1 /* 2 * linux/fs/nfs/dir.c 3 * 4 * Copyright (C) 1992 Rick Sladkey 5 * 6 * nfs directory handling functions 7 * 8 * 10 Apr 1996 Added silly rename for unlink --okir 9 * 28 Sep 1996 Improved directory cache --okir 10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de 11 * Re-implemented silly rename for unlink, newly implemented 12 * silly rename for nfs_rename() following the suggestions 13 * of Olaf Kirch (okir) found in this file. 14 * Following Linus comments on my original hack, this version 15 * depends only on the dcache stuff and doesn't touch the inode 16 * layer (iput() and friends). 17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM 18 */ 19 20 #include <linux/module.h> 21 #include <linux/time.h> 22 #include <linux/errno.h> 23 #include <linux/stat.h> 24 #include <linux/fcntl.h> 25 #include <linux/string.h> 26 #include <linux/kernel.h> 27 #include <linux/slab.h> 28 #include <linux/mm.h> 29 #include <linux/sunrpc/clnt.h> 30 #include <linux/nfs_fs.h> 31 #include <linux/nfs_mount.h> 32 #include <linux/pagemap.h> 33 #include <linux/pagevec.h> 34 #include <linux/namei.h> 35 #include <linux/mount.h> 36 #include <linux/swap.h> 37 #include <linux/sched.h> 38 #include <linux/kmemleak.h> 39 #include <linux/xattr.h> 40 41 #include "delegation.h" 42 #include "iostat.h" 43 #include "internal.h" 44 #include "fscache.h" 45 46 #include "nfstrace.h" 47 48 /* #define NFS_DEBUG_VERBOSE 1 */ 49 50 static int nfs_opendir(struct inode *, struct file *); 51 static int nfs_closedir(struct inode *, struct file *); 52 static int nfs_readdir(struct file *, struct dir_context *); 53 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int); 54 static loff_t nfs_llseek_dir(struct file *, loff_t, int); 55 static void nfs_readdir_clear_array(struct page*); 56 57 const struct file_operations nfs_dir_operations = { 58 .llseek = nfs_llseek_dir, 59 .read = generic_read_dir, 60 .iterate = nfs_readdir, 61 .open = nfs_opendir, 62 .release = nfs_closedir, 63 .fsync = nfs_fsync_dir, 64 }; 65 66 const struct address_space_operations nfs_dir_aops = { 67 .freepage = nfs_readdir_clear_array, 68 }; 69 70 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, const struct cred *cred) 71 { 72 struct nfs_inode *nfsi = NFS_I(dir); 73 struct nfs_open_dir_context *ctx; 74 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); 75 if (ctx != NULL) { 76 ctx->duped = 0; 77 ctx->attr_gencount = nfsi->attr_gencount; 78 ctx->dir_cookie = 0; 79 ctx->dup_cookie = 0; 80 ctx->cred = get_cred(cred); 81 spin_lock(&dir->i_lock); 82 list_add(&ctx->list, &nfsi->open_files); 83 spin_unlock(&dir->i_lock); 84 return ctx; 85 } 86 return ERR_PTR(-ENOMEM); 87 } 88 89 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx) 90 { 91 spin_lock(&dir->i_lock); 92 list_del(&ctx->list); 93 spin_unlock(&dir->i_lock); 94 put_cred(ctx->cred); 95 kfree(ctx); 96 } 97 98 /* 99 * Open file 100 */ 101 static int 102 nfs_opendir(struct inode *inode, struct file *filp) 103 { 104 int res = 0; 105 struct nfs_open_dir_context *ctx; 106 107 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp); 108 109 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 110 111 ctx = alloc_nfs_open_dir_context(inode, current_cred()); 112 if (IS_ERR(ctx)) { 113 res = PTR_ERR(ctx); 114 goto out; 115 } 116 filp->private_data = ctx; 117 out: 118 return res; 119 } 120 121 static int 122 nfs_closedir(struct inode *inode, struct file *filp) 123 { 124 put_nfs_open_dir_context(file_inode(filp), filp->private_data); 125 return 0; 126 } 127 128 struct nfs_cache_array_entry { 129 u64 cookie; 130 u64 ino; 131 struct qstr string; 132 unsigned char d_type; 133 }; 134 135 struct nfs_cache_array { 136 int size; 137 int eof_index; 138 u64 last_cookie; 139 struct nfs_cache_array_entry array[0]; 140 }; 141 142 struct readdirvec { 143 unsigned long nr; 144 unsigned long index; 145 struct page *pages[NFS_MAX_READDIR_RAPAGES]; 146 }; 147 148 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, bool); 149 typedef struct { 150 struct file *file; 151 struct page *page; 152 struct dir_context *ctx; 153 unsigned long page_index; 154 struct readdirvec pvec; 155 u64 *dir_cookie; 156 u64 last_cookie; 157 loff_t current_index; 158 decode_dirent_t decode; 159 160 unsigned long timestamp; 161 unsigned long gencount; 162 unsigned int cache_entry_index; 163 bool plus; 164 bool eof; 165 } nfs_readdir_descriptor_t; 166 167 /* 168 * we are freeing strings created by nfs_add_to_readdir_array() 169 */ 170 static 171 void nfs_readdir_clear_array(struct page *page) 172 { 173 struct nfs_cache_array *array; 174 int i; 175 176 array = kmap_atomic(page); 177 for (i = 0; i < array->size; i++) 178 kfree(array->array[i].string.name); 179 kunmap_atomic(array); 180 } 181 182 /* 183 * the caller is responsible for freeing qstr.name 184 * when called by nfs_readdir_add_to_array, the strings will be freed in 185 * nfs_clear_readdir_array() 186 */ 187 static 188 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len) 189 { 190 string->len = len; 191 string->name = kmemdup(name, len, GFP_KERNEL); 192 if (string->name == NULL) 193 return -ENOMEM; 194 /* 195 * Avoid a kmemleak false positive. The pointer to the name is stored 196 * in a page cache page which kmemleak does not scan. 197 */ 198 kmemleak_not_leak(string->name); 199 string->hash = full_name_hash(NULL, name, len); 200 return 0; 201 } 202 203 static 204 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page) 205 { 206 struct nfs_cache_array *array = kmap(page); 207 struct nfs_cache_array_entry *cache_entry; 208 int ret; 209 210 cache_entry = &array->array[array->size]; 211 212 /* Check that this entry lies within the page bounds */ 213 ret = -ENOSPC; 214 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE) 215 goto out; 216 217 cache_entry->cookie = entry->prev_cookie; 218 cache_entry->ino = entry->ino; 219 cache_entry->d_type = entry->d_type; 220 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len); 221 if (ret) 222 goto out; 223 array->last_cookie = entry->cookie; 224 array->size++; 225 if (entry->eof != 0) 226 array->eof_index = array->size; 227 out: 228 kunmap(page); 229 return ret; 230 } 231 232 static 233 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 234 { 235 loff_t diff = desc->ctx->pos - desc->current_index; 236 unsigned int index; 237 238 if (diff < 0) 239 goto out_eof; 240 if (diff >= array->size) { 241 if (array->eof_index >= 0) 242 goto out_eof; 243 return -EAGAIN; 244 } 245 246 index = (unsigned int)diff; 247 *desc->dir_cookie = array->array[index].cookie; 248 desc->cache_entry_index = index; 249 return 0; 250 out_eof: 251 desc->eof = true; 252 return -EBADCOOKIE; 253 } 254 255 static bool 256 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi) 257 { 258 if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA)) 259 return false; 260 smp_rmb(); 261 return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags); 262 } 263 264 static 265 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 266 { 267 int i; 268 loff_t new_pos; 269 int status = -EAGAIN; 270 271 for (i = 0; i < array->size; i++) { 272 if (array->array[i].cookie == *desc->dir_cookie) { 273 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file)); 274 struct nfs_open_dir_context *ctx = desc->file->private_data; 275 276 new_pos = desc->current_index + i; 277 if (ctx->attr_gencount != nfsi->attr_gencount || 278 !nfs_readdir_inode_mapping_valid(nfsi)) { 279 ctx->duped = 0; 280 ctx->attr_gencount = nfsi->attr_gencount; 281 } else if (new_pos < desc->ctx->pos) { 282 if (ctx->duped > 0 283 && ctx->dup_cookie == *desc->dir_cookie) { 284 if (printk_ratelimit()) { 285 pr_notice("NFS: directory %pD2 contains a readdir loop." 286 "Please contact your server vendor. " 287 "The file: %.*s has duplicate cookie %llu\n", 288 desc->file, array->array[i].string.len, 289 array->array[i].string.name, *desc->dir_cookie); 290 } 291 status = -ELOOP; 292 goto out; 293 } 294 ctx->dup_cookie = *desc->dir_cookie; 295 ctx->duped = -1; 296 } 297 desc->ctx->pos = new_pos; 298 desc->cache_entry_index = i; 299 return 0; 300 } 301 } 302 if (array->eof_index >= 0) { 303 status = -EBADCOOKIE; 304 if (*desc->dir_cookie == array->last_cookie) 305 desc->eof = true; 306 } 307 out: 308 return status; 309 } 310 311 static 312 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc) 313 { 314 struct nfs_cache_array *array; 315 int status; 316 317 array = kmap(desc->page); 318 319 if (*desc->dir_cookie == 0) 320 status = nfs_readdir_search_for_pos(array, desc); 321 else 322 status = nfs_readdir_search_for_cookie(array, desc); 323 324 if (status == -EAGAIN) { 325 desc->last_cookie = array->last_cookie; 326 desc->current_index += array->size; 327 desc->page_index++; 328 } 329 kunmap(desc->page); 330 return status; 331 } 332 333 /* Fill a page with xdr information before transferring to the cache page */ 334 static 335 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc, 336 struct nfs_entry *entry, struct file *file, struct inode *inode) 337 { 338 struct nfs_open_dir_context *ctx = file->private_data; 339 const struct cred *cred = ctx->cred; 340 unsigned long timestamp, gencount; 341 int error; 342 343 again: 344 timestamp = jiffies; 345 gencount = nfs_inc_attr_generation_counter(); 346 error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages, 347 NFS_SERVER(inode)->dtsize, desc->plus); 348 if (error < 0) { 349 /* We requested READDIRPLUS, but the server doesn't grok it */ 350 if (error == -ENOTSUPP && desc->plus) { 351 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS; 352 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 353 desc->plus = false; 354 goto again; 355 } 356 goto error; 357 } 358 desc->timestamp = timestamp; 359 desc->gencount = gencount; 360 error: 361 return error; 362 } 363 364 static int xdr_decode(nfs_readdir_descriptor_t *desc, 365 struct nfs_entry *entry, struct xdr_stream *xdr) 366 { 367 int error; 368 369 error = desc->decode(xdr, entry, desc->plus); 370 if (error) 371 return error; 372 entry->fattr->time_start = desc->timestamp; 373 entry->fattr->gencount = desc->gencount; 374 return 0; 375 } 376 377 /* Match file and dirent using either filehandle or fileid 378 * Note: caller is responsible for checking the fsid 379 */ 380 static 381 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry) 382 { 383 struct inode *inode; 384 struct nfs_inode *nfsi; 385 386 if (d_really_is_negative(dentry)) 387 return 0; 388 389 inode = d_inode(dentry); 390 if (is_bad_inode(inode) || NFS_STALE(inode)) 391 return 0; 392 393 nfsi = NFS_I(inode); 394 if (entry->fattr->fileid != nfsi->fileid) 395 return 0; 396 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0) 397 return 0; 398 return 1; 399 } 400 401 static 402 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx) 403 { 404 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS)) 405 return false; 406 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags)) 407 return true; 408 if (ctx->pos == 0) 409 return true; 410 return false; 411 } 412 413 /* 414 * This function is called by the lookup and getattr code to request the 415 * use of readdirplus to accelerate any future lookups in the same 416 * directory. 417 */ 418 void nfs_advise_use_readdirplus(struct inode *dir) 419 { 420 struct nfs_inode *nfsi = NFS_I(dir); 421 422 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) && 423 !list_empty(&nfsi->open_files)) 424 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags); 425 } 426 427 /* 428 * This function is mainly for use by nfs_getattr(). 429 * 430 * If this is an 'ls -l', we want to force use of readdirplus. 431 * Do this by checking if there is an active file descriptor 432 * and calling nfs_advise_use_readdirplus, then forcing a 433 * cache flush. 434 */ 435 void nfs_force_use_readdirplus(struct inode *dir) 436 { 437 struct nfs_inode *nfsi = NFS_I(dir); 438 439 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) && 440 !list_empty(&nfsi->open_files)) { 441 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags); 442 invalidate_mapping_pages(dir->i_mapping, 0, -1); 443 } 444 } 445 446 static 447 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry) 448 { 449 struct qstr filename = QSTR_INIT(entry->name, entry->len); 450 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 451 struct dentry *dentry; 452 struct dentry *alias; 453 struct inode *dir = d_inode(parent); 454 struct inode *inode; 455 int status; 456 457 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID)) 458 return; 459 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID)) 460 return; 461 if (filename.len == 0) 462 return; 463 /* Validate that the name doesn't contain any illegal '\0' */ 464 if (strnlen(filename.name, filename.len) != filename.len) 465 return; 466 /* ...or '/' */ 467 if (strnchr(filename.name, filename.len, '/')) 468 return; 469 if (filename.name[0] == '.') { 470 if (filename.len == 1) 471 return; 472 if (filename.len == 2 && filename.name[1] == '.') 473 return; 474 } 475 filename.hash = full_name_hash(parent, filename.name, filename.len); 476 477 dentry = d_lookup(parent, &filename); 478 again: 479 if (!dentry) { 480 dentry = d_alloc_parallel(parent, &filename, &wq); 481 if (IS_ERR(dentry)) 482 return; 483 } 484 if (!d_in_lookup(dentry)) { 485 /* Is there a mountpoint here? If so, just exit */ 486 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid, 487 &entry->fattr->fsid)) 488 goto out; 489 if (nfs_same_file(dentry, entry)) { 490 if (!entry->fh->size) 491 goto out; 492 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 493 status = nfs_refresh_inode(d_inode(dentry), entry->fattr); 494 if (!status) 495 nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label); 496 goto out; 497 } else { 498 d_invalidate(dentry); 499 dput(dentry); 500 dentry = NULL; 501 goto again; 502 } 503 } 504 if (!entry->fh->size) { 505 d_lookup_done(dentry); 506 goto out; 507 } 508 509 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label); 510 alias = d_splice_alias(inode, dentry); 511 d_lookup_done(dentry); 512 if (alias) { 513 if (IS_ERR(alias)) 514 goto out; 515 dput(dentry); 516 dentry = alias; 517 } 518 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 519 out: 520 dput(dentry); 521 } 522 523 /* Perform conversion from xdr to cache array */ 524 static 525 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry, 526 struct page **xdr_pages, struct page *page, unsigned int buflen) 527 { 528 struct xdr_stream stream; 529 struct xdr_buf buf; 530 struct page *scratch; 531 struct nfs_cache_array *array; 532 unsigned int count = 0; 533 int status; 534 int max_rapages = NFS_MAX_READDIR_RAPAGES; 535 536 desc->pvec.index = desc->page_index; 537 desc->pvec.nr = 0; 538 539 scratch = alloc_page(GFP_KERNEL); 540 if (scratch == NULL) 541 return -ENOMEM; 542 543 if (buflen == 0) 544 goto out_nopages; 545 546 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen); 547 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE); 548 549 do { 550 status = xdr_decode(desc, entry, &stream); 551 if (status != 0) { 552 if (status == -EAGAIN) 553 status = 0; 554 break; 555 } 556 557 count++; 558 559 if (desc->plus) 560 nfs_prime_dcache(file_dentry(desc->file), entry); 561 562 status = nfs_readdir_add_to_array(entry, desc->pvec.pages[desc->pvec.nr]); 563 if (status == -ENOSPC) { 564 desc->pvec.nr++; 565 if (desc->pvec.nr == max_rapages) 566 break; 567 status = nfs_readdir_add_to_array(entry, desc->pvec.pages[desc->pvec.nr]); 568 } 569 if (status != 0) 570 break; 571 } while (!entry->eof); 572 573 /* 574 * page and desc->pvec.pages[0] are valid, don't need to check 575 * whether or not to be NULL. 576 */ 577 copy_highpage(page, desc->pvec.pages[0]); 578 579 out_nopages: 580 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) { 581 array = kmap_atomic(desc->pvec.pages[desc->pvec.nr]); 582 array->eof_index = array->size; 583 status = 0; 584 kunmap_atomic(array); 585 } 586 587 put_page(scratch); 588 589 /* 590 * desc->pvec.nr > 0 means at least one page was completely filled, 591 * we should return -ENOSPC. Otherwise function 592 * nfs_readdir_xdr_to_array will enter infinite loop. 593 */ 594 if (desc->pvec.nr > 0) 595 return -ENOSPC; 596 return status; 597 } 598 599 static 600 void nfs_readdir_free_pages(struct page **pages, unsigned int npages) 601 { 602 unsigned int i; 603 for (i = 0; i < npages; i++) 604 put_page(pages[i]); 605 } 606 607 /* 608 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call 609 * to nfs_readdir_free_pages() 610 */ 611 static 612 int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages) 613 { 614 unsigned int i; 615 616 for (i = 0; i < npages; i++) { 617 struct page *page = alloc_page(GFP_KERNEL); 618 if (page == NULL) 619 goto out_freepages; 620 pages[i] = page; 621 } 622 return 0; 623 624 out_freepages: 625 nfs_readdir_free_pages(pages, i); 626 return -ENOMEM; 627 } 628 629 /* 630 * nfs_readdir_rapages_init initialize rapages by nfs_cache_array structure. 631 */ 632 static 633 void nfs_readdir_rapages_init(nfs_readdir_descriptor_t *desc) 634 { 635 struct nfs_cache_array *array; 636 int max_rapages = NFS_MAX_READDIR_RAPAGES; 637 int index; 638 639 for (index = 0; index < max_rapages; index++) { 640 array = kmap_atomic(desc->pvec.pages[index]); 641 memset(array, 0, sizeof(struct nfs_cache_array)); 642 array->eof_index = -1; 643 kunmap_atomic(array); 644 } 645 } 646 647 static 648 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode) 649 { 650 struct page *pages[NFS_MAX_READDIR_PAGES]; 651 struct nfs_entry entry; 652 struct file *file = desc->file; 653 struct nfs_cache_array *array; 654 int status = -ENOMEM; 655 unsigned int array_size = ARRAY_SIZE(pages); 656 657 /* 658 * This means we hit readdir rdpages miss, the preallocated rdpages 659 * are useless, the preallocate rdpages should be reinitialized. 660 */ 661 nfs_readdir_rapages_init(desc); 662 663 entry.prev_cookie = 0; 664 entry.cookie = desc->last_cookie; 665 entry.eof = 0; 666 entry.fh = nfs_alloc_fhandle(); 667 entry.fattr = nfs_alloc_fattr(); 668 entry.server = NFS_SERVER(inode); 669 if (entry.fh == NULL || entry.fattr == NULL) 670 goto out; 671 672 entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT); 673 if (IS_ERR(entry.label)) { 674 status = PTR_ERR(entry.label); 675 goto out; 676 } 677 678 array = kmap(page); 679 memset(array, 0, sizeof(struct nfs_cache_array)); 680 array->eof_index = -1; 681 682 status = nfs_readdir_alloc_pages(pages, array_size); 683 if (status < 0) 684 goto out_release_array; 685 do { 686 unsigned int pglen; 687 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode); 688 689 if (status < 0) 690 break; 691 pglen = status; 692 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen); 693 if (status < 0) { 694 if (status == -ENOSPC) 695 status = 0; 696 break; 697 } 698 } while (array->eof_index < 0); 699 700 nfs_readdir_free_pages(pages, array_size); 701 out_release_array: 702 kunmap(page); 703 nfs4_label_free(entry.label); 704 out: 705 nfs_free_fattr(entry.fattr); 706 nfs_free_fhandle(entry.fh); 707 return status; 708 } 709 710 /* 711 * Now we cache directories properly, by converting xdr information 712 * to an array that can be used for lookups later. This results in 713 * fewer cache pages, since we can store more information on each page. 714 * We only need to convert from xdr once so future lookups are much simpler 715 */ 716 static 717 int nfs_readdir_filler(void *data, struct page* page) 718 { 719 nfs_readdir_descriptor_t *desc = data; 720 struct inode *inode = file_inode(desc->file); 721 int ret; 722 723 /* 724 * If desc->page_index in range desc->pvec.index and 725 * desc->pvec.index + desc->pvec.nr, we get readdir cache hit. 726 */ 727 if (desc->page_index >= desc->pvec.index && 728 desc->page_index < (desc->pvec.index + desc->pvec.nr)) { 729 /* 730 * page and desc->pvec.pages[x] are valid, don't need to check 731 * whether or not to be NULL. 732 */ 733 copy_highpage(page, desc->pvec.pages[desc->page_index - desc->pvec.index]); 734 ret = 0; 735 } else { 736 ret = nfs_readdir_xdr_to_array(desc, page, inode); 737 if (ret < 0) 738 goto error; 739 } 740 741 SetPageUptodate(page); 742 743 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) { 744 /* Should never happen */ 745 nfs_zap_mapping(inode, inode->i_mapping); 746 } 747 unlock_page(page); 748 return 0; 749 error: 750 unlock_page(page); 751 return ret; 752 } 753 754 static 755 void cache_page_release(nfs_readdir_descriptor_t *desc) 756 { 757 if (!desc->page->mapping) 758 nfs_readdir_clear_array(desc->page); 759 put_page(desc->page); 760 desc->page = NULL; 761 } 762 763 static 764 struct page *get_cache_page(nfs_readdir_descriptor_t *desc) 765 { 766 return read_cache_page(desc->file->f_mapping, desc->page_index, 767 nfs_readdir_filler, desc); 768 } 769 770 /* 771 * Returns 0 if desc->dir_cookie was found on page desc->page_index 772 */ 773 static 774 int find_cache_page(nfs_readdir_descriptor_t *desc) 775 { 776 int res; 777 778 desc->page = get_cache_page(desc); 779 if (IS_ERR(desc->page)) 780 return PTR_ERR(desc->page); 781 782 res = nfs_readdir_search_array(desc); 783 if (res != 0) 784 cache_page_release(desc); 785 return res; 786 } 787 788 /* Search for desc->dir_cookie from the beginning of the page cache */ 789 static inline 790 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc) 791 { 792 int res; 793 794 if (desc->page_index == 0) { 795 desc->current_index = 0; 796 desc->last_cookie = 0; 797 } 798 do { 799 res = find_cache_page(desc); 800 } while (res == -EAGAIN); 801 return res; 802 } 803 804 /* 805 * Once we've found the start of the dirent within a page: fill 'er up... 806 */ 807 static 808 int nfs_do_filldir(nfs_readdir_descriptor_t *desc) 809 { 810 struct file *file = desc->file; 811 int i = 0; 812 int res = 0; 813 struct nfs_cache_array *array = NULL; 814 struct nfs_open_dir_context *ctx = file->private_data; 815 816 array = kmap(desc->page); 817 for (i = desc->cache_entry_index; i < array->size; i++) { 818 struct nfs_cache_array_entry *ent; 819 820 ent = &array->array[i]; 821 if (!dir_emit(desc->ctx, ent->string.name, ent->string.len, 822 nfs_compat_user_ino64(ent->ino), ent->d_type)) { 823 desc->eof = true; 824 break; 825 } 826 desc->ctx->pos++; 827 if (i < (array->size-1)) 828 *desc->dir_cookie = array->array[i+1].cookie; 829 else 830 *desc->dir_cookie = array->last_cookie; 831 if (ctx->duped != 0) 832 ctx->duped = 1; 833 } 834 if (array->eof_index >= 0) 835 desc->eof = true; 836 837 kunmap(desc->page); 838 cache_page_release(desc); 839 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n", 840 (unsigned long long)*desc->dir_cookie, res); 841 return res; 842 } 843 844 /* 845 * If we cannot find a cookie in our cache, we suspect that this is 846 * because it points to a deleted file, so we ask the server to return 847 * whatever it thinks is the next entry. We then feed this to filldir. 848 * If all goes well, we should then be able to find our way round the 849 * cache on the next call to readdir_search_pagecache(); 850 * 851 * NOTE: we cannot add the anonymous page to the pagecache because 852 * the data it contains might not be page aligned. Besides, 853 * we should already have a complete representation of the 854 * directory in the page cache by the time we get here. 855 */ 856 static inline 857 int uncached_readdir(nfs_readdir_descriptor_t *desc) 858 { 859 struct page *page = NULL; 860 int status; 861 struct inode *inode = file_inode(desc->file); 862 struct nfs_open_dir_context *ctx = desc->file->private_data; 863 864 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n", 865 (unsigned long long)*desc->dir_cookie); 866 867 page = alloc_page(GFP_HIGHUSER); 868 if (!page) { 869 status = -ENOMEM; 870 goto out; 871 } 872 873 desc->page_index = 0; 874 desc->last_cookie = *desc->dir_cookie; 875 desc->page = page; 876 ctx->duped = 0; 877 878 status = nfs_readdir_xdr_to_array(desc, page, inode); 879 if (status < 0) 880 goto out_release; 881 882 status = nfs_do_filldir(desc); 883 884 out: 885 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", 886 __func__, status); 887 return status; 888 out_release: 889 cache_page_release(desc); 890 goto out; 891 } 892 893 /* The file offset position represents the dirent entry number. A 894 last cookie cache takes care of the common case of reading the 895 whole directory. 896 */ 897 static int nfs_readdir(struct file *file, struct dir_context *ctx) 898 { 899 struct dentry *dentry = file_dentry(file); 900 struct inode *inode = d_inode(dentry); 901 nfs_readdir_descriptor_t my_desc, 902 *desc = &my_desc; 903 struct nfs_open_dir_context *dir_ctx = file->private_data; 904 int res = 0; 905 int max_rapages = NFS_MAX_READDIR_RAPAGES; 906 907 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n", 908 file, (long long)ctx->pos); 909 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS); 910 911 /* 912 * ctx->pos points to the dirent entry number. 913 * *desc->dir_cookie has the cookie for the next entry. We have 914 * to either find the entry with the appropriate number or 915 * revalidate the cookie. 916 */ 917 memset(desc, 0, sizeof(*desc)); 918 919 desc->file = file; 920 desc->ctx = ctx; 921 desc->dir_cookie = &dir_ctx->dir_cookie; 922 desc->decode = NFS_PROTO(inode)->decode_dirent; 923 desc->plus = nfs_use_readdirplus(inode, ctx); 924 925 res = nfs_readdir_alloc_pages(desc->pvec.pages, max_rapages); 926 if (res < 0) 927 return -ENOMEM; 928 929 nfs_readdir_rapages_init(desc); 930 931 if (ctx->pos == 0 || nfs_attribute_cache_expired(inode)) 932 res = nfs_revalidate_mapping(inode, file->f_mapping); 933 if (res < 0) 934 goto out; 935 936 do { 937 res = readdir_search_pagecache(desc); 938 939 if (res == -EBADCOOKIE) { 940 res = 0; 941 /* This means either end of directory */ 942 if (*desc->dir_cookie && !desc->eof) { 943 /* Or that the server has 'lost' a cookie */ 944 res = uncached_readdir(desc); 945 if (res == 0) 946 continue; 947 } 948 break; 949 } 950 if (res == -ETOOSMALL && desc->plus) { 951 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 952 nfs_zap_caches(inode); 953 desc->page_index = 0; 954 desc->plus = false; 955 desc->eof = false; 956 continue; 957 } 958 if (res < 0) 959 break; 960 961 res = nfs_do_filldir(desc); 962 if (res < 0) 963 break; 964 } while (!desc->eof); 965 out: 966 nfs_readdir_free_pages(desc->pvec.pages, max_rapages); 967 if (res > 0) 968 res = 0; 969 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res); 970 return res; 971 } 972 973 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence) 974 { 975 struct inode *inode = file_inode(filp); 976 struct nfs_open_dir_context *dir_ctx = filp->private_data; 977 978 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n", 979 filp, offset, whence); 980 981 switch (whence) { 982 default: 983 return -EINVAL; 984 case SEEK_SET: 985 if (offset < 0) 986 return -EINVAL; 987 inode_lock(inode); 988 break; 989 case SEEK_CUR: 990 if (offset == 0) 991 return filp->f_pos; 992 inode_lock(inode); 993 offset += filp->f_pos; 994 if (offset < 0) { 995 inode_unlock(inode); 996 return -EINVAL; 997 } 998 } 999 if (offset != filp->f_pos) { 1000 filp->f_pos = offset; 1001 dir_ctx->dir_cookie = 0; 1002 dir_ctx->duped = 0; 1003 } 1004 inode_unlock(inode); 1005 return offset; 1006 } 1007 1008 /* 1009 * All directory operations under NFS are synchronous, so fsync() 1010 * is a dummy operation. 1011 */ 1012 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end, 1013 int datasync) 1014 { 1015 struct inode *inode = file_inode(filp); 1016 1017 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync); 1018 1019 inode_lock(inode); 1020 nfs_inc_stats(inode, NFSIOS_VFSFSYNC); 1021 inode_unlock(inode); 1022 return 0; 1023 } 1024 1025 /** 1026 * nfs_force_lookup_revalidate - Mark the directory as having changed 1027 * @dir: pointer to directory inode 1028 * 1029 * This forces the revalidation code in nfs_lookup_revalidate() to do a 1030 * full lookup on all child dentries of 'dir' whenever a change occurs 1031 * on the server that might have invalidated our dcache. 1032 * 1033 * The caller should be holding dir->i_lock 1034 */ 1035 void nfs_force_lookup_revalidate(struct inode *dir) 1036 { 1037 NFS_I(dir)->cache_change_attribute++; 1038 } 1039 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate); 1040 1041 /* 1042 * A check for whether or not the parent directory has changed. 1043 * In the case it has, we assume that the dentries are untrustworthy 1044 * and may need to be looked up again. 1045 * If rcu_walk prevents us from performing a full check, return 0. 1046 */ 1047 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry, 1048 int rcu_walk) 1049 { 1050 if (IS_ROOT(dentry)) 1051 return 1; 1052 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE) 1053 return 0; 1054 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 1055 return 0; 1056 /* Revalidate nfsi->cache_change_attribute before we declare a match */ 1057 if (nfs_mapping_need_revalidate_inode(dir)) { 1058 if (rcu_walk) 1059 return 0; 1060 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0) 1061 return 0; 1062 } 1063 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 1064 return 0; 1065 return 1; 1066 } 1067 1068 /* 1069 * Use intent information to check whether or not we're going to do 1070 * an O_EXCL create using this path component. 1071 */ 1072 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags) 1073 { 1074 if (NFS_PROTO(dir)->version == 2) 1075 return 0; 1076 return flags & LOOKUP_EXCL; 1077 } 1078 1079 /* 1080 * Inode and filehandle revalidation for lookups. 1081 * 1082 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL, 1083 * or if the intent information indicates that we're about to open this 1084 * particular file and the "nocto" mount flag is not set. 1085 * 1086 */ 1087 static 1088 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags) 1089 { 1090 struct nfs_server *server = NFS_SERVER(inode); 1091 int ret; 1092 1093 if (IS_AUTOMOUNT(inode)) 1094 return 0; 1095 1096 if (flags & LOOKUP_OPEN) { 1097 switch (inode->i_mode & S_IFMT) { 1098 case S_IFREG: 1099 /* A NFSv4 OPEN will revalidate later */ 1100 if (server->caps & NFS_CAP_ATOMIC_OPEN) 1101 goto out; 1102 /* Fallthrough */ 1103 case S_IFDIR: 1104 if (server->flags & NFS_MOUNT_NOCTO) 1105 break; 1106 /* NFS close-to-open cache consistency validation */ 1107 goto out_force; 1108 } 1109 } 1110 1111 /* VFS wants an on-the-wire revalidation */ 1112 if (flags & LOOKUP_REVAL) 1113 goto out_force; 1114 out: 1115 return (inode->i_nlink == 0) ? -ESTALE : 0; 1116 out_force: 1117 if (flags & LOOKUP_RCU) 1118 return -ECHILD; 1119 ret = __nfs_revalidate_inode(server, inode); 1120 if (ret != 0) 1121 return ret; 1122 goto out; 1123 } 1124 1125 /* 1126 * We judge how long we want to trust negative 1127 * dentries by looking at the parent inode mtime. 1128 * 1129 * If parent mtime has changed, we revalidate, else we wait for a 1130 * period corresponding to the parent's attribute cache timeout value. 1131 * 1132 * If LOOKUP_RCU prevents us from performing a full check, return 1 1133 * suggesting a reval is needed. 1134 * 1135 * Note that when creating a new file, or looking up a rename target, 1136 * then it shouldn't be necessary to revalidate a negative dentry. 1137 */ 1138 static inline 1139 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry, 1140 unsigned int flags) 1141 { 1142 if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET)) 1143 return 0; 1144 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG) 1145 return 1; 1146 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU); 1147 } 1148 1149 static int 1150 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry, 1151 struct inode *inode, int error) 1152 { 1153 switch (error) { 1154 case 1: 1155 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n", 1156 __func__, dentry); 1157 return 1; 1158 case 0: 1159 nfs_mark_for_revalidate(dir); 1160 if (inode && S_ISDIR(inode->i_mode)) { 1161 /* Purge readdir caches. */ 1162 nfs_zap_caches(inode); 1163 /* 1164 * We can't d_drop the root of a disconnected tree: 1165 * its d_hash is on the s_anon list and d_drop() would hide 1166 * it from shrink_dcache_for_unmount(), leading to busy 1167 * inodes on unmount and further oopses. 1168 */ 1169 if (IS_ROOT(dentry)) 1170 return 1; 1171 } 1172 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n", 1173 __func__, dentry); 1174 return 0; 1175 } 1176 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n", 1177 __func__, dentry, error); 1178 return error; 1179 } 1180 1181 static int 1182 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry, 1183 unsigned int flags) 1184 { 1185 int ret = 1; 1186 if (nfs_neg_need_reval(dir, dentry, flags)) { 1187 if (flags & LOOKUP_RCU) 1188 return -ECHILD; 1189 ret = 0; 1190 } 1191 return nfs_lookup_revalidate_done(dir, dentry, NULL, ret); 1192 } 1193 1194 static int 1195 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry, 1196 struct inode *inode) 1197 { 1198 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1199 return nfs_lookup_revalidate_done(dir, dentry, inode, 1); 1200 } 1201 1202 static int 1203 nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry, 1204 struct inode *inode) 1205 { 1206 struct nfs_fh *fhandle; 1207 struct nfs_fattr *fattr; 1208 struct nfs4_label *label; 1209 int ret; 1210 1211 ret = -ENOMEM; 1212 fhandle = nfs_alloc_fhandle(); 1213 fattr = nfs_alloc_fattr(); 1214 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL); 1215 if (fhandle == NULL || fattr == NULL || IS_ERR(label)) 1216 goto out; 1217 1218 ret = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label); 1219 if (ret < 0) { 1220 if (ret == -ESTALE || ret == -ENOENT) 1221 ret = 0; 1222 goto out; 1223 } 1224 ret = 0; 1225 if (nfs_compare_fh(NFS_FH(inode), fhandle)) 1226 goto out; 1227 if (nfs_refresh_inode(inode, fattr) < 0) 1228 goto out; 1229 1230 nfs_setsecurity(inode, fattr, label); 1231 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1232 1233 /* set a readdirplus hint that we had a cache miss */ 1234 nfs_force_use_readdirplus(dir); 1235 ret = 1; 1236 out: 1237 nfs_free_fattr(fattr); 1238 nfs_free_fhandle(fhandle); 1239 nfs4_label_free(label); 1240 return nfs_lookup_revalidate_done(dir, dentry, inode, ret); 1241 } 1242 1243 /* 1244 * This is called every time the dcache has a lookup hit, 1245 * and we should check whether we can really trust that 1246 * lookup. 1247 * 1248 * NOTE! The hit can be a negative hit too, don't assume 1249 * we have an inode! 1250 * 1251 * If the parent directory is seen to have changed, we throw out the 1252 * cached dentry and do a new lookup. 1253 */ 1254 static int 1255 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry, 1256 unsigned int flags) 1257 { 1258 struct inode *inode; 1259 int error; 1260 1261 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE); 1262 inode = d_inode(dentry); 1263 1264 if (!inode) 1265 return nfs_lookup_revalidate_negative(dir, dentry, flags); 1266 1267 if (is_bad_inode(inode)) { 1268 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1269 __func__, dentry); 1270 goto out_bad; 1271 } 1272 1273 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ)) 1274 return nfs_lookup_revalidate_delegated(dir, dentry, inode); 1275 1276 /* Force a full look up iff the parent directory has changed */ 1277 if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) && 1278 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) { 1279 error = nfs_lookup_verify_inode(inode, flags); 1280 if (error) { 1281 if (error == -ESTALE) 1282 nfs_zap_caches(dir); 1283 goto out_bad; 1284 } 1285 nfs_advise_use_readdirplus(dir); 1286 goto out_valid; 1287 } 1288 1289 if (flags & LOOKUP_RCU) 1290 return -ECHILD; 1291 1292 if (NFS_STALE(inode)) 1293 goto out_bad; 1294 1295 trace_nfs_lookup_revalidate_enter(dir, dentry, flags); 1296 error = nfs_lookup_revalidate_dentry(dir, dentry, inode); 1297 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error); 1298 return error; 1299 out_valid: 1300 return nfs_lookup_revalidate_done(dir, dentry, inode, 1); 1301 out_bad: 1302 if (flags & LOOKUP_RCU) 1303 return -ECHILD; 1304 return nfs_lookup_revalidate_done(dir, dentry, inode, 0); 1305 } 1306 1307 static int 1308 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags, 1309 int (*reval)(struct inode *, struct dentry *, unsigned int)) 1310 { 1311 struct dentry *parent; 1312 struct inode *dir; 1313 int ret; 1314 1315 if (flags & LOOKUP_RCU) { 1316 parent = READ_ONCE(dentry->d_parent); 1317 dir = d_inode_rcu(parent); 1318 if (!dir) 1319 return -ECHILD; 1320 ret = reval(dir, dentry, flags); 1321 if (parent != READ_ONCE(dentry->d_parent)) 1322 return -ECHILD; 1323 } else { 1324 parent = dget_parent(dentry); 1325 ret = reval(d_inode(parent), dentry, flags); 1326 dput(parent); 1327 } 1328 return ret; 1329 } 1330 1331 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1332 { 1333 return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate); 1334 } 1335 1336 /* 1337 * A weaker form of d_revalidate for revalidating just the d_inode(dentry) 1338 * when we don't really care about the dentry name. This is called when a 1339 * pathwalk ends on a dentry that was not found via a normal lookup in the 1340 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals). 1341 * 1342 * In this situation, we just want to verify that the inode itself is OK 1343 * since the dentry might have changed on the server. 1344 */ 1345 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags) 1346 { 1347 struct inode *inode = d_inode(dentry); 1348 int error = 0; 1349 1350 /* 1351 * I believe we can only get a negative dentry here in the case of a 1352 * procfs-style symlink. Just assume it's correct for now, but we may 1353 * eventually need to do something more here. 1354 */ 1355 if (!inode) { 1356 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n", 1357 __func__, dentry); 1358 return 1; 1359 } 1360 1361 if (is_bad_inode(inode)) { 1362 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1363 __func__, dentry); 1364 return 0; 1365 } 1366 1367 error = nfs_lookup_verify_inode(inode, flags); 1368 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n", 1369 __func__, inode->i_ino, error ? "invalid" : "valid"); 1370 return !error; 1371 } 1372 1373 /* 1374 * This is called from dput() when d_count is going to 0. 1375 */ 1376 static int nfs_dentry_delete(const struct dentry *dentry) 1377 { 1378 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n", 1379 dentry, dentry->d_flags); 1380 1381 /* Unhash any dentry with a stale inode */ 1382 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry))) 1383 return 1; 1384 1385 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1386 /* Unhash it, so that ->d_iput() would be called */ 1387 return 1; 1388 } 1389 if (!(dentry->d_sb->s_flags & SB_ACTIVE)) { 1390 /* Unhash it, so that ancestors of killed async unlink 1391 * files will be cleaned up during umount */ 1392 return 1; 1393 } 1394 return 0; 1395 1396 } 1397 1398 /* Ensure that we revalidate inode->i_nlink */ 1399 static void nfs_drop_nlink(struct inode *inode) 1400 { 1401 spin_lock(&inode->i_lock); 1402 /* drop the inode if we're reasonably sure this is the last link */ 1403 if (inode->i_nlink > 0) 1404 drop_nlink(inode); 1405 NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter(); 1406 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_CHANGE 1407 | NFS_INO_INVALID_CTIME 1408 | NFS_INO_INVALID_OTHER 1409 | NFS_INO_REVAL_FORCED; 1410 spin_unlock(&inode->i_lock); 1411 } 1412 1413 /* 1414 * Called when the dentry loses inode. 1415 * We use it to clean up silly-renamed files. 1416 */ 1417 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode) 1418 { 1419 if (S_ISDIR(inode->i_mode)) 1420 /* drop any readdir cache as it could easily be old */ 1421 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA; 1422 1423 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1424 nfs_complete_unlink(dentry, inode); 1425 nfs_drop_nlink(inode); 1426 } 1427 iput(inode); 1428 } 1429 1430 static void nfs_d_release(struct dentry *dentry) 1431 { 1432 /* free cached devname value, if it survived that far */ 1433 if (unlikely(dentry->d_fsdata)) { 1434 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1435 WARN_ON(1); 1436 else 1437 kfree(dentry->d_fsdata); 1438 } 1439 } 1440 1441 const struct dentry_operations nfs_dentry_operations = { 1442 .d_revalidate = nfs_lookup_revalidate, 1443 .d_weak_revalidate = nfs_weak_revalidate, 1444 .d_delete = nfs_dentry_delete, 1445 .d_iput = nfs_dentry_iput, 1446 .d_automount = nfs_d_automount, 1447 .d_release = nfs_d_release, 1448 }; 1449 EXPORT_SYMBOL_GPL(nfs_dentry_operations); 1450 1451 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 1452 { 1453 struct dentry *res; 1454 struct inode *inode = NULL; 1455 struct nfs_fh *fhandle = NULL; 1456 struct nfs_fattr *fattr = NULL; 1457 struct nfs4_label *label = NULL; 1458 int error; 1459 1460 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry); 1461 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP); 1462 1463 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen)) 1464 return ERR_PTR(-ENAMETOOLONG); 1465 1466 /* 1467 * If we're doing an exclusive create, optimize away the lookup 1468 * but don't hash the dentry. 1469 */ 1470 if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET) 1471 return NULL; 1472 1473 res = ERR_PTR(-ENOMEM); 1474 fhandle = nfs_alloc_fhandle(); 1475 fattr = nfs_alloc_fattr(); 1476 if (fhandle == NULL || fattr == NULL) 1477 goto out; 1478 1479 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT); 1480 if (IS_ERR(label)) 1481 goto out; 1482 1483 trace_nfs_lookup_enter(dir, dentry, flags); 1484 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label); 1485 if (error == -ENOENT) 1486 goto no_entry; 1487 if (error < 0) { 1488 res = ERR_PTR(error); 1489 goto out_label; 1490 } 1491 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label); 1492 res = ERR_CAST(inode); 1493 if (IS_ERR(res)) 1494 goto out_label; 1495 1496 /* Notify readdir to use READDIRPLUS */ 1497 nfs_force_use_readdirplus(dir); 1498 1499 no_entry: 1500 res = d_splice_alias(inode, dentry); 1501 if (res != NULL) { 1502 if (IS_ERR(res)) 1503 goto out_label; 1504 dentry = res; 1505 } 1506 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1507 out_label: 1508 trace_nfs_lookup_exit(dir, dentry, flags, error); 1509 nfs4_label_free(label); 1510 out: 1511 nfs_free_fattr(fattr); 1512 nfs_free_fhandle(fhandle); 1513 return res; 1514 } 1515 EXPORT_SYMBOL_GPL(nfs_lookup); 1516 1517 #if IS_ENABLED(CONFIG_NFS_V4) 1518 static int nfs4_lookup_revalidate(struct dentry *, unsigned int); 1519 1520 const struct dentry_operations nfs4_dentry_operations = { 1521 .d_revalidate = nfs4_lookup_revalidate, 1522 .d_weak_revalidate = nfs_weak_revalidate, 1523 .d_delete = nfs_dentry_delete, 1524 .d_iput = nfs_dentry_iput, 1525 .d_automount = nfs_d_automount, 1526 .d_release = nfs_d_release, 1527 }; 1528 EXPORT_SYMBOL_GPL(nfs4_dentry_operations); 1529 1530 static fmode_t flags_to_mode(int flags) 1531 { 1532 fmode_t res = (__force fmode_t)flags & FMODE_EXEC; 1533 if ((flags & O_ACCMODE) != O_WRONLY) 1534 res |= FMODE_READ; 1535 if ((flags & O_ACCMODE) != O_RDONLY) 1536 res |= FMODE_WRITE; 1537 return res; 1538 } 1539 1540 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp) 1541 { 1542 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp); 1543 } 1544 1545 static int do_open(struct inode *inode, struct file *filp) 1546 { 1547 nfs_fscache_open_file(inode, filp); 1548 return 0; 1549 } 1550 1551 static int nfs_finish_open(struct nfs_open_context *ctx, 1552 struct dentry *dentry, 1553 struct file *file, unsigned open_flags) 1554 { 1555 int err; 1556 1557 err = finish_open(file, dentry, do_open); 1558 if (err) 1559 goto out; 1560 if (S_ISREG(file->f_path.dentry->d_inode->i_mode)) 1561 nfs_file_set_open_context(file, ctx); 1562 else 1563 err = -ESTALE; 1564 out: 1565 return err; 1566 } 1567 1568 int nfs_atomic_open(struct inode *dir, struct dentry *dentry, 1569 struct file *file, unsigned open_flags, 1570 umode_t mode) 1571 { 1572 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1573 struct nfs_open_context *ctx; 1574 struct dentry *res; 1575 struct iattr attr = { .ia_valid = ATTR_OPEN }; 1576 struct inode *inode; 1577 unsigned int lookup_flags = 0; 1578 bool switched = false; 1579 int created = 0; 1580 int err; 1581 1582 /* Expect a negative dentry */ 1583 BUG_ON(d_inode(dentry)); 1584 1585 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n", 1586 dir->i_sb->s_id, dir->i_ino, dentry); 1587 1588 err = nfs_check_flags(open_flags); 1589 if (err) 1590 return err; 1591 1592 /* NFS only supports OPEN on regular files */ 1593 if ((open_flags & O_DIRECTORY)) { 1594 if (!d_in_lookup(dentry)) { 1595 /* 1596 * Hashed negative dentry with O_DIRECTORY: dentry was 1597 * revalidated and is fine, no need to perform lookup 1598 * again 1599 */ 1600 return -ENOENT; 1601 } 1602 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY; 1603 goto no_open; 1604 } 1605 1606 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 1607 return -ENAMETOOLONG; 1608 1609 if (open_flags & O_CREAT) { 1610 struct nfs_server *server = NFS_SERVER(dir); 1611 1612 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK)) 1613 mode &= ~current_umask(); 1614 1615 attr.ia_valid |= ATTR_MODE; 1616 attr.ia_mode = mode; 1617 } 1618 if (open_flags & O_TRUNC) { 1619 attr.ia_valid |= ATTR_SIZE; 1620 attr.ia_size = 0; 1621 } 1622 1623 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) { 1624 d_drop(dentry); 1625 switched = true; 1626 dentry = d_alloc_parallel(dentry->d_parent, 1627 &dentry->d_name, &wq); 1628 if (IS_ERR(dentry)) 1629 return PTR_ERR(dentry); 1630 if (unlikely(!d_in_lookup(dentry))) 1631 return finish_no_open(file, dentry); 1632 } 1633 1634 ctx = create_nfs_open_context(dentry, open_flags, file); 1635 err = PTR_ERR(ctx); 1636 if (IS_ERR(ctx)) 1637 goto out; 1638 1639 trace_nfs_atomic_open_enter(dir, ctx, open_flags); 1640 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created); 1641 if (created) 1642 file->f_mode |= FMODE_CREATED; 1643 if (IS_ERR(inode)) { 1644 err = PTR_ERR(inode); 1645 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 1646 put_nfs_open_context(ctx); 1647 d_drop(dentry); 1648 switch (err) { 1649 case -ENOENT: 1650 d_splice_alias(NULL, dentry); 1651 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1652 break; 1653 case -EISDIR: 1654 case -ENOTDIR: 1655 goto no_open; 1656 case -ELOOP: 1657 if (!(open_flags & O_NOFOLLOW)) 1658 goto no_open; 1659 break; 1660 /* case -EINVAL: */ 1661 default: 1662 break; 1663 } 1664 goto out; 1665 } 1666 1667 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags); 1668 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 1669 put_nfs_open_context(ctx); 1670 out: 1671 if (unlikely(switched)) { 1672 d_lookup_done(dentry); 1673 dput(dentry); 1674 } 1675 return err; 1676 1677 no_open: 1678 res = nfs_lookup(dir, dentry, lookup_flags); 1679 if (switched) { 1680 d_lookup_done(dentry); 1681 if (!res) 1682 res = dentry; 1683 else 1684 dput(dentry); 1685 } 1686 if (IS_ERR(res)) 1687 return PTR_ERR(res); 1688 return finish_no_open(file, res); 1689 } 1690 EXPORT_SYMBOL_GPL(nfs_atomic_open); 1691 1692 static int 1693 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry, 1694 unsigned int flags) 1695 { 1696 struct inode *inode; 1697 1698 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY)) 1699 goto full_reval; 1700 if (d_mountpoint(dentry)) 1701 goto full_reval; 1702 1703 inode = d_inode(dentry); 1704 1705 /* We can't create new files in nfs_open_revalidate(), so we 1706 * optimize away revalidation of negative dentries. 1707 */ 1708 if (inode == NULL) 1709 goto full_reval; 1710 1711 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ)) 1712 return nfs_lookup_revalidate_delegated(dir, dentry, inode); 1713 1714 /* NFS only supports OPEN on regular files */ 1715 if (!S_ISREG(inode->i_mode)) 1716 goto full_reval; 1717 1718 /* We cannot do exclusive creation on a positive dentry */ 1719 if (flags & (LOOKUP_EXCL | LOOKUP_REVAL)) 1720 goto reval_dentry; 1721 1722 /* Check if the directory changed */ 1723 if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) 1724 goto reval_dentry; 1725 1726 /* Let f_op->open() actually open (and revalidate) the file */ 1727 return 1; 1728 reval_dentry: 1729 if (flags & LOOKUP_RCU) 1730 return -ECHILD; 1731 return nfs_lookup_revalidate_dentry(dir, dentry, inode); 1732 1733 full_reval: 1734 return nfs_do_lookup_revalidate(dir, dentry, flags); 1735 } 1736 1737 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1738 { 1739 return __nfs_lookup_revalidate(dentry, flags, 1740 nfs4_do_lookup_revalidate); 1741 } 1742 1743 #endif /* CONFIG_NFSV4 */ 1744 1745 /* 1746 * Code common to create, mkdir, and mknod. 1747 */ 1748 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle, 1749 struct nfs_fattr *fattr, 1750 struct nfs4_label *label) 1751 { 1752 struct dentry *parent = dget_parent(dentry); 1753 struct inode *dir = d_inode(parent); 1754 struct inode *inode; 1755 struct dentry *d; 1756 int error = -EACCES; 1757 1758 d_drop(dentry); 1759 1760 /* We may have been initialized further down */ 1761 if (d_really_is_positive(dentry)) 1762 goto out; 1763 if (fhandle->size == 0) { 1764 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL); 1765 if (error) 1766 goto out_error; 1767 } 1768 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1769 if (!(fattr->valid & NFS_ATTR_FATTR)) { 1770 struct nfs_server *server = NFS_SB(dentry->d_sb); 1771 error = server->nfs_client->rpc_ops->getattr(server, fhandle, 1772 fattr, NULL, NULL); 1773 if (error < 0) 1774 goto out_error; 1775 } 1776 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label); 1777 d = d_splice_alias(inode, dentry); 1778 if (IS_ERR(d)) { 1779 error = PTR_ERR(d); 1780 goto out_error; 1781 } 1782 dput(d); 1783 out: 1784 dput(parent); 1785 return 0; 1786 out_error: 1787 nfs_mark_for_revalidate(dir); 1788 dput(parent); 1789 return error; 1790 } 1791 EXPORT_SYMBOL_GPL(nfs_instantiate); 1792 1793 /* 1794 * Following a failed create operation, we drop the dentry rather 1795 * than retain a negative dentry. This avoids a problem in the event 1796 * that the operation succeeded on the server, but an error in the 1797 * reply path made it appear to have failed. 1798 */ 1799 int nfs_create(struct inode *dir, struct dentry *dentry, 1800 umode_t mode, bool excl) 1801 { 1802 struct iattr attr; 1803 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT; 1804 int error; 1805 1806 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n", 1807 dir->i_sb->s_id, dir->i_ino, dentry); 1808 1809 attr.ia_mode = mode; 1810 attr.ia_valid = ATTR_MODE; 1811 1812 trace_nfs_create_enter(dir, dentry, open_flags); 1813 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags); 1814 trace_nfs_create_exit(dir, dentry, open_flags, error); 1815 if (error != 0) 1816 goto out_err; 1817 return 0; 1818 out_err: 1819 d_drop(dentry); 1820 return error; 1821 } 1822 EXPORT_SYMBOL_GPL(nfs_create); 1823 1824 /* 1825 * See comments for nfs_proc_create regarding failed operations. 1826 */ 1827 int 1828 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev) 1829 { 1830 struct iattr attr; 1831 int status; 1832 1833 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n", 1834 dir->i_sb->s_id, dir->i_ino, dentry); 1835 1836 attr.ia_mode = mode; 1837 attr.ia_valid = ATTR_MODE; 1838 1839 trace_nfs_mknod_enter(dir, dentry); 1840 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev); 1841 trace_nfs_mknod_exit(dir, dentry, status); 1842 if (status != 0) 1843 goto out_err; 1844 return 0; 1845 out_err: 1846 d_drop(dentry); 1847 return status; 1848 } 1849 EXPORT_SYMBOL_GPL(nfs_mknod); 1850 1851 /* 1852 * See comments for nfs_proc_create regarding failed operations. 1853 */ 1854 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1855 { 1856 struct iattr attr; 1857 int error; 1858 1859 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n", 1860 dir->i_sb->s_id, dir->i_ino, dentry); 1861 1862 attr.ia_valid = ATTR_MODE; 1863 attr.ia_mode = mode | S_IFDIR; 1864 1865 trace_nfs_mkdir_enter(dir, dentry); 1866 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr); 1867 trace_nfs_mkdir_exit(dir, dentry, error); 1868 if (error != 0) 1869 goto out_err; 1870 return 0; 1871 out_err: 1872 d_drop(dentry); 1873 return error; 1874 } 1875 EXPORT_SYMBOL_GPL(nfs_mkdir); 1876 1877 static void nfs_dentry_handle_enoent(struct dentry *dentry) 1878 { 1879 if (simple_positive(dentry)) 1880 d_delete(dentry); 1881 } 1882 1883 int nfs_rmdir(struct inode *dir, struct dentry *dentry) 1884 { 1885 int error; 1886 1887 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n", 1888 dir->i_sb->s_id, dir->i_ino, dentry); 1889 1890 trace_nfs_rmdir_enter(dir, dentry); 1891 if (d_really_is_positive(dentry)) { 1892 down_write(&NFS_I(d_inode(dentry))->rmdir_sem); 1893 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1894 /* Ensure the VFS deletes this inode */ 1895 switch (error) { 1896 case 0: 1897 clear_nlink(d_inode(dentry)); 1898 break; 1899 case -ENOENT: 1900 nfs_dentry_handle_enoent(dentry); 1901 } 1902 up_write(&NFS_I(d_inode(dentry))->rmdir_sem); 1903 } else 1904 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1905 trace_nfs_rmdir_exit(dir, dentry, error); 1906 1907 return error; 1908 } 1909 EXPORT_SYMBOL_GPL(nfs_rmdir); 1910 1911 /* 1912 * Remove a file after making sure there are no pending writes, 1913 * and after checking that the file has only one user. 1914 * 1915 * We invalidate the attribute cache and free the inode prior to the operation 1916 * to avoid possible races if the server reuses the inode. 1917 */ 1918 static int nfs_safe_remove(struct dentry *dentry) 1919 { 1920 struct inode *dir = d_inode(dentry->d_parent); 1921 struct inode *inode = d_inode(dentry); 1922 int error = -EBUSY; 1923 1924 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry); 1925 1926 /* If the dentry was sillyrenamed, we simply call d_delete() */ 1927 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1928 error = 0; 1929 goto out; 1930 } 1931 1932 trace_nfs_remove_enter(dir, dentry); 1933 if (inode != NULL) { 1934 error = NFS_PROTO(dir)->remove(dir, dentry); 1935 if (error == 0) 1936 nfs_drop_nlink(inode); 1937 } else 1938 error = NFS_PROTO(dir)->remove(dir, dentry); 1939 if (error == -ENOENT) 1940 nfs_dentry_handle_enoent(dentry); 1941 trace_nfs_remove_exit(dir, dentry, error); 1942 out: 1943 return error; 1944 } 1945 1946 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode 1947 * belongs to an active ".nfs..." file and we return -EBUSY. 1948 * 1949 * If sillyrename() returns 0, we do nothing, otherwise we unlink. 1950 */ 1951 int nfs_unlink(struct inode *dir, struct dentry *dentry) 1952 { 1953 int error; 1954 int need_rehash = 0; 1955 1956 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id, 1957 dir->i_ino, dentry); 1958 1959 trace_nfs_unlink_enter(dir, dentry); 1960 spin_lock(&dentry->d_lock); 1961 if (d_count(dentry) > 1) { 1962 spin_unlock(&dentry->d_lock); 1963 /* Start asynchronous writeout of the inode */ 1964 write_inode_now(d_inode(dentry), 0); 1965 error = nfs_sillyrename(dir, dentry); 1966 goto out; 1967 } 1968 if (!d_unhashed(dentry)) { 1969 __d_drop(dentry); 1970 need_rehash = 1; 1971 } 1972 spin_unlock(&dentry->d_lock); 1973 error = nfs_safe_remove(dentry); 1974 if (!error || error == -ENOENT) { 1975 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1976 } else if (need_rehash) 1977 d_rehash(dentry); 1978 out: 1979 trace_nfs_unlink_exit(dir, dentry, error); 1980 return error; 1981 } 1982 EXPORT_SYMBOL_GPL(nfs_unlink); 1983 1984 /* 1985 * To create a symbolic link, most file systems instantiate a new inode, 1986 * add a page to it containing the path, then write it out to the disk 1987 * using prepare_write/commit_write. 1988 * 1989 * Unfortunately the NFS client can't create the in-core inode first 1990 * because it needs a file handle to create an in-core inode (see 1991 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the 1992 * symlink request has completed on the server. 1993 * 1994 * So instead we allocate a raw page, copy the symname into it, then do 1995 * the SYMLINK request with the page as the buffer. If it succeeds, we 1996 * now have a new file handle and can instantiate an in-core NFS inode 1997 * and move the raw page into its mapping. 1998 */ 1999 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 2000 { 2001 struct page *page; 2002 char *kaddr; 2003 struct iattr attr; 2004 unsigned int pathlen = strlen(symname); 2005 int error; 2006 2007 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id, 2008 dir->i_ino, dentry, symname); 2009 2010 if (pathlen > PAGE_SIZE) 2011 return -ENAMETOOLONG; 2012 2013 attr.ia_mode = S_IFLNK | S_IRWXUGO; 2014 attr.ia_valid = ATTR_MODE; 2015 2016 page = alloc_page(GFP_USER); 2017 if (!page) 2018 return -ENOMEM; 2019 2020 kaddr = page_address(page); 2021 memcpy(kaddr, symname, pathlen); 2022 if (pathlen < PAGE_SIZE) 2023 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen); 2024 2025 trace_nfs_symlink_enter(dir, dentry); 2026 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr); 2027 trace_nfs_symlink_exit(dir, dentry, error); 2028 if (error != 0) { 2029 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n", 2030 dir->i_sb->s_id, dir->i_ino, 2031 dentry, symname, error); 2032 d_drop(dentry); 2033 __free_page(page); 2034 return error; 2035 } 2036 2037 /* 2038 * No big deal if we can't add this page to the page cache here. 2039 * READLINK will get the missing page from the server if needed. 2040 */ 2041 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0, 2042 GFP_KERNEL)) { 2043 SetPageUptodate(page); 2044 unlock_page(page); 2045 /* 2046 * add_to_page_cache_lru() grabs an extra page refcount. 2047 * Drop it here to avoid leaking this page later. 2048 */ 2049 put_page(page); 2050 } else 2051 __free_page(page); 2052 2053 return 0; 2054 } 2055 EXPORT_SYMBOL_GPL(nfs_symlink); 2056 2057 int 2058 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2059 { 2060 struct inode *inode = d_inode(old_dentry); 2061 int error; 2062 2063 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n", 2064 old_dentry, dentry); 2065 2066 trace_nfs_link_enter(inode, dir, dentry); 2067 d_drop(dentry); 2068 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name); 2069 if (error == 0) { 2070 ihold(inode); 2071 d_add(dentry, inode); 2072 } 2073 trace_nfs_link_exit(inode, dir, dentry, error); 2074 return error; 2075 } 2076 EXPORT_SYMBOL_GPL(nfs_link); 2077 2078 /* 2079 * RENAME 2080 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a 2081 * different file handle for the same inode after a rename (e.g. when 2082 * moving to a different directory). A fail-safe method to do so would 2083 * be to look up old_dir/old_name, create a link to new_dir/new_name and 2084 * rename the old file using the sillyrename stuff. This way, the original 2085 * file in old_dir will go away when the last process iput()s the inode. 2086 * 2087 * FIXED. 2088 * 2089 * It actually works quite well. One needs to have the possibility for 2090 * at least one ".nfs..." file in each directory the file ever gets 2091 * moved or linked to which happens automagically with the new 2092 * implementation that only depends on the dcache stuff instead of 2093 * using the inode layer 2094 * 2095 * Unfortunately, things are a little more complicated than indicated 2096 * above. For a cross-directory move, we want to make sure we can get 2097 * rid of the old inode after the operation. This means there must be 2098 * no pending writes (if it's a file), and the use count must be 1. 2099 * If these conditions are met, we can drop the dentries before doing 2100 * the rename. 2101 */ 2102 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry, 2103 struct inode *new_dir, struct dentry *new_dentry, 2104 unsigned int flags) 2105 { 2106 struct inode *old_inode = d_inode(old_dentry); 2107 struct inode *new_inode = d_inode(new_dentry); 2108 struct dentry *dentry = NULL, *rehash = NULL; 2109 struct rpc_task *task; 2110 int error = -EBUSY; 2111 2112 if (flags) 2113 return -EINVAL; 2114 2115 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n", 2116 old_dentry, new_dentry, 2117 d_count(new_dentry)); 2118 2119 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry); 2120 /* 2121 * For non-directories, check whether the target is busy and if so, 2122 * make a copy of the dentry and then do a silly-rename. If the 2123 * silly-rename succeeds, the copied dentry is hashed and becomes 2124 * the new target. 2125 */ 2126 if (new_inode && !S_ISDIR(new_inode->i_mode)) { 2127 /* 2128 * To prevent any new references to the target during the 2129 * rename, we unhash the dentry in advance. 2130 */ 2131 if (!d_unhashed(new_dentry)) { 2132 d_drop(new_dentry); 2133 rehash = new_dentry; 2134 } 2135 2136 if (d_count(new_dentry) > 2) { 2137 int err; 2138 2139 /* copy the target dentry's name */ 2140 dentry = d_alloc(new_dentry->d_parent, 2141 &new_dentry->d_name); 2142 if (!dentry) 2143 goto out; 2144 2145 /* silly-rename the existing target ... */ 2146 err = nfs_sillyrename(new_dir, new_dentry); 2147 if (err) 2148 goto out; 2149 2150 new_dentry = dentry; 2151 rehash = NULL; 2152 new_inode = NULL; 2153 } 2154 } 2155 2156 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL); 2157 if (IS_ERR(task)) { 2158 error = PTR_ERR(task); 2159 goto out; 2160 } 2161 2162 error = rpc_wait_for_completion_task(task); 2163 if (error != 0) { 2164 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1; 2165 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */ 2166 smp_wmb(); 2167 } else 2168 error = task->tk_status; 2169 rpc_put_task(task); 2170 /* Ensure the inode attributes are revalidated */ 2171 if (error == 0) { 2172 spin_lock(&old_inode->i_lock); 2173 NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter(); 2174 NFS_I(old_inode)->cache_validity |= NFS_INO_INVALID_CHANGE 2175 | NFS_INO_INVALID_CTIME 2176 | NFS_INO_REVAL_FORCED; 2177 spin_unlock(&old_inode->i_lock); 2178 } 2179 out: 2180 if (rehash) 2181 d_rehash(rehash); 2182 trace_nfs_rename_exit(old_dir, old_dentry, 2183 new_dir, new_dentry, error); 2184 if (!error) { 2185 if (new_inode != NULL) 2186 nfs_drop_nlink(new_inode); 2187 /* 2188 * The d_move() should be here instead of in an async RPC completion 2189 * handler because we need the proper locks to move the dentry. If 2190 * we're interrupted by a signal, the async RPC completion handler 2191 * should mark the directories for revalidation. 2192 */ 2193 d_move(old_dentry, new_dentry); 2194 nfs_set_verifier(old_dentry, 2195 nfs_save_change_attribute(new_dir)); 2196 } else if (error == -ENOENT) 2197 nfs_dentry_handle_enoent(old_dentry); 2198 2199 /* new dentry created? */ 2200 if (dentry) 2201 dput(dentry); 2202 return error; 2203 } 2204 EXPORT_SYMBOL_GPL(nfs_rename); 2205 2206 static DEFINE_SPINLOCK(nfs_access_lru_lock); 2207 static LIST_HEAD(nfs_access_lru_list); 2208 static atomic_long_t nfs_access_nr_entries; 2209 2210 static unsigned long nfs_access_max_cachesize = ULONG_MAX; 2211 module_param(nfs_access_max_cachesize, ulong, 0644); 2212 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length"); 2213 2214 static void nfs_access_free_entry(struct nfs_access_entry *entry) 2215 { 2216 put_cred(entry->cred); 2217 kfree_rcu(entry, rcu_head); 2218 smp_mb__before_atomic(); 2219 atomic_long_dec(&nfs_access_nr_entries); 2220 smp_mb__after_atomic(); 2221 } 2222 2223 static void nfs_access_free_list(struct list_head *head) 2224 { 2225 struct nfs_access_entry *cache; 2226 2227 while (!list_empty(head)) { 2228 cache = list_entry(head->next, struct nfs_access_entry, lru); 2229 list_del(&cache->lru); 2230 nfs_access_free_entry(cache); 2231 } 2232 } 2233 2234 static unsigned long 2235 nfs_do_access_cache_scan(unsigned int nr_to_scan) 2236 { 2237 LIST_HEAD(head); 2238 struct nfs_inode *nfsi, *next; 2239 struct nfs_access_entry *cache; 2240 long freed = 0; 2241 2242 spin_lock(&nfs_access_lru_lock); 2243 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) { 2244 struct inode *inode; 2245 2246 if (nr_to_scan-- == 0) 2247 break; 2248 inode = &nfsi->vfs_inode; 2249 spin_lock(&inode->i_lock); 2250 if (list_empty(&nfsi->access_cache_entry_lru)) 2251 goto remove_lru_entry; 2252 cache = list_entry(nfsi->access_cache_entry_lru.next, 2253 struct nfs_access_entry, lru); 2254 list_move(&cache->lru, &head); 2255 rb_erase(&cache->rb_node, &nfsi->access_cache); 2256 freed++; 2257 if (!list_empty(&nfsi->access_cache_entry_lru)) 2258 list_move_tail(&nfsi->access_cache_inode_lru, 2259 &nfs_access_lru_list); 2260 else { 2261 remove_lru_entry: 2262 list_del_init(&nfsi->access_cache_inode_lru); 2263 smp_mb__before_atomic(); 2264 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags); 2265 smp_mb__after_atomic(); 2266 } 2267 spin_unlock(&inode->i_lock); 2268 } 2269 spin_unlock(&nfs_access_lru_lock); 2270 nfs_access_free_list(&head); 2271 return freed; 2272 } 2273 2274 unsigned long 2275 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc) 2276 { 2277 int nr_to_scan = sc->nr_to_scan; 2278 gfp_t gfp_mask = sc->gfp_mask; 2279 2280 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL) 2281 return SHRINK_STOP; 2282 return nfs_do_access_cache_scan(nr_to_scan); 2283 } 2284 2285 2286 unsigned long 2287 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc) 2288 { 2289 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries)); 2290 } 2291 2292 static void 2293 nfs_access_cache_enforce_limit(void) 2294 { 2295 long nr_entries = atomic_long_read(&nfs_access_nr_entries); 2296 unsigned long diff; 2297 unsigned int nr_to_scan; 2298 2299 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize) 2300 return; 2301 nr_to_scan = 100; 2302 diff = nr_entries - nfs_access_max_cachesize; 2303 if (diff < nr_to_scan) 2304 nr_to_scan = diff; 2305 nfs_do_access_cache_scan(nr_to_scan); 2306 } 2307 2308 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head) 2309 { 2310 struct rb_root *root_node = &nfsi->access_cache; 2311 struct rb_node *n; 2312 struct nfs_access_entry *entry; 2313 2314 /* Unhook entries from the cache */ 2315 while ((n = rb_first(root_node)) != NULL) { 2316 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2317 rb_erase(n, root_node); 2318 list_move(&entry->lru, head); 2319 } 2320 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS; 2321 } 2322 2323 void nfs_access_zap_cache(struct inode *inode) 2324 { 2325 LIST_HEAD(head); 2326 2327 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0) 2328 return; 2329 /* Remove from global LRU init */ 2330 spin_lock(&nfs_access_lru_lock); 2331 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2332 list_del_init(&NFS_I(inode)->access_cache_inode_lru); 2333 2334 spin_lock(&inode->i_lock); 2335 __nfs_access_zap_cache(NFS_I(inode), &head); 2336 spin_unlock(&inode->i_lock); 2337 spin_unlock(&nfs_access_lru_lock); 2338 nfs_access_free_list(&head); 2339 } 2340 EXPORT_SYMBOL_GPL(nfs_access_zap_cache); 2341 2342 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred) 2343 { 2344 struct rb_node *n = NFS_I(inode)->access_cache.rb_node; 2345 2346 while (n != NULL) { 2347 struct nfs_access_entry *entry = 2348 rb_entry(n, struct nfs_access_entry, rb_node); 2349 int cmp = cred_fscmp(cred, entry->cred); 2350 2351 if (cmp < 0) 2352 n = n->rb_left; 2353 else if (cmp > 0) 2354 n = n->rb_right; 2355 else 2356 return entry; 2357 } 2358 return NULL; 2359 } 2360 2361 static int nfs_access_get_cached(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res, bool may_block) 2362 { 2363 struct nfs_inode *nfsi = NFS_I(inode); 2364 struct nfs_access_entry *cache; 2365 bool retry = true; 2366 int err; 2367 2368 spin_lock(&inode->i_lock); 2369 for(;;) { 2370 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2371 goto out_zap; 2372 cache = nfs_access_search_rbtree(inode, cred); 2373 err = -ENOENT; 2374 if (cache == NULL) 2375 goto out; 2376 /* Found an entry, is our attribute cache valid? */ 2377 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) 2378 break; 2379 err = -ECHILD; 2380 if (!may_block) 2381 goto out; 2382 if (!retry) 2383 goto out_zap; 2384 spin_unlock(&inode->i_lock); 2385 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode); 2386 if (err) 2387 return err; 2388 spin_lock(&inode->i_lock); 2389 retry = false; 2390 } 2391 res->cred = cache->cred; 2392 res->mask = cache->mask; 2393 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru); 2394 err = 0; 2395 out: 2396 spin_unlock(&inode->i_lock); 2397 return err; 2398 out_zap: 2399 spin_unlock(&inode->i_lock); 2400 nfs_access_zap_cache(inode); 2401 return -ENOENT; 2402 } 2403 2404 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res) 2405 { 2406 /* Only check the most recently returned cache entry, 2407 * but do it without locking. 2408 */ 2409 struct nfs_inode *nfsi = NFS_I(inode); 2410 struct nfs_access_entry *cache; 2411 int err = -ECHILD; 2412 struct list_head *lh; 2413 2414 rcu_read_lock(); 2415 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2416 goto out; 2417 lh = rcu_dereference(nfsi->access_cache_entry_lru.prev); 2418 cache = list_entry(lh, struct nfs_access_entry, lru); 2419 if (lh == &nfsi->access_cache_entry_lru || 2420 cred != cache->cred) 2421 cache = NULL; 2422 if (cache == NULL) 2423 goto out; 2424 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) 2425 goto out; 2426 res->cred = cache->cred; 2427 res->mask = cache->mask; 2428 err = 0; 2429 out: 2430 rcu_read_unlock(); 2431 return err; 2432 } 2433 2434 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set) 2435 { 2436 struct nfs_inode *nfsi = NFS_I(inode); 2437 struct rb_root *root_node = &nfsi->access_cache; 2438 struct rb_node **p = &root_node->rb_node; 2439 struct rb_node *parent = NULL; 2440 struct nfs_access_entry *entry; 2441 int cmp; 2442 2443 spin_lock(&inode->i_lock); 2444 while (*p != NULL) { 2445 parent = *p; 2446 entry = rb_entry(parent, struct nfs_access_entry, rb_node); 2447 cmp = cred_fscmp(set->cred, entry->cred); 2448 2449 if (cmp < 0) 2450 p = &parent->rb_left; 2451 else if (cmp > 0) 2452 p = &parent->rb_right; 2453 else 2454 goto found; 2455 } 2456 rb_link_node(&set->rb_node, parent, p); 2457 rb_insert_color(&set->rb_node, root_node); 2458 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2459 spin_unlock(&inode->i_lock); 2460 return; 2461 found: 2462 rb_replace_node(parent, &set->rb_node, root_node); 2463 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2464 list_del(&entry->lru); 2465 spin_unlock(&inode->i_lock); 2466 nfs_access_free_entry(entry); 2467 } 2468 2469 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set) 2470 { 2471 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL); 2472 if (cache == NULL) 2473 return; 2474 RB_CLEAR_NODE(&cache->rb_node); 2475 cache->cred = get_cred(set->cred); 2476 cache->mask = set->mask; 2477 2478 /* The above field assignments must be visible 2479 * before this item appears on the lru. We cannot easily 2480 * use rcu_assign_pointer, so just force the memory barrier. 2481 */ 2482 smp_wmb(); 2483 nfs_access_add_rbtree(inode, cache); 2484 2485 /* Update accounting */ 2486 smp_mb__before_atomic(); 2487 atomic_long_inc(&nfs_access_nr_entries); 2488 smp_mb__after_atomic(); 2489 2490 /* Add inode to global LRU list */ 2491 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) { 2492 spin_lock(&nfs_access_lru_lock); 2493 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2494 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, 2495 &nfs_access_lru_list); 2496 spin_unlock(&nfs_access_lru_lock); 2497 } 2498 nfs_access_cache_enforce_limit(); 2499 } 2500 EXPORT_SYMBOL_GPL(nfs_access_add_cache); 2501 2502 #define NFS_MAY_READ (NFS_ACCESS_READ) 2503 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \ 2504 NFS_ACCESS_EXTEND | \ 2505 NFS_ACCESS_DELETE) 2506 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \ 2507 NFS_ACCESS_EXTEND) 2508 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE 2509 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP) 2510 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE) 2511 static int 2512 nfs_access_calc_mask(u32 access_result, umode_t umode) 2513 { 2514 int mask = 0; 2515 2516 if (access_result & NFS_MAY_READ) 2517 mask |= MAY_READ; 2518 if (S_ISDIR(umode)) { 2519 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE) 2520 mask |= MAY_WRITE; 2521 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP) 2522 mask |= MAY_EXEC; 2523 } else if (S_ISREG(umode)) { 2524 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE) 2525 mask |= MAY_WRITE; 2526 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE) 2527 mask |= MAY_EXEC; 2528 } else if (access_result & NFS_MAY_WRITE) 2529 mask |= MAY_WRITE; 2530 return mask; 2531 } 2532 2533 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result) 2534 { 2535 entry->mask = access_result; 2536 } 2537 EXPORT_SYMBOL_GPL(nfs_access_set_mask); 2538 2539 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask) 2540 { 2541 struct nfs_access_entry cache; 2542 bool may_block = (mask & MAY_NOT_BLOCK) == 0; 2543 int cache_mask; 2544 int status; 2545 2546 trace_nfs_access_enter(inode); 2547 2548 status = nfs_access_get_cached_rcu(inode, cred, &cache); 2549 if (status != 0) 2550 status = nfs_access_get_cached(inode, cred, &cache, may_block); 2551 if (status == 0) 2552 goto out_cached; 2553 2554 status = -ECHILD; 2555 if (!may_block) 2556 goto out; 2557 2558 /* 2559 * Determine which access bits we want to ask for... 2560 */ 2561 cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND; 2562 if (S_ISDIR(inode->i_mode)) 2563 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP; 2564 else 2565 cache.mask |= NFS_ACCESS_EXECUTE; 2566 cache.cred = cred; 2567 status = NFS_PROTO(inode)->access(inode, &cache); 2568 if (status != 0) { 2569 if (status == -ESTALE) { 2570 nfs_zap_caches(inode); 2571 if (!S_ISDIR(inode->i_mode)) 2572 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags); 2573 } 2574 goto out; 2575 } 2576 nfs_access_add_cache(inode, &cache); 2577 out_cached: 2578 cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode); 2579 if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0) 2580 status = -EACCES; 2581 out: 2582 trace_nfs_access_exit(inode, status); 2583 return status; 2584 } 2585 2586 static int nfs_open_permission_mask(int openflags) 2587 { 2588 int mask = 0; 2589 2590 if (openflags & __FMODE_EXEC) { 2591 /* ONLY check exec rights */ 2592 mask = MAY_EXEC; 2593 } else { 2594 if ((openflags & O_ACCMODE) != O_WRONLY) 2595 mask |= MAY_READ; 2596 if ((openflags & O_ACCMODE) != O_RDONLY) 2597 mask |= MAY_WRITE; 2598 } 2599 2600 return mask; 2601 } 2602 2603 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags) 2604 { 2605 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags)); 2606 } 2607 EXPORT_SYMBOL_GPL(nfs_may_open); 2608 2609 static int nfs_execute_ok(struct inode *inode, int mask) 2610 { 2611 struct nfs_server *server = NFS_SERVER(inode); 2612 int ret = 0; 2613 2614 if (S_ISDIR(inode->i_mode)) 2615 return 0; 2616 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_OTHER)) { 2617 if (mask & MAY_NOT_BLOCK) 2618 return -ECHILD; 2619 ret = __nfs_revalidate_inode(server, inode); 2620 } 2621 if (ret == 0 && !execute_ok(inode)) 2622 ret = -EACCES; 2623 return ret; 2624 } 2625 2626 int nfs_permission(struct inode *inode, int mask) 2627 { 2628 const struct cred *cred = current_cred(); 2629 int res = 0; 2630 2631 nfs_inc_stats(inode, NFSIOS_VFSACCESS); 2632 2633 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 2634 goto out; 2635 /* Is this sys_access() ? */ 2636 if (mask & (MAY_ACCESS | MAY_CHDIR)) 2637 goto force_lookup; 2638 2639 switch (inode->i_mode & S_IFMT) { 2640 case S_IFLNK: 2641 goto out; 2642 case S_IFREG: 2643 if ((mask & MAY_OPEN) && 2644 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)) 2645 return 0; 2646 break; 2647 case S_IFDIR: 2648 /* 2649 * Optimize away all write operations, since the server 2650 * will check permissions when we perform the op. 2651 */ 2652 if ((mask & MAY_WRITE) && !(mask & MAY_READ)) 2653 goto out; 2654 } 2655 2656 force_lookup: 2657 if (!NFS_PROTO(inode)->access) 2658 goto out_notsup; 2659 2660 /* Always try fast lookups first */ 2661 rcu_read_lock(); 2662 res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK); 2663 rcu_read_unlock(); 2664 if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) { 2665 /* Fast lookup failed, try the slow way */ 2666 res = nfs_do_access(inode, cred, mask); 2667 } 2668 out: 2669 if (!res && (mask & MAY_EXEC)) 2670 res = nfs_execute_ok(inode, mask); 2671 2672 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n", 2673 inode->i_sb->s_id, inode->i_ino, mask, res); 2674 return res; 2675 out_notsup: 2676 if (mask & MAY_NOT_BLOCK) 2677 return -ECHILD; 2678 2679 res = nfs_revalidate_inode(NFS_SERVER(inode), inode); 2680 if (res == 0) 2681 res = generic_permission(inode, mask); 2682 goto out; 2683 } 2684 EXPORT_SYMBOL_GPL(nfs_permission); 2685 2686 /* 2687 * Local variables: 2688 * version-control: t 2689 * kept-new-versions: 5 2690 * End: 2691 */ 2692