xref: /openbmc/linux/fs/nfs/dir.c (revision 6b6c2ebd83f2bf97e8f221479372aaca97a4a9b2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/nfs/dir.c
4  *
5  *  Copyright (C) 1992  Rick Sladkey
6  *
7  *  nfs directory handling functions
8  *
9  * 10 Apr 1996	Added silly rename for unlink	--okir
10  * 28 Sep 1996	Improved directory cache --okir
11  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
12  *              Re-implemented silly rename for unlink, newly implemented
13  *              silly rename for nfs_rename() following the suggestions
14  *              of Olaf Kirch (okir) found in this file.
15  *              Following Linus comments on my original hack, this version
16  *              depends only on the dcache stuff and doesn't touch the inode
17  *              layer (iput() and friends).
18  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
19  */
20 
21 #include <linux/compat.h>
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/errno.h>
25 #include <linux/stat.h>
26 #include <linux/fcntl.h>
27 #include <linux/string.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/mm.h>
31 #include <linux/sunrpc/clnt.h>
32 #include <linux/nfs_fs.h>
33 #include <linux/nfs_mount.h>
34 #include <linux/pagemap.h>
35 #include <linux/pagevec.h>
36 #include <linux/namei.h>
37 #include <linux/mount.h>
38 #include <linux/swap.h>
39 #include <linux/sched.h>
40 #include <linux/kmemleak.h>
41 #include <linux/xattr.h>
42 #include <linux/hash.h>
43 
44 #include "delegation.h"
45 #include "iostat.h"
46 #include "internal.h"
47 #include "fscache.h"
48 
49 #include "nfstrace.h"
50 
51 /* #define NFS_DEBUG_VERBOSE 1 */
52 
53 static int nfs_opendir(struct inode *, struct file *);
54 static int nfs_closedir(struct inode *, struct file *);
55 static int nfs_readdir(struct file *, struct dir_context *);
56 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
57 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
58 static void nfs_readdir_clear_array(struct folio *);
59 
60 const struct file_operations nfs_dir_operations = {
61 	.llseek		= nfs_llseek_dir,
62 	.read		= generic_read_dir,
63 	.iterate_shared	= nfs_readdir,
64 	.open		= nfs_opendir,
65 	.release	= nfs_closedir,
66 	.fsync		= nfs_fsync_dir,
67 };
68 
69 const struct address_space_operations nfs_dir_aops = {
70 	.free_folio = nfs_readdir_clear_array,
71 };
72 
73 #define NFS_INIT_DTSIZE PAGE_SIZE
74 
75 static struct nfs_open_dir_context *
76 alloc_nfs_open_dir_context(struct inode *dir)
77 {
78 	struct nfs_inode *nfsi = NFS_I(dir);
79 	struct nfs_open_dir_context *ctx;
80 
81 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL_ACCOUNT);
82 	if (ctx != NULL) {
83 		ctx->attr_gencount = nfsi->attr_gencount;
84 		ctx->dtsize = NFS_INIT_DTSIZE;
85 		spin_lock(&dir->i_lock);
86 		if (list_empty(&nfsi->open_files) &&
87 		    (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
88 			nfs_set_cache_invalid(dir,
89 					      NFS_INO_INVALID_DATA |
90 						      NFS_INO_REVAL_FORCED);
91 		list_add_tail_rcu(&ctx->list, &nfsi->open_files);
92 		memcpy(ctx->verf, nfsi->cookieverf, sizeof(ctx->verf));
93 		spin_unlock(&dir->i_lock);
94 		return ctx;
95 	}
96 	return  ERR_PTR(-ENOMEM);
97 }
98 
99 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
100 {
101 	spin_lock(&dir->i_lock);
102 	list_del_rcu(&ctx->list);
103 	spin_unlock(&dir->i_lock);
104 	kfree_rcu(ctx, rcu_head);
105 }
106 
107 /*
108  * Open file
109  */
110 static int
111 nfs_opendir(struct inode *inode, struct file *filp)
112 {
113 	int res = 0;
114 	struct nfs_open_dir_context *ctx;
115 
116 	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
117 
118 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
119 
120 	ctx = alloc_nfs_open_dir_context(inode);
121 	if (IS_ERR(ctx)) {
122 		res = PTR_ERR(ctx);
123 		goto out;
124 	}
125 	filp->private_data = ctx;
126 out:
127 	return res;
128 }
129 
130 static int
131 nfs_closedir(struct inode *inode, struct file *filp)
132 {
133 	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
134 	return 0;
135 }
136 
137 struct nfs_cache_array_entry {
138 	u64 cookie;
139 	u64 ino;
140 	const char *name;
141 	unsigned int name_len;
142 	unsigned char d_type;
143 };
144 
145 struct nfs_cache_array {
146 	u64 change_attr;
147 	u64 last_cookie;
148 	unsigned int size;
149 	unsigned char folio_full : 1,
150 		      folio_is_eof : 1,
151 		      cookies_are_ordered : 1;
152 	struct nfs_cache_array_entry array[];
153 };
154 
155 struct nfs_readdir_descriptor {
156 	struct file	*file;
157 	struct folio	*folio;
158 	struct dir_context *ctx;
159 	pgoff_t		folio_index;
160 	pgoff_t		folio_index_max;
161 	u64		dir_cookie;
162 	u64		last_cookie;
163 	loff_t		current_index;
164 
165 	__be32		verf[NFS_DIR_VERIFIER_SIZE];
166 	unsigned long	dir_verifier;
167 	unsigned long	timestamp;
168 	unsigned long	gencount;
169 	unsigned long	attr_gencount;
170 	unsigned int	cache_entry_index;
171 	unsigned int	buffer_fills;
172 	unsigned int	dtsize;
173 	bool clear_cache;
174 	bool plus;
175 	bool eob;
176 	bool eof;
177 };
178 
179 static void nfs_set_dtsize(struct nfs_readdir_descriptor *desc, unsigned int sz)
180 {
181 	struct nfs_server *server = NFS_SERVER(file_inode(desc->file));
182 	unsigned int maxsize = server->dtsize;
183 
184 	if (sz > maxsize)
185 		sz = maxsize;
186 	if (sz < NFS_MIN_FILE_IO_SIZE)
187 		sz = NFS_MIN_FILE_IO_SIZE;
188 	desc->dtsize = sz;
189 }
190 
191 static void nfs_shrink_dtsize(struct nfs_readdir_descriptor *desc)
192 {
193 	nfs_set_dtsize(desc, desc->dtsize >> 1);
194 }
195 
196 static void nfs_grow_dtsize(struct nfs_readdir_descriptor *desc)
197 {
198 	nfs_set_dtsize(desc, desc->dtsize << 1);
199 }
200 
201 static void nfs_readdir_folio_init_array(struct folio *folio, u64 last_cookie,
202 					 u64 change_attr)
203 {
204 	struct nfs_cache_array *array;
205 
206 	array = kmap_local_folio(folio, 0);
207 	array->change_attr = change_attr;
208 	array->last_cookie = last_cookie;
209 	array->size = 0;
210 	array->folio_full = 0;
211 	array->folio_is_eof = 0;
212 	array->cookies_are_ordered = 1;
213 	kunmap_local(array);
214 }
215 
216 /*
217  * we are freeing strings created by nfs_add_to_readdir_array()
218  */
219 static void nfs_readdir_clear_array(struct folio *folio)
220 {
221 	struct nfs_cache_array *array;
222 	unsigned int i;
223 
224 	array = kmap_local_folio(folio, 0);
225 	for (i = 0; i < array->size; i++)
226 		kfree(array->array[i].name);
227 	array->size = 0;
228 	kunmap_local(array);
229 }
230 
231 static void nfs_readdir_folio_reinit_array(struct folio *folio, u64 last_cookie,
232 					   u64 change_attr)
233 {
234 	nfs_readdir_clear_array(folio);
235 	nfs_readdir_folio_init_array(folio, last_cookie, change_attr);
236 }
237 
238 static struct folio *
239 nfs_readdir_folio_array_alloc(u64 last_cookie, gfp_t gfp_flags)
240 {
241 	struct folio *folio = folio_alloc(gfp_flags, 0);
242 	if (folio)
243 		nfs_readdir_folio_init_array(folio, last_cookie, 0);
244 	return folio;
245 }
246 
247 static void nfs_readdir_folio_array_free(struct folio *folio)
248 {
249 	if (folio) {
250 		nfs_readdir_clear_array(folio);
251 		folio_put(folio);
252 	}
253 }
254 
255 static u64 nfs_readdir_array_index_cookie(struct nfs_cache_array *array)
256 {
257 	return array->size == 0 ? array->last_cookie : array->array[0].cookie;
258 }
259 
260 static void nfs_readdir_array_set_eof(struct nfs_cache_array *array)
261 {
262 	array->folio_is_eof = 1;
263 	array->folio_full = 1;
264 }
265 
266 static bool nfs_readdir_array_is_full(struct nfs_cache_array *array)
267 {
268 	return array->folio_full;
269 }
270 
271 /*
272  * the caller is responsible for freeing qstr.name
273  * when called by nfs_readdir_add_to_array, the strings will be freed in
274  * nfs_clear_readdir_array()
275  */
276 static const char *nfs_readdir_copy_name(const char *name, unsigned int len)
277 {
278 	const char *ret = kmemdup_nul(name, len, GFP_KERNEL);
279 
280 	/*
281 	 * Avoid a kmemleak false positive. The pointer to the name is stored
282 	 * in a page cache page which kmemleak does not scan.
283 	 */
284 	if (ret != NULL)
285 		kmemleak_not_leak(ret);
286 	return ret;
287 }
288 
289 static size_t nfs_readdir_array_maxentries(void)
290 {
291 	return (PAGE_SIZE - sizeof(struct nfs_cache_array)) /
292 	       sizeof(struct nfs_cache_array_entry);
293 }
294 
295 /*
296  * Check that the next array entry lies entirely within the page bounds
297  */
298 static int nfs_readdir_array_can_expand(struct nfs_cache_array *array)
299 {
300 	if (array->folio_full)
301 		return -ENOSPC;
302 	if (array->size == nfs_readdir_array_maxentries()) {
303 		array->folio_full = 1;
304 		return -ENOSPC;
305 	}
306 	return 0;
307 }
308 
309 static int nfs_readdir_folio_array_append(struct folio *folio,
310 					  const struct nfs_entry *entry,
311 					  u64 *cookie)
312 {
313 	struct nfs_cache_array *array;
314 	struct nfs_cache_array_entry *cache_entry;
315 	const char *name;
316 	int ret = -ENOMEM;
317 
318 	name = nfs_readdir_copy_name(entry->name, entry->len);
319 
320 	array = kmap_local_folio(folio, 0);
321 	if (!name)
322 		goto out;
323 	ret = nfs_readdir_array_can_expand(array);
324 	if (ret) {
325 		kfree(name);
326 		goto out;
327 	}
328 
329 	cache_entry = &array->array[array->size];
330 	cache_entry->cookie = array->last_cookie;
331 	cache_entry->ino = entry->ino;
332 	cache_entry->d_type = entry->d_type;
333 	cache_entry->name_len = entry->len;
334 	cache_entry->name = name;
335 	array->last_cookie = entry->cookie;
336 	if (array->last_cookie <= cache_entry->cookie)
337 		array->cookies_are_ordered = 0;
338 	array->size++;
339 	if (entry->eof != 0)
340 		nfs_readdir_array_set_eof(array);
341 out:
342 	*cookie = array->last_cookie;
343 	kunmap_local(array);
344 	return ret;
345 }
346 
347 #define NFS_READDIR_COOKIE_MASK (U32_MAX >> 14)
348 /*
349  * Hash algorithm allowing content addressible access to sequences
350  * of directory cookies. Content is addressed by the value of the
351  * cookie index of the first readdir entry in a page.
352  *
353  * We select only the first 18 bits to avoid issues with excessive
354  * memory use for the page cache XArray. 18 bits should allow the caching
355  * of 262144 pages of sequences of readdir entries. Since each page holds
356  * 127 readdir entries for a typical 64-bit system, that works out to a
357  * cache of ~ 33 million entries per directory.
358  */
359 static pgoff_t nfs_readdir_folio_cookie_hash(u64 cookie)
360 {
361 	if (cookie == 0)
362 		return 0;
363 	return hash_64(cookie, 18);
364 }
365 
366 static bool nfs_readdir_folio_validate(struct folio *folio, u64 last_cookie,
367 				       u64 change_attr)
368 {
369 	struct nfs_cache_array *array = kmap_local_folio(folio, 0);
370 	int ret = true;
371 
372 	if (array->change_attr != change_attr)
373 		ret = false;
374 	if (nfs_readdir_array_index_cookie(array) != last_cookie)
375 		ret = false;
376 	kunmap_local(array);
377 	return ret;
378 }
379 
380 static void nfs_readdir_folio_unlock_and_put(struct folio *folio)
381 {
382 	folio_unlock(folio);
383 	folio_put(folio);
384 }
385 
386 static void nfs_readdir_folio_init_and_validate(struct folio *folio, u64 cookie,
387 						u64 change_attr)
388 {
389 	if (folio_test_uptodate(folio)) {
390 		if (nfs_readdir_folio_validate(folio, cookie, change_attr))
391 			return;
392 		nfs_readdir_clear_array(folio);
393 	}
394 	nfs_readdir_folio_init_array(folio, cookie, change_attr);
395 	folio_mark_uptodate(folio);
396 }
397 
398 static struct folio *nfs_readdir_folio_get_locked(struct address_space *mapping,
399 						  u64 cookie, u64 change_attr)
400 {
401 	pgoff_t index = nfs_readdir_folio_cookie_hash(cookie);
402 	struct folio *folio;
403 
404 	folio = filemap_grab_folio(mapping, index);
405 	if (IS_ERR(folio))
406 		return NULL;
407 	nfs_readdir_folio_init_and_validate(folio, cookie, change_attr);
408 	return folio;
409 }
410 
411 static u64 nfs_readdir_folio_last_cookie(struct folio *folio)
412 {
413 	struct nfs_cache_array *array;
414 	u64 ret;
415 
416 	array = kmap_local_folio(folio, 0);
417 	ret = array->last_cookie;
418 	kunmap_local(array);
419 	return ret;
420 }
421 
422 static bool nfs_readdir_folio_needs_filling(struct folio *folio)
423 {
424 	struct nfs_cache_array *array;
425 	bool ret;
426 
427 	array = kmap_local_folio(folio, 0);
428 	ret = !nfs_readdir_array_is_full(array);
429 	kunmap_local(array);
430 	return ret;
431 }
432 
433 static void nfs_readdir_folio_set_eof(struct folio *folio)
434 {
435 	struct nfs_cache_array *array;
436 
437 	array = kmap_local_folio(folio, 0);
438 	nfs_readdir_array_set_eof(array);
439 	kunmap_local(array);
440 }
441 
442 static struct folio *nfs_readdir_folio_get_next(struct address_space *mapping,
443 						u64 cookie, u64 change_attr)
444 {
445 	pgoff_t index = nfs_readdir_folio_cookie_hash(cookie);
446 	struct folio *folio;
447 
448 	folio = __filemap_get_folio(mapping, index,
449 			FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
450 			mapping_gfp_mask(mapping));
451 	if (IS_ERR(folio))
452 		return NULL;
453 	nfs_readdir_folio_init_and_validate(folio, cookie, change_attr);
454 	if (nfs_readdir_folio_last_cookie(folio) != cookie)
455 		nfs_readdir_folio_reinit_array(folio, cookie, change_attr);
456 	return folio;
457 }
458 
459 static inline
460 int is_32bit_api(void)
461 {
462 #ifdef CONFIG_COMPAT
463 	return in_compat_syscall();
464 #else
465 	return (BITS_PER_LONG == 32);
466 #endif
467 }
468 
469 static
470 bool nfs_readdir_use_cookie(const struct file *filp)
471 {
472 	if ((filp->f_mode & FMODE_32BITHASH) ||
473 	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
474 		return false;
475 	return true;
476 }
477 
478 static void nfs_readdir_seek_next_array(struct nfs_cache_array *array,
479 					struct nfs_readdir_descriptor *desc)
480 {
481 	if (array->folio_full) {
482 		desc->last_cookie = array->last_cookie;
483 		desc->current_index += array->size;
484 		desc->cache_entry_index = 0;
485 		desc->folio_index++;
486 	} else
487 		desc->last_cookie = nfs_readdir_array_index_cookie(array);
488 }
489 
490 static void nfs_readdir_rewind_search(struct nfs_readdir_descriptor *desc)
491 {
492 	desc->current_index = 0;
493 	desc->last_cookie = 0;
494 	desc->folio_index = 0;
495 }
496 
497 static int nfs_readdir_search_for_pos(struct nfs_cache_array *array,
498 				      struct nfs_readdir_descriptor *desc)
499 {
500 	loff_t diff = desc->ctx->pos - desc->current_index;
501 	unsigned int index;
502 
503 	if (diff < 0)
504 		goto out_eof;
505 	if (diff >= array->size) {
506 		if (array->folio_is_eof)
507 			goto out_eof;
508 		nfs_readdir_seek_next_array(array, desc);
509 		return -EAGAIN;
510 	}
511 
512 	index = (unsigned int)diff;
513 	desc->dir_cookie = array->array[index].cookie;
514 	desc->cache_entry_index = index;
515 	return 0;
516 out_eof:
517 	desc->eof = true;
518 	return -EBADCOOKIE;
519 }
520 
521 static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array,
522 					      u64 cookie)
523 {
524 	if (!array->cookies_are_ordered)
525 		return true;
526 	/* Optimisation for monotonically increasing cookies */
527 	if (cookie >= array->last_cookie)
528 		return false;
529 	if (array->size && cookie < array->array[0].cookie)
530 		return false;
531 	return true;
532 }
533 
534 static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array,
535 					 struct nfs_readdir_descriptor *desc)
536 {
537 	unsigned int i;
538 	int status = -EAGAIN;
539 
540 	if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie))
541 		goto check_eof;
542 
543 	for (i = 0; i < array->size; i++) {
544 		if (array->array[i].cookie == desc->dir_cookie) {
545 			if (nfs_readdir_use_cookie(desc->file))
546 				desc->ctx->pos = desc->dir_cookie;
547 			else
548 				desc->ctx->pos = desc->current_index + i;
549 			desc->cache_entry_index = i;
550 			return 0;
551 		}
552 	}
553 check_eof:
554 	if (array->folio_is_eof) {
555 		status = -EBADCOOKIE;
556 		if (desc->dir_cookie == array->last_cookie)
557 			desc->eof = true;
558 	} else
559 		nfs_readdir_seek_next_array(array, desc);
560 	return status;
561 }
562 
563 static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc)
564 {
565 	struct nfs_cache_array *array;
566 	int status;
567 
568 	array = kmap_local_folio(desc->folio, 0);
569 
570 	if (desc->dir_cookie == 0)
571 		status = nfs_readdir_search_for_pos(array, desc);
572 	else
573 		status = nfs_readdir_search_for_cookie(array, desc);
574 
575 	kunmap_local(array);
576 	return status;
577 }
578 
579 /* Fill a page with xdr information before transferring to the cache page */
580 static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc,
581 				  __be32 *verf, u64 cookie,
582 				  struct page **pages, size_t bufsize,
583 				  __be32 *verf_res)
584 {
585 	struct inode *inode = file_inode(desc->file);
586 	struct nfs_readdir_arg arg = {
587 		.dentry = file_dentry(desc->file),
588 		.cred = desc->file->f_cred,
589 		.verf = verf,
590 		.cookie = cookie,
591 		.pages = pages,
592 		.page_len = bufsize,
593 		.plus = desc->plus,
594 	};
595 	struct nfs_readdir_res res = {
596 		.verf = verf_res,
597 	};
598 	unsigned long	timestamp, gencount;
599 	int		error;
600 
601  again:
602 	timestamp = jiffies;
603 	gencount = nfs_inc_attr_generation_counter();
604 	desc->dir_verifier = nfs_save_change_attribute(inode);
605 	error = NFS_PROTO(inode)->readdir(&arg, &res);
606 	if (error < 0) {
607 		/* We requested READDIRPLUS, but the server doesn't grok it */
608 		if (error == -ENOTSUPP && desc->plus) {
609 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
610 			desc->plus = arg.plus = false;
611 			goto again;
612 		}
613 		goto error;
614 	}
615 	desc->timestamp = timestamp;
616 	desc->gencount = gencount;
617 error:
618 	return error;
619 }
620 
621 static int xdr_decode(struct nfs_readdir_descriptor *desc,
622 		      struct nfs_entry *entry, struct xdr_stream *xdr)
623 {
624 	struct inode *inode = file_inode(desc->file);
625 	int error;
626 
627 	error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
628 	if (error)
629 		return error;
630 	entry->fattr->time_start = desc->timestamp;
631 	entry->fattr->gencount = desc->gencount;
632 	return 0;
633 }
634 
635 /* Match file and dirent using either filehandle or fileid
636  * Note: caller is responsible for checking the fsid
637  */
638 static
639 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
640 {
641 	struct inode *inode;
642 	struct nfs_inode *nfsi;
643 
644 	if (d_really_is_negative(dentry))
645 		return 0;
646 
647 	inode = d_inode(dentry);
648 	if (is_bad_inode(inode) || NFS_STALE(inode))
649 		return 0;
650 
651 	nfsi = NFS_I(inode);
652 	if (entry->fattr->fileid != nfsi->fileid)
653 		return 0;
654 	if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
655 		return 0;
656 	return 1;
657 }
658 
659 #define NFS_READDIR_CACHE_USAGE_THRESHOLD (8UL)
660 
661 static bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx,
662 				unsigned int cache_hits,
663 				unsigned int cache_misses)
664 {
665 	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
666 		return false;
667 	if (ctx->pos == 0 ||
668 	    cache_hits + cache_misses > NFS_READDIR_CACHE_USAGE_THRESHOLD)
669 		return true;
670 	return false;
671 }
672 
673 /*
674  * This function is called by the getattr code to request the
675  * use of readdirplus to accelerate any future lookups in the same
676  * directory.
677  */
678 void nfs_readdir_record_entry_cache_hit(struct inode *dir)
679 {
680 	struct nfs_inode *nfsi = NFS_I(dir);
681 	struct nfs_open_dir_context *ctx;
682 
683 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
684 	    S_ISDIR(dir->i_mode)) {
685 		rcu_read_lock();
686 		list_for_each_entry_rcu (ctx, &nfsi->open_files, list)
687 			atomic_inc(&ctx->cache_hits);
688 		rcu_read_unlock();
689 	}
690 }
691 
692 /*
693  * This function is mainly for use by nfs_getattr().
694  *
695  * If this is an 'ls -l', we want to force use of readdirplus.
696  */
697 void nfs_readdir_record_entry_cache_miss(struct inode *dir)
698 {
699 	struct nfs_inode *nfsi = NFS_I(dir);
700 	struct nfs_open_dir_context *ctx;
701 
702 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
703 	    S_ISDIR(dir->i_mode)) {
704 		rcu_read_lock();
705 		list_for_each_entry_rcu (ctx, &nfsi->open_files, list)
706 			atomic_inc(&ctx->cache_misses);
707 		rcu_read_unlock();
708 	}
709 }
710 
711 static void nfs_lookup_advise_force_readdirplus(struct inode *dir,
712 						unsigned int flags)
713 {
714 	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
715 		return;
716 	if (flags & (LOOKUP_EXCL | LOOKUP_PARENT | LOOKUP_REVAL))
717 		return;
718 	nfs_readdir_record_entry_cache_miss(dir);
719 }
720 
721 static
722 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
723 		unsigned long dir_verifier)
724 {
725 	struct qstr filename = QSTR_INIT(entry->name, entry->len);
726 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
727 	struct dentry *dentry;
728 	struct dentry *alias;
729 	struct inode *inode;
730 	int status;
731 
732 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
733 		return;
734 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
735 		return;
736 	if (filename.len == 0)
737 		return;
738 	/* Validate that the name doesn't contain any illegal '\0' */
739 	if (strnlen(filename.name, filename.len) != filename.len)
740 		return;
741 	/* ...or '/' */
742 	if (strnchr(filename.name, filename.len, '/'))
743 		return;
744 	if (filename.name[0] == '.') {
745 		if (filename.len == 1)
746 			return;
747 		if (filename.len == 2 && filename.name[1] == '.')
748 			return;
749 	}
750 	filename.hash = full_name_hash(parent, filename.name, filename.len);
751 
752 	dentry = d_lookup(parent, &filename);
753 again:
754 	if (!dentry) {
755 		dentry = d_alloc_parallel(parent, &filename, &wq);
756 		if (IS_ERR(dentry))
757 			return;
758 	}
759 	if (!d_in_lookup(dentry)) {
760 		/* Is there a mountpoint here? If so, just exit */
761 		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
762 					&entry->fattr->fsid))
763 			goto out;
764 		if (nfs_same_file(dentry, entry)) {
765 			if (!entry->fh->size)
766 				goto out;
767 			nfs_set_verifier(dentry, dir_verifier);
768 			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
769 			if (!status)
770 				nfs_setsecurity(d_inode(dentry), entry->fattr);
771 			trace_nfs_readdir_lookup_revalidate(d_inode(parent),
772 							    dentry, 0, status);
773 			goto out;
774 		} else {
775 			trace_nfs_readdir_lookup_revalidate_failed(
776 				d_inode(parent), dentry, 0);
777 			d_invalidate(dentry);
778 			dput(dentry);
779 			dentry = NULL;
780 			goto again;
781 		}
782 	}
783 	if (!entry->fh->size) {
784 		d_lookup_done(dentry);
785 		goto out;
786 	}
787 
788 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
789 	alias = d_splice_alias(inode, dentry);
790 	d_lookup_done(dentry);
791 	if (alias) {
792 		if (IS_ERR(alias))
793 			goto out;
794 		dput(dentry);
795 		dentry = alias;
796 	}
797 	nfs_set_verifier(dentry, dir_verifier);
798 	trace_nfs_readdir_lookup(d_inode(parent), dentry, 0);
799 out:
800 	dput(dentry);
801 }
802 
803 static int nfs_readdir_entry_decode(struct nfs_readdir_descriptor *desc,
804 				    struct nfs_entry *entry,
805 				    struct xdr_stream *stream)
806 {
807 	int ret;
808 
809 	if (entry->fattr->label)
810 		entry->fattr->label->len = NFS4_MAXLABELLEN;
811 	ret = xdr_decode(desc, entry, stream);
812 	if (ret || !desc->plus)
813 		return ret;
814 	nfs_prime_dcache(file_dentry(desc->file), entry, desc->dir_verifier);
815 	return 0;
816 }
817 
818 /* Perform conversion from xdr to cache array */
819 static int nfs_readdir_folio_filler(struct nfs_readdir_descriptor *desc,
820 				    struct nfs_entry *entry,
821 				    struct page **xdr_pages, unsigned int buflen,
822 				    struct folio **arrays, size_t narrays,
823 				    u64 change_attr)
824 {
825 	struct address_space *mapping = desc->file->f_mapping;
826 	struct folio *new, *folio = *arrays;
827 	struct xdr_stream stream;
828 	struct page *scratch;
829 	struct xdr_buf buf;
830 	u64 cookie;
831 	int status;
832 
833 	scratch = alloc_page(GFP_KERNEL);
834 	if (scratch == NULL)
835 		return -ENOMEM;
836 
837 	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
838 	xdr_set_scratch_page(&stream, scratch);
839 
840 	do {
841 		status = nfs_readdir_entry_decode(desc, entry, &stream);
842 		if (status != 0)
843 			break;
844 
845 		status = nfs_readdir_folio_array_append(folio, entry, &cookie);
846 		if (status != -ENOSPC)
847 			continue;
848 
849 		if (folio->mapping != mapping) {
850 			if (!--narrays)
851 				break;
852 			new = nfs_readdir_folio_array_alloc(cookie, GFP_KERNEL);
853 			if (!new)
854 				break;
855 			arrays++;
856 			*arrays = folio = new;
857 		} else {
858 			new = nfs_readdir_folio_get_next(mapping, cookie,
859 							 change_attr);
860 			if (!new)
861 				break;
862 			if (folio != *arrays)
863 				nfs_readdir_folio_unlock_and_put(folio);
864 			folio = new;
865 		}
866 		desc->folio_index_max++;
867 		status = nfs_readdir_folio_array_append(folio, entry, &cookie);
868 	} while (!status && !entry->eof);
869 
870 	switch (status) {
871 	case -EBADCOOKIE:
872 		if (!entry->eof)
873 			break;
874 		nfs_readdir_folio_set_eof(folio);
875 		fallthrough;
876 	case -EAGAIN:
877 		status = 0;
878 		break;
879 	case -ENOSPC:
880 		status = 0;
881 		if (!desc->plus)
882 			break;
883 		while (!nfs_readdir_entry_decode(desc, entry, &stream))
884 			;
885 	}
886 
887 	if (folio != *arrays)
888 		nfs_readdir_folio_unlock_and_put(folio);
889 
890 	put_page(scratch);
891 	return status;
892 }
893 
894 static void nfs_readdir_free_pages(struct page **pages, size_t npages)
895 {
896 	while (npages--)
897 		put_page(pages[npages]);
898 	kfree(pages);
899 }
900 
901 /*
902  * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
903  * to nfs_readdir_free_pages()
904  */
905 static struct page **nfs_readdir_alloc_pages(size_t npages)
906 {
907 	struct page **pages;
908 	size_t i;
909 
910 	pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL);
911 	if (!pages)
912 		return NULL;
913 	for (i = 0; i < npages; i++) {
914 		struct page *page = alloc_page(GFP_KERNEL);
915 		if (page == NULL)
916 			goto out_freepages;
917 		pages[i] = page;
918 	}
919 	return pages;
920 
921 out_freepages:
922 	nfs_readdir_free_pages(pages, i);
923 	return NULL;
924 }
925 
926 static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc,
927 				    __be32 *verf_arg, __be32 *verf_res,
928 				    struct folio **arrays, size_t narrays)
929 {
930 	u64 change_attr;
931 	struct page **pages;
932 	struct folio *folio = *arrays;
933 	struct nfs_entry *entry;
934 	size_t array_size;
935 	struct inode *inode = file_inode(desc->file);
936 	unsigned int dtsize = desc->dtsize;
937 	unsigned int pglen;
938 	int status = -ENOMEM;
939 
940 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
941 	if (!entry)
942 		return -ENOMEM;
943 	entry->cookie = nfs_readdir_folio_last_cookie(folio);
944 	entry->fh = nfs_alloc_fhandle();
945 	entry->fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
946 	entry->server = NFS_SERVER(inode);
947 	if (entry->fh == NULL || entry->fattr == NULL)
948 		goto out;
949 
950 	array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT;
951 	pages = nfs_readdir_alloc_pages(array_size);
952 	if (!pages)
953 		goto out;
954 
955 	change_attr = inode_peek_iversion_raw(inode);
956 	status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie, pages,
957 					dtsize, verf_res);
958 	if (status < 0)
959 		goto free_pages;
960 
961 	pglen = status;
962 	if (pglen != 0)
963 		status = nfs_readdir_folio_filler(desc, entry, pages, pglen,
964 						  arrays, narrays, change_attr);
965 	else
966 		nfs_readdir_folio_set_eof(folio);
967 	desc->buffer_fills++;
968 
969 free_pages:
970 	nfs_readdir_free_pages(pages, array_size);
971 out:
972 	nfs_free_fattr(entry->fattr);
973 	nfs_free_fhandle(entry->fh);
974 	kfree(entry);
975 	return status;
976 }
977 
978 static void nfs_readdir_folio_put(struct nfs_readdir_descriptor *desc)
979 {
980 	folio_put(desc->folio);
981 	desc->folio = NULL;
982 }
983 
984 static void
985 nfs_readdir_folio_unlock_and_put_cached(struct nfs_readdir_descriptor *desc)
986 {
987 	folio_unlock(desc->folio);
988 	nfs_readdir_folio_put(desc);
989 }
990 
991 static struct folio *
992 nfs_readdir_folio_get_cached(struct nfs_readdir_descriptor *desc)
993 {
994 	struct address_space *mapping = desc->file->f_mapping;
995 	u64 change_attr = inode_peek_iversion_raw(mapping->host);
996 	u64 cookie = desc->last_cookie;
997 	struct folio *folio;
998 
999 	folio = nfs_readdir_folio_get_locked(mapping, cookie, change_attr);
1000 	if (!folio)
1001 		return NULL;
1002 	if (desc->clear_cache && !nfs_readdir_folio_needs_filling(folio))
1003 		nfs_readdir_folio_reinit_array(folio, cookie, change_attr);
1004 	return folio;
1005 }
1006 
1007 /*
1008  * Returns 0 if desc->dir_cookie was found on page desc->page_index
1009  * and locks the page to prevent removal from the page cache.
1010  */
1011 static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc)
1012 {
1013 	struct inode *inode = file_inode(desc->file);
1014 	struct nfs_inode *nfsi = NFS_I(inode);
1015 	__be32 verf[NFS_DIR_VERIFIER_SIZE];
1016 	int res;
1017 
1018 	desc->folio = nfs_readdir_folio_get_cached(desc);
1019 	if (!desc->folio)
1020 		return -ENOMEM;
1021 	if (nfs_readdir_folio_needs_filling(desc->folio)) {
1022 		/* Grow the dtsize if we had to go back for more pages */
1023 		if (desc->folio_index == desc->folio_index_max)
1024 			nfs_grow_dtsize(desc);
1025 		desc->folio_index_max = desc->folio_index;
1026 		trace_nfs_readdir_cache_fill(desc->file, nfsi->cookieverf,
1027 					     desc->last_cookie,
1028 					     desc->folio->index, desc->dtsize);
1029 		res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf,
1030 					       &desc->folio, 1);
1031 		if (res < 0) {
1032 			nfs_readdir_folio_unlock_and_put_cached(desc);
1033 			trace_nfs_readdir_cache_fill_done(inode, res);
1034 			if (res == -EBADCOOKIE || res == -ENOTSYNC) {
1035 				invalidate_inode_pages2(desc->file->f_mapping);
1036 				nfs_readdir_rewind_search(desc);
1037 				trace_nfs_readdir_invalidate_cache_range(
1038 					inode, 0, MAX_LFS_FILESIZE);
1039 				return -EAGAIN;
1040 			}
1041 			return res;
1042 		}
1043 		/*
1044 		 * Set the cookie verifier if the page cache was empty
1045 		 */
1046 		if (desc->last_cookie == 0 &&
1047 		    memcmp(nfsi->cookieverf, verf, sizeof(nfsi->cookieverf))) {
1048 			memcpy(nfsi->cookieverf, verf,
1049 			       sizeof(nfsi->cookieverf));
1050 			invalidate_inode_pages2_range(desc->file->f_mapping, 1,
1051 						      -1);
1052 			trace_nfs_readdir_invalidate_cache_range(
1053 				inode, 1, MAX_LFS_FILESIZE);
1054 		}
1055 		desc->clear_cache = false;
1056 	}
1057 	res = nfs_readdir_search_array(desc);
1058 	if (res == 0)
1059 		return 0;
1060 	nfs_readdir_folio_unlock_and_put_cached(desc);
1061 	return res;
1062 }
1063 
1064 /* Search for desc->dir_cookie from the beginning of the page cache */
1065 static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc)
1066 {
1067 	int res;
1068 
1069 	do {
1070 		res = find_and_lock_cache_page(desc);
1071 	} while (res == -EAGAIN);
1072 	return res;
1073 }
1074 
1075 #define NFS_READDIR_CACHE_MISS_THRESHOLD (16UL)
1076 
1077 /*
1078  * Once we've found the start of the dirent within a page: fill 'er up...
1079  */
1080 static void nfs_do_filldir(struct nfs_readdir_descriptor *desc,
1081 			   const __be32 *verf)
1082 {
1083 	struct file	*file = desc->file;
1084 	struct nfs_cache_array *array;
1085 	unsigned int i;
1086 	bool first_emit = !desc->dir_cookie;
1087 
1088 	array = kmap_local_folio(desc->folio, 0);
1089 	for (i = desc->cache_entry_index; i < array->size; i++) {
1090 		struct nfs_cache_array_entry *ent;
1091 
1092 		/*
1093 		 * nfs_readdir_handle_cache_misses return force clear at
1094 		 * (cache_misses > NFS_READDIR_CACHE_MISS_THRESHOLD) for
1095 		 * readdir heuristic, NFS_READDIR_CACHE_MISS_THRESHOLD + 1
1096 		 * entries need be emitted here.
1097 		 */
1098 		if (first_emit && i > NFS_READDIR_CACHE_MISS_THRESHOLD + 2) {
1099 			desc->eob = true;
1100 			break;
1101 		}
1102 
1103 		ent = &array->array[i];
1104 		if (!dir_emit(desc->ctx, ent->name, ent->name_len,
1105 		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
1106 			desc->eob = true;
1107 			break;
1108 		}
1109 		memcpy(desc->verf, verf, sizeof(desc->verf));
1110 		if (i == array->size - 1) {
1111 			desc->dir_cookie = array->last_cookie;
1112 			nfs_readdir_seek_next_array(array, desc);
1113 		} else {
1114 			desc->dir_cookie = array->array[i + 1].cookie;
1115 			desc->last_cookie = array->array[0].cookie;
1116 		}
1117 		if (nfs_readdir_use_cookie(file))
1118 			desc->ctx->pos = desc->dir_cookie;
1119 		else
1120 			desc->ctx->pos++;
1121 	}
1122 	if (array->folio_is_eof)
1123 		desc->eof = !desc->eob;
1124 
1125 	kunmap_local(array);
1126 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n",
1127 			(unsigned long long)desc->dir_cookie);
1128 }
1129 
1130 /*
1131  * If we cannot find a cookie in our cache, we suspect that this is
1132  * because it points to a deleted file, so we ask the server to return
1133  * whatever it thinks is the next entry. We then feed this to filldir.
1134  * If all goes well, we should then be able to find our way round the
1135  * cache on the next call to readdir_search_pagecache();
1136  *
1137  * NOTE: we cannot add the anonymous page to the pagecache because
1138  *	 the data it contains might not be page aligned. Besides,
1139  *	 we should already have a complete representation of the
1140  *	 directory in the page cache by the time we get here.
1141  */
1142 static int uncached_readdir(struct nfs_readdir_descriptor *desc)
1143 {
1144 	struct folio	**arrays;
1145 	size_t		i, sz = 512;
1146 	__be32		verf[NFS_DIR_VERIFIER_SIZE];
1147 	int		status = -ENOMEM;
1148 
1149 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n",
1150 			(unsigned long long)desc->dir_cookie);
1151 
1152 	arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL);
1153 	if (!arrays)
1154 		goto out;
1155 	arrays[0] = nfs_readdir_folio_array_alloc(desc->dir_cookie, GFP_KERNEL);
1156 	if (!arrays[0])
1157 		goto out;
1158 
1159 	desc->folio_index = 0;
1160 	desc->cache_entry_index = 0;
1161 	desc->last_cookie = desc->dir_cookie;
1162 	desc->folio_index_max = 0;
1163 
1164 	trace_nfs_readdir_uncached(desc->file, desc->verf, desc->last_cookie,
1165 				   -1, desc->dtsize);
1166 
1167 	status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz);
1168 	if (status < 0) {
1169 		trace_nfs_readdir_uncached_done(file_inode(desc->file), status);
1170 		goto out_free;
1171 	}
1172 
1173 	for (i = 0; !desc->eob && i < sz && arrays[i]; i++) {
1174 		desc->folio = arrays[i];
1175 		nfs_do_filldir(desc, verf);
1176 	}
1177 	desc->folio = NULL;
1178 
1179 	/*
1180 	 * Grow the dtsize if we have to go back for more pages,
1181 	 * or shrink it if we're reading too many.
1182 	 */
1183 	if (!desc->eof) {
1184 		if (!desc->eob)
1185 			nfs_grow_dtsize(desc);
1186 		else if (desc->buffer_fills == 1 &&
1187 			 i < (desc->folio_index_max >> 1))
1188 			nfs_shrink_dtsize(desc);
1189 	}
1190 out_free:
1191 	for (i = 0; i < sz && arrays[i]; i++)
1192 		nfs_readdir_folio_array_free(arrays[i]);
1193 out:
1194 	if (!nfs_readdir_use_cookie(desc->file))
1195 		nfs_readdir_rewind_search(desc);
1196 	desc->folio_index_max = -1;
1197 	kfree(arrays);
1198 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
1199 	return status;
1200 }
1201 
1202 static bool nfs_readdir_handle_cache_misses(struct inode *inode,
1203 					    struct nfs_readdir_descriptor *desc,
1204 					    unsigned int cache_misses,
1205 					    bool force_clear)
1206 {
1207 	if (desc->ctx->pos == 0 || !desc->plus)
1208 		return false;
1209 	if (cache_misses <= NFS_READDIR_CACHE_MISS_THRESHOLD && !force_clear)
1210 		return false;
1211 	trace_nfs_readdir_force_readdirplus(inode);
1212 	return true;
1213 }
1214 
1215 /* The file offset position represents the dirent entry number.  A
1216    last cookie cache takes care of the common case of reading the
1217    whole directory.
1218  */
1219 static int nfs_readdir(struct file *file, struct dir_context *ctx)
1220 {
1221 	struct dentry	*dentry = file_dentry(file);
1222 	struct inode	*inode = d_inode(dentry);
1223 	struct nfs_inode *nfsi = NFS_I(inode);
1224 	struct nfs_open_dir_context *dir_ctx = file->private_data;
1225 	struct nfs_readdir_descriptor *desc;
1226 	unsigned int cache_hits, cache_misses;
1227 	bool force_clear;
1228 	int res;
1229 
1230 	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
1231 			file, (long long)ctx->pos);
1232 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
1233 
1234 	/*
1235 	 * ctx->pos points to the dirent entry number.
1236 	 * *desc->dir_cookie has the cookie for the next entry. We have
1237 	 * to either find the entry with the appropriate number or
1238 	 * revalidate the cookie.
1239 	 */
1240 	nfs_revalidate_mapping(inode, file->f_mapping);
1241 
1242 	res = -ENOMEM;
1243 	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
1244 	if (!desc)
1245 		goto out;
1246 	desc->file = file;
1247 	desc->ctx = ctx;
1248 	desc->folio_index_max = -1;
1249 
1250 	spin_lock(&file->f_lock);
1251 	desc->dir_cookie = dir_ctx->dir_cookie;
1252 	desc->folio_index = dir_ctx->page_index;
1253 	desc->last_cookie = dir_ctx->last_cookie;
1254 	desc->attr_gencount = dir_ctx->attr_gencount;
1255 	desc->eof = dir_ctx->eof;
1256 	nfs_set_dtsize(desc, dir_ctx->dtsize);
1257 	memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf));
1258 	cache_hits = atomic_xchg(&dir_ctx->cache_hits, 0);
1259 	cache_misses = atomic_xchg(&dir_ctx->cache_misses, 0);
1260 	force_clear = dir_ctx->force_clear;
1261 	spin_unlock(&file->f_lock);
1262 
1263 	if (desc->eof) {
1264 		res = 0;
1265 		goto out_free;
1266 	}
1267 
1268 	desc->plus = nfs_use_readdirplus(inode, ctx, cache_hits, cache_misses);
1269 	force_clear = nfs_readdir_handle_cache_misses(inode, desc, cache_misses,
1270 						      force_clear);
1271 	desc->clear_cache = force_clear;
1272 
1273 	do {
1274 		res = readdir_search_pagecache(desc);
1275 
1276 		if (res == -EBADCOOKIE) {
1277 			res = 0;
1278 			/* This means either end of directory */
1279 			if (desc->dir_cookie && !desc->eof) {
1280 				/* Or that the server has 'lost' a cookie */
1281 				res = uncached_readdir(desc);
1282 				if (res == 0)
1283 					continue;
1284 				if (res == -EBADCOOKIE || res == -ENOTSYNC)
1285 					res = 0;
1286 			}
1287 			break;
1288 		}
1289 		if (res == -ETOOSMALL && desc->plus) {
1290 			nfs_zap_caches(inode);
1291 			desc->plus = false;
1292 			desc->eof = false;
1293 			continue;
1294 		}
1295 		if (res < 0)
1296 			break;
1297 
1298 		nfs_do_filldir(desc, nfsi->cookieverf);
1299 		nfs_readdir_folio_unlock_and_put_cached(desc);
1300 		if (desc->folio_index == desc->folio_index_max)
1301 			desc->clear_cache = force_clear;
1302 	} while (!desc->eob && !desc->eof);
1303 
1304 	spin_lock(&file->f_lock);
1305 	dir_ctx->dir_cookie = desc->dir_cookie;
1306 	dir_ctx->last_cookie = desc->last_cookie;
1307 	dir_ctx->attr_gencount = desc->attr_gencount;
1308 	dir_ctx->page_index = desc->folio_index;
1309 	dir_ctx->force_clear = force_clear;
1310 	dir_ctx->eof = desc->eof;
1311 	dir_ctx->dtsize = desc->dtsize;
1312 	memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf));
1313 	spin_unlock(&file->f_lock);
1314 out_free:
1315 	kfree(desc);
1316 
1317 out:
1318 	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
1319 	return res;
1320 }
1321 
1322 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
1323 {
1324 	struct nfs_open_dir_context *dir_ctx = filp->private_data;
1325 
1326 	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
1327 			filp, offset, whence);
1328 
1329 	switch (whence) {
1330 	default:
1331 		return -EINVAL;
1332 	case SEEK_SET:
1333 		if (offset < 0)
1334 			return -EINVAL;
1335 		spin_lock(&filp->f_lock);
1336 		break;
1337 	case SEEK_CUR:
1338 		if (offset == 0)
1339 			return filp->f_pos;
1340 		spin_lock(&filp->f_lock);
1341 		offset += filp->f_pos;
1342 		if (offset < 0) {
1343 			spin_unlock(&filp->f_lock);
1344 			return -EINVAL;
1345 		}
1346 	}
1347 	if (offset != filp->f_pos) {
1348 		filp->f_pos = offset;
1349 		dir_ctx->page_index = 0;
1350 		if (!nfs_readdir_use_cookie(filp)) {
1351 			dir_ctx->dir_cookie = 0;
1352 			dir_ctx->last_cookie = 0;
1353 		} else {
1354 			dir_ctx->dir_cookie = offset;
1355 			dir_ctx->last_cookie = offset;
1356 		}
1357 		dir_ctx->eof = false;
1358 	}
1359 	spin_unlock(&filp->f_lock);
1360 	return offset;
1361 }
1362 
1363 /*
1364  * All directory operations under NFS are synchronous, so fsync()
1365  * is a dummy operation.
1366  */
1367 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1368 			 int datasync)
1369 {
1370 	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1371 
1372 	nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC);
1373 	return 0;
1374 }
1375 
1376 /**
1377  * nfs_force_lookup_revalidate - Mark the directory as having changed
1378  * @dir: pointer to directory inode
1379  *
1380  * This forces the revalidation code in nfs_lookup_revalidate() to do a
1381  * full lookup on all child dentries of 'dir' whenever a change occurs
1382  * on the server that might have invalidated our dcache.
1383  *
1384  * Note that we reserve bit '0' as a tag to let us know when a dentry
1385  * was revalidated while holding a delegation on its inode.
1386  *
1387  * The caller should be holding dir->i_lock
1388  */
1389 void nfs_force_lookup_revalidate(struct inode *dir)
1390 {
1391 	NFS_I(dir)->cache_change_attribute += 2;
1392 }
1393 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1394 
1395 /**
1396  * nfs_verify_change_attribute - Detects NFS remote directory changes
1397  * @dir: pointer to parent directory inode
1398  * @verf: previously saved change attribute
1399  *
1400  * Return "false" if the verifiers doesn't match the change attribute.
1401  * This would usually indicate that the directory contents have changed on
1402  * the server, and that any dentries need revalidating.
1403  */
1404 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1405 {
1406 	return (verf & ~1UL) == nfs_save_change_attribute(dir);
1407 }
1408 
1409 static void nfs_set_verifier_delegated(unsigned long *verf)
1410 {
1411 	*verf |= 1UL;
1412 }
1413 
1414 #if IS_ENABLED(CONFIG_NFS_V4)
1415 static void nfs_unset_verifier_delegated(unsigned long *verf)
1416 {
1417 	*verf &= ~1UL;
1418 }
1419 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1420 
1421 static bool nfs_test_verifier_delegated(unsigned long verf)
1422 {
1423 	return verf & 1;
1424 }
1425 
1426 static bool nfs_verifier_is_delegated(struct dentry *dentry)
1427 {
1428 	return nfs_test_verifier_delegated(dentry->d_time);
1429 }
1430 
1431 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1432 {
1433 	struct inode *inode = d_inode(dentry);
1434 	struct inode *dir = d_inode(dentry->d_parent);
1435 
1436 	if (!nfs_verify_change_attribute(dir, verf))
1437 		return;
1438 	if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
1439 		nfs_set_verifier_delegated(&verf);
1440 	dentry->d_time = verf;
1441 }
1442 
1443 /**
1444  * nfs_set_verifier - save a parent directory verifier in the dentry
1445  * @dentry: pointer to dentry
1446  * @verf: verifier to save
1447  *
1448  * Saves the parent directory verifier in @dentry. If the inode has
1449  * a delegation, we also tag the dentry as having been revalidated
1450  * while holding a delegation so that we know we don't have to
1451  * look it up again after a directory change.
1452  */
1453 void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1454 {
1455 
1456 	spin_lock(&dentry->d_lock);
1457 	nfs_set_verifier_locked(dentry, verf);
1458 	spin_unlock(&dentry->d_lock);
1459 }
1460 EXPORT_SYMBOL_GPL(nfs_set_verifier);
1461 
1462 #if IS_ENABLED(CONFIG_NFS_V4)
1463 /**
1464  * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1465  * @inode: pointer to inode
1466  *
1467  * Iterates through the dentries in the inode alias list and clears
1468  * the tag used to indicate that the dentry has been revalidated
1469  * while holding a delegation.
1470  * This function is intended for use when the delegation is being
1471  * returned or revoked.
1472  */
1473 void nfs_clear_verifier_delegated(struct inode *inode)
1474 {
1475 	struct dentry *alias;
1476 
1477 	if (!inode)
1478 		return;
1479 	spin_lock(&inode->i_lock);
1480 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1481 		spin_lock(&alias->d_lock);
1482 		nfs_unset_verifier_delegated(&alias->d_time);
1483 		spin_unlock(&alias->d_lock);
1484 	}
1485 	spin_unlock(&inode->i_lock);
1486 }
1487 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1488 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1489 
1490 static int nfs_dentry_verify_change(struct inode *dir, struct dentry *dentry)
1491 {
1492 	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE) &&
1493 	    d_really_is_negative(dentry))
1494 		return dentry->d_time == inode_peek_iversion_raw(dir);
1495 	return nfs_verify_change_attribute(dir, dentry->d_time);
1496 }
1497 
1498 /*
1499  * A check for whether or not the parent directory has changed.
1500  * In the case it has, we assume that the dentries are untrustworthy
1501  * and may need to be looked up again.
1502  * If rcu_walk prevents us from performing a full check, return 0.
1503  */
1504 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1505 			      int rcu_walk)
1506 {
1507 	if (IS_ROOT(dentry))
1508 		return 1;
1509 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1510 		return 0;
1511 	if (!nfs_dentry_verify_change(dir, dentry))
1512 		return 0;
1513 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1514 	if (nfs_mapping_need_revalidate_inode(dir)) {
1515 		if (rcu_walk)
1516 			return 0;
1517 		if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1518 			return 0;
1519 	}
1520 	if (!nfs_dentry_verify_change(dir, dentry))
1521 		return 0;
1522 	return 1;
1523 }
1524 
1525 /*
1526  * Use intent information to check whether or not we're going to do
1527  * an O_EXCL create using this path component.
1528  */
1529 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1530 {
1531 	if (NFS_PROTO(dir)->version == 2)
1532 		return 0;
1533 	return flags & LOOKUP_EXCL;
1534 }
1535 
1536 /*
1537  * Inode and filehandle revalidation for lookups.
1538  *
1539  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1540  * or if the intent information indicates that we're about to open this
1541  * particular file and the "nocto" mount flag is not set.
1542  *
1543  */
1544 static
1545 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1546 {
1547 	struct nfs_server *server = NFS_SERVER(inode);
1548 	int ret;
1549 
1550 	if (IS_AUTOMOUNT(inode))
1551 		return 0;
1552 
1553 	if (flags & LOOKUP_OPEN) {
1554 		switch (inode->i_mode & S_IFMT) {
1555 		case S_IFREG:
1556 			/* A NFSv4 OPEN will revalidate later */
1557 			if (server->caps & NFS_CAP_ATOMIC_OPEN)
1558 				goto out;
1559 			fallthrough;
1560 		case S_IFDIR:
1561 			if (server->flags & NFS_MOUNT_NOCTO)
1562 				break;
1563 			/* NFS close-to-open cache consistency validation */
1564 			goto out_force;
1565 		}
1566 	}
1567 
1568 	/* VFS wants an on-the-wire revalidation */
1569 	if (flags & LOOKUP_REVAL)
1570 		goto out_force;
1571 out:
1572 	if (inode->i_nlink > 0 ||
1573 	    (inode->i_nlink == 0 &&
1574 	     test_bit(NFS_INO_PRESERVE_UNLINKED, &NFS_I(inode)->flags)))
1575 		return 0;
1576 	else
1577 		return -ESTALE;
1578 out_force:
1579 	if (flags & LOOKUP_RCU)
1580 		return -ECHILD;
1581 	ret = __nfs_revalidate_inode(server, inode);
1582 	if (ret != 0)
1583 		return ret;
1584 	goto out;
1585 }
1586 
1587 static void nfs_mark_dir_for_revalidate(struct inode *inode)
1588 {
1589 	spin_lock(&inode->i_lock);
1590 	nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE);
1591 	spin_unlock(&inode->i_lock);
1592 }
1593 
1594 /*
1595  * We judge how long we want to trust negative
1596  * dentries by looking at the parent inode mtime.
1597  *
1598  * If parent mtime has changed, we revalidate, else we wait for a
1599  * period corresponding to the parent's attribute cache timeout value.
1600  *
1601  * If LOOKUP_RCU prevents us from performing a full check, return 1
1602  * suggesting a reval is needed.
1603  *
1604  * Note that when creating a new file, or looking up a rename target,
1605  * then it shouldn't be necessary to revalidate a negative dentry.
1606  */
1607 static inline
1608 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1609 		       unsigned int flags)
1610 {
1611 	if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1612 		return 0;
1613 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1614 		return 1;
1615 	/* Case insensitive server? Revalidate negative dentries */
1616 	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1617 		return 1;
1618 	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1619 }
1620 
1621 static int
1622 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1623 			   struct inode *inode, int error)
1624 {
1625 	switch (error) {
1626 	case 1:
1627 		break;
1628 	case -ETIMEDOUT:
1629 		if (inode && (IS_ROOT(dentry) ||
1630 			      NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL))
1631 			error = 1;
1632 		break;
1633 	case -ESTALE:
1634 	case -ENOENT:
1635 		error = 0;
1636 		fallthrough;
1637 	default:
1638 		/*
1639 		 * We can't d_drop the root of a disconnected tree:
1640 		 * its d_hash is on the s_anon list and d_drop() would hide
1641 		 * it from shrink_dcache_for_unmount(), leading to busy
1642 		 * inodes on unmount and further oopses.
1643 		 */
1644 		if (inode && IS_ROOT(dentry))
1645 			error = 1;
1646 		break;
1647 	}
1648 	trace_nfs_lookup_revalidate_exit(dir, dentry, 0, error);
1649 	return error;
1650 }
1651 
1652 static int
1653 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1654 			       unsigned int flags)
1655 {
1656 	int ret = 1;
1657 	if (nfs_neg_need_reval(dir, dentry, flags)) {
1658 		if (flags & LOOKUP_RCU)
1659 			return -ECHILD;
1660 		ret = 0;
1661 	}
1662 	return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1663 }
1664 
1665 static int
1666 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1667 				struct inode *inode)
1668 {
1669 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1670 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1671 }
1672 
1673 static int nfs_lookup_revalidate_dentry(struct inode *dir,
1674 					struct dentry *dentry,
1675 					struct inode *inode, unsigned int flags)
1676 {
1677 	struct nfs_fh *fhandle;
1678 	struct nfs_fattr *fattr;
1679 	unsigned long dir_verifier;
1680 	int ret;
1681 
1682 	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1683 
1684 	ret = -ENOMEM;
1685 	fhandle = nfs_alloc_fhandle();
1686 	fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
1687 	if (fhandle == NULL || fattr == NULL)
1688 		goto out;
1689 
1690 	dir_verifier = nfs_save_change_attribute(dir);
1691 	ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1692 	if (ret < 0)
1693 		goto out;
1694 
1695 	/* Request help from readdirplus */
1696 	nfs_lookup_advise_force_readdirplus(dir, flags);
1697 
1698 	ret = 0;
1699 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1700 		goto out;
1701 	if (nfs_refresh_inode(inode, fattr) < 0)
1702 		goto out;
1703 
1704 	nfs_setsecurity(inode, fattr);
1705 	nfs_set_verifier(dentry, dir_verifier);
1706 
1707 	ret = 1;
1708 out:
1709 	nfs_free_fattr(fattr);
1710 	nfs_free_fhandle(fhandle);
1711 
1712 	/*
1713 	 * If the lookup failed despite the dentry change attribute being
1714 	 * a match, then we should revalidate the directory cache.
1715 	 */
1716 	if (!ret && nfs_dentry_verify_change(dir, dentry))
1717 		nfs_mark_dir_for_revalidate(dir);
1718 	return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1719 }
1720 
1721 /*
1722  * This is called every time the dcache has a lookup hit,
1723  * and we should check whether we can really trust that
1724  * lookup.
1725  *
1726  * NOTE! The hit can be a negative hit too, don't assume
1727  * we have an inode!
1728  *
1729  * If the parent directory is seen to have changed, we throw out the
1730  * cached dentry and do a new lookup.
1731  */
1732 static int
1733 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1734 			 unsigned int flags)
1735 {
1736 	struct inode *inode;
1737 	int error = 0;
1738 
1739 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1740 	inode = d_inode(dentry);
1741 
1742 	if (!inode)
1743 		return nfs_lookup_revalidate_negative(dir, dentry, flags);
1744 
1745 	if (is_bad_inode(inode)) {
1746 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1747 				__func__, dentry);
1748 		goto out_bad;
1749 	}
1750 
1751 	if ((flags & LOOKUP_RENAME_TARGET) && d_count(dentry) < 2 &&
1752 	    nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1753 		goto out_bad;
1754 
1755 	if (nfs_verifier_is_delegated(dentry))
1756 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1757 
1758 	/* Force a full look up iff the parent directory has changed */
1759 	if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1760 	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1761 		error = nfs_lookup_verify_inode(inode, flags);
1762 		if (error) {
1763 			if (error == -ESTALE)
1764 				nfs_mark_dir_for_revalidate(dir);
1765 			goto out_bad;
1766 		}
1767 		goto out_valid;
1768 	}
1769 
1770 	if (flags & LOOKUP_RCU)
1771 		return -ECHILD;
1772 
1773 	if (NFS_STALE(inode))
1774 		goto out_bad;
1775 
1776 	return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags);
1777 out_valid:
1778 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1779 out_bad:
1780 	if (flags & LOOKUP_RCU)
1781 		return -ECHILD;
1782 	return nfs_lookup_revalidate_done(dir, dentry, inode, error);
1783 }
1784 
1785 static int
1786 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1787 			int (*reval)(struct inode *, struct dentry *, unsigned int))
1788 {
1789 	struct dentry *parent;
1790 	struct inode *dir;
1791 	int ret;
1792 
1793 	if (flags & LOOKUP_RCU) {
1794 		if (dentry->d_fsdata == NFS_FSDATA_BLOCKED)
1795 			return -ECHILD;
1796 		parent = READ_ONCE(dentry->d_parent);
1797 		dir = d_inode_rcu(parent);
1798 		if (!dir)
1799 			return -ECHILD;
1800 		ret = reval(dir, dentry, flags);
1801 		if (parent != READ_ONCE(dentry->d_parent))
1802 			return -ECHILD;
1803 	} else {
1804 		/* Wait for unlink to complete - see unblock_revalidate() */
1805 		wait_var_event(&dentry->d_fsdata,
1806 			       smp_load_acquire(&dentry->d_fsdata)
1807 			       != NFS_FSDATA_BLOCKED);
1808 		parent = dget_parent(dentry);
1809 		ret = reval(d_inode(parent), dentry, flags);
1810 		dput(parent);
1811 	}
1812 	return ret;
1813 }
1814 
1815 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1816 {
1817 	return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1818 }
1819 
1820 static void block_revalidate(struct dentry *dentry)
1821 {
1822 	/* old devname - just in case */
1823 	kfree(dentry->d_fsdata);
1824 
1825 	/* Any new reference that could lead to an open
1826 	 * will take ->d_lock in lookup_open() -> d_lookup().
1827 	 * Holding this lock ensures we cannot race with
1828 	 * __nfs_lookup_revalidate() and removes and need
1829 	 * for further barriers.
1830 	 */
1831 	lockdep_assert_held(&dentry->d_lock);
1832 
1833 	dentry->d_fsdata = NFS_FSDATA_BLOCKED;
1834 }
1835 
1836 static void unblock_revalidate(struct dentry *dentry)
1837 {
1838 	/* store_release ensures wait_var_event() sees the update */
1839 	smp_store_release(&dentry->d_fsdata, NULL);
1840 	wake_up_var(&dentry->d_fsdata);
1841 }
1842 
1843 /*
1844  * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1845  * when we don't really care about the dentry name. This is called when a
1846  * pathwalk ends on a dentry that was not found via a normal lookup in the
1847  * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1848  *
1849  * In this situation, we just want to verify that the inode itself is OK
1850  * since the dentry might have changed on the server.
1851  */
1852 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1853 {
1854 	struct inode *inode = d_inode(dentry);
1855 	int error = 0;
1856 
1857 	/*
1858 	 * I believe we can only get a negative dentry here in the case of a
1859 	 * procfs-style symlink. Just assume it's correct for now, but we may
1860 	 * eventually need to do something more here.
1861 	 */
1862 	if (!inode) {
1863 		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1864 				__func__, dentry);
1865 		return 1;
1866 	}
1867 
1868 	if (is_bad_inode(inode)) {
1869 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1870 				__func__, dentry);
1871 		return 0;
1872 	}
1873 
1874 	error = nfs_lookup_verify_inode(inode, flags);
1875 	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1876 			__func__, inode->i_ino, error ? "invalid" : "valid");
1877 	return !error;
1878 }
1879 
1880 /*
1881  * This is called from dput() when d_count is going to 0.
1882  */
1883 static int nfs_dentry_delete(const struct dentry *dentry)
1884 {
1885 	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1886 		dentry, dentry->d_flags);
1887 
1888 	/* Unhash any dentry with a stale inode */
1889 	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1890 		return 1;
1891 
1892 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1893 		/* Unhash it, so that ->d_iput() would be called */
1894 		return 1;
1895 	}
1896 	if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1897 		/* Unhash it, so that ancestors of killed async unlink
1898 		 * files will be cleaned up during umount */
1899 		return 1;
1900 	}
1901 	return 0;
1902 
1903 }
1904 
1905 /* Ensure that we revalidate inode->i_nlink */
1906 static void nfs_drop_nlink(struct inode *inode)
1907 {
1908 	spin_lock(&inode->i_lock);
1909 	/* drop the inode if we're reasonably sure this is the last link */
1910 	if (inode->i_nlink > 0)
1911 		drop_nlink(inode);
1912 	NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1913 	nfs_set_cache_invalid(
1914 		inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME |
1915 			       NFS_INO_INVALID_NLINK);
1916 	spin_unlock(&inode->i_lock);
1917 }
1918 
1919 /*
1920  * Called when the dentry loses inode.
1921  * We use it to clean up silly-renamed files.
1922  */
1923 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1924 {
1925 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1926 		nfs_complete_unlink(dentry, inode);
1927 		nfs_drop_nlink(inode);
1928 	}
1929 	iput(inode);
1930 }
1931 
1932 static void nfs_d_release(struct dentry *dentry)
1933 {
1934 	/* free cached devname value, if it survived that far */
1935 	if (unlikely(dentry->d_fsdata)) {
1936 		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1937 			WARN_ON(1);
1938 		else
1939 			kfree(dentry->d_fsdata);
1940 	}
1941 }
1942 
1943 const struct dentry_operations nfs_dentry_operations = {
1944 	.d_revalidate	= nfs_lookup_revalidate,
1945 	.d_weak_revalidate	= nfs_weak_revalidate,
1946 	.d_delete	= nfs_dentry_delete,
1947 	.d_iput		= nfs_dentry_iput,
1948 	.d_automount	= nfs_d_automount,
1949 	.d_release	= nfs_d_release,
1950 };
1951 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1952 
1953 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1954 {
1955 	struct dentry *res;
1956 	struct inode *inode = NULL;
1957 	struct nfs_fh *fhandle = NULL;
1958 	struct nfs_fattr *fattr = NULL;
1959 	unsigned long dir_verifier;
1960 	int error;
1961 
1962 	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1963 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1964 
1965 	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1966 		return ERR_PTR(-ENAMETOOLONG);
1967 
1968 	/*
1969 	 * If we're doing an exclusive create, optimize away the lookup
1970 	 * but don't hash the dentry.
1971 	 */
1972 	if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1973 		return NULL;
1974 
1975 	res = ERR_PTR(-ENOMEM);
1976 	fhandle = nfs_alloc_fhandle();
1977 	fattr = nfs_alloc_fattr_with_label(NFS_SERVER(dir));
1978 	if (fhandle == NULL || fattr == NULL)
1979 		goto out;
1980 
1981 	dir_verifier = nfs_save_change_attribute(dir);
1982 	trace_nfs_lookup_enter(dir, dentry, flags);
1983 	error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1984 	if (error == -ENOENT) {
1985 		if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1986 			dir_verifier = inode_peek_iversion_raw(dir);
1987 		goto no_entry;
1988 	}
1989 	if (error < 0) {
1990 		res = ERR_PTR(error);
1991 		goto out;
1992 	}
1993 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1994 	res = ERR_CAST(inode);
1995 	if (IS_ERR(res))
1996 		goto out;
1997 
1998 	/* Notify readdir to use READDIRPLUS */
1999 	nfs_lookup_advise_force_readdirplus(dir, flags);
2000 
2001 no_entry:
2002 	res = d_splice_alias(inode, dentry);
2003 	if (res != NULL) {
2004 		if (IS_ERR(res))
2005 			goto out;
2006 		dentry = res;
2007 	}
2008 	nfs_set_verifier(dentry, dir_verifier);
2009 out:
2010 	trace_nfs_lookup_exit(dir, dentry, flags, PTR_ERR_OR_ZERO(res));
2011 	nfs_free_fattr(fattr);
2012 	nfs_free_fhandle(fhandle);
2013 	return res;
2014 }
2015 EXPORT_SYMBOL_GPL(nfs_lookup);
2016 
2017 void nfs_d_prune_case_insensitive_aliases(struct inode *inode)
2018 {
2019 	/* Case insensitive server? Revalidate dentries */
2020 	if (inode && nfs_server_capable(inode, NFS_CAP_CASE_INSENSITIVE))
2021 		d_prune_aliases(inode);
2022 }
2023 EXPORT_SYMBOL_GPL(nfs_d_prune_case_insensitive_aliases);
2024 
2025 #if IS_ENABLED(CONFIG_NFS_V4)
2026 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
2027 
2028 const struct dentry_operations nfs4_dentry_operations = {
2029 	.d_revalidate	= nfs4_lookup_revalidate,
2030 	.d_weak_revalidate	= nfs_weak_revalidate,
2031 	.d_delete	= nfs_dentry_delete,
2032 	.d_iput		= nfs_dentry_iput,
2033 	.d_automount	= nfs_d_automount,
2034 	.d_release	= nfs_d_release,
2035 };
2036 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
2037 
2038 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
2039 {
2040 	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
2041 }
2042 
2043 static int do_open(struct inode *inode, struct file *filp)
2044 {
2045 	nfs_fscache_open_file(inode, filp);
2046 	return 0;
2047 }
2048 
2049 static int nfs_finish_open(struct nfs_open_context *ctx,
2050 			   struct dentry *dentry,
2051 			   struct file *file, unsigned open_flags)
2052 {
2053 	int err;
2054 
2055 	err = finish_open(file, dentry, do_open);
2056 	if (err)
2057 		goto out;
2058 	if (S_ISREG(file_inode(file)->i_mode))
2059 		nfs_file_set_open_context(file, ctx);
2060 	else
2061 		err = -EOPENSTALE;
2062 out:
2063 	return err;
2064 }
2065 
2066 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
2067 		    struct file *file, unsigned open_flags,
2068 		    umode_t mode)
2069 {
2070 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2071 	struct nfs_open_context *ctx;
2072 	struct dentry *res;
2073 	struct iattr attr = { .ia_valid = ATTR_OPEN };
2074 	struct inode *inode;
2075 	unsigned int lookup_flags = 0;
2076 	unsigned long dir_verifier;
2077 	bool switched = false;
2078 	int created = 0;
2079 	int err;
2080 
2081 	/* Expect a negative dentry */
2082 	BUG_ON(d_inode(dentry));
2083 
2084 	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
2085 			dir->i_sb->s_id, dir->i_ino, dentry);
2086 
2087 	err = nfs_check_flags(open_flags);
2088 	if (err)
2089 		return err;
2090 
2091 	/* NFS only supports OPEN on regular files */
2092 	if ((open_flags & O_DIRECTORY)) {
2093 		if (!d_in_lookup(dentry)) {
2094 			/*
2095 			 * Hashed negative dentry with O_DIRECTORY: dentry was
2096 			 * revalidated and is fine, no need to perform lookup
2097 			 * again
2098 			 */
2099 			return -ENOENT;
2100 		}
2101 		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
2102 		goto no_open;
2103 	}
2104 
2105 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
2106 		return -ENAMETOOLONG;
2107 
2108 	if (open_flags & O_CREAT) {
2109 		struct nfs_server *server = NFS_SERVER(dir);
2110 
2111 		if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
2112 			mode &= ~current_umask();
2113 
2114 		attr.ia_valid |= ATTR_MODE;
2115 		attr.ia_mode = mode;
2116 	}
2117 	if (open_flags & O_TRUNC) {
2118 		attr.ia_valid |= ATTR_SIZE;
2119 		attr.ia_size = 0;
2120 	}
2121 
2122 	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
2123 		d_drop(dentry);
2124 		switched = true;
2125 		dentry = d_alloc_parallel(dentry->d_parent,
2126 					  &dentry->d_name, &wq);
2127 		if (IS_ERR(dentry))
2128 			return PTR_ERR(dentry);
2129 		if (unlikely(!d_in_lookup(dentry)))
2130 			return finish_no_open(file, dentry);
2131 	}
2132 
2133 	ctx = create_nfs_open_context(dentry, open_flags, file);
2134 	err = PTR_ERR(ctx);
2135 	if (IS_ERR(ctx))
2136 		goto out;
2137 
2138 	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
2139 	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
2140 	if (created)
2141 		file->f_mode |= FMODE_CREATED;
2142 	if (IS_ERR(inode)) {
2143 		err = PTR_ERR(inode);
2144 		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2145 		put_nfs_open_context(ctx);
2146 		d_drop(dentry);
2147 		switch (err) {
2148 		case -ENOENT:
2149 			d_splice_alias(NULL, dentry);
2150 			if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
2151 				dir_verifier = inode_peek_iversion_raw(dir);
2152 			else
2153 				dir_verifier = nfs_save_change_attribute(dir);
2154 			nfs_set_verifier(dentry, dir_verifier);
2155 			break;
2156 		case -EISDIR:
2157 		case -ENOTDIR:
2158 			goto no_open;
2159 		case -ELOOP:
2160 			if (!(open_flags & O_NOFOLLOW))
2161 				goto no_open;
2162 			break;
2163 			/* case -EINVAL: */
2164 		default:
2165 			break;
2166 		}
2167 		goto out;
2168 	}
2169 	file->f_mode |= FMODE_CAN_ODIRECT;
2170 
2171 	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
2172 	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2173 	put_nfs_open_context(ctx);
2174 out:
2175 	if (unlikely(switched)) {
2176 		d_lookup_done(dentry);
2177 		dput(dentry);
2178 	}
2179 	return err;
2180 
2181 no_open:
2182 	res = nfs_lookup(dir, dentry, lookup_flags);
2183 	if (!res) {
2184 		inode = d_inode(dentry);
2185 		if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2186 		    !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)))
2187 			res = ERR_PTR(-ENOTDIR);
2188 		else if (inode && S_ISREG(inode->i_mode))
2189 			res = ERR_PTR(-EOPENSTALE);
2190 	} else if (!IS_ERR(res)) {
2191 		inode = d_inode(res);
2192 		if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2193 		    !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) {
2194 			dput(res);
2195 			res = ERR_PTR(-ENOTDIR);
2196 		} else if (inode && S_ISREG(inode->i_mode)) {
2197 			dput(res);
2198 			res = ERR_PTR(-EOPENSTALE);
2199 		}
2200 	}
2201 	if (switched) {
2202 		d_lookup_done(dentry);
2203 		if (!res)
2204 			res = dentry;
2205 		else
2206 			dput(dentry);
2207 	}
2208 	if (IS_ERR(res))
2209 		return PTR_ERR(res);
2210 	return finish_no_open(file, res);
2211 }
2212 EXPORT_SYMBOL_GPL(nfs_atomic_open);
2213 
2214 static int
2215 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
2216 			  unsigned int flags)
2217 {
2218 	struct inode *inode;
2219 
2220 	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
2221 		goto full_reval;
2222 	if (d_mountpoint(dentry))
2223 		goto full_reval;
2224 
2225 	inode = d_inode(dentry);
2226 
2227 	/* We can't create new files in nfs_open_revalidate(), so we
2228 	 * optimize away revalidation of negative dentries.
2229 	 */
2230 	if (inode == NULL)
2231 		goto full_reval;
2232 
2233 	if (nfs_verifier_is_delegated(dentry))
2234 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
2235 
2236 	/* NFS only supports OPEN on regular files */
2237 	if (!S_ISREG(inode->i_mode))
2238 		goto full_reval;
2239 
2240 	/* We cannot do exclusive creation on a positive dentry */
2241 	if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
2242 		goto reval_dentry;
2243 
2244 	/* Check if the directory changed */
2245 	if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
2246 		goto reval_dentry;
2247 
2248 	/* Let f_op->open() actually open (and revalidate) the file */
2249 	return 1;
2250 reval_dentry:
2251 	if (flags & LOOKUP_RCU)
2252 		return -ECHILD;
2253 	return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags);
2254 
2255 full_reval:
2256 	return nfs_do_lookup_revalidate(dir, dentry, flags);
2257 }
2258 
2259 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
2260 {
2261 	return __nfs_lookup_revalidate(dentry, flags,
2262 			nfs4_do_lookup_revalidate);
2263 }
2264 
2265 #endif /* CONFIG_NFSV4 */
2266 
2267 struct dentry *
2268 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
2269 				struct nfs_fattr *fattr)
2270 {
2271 	struct dentry *parent = dget_parent(dentry);
2272 	struct inode *dir = d_inode(parent);
2273 	struct inode *inode;
2274 	struct dentry *d;
2275 	int error;
2276 
2277 	d_drop(dentry);
2278 
2279 	if (fhandle->size == 0) {
2280 		error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
2281 		if (error)
2282 			goto out_error;
2283 	}
2284 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2285 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
2286 		struct nfs_server *server = NFS_SB(dentry->d_sb);
2287 		error = server->nfs_client->rpc_ops->getattr(server, fhandle,
2288 				fattr, NULL);
2289 		if (error < 0)
2290 			goto out_error;
2291 	}
2292 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
2293 	d = d_splice_alias(inode, dentry);
2294 out:
2295 	dput(parent);
2296 	return d;
2297 out_error:
2298 	d = ERR_PTR(error);
2299 	goto out;
2300 }
2301 EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
2302 
2303 /*
2304  * Code common to create, mkdir, and mknod.
2305  */
2306 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
2307 				struct nfs_fattr *fattr)
2308 {
2309 	struct dentry *d;
2310 
2311 	d = nfs_add_or_obtain(dentry, fhandle, fattr);
2312 	if (IS_ERR(d))
2313 		return PTR_ERR(d);
2314 
2315 	/* Callers don't care */
2316 	dput(d);
2317 	return 0;
2318 }
2319 EXPORT_SYMBOL_GPL(nfs_instantiate);
2320 
2321 /*
2322  * Following a failed create operation, we drop the dentry rather
2323  * than retain a negative dentry. This avoids a problem in the event
2324  * that the operation succeeded on the server, but an error in the
2325  * reply path made it appear to have failed.
2326  */
2327 int nfs_create(struct mnt_idmap *idmap, struct inode *dir,
2328 	       struct dentry *dentry, umode_t mode, bool excl)
2329 {
2330 	struct iattr attr;
2331 	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
2332 	int error;
2333 
2334 	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
2335 			dir->i_sb->s_id, dir->i_ino, dentry);
2336 
2337 	attr.ia_mode = mode;
2338 	attr.ia_valid = ATTR_MODE;
2339 
2340 	trace_nfs_create_enter(dir, dentry, open_flags);
2341 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
2342 	trace_nfs_create_exit(dir, dentry, open_flags, error);
2343 	if (error != 0)
2344 		goto out_err;
2345 	return 0;
2346 out_err:
2347 	d_drop(dentry);
2348 	return error;
2349 }
2350 EXPORT_SYMBOL_GPL(nfs_create);
2351 
2352 /*
2353  * See comments for nfs_proc_create regarding failed operations.
2354  */
2355 int
2356 nfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
2357 	  struct dentry *dentry, umode_t mode, dev_t rdev)
2358 {
2359 	struct iattr attr;
2360 	int status;
2361 
2362 	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
2363 			dir->i_sb->s_id, dir->i_ino, dentry);
2364 
2365 	attr.ia_mode = mode;
2366 	attr.ia_valid = ATTR_MODE;
2367 
2368 	trace_nfs_mknod_enter(dir, dentry);
2369 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
2370 	trace_nfs_mknod_exit(dir, dentry, status);
2371 	if (status != 0)
2372 		goto out_err;
2373 	return 0;
2374 out_err:
2375 	d_drop(dentry);
2376 	return status;
2377 }
2378 EXPORT_SYMBOL_GPL(nfs_mknod);
2379 
2380 /*
2381  * See comments for nfs_proc_create regarding failed operations.
2382  */
2383 int nfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
2384 	      struct dentry *dentry, umode_t mode)
2385 {
2386 	struct iattr attr;
2387 	int error;
2388 
2389 	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
2390 			dir->i_sb->s_id, dir->i_ino, dentry);
2391 
2392 	attr.ia_valid = ATTR_MODE;
2393 	attr.ia_mode = mode | S_IFDIR;
2394 
2395 	trace_nfs_mkdir_enter(dir, dentry);
2396 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
2397 	trace_nfs_mkdir_exit(dir, dentry, error);
2398 	if (error != 0)
2399 		goto out_err;
2400 	return 0;
2401 out_err:
2402 	d_drop(dentry);
2403 	return error;
2404 }
2405 EXPORT_SYMBOL_GPL(nfs_mkdir);
2406 
2407 static void nfs_dentry_handle_enoent(struct dentry *dentry)
2408 {
2409 	if (simple_positive(dentry))
2410 		d_delete(dentry);
2411 }
2412 
2413 static void nfs_dentry_remove_handle_error(struct inode *dir,
2414 					   struct dentry *dentry, int error)
2415 {
2416 	switch (error) {
2417 	case -ENOENT:
2418 		if (d_really_is_positive(dentry))
2419 			d_delete(dentry);
2420 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2421 		break;
2422 	case 0:
2423 		nfs_d_prune_case_insensitive_aliases(d_inode(dentry));
2424 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2425 	}
2426 }
2427 
2428 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
2429 {
2430 	int error;
2431 
2432 	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
2433 			dir->i_sb->s_id, dir->i_ino, dentry);
2434 
2435 	trace_nfs_rmdir_enter(dir, dentry);
2436 	if (d_really_is_positive(dentry)) {
2437 		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2438 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2439 		/* Ensure the VFS deletes this inode */
2440 		switch (error) {
2441 		case 0:
2442 			clear_nlink(d_inode(dentry));
2443 			break;
2444 		case -ENOENT:
2445 			nfs_dentry_handle_enoent(dentry);
2446 		}
2447 		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2448 	} else
2449 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2450 	nfs_dentry_remove_handle_error(dir, dentry, error);
2451 	trace_nfs_rmdir_exit(dir, dentry, error);
2452 
2453 	return error;
2454 }
2455 EXPORT_SYMBOL_GPL(nfs_rmdir);
2456 
2457 /*
2458  * Remove a file after making sure there are no pending writes,
2459  * and after checking that the file has only one user.
2460  *
2461  * We invalidate the attribute cache and free the inode prior to the operation
2462  * to avoid possible races if the server reuses the inode.
2463  */
2464 static int nfs_safe_remove(struct dentry *dentry)
2465 {
2466 	struct inode *dir = d_inode(dentry->d_parent);
2467 	struct inode *inode = d_inode(dentry);
2468 	int error = -EBUSY;
2469 
2470 	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2471 
2472 	/* If the dentry was sillyrenamed, we simply call d_delete() */
2473 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2474 		error = 0;
2475 		goto out;
2476 	}
2477 
2478 	trace_nfs_remove_enter(dir, dentry);
2479 	if (inode != NULL) {
2480 		error = NFS_PROTO(dir)->remove(dir, dentry);
2481 		if (error == 0)
2482 			nfs_drop_nlink(inode);
2483 	} else
2484 		error = NFS_PROTO(dir)->remove(dir, dentry);
2485 	if (error == -ENOENT)
2486 		nfs_dentry_handle_enoent(dentry);
2487 	trace_nfs_remove_exit(dir, dentry, error);
2488 out:
2489 	return error;
2490 }
2491 
2492 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
2493  *  belongs to an active ".nfs..." file and we return -EBUSY.
2494  *
2495  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
2496  */
2497 int nfs_unlink(struct inode *dir, struct dentry *dentry)
2498 {
2499 	int error;
2500 
2501 	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2502 		dir->i_ino, dentry);
2503 
2504 	trace_nfs_unlink_enter(dir, dentry);
2505 	spin_lock(&dentry->d_lock);
2506 	if (d_count(dentry) > 1 && !test_bit(NFS_INO_PRESERVE_UNLINKED,
2507 					     &NFS_I(d_inode(dentry))->flags)) {
2508 		spin_unlock(&dentry->d_lock);
2509 		/* Start asynchronous writeout of the inode */
2510 		write_inode_now(d_inode(dentry), 0);
2511 		error = nfs_sillyrename(dir, dentry);
2512 		goto out;
2513 	}
2514 	/* We must prevent any concurrent open until the unlink
2515 	 * completes.  ->d_revalidate will wait for ->d_fsdata
2516 	 * to clear.  We set it here to ensure no lookup succeeds until
2517 	 * the unlink is complete on the server.
2518 	 */
2519 	error = -ETXTBSY;
2520 	if (WARN_ON(dentry->d_flags & DCACHE_NFSFS_RENAMED) ||
2521 	    WARN_ON(dentry->d_fsdata == NFS_FSDATA_BLOCKED)) {
2522 		spin_unlock(&dentry->d_lock);
2523 		goto out;
2524 	}
2525 	block_revalidate(dentry);
2526 
2527 	spin_unlock(&dentry->d_lock);
2528 	error = nfs_safe_remove(dentry);
2529 	nfs_dentry_remove_handle_error(dir, dentry, error);
2530 	unblock_revalidate(dentry);
2531 out:
2532 	trace_nfs_unlink_exit(dir, dentry, error);
2533 	return error;
2534 }
2535 EXPORT_SYMBOL_GPL(nfs_unlink);
2536 
2537 /*
2538  * To create a symbolic link, most file systems instantiate a new inode,
2539  * add a page to it containing the path, then write it out to the disk
2540  * using prepare_write/commit_write.
2541  *
2542  * Unfortunately the NFS client can't create the in-core inode first
2543  * because it needs a file handle to create an in-core inode (see
2544  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
2545  * symlink request has completed on the server.
2546  *
2547  * So instead we allocate a raw page, copy the symname into it, then do
2548  * the SYMLINK request with the page as the buffer.  If it succeeds, we
2549  * now have a new file handle and can instantiate an in-core NFS inode
2550  * and move the raw page into its mapping.
2551  */
2552 int nfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
2553 		struct dentry *dentry, const char *symname)
2554 {
2555 	struct page *page;
2556 	char *kaddr;
2557 	struct iattr attr;
2558 	unsigned int pathlen = strlen(symname);
2559 	int error;
2560 
2561 	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2562 		dir->i_ino, dentry, symname);
2563 
2564 	if (pathlen > PAGE_SIZE)
2565 		return -ENAMETOOLONG;
2566 
2567 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
2568 	attr.ia_valid = ATTR_MODE;
2569 
2570 	page = alloc_page(GFP_USER);
2571 	if (!page)
2572 		return -ENOMEM;
2573 
2574 	kaddr = page_address(page);
2575 	memcpy(kaddr, symname, pathlen);
2576 	if (pathlen < PAGE_SIZE)
2577 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2578 
2579 	trace_nfs_symlink_enter(dir, dentry);
2580 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
2581 	trace_nfs_symlink_exit(dir, dentry, error);
2582 	if (error != 0) {
2583 		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2584 			dir->i_sb->s_id, dir->i_ino,
2585 			dentry, symname, error);
2586 		d_drop(dentry);
2587 		__free_page(page);
2588 		return error;
2589 	}
2590 
2591 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2592 
2593 	/*
2594 	 * No big deal if we can't add this page to the page cache here.
2595 	 * READLINK will get the missing page from the server if needed.
2596 	 */
2597 	if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2598 							GFP_KERNEL)) {
2599 		SetPageUptodate(page);
2600 		unlock_page(page);
2601 		/*
2602 		 * add_to_page_cache_lru() grabs an extra page refcount.
2603 		 * Drop it here to avoid leaking this page later.
2604 		 */
2605 		put_page(page);
2606 	} else
2607 		__free_page(page);
2608 
2609 	return 0;
2610 }
2611 EXPORT_SYMBOL_GPL(nfs_symlink);
2612 
2613 int
2614 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2615 {
2616 	struct inode *inode = d_inode(old_dentry);
2617 	int error;
2618 
2619 	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2620 		old_dentry, dentry);
2621 
2622 	trace_nfs_link_enter(inode, dir, dentry);
2623 	d_drop(dentry);
2624 	if (S_ISREG(inode->i_mode))
2625 		nfs_sync_inode(inode);
2626 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2627 	if (error == 0) {
2628 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2629 		ihold(inode);
2630 		d_add(dentry, inode);
2631 	}
2632 	trace_nfs_link_exit(inode, dir, dentry, error);
2633 	return error;
2634 }
2635 EXPORT_SYMBOL_GPL(nfs_link);
2636 
2637 static void
2638 nfs_unblock_rename(struct rpc_task *task, struct nfs_renamedata *data)
2639 {
2640 	struct dentry *new_dentry = data->new_dentry;
2641 
2642 	unblock_revalidate(new_dentry);
2643 }
2644 
2645 /*
2646  * RENAME
2647  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2648  * different file handle for the same inode after a rename (e.g. when
2649  * moving to a different directory). A fail-safe method to do so would
2650  * be to look up old_dir/old_name, create a link to new_dir/new_name and
2651  * rename the old file using the sillyrename stuff. This way, the original
2652  * file in old_dir will go away when the last process iput()s the inode.
2653  *
2654  * FIXED.
2655  *
2656  * It actually works quite well. One needs to have the possibility for
2657  * at least one ".nfs..." file in each directory the file ever gets
2658  * moved or linked to which happens automagically with the new
2659  * implementation that only depends on the dcache stuff instead of
2660  * using the inode layer
2661  *
2662  * Unfortunately, things are a little more complicated than indicated
2663  * above. For a cross-directory move, we want to make sure we can get
2664  * rid of the old inode after the operation.  This means there must be
2665  * no pending writes (if it's a file), and the use count must be 1.
2666  * If these conditions are met, we can drop the dentries before doing
2667  * the rename.
2668  */
2669 int nfs_rename(struct mnt_idmap *idmap, struct inode *old_dir,
2670 	       struct dentry *old_dentry, struct inode *new_dir,
2671 	       struct dentry *new_dentry, unsigned int flags)
2672 {
2673 	struct inode *old_inode = d_inode(old_dentry);
2674 	struct inode *new_inode = d_inode(new_dentry);
2675 	struct dentry *dentry = NULL;
2676 	struct rpc_task *task;
2677 	bool must_unblock = false;
2678 	int error = -EBUSY;
2679 
2680 	if (flags)
2681 		return -EINVAL;
2682 
2683 	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2684 		 old_dentry, new_dentry,
2685 		 d_count(new_dentry));
2686 
2687 	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2688 	/*
2689 	 * For non-directories, check whether the target is busy and if so,
2690 	 * make a copy of the dentry and then do a silly-rename. If the
2691 	 * silly-rename succeeds, the copied dentry is hashed and becomes
2692 	 * the new target.
2693 	 */
2694 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2695 		/* We must prevent any concurrent open until the unlink
2696 		 * completes.  ->d_revalidate will wait for ->d_fsdata
2697 		 * to clear.  We set it here to ensure no lookup succeeds until
2698 		 * the unlink is complete on the server.
2699 		 */
2700 		error = -ETXTBSY;
2701 		if (WARN_ON(new_dentry->d_flags & DCACHE_NFSFS_RENAMED) ||
2702 		    WARN_ON(new_dentry->d_fsdata == NFS_FSDATA_BLOCKED))
2703 			goto out;
2704 
2705 		spin_lock(&new_dentry->d_lock);
2706 		if (d_count(new_dentry) > 2) {
2707 			int err;
2708 
2709 			spin_unlock(&new_dentry->d_lock);
2710 
2711 			/* copy the target dentry's name */
2712 			dentry = d_alloc(new_dentry->d_parent,
2713 					 &new_dentry->d_name);
2714 			if (!dentry)
2715 				goto out;
2716 
2717 			/* silly-rename the existing target ... */
2718 			err = nfs_sillyrename(new_dir, new_dentry);
2719 			if (err)
2720 				goto out;
2721 
2722 			new_dentry = dentry;
2723 			new_inode = NULL;
2724 		} else {
2725 			block_revalidate(new_dentry);
2726 			must_unblock = true;
2727 			spin_unlock(&new_dentry->d_lock);
2728 		}
2729 
2730 	}
2731 
2732 	if (S_ISREG(old_inode->i_mode))
2733 		nfs_sync_inode(old_inode);
2734 	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry,
2735 				must_unblock ? nfs_unblock_rename : NULL);
2736 	if (IS_ERR(task)) {
2737 		if (must_unblock)
2738 			unblock_revalidate(new_dentry);
2739 		error = PTR_ERR(task);
2740 		goto out;
2741 	}
2742 
2743 	error = rpc_wait_for_completion_task(task);
2744 	if (error != 0) {
2745 		((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2746 		/* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2747 		smp_wmb();
2748 	} else
2749 		error = task->tk_status;
2750 	rpc_put_task(task);
2751 	/* Ensure the inode attributes are revalidated */
2752 	if (error == 0) {
2753 		spin_lock(&old_inode->i_lock);
2754 		NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2755 		nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE |
2756 							 NFS_INO_INVALID_CTIME |
2757 							 NFS_INO_REVAL_FORCED);
2758 		spin_unlock(&old_inode->i_lock);
2759 	}
2760 out:
2761 	trace_nfs_rename_exit(old_dir, old_dentry,
2762 			new_dir, new_dentry, error);
2763 	if (!error) {
2764 		if (new_inode != NULL)
2765 			nfs_drop_nlink(new_inode);
2766 		/*
2767 		 * The d_move() should be here instead of in an async RPC completion
2768 		 * handler because we need the proper locks to move the dentry.  If
2769 		 * we're interrupted by a signal, the async RPC completion handler
2770 		 * should mark the directories for revalidation.
2771 		 */
2772 		d_move(old_dentry, new_dentry);
2773 		nfs_set_verifier(old_dentry,
2774 					nfs_save_change_attribute(new_dir));
2775 	} else if (error == -ENOENT)
2776 		nfs_dentry_handle_enoent(old_dentry);
2777 
2778 	/* new dentry created? */
2779 	if (dentry)
2780 		dput(dentry);
2781 	return error;
2782 }
2783 EXPORT_SYMBOL_GPL(nfs_rename);
2784 
2785 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2786 static LIST_HEAD(nfs_access_lru_list);
2787 static atomic_long_t nfs_access_nr_entries;
2788 
2789 static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2790 module_param(nfs_access_max_cachesize, ulong, 0644);
2791 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2792 
2793 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2794 {
2795 	put_group_info(entry->group_info);
2796 	kfree_rcu(entry, rcu_head);
2797 	smp_mb__before_atomic();
2798 	atomic_long_dec(&nfs_access_nr_entries);
2799 	smp_mb__after_atomic();
2800 }
2801 
2802 static void nfs_access_free_list(struct list_head *head)
2803 {
2804 	struct nfs_access_entry *cache;
2805 
2806 	while (!list_empty(head)) {
2807 		cache = list_entry(head->next, struct nfs_access_entry, lru);
2808 		list_del(&cache->lru);
2809 		nfs_access_free_entry(cache);
2810 	}
2811 }
2812 
2813 static unsigned long
2814 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2815 {
2816 	LIST_HEAD(head);
2817 	struct nfs_inode *nfsi, *next;
2818 	struct nfs_access_entry *cache;
2819 	long freed = 0;
2820 
2821 	spin_lock(&nfs_access_lru_lock);
2822 	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2823 		struct inode *inode;
2824 
2825 		if (nr_to_scan-- == 0)
2826 			break;
2827 		inode = &nfsi->vfs_inode;
2828 		spin_lock(&inode->i_lock);
2829 		if (list_empty(&nfsi->access_cache_entry_lru))
2830 			goto remove_lru_entry;
2831 		cache = list_entry(nfsi->access_cache_entry_lru.next,
2832 				struct nfs_access_entry, lru);
2833 		list_move(&cache->lru, &head);
2834 		rb_erase(&cache->rb_node, &nfsi->access_cache);
2835 		freed++;
2836 		if (!list_empty(&nfsi->access_cache_entry_lru))
2837 			list_move_tail(&nfsi->access_cache_inode_lru,
2838 					&nfs_access_lru_list);
2839 		else {
2840 remove_lru_entry:
2841 			list_del_init(&nfsi->access_cache_inode_lru);
2842 			smp_mb__before_atomic();
2843 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2844 			smp_mb__after_atomic();
2845 		}
2846 		spin_unlock(&inode->i_lock);
2847 	}
2848 	spin_unlock(&nfs_access_lru_lock);
2849 	nfs_access_free_list(&head);
2850 	return freed;
2851 }
2852 
2853 unsigned long
2854 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2855 {
2856 	int nr_to_scan = sc->nr_to_scan;
2857 	gfp_t gfp_mask = sc->gfp_mask;
2858 
2859 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2860 		return SHRINK_STOP;
2861 	return nfs_do_access_cache_scan(nr_to_scan);
2862 }
2863 
2864 
2865 unsigned long
2866 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2867 {
2868 	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2869 }
2870 
2871 static void
2872 nfs_access_cache_enforce_limit(void)
2873 {
2874 	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2875 	unsigned long diff;
2876 	unsigned int nr_to_scan;
2877 
2878 	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2879 		return;
2880 	nr_to_scan = 100;
2881 	diff = nr_entries - nfs_access_max_cachesize;
2882 	if (diff < nr_to_scan)
2883 		nr_to_scan = diff;
2884 	nfs_do_access_cache_scan(nr_to_scan);
2885 }
2886 
2887 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2888 {
2889 	struct rb_root *root_node = &nfsi->access_cache;
2890 	struct rb_node *n;
2891 	struct nfs_access_entry *entry;
2892 
2893 	/* Unhook entries from the cache */
2894 	while ((n = rb_first(root_node)) != NULL) {
2895 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2896 		rb_erase(n, root_node);
2897 		list_move(&entry->lru, head);
2898 	}
2899 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2900 }
2901 
2902 void nfs_access_zap_cache(struct inode *inode)
2903 {
2904 	LIST_HEAD(head);
2905 
2906 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2907 		return;
2908 	/* Remove from global LRU init */
2909 	spin_lock(&nfs_access_lru_lock);
2910 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2911 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2912 
2913 	spin_lock(&inode->i_lock);
2914 	__nfs_access_zap_cache(NFS_I(inode), &head);
2915 	spin_unlock(&inode->i_lock);
2916 	spin_unlock(&nfs_access_lru_lock);
2917 	nfs_access_free_list(&head);
2918 }
2919 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2920 
2921 static int access_cmp(const struct cred *a, const struct nfs_access_entry *b)
2922 {
2923 	struct group_info *ga, *gb;
2924 	int g;
2925 
2926 	if (uid_lt(a->fsuid, b->fsuid))
2927 		return -1;
2928 	if (uid_gt(a->fsuid, b->fsuid))
2929 		return 1;
2930 
2931 	if (gid_lt(a->fsgid, b->fsgid))
2932 		return -1;
2933 	if (gid_gt(a->fsgid, b->fsgid))
2934 		return 1;
2935 
2936 	ga = a->group_info;
2937 	gb = b->group_info;
2938 	if (ga == gb)
2939 		return 0;
2940 	if (ga == NULL)
2941 		return -1;
2942 	if (gb == NULL)
2943 		return 1;
2944 	if (ga->ngroups < gb->ngroups)
2945 		return -1;
2946 	if (ga->ngroups > gb->ngroups)
2947 		return 1;
2948 
2949 	for (g = 0; g < ga->ngroups; g++) {
2950 		if (gid_lt(ga->gid[g], gb->gid[g]))
2951 			return -1;
2952 		if (gid_gt(ga->gid[g], gb->gid[g]))
2953 			return 1;
2954 	}
2955 	return 0;
2956 }
2957 
2958 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2959 {
2960 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2961 
2962 	while (n != NULL) {
2963 		struct nfs_access_entry *entry =
2964 			rb_entry(n, struct nfs_access_entry, rb_node);
2965 		int cmp = access_cmp(cred, entry);
2966 
2967 		if (cmp < 0)
2968 			n = n->rb_left;
2969 		else if (cmp > 0)
2970 			n = n->rb_right;
2971 		else
2972 			return entry;
2973 	}
2974 	return NULL;
2975 }
2976 
2977 static u64 nfs_access_login_time(const struct task_struct *task,
2978 				 const struct cred *cred)
2979 {
2980 	const struct task_struct *parent;
2981 	const struct cred *pcred;
2982 	u64 ret;
2983 
2984 	rcu_read_lock();
2985 	for (;;) {
2986 		parent = rcu_dereference(task->real_parent);
2987 		pcred = __task_cred(parent);
2988 		if (parent == task || cred_fscmp(pcred, cred) != 0)
2989 			break;
2990 		task = parent;
2991 	}
2992 	ret = task->start_time;
2993 	rcu_read_unlock();
2994 	return ret;
2995 }
2996 
2997 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, u32 *mask, bool may_block)
2998 {
2999 	struct nfs_inode *nfsi = NFS_I(inode);
3000 	u64 login_time = nfs_access_login_time(current, cred);
3001 	struct nfs_access_entry *cache;
3002 	bool retry = true;
3003 	int err;
3004 
3005 	spin_lock(&inode->i_lock);
3006 	for(;;) {
3007 		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
3008 			goto out_zap;
3009 		cache = nfs_access_search_rbtree(inode, cred);
3010 		err = -ENOENT;
3011 		if (cache == NULL)
3012 			goto out;
3013 		/* Found an entry, is our attribute cache valid? */
3014 		if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
3015 			break;
3016 		if (!retry)
3017 			break;
3018 		err = -ECHILD;
3019 		if (!may_block)
3020 			goto out;
3021 		spin_unlock(&inode->i_lock);
3022 		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
3023 		if (err)
3024 			return err;
3025 		spin_lock(&inode->i_lock);
3026 		retry = false;
3027 	}
3028 	err = -ENOENT;
3029 	if ((s64)(login_time - cache->timestamp) > 0)
3030 		goto out;
3031 	*mask = cache->mask;
3032 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
3033 	err = 0;
3034 out:
3035 	spin_unlock(&inode->i_lock);
3036 	return err;
3037 out_zap:
3038 	spin_unlock(&inode->i_lock);
3039 	nfs_access_zap_cache(inode);
3040 	return -ENOENT;
3041 }
3042 
3043 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, u32 *mask)
3044 {
3045 	/* Only check the most recently returned cache entry,
3046 	 * but do it without locking.
3047 	 */
3048 	struct nfs_inode *nfsi = NFS_I(inode);
3049 	u64 login_time = nfs_access_login_time(current, cred);
3050 	struct nfs_access_entry *cache;
3051 	int err = -ECHILD;
3052 	struct list_head *lh;
3053 
3054 	rcu_read_lock();
3055 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
3056 		goto out;
3057 	lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
3058 	cache = list_entry(lh, struct nfs_access_entry, lru);
3059 	if (lh == &nfsi->access_cache_entry_lru ||
3060 	    access_cmp(cred, cache) != 0)
3061 		cache = NULL;
3062 	if (cache == NULL)
3063 		goto out;
3064 	if ((s64)(login_time - cache->timestamp) > 0)
3065 		goto out;
3066 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
3067 		goto out;
3068 	*mask = cache->mask;
3069 	err = 0;
3070 out:
3071 	rcu_read_unlock();
3072 	return err;
3073 }
3074 
3075 int nfs_access_get_cached(struct inode *inode, const struct cred *cred,
3076 			  u32 *mask, bool may_block)
3077 {
3078 	int status;
3079 
3080 	status = nfs_access_get_cached_rcu(inode, cred, mask);
3081 	if (status != 0)
3082 		status = nfs_access_get_cached_locked(inode, cred, mask,
3083 		    may_block);
3084 
3085 	return status;
3086 }
3087 EXPORT_SYMBOL_GPL(nfs_access_get_cached);
3088 
3089 static void nfs_access_add_rbtree(struct inode *inode,
3090 				  struct nfs_access_entry *set,
3091 				  const struct cred *cred)
3092 {
3093 	struct nfs_inode *nfsi = NFS_I(inode);
3094 	struct rb_root *root_node = &nfsi->access_cache;
3095 	struct rb_node **p = &root_node->rb_node;
3096 	struct rb_node *parent = NULL;
3097 	struct nfs_access_entry *entry;
3098 	int cmp;
3099 
3100 	spin_lock(&inode->i_lock);
3101 	while (*p != NULL) {
3102 		parent = *p;
3103 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
3104 		cmp = access_cmp(cred, entry);
3105 
3106 		if (cmp < 0)
3107 			p = &parent->rb_left;
3108 		else if (cmp > 0)
3109 			p = &parent->rb_right;
3110 		else
3111 			goto found;
3112 	}
3113 	rb_link_node(&set->rb_node, parent, p);
3114 	rb_insert_color(&set->rb_node, root_node);
3115 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
3116 	spin_unlock(&inode->i_lock);
3117 	return;
3118 found:
3119 	rb_replace_node(parent, &set->rb_node, root_node);
3120 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
3121 	list_del(&entry->lru);
3122 	spin_unlock(&inode->i_lock);
3123 	nfs_access_free_entry(entry);
3124 }
3125 
3126 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set,
3127 			  const struct cred *cred)
3128 {
3129 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
3130 	if (cache == NULL)
3131 		return;
3132 	RB_CLEAR_NODE(&cache->rb_node);
3133 	cache->fsuid = cred->fsuid;
3134 	cache->fsgid = cred->fsgid;
3135 	cache->group_info = get_group_info(cred->group_info);
3136 	cache->mask = set->mask;
3137 	cache->timestamp = ktime_get_ns();
3138 
3139 	/* The above field assignments must be visible
3140 	 * before this item appears on the lru.  We cannot easily
3141 	 * use rcu_assign_pointer, so just force the memory barrier.
3142 	 */
3143 	smp_wmb();
3144 	nfs_access_add_rbtree(inode, cache, cred);
3145 
3146 	/* Update accounting */
3147 	smp_mb__before_atomic();
3148 	atomic_long_inc(&nfs_access_nr_entries);
3149 	smp_mb__after_atomic();
3150 
3151 	/* Add inode to global LRU list */
3152 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
3153 		spin_lock(&nfs_access_lru_lock);
3154 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
3155 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
3156 					&nfs_access_lru_list);
3157 		spin_unlock(&nfs_access_lru_lock);
3158 	}
3159 	nfs_access_cache_enforce_limit();
3160 }
3161 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
3162 
3163 #define NFS_MAY_READ (NFS_ACCESS_READ)
3164 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
3165 		NFS_ACCESS_EXTEND | \
3166 		NFS_ACCESS_DELETE)
3167 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
3168 		NFS_ACCESS_EXTEND)
3169 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
3170 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
3171 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
3172 static int
3173 nfs_access_calc_mask(u32 access_result, umode_t umode)
3174 {
3175 	int mask = 0;
3176 
3177 	if (access_result & NFS_MAY_READ)
3178 		mask |= MAY_READ;
3179 	if (S_ISDIR(umode)) {
3180 		if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
3181 			mask |= MAY_WRITE;
3182 		if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
3183 			mask |= MAY_EXEC;
3184 	} else if (S_ISREG(umode)) {
3185 		if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
3186 			mask |= MAY_WRITE;
3187 		if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
3188 			mask |= MAY_EXEC;
3189 	} else if (access_result & NFS_MAY_WRITE)
3190 			mask |= MAY_WRITE;
3191 	return mask;
3192 }
3193 
3194 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
3195 {
3196 	entry->mask = access_result;
3197 }
3198 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
3199 
3200 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
3201 {
3202 	struct nfs_access_entry cache;
3203 	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
3204 	int cache_mask = -1;
3205 	int status;
3206 
3207 	trace_nfs_access_enter(inode);
3208 
3209 	status = nfs_access_get_cached(inode, cred, &cache.mask, may_block);
3210 	if (status == 0)
3211 		goto out_cached;
3212 
3213 	status = -ECHILD;
3214 	if (!may_block)
3215 		goto out;
3216 
3217 	/*
3218 	 * Determine which access bits we want to ask for...
3219 	 */
3220 	cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND |
3221 		     nfs_access_xattr_mask(NFS_SERVER(inode));
3222 	if (S_ISDIR(inode->i_mode))
3223 		cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
3224 	else
3225 		cache.mask |= NFS_ACCESS_EXECUTE;
3226 	status = NFS_PROTO(inode)->access(inode, &cache, cred);
3227 	if (status != 0) {
3228 		if (status == -ESTALE) {
3229 			if (!S_ISDIR(inode->i_mode))
3230 				nfs_set_inode_stale(inode);
3231 			else
3232 				nfs_zap_caches(inode);
3233 		}
3234 		goto out;
3235 	}
3236 	nfs_access_add_cache(inode, &cache, cred);
3237 out_cached:
3238 	cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
3239 	if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
3240 		status = -EACCES;
3241 out:
3242 	trace_nfs_access_exit(inode, mask, cache_mask, status);
3243 	return status;
3244 }
3245 
3246 static int nfs_open_permission_mask(int openflags)
3247 {
3248 	int mask = 0;
3249 
3250 	if (openflags & __FMODE_EXEC) {
3251 		/* ONLY check exec rights */
3252 		mask = MAY_EXEC;
3253 	} else {
3254 		if ((openflags & O_ACCMODE) != O_WRONLY)
3255 			mask |= MAY_READ;
3256 		if ((openflags & O_ACCMODE) != O_RDONLY)
3257 			mask |= MAY_WRITE;
3258 	}
3259 
3260 	return mask;
3261 }
3262 
3263 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
3264 {
3265 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
3266 }
3267 EXPORT_SYMBOL_GPL(nfs_may_open);
3268 
3269 static int nfs_execute_ok(struct inode *inode, int mask)
3270 {
3271 	struct nfs_server *server = NFS_SERVER(inode);
3272 	int ret = 0;
3273 
3274 	if (S_ISDIR(inode->i_mode))
3275 		return 0;
3276 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) {
3277 		if (mask & MAY_NOT_BLOCK)
3278 			return -ECHILD;
3279 		ret = __nfs_revalidate_inode(server, inode);
3280 	}
3281 	if (ret == 0 && !execute_ok(inode))
3282 		ret = -EACCES;
3283 	return ret;
3284 }
3285 
3286 int nfs_permission(struct mnt_idmap *idmap,
3287 		   struct inode *inode,
3288 		   int mask)
3289 {
3290 	const struct cred *cred = current_cred();
3291 	int res = 0;
3292 
3293 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
3294 
3295 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
3296 		goto out;
3297 	/* Is this sys_access() ? */
3298 	if (mask & (MAY_ACCESS | MAY_CHDIR))
3299 		goto force_lookup;
3300 
3301 	switch (inode->i_mode & S_IFMT) {
3302 		case S_IFLNK:
3303 			goto out;
3304 		case S_IFREG:
3305 			if ((mask & MAY_OPEN) &&
3306 			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
3307 				return 0;
3308 			break;
3309 		case S_IFDIR:
3310 			/*
3311 			 * Optimize away all write operations, since the server
3312 			 * will check permissions when we perform the op.
3313 			 */
3314 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
3315 				goto out;
3316 	}
3317 
3318 force_lookup:
3319 	if (!NFS_PROTO(inode)->access)
3320 		goto out_notsup;
3321 
3322 	res = nfs_do_access(inode, cred, mask);
3323 out:
3324 	if (!res && (mask & MAY_EXEC))
3325 		res = nfs_execute_ok(inode, mask);
3326 
3327 	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
3328 		inode->i_sb->s_id, inode->i_ino, mask, res);
3329 	return res;
3330 out_notsup:
3331 	if (mask & MAY_NOT_BLOCK)
3332 		return -ECHILD;
3333 
3334 	res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE |
3335 						  NFS_INO_INVALID_OTHER);
3336 	if (res == 0)
3337 		res = generic_permission(&nop_mnt_idmap, inode, mask);
3338 	goto out;
3339 }
3340 EXPORT_SYMBOL_GPL(nfs_permission);
3341