1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/nfs/dir.c 4 * 5 * Copyright (C) 1992 Rick Sladkey 6 * 7 * nfs directory handling functions 8 * 9 * 10 Apr 1996 Added silly rename for unlink --okir 10 * 28 Sep 1996 Improved directory cache --okir 11 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de 12 * Re-implemented silly rename for unlink, newly implemented 13 * silly rename for nfs_rename() following the suggestions 14 * of Olaf Kirch (okir) found in this file. 15 * Following Linus comments on my original hack, this version 16 * depends only on the dcache stuff and doesn't touch the inode 17 * layer (iput() and friends). 18 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM 19 */ 20 21 #include <linux/compat.h> 22 #include <linux/module.h> 23 #include <linux/time.h> 24 #include <linux/errno.h> 25 #include <linux/stat.h> 26 #include <linux/fcntl.h> 27 #include <linux/string.h> 28 #include <linux/kernel.h> 29 #include <linux/slab.h> 30 #include <linux/mm.h> 31 #include <linux/sunrpc/clnt.h> 32 #include <linux/nfs_fs.h> 33 #include <linux/nfs_mount.h> 34 #include <linux/pagemap.h> 35 #include <linux/pagevec.h> 36 #include <linux/namei.h> 37 #include <linux/mount.h> 38 #include <linux/swap.h> 39 #include <linux/sched.h> 40 #include <linux/kmemleak.h> 41 #include <linux/xattr.h> 42 #include <linux/hash.h> 43 44 #include "delegation.h" 45 #include "iostat.h" 46 #include "internal.h" 47 #include "fscache.h" 48 49 #include "nfstrace.h" 50 51 /* #define NFS_DEBUG_VERBOSE 1 */ 52 53 static int nfs_opendir(struct inode *, struct file *); 54 static int nfs_closedir(struct inode *, struct file *); 55 static int nfs_readdir(struct file *, struct dir_context *); 56 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int); 57 static loff_t nfs_llseek_dir(struct file *, loff_t, int); 58 static void nfs_readdir_clear_array(struct folio *); 59 60 const struct file_operations nfs_dir_operations = { 61 .llseek = nfs_llseek_dir, 62 .read = generic_read_dir, 63 .iterate_shared = nfs_readdir, 64 .open = nfs_opendir, 65 .release = nfs_closedir, 66 .fsync = nfs_fsync_dir, 67 }; 68 69 const struct address_space_operations nfs_dir_aops = { 70 .free_folio = nfs_readdir_clear_array, 71 }; 72 73 #define NFS_INIT_DTSIZE PAGE_SIZE 74 75 static struct nfs_open_dir_context * 76 alloc_nfs_open_dir_context(struct inode *dir) 77 { 78 struct nfs_inode *nfsi = NFS_I(dir); 79 struct nfs_open_dir_context *ctx; 80 81 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL_ACCOUNT); 82 if (ctx != NULL) { 83 ctx->attr_gencount = nfsi->attr_gencount; 84 ctx->dtsize = NFS_INIT_DTSIZE; 85 spin_lock(&dir->i_lock); 86 if (list_empty(&nfsi->open_files) && 87 (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER)) 88 nfs_set_cache_invalid(dir, 89 NFS_INO_INVALID_DATA | 90 NFS_INO_REVAL_FORCED); 91 list_add_tail_rcu(&ctx->list, &nfsi->open_files); 92 memcpy(ctx->verf, nfsi->cookieverf, sizeof(ctx->verf)); 93 spin_unlock(&dir->i_lock); 94 return ctx; 95 } 96 return ERR_PTR(-ENOMEM); 97 } 98 99 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx) 100 { 101 spin_lock(&dir->i_lock); 102 list_del_rcu(&ctx->list); 103 spin_unlock(&dir->i_lock); 104 kfree_rcu(ctx, rcu_head); 105 } 106 107 /* 108 * Open file 109 */ 110 static int 111 nfs_opendir(struct inode *inode, struct file *filp) 112 { 113 int res = 0; 114 struct nfs_open_dir_context *ctx; 115 116 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp); 117 118 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 119 120 ctx = alloc_nfs_open_dir_context(inode); 121 if (IS_ERR(ctx)) { 122 res = PTR_ERR(ctx); 123 goto out; 124 } 125 filp->private_data = ctx; 126 out: 127 return res; 128 } 129 130 static int 131 nfs_closedir(struct inode *inode, struct file *filp) 132 { 133 put_nfs_open_dir_context(file_inode(filp), filp->private_data); 134 return 0; 135 } 136 137 struct nfs_cache_array_entry { 138 u64 cookie; 139 u64 ino; 140 const char *name; 141 unsigned int name_len; 142 unsigned char d_type; 143 }; 144 145 struct nfs_cache_array { 146 u64 change_attr; 147 u64 last_cookie; 148 unsigned int size; 149 unsigned char folio_full : 1, 150 folio_is_eof : 1, 151 cookies_are_ordered : 1; 152 struct nfs_cache_array_entry array[]; 153 }; 154 155 struct nfs_readdir_descriptor { 156 struct file *file; 157 struct folio *folio; 158 struct dir_context *ctx; 159 pgoff_t folio_index; 160 pgoff_t folio_index_max; 161 u64 dir_cookie; 162 u64 last_cookie; 163 loff_t current_index; 164 165 __be32 verf[NFS_DIR_VERIFIER_SIZE]; 166 unsigned long dir_verifier; 167 unsigned long timestamp; 168 unsigned long gencount; 169 unsigned long attr_gencount; 170 unsigned int cache_entry_index; 171 unsigned int buffer_fills; 172 unsigned int dtsize; 173 bool clear_cache; 174 bool plus; 175 bool eob; 176 bool eof; 177 }; 178 179 static void nfs_set_dtsize(struct nfs_readdir_descriptor *desc, unsigned int sz) 180 { 181 struct nfs_server *server = NFS_SERVER(file_inode(desc->file)); 182 unsigned int maxsize = server->dtsize; 183 184 if (sz > maxsize) 185 sz = maxsize; 186 if (sz < NFS_MIN_FILE_IO_SIZE) 187 sz = NFS_MIN_FILE_IO_SIZE; 188 desc->dtsize = sz; 189 } 190 191 static void nfs_shrink_dtsize(struct nfs_readdir_descriptor *desc) 192 { 193 nfs_set_dtsize(desc, desc->dtsize >> 1); 194 } 195 196 static void nfs_grow_dtsize(struct nfs_readdir_descriptor *desc) 197 { 198 nfs_set_dtsize(desc, desc->dtsize << 1); 199 } 200 201 static void nfs_readdir_folio_init_array(struct folio *folio, u64 last_cookie, 202 u64 change_attr) 203 { 204 struct nfs_cache_array *array; 205 206 array = kmap_local_folio(folio, 0); 207 array->change_attr = change_attr; 208 array->last_cookie = last_cookie; 209 array->size = 0; 210 array->folio_full = 0; 211 array->folio_is_eof = 0; 212 array->cookies_are_ordered = 1; 213 kunmap_local(array); 214 } 215 216 /* 217 * we are freeing strings created by nfs_add_to_readdir_array() 218 */ 219 static void nfs_readdir_clear_array(struct folio *folio) 220 { 221 struct nfs_cache_array *array; 222 unsigned int i; 223 224 array = kmap_local_folio(folio, 0); 225 for (i = 0; i < array->size; i++) 226 kfree(array->array[i].name); 227 array->size = 0; 228 kunmap_local(array); 229 } 230 231 static void nfs_readdir_folio_reinit_array(struct folio *folio, u64 last_cookie, 232 u64 change_attr) 233 { 234 nfs_readdir_clear_array(folio); 235 nfs_readdir_folio_init_array(folio, last_cookie, change_attr); 236 } 237 238 static struct folio * 239 nfs_readdir_folio_array_alloc(u64 last_cookie, gfp_t gfp_flags) 240 { 241 struct folio *folio = folio_alloc(gfp_flags, 0); 242 if (folio) 243 nfs_readdir_folio_init_array(folio, last_cookie, 0); 244 return folio; 245 } 246 247 static void nfs_readdir_folio_array_free(struct folio *folio) 248 { 249 if (folio) { 250 nfs_readdir_clear_array(folio); 251 folio_put(folio); 252 } 253 } 254 255 static u64 nfs_readdir_array_index_cookie(struct nfs_cache_array *array) 256 { 257 return array->size == 0 ? array->last_cookie : array->array[0].cookie; 258 } 259 260 static void nfs_readdir_array_set_eof(struct nfs_cache_array *array) 261 { 262 array->folio_is_eof = 1; 263 array->folio_full = 1; 264 } 265 266 static bool nfs_readdir_array_is_full(struct nfs_cache_array *array) 267 { 268 return array->folio_full; 269 } 270 271 /* 272 * the caller is responsible for freeing qstr.name 273 * when called by nfs_readdir_add_to_array, the strings will be freed in 274 * nfs_clear_readdir_array() 275 */ 276 static const char *nfs_readdir_copy_name(const char *name, unsigned int len) 277 { 278 const char *ret = kmemdup_nul(name, len, GFP_KERNEL); 279 280 /* 281 * Avoid a kmemleak false positive. The pointer to the name is stored 282 * in a page cache page which kmemleak does not scan. 283 */ 284 if (ret != NULL) 285 kmemleak_not_leak(ret); 286 return ret; 287 } 288 289 static size_t nfs_readdir_array_maxentries(void) 290 { 291 return (PAGE_SIZE - sizeof(struct nfs_cache_array)) / 292 sizeof(struct nfs_cache_array_entry); 293 } 294 295 /* 296 * Check that the next array entry lies entirely within the page bounds 297 */ 298 static int nfs_readdir_array_can_expand(struct nfs_cache_array *array) 299 { 300 if (array->folio_full) 301 return -ENOSPC; 302 if (array->size == nfs_readdir_array_maxentries()) { 303 array->folio_full = 1; 304 return -ENOSPC; 305 } 306 return 0; 307 } 308 309 static int nfs_readdir_folio_array_append(struct folio *folio, 310 const struct nfs_entry *entry, 311 u64 *cookie) 312 { 313 struct nfs_cache_array *array; 314 struct nfs_cache_array_entry *cache_entry; 315 const char *name; 316 int ret = -ENOMEM; 317 318 name = nfs_readdir_copy_name(entry->name, entry->len); 319 320 array = kmap_local_folio(folio, 0); 321 if (!name) 322 goto out; 323 ret = nfs_readdir_array_can_expand(array); 324 if (ret) { 325 kfree(name); 326 goto out; 327 } 328 329 cache_entry = &array->array[array->size]; 330 cache_entry->cookie = array->last_cookie; 331 cache_entry->ino = entry->ino; 332 cache_entry->d_type = entry->d_type; 333 cache_entry->name_len = entry->len; 334 cache_entry->name = name; 335 array->last_cookie = entry->cookie; 336 if (array->last_cookie <= cache_entry->cookie) 337 array->cookies_are_ordered = 0; 338 array->size++; 339 if (entry->eof != 0) 340 nfs_readdir_array_set_eof(array); 341 out: 342 *cookie = array->last_cookie; 343 kunmap_local(array); 344 return ret; 345 } 346 347 #define NFS_READDIR_COOKIE_MASK (U32_MAX >> 14) 348 /* 349 * Hash algorithm allowing content addressible access to sequences 350 * of directory cookies. Content is addressed by the value of the 351 * cookie index of the first readdir entry in a page. 352 * 353 * We select only the first 18 bits to avoid issues with excessive 354 * memory use for the page cache XArray. 18 bits should allow the caching 355 * of 262144 pages of sequences of readdir entries. Since each page holds 356 * 127 readdir entries for a typical 64-bit system, that works out to a 357 * cache of ~ 33 million entries per directory. 358 */ 359 static pgoff_t nfs_readdir_folio_cookie_hash(u64 cookie) 360 { 361 if (cookie == 0) 362 return 0; 363 return hash_64(cookie, 18); 364 } 365 366 static bool nfs_readdir_folio_validate(struct folio *folio, u64 last_cookie, 367 u64 change_attr) 368 { 369 struct nfs_cache_array *array = kmap_local_folio(folio, 0); 370 int ret = true; 371 372 if (array->change_attr != change_attr) 373 ret = false; 374 if (nfs_readdir_array_index_cookie(array) != last_cookie) 375 ret = false; 376 kunmap_local(array); 377 return ret; 378 } 379 380 static void nfs_readdir_folio_unlock_and_put(struct folio *folio) 381 { 382 folio_unlock(folio); 383 folio_put(folio); 384 } 385 386 static void nfs_readdir_folio_init_and_validate(struct folio *folio, u64 cookie, 387 u64 change_attr) 388 { 389 if (folio_test_uptodate(folio)) { 390 if (nfs_readdir_folio_validate(folio, cookie, change_attr)) 391 return; 392 nfs_readdir_clear_array(folio); 393 } 394 nfs_readdir_folio_init_array(folio, cookie, change_attr); 395 folio_mark_uptodate(folio); 396 } 397 398 static struct folio *nfs_readdir_folio_get_locked(struct address_space *mapping, 399 u64 cookie, u64 change_attr) 400 { 401 pgoff_t index = nfs_readdir_folio_cookie_hash(cookie); 402 struct folio *folio; 403 404 folio = filemap_grab_folio(mapping, index); 405 if (IS_ERR(folio)) 406 return NULL; 407 nfs_readdir_folio_init_and_validate(folio, cookie, change_attr); 408 return folio; 409 } 410 411 static u64 nfs_readdir_folio_last_cookie(struct folio *folio) 412 { 413 struct nfs_cache_array *array; 414 u64 ret; 415 416 array = kmap_local_folio(folio, 0); 417 ret = array->last_cookie; 418 kunmap_local(array); 419 return ret; 420 } 421 422 static bool nfs_readdir_folio_needs_filling(struct folio *folio) 423 { 424 struct nfs_cache_array *array; 425 bool ret; 426 427 array = kmap_local_folio(folio, 0); 428 ret = !nfs_readdir_array_is_full(array); 429 kunmap_local(array); 430 return ret; 431 } 432 433 static void nfs_readdir_folio_set_eof(struct folio *folio) 434 { 435 struct nfs_cache_array *array; 436 437 array = kmap_local_folio(folio, 0); 438 nfs_readdir_array_set_eof(array); 439 kunmap_local(array); 440 } 441 442 static struct folio *nfs_readdir_folio_get_next(struct address_space *mapping, 443 u64 cookie, u64 change_attr) 444 { 445 pgoff_t index = nfs_readdir_folio_cookie_hash(cookie); 446 struct folio *folio; 447 448 folio = __filemap_get_folio(mapping, index, 449 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT, 450 mapping_gfp_mask(mapping)); 451 if (IS_ERR(folio)) 452 return NULL; 453 nfs_readdir_folio_init_and_validate(folio, cookie, change_attr); 454 if (nfs_readdir_folio_last_cookie(folio) != cookie) 455 nfs_readdir_folio_reinit_array(folio, cookie, change_attr); 456 return folio; 457 } 458 459 static inline 460 int is_32bit_api(void) 461 { 462 #ifdef CONFIG_COMPAT 463 return in_compat_syscall(); 464 #else 465 return (BITS_PER_LONG == 32); 466 #endif 467 } 468 469 static 470 bool nfs_readdir_use_cookie(const struct file *filp) 471 { 472 if ((filp->f_mode & FMODE_32BITHASH) || 473 (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api())) 474 return false; 475 return true; 476 } 477 478 static void nfs_readdir_seek_next_array(struct nfs_cache_array *array, 479 struct nfs_readdir_descriptor *desc) 480 { 481 if (array->folio_full) { 482 desc->last_cookie = array->last_cookie; 483 desc->current_index += array->size; 484 desc->cache_entry_index = 0; 485 desc->folio_index++; 486 } else 487 desc->last_cookie = nfs_readdir_array_index_cookie(array); 488 } 489 490 static void nfs_readdir_rewind_search(struct nfs_readdir_descriptor *desc) 491 { 492 desc->current_index = 0; 493 desc->last_cookie = 0; 494 desc->folio_index = 0; 495 } 496 497 static int nfs_readdir_search_for_pos(struct nfs_cache_array *array, 498 struct nfs_readdir_descriptor *desc) 499 { 500 loff_t diff = desc->ctx->pos - desc->current_index; 501 unsigned int index; 502 503 if (diff < 0) 504 goto out_eof; 505 if (diff >= array->size) { 506 if (array->folio_is_eof) 507 goto out_eof; 508 nfs_readdir_seek_next_array(array, desc); 509 return -EAGAIN; 510 } 511 512 index = (unsigned int)diff; 513 desc->dir_cookie = array->array[index].cookie; 514 desc->cache_entry_index = index; 515 return 0; 516 out_eof: 517 desc->eof = true; 518 return -EBADCOOKIE; 519 } 520 521 static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array, 522 u64 cookie) 523 { 524 if (!array->cookies_are_ordered) 525 return true; 526 /* Optimisation for monotonically increasing cookies */ 527 if (cookie >= array->last_cookie) 528 return false; 529 if (array->size && cookie < array->array[0].cookie) 530 return false; 531 return true; 532 } 533 534 static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, 535 struct nfs_readdir_descriptor *desc) 536 { 537 unsigned int i; 538 int status = -EAGAIN; 539 540 if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie)) 541 goto check_eof; 542 543 for (i = 0; i < array->size; i++) { 544 if (array->array[i].cookie == desc->dir_cookie) { 545 if (nfs_readdir_use_cookie(desc->file)) 546 desc->ctx->pos = desc->dir_cookie; 547 else 548 desc->ctx->pos = desc->current_index + i; 549 desc->cache_entry_index = i; 550 return 0; 551 } 552 } 553 check_eof: 554 if (array->folio_is_eof) { 555 status = -EBADCOOKIE; 556 if (desc->dir_cookie == array->last_cookie) 557 desc->eof = true; 558 } else 559 nfs_readdir_seek_next_array(array, desc); 560 return status; 561 } 562 563 static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc) 564 { 565 struct nfs_cache_array *array; 566 int status; 567 568 array = kmap_local_folio(desc->folio, 0); 569 570 if (desc->dir_cookie == 0) 571 status = nfs_readdir_search_for_pos(array, desc); 572 else 573 status = nfs_readdir_search_for_cookie(array, desc); 574 575 kunmap_local(array); 576 return status; 577 } 578 579 /* Fill a page with xdr information before transferring to the cache page */ 580 static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc, 581 __be32 *verf, u64 cookie, 582 struct page **pages, size_t bufsize, 583 __be32 *verf_res) 584 { 585 struct inode *inode = file_inode(desc->file); 586 struct nfs_readdir_arg arg = { 587 .dentry = file_dentry(desc->file), 588 .cred = desc->file->f_cred, 589 .verf = verf, 590 .cookie = cookie, 591 .pages = pages, 592 .page_len = bufsize, 593 .plus = desc->plus, 594 }; 595 struct nfs_readdir_res res = { 596 .verf = verf_res, 597 }; 598 unsigned long timestamp, gencount; 599 int error; 600 601 again: 602 timestamp = jiffies; 603 gencount = nfs_inc_attr_generation_counter(); 604 desc->dir_verifier = nfs_save_change_attribute(inode); 605 error = NFS_PROTO(inode)->readdir(&arg, &res); 606 if (error < 0) { 607 /* We requested READDIRPLUS, but the server doesn't grok it */ 608 if (error == -ENOTSUPP && desc->plus) { 609 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS; 610 desc->plus = arg.plus = false; 611 goto again; 612 } 613 goto error; 614 } 615 desc->timestamp = timestamp; 616 desc->gencount = gencount; 617 error: 618 return error; 619 } 620 621 static int xdr_decode(struct nfs_readdir_descriptor *desc, 622 struct nfs_entry *entry, struct xdr_stream *xdr) 623 { 624 struct inode *inode = file_inode(desc->file); 625 int error; 626 627 error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus); 628 if (error) 629 return error; 630 entry->fattr->time_start = desc->timestamp; 631 entry->fattr->gencount = desc->gencount; 632 return 0; 633 } 634 635 /* Match file and dirent using either filehandle or fileid 636 * Note: caller is responsible for checking the fsid 637 */ 638 static 639 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry) 640 { 641 struct inode *inode; 642 struct nfs_inode *nfsi; 643 644 if (d_really_is_negative(dentry)) 645 return 0; 646 647 inode = d_inode(dentry); 648 if (is_bad_inode(inode) || NFS_STALE(inode)) 649 return 0; 650 651 nfsi = NFS_I(inode); 652 if (entry->fattr->fileid != nfsi->fileid) 653 return 0; 654 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0) 655 return 0; 656 return 1; 657 } 658 659 #define NFS_READDIR_CACHE_USAGE_THRESHOLD (8UL) 660 661 static bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx, 662 unsigned int cache_hits, 663 unsigned int cache_misses) 664 { 665 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS)) 666 return false; 667 if (ctx->pos == 0 || 668 cache_hits + cache_misses > NFS_READDIR_CACHE_USAGE_THRESHOLD) 669 return true; 670 return false; 671 } 672 673 /* 674 * This function is called by the getattr code to request the 675 * use of readdirplus to accelerate any future lookups in the same 676 * directory. 677 */ 678 void nfs_readdir_record_entry_cache_hit(struct inode *dir) 679 { 680 struct nfs_inode *nfsi = NFS_I(dir); 681 struct nfs_open_dir_context *ctx; 682 683 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) && 684 S_ISDIR(dir->i_mode)) { 685 rcu_read_lock(); 686 list_for_each_entry_rcu (ctx, &nfsi->open_files, list) 687 atomic_inc(&ctx->cache_hits); 688 rcu_read_unlock(); 689 } 690 } 691 692 /* 693 * This function is mainly for use by nfs_getattr(). 694 * 695 * If this is an 'ls -l', we want to force use of readdirplus. 696 */ 697 void nfs_readdir_record_entry_cache_miss(struct inode *dir) 698 { 699 struct nfs_inode *nfsi = NFS_I(dir); 700 struct nfs_open_dir_context *ctx; 701 702 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) && 703 S_ISDIR(dir->i_mode)) { 704 rcu_read_lock(); 705 list_for_each_entry_rcu (ctx, &nfsi->open_files, list) 706 atomic_inc(&ctx->cache_misses); 707 rcu_read_unlock(); 708 } 709 } 710 711 static void nfs_lookup_advise_force_readdirplus(struct inode *dir, 712 unsigned int flags) 713 { 714 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE)) 715 return; 716 if (flags & (LOOKUP_EXCL | LOOKUP_PARENT | LOOKUP_REVAL)) 717 return; 718 nfs_readdir_record_entry_cache_miss(dir); 719 } 720 721 static 722 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry, 723 unsigned long dir_verifier) 724 { 725 struct qstr filename = QSTR_INIT(entry->name, entry->len); 726 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 727 struct dentry *dentry; 728 struct dentry *alias; 729 struct inode *inode; 730 int status; 731 732 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID)) 733 return; 734 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID)) 735 return; 736 if (filename.len == 0) 737 return; 738 /* Validate that the name doesn't contain any illegal '\0' */ 739 if (strnlen(filename.name, filename.len) != filename.len) 740 return; 741 /* ...or '/' */ 742 if (strnchr(filename.name, filename.len, '/')) 743 return; 744 if (filename.name[0] == '.') { 745 if (filename.len == 1) 746 return; 747 if (filename.len == 2 && filename.name[1] == '.') 748 return; 749 } 750 filename.hash = full_name_hash(parent, filename.name, filename.len); 751 752 dentry = d_lookup(parent, &filename); 753 again: 754 if (!dentry) { 755 dentry = d_alloc_parallel(parent, &filename, &wq); 756 if (IS_ERR(dentry)) 757 return; 758 } 759 if (!d_in_lookup(dentry)) { 760 /* Is there a mountpoint here? If so, just exit */ 761 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid, 762 &entry->fattr->fsid)) 763 goto out; 764 if (nfs_same_file(dentry, entry)) { 765 if (!entry->fh->size) 766 goto out; 767 nfs_set_verifier(dentry, dir_verifier); 768 status = nfs_refresh_inode(d_inode(dentry), entry->fattr); 769 if (!status) 770 nfs_setsecurity(d_inode(dentry), entry->fattr); 771 trace_nfs_readdir_lookup_revalidate(d_inode(parent), 772 dentry, 0, status); 773 goto out; 774 } else { 775 trace_nfs_readdir_lookup_revalidate_failed( 776 d_inode(parent), dentry, 0); 777 d_invalidate(dentry); 778 dput(dentry); 779 dentry = NULL; 780 goto again; 781 } 782 } 783 if (!entry->fh->size) { 784 d_lookup_done(dentry); 785 goto out; 786 } 787 788 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr); 789 alias = d_splice_alias(inode, dentry); 790 d_lookup_done(dentry); 791 if (alias) { 792 if (IS_ERR(alias)) 793 goto out; 794 dput(dentry); 795 dentry = alias; 796 } 797 nfs_set_verifier(dentry, dir_verifier); 798 trace_nfs_readdir_lookup(d_inode(parent), dentry, 0); 799 out: 800 dput(dentry); 801 } 802 803 static int nfs_readdir_entry_decode(struct nfs_readdir_descriptor *desc, 804 struct nfs_entry *entry, 805 struct xdr_stream *stream) 806 { 807 int ret; 808 809 if (entry->fattr->label) 810 entry->fattr->label->len = NFS4_MAXLABELLEN; 811 ret = xdr_decode(desc, entry, stream); 812 if (ret || !desc->plus) 813 return ret; 814 nfs_prime_dcache(file_dentry(desc->file), entry, desc->dir_verifier); 815 return 0; 816 } 817 818 /* Perform conversion from xdr to cache array */ 819 static int nfs_readdir_folio_filler(struct nfs_readdir_descriptor *desc, 820 struct nfs_entry *entry, 821 struct page **xdr_pages, unsigned int buflen, 822 struct folio **arrays, size_t narrays, 823 u64 change_attr) 824 { 825 struct address_space *mapping = desc->file->f_mapping; 826 struct folio *new, *folio = *arrays; 827 struct xdr_stream stream; 828 struct page *scratch; 829 struct xdr_buf buf; 830 u64 cookie; 831 int status; 832 833 scratch = alloc_page(GFP_KERNEL); 834 if (scratch == NULL) 835 return -ENOMEM; 836 837 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen); 838 xdr_set_scratch_page(&stream, scratch); 839 840 do { 841 status = nfs_readdir_entry_decode(desc, entry, &stream); 842 if (status != 0) 843 break; 844 845 status = nfs_readdir_folio_array_append(folio, entry, &cookie); 846 if (status != -ENOSPC) 847 continue; 848 849 if (folio->mapping != mapping) { 850 if (!--narrays) 851 break; 852 new = nfs_readdir_folio_array_alloc(cookie, GFP_KERNEL); 853 if (!new) 854 break; 855 arrays++; 856 *arrays = folio = new; 857 } else { 858 new = nfs_readdir_folio_get_next(mapping, cookie, 859 change_attr); 860 if (!new) 861 break; 862 if (folio != *arrays) 863 nfs_readdir_folio_unlock_and_put(folio); 864 folio = new; 865 } 866 desc->folio_index_max++; 867 status = nfs_readdir_folio_array_append(folio, entry, &cookie); 868 } while (!status && !entry->eof); 869 870 switch (status) { 871 case -EBADCOOKIE: 872 if (!entry->eof) 873 break; 874 nfs_readdir_folio_set_eof(folio); 875 fallthrough; 876 case -EAGAIN: 877 status = 0; 878 break; 879 case -ENOSPC: 880 status = 0; 881 if (!desc->plus) 882 break; 883 while (!nfs_readdir_entry_decode(desc, entry, &stream)) 884 ; 885 } 886 887 if (folio != *arrays) 888 nfs_readdir_folio_unlock_and_put(folio); 889 890 put_page(scratch); 891 return status; 892 } 893 894 static void nfs_readdir_free_pages(struct page **pages, size_t npages) 895 { 896 while (npages--) 897 put_page(pages[npages]); 898 kfree(pages); 899 } 900 901 /* 902 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call 903 * to nfs_readdir_free_pages() 904 */ 905 static struct page **nfs_readdir_alloc_pages(size_t npages) 906 { 907 struct page **pages; 908 size_t i; 909 910 pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL); 911 if (!pages) 912 return NULL; 913 for (i = 0; i < npages; i++) { 914 struct page *page = alloc_page(GFP_KERNEL); 915 if (page == NULL) 916 goto out_freepages; 917 pages[i] = page; 918 } 919 return pages; 920 921 out_freepages: 922 nfs_readdir_free_pages(pages, i); 923 return NULL; 924 } 925 926 static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc, 927 __be32 *verf_arg, __be32 *verf_res, 928 struct folio **arrays, size_t narrays) 929 { 930 u64 change_attr; 931 struct page **pages; 932 struct folio *folio = *arrays; 933 struct nfs_entry *entry; 934 size_t array_size; 935 struct inode *inode = file_inode(desc->file); 936 unsigned int dtsize = desc->dtsize; 937 unsigned int pglen; 938 int status = -ENOMEM; 939 940 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 941 if (!entry) 942 return -ENOMEM; 943 entry->cookie = nfs_readdir_folio_last_cookie(folio); 944 entry->fh = nfs_alloc_fhandle(); 945 entry->fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode)); 946 entry->server = NFS_SERVER(inode); 947 if (entry->fh == NULL || entry->fattr == NULL) 948 goto out; 949 950 array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT; 951 pages = nfs_readdir_alloc_pages(array_size); 952 if (!pages) 953 goto out; 954 955 change_attr = inode_peek_iversion_raw(inode); 956 status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie, pages, 957 dtsize, verf_res); 958 if (status < 0) 959 goto free_pages; 960 961 pglen = status; 962 if (pglen != 0) 963 status = nfs_readdir_folio_filler(desc, entry, pages, pglen, 964 arrays, narrays, change_attr); 965 else 966 nfs_readdir_folio_set_eof(folio); 967 desc->buffer_fills++; 968 969 free_pages: 970 nfs_readdir_free_pages(pages, array_size); 971 out: 972 nfs_free_fattr(entry->fattr); 973 nfs_free_fhandle(entry->fh); 974 kfree(entry); 975 return status; 976 } 977 978 static void nfs_readdir_folio_put(struct nfs_readdir_descriptor *desc) 979 { 980 folio_put(desc->folio); 981 desc->folio = NULL; 982 } 983 984 static void 985 nfs_readdir_folio_unlock_and_put_cached(struct nfs_readdir_descriptor *desc) 986 { 987 folio_unlock(desc->folio); 988 nfs_readdir_folio_put(desc); 989 } 990 991 static struct folio * 992 nfs_readdir_folio_get_cached(struct nfs_readdir_descriptor *desc) 993 { 994 struct address_space *mapping = desc->file->f_mapping; 995 u64 change_attr = inode_peek_iversion_raw(mapping->host); 996 u64 cookie = desc->last_cookie; 997 struct folio *folio; 998 999 folio = nfs_readdir_folio_get_locked(mapping, cookie, change_attr); 1000 if (!folio) 1001 return NULL; 1002 if (desc->clear_cache && !nfs_readdir_folio_needs_filling(folio)) 1003 nfs_readdir_folio_reinit_array(folio, cookie, change_attr); 1004 return folio; 1005 } 1006 1007 /* 1008 * Returns 0 if desc->dir_cookie was found on page desc->page_index 1009 * and locks the page to prevent removal from the page cache. 1010 */ 1011 static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc) 1012 { 1013 struct inode *inode = file_inode(desc->file); 1014 struct nfs_inode *nfsi = NFS_I(inode); 1015 __be32 verf[NFS_DIR_VERIFIER_SIZE]; 1016 int res; 1017 1018 desc->folio = nfs_readdir_folio_get_cached(desc); 1019 if (!desc->folio) 1020 return -ENOMEM; 1021 if (nfs_readdir_folio_needs_filling(desc->folio)) { 1022 /* Grow the dtsize if we had to go back for more pages */ 1023 if (desc->folio_index == desc->folio_index_max) 1024 nfs_grow_dtsize(desc); 1025 desc->folio_index_max = desc->folio_index; 1026 trace_nfs_readdir_cache_fill(desc->file, nfsi->cookieverf, 1027 desc->last_cookie, 1028 desc->folio->index, desc->dtsize); 1029 res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf, 1030 &desc->folio, 1); 1031 if (res < 0) { 1032 nfs_readdir_folio_unlock_and_put_cached(desc); 1033 trace_nfs_readdir_cache_fill_done(inode, res); 1034 if (res == -EBADCOOKIE || res == -ENOTSYNC) { 1035 invalidate_inode_pages2(desc->file->f_mapping); 1036 nfs_readdir_rewind_search(desc); 1037 trace_nfs_readdir_invalidate_cache_range( 1038 inode, 0, MAX_LFS_FILESIZE); 1039 return -EAGAIN; 1040 } 1041 return res; 1042 } 1043 /* 1044 * Set the cookie verifier if the page cache was empty 1045 */ 1046 if (desc->last_cookie == 0 && 1047 memcmp(nfsi->cookieverf, verf, sizeof(nfsi->cookieverf))) { 1048 memcpy(nfsi->cookieverf, verf, 1049 sizeof(nfsi->cookieverf)); 1050 invalidate_inode_pages2_range(desc->file->f_mapping, 1, 1051 -1); 1052 trace_nfs_readdir_invalidate_cache_range( 1053 inode, 1, MAX_LFS_FILESIZE); 1054 } 1055 desc->clear_cache = false; 1056 } 1057 res = nfs_readdir_search_array(desc); 1058 if (res == 0) 1059 return 0; 1060 nfs_readdir_folio_unlock_and_put_cached(desc); 1061 return res; 1062 } 1063 1064 /* Search for desc->dir_cookie from the beginning of the page cache */ 1065 static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc) 1066 { 1067 int res; 1068 1069 do { 1070 res = find_and_lock_cache_page(desc); 1071 } while (res == -EAGAIN); 1072 return res; 1073 } 1074 1075 #define NFS_READDIR_CACHE_MISS_THRESHOLD (16UL) 1076 1077 /* 1078 * Once we've found the start of the dirent within a page: fill 'er up... 1079 */ 1080 static void nfs_do_filldir(struct nfs_readdir_descriptor *desc, 1081 const __be32 *verf) 1082 { 1083 struct file *file = desc->file; 1084 struct nfs_cache_array *array; 1085 unsigned int i; 1086 bool first_emit = !desc->dir_cookie; 1087 1088 array = kmap_local_folio(desc->folio, 0); 1089 for (i = desc->cache_entry_index; i < array->size; i++) { 1090 struct nfs_cache_array_entry *ent; 1091 1092 /* 1093 * nfs_readdir_handle_cache_misses return force clear at 1094 * (cache_misses > NFS_READDIR_CACHE_MISS_THRESHOLD) for 1095 * readdir heuristic, NFS_READDIR_CACHE_MISS_THRESHOLD + 1 1096 * entries need be emitted here. 1097 */ 1098 if (first_emit && i > NFS_READDIR_CACHE_MISS_THRESHOLD + 2) { 1099 desc->eob = true; 1100 break; 1101 } 1102 1103 ent = &array->array[i]; 1104 if (!dir_emit(desc->ctx, ent->name, ent->name_len, 1105 nfs_compat_user_ino64(ent->ino), ent->d_type)) { 1106 desc->eob = true; 1107 break; 1108 } 1109 memcpy(desc->verf, verf, sizeof(desc->verf)); 1110 if (i == array->size - 1) { 1111 desc->dir_cookie = array->last_cookie; 1112 nfs_readdir_seek_next_array(array, desc); 1113 } else { 1114 desc->dir_cookie = array->array[i + 1].cookie; 1115 desc->last_cookie = array->array[0].cookie; 1116 } 1117 if (nfs_readdir_use_cookie(file)) 1118 desc->ctx->pos = desc->dir_cookie; 1119 else 1120 desc->ctx->pos++; 1121 } 1122 if (array->folio_is_eof) 1123 desc->eof = !desc->eob; 1124 1125 kunmap_local(array); 1126 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n", 1127 (unsigned long long)desc->dir_cookie); 1128 } 1129 1130 /* 1131 * If we cannot find a cookie in our cache, we suspect that this is 1132 * because it points to a deleted file, so we ask the server to return 1133 * whatever it thinks is the next entry. We then feed this to filldir. 1134 * If all goes well, we should then be able to find our way round the 1135 * cache on the next call to readdir_search_pagecache(); 1136 * 1137 * NOTE: we cannot add the anonymous page to the pagecache because 1138 * the data it contains might not be page aligned. Besides, 1139 * we should already have a complete representation of the 1140 * directory in the page cache by the time we get here. 1141 */ 1142 static int uncached_readdir(struct nfs_readdir_descriptor *desc) 1143 { 1144 struct folio **arrays; 1145 size_t i, sz = 512; 1146 __be32 verf[NFS_DIR_VERIFIER_SIZE]; 1147 int status = -ENOMEM; 1148 1149 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n", 1150 (unsigned long long)desc->dir_cookie); 1151 1152 arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL); 1153 if (!arrays) 1154 goto out; 1155 arrays[0] = nfs_readdir_folio_array_alloc(desc->dir_cookie, GFP_KERNEL); 1156 if (!arrays[0]) 1157 goto out; 1158 1159 desc->folio_index = 0; 1160 desc->cache_entry_index = 0; 1161 desc->last_cookie = desc->dir_cookie; 1162 desc->folio_index_max = 0; 1163 1164 trace_nfs_readdir_uncached(desc->file, desc->verf, desc->last_cookie, 1165 -1, desc->dtsize); 1166 1167 status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz); 1168 if (status < 0) { 1169 trace_nfs_readdir_uncached_done(file_inode(desc->file), status); 1170 goto out_free; 1171 } 1172 1173 for (i = 0; !desc->eob && i < sz && arrays[i]; i++) { 1174 desc->folio = arrays[i]; 1175 nfs_do_filldir(desc, verf); 1176 } 1177 desc->folio = NULL; 1178 1179 /* 1180 * Grow the dtsize if we have to go back for more pages, 1181 * or shrink it if we're reading too many. 1182 */ 1183 if (!desc->eof) { 1184 if (!desc->eob) 1185 nfs_grow_dtsize(desc); 1186 else if (desc->buffer_fills == 1 && 1187 i < (desc->folio_index_max >> 1)) 1188 nfs_shrink_dtsize(desc); 1189 } 1190 out_free: 1191 for (i = 0; i < sz && arrays[i]; i++) 1192 nfs_readdir_folio_array_free(arrays[i]); 1193 out: 1194 if (!nfs_readdir_use_cookie(desc->file)) 1195 nfs_readdir_rewind_search(desc); 1196 desc->folio_index_max = -1; 1197 kfree(arrays); 1198 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status); 1199 return status; 1200 } 1201 1202 static bool nfs_readdir_handle_cache_misses(struct inode *inode, 1203 struct nfs_readdir_descriptor *desc, 1204 unsigned int cache_misses, 1205 bool force_clear) 1206 { 1207 if (desc->ctx->pos == 0 || !desc->plus) 1208 return false; 1209 if (cache_misses <= NFS_READDIR_CACHE_MISS_THRESHOLD && !force_clear) 1210 return false; 1211 trace_nfs_readdir_force_readdirplus(inode); 1212 return true; 1213 } 1214 1215 /* The file offset position represents the dirent entry number. A 1216 last cookie cache takes care of the common case of reading the 1217 whole directory. 1218 */ 1219 static int nfs_readdir(struct file *file, struct dir_context *ctx) 1220 { 1221 struct dentry *dentry = file_dentry(file); 1222 struct inode *inode = d_inode(dentry); 1223 struct nfs_inode *nfsi = NFS_I(inode); 1224 struct nfs_open_dir_context *dir_ctx = file->private_data; 1225 struct nfs_readdir_descriptor *desc; 1226 unsigned int cache_hits, cache_misses; 1227 bool force_clear; 1228 int res; 1229 1230 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n", 1231 file, (long long)ctx->pos); 1232 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS); 1233 1234 /* 1235 * ctx->pos points to the dirent entry number. 1236 * *desc->dir_cookie has the cookie for the next entry. We have 1237 * to either find the entry with the appropriate number or 1238 * revalidate the cookie. 1239 */ 1240 nfs_revalidate_mapping(inode, file->f_mapping); 1241 1242 res = -ENOMEM; 1243 desc = kzalloc(sizeof(*desc), GFP_KERNEL); 1244 if (!desc) 1245 goto out; 1246 desc->file = file; 1247 desc->ctx = ctx; 1248 desc->folio_index_max = -1; 1249 1250 spin_lock(&file->f_lock); 1251 desc->dir_cookie = dir_ctx->dir_cookie; 1252 desc->folio_index = dir_ctx->page_index; 1253 desc->last_cookie = dir_ctx->last_cookie; 1254 desc->attr_gencount = dir_ctx->attr_gencount; 1255 desc->eof = dir_ctx->eof; 1256 nfs_set_dtsize(desc, dir_ctx->dtsize); 1257 memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf)); 1258 cache_hits = atomic_xchg(&dir_ctx->cache_hits, 0); 1259 cache_misses = atomic_xchg(&dir_ctx->cache_misses, 0); 1260 force_clear = dir_ctx->force_clear; 1261 spin_unlock(&file->f_lock); 1262 1263 if (desc->eof) { 1264 res = 0; 1265 goto out_free; 1266 } 1267 1268 desc->plus = nfs_use_readdirplus(inode, ctx, cache_hits, cache_misses); 1269 force_clear = nfs_readdir_handle_cache_misses(inode, desc, cache_misses, 1270 force_clear); 1271 desc->clear_cache = force_clear; 1272 1273 do { 1274 res = readdir_search_pagecache(desc); 1275 1276 if (res == -EBADCOOKIE) { 1277 res = 0; 1278 /* This means either end of directory */ 1279 if (desc->dir_cookie && !desc->eof) { 1280 /* Or that the server has 'lost' a cookie */ 1281 res = uncached_readdir(desc); 1282 if (res == 0) 1283 continue; 1284 if (res == -EBADCOOKIE || res == -ENOTSYNC) 1285 res = 0; 1286 } 1287 break; 1288 } 1289 if (res == -ETOOSMALL && desc->plus) { 1290 nfs_zap_caches(inode); 1291 desc->plus = false; 1292 desc->eof = false; 1293 continue; 1294 } 1295 if (res < 0) 1296 break; 1297 1298 nfs_do_filldir(desc, nfsi->cookieverf); 1299 nfs_readdir_folio_unlock_and_put_cached(desc); 1300 if (desc->folio_index == desc->folio_index_max) 1301 desc->clear_cache = force_clear; 1302 } while (!desc->eob && !desc->eof); 1303 1304 spin_lock(&file->f_lock); 1305 dir_ctx->dir_cookie = desc->dir_cookie; 1306 dir_ctx->last_cookie = desc->last_cookie; 1307 dir_ctx->attr_gencount = desc->attr_gencount; 1308 dir_ctx->page_index = desc->folio_index; 1309 dir_ctx->force_clear = force_clear; 1310 dir_ctx->eof = desc->eof; 1311 dir_ctx->dtsize = desc->dtsize; 1312 memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf)); 1313 spin_unlock(&file->f_lock); 1314 out_free: 1315 kfree(desc); 1316 1317 out: 1318 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res); 1319 return res; 1320 } 1321 1322 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence) 1323 { 1324 struct nfs_open_dir_context *dir_ctx = filp->private_data; 1325 1326 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n", 1327 filp, offset, whence); 1328 1329 switch (whence) { 1330 default: 1331 return -EINVAL; 1332 case SEEK_SET: 1333 if (offset < 0) 1334 return -EINVAL; 1335 spin_lock(&filp->f_lock); 1336 break; 1337 case SEEK_CUR: 1338 if (offset == 0) 1339 return filp->f_pos; 1340 spin_lock(&filp->f_lock); 1341 offset += filp->f_pos; 1342 if (offset < 0) { 1343 spin_unlock(&filp->f_lock); 1344 return -EINVAL; 1345 } 1346 } 1347 if (offset != filp->f_pos) { 1348 filp->f_pos = offset; 1349 dir_ctx->page_index = 0; 1350 if (!nfs_readdir_use_cookie(filp)) { 1351 dir_ctx->dir_cookie = 0; 1352 dir_ctx->last_cookie = 0; 1353 } else { 1354 dir_ctx->dir_cookie = offset; 1355 dir_ctx->last_cookie = offset; 1356 } 1357 dir_ctx->eof = false; 1358 } 1359 spin_unlock(&filp->f_lock); 1360 return offset; 1361 } 1362 1363 /* 1364 * All directory operations under NFS are synchronous, so fsync() 1365 * is a dummy operation. 1366 */ 1367 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end, 1368 int datasync) 1369 { 1370 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync); 1371 1372 nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC); 1373 return 0; 1374 } 1375 1376 /** 1377 * nfs_force_lookup_revalidate - Mark the directory as having changed 1378 * @dir: pointer to directory inode 1379 * 1380 * This forces the revalidation code in nfs_lookup_revalidate() to do a 1381 * full lookup on all child dentries of 'dir' whenever a change occurs 1382 * on the server that might have invalidated our dcache. 1383 * 1384 * Note that we reserve bit '0' as a tag to let us know when a dentry 1385 * was revalidated while holding a delegation on its inode. 1386 * 1387 * The caller should be holding dir->i_lock 1388 */ 1389 void nfs_force_lookup_revalidate(struct inode *dir) 1390 { 1391 NFS_I(dir)->cache_change_attribute += 2; 1392 } 1393 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate); 1394 1395 /** 1396 * nfs_verify_change_attribute - Detects NFS remote directory changes 1397 * @dir: pointer to parent directory inode 1398 * @verf: previously saved change attribute 1399 * 1400 * Return "false" if the verifiers doesn't match the change attribute. 1401 * This would usually indicate that the directory contents have changed on 1402 * the server, and that any dentries need revalidating. 1403 */ 1404 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf) 1405 { 1406 return (verf & ~1UL) == nfs_save_change_attribute(dir); 1407 } 1408 1409 static void nfs_set_verifier_delegated(unsigned long *verf) 1410 { 1411 *verf |= 1UL; 1412 } 1413 1414 #if IS_ENABLED(CONFIG_NFS_V4) 1415 static void nfs_unset_verifier_delegated(unsigned long *verf) 1416 { 1417 *verf &= ~1UL; 1418 } 1419 #endif /* IS_ENABLED(CONFIG_NFS_V4) */ 1420 1421 static bool nfs_test_verifier_delegated(unsigned long verf) 1422 { 1423 return verf & 1; 1424 } 1425 1426 static bool nfs_verifier_is_delegated(struct dentry *dentry) 1427 { 1428 return nfs_test_verifier_delegated(dentry->d_time); 1429 } 1430 1431 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf) 1432 { 1433 struct inode *inode = d_inode(dentry); 1434 struct inode *dir = d_inode(dentry->d_parent); 1435 1436 if (!nfs_verify_change_attribute(dir, verf)) 1437 return; 1438 if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) 1439 nfs_set_verifier_delegated(&verf); 1440 dentry->d_time = verf; 1441 } 1442 1443 /** 1444 * nfs_set_verifier - save a parent directory verifier in the dentry 1445 * @dentry: pointer to dentry 1446 * @verf: verifier to save 1447 * 1448 * Saves the parent directory verifier in @dentry. If the inode has 1449 * a delegation, we also tag the dentry as having been revalidated 1450 * while holding a delegation so that we know we don't have to 1451 * look it up again after a directory change. 1452 */ 1453 void nfs_set_verifier(struct dentry *dentry, unsigned long verf) 1454 { 1455 1456 spin_lock(&dentry->d_lock); 1457 nfs_set_verifier_locked(dentry, verf); 1458 spin_unlock(&dentry->d_lock); 1459 } 1460 EXPORT_SYMBOL_GPL(nfs_set_verifier); 1461 1462 #if IS_ENABLED(CONFIG_NFS_V4) 1463 /** 1464 * nfs_clear_verifier_delegated - clear the dir verifier delegation tag 1465 * @inode: pointer to inode 1466 * 1467 * Iterates through the dentries in the inode alias list and clears 1468 * the tag used to indicate that the dentry has been revalidated 1469 * while holding a delegation. 1470 * This function is intended for use when the delegation is being 1471 * returned or revoked. 1472 */ 1473 void nfs_clear_verifier_delegated(struct inode *inode) 1474 { 1475 struct dentry *alias; 1476 1477 if (!inode) 1478 return; 1479 spin_lock(&inode->i_lock); 1480 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 1481 spin_lock(&alias->d_lock); 1482 nfs_unset_verifier_delegated(&alias->d_time); 1483 spin_unlock(&alias->d_lock); 1484 } 1485 spin_unlock(&inode->i_lock); 1486 } 1487 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated); 1488 #endif /* IS_ENABLED(CONFIG_NFS_V4) */ 1489 1490 static int nfs_dentry_verify_change(struct inode *dir, struct dentry *dentry) 1491 { 1492 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE) && 1493 d_really_is_negative(dentry)) 1494 return dentry->d_time == inode_peek_iversion_raw(dir); 1495 return nfs_verify_change_attribute(dir, dentry->d_time); 1496 } 1497 1498 /* 1499 * A check for whether or not the parent directory has changed. 1500 * In the case it has, we assume that the dentries are untrustworthy 1501 * and may need to be looked up again. 1502 * If rcu_walk prevents us from performing a full check, return 0. 1503 */ 1504 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry, 1505 int rcu_walk) 1506 { 1507 if (IS_ROOT(dentry)) 1508 return 1; 1509 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE) 1510 return 0; 1511 if (!nfs_dentry_verify_change(dir, dentry)) 1512 return 0; 1513 /* Revalidate nfsi->cache_change_attribute before we declare a match */ 1514 if (nfs_mapping_need_revalidate_inode(dir)) { 1515 if (rcu_walk) 1516 return 0; 1517 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0) 1518 return 0; 1519 } 1520 if (!nfs_dentry_verify_change(dir, dentry)) 1521 return 0; 1522 return 1; 1523 } 1524 1525 /* 1526 * Use intent information to check whether or not we're going to do 1527 * an O_EXCL create using this path component. 1528 */ 1529 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags) 1530 { 1531 if (NFS_PROTO(dir)->version == 2) 1532 return 0; 1533 return flags & LOOKUP_EXCL; 1534 } 1535 1536 /* 1537 * Inode and filehandle revalidation for lookups. 1538 * 1539 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL, 1540 * or if the intent information indicates that we're about to open this 1541 * particular file and the "nocto" mount flag is not set. 1542 * 1543 */ 1544 static 1545 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags) 1546 { 1547 struct nfs_server *server = NFS_SERVER(inode); 1548 int ret; 1549 1550 if (IS_AUTOMOUNT(inode)) 1551 return 0; 1552 1553 if (flags & LOOKUP_OPEN) { 1554 switch (inode->i_mode & S_IFMT) { 1555 case S_IFREG: 1556 /* A NFSv4 OPEN will revalidate later */ 1557 if (server->caps & NFS_CAP_ATOMIC_OPEN) 1558 goto out; 1559 fallthrough; 1560 case S_IFDIR: 1561 if (server->flags & NFS_MOUNT_NOCTO) 1562 break; 1563 /* NFS close-to-open cache consistency validation */ 1564 goto out_force; 1565 } 1566 } 1567 1568 /* VFS wants an on-the-wire revalidation */ 1569 if (flags & LOOKUP_REVAL) 1570 goto out_force; 1571 out: 1572 if (inode->i_nlink > 0 || 1573 (inode->i_nlink == 0 && 1574 test_bit(NFS_INO_PRESERVE_UNLINKED, &NFS_I(inode)->flags))) 1575 return 0; 1576 else 1577 return -ESTALE; 1578 out_force: 1579 if (flags & LOOKUP_RCU) 1580 return -ECHILD; 1581 ret = __nfs_revalidate_inode(server, inode); 1582 if (ret != 0) 1583 return ret; 1584 goto out; 1585 } 1586 1587 static void nfs_mark_dir_for_revalidate(struct inode *inode) 1588 { 1589 spin_lock(&inode->i_lock); 1590 nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE); 1591 spin_unlock(&inode->i_lock); 1592 } 1593 1594 /* 1595 * We judge how long we want to trust negative 1596 * dentries by looking at the parent inode mtime. 1597 * 1598 * If parent mtime has changed, we revalidate, else we wait for a 1599 * period corresponding to the parent's attribute cache timeout value. 1600 * 1601 * If LOOKUP_RCU prevents us from performing a full check, return 1 1602 * suggesting a reval is needed. 1603 * 1604 * Note that when creating a new file, or looking up a rename target, 1605 * then it shouldn't be necessary to revalidate a negative dentry. 1606 */ 1607 static inline 1608 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry, 1609 unsigned int flags) 1610 { 1611 if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET)) 1612 return 0; 1613 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG) 1614 return 1; 1615 /* Case insensitive server? Revalidate negative dentries */ 1616 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE)) 1617 return 1; 1618 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU); 1619 } 1620 1621 static int 1622 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry, 1623 struct inode *inode, int error) 1624 { 1625 switch (error) { 1626 case 1: 1627 break; 1628 case -ETIMEDOUT: 1629 if (inode && (IS_ROOT(dentry) || 1630 NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)) 1631 error = 1; 1632 break; 1633 case -ESTALE: 1634 case -ENOENT: 1635 error = 0; 1636 fallthrough; 1637 default: 1638 /* 1639 * We can't d_drop the root of a disconnected tree: 1640 * its d_hash is on the s_anon list and d_drop() would hide 1641 * it from shrink_dcache_for_unmount(), leading to busy 1642 * inodes on unmount and further oopses. 1643 */ 1644 if (inode && IS_ROOT(dentry)) 1645 error = 1; 1646 break; 1647 } 1648 trace_nfs_lookup_revalidate_exit(dir, dentry, 0, error); 1649 return error; 1650 } 1651 1652 static int 1653 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry, 1654 unsigned int flags) 1655 { 1656 int ret = 1; 1657 if (nfs_neg_need_reval(dir, dentry, flags)) { 1658 if (flags & LOOKUP_RCU) 1659 return -ECHILD; 1660 ret = 0; 1661 } 1662 return nfs_lookup_revalidate_done(dir, dentry, NULL, ret); 1663 } 1664 1665 static int 1666 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry, 1667 struct inode *inode) 1668 { 1669 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1670 return nfs_lookup_revalidate_done(dir, dentry, inode, 1); 1671 } 1672 1673 static int nfs_lookup_revalidate_dentry(struct inode *dir, 1674 struct dentry *dentry, 1675 struct inode *inode, unsigned int flags) 1676 { 1677 struct nfs_fh *fhandle; 1678 struct nfs_fattr *fattr; 1679 unsigned long dir_verifier; 1680 int ret; 1681 1682 trace_nfs_lookup_revalidate_enter(dir, dentry, flags); 1683 1684 ret = -ENOMEM; 1685 fhandle = nfs_alloc_fhandle(); 1686 fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode)); 1687 if (fhandle == NULL || fattr == NULL) 1688 goto out; 1689 1690 dir_verifier = nfs_save_change_attribute(dir); 1691 ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr); 1692 if (ret < 0) 1693 goto out; 1694 1695 /* Request help from readdirplus */ 1696 nfs_lookup_advise_force_readdirplus(dir, flags); 1697 1698 ret = 0; 1699 if (nfs_compare_fh(NFS_FH(inode), fhandle)) 1700 goto out; 1701 if (nfs_refresh_inode(inode, fattr) < 0) 1702 goto out; 1703 1704 nfs_setsecurity(inode, fattr); 1705 nfs_set_verifier(dentry, dir_verifier); 1706 1707 ret = 1; 1708 out: 1709 nfs_free_fattr(fattr); 1710 nfs_free_fhandle(fhandle); 1711 1712 /* 1713 * If the lookup failed despite the dentry change attribute being 1714 * a match, then we should revalidate the directory cache. 1715 */ 1716 if (!ret && nfs_dentry_verify_change(dir, dentry)) 1717 nfs_mark_dir_for_revalidate(dir); 1718 return nfs_lookup_revalidate_done(dir, dentry, inode, ret); 1719 } 1720 1721 /* 1722 * This is called every time the dcache has a lookup hit, 1723 * and we should check whether we can really trust that 1724 * lookup. 1725 * 1726 * NOTE! The hit can be a negative hit too, don't assume 1727 * we have an inode! 1728 * 1729 * If the parent directory is seen to have changed, we throw out the 1730 * cached dentry and do a new lookup. 1731 */ 1732 static int 1733 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry, 1734 unsigned int flags) 1735 { 1736 struct inode *inode; 1737 int error = 0; 1738 1739 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE); 1740 inode = d_inode(dentry); 1741 1742 if (!inode) 1743 return nfs_lookup_revalidate_negative(dir, dentry, flags); 1744 1745 if (is_bad_inode(inode)) { 1746 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1747 __func__, dentry); 1748 goto out_bad; 1749 } 1750 1751 if ((flags & LOOKUP_RENAME_TARGET) && d_count(dentry) < 2 && 1752 nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE)) 1753 goto out_bad; 1754 1755 if (nfs_verifier_is_delegated(dentry)) 1756 return nfs_lookup_revalidate_delegated(dir, dentry, inode); 1757 1758 /* Force a full look up iff the parent directory has changed */ 1759 if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) && 1760 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) { 1761 error = nfs_lookup_verify_inode(inode, flags); 1762 if (error) { 1763 if (error == -ESTALE) 1764 nfs_mark_dir_for_revalidate(dir); 1765 goto out_bad; 1766 } 1767 goto out_valid; 1768 } 1769 1770 if (flags & LOOKUP_RCU) 1771 return -ECHILD; 1772 1773 if (NFS_STALE(inode)) 1774 goto out_bad; 1775 1776 return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags); 1777 out_valid: 1778 return nfs_lookup_revalidate_done(dir, dentry, inode, 1); 1779 out_bad: 1780 if (flags & LOOKUP_RCU) 1781 return -ECHILD; 1782 return nfs_lookup_revalidate_done(dir, dentry, inode, error); 1783 } 1784 1785 static int 1786 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags, 1787 int (*reval)(struct inode *, struct dentry *, unsigned int)) 1788 { 1789 struct dentry *parent; 1790 struct inode *dir; 1791 int ret; 1792 1793 if (flags & LOOKUP_RCU) { 1794 if (dentry->d_fsdata == NFS_FSDATA_BLOCKED) 1795 return -ECHILD; 1796 parent = READ_ONCE(dentry->d_parent); 1797 dir = d_inode_rcu(parent); 1798 if (!dir) 1799 return -ECHILD; 1800 ret = reval(dir, dentry, flags); 1801 if (parent != READ_ONCE(dentry->d_parent)) 1802 return -ECHILD; 1803 } else { 1804 /* Wait for unlink to complete - see unblock_revalidate() */ 1805 wait_var_event(&dentry->d_fsdata, 1806 smp_load_acquire(&dentry->d_fsdata) 1807 != NFS_FSDATA_BLOCKED); 1808 parent = dget_parent(dentry); 1809 ret = reval(d_inode(parent), dentry, flags); 1810 dput(parent); 1811 } 1812 return ret; 1813 } 1814 1815 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1816 { 1817 return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate); 1818 } 1819 1820 static void block_revalidate(struct dentry *dentry) 1821 { 1822 /* old devname - just in case */ 1823 kfree(dentry->d_fsdata); 1824 1825 /* Any new reference that could lead to an open 1826 * will take ->d_lock in lookup_open() -> d_lookup(). 1827 * Holding this lock ensures we cannot race with 1828 * __nfs_lookup_revalidate() and removes and need 1829 * for further barriers. 1830 */ 1831 lockdep_assert_held(&dentry->d_lock); 1832 1833 dentry->d_fsdata = NFS_FSDATA_BLOCKED; 1834 } 1835 1836 static void unblock_revalidate(struct dentry *dentry) 1837 { 1838 /* store_release ensures wait_var_event() sees the update */ 1839 smp_store_release(&dentry->d_fsdata, NULL); 1840 wake_up_var(&dentry->d_fsdata); 1841 } 1842 1843 /* 1844 * A weaker form of d_revalidate for revalidating just the d_inode(dentry) 1845 * when we don't really care about the dentry name. This is called when a 1846 * pathwalk ends on a dentry that was not found via a normal lookup in the 1847 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals). 1848 * 1849 * In this situation, we just want to verify that the inode itself is OK 1850 * since the dentry might have changed on the server. 1851 */ 1852 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags) 1853 { 1854 struct inode *inode = d_inode(dentry); 1855 int error = 0; 1856 1857 /* 1858 * I believe we can only get a negative dentry here in the case of a 1859 * procfs-style symlink. Just assume it's correct for now, but we may 1860 * eventually need to do something more here. 1861 */ 1862 if (!inode) { 1863 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n", 1864 __func__, dentry); 1865 return 1; 1866 } 1867 1868 if (is_bad_inode(inode)) { 1869 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1870 __func__, dentry); 1871 return 0; 1872 } 1873 1874 error = nfs_lookup_verify_inode(inode, flags); 1875 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n", 1876 __func__, inode->i_ino, error ? "invalid" : "valid"); 1877 return !error; 1878 } 1879 1880 /* 1881 * This is called from dput() when d_count is going to 0. 1882 */ 1883 static int nfs_dentry_delete(const struct dentry *dentry) 1884 { 1885 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n", 1886 dentry, dentry->d_flags); 1887 1888 /* Unhash any dentry with a stale inode */ 1889 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry))) 1890 return 1; 1891 1892 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1893 /* Unhash it, so that ->d_iput() would be called */ 1894 return 1; 1895 } 1896 if (!(dentry->d_sb->s_flags & SB_ACTIVE)) { 1897 /* Unhash it, so that ancestors of killed async unlink 1898 * files will be cleaned up during umount */ 1899 return 1; 1900 } 1901 return 0; 1902 1903 } 1904 1905 /* Ensure that we revalidate inode->i_nlink */ 1906 static void nfs_drop_nlink(struct inode *inode) 1907 { 1908 spin_lock(&inode->i_lock); 1909 /* drop the inode if we're reasonably sure this is the last link */ 1910 if (inode->i_nlink > 0) 1911 drop_nlink(inode); 1912 NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter(); 1913 nfs_set_cache_invalid( 1914 inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME | 1915 NFS_INO_INVALID_NLINK); 1916 spin_unlock(&inode->i_lock); 1917 } 1918 1919 /* 1920 * Called when the dentry loses inode. 1921 * We use it to clean up silly-renamed files. 1922 */ 1923 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode) 1924 { 1925 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1926 nfs_complete_unlink(dentry, inode); 1927 nfs_drop_nlink(inode); 1928 } 1929 iput(inode); 1930 } 1931 1932 static void nfs_d_release(struct dentry *dentry) 1933 { 1934 /* free cached devname value, if it survived that far */ 1935 if (unlikely(dentry->d_fsdata)) { 1936 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1937 WARN_ON(1); 1938 else 1939 kfree(dentry->d_fsdata); 1940 } 1941 } 1942 1943 const struct dentry_operations nfs_dentry_operations = { 1944 .d_revalidate = nfs_lookup_revalidate, 1945 .d_weak_revalidate = nfs_weak_revalidate, 1946 .d_delete = nfs_dentry_delete, 1947 .d_iput = nfs_dentry_iput, 1948 .d_automount = nfs_d_automount, 1949 .d_release = nfs_d_release, 1950 }; 1951 EXPORT_SYMBOL_GPL(nfs_dentry_operations); 1952 1953 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 1954 { 1955 struct dentry *res; 1956 struct inode *inode = NULL; 1957 struct nfs_fh *fhandle = NULL; 1958 struct nfs_fattr *fattr = NULL; 1959 unsigned long dir_verifier; 1960 int error; 1961 1962 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry); 1963 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP); 1964 1965 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen)) 1966 return ERR_PTR(-ENAMETOOLONG); 1967 1968 /* 1969 * If we're doing an exclusive create, optimize away the lookup 1970 * but don't hash the dentry. 1971 */ 1972 if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET) 1973 return NULL; 1974 1975 res = ERR_PTR(-ENOMEM); 1976 fhandle = nfs_alloc_fhandle(); 1977 fattr = nfs_alloc_fattr_with_label(NFS_SERVER(dir)); 1978 if (fhandle == NULL || fattr == NULL) 1979 goto out; 1980 1981 dir_verifier = nfs_save_change_attribute(dir); 1982 trace_nfs_lookup_enter(dir, dentry, flags); 1983 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr); 1984 if (error == -ENOENT) { 1985 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE)) 1986 dir_verifier = inode_peek_iversion_raw(dir); 1987 goto no_entry; 1988 } 1989 if (error < 0) { 1990 res = ERR_PTR(error); 1991 goto out; 1992 } 1993 inode = nfs_fhget(dentry->d_sb, fhandle, fattr); 1994 res = ERR_CAST(inode); 1995 if (IS_ERR(res)) 1996 goto out; 1997 1998 /* Notify readdir to use READDIRPLUS */ 1999 nfs_lookup_advise_force_readdirplus(dir, flags); 2000 2001 no_entry: 2002 res = d_splice_alias(inode, dentry); 2003 if (res != NULL) { 2004 if (IS_ERR(res)) 2005 goto out; 2006 dentry = res; 2007 } 2008 nfs_set_verifier(dentry, dir_verifier); 2009 out: 2010 trace_nfs_lookup_exit(dir, dentry, flags, PTR_ERR_OR_ZERO(res)); 2011 nfs_free_fattr(fattr); 2012 nfs_free_fhandle(fhandle); 2013 return res; 2014 } 2015 EXPORT_SYMBOL_GPL(nfs_lookup); 2016 2017 void nfs_d_prune_case_insensitive_aliases(struct inode *inode) 2018 { 2019 /* Case insensitive server? Revalidate dentries */ 2020 if (inode && nfs_server_capable(inode, NFS_CAP_CASE_INSENSITIVE)) 2021 d_prune_aliases(inode); 2022 } 2023 EXPORT_SYMBOL_GPL(nfs_d_prune_case_insensitive_aliases); 2024 2025 #if IS_ENABLED(CONFIG_NFS_V4) 2026 static int nfs4_lookup_revalidate(struct dentry *, unsigned int); 2027 2028 const struct dentry_operations nfs4_dentry_operations = { 2029 .d_revalidate = nfs4_lookup_revalidate, 2030 .d_weak_revalidate = nfs_weak_revalidate, 2031 .d_delete = nfs_dentry_delete, 2032 .d_iput = nfs_dentry_iput, 2033 .d_automount = nfs_d_automount, 2034 .d_release = nfs_d_release, 2035 }; 2036 EXPORT_SYMBOL_GPL(nfs4_dentry_operations); 2037 2038 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp) 2039 { 2040 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp); 2041 } 2042 2043 static int do_open(struct inode *inode, struct file *filp) 2044 { 2045 nfs_fscache_open_file(inode, filp); 2046 return 0; 2047 } 2048 2049 static int nfs_finish_open(struct nfs_open_context *ctx, 2050 struct dentry *dentry, 2051 struct file *file, unsigned open_flags) 2052 { 2053 int err; 2054 2055 err = finish_open(file, dentry, do_open); 2056 if (err) 2057 goto out; 2058 if (S_ISREG(file_inode(file)->i_mode)) 2059 nfs_file_set_open_context(file, ctx); 2060 else 2061 err = -EOPENSTALE; 2062 out: 2063 return err; 2064 } 2065 2066 int nfs_atomic_open(struct inode *dir, struct dentry *dentry, 2067 struct file *file, unsigned open_flags, 2068 umode_t mode) 2069 { 2070 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 2071 struct nfs_open_context *ctx; 2072 struct dentry *res; 2073 struct iattr attr = { .ia_valid = ATTR_OPEN }; 2074 struct inode *inode; 2075 unsigned int lookup_flags = 0; 2076 unsigned long dir_verifier; 2077 bool switched = false; 2078 int created = 0; 2079 int err; 2080 2081 /* Expect a negative dentry */ 2082 BUG_ON(d_inode(dentry)); 2083 2084 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n", 2085 dir->i_sb->s_id, dir->i_ino, dentry); 2086 2087 err = nfs_check_flags(open_flags); 2088 if (err) 2089 return err; 2090 2091 /* NFS only supports OPEN on regular files */ 2092 if ((open_flags & O_DIRECTORY)) { 2093 if (!d_in_lookup(dentry)) { 2094 /* 2095 * Hashed negative dentry with O_DIRECTORY: dentry was 2096 * revalidated and is fine, no need to perform lookup 2097 * again 2098 */ 2099 return -ENOENT; 2100 } 2101 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY; 2102 goto no_open; 2103 } 2104 2105 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 2106 return -ENAMETOOLONG; 2107 2108 if (open_flags & O_CREAT) { 2109 struct nfs_server *server = NFS_SERVER(dir); 2110 2111 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK)) 2112 mode &= ~current_umask(); 2113 2114 attr.ia_valid |= ATTR_MODE; 2115 attr.ia_mode = mode; 2116 } 2117 if (open_flags & O_TRUNC) { 2118 attr.ia_valid |= ATTR_SIZE; 2119 attr.ia_size = 0; 2120 } 2121 2122 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) { 2123 d_drop(dentry); 2124 switched = true; 2125 dentry = d_alloc_parallel(dentry->d_parent, 2126 &dentry->d_name, &wq); 2127 if (IS_ERR(dentry)) 2128 return PTR_ERR(dentry); 2129 if (unlikely(!d_in_lookup(dentry))) 2130 return finish_no_open(file, dentry); 2131 } 2132 2133 ctx = create_nfs_open_context(dentry, open_flags, file); 2134 err = PTR_ERR(ctx); 2135 if (IS_ERR(ctx)) 2136 goto out; 2137 2138 trace_nfs_atomic_open_enter(dir, ctx, open_flags); 2139 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created); 2140 if (created) 2141 file->f_mode |= FMODE_CREATED; 2142 if (IS_ERR(inode)) { 2143 err = PTR_ERR(inode); 2144 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 2145 put_nfs_open_context(ctx); 2146 d_drop(dentry); 2147 switch (err) { 2148 case -ENOENT: 2149 d_splice_alias(NULL, dentry); 2150 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE)) 2151 dir_verifier = inode_peek_iversion_raw(dir); 2152 else 2153 dir_verifier = nfs_save_change_attribute(dir); 2154 nfs_set_verifier(dentry, dir_verifier); 2155 break; 2156 case -EISDIR: 2157 case -ENOTDIR: 2158 goto no_open; 2159 case -ELOOP: 2160 if (!(open_flags & O_NOFOLLOW)) 2161 goto no_open; 2162 break; 2163 /* case -EINVAL: */ 2164 default: 2165 break; 2166 } 2167 goto out; 2168 } 2169 file->f_mode |= FMODE_CAN_ODIRECT; 2170 2171 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags); 2172 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 2173 put_nfs_open_context(ctx); 2174 out: 2175 if (unlikely(switched)) { 2176 d_lookup_done(dentry); 2177 dput(dentry); 2178 } 2179 return err; 2180 2181 no_open: 2182 res = nfs_lookup(dir, dentry, lookup_flags); 2183 if (!res) { 2184 inode = d_inode(dentry); 2185 if ((lookup_flags & LOOKUP_DIRECTORY) && inode && 2186 !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) 2187 res = ERR_PTR(-ENOTDIR); 2188 else if (inode && S_ISREG(inode->i_mode)) 2189 res = ERR_PTR(-EOPENSTALE); 2190 } else if (!IS_ERR(res)) { 2191 inode = d_inode(res); 2192 if ((lookup_flags & LOOKUP_DIRECTORY) && inode && 2193 !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) { 2194 dput(res); 2195 res = ERR_PTR(-ENOTDIR); 2196 } else if (inode && S_ISREG(inode->i_mode)) { 2197 dput(res); 2198 res = ERR_PTR(-EOPENSTALE); 2199 } 2200 } 2201 if (switched) { 2202 d_lookup_done(dentry); 2203 if (!res) 2204 res = dentry; 2205 else 2206 dput(dentry); 2207 } 2208 if (IS_ERR(res)) 2209 return PTR_ERR(res); 2210 return finish_no_open(file, res); 2211 } 2212 EXPORT_SYMBOL_GPL(nfs_atomic_open); 2213 2214 static int 2215 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry, 2216 unsigned int flags) 2217 { 2218 struct inode *inode; 2219 2220 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY)) 2221 goto full_reval; 2222 if (d_mountpoint(dentry)) 2223 goto full_reval; 2224 2225 inode = d_inode(dentry); 2226 2227 /* We can't create new files in nfs_open_revalidate(), so we 2228 * optimize away revalidation of negative dentries. 2229 */ 2230 if (inode == NULL) 2231 goto full_reval; 2232 2233 if (nfs_verifier_is_delegated(dentry)) 2234 return nfs_lookup_revalidate_delegated(dir, dentry, inode); 2235 2236 /* NFS only supports OPEN on regular files */ 2237 if (!S_ISREG(inode->i_mode)) 2238 goto full_reval; 2239 2240 /* We cannot do exclusive creation on a positive dentry */ 2241 if (flags & (LOOKUP_EXCL | LOOKUP_REVAL)) 2242 goto reval_dentry; 2243 2244 /* Check if the directory changed */ 2245 if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) 2246 goto reval_dentry; 2247 2248 /* Let f_op->open() actually open (and revalidate) the file */ 2249 return 1; 2250 reval_dentry: 2251 if (flags & LOOKUP_RCU) 2252 return -ECHILD; 2253 return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags); 2254 2255 full_reval: 2256 return nfs_do_lookup_revalidate(dir, dentry, flags); 2257 } 2258 2259 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags) 2260 { 2261 return __nfs_lookup_revalidate(dentry, flags, 2262 nfs4_do_lookup_revalidate); 2263 } 2264 2265 #endif /* CONFIG_NFSV4 */ 2266 2267 struct dentry * 2268 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle, 2269 struct nfs_fattr *fattr) 2270 { 2271 struct dentry *parent = dget_parent(dentry); 2272 struct inode *dir = d_inode(parent); 2273 struct inode *inode; 2274 struct dentry *d; 2275 int error; 2276 2277 d_drop(dentry); 2278 2279 if (fhandle->size == 0) { 2280 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr); 2281 if (error) 2282 goto out_error; 2283 } 2284 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2285 if (!(fattr->valid & NFS_ATTR_FATTR)) { 2286 struct nfs_server *server = NFS_SB(dentry->d_sb); 2287 error = server->nfs_client->rpc_ops->getattr(server, fhandle, 2288 fattr, NULL); 2289 if (error < 0) 2290 goto out_error; 2291 } 2292 inode = nfs_fhget(dentry->d_sb, fhandle, fattr); 2293 d = d_splice_alias(inode, dentry); 2294 out: 2295 dput(parent); 2296 return d; 2297 out_error: 2298 d = ERR_PTR(error); 2299 goto out; 2300 } 2301 EXPORT_SYMBOL_GPL(nfs_add_or_obtain); 2302 2303 /* 2304 * Code common to create, mkdir, and mknod. 2305 */ 2306 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle, 2307 struct nfs_fattr *fattr) 2308 { 2309 struct dentry *d; 2310 2311 d = nfs_add_or_obtain(dentry, fhandle, fattr); 2312 if (IS_ERR(d)) 2313 return PTR_ERR(d); 2314 2315 /* Callers don't care */ 2316 dput(d); 2317 return 0; 2318 } 2319 EXPORT_SYMBOL_GPL(nfs_instantiate); 2320 2321 /* 2322 * Following a failed create operation, we drop the dentry rather 2323 * than retain a negative dentry. This avoids a problem in the event 2324 * that the operation succeeded on the server, but an error in the 2325 * reply path made it appear to have failed. 2326 */ 2327 int nfs_create(struct mnt_idmap *idmap, struct inode *dir, 2328 struct dentry *dentry, umode_t mode, bool excl) 2329 { 2330 struct iattr attr; 2331 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT; 2332 int error; 2333 2334 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n", 2335 dir->i_sb->s_id, dir->i_ino, dentry); 2336 2337 attr.ia_mode = mode; 2338 attr.ia_valid = ATTR_MODE; 2339 2340 trace_nfs_create_enter(dir, dentry, open_flags); 2341 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags); 2342 trace_nfs_create_exit(dir, dentry, open_flags, error); 2343 if (error != 0) 2344 goto out_err; 2345 return 0; 2346 out_err: 2347 d_drop(dentry); 2348 return error; 2349 } 2350 EXPORT_SYMBOL_GPL(nfs_create); 2351 2352 /* 2353 * See comments for nfs_proc_create regarding failed operations. 2354 */ 2355 int 2356 nfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 2357 struct dentry *dentry, umode_t mode, dev_t rdev) 2358 { 2359 struct iattr attr; 2360 int status; 2361 2362 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n", 2363 dir->i_sb->s_id, dir->i_ino, dentry); 2364 2365 attr.ia_mode = mode; 2366 attr.ia_valid = ATTR_MODE; 2367 2368 trace_nfs_mknod_enter(dir, dentry); 2369 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev); 2370 trace_nfs_mknod_exit(dir, dentry, status); 2371 if (status != 0) 2372 goto out_err; 2373 return 0; 2374 out_err: 2375 d_drop(dentry); 2376 return status; 2377 } 2378 EXPORT_SYMBOL_GPL(nfs_mknod); 2379 2380 /* 2381 * See comments for nfs_proc_create regarding failed operations. 2382 */ 2383 int nfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 2384 struct dentry *dentry, umode_t mode) 2385 { 2386 struct iattr attr; 2387 int error; 2388 2389 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n", 2390 dir->i_sb->s_id, dir->i_ino, dentry); 2391 2392 attr.ia_valid = ATTR_MODE; 2393 attr.ia_mode = mode | S_IFDIR; 2394 2395 trace_nfs_mkdir_enter(dir, dentry); 2396 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr); 2397 trace_nfs_mkdir_exit(dir, dentry, error); 2398 if (error != 0) 2399 goto out_err; 2400 return 0; 2401 out_err: 2402 d_drop(dentry); 2403 return error; 2404 } 2405 EXPORT_SYMBOL_GPL(nfs_mkdir); 2406 2407 static void nfs_dentry_handle_enoent(struct dentry *dentry) 2408 { 2409 if (simple_positive(dentry)) 2410 d_delete(dentry); 2411 } 2412 2413 static void nfs_dentry_remove_handle_error(struct inode *dir, 2414 struct dentry *dentry, int error) 2415 { 2416 switch (error) { 2417 case -ENOENT: 2418 if (d_really_is_positive(dentry)) 2419 d_delete(dentry); 2420 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2421 break; 2422 case 0: 2423 nfs_d_prune_case_insensitive_aliases(d_inode(dentry)); 2424 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2425 } 2426 } 2427 2428 int nfs_rmdir(struct inode *dir, struct dentry *dentry) 2429 { 2430 int error; 2431 2432 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n", 2433 dir->i_sb->s_id, dir->i_ino, dentry); 2434 2435 trace_nfs_rmdir_enter(dir, dentry); 2436 if (d_really_is_positive(dentry)) { 2437 down_write(&NFS_I(d_inode(dentry))->rmdir_sem); 2438 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 2439 /* Ensure the VFS deletes this inode */ 2440 switch (error) { 2441 case 0: 2442 clear_nlink(d_inode(dentry)); 2443 break; 2444 case -ENOENT: 2445 nfs_dentry_handle_enoent(dentry); 2446 } 2447 up_write(&NFS_I(d_inode(dentry))->rmdir_sem); 2448 } else 2449 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 2450 nfs_dentry_remove_handle_error(dir, dentry, error); 2451 trace_nfs_rmdir_exit(dir, dentry, error); 2452 2453 return error; 2454 } 2455 EXPORT_SYMBOL_GPL(nfs_rmdir); 2456 2457 /* 2458 * Remove a file after making sure there are no pending writes, 2459 * and after checking that the file has only one user. 2460 * 2461 * We invalidate the attribute cache and free the inode prior to the operation 2462 * to avoid possible races if the server reuses the inode. 2463 */ 2464 static int nfs_safe_remove(struct dentry *dentry) 2465 { 2466 struct inode *dir = d_inode(dentry->d_parent); 2467 struct inode *inode = d_inode(dentry); 2468 int error = -EBUSY; 2469 2470 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry); 2471 2472 /* If the dentry was sillyrenamed, we simply call d_delete() */ 2473 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 2474 error = 0; 2475 goto out; 2476 } 2477 2478 trace_nfs_remove_enter(dir, dentry); 2479 if (inode != NULL) { 2480 error = NFS_PROTO(dir)->remove(dir, dentry); 2481 if (error == 0) 2482 nfs_drop_nlink(inode); 2483 } else 2484 error = NFS_PROTO(dir)->remove(dir, dentry); 2485 if (error == -ENOENT) 2486 nfs_dentry_handle_enoent(dentry); 2487 trace_nfs_remove_exit(dir, dentry, error); 2488 out: 2489 return error; 2490 } 2491 2492 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode 2493 * belongs to an active ".nfs..." file and we return -EBUSY. 2494 * 2495 * If sillyrename() returns 0, we do nothing, otherwise we unlink. 2496 */ 2497 int nfs_unlink(struct inode *dir, struct dentry *dentry) 2498 { 2499 int error; 2500 2501 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id, 2502 dir->i_ino, dentry); 2503 2504 trace_nfs_unlink_enter(dir, dentry); 2505 spin_lock(&dentry->d_lock); 2506 if (d_count(dentry) > 1 && !test_bit(NFS_INO_PRESERVE_UNLINKED, 2507 &NFS_I(d_inode(dentry))->flags)) { 2508 spin_unlock(&dentry->d_lock); 2509 /* Start asynchronous writeout of the inode */ 2510 write_inode_now(d_inode(dentry), 0); 2511 error = nfs_sillyrename(dir, dentry); 2512 goto out; 2513 } 2514 /* We must prevent any concurrent open until the unlink 2515 * completes. ->d_revalidate will wait for ->d_fsdata 2516 * to clear. We set it here to ensure no lookup succeeds until 2517 * the unlink is complete on the server. 2518 */ 2519 error = -ETXTBSY; 2520 if (WARN_ON(dentry->d_flags & DCACHE_NFSFS_RENAMED) || 2521 WARN_ON(dentry->d_fsdata == NFS_FSDATA_BLOCKED)) { 2522 spin_unlock(&dentry->d_lock); 2523 goto out; 2524 } 2525 block_revalidate(dentry); 2526 2527 spin_unlock(&dentry->d_lock); 2528 error = nfs_safe_remove(dentry); 2529 nfs_dentry_remove_handle_error(dir, dentry, error); 2530 unblock_revalidate(dentry); 2531 out: 2532 trace_nfs_unlink_exit(dir, dentry, error); 2533 return error; 2534 } 2535 EXPORT_SYMBOL_GPL(nfs_unlink); 2536 2537 /* 2538 * To create a symbolic link, most file systems instantiate a new inode, 2539 * add a page to it containing the path, then write it out to the disk 2540 * using prepare_write/commit_write. 2541 * 2542 * Unfortunately the NFS client can't create the in-core inode first 2543 * because it needs a file handle to create an in-core inode (see 2544 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the 2545 * symlink request has completed on the server. 2546 * 2547 * So instead we allocate a raw page, copy the symname into it, then do 2548 * the SYMLINK request with the page as the buffer. If it succeeds, we 2549 * now have a new file handle and can instantiate an in-core NFS inode 2550 * and move the raw page into its mapping. 2551 */ 2552 int nfs_symlink(struct mnt_idmap *idmap, struct inode *dir, 2553 struct dentry *dentry, const char *symname) 2554 { 2555 struct page *page; 2556 char *kaddr; 2557 struct iattr attr; 2558 unsigned int pathlen = strlen(symname); 2559 int error; 2560 2561 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id, 2562 dir->i_ino, dentry, symname); 2563 2564 if (pathlen > PAGE_SIZE) 2565 return -ENAMETOOLONG; 2566 2567 attr.ia_mode = S_IFLNK | S_IRWXUGO; 2568 attr.ia_valid = ATTR_MODE; 2569 2570 page = alloc_page(GFP_USER); 2571 if (!page) 2572 return -ENOMEM; 2573 2574 kaddr = page_address(page); 2575 memcpy(kaddr, symname, pathlen); 2576 if (pathlen < PAGE_SIZE) 2577 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen); 2578 2579 trace_nfs_symlink_enter(dir, dentry); 2580 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr); 2581 trace_nfs_symlink_exit(dir, dentry, error); 2582 if (error != 0) { 2583 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n", 2584 dir->i_sb->s_id, dir->i_ino, 2585 dentry, symname, error); 2586 d_drop(dentry); 2587 __free_page(page); 2588 return error; 2589 } 2590 2591 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2592 2593 /* 2594 * No big deal if we can't add this page to the page cache here. 2595 * READLINK will get the missing page from the server if needed. 2596 */ 2597 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0, 2598 GFP_KERNEL)) { 2599 SetPageUptodate(page); 2600 unlock_page(page); 2601 /* 2602 * add_to_page_cache_lru() grabs an extra page refcount. 2603 * Drop it here to avoid leaking this page later. 2604 */ 2605 put_page(page); 2606 } else 2607 __free_page(page); 2608 2609 return 0; 2610 } 2611 EXPORT_SYMBOL_GPL(nfs_symlink); 2612 2613 int 2614 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2615 { 2616 struct inode *inode = d_inode(old_dentry); 2617 int error; 2618 2619 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n", 2620 old_dentry, dentry); 2621 2622 trace_nfs_link_enter(inode, dir, dentry); 2623 d_drop(dentry); 2624 if (S_ISREG(inode->i_mode)) 2625 nfs_sync_inode(inode); 2626 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name); 2627 if (error == 0) { 2628 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2629 ihold(inode); 2630 d_add(dentry, inode); 2631 } 2632 trace_nfs_link_exit(inode, dir, dentry, error); 2633 return error; 2634 } 2635 EXPORT_SYMBOL_GPL(nfs_link); 2636 2637 static void 2638 nfs_unblock_rename(struct rpc_task *task, struct nfs_renamedata *data) 2639 { 2640 struct dentry *new_dentry = data->new_dentry; 2641 2642 unblock_revalidate(new_dentry); 2643 } 2644 2645 /* 2646 * RENAME 2647 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a 2648 * different file handle for the same inode after a rename (e.g. when 2649 * moving to a different directory). A fail-safe method to do so would 2650 * be to look up old_dir/old_name, create a link to new_dir/new_name and 2651 * rename the old file using the sillyrename stuff. This way, the original 2652 * file in old_dir will go away when the last process iput()s the inode. 2653 * 2654 * FIXED. 2655 * 2656 * It actually works quite well. One needs to have the possibility for 2657 * at least one ".nfs..." file in each directory the file ever gets 2658 * moved or linked to which happens automagically with the new 2659 * implementation that only depends on the dcache stuff instead of 2660 * using the inode layer 2661 * 2662 * Unfortunately, things are a little more complicated than indicated 2663 * above. For a cross-directory move, we want to make sure we can get 2664 * rid of the old inode after the operation. This means there must be 2665 * no pending writes (if it's a file), and the use count must be 1. 2666 * If these conditions are met, we can drop the dentries before doing 2667 * the rename. 2668 */ 2669 int nfs_rename(struct mnt_idmap *idmap, struct inode *old_dir, 2670 struct dentry *old_dentry, struct inode *new_dir, 2671 struct dentry *new_dentry, unsigned int flags) 2672 { 2673 struct inode *old_inode = d_inode(old_dentry); 2674 struct inode *new_inode = d_inode(new_dentry); 2675 struct dentry *dentry = NULL; 2676 struct rpc_task *task; 2677 bool must_unblock = false; 2678 int error = -EBUSY; 2679 2680 if (flags) 2681 return -EINVAL; 2682 2683 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n", 2684 old_dentry, new_dentry, 2685 d_count(new_dentry)); 2686 2687 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry); 2688 /* 2689 * For non-directories, check whether the target is busy and if so, 2690 * make a copy of the dentry and then do a silly-rename. If the 2691 * silly-rename succeeds, the copied dentry is hashed and becomes 2692 * the new target. 2693 */ 2694 if (new_inode && !S_ISDIR(new_inode->i_mode)) { 2695 /* We must prevent any concurrent open until the unlink 2696 * completes. ->d_revalidate will wait for ->d_fsdata 2697 * to clear. We set it here to ensure no lookup succeeds until 2698 * the unlink is complete on the server. 2699 */ 2700 error = -ETXTBSY; 2701 if (WARN_ON(new_dentry->d_flags & DCACHE_NFSFS_RENAMED) || 2702 WARN_ON(new_dentry->d_fsdata == NFS_FSDATA_BLOCKED)) 2703 goto out; 2704 2705 spin_lock(&new_dentry->d_lock); 2706 if (d_count(new_dentry) > 2) { 2707 int err; 2708 2709 spin_unlock(&new_dentry->d_lock); 2710 2711 /* copy the target dentry's name */ 2712 dentry = d_alloc(new_dentry->d_parent, 2713 &new_dentry->d_name); 2714 if (!dentry) 2715 goto out; 2716 2717 /* silly-rename the existing target ... */ 2718 err = nfs_sillyrename(new_dir, new_dentry); 2719 if (err) 2720 goto out; 2721 2722 new_dentry = dentry; 2723 new_inode = NULL; 2724 } else { 2725 block_revalidate(new_dentry); 2726 must_unblock = true; 2727 spin_unlock(&new_dentry->d_lock); 2728 } 2729 2730 } 2731 2732 if (S_ISREG(old_inode->i_mode)) 2733 nfs_sync_inode(old_inode); 2734 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, 2735 must_unblock ? nfs_unblock_rename : NULL); 2736 if (IS_ERR(task)) { 2737 if (must_unblock) 2738 unblock_revalidate(new_dentry); 2739 error = PTR_ERR(task); 2740 goto out; 2741 } 2742 2743 error = rpc_wait_for_completion_task(task); 2744 if (error != 0) { 2745 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1; 2746 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */ 2747 smp_wmb(); 2748 } else 2749 error = task->tk_status; 2750 rpc_put_task(task); 2751 /* Ensure the inode attributes are revalidated */ 2752 if (error == 0) { 2753 spin_lock(&old_inode->i_lock); 2754 NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter(); 2755 nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE | 2756 NFS_INO_INVALID_CTIME | 2757 NFS_INO_REVAL_FORCED); 2758 spin_unlock(&old_inode->i_lock); 2759 } 2760 out: 2761 trace_nfs_rename_exit(old_dir, old_dentry, 2762 new_dir, new_dentry, error); 2763 if (!error) { 2764 if (new_inode != NULL) 2765 nfs_drop_nlink(new_inode); 2766 /* 2767 * The d_move() should be here instead of in an async RPC completion 2768 * handler because we need the proper locks to move the dentry. If 2769 * we're interrupted by a signal, the async RPC completion handler 2770 * should mark the directories for revalidation. 2771 */ 2772 d_move(old_dentry, new_dentry); 2773 nfs_set_verifier(old_dentry, 2774 nfs_save_change_attribute(new_dir)); 2775 } else if (error == -ENOENT) 2776 nfs_dentry_handle_enoent(old_dentry); 2777 2778 /* new dentry created? */ 2779 if (dentry) 2780 dput(dentry); 2781 return error; 2782 } 2783 EXPORT_SYMBOL_GPL(nfs_rename); 2784 2785 static DEFINE_SPINLOCK(nfs_access_lru_lock); 2786 static LIST_HEAD(nfs_access_lru_list); 2787 static atomic_long_t nfs_access_nr_entries; 2788 2789 static unsigned long nfs_access_max_cachesize = 4*1024*1024; 2790 module_param(nfs_access_max_cachesize, ulong, 0644); 2791 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length"); 2792 2793 static void nfs_access_free_entry(struct nfs_access_entry *entry) 2794 { 2795 put_group_info(entry->group_info); 2796 kfree_rcu(entry, rcu_head); 2797 smp_mb__before_atomic(); 2798 atomic_long_dec(&nfs_access_nr_entries); 2799 smp_mb__after_atomic(); 2800 } 2801 2802 static void nfs_access_free_list(struct list_head *head) 2803 { 2804 struct nfs_access_entry *cache; 2805 2806 while (!list_empty(head)) { 2807 cache = list_entry(head->next, struct nfs_access_entry, lru); 2808 list_del(&cache->lru); 2809 nfs_access_free_entry(cache); 2810 } 2811 } 2812 2813 static unsigned long 2814 nfs_do_access_cache_scan(unsigned int nr_to_scan) 2815 { 2816 LIST_HEAD(head); 2817 struct nfs_inode *nfsi, *next; 2818 struct nfs_access_entry *cache; 2819 long freed = 0; 2820 2821 spin_lock(&nfs_access_lru_lock); 2822 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) { 2823 struct inode *inode; 2824 2825 if (nr_to_scan-- == 0) 2826 break; 2827 inode = &nfsi->vfs_inode; 2828 spin_lock(&inode->i_lock); 2829 if (list_empty(&nfsi->access_cache_entry_lru)) 2830 goto remove_lru_entry; 2831 cache = list_entry(nfsi->access_cache_entry_lru.next, 2832 struct nfs_access_entry, lru); 2833 list_move(&cache->lru, &head); 2834 rb_erase(&cache->rb_node, &nfsi->access_cache); 2835 freed++; 2836 if (!list_empty(&nfsi->access_cache_entry_lru)) 2837 list_move_tail(&nfsi->access_cache_inode_lru, 2838 &nfs_access_lru_list); 2839 else { 2840 remove_lru_entry: 2841 list_del_init(&nfsi->access_cache_inode_lru); 2842 smp_mb__before_atomic(); 2843 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags); 2844 smp_mb__after_atomic(); 2845 } 2846 spin_unlock(&inode->i_lock); 2847 } 2848 spin_unlock(&nfs_access_lru_lock); 2849 nfs_access_free_list(&head); 2850 return freed; 2851 } 2852 2853 unsigned long 2854 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc) 2855 { 2856 int nr_to_scan = sc->nr_to_scan; 2857 gfp_t gfp_mask = sc->gfp_mask; 2858 2859 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL) 2860 return SHRINK_STOP; 2861 return nfs_do_access_cache_scan(nr_to_scan); 2862 } 2863 2864 2865 unsigned long 2866 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc) 2867 { 2868 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries)); 2869 } 2870 2871 static void 2872 nfs_access_cache_enforce_limit(void) 2873 { 2874 long nr_entries = atomic_long_read(&nfs_access_nr_entries); 2875 unsigned long diff; 2876 unsigned int nr_to_scan; 2877 2878 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize) 2879 return; 2880 nr_to_scan = 100; 2881 diff = nr_entries - nfs_access_max_cachesize; 2882 if (diff < nr_to_scan) 2883 nr_to_scan = diff; 2884 nfs_do_access_cache_scan(nr_to_scan); 2885 } 2886 2887 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head) 2888 { 2889 struct rb_root *root_node = &nfsi->access_cache; 2890 struct rb_node *n; 2891 struct nfs_access_entry *entry; 2892 2893 /* Unhook entries from the cache */ 2894 while ((n = rb_first(root_node)) != NULL) { 2895 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2896 rb_erase(n, root_node); 2897 list_move(&entry->lru, head); 2898 } 2899 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS; 2900 } 2901 2902 void nfs_access_zap_cache(struct inode *inode) 2903 { 2904 LIST_HEAD(head); 2905 2906 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0) 2907 return; 2908 /* Remove from global LRU init */ 2909 spin_lock(&nfs_access_lru_lock); 2910 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2911 list_del_init(&NFS_I(inode)->access_cache_inode_lru); 2912 2913 spin_lock(&inode->i_lock); 2914 __nfs_access_zap_cache(NFS_I(inode), &head); 2915 spin_unlock(&inode->i_lock); 2916 spin_unlock(&nfs_access_lru_lock); 2917 nfs_access_free_list(&head); 2918 } 2919 EXPORT_SYMBOL_GPL(nfs_access_zap_cache); 2920 2921 static int access_cmp(const struct cred *a, const struct nfs_access_entry *b) 2922 { 2923 struct group_info *ga, *gb; 2924 int g; 2925 2926 if (uid_lt(a->fsuid, b->fsuid)) 2927 return -1; 2928 if (uid_gt(a->fsuid, b->fsuid)) 2929 return 1; 2930 2931 if (gid_lt(a->fsgid, b->fsgid)) 2932 return -1; 2933 if (gid_gt(a->fsgid, b->fsgid)) 2934 return 1; 2935 2936 ga = a->group_info; 2937 gb = b->group_info; 2938 if (ga == gb) 2939 return 0; 2940 if (ga == NULL) 2941 return -1; 2942 if (gb == NULL) 2943 return 1; 2944 if (ga->ngroups < gb->ngroups) 2945 return -1; 2946 if (ga->ngroups > gb->ngroups) 2947 return 1; 2948 2949 for (g = 0; g < ga->ngroups; g++) { 2950 if (gid_lt(ga->gid[g], gb->gid[g])) 2951 return -1; 2952 if (gid_gt(ga->gid[g], gb->gid[g])) 2953 return 1; 2954 } 2955 return 0; 2956 } 2957 2958 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred) 2959 { 2960 struct rb_node *n = NFS_I(inode)->access_cache.rb_node; 2961 2962 while (n != NULL) { 2963 struct nfs_access_entry *entry = 2964 rb_entry(n, struct nfs_access_entry, rb_node); 2965 int cmp = access_cmp(cred, entry); 2966 2967 if (cmp < 0) 2968 n = n->rb_left; 2969 else if (cmp > 0) 2970 n = n->rb_right; 2971 else 2972 return entry; 2973 } 2974 return NULL; 2975 } 2976 2977 static u64 nfs_access_login_time(const struct task_struct *task, 2978 const struct cred *cred) 2979 { 2980 const struct task_struct *parent; 2981 const struct cred *pcred; 2982 u64 ret; 2983 2984 rcu_read_lock(); 2985 for (;;) { 2986 parent = rcu_dereference(task->real_parent); 2987 pcred = __task_cred(parent); 2988 if (parent == task || cred_fscmp(pcred, cred) != 0) 2989 break; 2990 task = parent; 2991 } 2992 ret = task->start_time; 2993 rcu_read_unlock(); 2994 return ret; 2995 } 2996 2997 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, u32 *mask, bool may_block) 2998 { 2999 struct nfs_inode *nfsi = NFS_I(inode); 3000 u64 login_time = nfs_access_login_time(current, cred); 3001 struct nfs_access_entry *cache; 3002 bool retry = true; 3003 int err; 3004 3005 spin_lock(&inode->i_lock); 3006 for(;;) { 3007 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 3008 goto out_zap; 3009 cache = nfs_access_search_rbtree(inode, cred); 3010 err = -ENOENT; 3011 if (cache == NULL) 3012 goto out; 3013 /* Found an entry, is our attribute cache valid? */ 3014 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) 3015 break; 3016 if (!retry) 3017 break; 3018 err = -ECHILD; 3019 if (!may_block) 3020 goto out; 3021 spin_unlock(&inode->i_lock); 3022 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode); 3023 if (err) 3024 return err; 3025 spin_lock(&inode->i_lock); 3026 retry = false; 3027 } 3028 err = -ENOENT; 3029 if ((s64)(login_time - cache->timestamp) > 0) 3030 goto out; 3031 *mask = cache->mask; 3032 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru); 3033 err = 0; 3034 out: 3035 spin_unlock(&inode->i_lock); 3036 return err; 3037 out_zap: 3038 spin_unlock(&inode->i_lock); 3039 nfs_access_zap_cache(inode); 3040 return -ENOENT; 3041 } 3042 3043 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, u32 *mask) 3044 { 3045 /* Only check the most recently returned cache entry, 3046 * but do it without locking. 3047 */ 3048 struct nfs_inode *nfsi = NFS_I(inode); 3049 u64 login_time = nfs_access_login_time(current, cred); 3050 struct nfs_access_entry *cache; 3051 int err = -ECHILD; 3052 struct list_head *lh; 3053 3054 rcu_read_lock(); 3055 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 3056 goto out; 3057 lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru)); 3058 cache = list_entry(lh, struct nfs_access_entry, lru); 3059 if (lh == &nfsi->access_cache_entry_lru || 3060 access_cmp(cred, cache) != 0) 3061 cache = NULL; 3062 if (cache == NULL) 3063 goto out; 3064 if ((s64)(login_time - cache->timestamp) > 0) 3065 goto out; 3066 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) 3067 goto out; 3068 *mask = cache->mask; 3069 err = 0; 3070 out: 3071 rcu_read_unlock(); 3072 return err; 3073 } 3074 3075 int nfs_access_get_cached(struct inode *inode, const struct cred *cred, 3076 u32 *mask, bool may_block) 3077 { 3078 int status; 3079 3080 status = nfs_access_get_cached_rcu(inode, cred, mask); 3081 if (status != 0) 3082 status = nfs_access_get_cached_locked(inode, cred, mask, 3083 may_block); 3084 3085 return status; 3086 } 3087 EXPORT_SYMBOL_GPL(nfs_access_get_cached); 3088 3089 static void nfs_access_add_rbtree(struct inode *inode, 3090 struct nfs_access_entry *set, 3091 const struct cred *cred) 3092 { 3093 struct nfs_inode *nfsi = NFS_I(inode); 3094 struct rb_root *root_node = &nfsi->access_cache; 3095 struct rb_node **p = &root_node->rb_node; 3096 struct rb_node *parent = NULL; 3097 struct nfs_access_entry *entry; 3098 int cmp; 3099 3100 spin_lock(&inode->i_lock); 3101 while (*p != NULL) { 3102 parent = *p; 3103 entry = rb_entry(parent, struct nfs_access_entry, rb_node); 3104 cmp = access_cmp(cred, entry); 3105 3106 if (cmp < 0) 3107 p = &parent->rb_left; 3108 else if (cmp > 0) 3109 p = &parent->rb_right; 3110 else 3111 goto found; 3112 } 3113 rb_link_node(&set->rb_node, parent, p); 3114 rb_insert_color(&set->rb_node, root_node); 3115 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 3116 spin_unlock(&inode->i_lock); 3117 return; 3118 found: 3119 rb_replace_node(parent, &set->rb_node, root_node); 3120 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 3121 list_del(&entry->lru); 3122 spin_unlock(&inode->i_lock); 3123 nfs_access_free_entry(entry); 3124 } 3125 3126 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set, 3127 const struct cred *cred) 3128 { 3129 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL); 3130 if (cache == NULL) 3131 return; 3132 RB_CLEAR_NODE(&cache->rb_node); 3133 cache->fsuid = cred->fsuid; 3134 cache->fsgid = cred->fsgid; 3135 cache->group_info = get_group_info(cred->group_info); 3136 cache->mask = set->mask; 3137 cache->timestamp = ktime_get_ns(); 3138 3139 /* The above field assignments must be visible 3140 * before this item appears on the lru. We cannot easily 3141 * use rcu_assign_pointer, so just force the memory barrier. 3142 */ 3143 smp_wmb(); 3144 nfs_access_add_rbtree(inode, cache, cred); 3145 3146 /* Update accounting */ 3147 smp_mb__before_atomic(); 3148 atomic_long_inc(&nfs_access_nr_entries); 3149 smp_mb__after_atomic(); 3150 3151 /* Add inode to global LRU list */ 3152 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) { 3153 spin_lock(&nfs_access_lru_lock); 3154 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 3155 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, 3156 &nfs_access_lru_list); 3157 spin_unlock(&nfs_access_lru_lock); 3158 } 3159 nfs_access_cache_enforce_limit(); 3160 } 3161 EXPORT_SYMBOL_GPL(nfs_access_add_cache); 3162 3163 #define NFS_MAY_READ (NFS_ACCESS_READ) 3164 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \ 3165 NFS_ACCESS_EXTEND | \ 3166 NFS_ACCESS_DELETE) 3167 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \ 3168 NFS_ACCESS_EXTEND) 3169 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE 3170 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP) 3171 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE) 3172 static int 3173 nfs_access_calc_mask(u32 access_result, umode_t umode) 3174 { 3175 int mask = 0; 3176 3177 if (access_result & NFS_MAY_READ) 3178 mask |= MAY_READ; 3179 if (S_ISDIR(umode)) { 3180 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE) 3181 mask |= MAY_WRITE; 3182 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP) 3183 mask |= MAY_EXEC; 3184 } else if (S_ISREG(umode)) { 3185 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE) 3186 mask |= MAY_WRITE; 3187 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE) 3188 mask |= MAY_EXEC; 3189 } else if (access_result & NFS_MAY_WRITE) 3190 mask |= MAY_WRITE; 3191 return mask; 3192 } 3193 3194 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result) 3195 { 3196 entry->mask = access_result; 3197 } 3198 EXPORT_SYMBOL_GPL(nfs_access_set_mask); 3199 3200 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask) 3201 { 3202 struct nfs_access_entry cache; 3203 bool may_block = (mask & MAY_NOT_BLOCK) == 0; 3204 int cache_mask = -1; 3205 int status; 3206 3207 trace_nfs_access_enter(inode); 3208 3209 status = nfs_access_get_cached(inode, cred, &cache.mask, may_block); 3210 if (status == 0) 3211 goto out_cached; 3212 3213 status = -ECHILD; 3214 if (!may_block) 3215 goto out; 3216 3217 /* 3218 * Determine which access bits we want to ask for... 3219 */ 3220 cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND | 3221 nfs_access_xattr_mask(NFS_SERVER(inode)); 3222 if (S_ISDIR(inode->i_mode)) 3223 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP; 3224 else 3225 cache.mask |= NFS_ACCESS_EXECUTE; 3226 status = NFS_PROTO(inode)->access(inode, &cache, cred); 3227 if (status != 0) { 3228 if (status == -ESTALE) { 3229 if (!S_ISDIR(inode->i_mode)) 3230 nfs_set_inode_stale(inode); 3231 else 3232 nfs_zap_caches(inode); 3233 } 3234 goto out; 3235 } 3236 nfs_access_add_cache(inode, &cache, cred); 3237 out_cached: 3238 cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode); 3239 if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0) 3240 status = -EACCES; 3241 out: 3242 trace_nfs_access_exit(inode, mask, cache_mask, status); 3243 return status; 3244 } 3245 3246 static int nfs_open_permission_mask(int openflags) 3247 { 3248 int mask = 0; 3249 3250 if (openflags & __FMODE_EXEC) { 3251 /* ONLY check exec rights */ 3252 mask = MAY_EXEC; 3253 } else { 3254 if ((openflags & O_ACCMODE) != O_WRONLY) 3255 mask |= MAY_READ; 3256 if ((openflags & O_ACCMODE) != O_RDONLY) 3257 mask |= MAY_WRITE; 3258 } 3259 3260 return mask; 3261 } 3262 3263 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags) 3264 { 3265 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags)); 3266 } 3267 EXPORT_SYMBOL_GPL(nfs_may_open); 3268 3269 static int nfs_execute_ok(struct inode *inode, int mask) 3270 { 3271 struct nfs_server *server = NFS_SERVER(inode); 3272 int ret = 0; 3273 3274 if (S_ISDIR(inode->i_mode)) 3275 return 0; 3276 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) { 3277 if (mask & MAY_NOT_BLOCK) 3278 return -ECHILD; 3279 ret = __nfs_revalidate_inode(server, inode); 3280 } 3281 if (ret == 0 && !execute_ok(inode)) 3282 ret = -EACCES; 3283 return ret; 3284 } 3285 3286 int nfs_permission(struct mnt_idmap *idmap, 3287 struct inode *inode, 3288 int mask) 3289 { 3290 const struct cred *cred = current_cred(); 3291 int res = 0; 3292 3293 nfs_inc_stats(inode, NFSIOS_VFSACCESS); 3294 3295 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 3296 goto out; 3297 /* Is this sys_access() ? */ 3298 if (mask & (MAY_ACCESS | MAY_CHDIR)) 3299 goto force_lookup; 3300 3301 switch (inode->i_mode & S_IFMT) { 3302 case S_IFLNK: 3303 goto out; 3304 case S_IFREG: 3305 if ((mask & MAY_OPEN) && 3306 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)) 3307 return 0; 3308 break; 3309 case S_IFDIR: 3310 /* 3311 * Optimize away all write operations, since the server 3312 * will check permissions when we perform the op. 3313 */ 3314 if ((mask & MAY_WRITE) && !(mask & MAY_READ)) 3315 goto out; 3316 } 3317 3318 force_lookup: 3319 if (!NFS_PROTO(inode)->access) 3320 goto out_notsup; 3321 3322 res = nfs_do_access(inode, cred, mask); 3323 out: 3324 if (!res && (mask & MAY_EXEC)) 3325 res = nfs_execute_ok(inode, mask); 3326 3327 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n", 3328 inode->i_sb->s_id, inode->i_ino, mask, res); 3329 return res; 3330 out_notsup: 3331 if (mask & MAY_NOT_BLOCK) 3332 return -ECHILD; 3333 3334 res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE | 3335 NFS_INO_INVALID_OTHER); 3336 if (res == 0) 3337 res = generic_permission(&nop_mnt_idmap, inode, mask); 3338 goto out; 3339 } 3340 EXPORT_SYMBOL_GPL(nfs_permission); 3341