293 		nfs_dentry_handle_enoent(dentry);
1294 	unlock_kernel();
1295 
1296 	return error;
1297 }
1298 
1299 static int nfs_sillyrename(struct inode *dir, struct dentry *dentry)
1300 {
1301 	static unsigned int sillycounter;
1302 	const int      fileidsize  = sizeof(NFS_FILEID(dentry->d_inode))*2;
1303 	const int      countersize = sizeof(sillycounter)*2;
1304 	const int      slen        = sizeof(".nfs")+fileidsize+countersize-1;
1305 	char           silly[slen+1];
1306 	struct qstr    qsilly;
1307 	struct dentry *sdentry;
1308 	int            error = -EIO;
1309 
1310 	dfprintk(VFS, "NFS: silly-rename(%s/%s, ct=%d)\n",
1311 		dentry->d_parent->d_name.name, dentry->d_name.name,
1312 		atomic_read(&dentry->d_count));
1313 	nfs_inc_stats(dir, NFSIOS_SILLYRENAME);
1314 
1315 	/*
1316 	 * We don't allow a dentry to be silly-renamed twice.
1317 	 */
1318 	error = -EBUSY;
1319 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1320 		goto out;
1321 
1322 	sprintf(silly, ".nfs%*.*Lx",
1323 		fileidsize, fileidsize,
1324 		(unsigned long long)NFS_FILEID(dentry->d_inode));
1325 
1326 	/* Return delegation in anticipation of the rename */
1327 	nfs_inode_return_delegation(dentry->d_inode);
1328 
1329 	sdentry = NULL;
1330 	do {
1331 		char *suffix = silly + slen - countersize;
1332 
1333 		dput(sdentry);
1334 		sillycounter++;
1335 		sprintf(suffix, "%*.*x", countersize, countersize, sillycounter);
1336 
1337 		dfprintk(VFS, "NFS: trying to rename %s to %s\n",
1338 				dentry->d_name.name, silly);
1339 
1340 		sdentry = lookup_one_len(silly, dentry->d_parent, slen);
1341 		/*
1342 		 * N.B. Better to return EBUSY here ... it could be
1343 		 * dangerous to delete the file while it's in use.
1344 		 */
1345 		if (IS_ERR(sdentry))
1346 			goto out;
1347 	} while(sdentry->d_inode != NULL); /* need negative lookup */
1348 
1349 	qsilly.name = silly;
1350 	qsilly.len  = strlen(silly);
1351 	if (dentry->d_inode) {
1352 		error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1353 				dir, &qsilly);
1354 		nfs_mark_for_revalidate(dentry->d_inode);
1355 	} else
1356 		error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1357 				dir, &qsilly);
1358 	if (!error) {
1359 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1360 		d_move(dentry, sdentry);
1361 		error = nfs_async_unlink(dir, dentry);
1362  		/* If we return 0 we don't unlink */
1363 	}
1364 	dput(sdentry);
1365 out:
1366 	return error;
1367 }
1368 
1369 /*
1370  * Remove a file after making sure there are no pending writes,
1371  * and after checking that the file has only one user.
1372  *
1373  * We invalidate the attribute cache and free the inode prior to the operation
1374  * to avoid possible races if the server reuses the inode.
1375  */
1376 static int nfs_safe_remove(struct dentry *dentry)
1377 {
1378 	struct inode *dir = dentry->d_parent->d_inode;
1379 	struct inode *inode = dentry->d_inode;
1380 	int error = -EBUSY;
1381 
1382 	dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1383 		dentry->d_parent->d_name.name, dentry->d_name.name);
1384 
1385 	/* If the dentry was sillyrenamed, we simply call d_delete() */
1386 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1387 		error = 0;
1388 		goto out;
1389 	}
1390 
1391 	if (inode != NULL) {
1392 		nfs_inode_return_delegation(inode);
1393 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1394 		/* The VFS may want to delete this inode */
1395 		if (error == 0)
1396 			drop_nlink(inode);
1397 		nfs_mark_for_revalidate(inode);
1398 	} else
1399 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1400 	if (error == -ENOENT)
1401 		nfs_dentry_handle_enoent(dentry);
1402 out:
1403 	return error;
1404 }
1405 
1406 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1407  *  belongs to an active ".nfs..." file and we return -EBUSY.
1408  *
1409  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1410  */
1411 static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1412 {
1413 	int error;
1414 	int need_rehash = 0;
1415 
1416 	dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1417 		dir->i_ino, dentry->d_name.name);
1418 
1419 	lock_kernel();
1420 	spin_lock(&dcache_lock);
1421 	spin_lock(&dentry->d_lock);
1422 	if (atomic_read(&dentry->d_count) > 1) {
1423 		spin_unlock(&dentry->d_lock);
1424 		spin_unlock(&dcache_lock);
1425 		/* Start asynchronous writeout of the inode */
1426 		write_inode_now(dentry->d_inode, 0);
1427 		error = nfs_sillyrename(dir, dentry);
1428 		unlock_kernel();
1429 		return error;
1430 	}
1431 	if (!d_unhashed(dentry)) {
1432 		__d_drop(dentry);
1433 		need_rehash = 1;
1434 	}
1435 	spin_unlock(&dentry->d_lock);
1436 	spin_unlock(&dcache_lock);
1437 	error = nfs_safe_remove(dentry);
1438 	if (!error || error == -ENOENT) {
1439 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1440 	} else if (need_rehash)
1441 		d_rehash(dentry);
1442 	unlock_kernel();
1443 	return error;
1444 }
1445 
1446 /*
1447  * To create a symbolic link, most file systems instantiate a new inode,
1448  * add a page to it containing the path, then write it out to the disk
1449  * using prepare_write/commit_write.
1450  *
1451  * Unfortunately the NFS client can't create the in-core inode first
1452  * because it needs a file handle to create an in-core inode (see
1453  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1454  * symlink request has completed on the server.
1455  *
1456  * So instead we allocate a raw page, copy the symname into it, then do
1457  * the SYMLINK request with the page as the buffer.  If it succeeds, we
1458  * now have a new file handle and can instantiate an in-core NFS inode
1459  * and move the raw page into its mapping.
1460  */
1461 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1462 {
1463 	struct pagevec lru_pvec;
1464 	struct page *page;
1465 	char *kaddr;
1466 	struct iattr attr;
1467 	unsigned int pathlen = strlen(symname);
1468 	int error;
1469 
1470 	dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1471 		dir->i_ino, dentry->d_name.name, symname);
1472 
1473 	if (pathlen > PAGE_SIZE)
1474 		return -ENAMETOOLONG;
1475 
1476 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
1477 	attr.ia_valid = ATTR_MODE;
1478 
1479 	lock_kernel();
1480 
1481 	page = alloc_page(GFP_HIGHUSER);
1482 	if (!page) {
1483 		unlock_kernel();
1484 		return -ENOMEM;
1485 	}
1486 
1487 	kaddr = kmap_atomic(page, KM_USER0);
1488 	memcpy(kaddr, symname, pathlen);
1489 	if (pathlen < PAGE_SIZE)
1490 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1491 	kunmap_atomic(kaddr, KM_USER0);
1492 
1493 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1494 	if (error != 0) {
1495 		dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1496 			dir->i_sb->s_id, dir->i_ino,
1497 			dentry->d_name.name, symname, error);
1498 		d_drop(dentry);
1499 		__free_page(page);
1500 		unlock_kernel();
1501 		return error;
1502 	}
1503 
1504 	/*
1505 	 * No big deal if we can't add this page to the page cache here.
1506 	 * READLINK will get the missing page from the server if needed.
1507 	 */
1508 	pagevec_init(&lru_pvec, 0);
1509 	if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1510 							GFP_KERNEL)) {
1511 		pagevec_add(&lru_pvec, page);
1512 		pagevec_lru_add(&lru_pvec);
1513 		SetPageUptodate(page);
1514 		unlock_page(page);
1515 	} else
1516 		__free_page(page);
1517 
1518 	unlock_kernel();
1519 	return 0;
1520 }
1521 
1522 static int
1523 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1524 {
1525 	struct inode *inode = old_dentry->d_inode;
1526 	int error;
1527 
1528 	dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1529 		old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1530 		dentry->d_parent->d_name.name, dentry->d_name.name);
1531 
1532 	lock_kernel();
1533 	d_drop(dentry);
1534 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1535 	if (error == 0) {
1536 		atomic_inc(&inode->i_count);
1537 		d_add(dentry, inode);
1538 	}
1539 	unlock_kernel();
1540 	return error;
1541 }
1542 
1543 /*
1544  * RENAME
1545  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1546  * different file handle for the same inode after a rename (e.g. when
1547  * moving to a different directory). A fail-safe method to do so would
1548  * be to look up old_dir/old_name, create a link to new_dir/new_name and
1549  * rename the old file using the sillyrename stuff. This way, the original
1550  * file in old_dir will go away when the last process iput()s the inode.
1551  *
1552  * FIXED.
1553  *
1554  * It actually works quite well. One needs to have the possibility for
1555  * at least one ".nfs..." file in each directory the file ever gets
1556  * moved or linked to which happens automagically with the new
1557  * implementation that only depends on the dcache stuff instead of
1558  * using the inode layer
1559  *
1560  * Unfortunately, things are a little more complicated than indicated
1561  * above. For a cross-directory move, we want to make sure we can get
1562  * rid of the old inode after the operation.  This means there must be
1563  * no pending writes (if it's a file), and the use count must be 1.
1564  * If these conditions are met, we can drop the dentries before doing
1565  * the rename.
1566  */
1567 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1568 		      struct inode *new_dir, struct dentry *new_dentry)
1569 {
1570 	struct inode *old_inode = old_dentry->d_inode;
1571 	struct inode *new_inode = new_dentry->d_inode;
1572 	struct dentry *dentry = NULL, *rehash = NULL;
1573 	int error = -EBUSY;
1574 
1575 	/*
1576 	 * To prevent any new references to the target during the rename,
1577 	 * we unhash the dentry and free the inode in advance.
1578 	 */
1579 	lock_kernel();
1580 	if (!d_unhashed(new_dentry)) {
1581 		d_drop(new_dentry);
1582 		rehash = new_dentry;
1583 	}
1584 
1585 	dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1586 		 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1587 		 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1588 		 atomic_read(&new_dentry->d_count));
1589 
1590 	/*
1591 	 * First check whether the target is busy ... we can't
1592 	 * safely do _any_ rename if the target is in use.
1593 	 *
1594 	 * For files, make a copy of the dentry and then do a
1595 	 * silly-rename. If the silly-rename succeeds, the
1596 	 * copied dentry is hashed and becomes the new target.
1597 	 */
1598 	if (!new_inode)
1599 		goto go_ahead;
1600 	if (S_ISDIR(new_inode->i_mode)) {
1601 		error = -EISDIR;
1602 		if (!S_ISDIR(old_inode->i_mode))
1603 			goto out;
1604 	} else if (atomic_read(&new_dentry->d_count) > 2) {
1605 		int err;
1606 		/* copy the target dentry's name */
1607 		dentry = d_alloc(new_dentry->d_parent,
1608 				 &new_dentry->d_name);
1609 		if (!dentry)
1610 			goto out;
1611 
1612 		/* silly-rename the existing target ... */
1613 		err = nfs_sillyrename(new_dir, new_dentry);
1614 		if (!err) {
1615 			new_dentry = rehash = dentry;
1616 			new_inode = NULL;
1617 			/* instantiate the replacement target */
1618 			d_instantiate(new_dentry, NULL);
1619 		} else if (atomic_read(&new_dentry->d_count) > 1)
1620 			/* dentry still busy? */
1621 			goto out;
1622 	} else
1623 		drop_nlink(new_inode);
1624 
1625 go_ahead:
1626 	/*
1627 	 * ... prune child dentries and writebacks if needed.
1628 	 */
1629 	if (atomic_read(&old_dentry->d_count) > 1) {
1630 		if (S_ISREG(old_inode->i_mode))
1631 			nfs_wb_all(old_inode);
1632 		shrink_dcache_parent(old_dentry);
1633 	}
1634 	nfs_inode_return_delegation(old_inode);
1635 
1636 	if (new_inode != NULL) {
1637 		nfs_inode_return_delegation(new_inode);
1638 		d_delete(new_dentry);
1639 	}
1640 
1641 	error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1642 					   new_dir, &new_dentry->d_name);
1643 	nfs_mark_for_revalidate(old_inode);
1644 out:
1645 	if (rehash)
1646 		d_rehash(rehash);
1647 	if (!error) {
1648 		d_move(old_dentry, new_dentry);
1649 		nfs_set_verifier(new_dentry,
1650 					nfs_save_change_attribute(new_dir));
1651 	} else if (error == -ENOENT)
1652 		nfs_dentry_handle_enoent(old_dentry);
1653 
1654 	/* new dentry created? */
1655 	if (dentry)
1656 		dput(dentry);
1657 	unlock_kernel();
1658 	return error;
1659 }
1660 
1661 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1662 static LIST_HEAD(nfs_access_lru_list);
1663 static atomic_long_t nfs_access_nr_entries;
1664 
1665 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1666 {
1667 	put_rpccred(entry->cred);
1668 	kfree(entry);
1669 	smp_mb__before_atomic_dec();
1670 	atomic_long_dec(&nfs_access_nr_entries);
1671 	smp_mb__after_atomic_dec();
1672 }
1673 
1674 int nfs_access_cache_shrinker(int nr_to_scan, gfp_t gfp_mask)
1675 {
1676 	LIST_HEAD(head);
1677 	struct nfs_inode *nfsi;
1678 	struct nfs_access_entry *cache;
1679 
1680 restart:
1681 	spin_lock(&nfs_access_lru_lock);
1682 	list_for_each_entry(nfsi, &nfs_access_lru_list, access_cache_inode_lru) {
1683 		struct inode *inode;
1684 
1685 		if (nr_to_scan-- == 0)
1686 			break;
1687 		inode = igrab(&nfsi->vfs_inode);
1688 		if (inode == NULL)
1689 			continue;
1690 		spin_lock(&inode->i_lock);
1691 		if (list_empty(&nfsi->access_cache_entry_lru))
1692 			goto remove_lru_entry;
1693 		cache = list_entry(nfsi->access_cache_entry_lru.next,
1694 				struct nfs_access_entry, lru);
1695 		list_move(&cache->lru, &head);
1696 		rb_erase(&cache->rb_node, &nfsi->access_cache);
1697 		if (!list_empty(&nfsi->access_cache_entry_lru))
1698 			list_move_tail(&nfsi->access_cache_inode_lru,
1699 					&nfs_access_lru_list);
1700 		else {
1701 remove_lru_entry:
1702 			list_del_init(&nfsi->access_cache_inode_lru);
1703 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1704 		}
1705 		spin_unlock(&inode->i_lock);
1706 		spin_unlock(&nfs_access_lru_lock);
1707 		iput(inode);
1708 		goto restart;
1709 	}
1710 	spin_unlock(&nfs_access_lru_lock);
1711 	while (!list_empty(&head)) {
1712 		cache = list_entry(head.next, struct nfs_access_entry, lru);
1713 		list_del(&cache->lru);
1714 		nfs_access_free_entry(cache);
1715 	}
1716 	return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
1717 }
1718 
1719 static void __nfs_access_zap_cache(struct inode *inode)
1720 {
1721 	struct nfs_inode *nfsi = NFS_I(inode);
1722 	struct rb_root *root_node = &nfsi->access_cache;
1723 	struct rb_node *n, *dispose = NULL;
1724 	struct nfs_access_entry *entry;
1725 
1726 	/* Unhook entries from the cache */
1727 	while ((n = rb_first(root_node)) != NULL) {
1728 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
1729 		rb_erase(n, root_node);
1730 		list_del(&entry->lru);
1731 		n->rb_left = dispose;
1732 		dispose = n;
1733 	}
1734 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
1735 	spin_unlock(&inode->i_lock);
1736 
1737 	/* Now kill them all! */
1738 	while (dispose != NULL) {
1739 		n = dispose;
1740 		dispose = n->rb_left;
1741 		nfs_access_free_entry(rb_entry(n, struct nfs_access_entry, rb_node));
1742 	}
1743 }
1744 
1745 void nfs_access_zap_cache(struct inode *inode)
1746 {
1747 	/* Remove from global LRU init */
1748 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_FLAGS(inode))) {
1749 		spin_lock(&nfs_access_lru_lock);
1750 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
1751 		spin_unlock(&nfs_access_lru_lock);
1752 	}
1753 
1754 	spin_lock(&inode->i_lock);
1755 	/* This will release the spinlock */
1756 	__nfs_access_zap_cache(inode);
1757 }
1758 
1759 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
1760 {
1761 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
1762 	struct nfs_access_entry *entry;
1763 
1764 	while (n != NULL) {
1765 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
1766 
1767 		if (cred < entry->cred)
1768 			n = n->rb_left;
1769 		else if (cred > entry->cred)
1770 			n = n->rb_right;
1771 		else
1772 			return entry;
1773 	}
1774 	return NULL;
1775 }
1776 
1777 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
1778 {
1779 	struct nfs_inode *nfsi = NFS_I(inode);
1780 	struct nfs_access_entry *cache;
1781 	int err = -ENOENT;
1782 
1783 	spin_lock(&inode->i_lock);
1784 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
1785 		goto out_zap;
1786 	cache = nfs_access_search_rbtree(inode, cred);
1787 	if (cache == NULL)
1788 		goto out;
1789 	if (!time_in_range(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
1790 		goto out_stale;
1791 	res->jiffies = cache->jiffies;
1792 	res->cred = cache->cred;
1793 	res->mask = cache->mask;
1794 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
1795 	err = 0;
1796 out:
1797 	spin_unlock(&inode->i_lock);
1798 	return err;
1799 out_stale:
1800 	rb_erase(&cache->rb_node, &nfsi->access_cache);
1801 	list_del(&cache->lru);
1802 	spin_unlock(&inode->i_lock);
1803 	nfs_access_free_entry(cache);
1804 	return -ENOENT;
1805 out_zap:
1806 	/* This will release the spinlock */
1807 	__nfs_access_zap_cache(inode);
1808 	return -ENOENT;
1809 }
1810 
1811 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
1812 {
1813 	struct nfs_inode *nfsi = NFS_I(inode);
1814 	struct rb_root *root_node = &nfsi->access_cache;
1815 	struct rb_node **p = &root_node->rb_node;
1816 	struct rb_node *parent = NULL;
1817 	struct nfs_access_entry *entry;
1818 
1819 	spin_lock(&inode->i_lock);
1820 	while (*p != NULL) {
1821 		parent = *p;
1822 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
1823 
1824 		if (set->cred < entry->cred)
1825 			p = &parent->rb_left;
1826 		else if (set->cred > entry->cred)
1827 			p = &parent->rb_right;
1828 		else
1829 			goto found;
1830 	}
1831 	rb_link_node(&set->rb_node, parent, p);
1832 	rb_insert_color(&set->rb_node, root_node);
1833 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1834 	spin_unlock(&inode->i_lock);
1835 	return;
1836 found:
1837 	rb_replace_node(parent, &set->rb_node, root_node);
1838 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1839 	list_del(&entry->lru);
1840 	spin_unlock(&inode->i_lock);
1841 	nfs_access_free_entry(entry);
1842 }
1843 
1844 static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
1845 {
1846 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
1847 	if (cache == NULL)
1848 		return;
1849 	RB_CLEAR_NODE(&cache->rb_node);
1850 	cache->jiffies = set->jiffies;
1851 	cache->cred = get_rpccred(set->cred);
1852 	cache->mask = set->mask;
1853 
1854 	nfs_access_add_rbtree(inode, cache);
1855 
1856 	/* Update accounting */
1857 	smp_mb__before_atomic_inc();
1858 	atomic_long_inc(&nfs_access_nr_entries);
1859 	smp_mb__after_atomic_inc();
1860 
1861 	/* Add inode to global LRU list */
1862 	if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_FLAGS(inode))) {
1863 		spin_lock(&nfs_access_lru_lock);
1864 		list_add_tail(&NFS_I(inode)->access_cache_inode_lru, &nfs_access_lru_list);
1865 		spin_unlock(&nfs_access_lru_lock);
1866 	}
1867 }
1868 
1869 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
1870 {
1871 	struct nfs_access_entry cache;
1872 	int status;
1873 
1874 	status = nfs_access_get_cached(inode, cred, &cache);
1875 	if (status == 0)
1876 		goto out;
1877 
1878 	/* Be clever: ask server to check for all possible rights */
1879 	cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
1880 	cache.cred = cred;
1881 	cache.jiffies = jiffies;
1882 	status = NFS_PROTO(inode)->access(inode, &cache);
1883 	if (status != 0)
1884 		return status;
1885 	nfs_access_add_cache(inode, &cache);
1886 out:
1887 	if ((cache.mask & mask) == mask)
1888 		return 0;
1889 	return -EACCES;
1890 }
1891 
1892 static int nfs_open_permission_mask(int openflags)
1893 {
1894 	int mask = 0;
1895 
1896 	if (openflags & FMODE_READ)
1897 		mask |= MAY_READ;
1898 	if (openflags & FMODE_WRITE)
1899 		mask |= MAY_WRITE;
1900 	if (openflags & FMODE_EXEC)
1901 		mask |= MAY_EXEC;
1902 	return mask;
1903 }
1904 
1905 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
1906 {
1907 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
1908 }
1909 
1910 int nfs_permission(struct inode *inode, int mask, struct nameidata *nd)
1911 {
1912 	struct rpc_cred *cred;
1913 	int res = 0;
1914 
1915 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
1916 
1917 	if (mask == 0)
1918 		goto out;
1919 	/* Is this sys_access() ? */
1920 	if (nd != NULL && (nd->flags & LOOKUP_ACCESS))
1921 		goto force_lookup;
1922 
1923 	switch (inode->i_mode & S_IFMT) {
1924 		case S_IFLNK:
1925 			goto out;
1926 		case S_IFREG:
1927 			/* NFSv4 has atomic_open... */
1928 			if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
1929 					&& nd != NULL
1930 					&& (nd->flags & LOOKUP_OPEN))
1931 				goto out;
1932 			break;
1933 		case S_IFDIR:
1934 			/*
1935 			 * Optimize away all write operations, since the server
1936 			 * will check permissions when we perform the op.
1937 			 */
1938 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
1939 				goto out;
1940 	}
1941 
1942 force_lookup:
1943 	lock_kernel();
1944 
1945 	if (!NFS_PROTO(inode)->access)
1946 		goto out_notsup;
1947 
1948 	cred = rpcauth_lookupcred(NFS_CLIENT(inode)->cl_auth, 0);
1949 	if (!IS_ERR(cred)) {
1950 		res = nfs_do_access(inode, cred, mask);
1951 		put_rpccred(cred);
1952 	} else
1953 		res = PTR_ERR(cred);
1954 	unlock_kernel();
1955 out:
1956 	dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
1957 		inode->i_sb->s_id, inode->i_ino, mask, res);
1958 	return res;
1959 out_notsup:
1960 	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1961 	if (res == 0)
1962 		res = generic_permission(inode, mask, NULL);
1963 	unlock_kernel();
1964 	goto out;
1965 }
1966 
1967 /*
1968  * Local variables:
1969  *  version-control: t
1970  *  kept-new-versions: 5
1971  * End:
1972  */
1973