xref: /openbmc/linux/fs/nfs/dir.c (revision 6aa7de05)
1 /*
2  *  linux/fs/nfs/dir.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  nfs directory handling functions
7  *
8  * 10 Apr 1996	Added silly rename for unlink	--okir
9  * 28 Sep 1996	Improved directory cache --okir
10  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
11  *              Re-implemented silly rename for unlink, newly implemented
12  *              silly rename for nfs_rename() following the suggestions
13  *              of Olaf Kirch (okir) found in this file.
14  *              Following Linus comments on my original hack, this version
15  *              depends only on the dcache stuff and doesn't touch the inode
16  *              layer (iput() and friends).
17  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
18  */
19 
20 #include <linux/module.h>
21 #include <linux/time.h>
22 #include <linux/errno.h>
23 #include <linux/stat.h>
24 #include <linux/fcntl.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/mm.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/nfs_fs.h>
31 #include <linux/nfs_mount.h>
32 #include <linux/pagemap.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/swap.h>
37 #include <linux/sched.h>
38 #include <linux/kmemleak.h>
39 #include <linux/xattr.h>
40 
41 #include "delegation.h"
42 #include "iostat.h"
43 #include "internal.h"
44 #include "fscache.h"
45 
46 #include "nfstrace.h"
47 
48 /* #define NFS_DEBUG_VERBOSE 1 */
49 
50 static int nfs_opendir(struct inode *, struct file *);
51 static int nfs_closedir(struct inode *, struct file *);
52 static int nfs_readdir(struct file *, struct dir_context *);
53 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
54 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
55 static void nfs_readdir_clear_array(struct page*);
56 
57 const struct file_operations nfs_dir_operations = {
58 	.llseek		= nfs_llseek_dir,
59 	.read		= generic_read_dir,
60 	.iterate	= nfs_readdir,
61 	.open		= nfs_opendir,
62 	.release	= nfs_closedir,
63 	.fsync		= nfs_fsync_dir,
64 };
65 
66 const struct address_space_operations nfs_dir_aops = {
67 	.freepage = nfs_readdir_clear_array,
68 };
69 
70 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
71 {
72 	struct nfs_inode *nfsi = NFS_I(dir);
73 	struct nfs_open_dir_context *ctx;
74 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
75 	if (ctx != NULL) {
76 		ctx->duped = 0;
77 		ctx->attr_gencount = nfsi->attr_gencount;
78 		ctx->dir_cookie = 0;
79 		ctx->dup_cookie = 0;
80 		ctx->cred = get_rpccred(cred);
81 		spin_lock(&dir->i_lock);
82 		list_add(&ctx->list, &nfsi->open_files);
83 		spin_unlock(&dir->i_lock);
84 		return ctx;
85 	}
86 	return  ERR_PTR(-ENOMEM);
87 }
88 
89 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
90 {
91 	spin_lock(&dir->i_lock);
92 	list_del(&ctx->list);
93 	spin_unlock(&dir->i_lock);
94 	put_rpccred(ctx->cred);
95 	kfree(ctx);
96 }
97 
98 /*
99  * Open file
100  */
101 static int
102 nfs_opendir(struct inode *inode, struct file *filp)
103 {
104 	int res = 0;
105 	struct nfs_open_dir_context *ctx;
106 	struct rpc_cred *cred;
107 
108 	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
109 
110 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
111 
112 	cred = rpc_lookup_cred();
113 	if (IS_ERR(cred))
114 		return PTR_ERR(cred);
115 	ctx = alloc_nfs_open_dir_context(inode, cred);
116 	if (IS_ERR(ctx)) {
117 		res = PTR_ERR(ctx);
118 		goto out;
119 	}
120 	filp->private_data = ctx;
121 	if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
122 		/* This is a mountpoint, so d_revalidate will never
123 		 * have been called, so we need to refresh the
124 		 * inode (for close-open consistency) ourselves.
125 		 */
126 		__nfs_revalidate_inode(NFS_SERVER(inode), inode);
127 	}
128 out:
129 	put_rpccred(cred);
130 	return res;
131 }
132 
133 static int
134 nfs_closedir(struct inode *inode, struct file *filp)
135 {
136 	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
137 	return 0;
138 }
139 
140 struct nfs_cache_array_entry {
141 	u64 cookie;
142 	u64 ino;
143 	struct qstr string;
144 	unsigned char d_type;
145 };
146 
147 struct nfs_cache_array {
148 	int size;
149 	int eof_index;
150 	u64 last_cookie;
151 	struct nfs_cache_array_entry array[0];
152 };
153 
154 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, bool);
155 typedef struct {
156 	struct file	*file;
157 	struct page	*page;
158 	struct dir_context *ctx;
159 	unsigned long	page_index;
160 	u64		*dir_cookie;
161 	u64		last_cookie;
162 	loff_t		current_index;
163 	decode_dirent_t	decode;
164 
165 	unsigned long	timestamp;
166 	unsigned long	gencount;
167 	unsigned int	cache_entry_index;
168 	bool plus;
169 	bool eof;
170 } nfs_readdir_descriptor_t;
171 
172 /*
173  * we are freeing strings created by nfs_add_to_readdir_array()
174  */
175 static
176 void nfs_readdir_clear_array(struct page *page)
177 {
178 	struct nfs_cache_array *array;
179 	int i;
180 
181 	array = kmap_atomic(page);
182 	for (i = 0; i < array->size; i++)
183 		kfree(array->array[i].string.name);
184 	kunmap_atomic(array);
185 }
186 
187 /*
188  * the caller is responsible for freeing qstr.name
189  * when called by nfs_readdir_add_to_array, the strings will be freed in
190  * nfs_clear_readdir_array()
191  */
192 static
193 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
194 {
195 	string->len = len;
196 	string->name = kmemdup(name, len, GFP_KERNEL);
197 	if (string->name == NULL)
198 		return -ENOMEM;
199 	/*
200 	 * Avoid a kmemleak false positive. The pointer to the name is stored
201 	 * in a page cache page which kmemleak does not scan.
202 	 */
203 	kmemleak_not_leak(string->name);
204 	string->hash = full_name_hash(NULL, name, len);
205 	return 0;
206 }
207 
208 static
209 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
210 {
211 	struct nfs_cache_array *array = kmap(page);
212 	struct nfs_cache_array_entry *cache_entry;
213 	int ret;
214 
215 	cache_entry = &array->array[array->size];
216 
217 	/* Check that this entry lies within the page bounds */
218 	ret = -ENOSPC;
219 	if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
220 		goto out;
221 
222 	cache_entry->cookie = entry->prev_cookie;
223 	cache_entry->ino = entry->ino;
224 	cache_entry->d_type = entry->d_type;
225 	ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
226 	if (ret)
227 		goto out;
228 	array->last_cookie = entry->cookie;
229 	array->size++;
230 	if (entry->eof != 0)
231 		array->eof_index = array->size;
232 out:
233 	kunmap(page);
234 	return ret;
235 }
236 
237 static
238 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
239 {
240 	loff_t diff = desc->ctx->pos - desc->current_index;
241 	unsigned int index;
242 
243 	if (diff < 0)
244 		goto out_eof;
245 	if (diff >= array->size) {
246 		if (array->eof_index >= 0)
247 			goto out_eof;
248 		return -EAGAIN;
249 	}
250 
251 	index = (unsigned int)diff;
252 	*desc->dir_cookie = array->array[index].cookie;
253 	desc->cache_entry_index = index;
254 	return 0;
255 out_eof:
256 	desc->eof = 1;
257 	return -EBADCOOKIE;
258 }
259 
260 static bool
261 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
262 {
263 	if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
264 		return false;
265 	smp_rmb();
266 	return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
267 }
268 
269 static
270 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
271 {
272 	int i;
273 	loff_t new_pos;
274 	int status = -EAGAIN;
275 
276 	for (i = 0; i < array->size; i++) {
277 		if (array->array[i].cookie == *desc->dir_cookie) {
278 			struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
279 			struct nfs_open_dir_context *ctx = desc->file->private_data;
280 
281 			new_pos = desc->current_index + i;
282 			if (ctx->attr_gencount != nfsi->attr_gencount ||
283 			    !nfs_readdir_inode_mapping_valid(nfsi)) {
284 				ctx->duped = 0;
285 				ctx->attr_gencount = nfsi->attr_gencount;
286 			} else if (new_pos < desc->ctx->pos) {
287 				if (ctx->duped > 0
288 				    && ctx->dup_cookie == *desc->dir_cookie) {
289 					if (printk_ratelimit()) {
290 						pr_notice("NFS: directory %pD2 contains a readdir loop."
291 								"Please contact your server vendor.  "
292 								"The file: %.*s has duplicate cookie %llu\n",
293 								desc->file, array->array[i].string.len,
294 								array->array[i].string.name, *desc->dir_cookie);
295 					}
296 					status = -ELOOP;
297 					goto out;
298 				}
299 				ctx->dup_cookie = *desc->dir_cookie;
300 				ctx->duped = -1;
301 			}
302 			desc->ctx->pos = new_pos;
303 			desc->cache_entry_index = i;
304 			return 0;
305 		}
306 	}
307 	if (array->eof_index >= 0) {
308 		status = -EBADCOOKIE;
309 		if (*desc->dir_cookie == array->last_cookie)
310 			desc->eof = 1;
311 	}
312 out:
313 	return status;
314 }
315 
316 static
317 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
318 {
319 	struct nfs_cache_array *array;
320 	int status;
321 
322 	array = kmap(desc->page);
323 
324 	if (*desc->dir_cookie == 0)
325 		status = nfs_readdir_search_for_pos(array, desc);
326 	else
327 		status = nfs_readdir_search_for_cookie(array, desc);
328 
329 	if (status == -EAGAIN) {
330 		desc->last_cookie = array->last_cookie;
331 		desc->current_index += array->size;
332 		desc->page_index++;
333 	}
334 	kunmap(desc->page);
335 	return status;
336 }
337 
338 /* Fill a page with xdr information before transferring to the cache page */
339 static
340 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
341 			struct nfs_entry *entry, struct file *file, struct inode *inode)
342 {
343 	struct nfs_open_dir_context *ctx = file->private_data;
344 	struct rpc_cred	*cred = ctx->cred;
345 	unsigned long	timestamp, gencount;
346 	int		error;
347 
348  again:
349 	timestamp = jiffies;
350 	gencount = nfs_inc_attr_generation_counter();
351 	error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
352 					  NFS_SERVER(inode)->dtsize, desc->plus);
353 	if (error < 0) {
354 		/* We requested READDIRPLUS, but the server doesn't grok it */
355 		if (error == -ENOTSUPP && desc->plus) {
356 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
357 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
358 			desc->plus = false;
359 			goto again;
360 		}
361 		goto error;
362 	}
363 	desc->timestamp = timestamp;
364 	desc->gencount = gencount;
365 error:
366 	return error;
367 }
368 
369 static int xdr_decode(nfs_readdir_descriptor_t *desc,
370 		      struct nfs_entry *entry, struct xdr_stream *xdr)
371 {
372 	int error;
373 
374 	error = desc->decode(xdr, entry, desc->plus);
375 	if (error)
376 		return error;
377 	entry->fattr->time_start = desc->timestamp;
378 	entry->fattr->gencount = desc->gencount;
379 	return 0;
380 }
381 
382 /* Match file and dirent using either filehandle or fileid
383  * Note: caller is responsible for checking the fsid
384  */
385 static
386 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
387 {
388 	struct inode *inode;
389 	struct nfs_inode *nfsi;
390 
391 	if (d_really_is_negative(dentry))
392 		return 0;
393 
394 	inode = d_inode(dentry);
395 	if (is_bad_inode(inode) || NFS_STALE(inode))
396 		return 0;
397 
398 	nfsi = NFS_I(inode);
399 	if (entry->fattr->fileid != nfsi->fileid)
400 		return 0;
401 	if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
402 		return 0;
403 	return 1;
404 }
405 
406 static
407 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
408 {
409 	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
410 		return false;
411 	if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
412 		return true;
413 	if (ctx->pos == 0)
414 		return true;
415 	return false;
416 }
417 
418 /*
419  * This function is called by the lookup and getattr code to request the
420  * use of readdirplus to accelerate any future lookups in the same
421  * directory.
422  */
423 void nfs_advise_use_readdirplus(struct inode *dir)
424 {
425 	struct nfs_inode *nfsi = NFS_I(dir);
426 
427 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
428 	    !list_empty(&nfsi->open_files))
429 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
430 }
431 
432 /*
433  * This function is mainly for use by nfs_getattr().
434  *
435  * If this is an 'ls -l', we want to force use of readdirplus.
436  * Do this by checking if there is an active file descriptor
437  * and calling nfs_advise_use_readdirplus, then forcing a
438  * cache flush.
439  */
440 void nfs_force_use_readdirplus(struct inode *dir)
441 {
442 	struct nfs_inode *nfsi = NFS_I(dir);
443 
444 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
445 	    !list_empty(&nfsi->open_files)) {
446 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
447 		invalidate_mapping_pages(dir->i_mapping, 0, -1);
448 	}
449 }
450 
451 static
452 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
453 {
454 	struct qstr filename = QSTR_INIT(entry->name, entry->len);
455 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
456 	struct dentry *dentry;
457 	struct dentry *alias;
458 	struct inode *dir = d_inode(parent);
459 	struct inode *inode;
460 	int status;
461 
462 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
463 		return;
464 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
465 		return;
466 	if (filename.len == 0)
467 		return;
468 	/* Validate that the name doesn't contain any illegal '\0' */
469 	if (strnlen(filename.name, filename.len) != filename.len)
470 		return;
471 	/* ...or '/' */
472 	if (strnchr(filename.name, filename.len, '/'))
473 		return;
474 	if (filename.name[0] == '.') {
475 		if (filename.len == 1)
476 			return;
477 		if (filename.len == 2 && filename.name[1] == '.')
478 			return;
479 	}
480 	filename.hash = full_name_hash(parent, filename.name, filename.len);
481 
482 	dentry = d_lookup(parent, &filename);
483 again:
484 	if (!dentry) {
485 		dentry = d_alloc_parallel(parent, &filename, &wq);
486 		if (IS_ERR(dentry))
487 			return;
488 	}
489 	if (!d_in_lookup(dentry)) {
490 		/* Is there a mountpoint here? If so, just exit */
491 		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
492 					&entry->fattr->fsid))
493 			goto out;
494 		if (nfs_same_file(dentry, entry)) {
495 			if (!entry->fh->size)
496 				goto out;
497 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
498 			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
499 			if (!status)
500 				nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
501 			goto out;
502 		} else {
503 			d_invalidate(dentry);
504 			dput(dentry);
505 			dentry = NULL;
506 			goto again;
507 		}
508 	}
509 	if (!entry->fh->size) {
510 		d_lookup_done(dentry);
511 		goto out;
512 	}
513 
514 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
515 	alias = d_splice_alias(inode, dentry);
516 	d_lookup_done(dentry);
517 	if (alias) {
518 		if (IS_ERR(alias))
519 			goto out;
520 		dput(dentry);
521 		dentry = alias;
522 	}
523 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
524 out:
525 	dput(dentry);
526 }
527 
528 /* Perform conversion from xdr to cache array */
529 static
530 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
531 				struct page **xdr_pages, struct page *page, unsigned int buflen)
532 {
533 	struct xdr_stream stream;
534 	struct xdr_buf buf;
535 	struct page *scratch;
536 	struct nfs_cache_array *array;
537 	unsigned int count = 0;
538 	int status;
539 
540 	scratch = alloc_page(GFP_KERNEL);
541 	if (scratch == NULL)
542 		return -ENOMEM;
543 
544 	if (buflen == 0)
545 		goto out_nopages;
546 
547 	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
548 	xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
549 
550 	do {
551 		status = xdr_decode(desc, entry, &stream);
552 		if (status != 0) {
553 			if (status == -EAGAIN)
554 				status = 0;
555 			break;
556 		}
557 
558 		count++;
559 
560 		if (desc->plus)
561 			nfs_prime_dcache(file_dentry(desc->file), entry);
562 
563 		status = nfs_readdir_add_to_array(entry, page);
564 		if (status != 0)
565 			break;
566 	} while (!entry->eof);
567 
568 out_nopages:
569 	if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
570 		array = kmap(page);
571 		array->eof_index = array->size;
572 		status = 0;
573 		kunmap(page);
574 	}
575 
576 	put_page(scratch);
577 	return status;
578 }
579 
580 static
581 void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
582 {
583 	unsigned int i;
584 	for (i = 0; i < npages; i++)
585 		put_page(pages[i]);
586 }
587 
588 /*
589  * nfs_readdir_large_page will allocate pages that must be freed with a call
590  * to nfs_readdir_free_pagearray
591  */
592 static
593 int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
594 {
595 	unsigned int i;
596 
597 	for (i = 0; i < npages; i++) {
598 		struct page *page = alloc_page(GFP_KERNEL);
599 		if (page == NULL)
600 			goto out_freepages;
601 		pages[i] = page;
602 	}
603 	return 0;
604 
605 out_freepages:
606 	nfs_readdir_free_pages(pages, i);
607 	return -ENOMEM;
608 }
609 
610 static
611 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
612 {
613 	struct page *pages[NFS_MAX_READDIR_PAGES];
614 	struct nfs_entry entry;
615 	struct file	*file = desc->file;
616 	struct nfs_cache_array *array;
617 	int status = -ENOMEM;
618 	unsigned int array_size = ARRAY_SIZE(pages);
619 
620 	entry.prev_cookie = 0;
621 	entry.cookie = desc->last_cookie;
622 	entry.eof = 0;
623 	entry.fh = nfs_alloc_fhandle();
624 	entry.fattr = nfs_alloc_fattr();
625 	entry.server = NFS_SERVER(inode);
626 	if (entry.fh == NULL || entry.fattr == NULL)
627 		goto out;
628 
629 	entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
630 	if (IS_ERR(entry.label)) {
631 		status = PTR_ERR(entry.label);
632 		goto out;
633 	}
634 
635 	array = kmap(page);
636 	memset(array, 0, sizeof(struct nfs_cache_array));
637 	array->eof_index = -1;
638 
639 	status = nfs_readdir_alloc_pages(pages, array_size);
640 	if (status < 0)
641 		goto out_release_array;
642 	do {
643 		unsigned int pglen;
644 		status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
645 
646 		if (status < 0)
647 			break;
648 		pglen = status;
649 		status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
650 		if (status < 0) {
651 			if (status == -ENOSPC)
652 				status = 0;
653 			break;
654 		}
655 	} while (array->eof_index < 0);
656 
657 	nfs_readdir_free_pages(pages, array_size);
658 out_release_array:
659 	kunmap(page);
660 	nfs4_label_free(entry.label);
661 out:
662 	nfs_free_fattr(entry.fattr);
663 	nfs_free_fhandle(entry.fh);
664 	return status;
665 }
666 
667 /*
668  * Now we cache directories properly, by converting xdr information
669  * to an array that can be used for lookups later.  This results in
670  * fewer cache pages, since we can store more information on each page.
671  * We only need to convert from xdr once so future lookups are much simpler
672  */
673 static
674 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
675 {
676 	struct inode	*inode = file_inode(desc->file);
677 	int ret;
678 
679 	ret = nfs_readdir_xdr_to_array(desc, page, inode);
680 	if (ret < 0)
681 		goto error;
682 	SetPageUptodate(page);
683 
684 	if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
685 		/* Should never happen */
686 		nfs_zap_mapping(inode, inode->i_mapping);
687 	}
688 	unlock_page(page);
689 	return 0;
690  error:
691 	unlock_page(page);
692 	return ret;
693 }
694 
695 static
696 void cache_page_release(nfs_readdir_descriptor_t *desc)
697 {
698 	if (!desc->page->mapping)
699 		nfs_readdir_clear_array(desc->page);
700 	put_page(desc->page);
701 	desc->page = NULL;
702 }
703 
704 static
705 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
706 {
707 	return read_cache_page(desc->file->f_mapping,
708 			desc->page_index, (filler_t *)nfs_readdir_filler, desc);
709 }
710 
711 /*
712  * Returns 0 if desc->dir_cookie was found on page desc->page_index
713  */
714 static
715 int find_cache_page(nfs_readdir_descriptor_t *desc)
716 {
717 	int res;
718 
719 	desc->page = get_cache_page(desc);
720 	if (IS_ERR(desc->page))
721 		return PTR_ERR(desc->page);
722 
723 	res = nfs_readdir_search_array(desc);
724 	if (res != 0)
725 		cache_page_release(desc);
726 	return res;
727 }
728 
729 /* Search for desc->dir_cookie from the beginning of the page cache */
730 static inline
731 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
732 {
733 	int res;
734 
735 	if (desc->page_index == 0) {
736 		desc->current_index = 0;
737 		desc->last_cookie = 0;
738 	}
739 	do {
740 		res = find_cache_page(desc);
741 	} while (res == -EAGAIN);
742 	return res;
743 }
744 
745 /*
746  * Once we've found the start of the dirent within a page: fill 'er up...
747  */
748 static
749 int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
750 {
751 	struct file	*file = desc->file;
752 	int i = 0;
753 	int res = 0;
754 	struct nfs_cache_array *array = NULL;
755 	struct nfs_open_dir_context *ctx = file->private_data;
756 
757 	array = kmap(desc->page);
758 	for (i = desc->cache_entry_index; i < array->size; i++) {
759 		struct nfs_cache_array_entry *ent;
760 
761 		ent = &array->array[i];
762 		if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
763 		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
764 			desc->eof = 1;
765 			break;
766 		}
767 		desc->ctx->pos++;
768 		if (i < (array->size-1))
769 			*desc->dir_cookie = array->array[i+1].cookie;
770 		else
771 			*desc->dir_cookie = array->last_cookie;
772 		if (ctx->duped != 0)
773 			ctx->duped = 1;
774 	}
775 	if (array->eof_index >= 0)
776 		desc->eof = 1;
777 
778 	kunmap(desc->page);
779 	cache_page_release(desc);
780 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
781 			(unsigned long long)*desc->dir_cookie, res);
782 	return res;
783 }
784 
785 /*
786  * If we cannot find a cookie in our cache, we suspect that this is
787  * because it points to a deleted file, so we ask the server to return
788  * whatever it thinks is the next entry. We then feed this to filldir.
789  * If all goes well, we should then be able to find our way round the
790  * cache on the next call to readdir_search_pagecache();
791  *
792  * NOTE: we cannot add the anonymous page to the pagecache because
793  *	 the data it contains might not be page aligned. Besides,
794  *	 we should already have a complete representation of the
795  *	 directory in the page cache by the time we get here.
796  */
797 static inline
798 int uncached_readdir(nfs_readdir_descriptor_t *desc)
799 {
800 	struct page	*page = NULL;
801 	int		status;
802 	struct inode *inode = file_inode(desc->file);
803 	struct nfs_open_dir_context *ctx = desc->file->private_data;
804 
805 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
806 			(unsigned long long)*desc->dir_cookie);
807 
808 	page = alloc_page(GFP_HIGHUSER);
809 	if (!page) {
810 		status = -ENOMEM;
811 		goto out;
812 	}
813 
814 	desc->page_index = 0;
815 	desc->last_cookie = *desc->dir_cookie;
816 	desc->page = page;
817 	ctx->duped = 0;
818 
819 	status = nfs_readdir_xdr_to_array(desc, page, inode);
820 	if (status < 0)
821 		goto out_release;
822 
823 	status = nfs_do_filldir(desc);
824 
825  out:
826 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
827 			__func__, status);
828 	return status;
829  out_release:
830 	cache_page_release(desc);
831 	goto out;
832 }
833 
834 /* The file offset position represents the dirent entry number.  A
835    last cookie cache takes care of the common case of reading the
836    whole directory.
837  */
838 static int nfs_readdir(struct file *file, struct dir_context *ctx)
839 {
840 	struct dentry	*dentry = file_dentry(file);
841 	struct inode	*inode = d_inode(dentry);
842 	nfs_readdir_descriptor_t my_desc,
843 			*desc = &my_desc;
844 	struct nfs_open_dir_context *dir_ctx = file->private_data;
845 	int res = 0;
846 
847 	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
848 			file, (long long)ctx->pos);
849 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
850 
851 	/*
852 	 * ctx->pos points to the dirent entry number.
853 	 * *desc->dir_cookie has the cookie for the next entry. We have
854 	 * to either find the entry with the appropriate number or
855 	 * revalidate the cookie.
856 	 */
857 	memset(desc, 0, sizeof(*desc));
858 
859 	desc->file = file;
860 	desc->ctx = ctx;
861 	desc->dir_cookie = &dir_ctx->dir_cookie;
862 	desc->decode = NFS_PROTO(inode)->decode_dirent;
863 	desc->plus = nfs_use_readdirplus(inode, ctx);
864 
865 	if (ctx->pos == 0 || nfs_attribute_cache_expired(inode))
866 		res = nfs_revalidate_mapping(inode, file->f_mapping);
867 	if (res < 0)
868 		goto out;
869 
870 	do {
871 		res = readdir_search_pagecache(desc);
872 
873 		if (res == -EBADCOOKIE) {
874 			res = 0;
875 			/* This means either end of directory */
876 			if (*desc->dir_cookie && desc->eof == 0) {
877 				/* Or that the server has 'lost' a cookie */
878 				res = uncached_readdir(desc);
879 				if (res == 0)
880 					continue;
881 			}
882 			break;
883 		}
884 		if (res == -ETOOSMALL && desc->plus) {
885 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
886 			nfs_zap_caches(inode);
887 			desc->page_index = 0;
888 			desc->plus = false;
889 			desc->eof = false;
890 			continue;
891 		}
892 		if (res < 0)
893 			break;
894 
895 		res = nfs_do_filldir(desc);
896 		if (res < 0)
897 			break;
898 	} while (!desc->eof);
899 out:
900 	if (res > 0)
901 		res = 0;
902 	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
903 	return res;
904 }
905 
906 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
907 {
908 	struct inode *inode = file_inode(filp);
909 	struct nfs_open_dir_context *dir_ctx = filp->private_data;
910 
911 	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
912 			filp, offset, whence);
913 
914 	inode_lock(inode);
915 	switch (whence) {
916 		case 1:
917 			offset += filp->f_pos;
918 		case 0:
919 			if (offset >= 0)
920 				break;
921 		default:
922 			offset = -EINVAL;
923 			goto out;
924 	}
925 	if (offset != filp->f_pos) {
926 		filp->f_pos = offset;
927 		dir_ctx->dir_cookie = 0;
928 		dir_ctx->duped = 0;
929 	}
930 out:
931 	inode_unlock(inode);
932 	return offset;
933 }
934 
935 /*
936  * All directory operations under NFS are synchronous, so fsync()
937  * is a dummy operation.
938  */
939 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
940 			 int datasync)
941 {
942 	struct inode *inode = file_inode(filp);
943 
944 	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
945 
946 	inode_lock(inode);
947 	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
948 	inode_unlock(inode);
949 	return 0;
950 }
951 
952 /**
953  * nfs_force_lookup_revalidate - Mark the directory as having changed
954  * @dir - pointer to directory inode
955  *
956  * This forces the revalidation code in nfs_lookup_revalidate() to do a
957  * full lookup on all child dentries of 'dir' whenever a change occurs
958  * on the server that might have invalidated our dcache.
959  *
960  * The caller should be holding dir->i_lock
961  */
962 void nfs_force_lookup_revalidate(struct inode *dir)
963 {
964 	NFS_I(dir)->cache_change_attribute++;
965 }
966 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
967 
968 /*
969  * A check for whether or not the parent directory has changed.
970  * In the case it has, we assume that the dentries are untrustworthy
971  * and may need to be looked up again.
972  * If rcu_walk prevents us from performing a full check, return 0.
973  */
974 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
975 			      int rcu_walk)
976 {
977 	if (IS_ROOT(dentry))
978 		return 1;
979 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
980 		return 0;
981 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
982 		return 0;
983 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
984 	if (nfs_mapping_need_revalidate_inode(dir)) {
985 		if (rcu_walk)
986 			return 0;
987 		if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
988 			return 0;
989 	}
990 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
991 		return 0;
992 	return 1;
993 }
994 
995 /*
996  * Use intent information to check whether or not we're going to do
997  * an O_EXCL create using this path component.
998  */
999 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1000 {
1001 	if (NFS_PROTO(dir)->version == 2)
1002 		return 0;
1003 	return flags & LOOKUP_EXCL;
1004 }
1005 
1006 /*
1007  * Inode and filehandle revalidation for lookups.
1008  *
1009  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1010  * or if the intent information indicates that we're about to open this
1011  * particular file and the "nocto" mount flag is not set.
1012  *
1013  */
1014 static
1015 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1016 {
1017 	struct nfs_server *server = NFS_SERVER(inode);
1018 	int ret;
1019 
1020 	if (IS_AUTOMOUNT(inode))
1021 		return 0;
1022 	/* VFS wants an on-the-wire revalidation */
1023 	if (flags & LOOKUP_REVAL)
1024 		goto out_force;
1025 	/* This is an open(2) */
1026 	if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) &&
1027 	    (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
1028 		goto out_force;
1029 out:
1030 	return (inode->i_nlink == 0) ? -ENOENT : 0;
1031 out_force:
1032 	if (flags & LOOKUP_RCU)
1033 		return -ECHILD;
1034 	ret = __nfs_revalidate_inode(server, inode);
1035 	if (ret != 0)
1036 		return ret;
1037 	goto out;
1038 }
1039 
1040 /*
1041  * We judge how long we want to trust negative
1042  * dentries by looking at the parent inode mtime.
1043  *
1044  * If parent mtime has changed, we revalidate, else we wait for a
1045  * period corresponding to the parent's attribute cache timeout value.
1046  *
1047  * If LOOKUP_RCU prevents us from performing a full check, return 1
1048  * suggesting a reval is needed.
1049  */
1050 static inline
1051 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1052 		       unsigned int flags)
1053 {
1054 	/* Don't revalidate a negative dentry if we're creating a new file */
1055 	if (flags & LOOKUP_CREATE)
1056 		return 0;
1057 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1058 		return 1;
1059 	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1060 }
1061 
1062 /*
1063  * This is called every time the dcache has a lookup hit,
1064  * and we should check whether we can really trust that
1065  * lookup.
1066  *
1067  * NOTE! The hit can be a negative hit too, don't assume
1068  * we have an inode!
1069  *
1070  * If the parent directory is seen to have changed, we throw out the
1071  * cached dentry and do a new lookup.
1072  */
1073 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1074 {
1075 	struct inode *dir;
1076 	struct inode *inode;
1077 	struct dentry *parent;
1078 	struct nfs_fh *fhandle = NULL;
1079 	struct nfs_fattr *fattr = NULL;
1080 	struct nfs4_label *label = NULL;
1081 	int error;
1082 
1083 	if (flags & LOOKUP_RCU) {
1084 		parent = READ_ONCE(dentry->d_parent);
1085 		dir = d_inode_rcu(parent);
1086 		if (!dir)
1087 			return -ECHILD;
1088 	} else {
1089 		parent = dget_parent(dentry);
1090 		dir = d_inode(parent);
1091 	}
1092 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1093 	inode = d_inode(dentry);
1094 
1095 	if (!inode) {
1096 		if (nfs_neg_need_reval(dir, dentry, flags)) {
1097 			if (flags & LOOKUP_RCU)
1098 				return -ECHILD;
1099 			goto out_bad;
1100 		}
1101 		goto out_valid;
1102 	}
1103 
1104 	if (is_bad_inode(inode)) {
1105 		if (flags & LOOKUP_RCU)
1106 			return -ECHILD;
1107 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1108 				__func__, dentry);
1109 		goto out_bad;
1110 	}
1111 
1112 	if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1113 		goto out_set_verifier;
1114 
1115 	/* Force a full look up iff the parent directory has changed */
1116 	if (!nfs_is_exclusive_create(dir, flags) &&
1117 	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1118 		error = nfs_lookup_verify_inode(inode, flags);
1119 		if (error) {
1120 			if (flags & LOOKUP_RCU)
1121 				return -ECHILD;
1122 			if (error == -ESTALE)
1123 				goto out_zap_parent;
1124 			goto out_error;
1125 		}
1126 		nfs_advise_use_readdirplus(dir);
1127 		goto out_valid;
1128 	}
1129 
1130 	if (flags & LOOKUP_RCU)
1131 		return -ECHILD;
1132 
1133 	if (NFS_STALE(inode))
1134 		goto out_bad;
1135 
1136 	error = -ENOMEM;
1137 	fhandle = nfs_alloc_fhandle();
1138 	fattr = nfs_alloc_fattr();
1139 	if (fhandle == NULL || fattr == NULL)
1140 		goto out_error;
1141 
1142 	label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
1143 	if (IS_ERR(label))
1144 		goto out_error;
1145 
1146 	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1147 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1148 	trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1149 	if (error == -ESTALE || error == -ENOENT)
1150 		goto out_bad;
1151 	if (error)
1152 		goto out_error;
1153 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1154 		goto out_bad;
1155 	if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1156 		goto out_bad;
1157 
1158 	nfs_setsecurity(inode, fattr, label);
1159 
1160 	nfs_free_fattr(fattr);
1161 	nfs_free_fhandle(fhandle);
1162 	nfs4_label_free(label);
1163 
1164 	/* set a readdirplus hint that we had a cache miss */
1165 	nfs_force_use_readdirplus(dir);
1166 
1167 out_set_verifier:
1168 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1169  out_valid:
1170 	if (flags & LOOKUP_RCU) {
1171 		if (parent != READ_ONCE(dentry->d_parent))
1172 			return -ECHILD;
1173 	} else
1174 		dput(parent);
1175 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1176 			__func__, dentry);
1177 	return 1;
1178 out_zap_parent:
1179 	nfs_zap_caches(dir);
1180  out_bad:
1181 	WARN_ON(flags & LOOKUP_RCU);
1182 	nfs_free_fattr(fattr);
1183 	nfs_free_fhandle(fhandle);
1184 	nfs4_label_free(label);
1185 	nfs_mark_for_revalidate(dir);
1186 	if (inode && S_ISDIR(inode->i_mode)) {
1187 		/* Purge readdir caches. */
1188 		nfs_zap_caches(inode);
1189 		/*
1190 		 * We can't d_drop the root of a disconnected tree:
1191 		 * its d_hash is on the s_anon list and d_drop() would hide
1192 		 * it from shrink_dcache_for_unmount(), leading to busy
1193 		 * inodes on unmount and further oopses.
1194 		 */
1195 		if (IS_ROOT(dentry))
1196 			goto out_valid;
1197 	}
1198 	dput(parent);
1199 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1200 			__func__, dentry);
1201 	return 0;
1202 out_error:
1203 	WARN_ON(flags & LOOKUP_RCU);
1204 	nfs_free_fattr(fattr);
1205 	nfs_free_fhandle(fhandle);
1206 	nfs4_label_free(label);
1207 	dput(parent);
1208 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1209 			__func__, dentry, error);
1210 	return error;
1211 }
1212 
1213 /*
1214  * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1215  * when we don't really care about the dentry name. This is called when a
1216  * pathwalk ends on a dentry that was not found via a normal lookup in the
1217  * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1218  *
1219  * In this situation, we just want to verify that the inode itself is OK
1220  * since the dentry might have changed on the server.
1221  */
1222 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1223 {
1224 	struct inode *inode = d_inode(dentry);
1225 	int error = 0;
1226 
1227 	/*
1228 	 * I believe we can only get a negative dentry here in the case of a
1229 	 * procfs-style symlink. Just assume it's correct for now, but we may
1230 	 * eventually need to do something more here.
1231 	 */
1232 	if (!inode) {
1233 		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1234 				__func__, dentry);
1235 		return 1;
1236 	}
1237 
1238 	if (is_bad_inode(inode)) {
1239 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1240 				__func__, dentry);
1241 		return 0;
1242 	}
1243 
1244 	if (nfs_mapping_need_revalidate_inode(inode))
1245 		error = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
1246 	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1247 			__func__, inode->i_ino, error ? "invalid" : "valid");
1248 	return !error;
1249 }
1250 
1251 /*
1252  * This is called from dput() when d_count is going to 0.
1253  */
1254 static int nfs_dentry_delete(const struct dentry *dentry)
1255 {
1256 	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1257 		dentry, dentry->d_flags);
1258 
1259 	/* Unhash any dentry with a stale inode */
1260 	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1261 		return 1;
1262 
1263 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1264 		/* Unhash it, so that ->d_iput() would be called */
1265 		return 1;
1266 	}
1267 	if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1268 		/* Unhash it, so that ancestors of killed async unlink
1269 		 * files will be cleaned up during umount */
1270 		return 1;
1271 	}
1272 	return 0;
1273 
1274 }
1275 
1276 /* Ensure that we revalidate inode->i_nlink */
1277 static void nfs_drop_nlink(struct inode *inode)
1278 {
1279 	spin_lock(&inode->i_lock);
1280 	/* drop the inode if we're reasonably sure this is the last link */
1281 	if (inode->i_nlink == 1)
1282 		clear_nlink(inode);
1283 	NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR;
1284 	spin_unlock(&inode->i_lock);
1285 }
1286 
1287 /*
1288  * Called when the dentry loses inode.
1289  * We use it to clean up silly-renamed files.
1290  */
1291 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1292 {
1293 	if (S_ISDIR(inode->i_mode))
1294 		/* drop any readdir cache as it could easily be old */
1295 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1296 
1297 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1298 		nfs_complete_unlink(dentry, inode);
1299 		nfs_drop_nlink(inode);
1300 	}
1301 	iput(inode);
1302 }
1303 
1304 static void nfs_d_release(struct dentry *dentry)
1305 {
1306 	/* free cached devname value, if it survived that far */
1307 	if (unlikely(dentry->d_fsdata)) {
1308 		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1309 			WARN_ON(1);
1310 		else
1311 			kfree(dentry->d_fsdata);
1312 	}
1313 }
1314 
1315 const struct dentry_operations nfs_dentry_operations = {
1316 	.d_revalidate	= nfs_lookup_revalidate,
1317 	.d_weak_revalidate	= nfs_weak_revalidate,
1318 	.d_delete	= nfs_dentry_delete,
1319 	.d_iput		= nfs_dentry_iput,
1320 	.d_automount	= nfs_d_automount,
1321 	.d_release	= nfs_d_release,
1322 };
1323 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1324 
1325 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1326 {
1327 	struct dentry *res;
1328 	struct inode *inode = NULL;
1329 	struct nfs_fh *fhandle = NULL;
1330 	struct nfs_fattr *fattr = NULL;
1331 	struct nfs4_label *label = NULL;
1332 	int error;
1333 
1334 	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1335 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1336 
1337 	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1338 		return ERR_PTR(-ENAMETOOLONG);
1339 
1340 	/*
1341 	 * If we're doing an exclusive create, optimize away the lookup
1342 	 * but don't hash the dentry.
1343 	 */
1344 	if (nfs_is_exclusive_create(dir, flags))
1345 		return NULL;
1346 
1347 	res = ERR_PTR(-ENOMEM);
1348 	fhandle = nfs_alloc_fhandle();
1349 	fattr = nfs_alloc_fattr();
1350 	if (fhandle == NULL || fattr == NULL)
1351 		goto out;
1352 
1353 	label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1354 	if (IS_ERR(label))
1355 		goto out;
1356 
1357 	trace_nfs_lookup_enter(dir, dentry, flags);
1358 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1359 	if (error == -ENOENT)
1360 		goto no_entry;
1361 	if (error < 0) {
1362 		res = ERR_PTR(error);
1363 		goto out_label;
1364 	}
1365 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1366 	res = ERR_CAST(inode);
1367 	if (IS_ERR(res))
1368 		goto out_label;
1369 
1370 	/* Notify readdir to use READDIRPLUS */
1371 	nfs_force_use_readdirplus(dir);
1372 
1373 no_entry:
1374 	res = d_splice_alias(inode, dentry);
1375 	if (res != NULL) {
1376 		if (IS_ERR(res))
1377 			goto out_label;
1378 		dentry = res;
1379 	}
1380 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1381 out_label:
1382 	trace_nfs_lookup_exit(dir, dentry, flags, error);
1383 	nfs4_label_free(label);
1384 out:
1385 	nfs_free_fattr(fattr);
1386 	nfs_free_fhandle(fhandle);
1387 	return res;
1388 }
1389 EXPORT_SYMBOL_GPL(nfs_lookup);
1390 
1391 #if IS_ENABLED(CONFIG_NFS_V4)
1392 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1393 
1394 const struct dentry_operations nfs4_dentry_operations = {
1395 	.d_revalidate	= nfs4_lookup_revalidate,
1396 	.d_delete	= nfs_dentry_delete,
1397 	.d_iput		= nfs_dentry_iput,
1398 	.d_automount	= nfs_d_automount,
1399 	.d_release	= nfs_d_release,
1400 };
1401 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1402 
1403 static fmode_t flags_to_mode(int flags)
1404 {
1405 	fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1406 	if ((flags & O_ACCMODE) != O_WRONLY)
1407 		res |= FMODE_READ;
1408 	if ((flags & O_ACCMODE) != O_RDONLY)
1409 		res |= FMODE_WRITE;
1410 	return res;
1411 }
1412 
1413 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1414 {
1415 	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1416 }
1417 
1418 static int do_open(struct inode *inode, struct file *filp)
1419 {
1420 	nfs_fscache_open_file(inode, filp);
1421 	return 0;
1422 }
1423 
1424 static int nfs_finish_open(struct nfs_open_context *ctx,
1425 			   struct dentry *dentry,
1426 			   struct file *file, unsigned open_flags,
1427 			   int *opened)
1428 {
1429 	int err;
1430 
1431 	err = finish_open(file, dentry, do_open, opened);
1432 	if (err)
1433 		goto out;
1434 	if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1435 		nfs_file_set_open_context(file, ctx);
1436 	else
1437 		err = -ESTALE;
1438 out:
1439 	return err;
1440 }
1441 
1442 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1443 		    struct file *file, unsigned open_flags,
1444 		    umode_t mode, int *opened)
1445 {
1446 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1447 	struct nfs_open_context *ctx;
1448 	struct dentry *res;
1449 	struct iattr attr = { .ia_valid = ATTR_OPEN };
1450 	struct inode *inode;
1451 	unsigned int lookup_flags = 0;
1452 	bool switched = false;
1453 	int err;
1454 
1455 	/* Expect a negative dentry */
1456 	BUG_ON(d_inode(dentry));
1457 
1458 	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1459 			dir->i_sb->s_id, dir->i_ino, dentry);
1460 
1461 	err = nfs_check_flags(open_flags);
1462 	if (err)
1463 		return err;
1464 
1465 	/* NFS only supports OPEN on regular files */
1466 	if ((open_flags & O_DIRECTORY)) {
1467 		if (!d_in_lookup(dentry)) {
1468 			/*
1469 			 * Hashed negative dentry with O_DIRECTORY: dentry was
1470 			 * revalidated and is fine, no need to perform lookup
1471 			 * again
1472 			 */
1473 			return -ENOENT;
1474 		}
1475 		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1476 		goto no_open;
1477 	}
1478 
1479 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1480 		return -ENAMETOOLONG;
1481 
1482 	if (open_flags & O_CREAT) {
1483 		struct nfs_server *server = NFS_SERVER(dir);
1484 
1485 		if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1486 			mode &= ~current_umask();
1487 
1488 		attr.ia_valid |= ATTR_MODE;
1489 		attr.ia_mode = mode;
1490 	}
1491 	if (open_flags & O_TRUNC) {
1492 		attr.ia_valid |= ATTR_SIZE;
1493 		attr.ia_size = 0;
1494 	}
1495 
1496 	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1497 		d_drop(dentry);
1498 		switched = true;
1499 		dentry = d_alloc_parallel(dentry->d_parent,
1500 					  &dentry->d_name, &wq);
1501 		if (IS_ERR(dentry))
1502 			return PTR_ERR(dentry);
1503 		if (unlikely(!d_in_lookup(dentry)))
1504 			return finish_no_open(file, dentry);
1505 	}
1506 
1507 	ctx = create_nfs_open_context(dentry, open_flags, file);
1508 	err = PTR_ERR(ctx);
1509 	if (IS_ERR(ctx))
1510 		goto out;
1511 
1512 	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1513 	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, opened);
1514 	if (IS_ERR(inode)) {
1515 		err = PTR_ERR(inode);
1516 		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1517 		put_nfs_open_context(ctx);
1518 		d_drop(dentry);
1519 		switch (err) {
1520 		case -ENOENT:
1521 			d_splice_alias(NULL, dentry);
1522 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1523 			break;
1524 		case -EISDIR:
1525 		case -ENOTDIR:
1526 			goto no_open;
1527 		case -ELOOP:
1528 			if (!(open_flags & O_NOFOLLOW))
1529 				goto no_open;
1530 			break;
1531 			/* case -EINVAL: */
1532 		default:
1533 			break;
1534 		}
1535 		goto out;
1536 	}
1537 
1538 	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags, opened);
1539 	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1540 	put_nfs_open_context(ctx);
1541 out:
1542 	if (unlikely(switched)) {
1543 		d_lookup_done(dentry);
1544 		dput(dentry);
1545 	}
1546 	return err;
1547 
1548 no_open:
1549 	res = nfs_lookup(dir, dentry, lookup_flags);
1550 	if (switched) {
1551 		d_lookup_done(dentry);
1552 		if (!res)
1553 			res = dentry;
1554 		else
1555 			dput(dentry);
1556 	}
1557 	if (IS_ERR(res))
1558 		return PTR_ERR(res);
1559 	return finish_no_open(file, res);
1560 }
1561 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1562 
1563 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1564 {
1565 	struct inode *inode;
1566 	int ret = 0;
1567 
1568 	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1569 		goto no_open;
1570 	if (d_mountpoint(dentry))
1571 		goto no_open;
1572 	if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1)
1573 		goto no_open;
1574 
1575 	inode = d_inode(dentry);
1576 
1577 	/* We can't create new files in nfs_open_revalidate(), so we
1578 	 * optimize away revalidation of negative dentries.
1579 	 */
1580 	if (inode == NULL) {
1581 		struct dentry *parent;
1582 		struct inode *dir;
1583 
1584 		if (flags & LOOKUP_RCU) {
1585 			parent = READ_ONCE(dentry->d_parent);
1586 			dir = d_inode_rcu(parent);
1587 			if (!dir)
1588 				return -ECHILD;
1589 		} else {
1590 			parent = dget_parent(dentry);
1591 			dir = d_inode(parent);
1592 		}
1593 		if (!nfs_neg_need_reval(dir, dentry, flags))
1594 			ret = 1;
1595 		else if (flags & LOOKUP_RCU)
1596 			ret = -ECHILD;
1597 		if (!(flags & LOOKUP_RCU))
1598 			dput(parent);
1599 		else if (parent != READ_ONCE(dentry->d_parent))
1600 			return -ECHILD;
1601 		goto out;
1602 	}
1603 
1604 	/* NFS only supports OPEN on regular files */
1605 	if (!S_ISREG(inode->i_mode))
1606 		goto no_open;
1607 	/* We cannot do exclusive creation on a positive dentry */
1608 	if (flags & LOOKUP_EXCL)
1609 		goto no_open;
1610 
1611 	/* Let f_op->open() actually open (and revalidate) the file */
1612 	ret = 1;
1613 
1614 out:
1615 	return ret;
1616 
1617 no_open:
1618 	return nfs_lookup_revalidate(dentry, flags);
1619 }
1620 
1621 #endif /* CONFIG_NFSV4 */
1622 
1623 /*
1624  * Code common to create, mkdir, and mknod.
1625  */
1626 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1627 				struct nfs_fattr *fattr,
1628 				struct nfs4_label *label)
1629 {
1630 	struct dentry *parent = dget_parent(dentry);
1631 	struct inode *dir = d_inode(parent);
1632 	struct inode *inode;
1633 	int error = -EACCES;
1634 
1635 	d_drop(dentry);
1636 
1637 	/* We may have been initialized further down */
1638 	if (d_really_is_positive(dentry))
1639 		goto out;
1640 	if (fhandle->size == 0) {
1641 		error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1642 		if (error)
1643 			goto out_error;
1644 	}
1645 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1646 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1647 		struct nfs_server *server = NFS_SB(dentry->d_sb);
1648 		error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL);
1649 		if (error < 0)
1650 			goto out_error;
1651 	}
1652 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1653 	error = PTR_ERR(inode);
1654 	if (IS_ERR(inode))
1655 		goto out_error;
1656 	d_add(dentry, inode);
1657 out:
1658 	dput(parent);
1659 	return 0;
1660 out_error:
1661 	nfs_mark_for_revalidate(dir);
1662 	dput(parent);
1663 	return error;
1664 }
1665 EXPORT_SYMBOL_GPL(nfs_instantiate);
1666 
1667 /*
1668  * Following a failed create operation, we drop the dentry rather
1669  * than retain a negative dentry. This avoids a problem in the event
1670  * that the operation succeeded on the server, but an error in the
1671  * reply path made it appear to have failed.
1672  */
1673 int nfs_create(struct inode *dir, struct dentry *dentry,
1674 		umode_t mode, bool excl)
1675 {
1676 	struct iattr attr;
1677 	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1678 	int error;
1679 
1680 	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1681 			dir->i_sb->s_id, dir->i_ino, dentry);
1682 
1683 	attr.ia_mode = mode;
1684 	attr.ia_valid = ATTR_MODE;
1685 
1686 	trace_nfs_create_enter(dir, dentry, open_flags);
1687 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1688 	trace_nfs_create_exit(dir, dentry, open_flags, error);
1689 	if (error != 0)
1690 		goto out_err;
1691 	return 0;
1692 out_err:
1693 	d_drop(dentry);
1694 	return error;
1695 }
1696 EXPORT_SYMBOL_GPL(nfs_create);
1697 
1698 /*
1699  * See comments for nfs_proc_create regarding failed operations.
1700  */
1701 int
1702 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1703 {
1704 	struct iattr attr;
1705 	int status;
1706 
1707 	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1708 			dir->i_sb->s_id, dir->i_ino, dentry);
1709 
1710 	attr.ia_mode = mode;
1711 	attr.ia_valid = ATTR_MODE;
1712 
1713 	trace_nfs_mknod_enter(dir, dentry);
1714 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1715 	trace_nfs_mknod_exit(dir, dentry, status);
1716 	if (status != 0)
1717 		goto out_err;
1718 	return 0;
1719 out_err:
1720 	d_drop(dentry);
1721 	return status;
1722 }
1723 EXPORT_SYMBOL_GPL(nfs_mknod);
1724 
1725 /*
1726  * See comments for nfs_proc_create regarding failed operations.
1727  */
1728 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1729 {
1730 	struct iattr attr;
1731 	int error;
1732 
1733 	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1734 			dir->i_sb->s_id, dir->i_ino, dentry);
1735 
1736 	attr.ia_valid = ATTR_MODE;
1737 	attr.ia_mode = mode | S_IFDIR;
1738 
1739 	trace_nfs_mkdir_enter(dir, dentry);
1740 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1741 	trace_nfs_mkdir_exit(dir, dentry, error);
1742 	if (error != 0)
1743 		goto out_err;
1744 	return 0;
1745 out_err:
1746 	d_drop(dentry);
1747 	return error;
1748 }
1749 EXPORT_SYMBOL_GPL(nfs_mkdir);
1750 
1751 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1752 {
1753 	if (simple_positive(dentry))
1754 		d_delete(dentry);
1755 }
1756 
1757 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1758 {
1759 	int error;
1760 
1761 	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1762 			dir->i_sb->s_id, dir->i_ino, dentry);
1763 
1764 	trace_nfs_rmdir_enter(dir, dentry);
1765 	if (d_really_is_positive(dentry)) {
1766 		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1767 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1768 		/* Ensure the VFS deletes this inode */
1769 		switch (error) {
1770 		case 0:
1771 			clear_nlink(d_inode(dentry));
1772 			break;
1773 		case -ENOENT:
1774 			nfs_dentry_handle_enoent(dentry);
1775 		}
1776 		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1777 	} else
1778 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1779 	trace_nfs_rmdir_exit(dir, dentry, error);
1780 
1781 	return error;
1782 }
1783 EXPORT_SYMBOL_GPL(nfs_rmdir);
1784 
1785 /*
1786  * Remove a file after making sure there are no pending writes,
1787  * and after checking that the file has only one user.
1788  *
1789  * We invalidate the attribute cache and free the inode prior to the operation
1790  * to avoid possible races if the server reuses the inode.
1791  */
1792 static int nfs_safe_remove(struct dentry *dentry)
1793 {
1794 	struct inode *dir = d_inode(dentry->d_parent);
1795 	struct inode *inode = d_inode(dentry);
1796 	int error = -EBUSY;
1797 
1798 	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
1799 
1800 	/* If the dentry was sillyrenamed, we simply call d_delete() */
1801 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1802 		error = 0;
1803 		goto out;
1804 	}
1805 
1806 	trace_nfs_remove_enter(dir, dentry);
1807 	if (inode != NULL) {
1808 		NFS_PROTO(inode)->return_delegation(inode);
1809 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1810 		if (error == 0)
1811 			nfs_drop_nlink(inode);
1812 	} else
1813 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1814 	if (error == -ENOENT)
1815 		nfs_dentry_handle_enoent(dentry);
1816 	trace_nfs_remove_exit(dir, dentry, error);
1817 out:
1818 	return error;
1819 }
1820 
1821 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1822  *  belongs to an active ".nfs..." file and we return -EBUSY.
1823  *
1824  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1825  */
1826 int nfs_unlink(struct inode *dir, struct dentry *dentry)
1827 {
1828 	int error;
1829 	int need_rehash = 0;
1830 
1831 	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
1832 		dir->i_ino, dentry);
1833 
1834 	trace_nfs_unlink_enter(dir, dentry);
1835 	spin_lock(&dentry->d_lock);
1836 	if (d_count(dentry) > 1) {
1837 		spin_unlock(&dentry->d_lock);
1838 		/* Start asynchronous writeout of the inode */
1839 		write_inode_now(d_inode(dentry), 0);
1840 		error = nfs_sillyrename(dir, dentry);
1841 		goto out;
1842 	}
1843 	if (!d_unhashed(dentry)) {
1844 		__d_drop(dentry);
1845 		need_rehash = 1;
1846 	}
1847 	spin_unlock(&dentry->d_lock);
1848 	error = nfs_safe_remove(dentry);
1849 	if (!error || error == -ENOENT) {
1850 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1851 	} else if (need_rehash)
1852 		d_rehash(dentry);
1853 out:
1854 	trace_nfs_unlink_exit(dir, dentry, error);
1855 	return error;
1856 }
1857 EXPORT_SYMBOL_GPL(nfs_unlink);
1858 
1859 /*
1860  * To create a symbolic link, most file systems instantiate a new inode,
1861  * add a page to it containing the path, then write it out to the disk
1862  * using prepare_write/commit_write.
1863  *
1864  * Unfortunately the NFS client can't create the in-core inode first
1865  * because it needs a file handle to create an in-core inode (see
1866  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1867  * symlink request has completed on the server.
1868  *
1869  * So instead we allocate a raw page, copy the symname into it, then do
1870  * the SYMLINK request with the page as the buffer.  If it succeeds, we
1871  * now have a new file handle and can instantiate an in-core NFS inode
1872  * and move the raw page into its mapping.
1873  */
1874 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1875 {
1876 	struct page *page;
1877 	char *kaddr;
1878 	struct iattr attr;
1879 	unsigned int pathlen = strlen(symname);
1880 	int error;
1881 
1882 	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
1883 		dir->i_ino, dentry, symname);
1884 
1885 	if (pathlen > PAGE_SIZE)
1886 		return -ENAMETOOLONG;
1887 
1888 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
1889 	attr.ia_valid = ATTR_MODE;
1890 
1891 	page = alloc_page(GFP_USER);
1892 	if (!page)
1893 		return -ENOMEM;
1894 
1895 	kaddr = page_address(page);
1896 	memcpy(kaddr, symname, pathlen);
1897 	if (pathlen < PAGE_SIZE)
1898 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1899 
1900 	trace_nfs_symlink_enter(dir, dentry);
1901 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1902 	trace_nfs_symlink_exit(dir, dentry, error);
1903 	if (error != 0) {
1904 		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1905 			dir->i_sb->s_id, dir->i_ino,
1906 			dentry, symname, error);
1907 		d_drop(dentry);
1908 		__free_page(page);
1909 		return error;
1910 	}
1911 
1912 	/*
1913 	 * No big deal if we can't add this page to the page cache here.
1914 	 * READLINK will get the missing page from the server if needed.
1915 	 */
1916 	if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
1917 							GFP_KERNEL)) {
1918 		SetPageUptodate(page);
1919 		unlock_page(page);
1920 		/*
1921 		 * add_to_page_cache_lru() grabs an extra page refcount.
1922 		 * Drop it here to avoid leaking this page later.
1923 		 */
1924 		put_page(page);
1925 	} else
1926 		__free_page(page);
1927 
1928 	return 0;
1929 }
1930 EXPORT_SYMBOL_GPL(nfs_symlink);
1931 
1932 int
1933 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1934 {
1935 	struct inode *inode = d_inode(old_dentry);
1936 	int error;
1937 
1938 	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
1939 		old_dentry, dentry);
1940 
1941 	trace_nfs_link_enter(inode, dir, dentry);
1942 	NFS_PROTO(inode)->return_delegation(inode);
1943 
1944 	d_drop(dentry);
1945 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1946 	if (error == 0) {
1947 		ihold(inode);
1948 		d_add(dentry, inode);
1949 	}
1950 	trace_nfs_link_exit(inode, dir, dentry, error);
1951 	return error;
1952 }
1953 EXPORT_SYMBOL_GPL(nfs_link);
1954 
1955 /*
1956  * RENAME
1957  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1958  * different file handle for the same inode after a rename (e.g. when
1959  * moving to a different directory). A fail-safe method to do so would
1960  * be to look up old_dir/old_name, create a link to new_dir/new_name and
1961  * rename the old file using the sillyrename stuff. This way, the original
1962  * file in old_dir will go away when the last process iput()s the inode.
1963  *
1964  * FIXED.
1965  *
1966  * It actually works quite well. One needs to have the possibility for
1967  * at least one ".nfs..." file in each directory the file ever gets
1968  * moved or linked to which happens automagically with the new
1969  * implementation that only depends on the dcache stuff instead of
1970  * using the inode layer
1971  *
1972  * Unfortunately, things are a little more complicated than indicated
1973  * above. For a cross-directory move, we want to make sure we can get
1974  * rid of the old inode after the operation.  This means there must be
1975  * no pending writes (if it's a file), and the use count must be 1.
1976  * If these conditions are met, we can drop the dentries before doing
1977  * the rename.
1978  */
1979 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1980 	       struct inode *new_dir, struct dentry *new_dentry,
1981 	       unsigned int flags)
1982 {
1983 	struct inode *old_inode = d_inode(old_dentry);
1984 	struct inode *new_inode = d_inode(new_dentry);
1985 	struct dentry *dentry = NULL, *rehash = NULL;
1986 	struct rpc_task *task;
1987 	int error = -EBUSY;
1988 
1989 	if (flags)
1990 		return -EINVAL;
1991 
1992 	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
1993 		 old_dentry, new_dentry,
1994 		 d_count(new_dentry));
1995 
1996 	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
1997 	/*
1998 	 * For non-directories, check whether the target is busy and if so,
1999 	 * make a copy of the dentry and then do a silly-rename. If the
2000 	 * silly-rename succeeds, the copied dentry is hashed and becomes
2001 	 * the new target.
2002 	 */
2003 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2004 		/*
2005 		 * To prevent any new references to the target during the
2006 		 * rename, we unhash the dentry in advance.
2007 		 */
2008 		if (!d_unhashed(new_dentry)) {
2009 			d_drop(new_dentry);
2010 			rehash = new_dentry;
2011 		}
2012 
2013 		if (d_count(new_dentry) > 2) {
2014 			int err;
2015 
2016 			/* copy the target dentry's name */
2017 			dentry = d_alloc(new_dentry->d_parent,
2018 					 &new_dentry->d_name);
2019 			if (!dentry)
2020 				goto out;
2021 
2022 			/* silly-rename the existing target ... */
2023 			err = nfs_sillyrename(new_dir, new_dentry);
2024 			if (err)
2025 				goto out;
2026 
2027 			new_dentry = dentry;
2028 			rehash = NULL;
2029 			new_inode = NULL;
2030 		}
2031 	}
2032 
2033 	NFS_PROTO(old_inode)->return_delegation(old_inode);
2034 	if (new_inode != NULL)
2035 		NFS_PROTO(new_inode)->return_delegation(new_inode);
2036 
2037 	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2038 	if (IS_ERR(task)) {
2039 		error = PTR_ERR(task);
2040 		goto out;
2041 	}
2042 
2043 	error = rpc_wait_for_completion_task(task);
2044 	if (error != 0) {
2045 		((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2046 		/* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2047 		smp_wmb();
2048 	} else
2049 		error = task->tk_status;
2050 	rpc_put_task(task);
2051 	nfs_mark_for_revalidate(old_inode);
2052 out:
2053 	if (rehash)
2054 		d_rehash(rehash);
2055 	trace_nfs_rename_exit(old_dir, old_dentry,
2056 			new_dir, new_dentry, error);
2057 	if (!error) {
2058 		if (new_inode != NULL)
2059 			nfs_drop_nlink(new_inode);
2060 		/*
2061 		 * The d_move() should be here instead of in an async RPC completion
2062 		 * handler because we need the proper locks to move the dentry.  If
2063 		 * we're interrupted by a signal, the async RPC completion handler
2064 		 * should mark the directories for revalidation.
2065 		 */
2066 		d_move(old_dentry, new_dentry);
2067 		nfs_set_verifier(new_dentry,
2068 					nfs_save_change_attribute(new_dir));
2069 	} else if (error == -ENOENT)
2070 		nfs_dentry_handle_enoent(old_dentry);
2071 
2072 	/* new dentry created? */
2073 	if (dentry)
2074 		dput(dentry);
2075 	return error;
2076 }
2077 EXPORT_SYMBOL_GPL(nfs_rename);
2078 
2079 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2080 static LIST_HEAD(nfs_access_lru_list);
2081 static atomic_long_t nfs_access_nr_entries;
2082 
2083 static unsigned long nfs_access_max_cachesize = ULONG_MAX;
2084 module_param(nfs_access_max_cachesize, ulong, 0644);
2085 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2086 
2087 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2088 {
2089 	put_rpccred(entry->cred);
2090 	kfree_rcu(entry, rcu_head);
2091 	smp_mb__before_atomic();
2092 	atomic_long_dec(&nfs_access_nr_entries);
2093 	smp_mb__after_atomic();
2094 }
2095 
2096 static void nfs_access_free_list(struct list_head *head)
2097 {
2098 	struct nfs_access_entry *cache;
2099 
2100 	while (!list_empty(head)) {
2101 		cache = list_entry(head->next, struct nfs_access_entry, lru);
2102 		list_del(&cache->lru);
2103 		nfs_access_free_entry(cache);
2104 	}
2105 }
2106 
2107 static unsigned long
2108 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2109 {
2110 	LIST_HEAD(head);
2111 	struct nfs_inode *nfsi, *next;
2112 	struct nfs_access_entry *cache;
2113 	long freed = 0;
2114 
2115 	spin_lock(&nfs_access_lru_lock);
2116 	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2117 		struct inode *inode;
2118 
2119 		if (nr_to_scan-- == 0)
2120 			break;
2121 		inode = &nfsi->vfs_inode;
2122 		spin_lock(&inode->i_lock);
2123 		if (list_empty(&nfsi->access_cache_entry_lru))
2124 			goto remove_lru_entry;
2125 		cache = list_entry(nfsi->access_cache_entry_lru.next,
2126 				struct nfs_access_entry, lru);
2127 		list_move(&cache->lru, &head);
2128 		rb_erase(&cache->rb_node, &nfsi->access_cache);
2129 		freed++;
2130 		if (!list_empty(&nfsi->access_cache_entry_lru))
2131 			list_move_tail(&nfsi->access_cache_inode_lru,
2132 					&nfs_access_lru_list);
2133 		else {
2134 remove_lru_entry:
2135 			list_del_init(&nfsi->access_cache_inode_lru);
2136 			smp_mb__before_atomic();
2137 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2138 			smp_mb__after_atomic();
2139 		}
2140 		spin_unlock(&inode->i_lock);
2141 	}
2142 	spin_unlock(&nfs_access_lru_lock);
2143 	nfs_access_free_list(&head);
2144 	return freed;
2145 }
2146 
2147 unsigned long
2148 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2149 {
2150 	int nr_to_scan = sc->nr_to_scan;
2151 	gfp_t gfp_mask = sc->gfp_mask;
2152 
2153 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2154 		return SHRINK_STOP;
2155 	return nfs_do_access_cache_scan(nr_to_scan);
2156 }
2157 
2158 
2159 unsigned long
2160 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2161 {
2162 	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2163 }
2164 
2165 static void
2166 nfs_access_cache_enforce_limit(void)
2167 {
2168 	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2169 	unsigned long diff;
2170 	unsigned int nr_to_scan;
2171 
2172 	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2173 		return;
2174 	nr_to_scan = 100;
2175 	diff = nr_entries - nfs_access_max_cachesize;
2176 	if (diff < nr_to_scan)
2177 		nr_to_scan = diff;
2178 	nfs_do_access_cache_scan(nr_to_scan);
2179 }
2180 
2181 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2182 {
2183 	struct rb_root *root_node = &nfsi->access_cache;
2184 	struct rb_node *n;
2185 	struct nfs_access_entry *entry;
2186 
2187 	/* Unhook entries from the cache */
2188 	while ((n = rb_first(root_node)) != NULL) {
2189 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2190 		rb_erase(n, root_node);
2191 		list_move(&entry->lru, head);
2192 	}
2193 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2194 }
2195 
2196 void nfs_access_zap_cache(struct inode *inode)
2197 {
2198 	LIST_HEAD(head);
2199 
2200 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2201 		return;
2202 	/* Remove from global LRU init */
2203 	spin_lock(&nfs_access_lru_lock);
2204 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2205 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2206 
2207 	spin_lock(&inode->i_lock);
2208 	__nfs_access_zap_cache(NFS_I(inode), &head);
2209 	spin_unlock(&inode->i_lock);
2210 	spin_unlock(&nfs_access_lru_lock);
2211 	nfs_access_free_list(&head);
2212 }
2213 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2214 
2215 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2216 {
2217 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2218 	struct nfs_access_entry *entry;
2219 
2220 	while (n != NULL) {
2221 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2222 
2223 		if (cred < entry->cred)
2224 			n = n->rb_left;
2225 		else if (cred > entry->cred)
2226 			n = n->rb_right;
2227 		else
2228 			return entry;
2229 	}
2230 	return NULL;
2231 }
2232 
2233 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res, bool may_block)
2234 {
2235 	struct nfs_inode *nfsi = NFS_I(inode);
2236 	struct nfs_access_entry *cache;
2237 	bool retry = true;
2238 	int err;
2239 
2240 	spin_lock(&inode->i_lock);
2241 	for(;;) {
2242 		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2243 			goto out_zap;
2244 		cache = nfs_access_search_rbtree(inode, cred);
2245 		err = -ENOENT;
2246 		if (cache == NULL)
2247 			goto out;
2248 		/* Found an entry, is our attribute cache valid? */
2249 		if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2250 			break;
2251 		err = -ECHILD;
2252 		if (!may_block)
2253 			goto out;
2254 		if (!retry)
2255 			goto out_zap;
2256 		spin_unlock(&inode->i_lock);
2257 		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2258 		if (err)
2259 			return err;
2260 		spin_lock(&inode->i_lock);
2261 		retry = false;
2262 	}
2263 	res->cred = cache->cred;
2264 	res->mask = cache->mask;
2265 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2266 	err = 0;
2267 out:
2268 	spin_unlock(&inode->i_lock);
2269 	return err;
2270 out_zap:
2271 	spin_unlock(&inode->i_lock);
2272 	nfs_access_zap_cache(inode);
2273 	return -ENOENT;
2274 }
2275 
2276 static int nfs_access_get_cached_rcu(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2277 {
2278 	/* Only check the most recently returned cache entry,
2279 	 * but do it without locking.
2280 	 */
2281 	struct nfs_inode *nfsi = NFS_I(inode);
2282 	struct nfs_access_entry *cache;
2283 	int err = -ECHILD;
2284 	struct list_head *lh;
2285 
2286 	rcu_read_lock();
2287 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2288 		goto out;
2289 	lh = rcu_dereference(nfsi->access_cache_entry_lru.prev);
2290 	cache = list_entry(lh, struct nfs_access_entry, lru);
2291 	if (lh == &nfsi->access_cache_entry_lru ||
2292 	    cred != cache->cred)
2293 		cache = NULL;
2294 	if (cache == NULL)
2295 		goto out;
2296 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2297 		goto out;
2298 	res->cred = cache->cred;
2299 	res->mask = cache->mask;
2300 	err = 0;
2301 out:
2302 	rcu_read_unlock();
2303 	return err;
2304 }
2305 
2306 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2307 {
2308 	struct nfs_inode *nfsi = NFS_I(inode);
2309 	struct rb_root *root_node = &nfsi->access_cache;
2310 	struct rb_node **p = &root_node->rb_node;
2311 	struct rb_node *parent = NULL;
2312 	struct nfs_access_entry *entry;
2313 
2314 	spin_lock(&inode->i_lock);
2315 	while (*p != NULL) {
2316 		parent = *p;
2317 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2318 
2319 		if (set->cred < entry->cred)
2320 			p = &parent->rb_left;
2321 		else if (set->cred > entry->cred)
2322 			p = &parent->rb_right;
2323 		else
2324 			goto found;
2325 	}
2326 	rb_link_node(&set->rb_node, parent, p);
2327 	rb_insert_color(&set->rb_node, root_node);
2328 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2329 	spin_unlock(&inode->i_lock);
2330 	return;
2331 found:
2332 	rb_replace_node(parent, &set->rb_node, root_node);
2333 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2334 	list_del(&entry->lru);
2335 	spin_unlock(&inode->i_lock);
2336 	nfs_access_free_entry(entry);
2337 }
2338 
2339 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2340 {
2341 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2342 	if (cache == NULL)
2343 		return;
2344 	RB_CLEAR_NODE(&cache->rb_node);
2345 	cache->cred = get_rpccred(set->cred);
2346 	cache->mask = set->mask;
2347 
2348 	/* The above field assignments must be visible
2349 	 * before this item appears on the lru.  We cannot easily
2350 	 * use rcu_assign_pointer, so just force the memory barrier.
2351 	 */
2352 	smp_wmb();
2353 	nfs_access_add_rbtree(inode, cache);
2354 
2355 	/* Update accounting */
2356 	smp_mb__before_atomic();
2357 	atomic_long_inc(&nfs_access_nr_entries);
2358 	smp_mb__after_atomic();
2359 
2360 	/* Add inode to global LRU list */
2361 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2362 		spin_lock(&nfs_access_lru_lock);
2363 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2364 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2365 					&nfs_access_lru_list);
2366 		spin_unlock(&nfs_access_lru_lock);
2367 	}
2368 	nfs_access_cache_enforce_limit();
2369 }
2370 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2371 
2372 #define NFS_MAY_READ (NFS4_ACCESS_READ)
2373 #define NFS_MAY_WRITE (NFS4_ACCESS_MODIFY | \
2374 		NFS4_ACCESS_EXTEND | \
2375 		NFS4_ACCESS_DELETE)
2376 #define NFS_FILE_MAY_WRITE (NFS4_ACCESS_MODIFY | \
2377 		NFS4_ACCESS_EXTEND)
2378 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2379 #define NFS_MAY_LOOKUP (NFS4_ACCESS_LOOKUP)
2380 #define NFS_MAY_EXECUTE (NFS4_ACCESS_EXECUTE)
2381 static int
2382 nfs_access_calc_mask(u32 access_result, umode_t umode)
2383 {
2384 	int mask = 0;
2385 
2386 	if (access_result & NFS_MAY_READ)
2387 		mask |= MAY_READ;
2388 	if (S_ISDIR(umode)) {
2389 		if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2390 			mask |= MAY_WRITE;
2391 		if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2392 			mask |= MAY_EXEC;
2393 	} else if (S_ISREG(umode)) {
2394 		if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2395 			mask |= MAY_WRITE;
2396 		if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2397 			mask |= MAY_EXEC;
2398 	} else if (access_result & NFS_MAY_WRITE)
2399 			mask |= MAY_WRITE;
2400 	return mask;
2401 }
2402 
2403 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2404 {
2405 	entry->mask = access_result;
2406 }
2407 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2408 
2409 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2410 {
2411 	struct nfs_access_entry cache;
2412 	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2413 	int cache_mask;
2414 	int status;
2415 
2416 	trace_nfs_access_enter(inode);
2417 
2418 	status = nfs_access_get_cached_rcu(inode, cred, &cache);
2419 	if (status != 0)
2420 		status = nfs_access_get_cached(inode, cred, &cache, may_block);
2421 	if (status == 0)
2422 		goto out_cached;
2423 
2424 	status = -ECHILD;
2425 	if (!may_block)
2426 		goto out;
2427 
2428 	/* Be clever: ask server to check for all possible rights */
2429 	cache.mask = NFS_MAY_LOOKUP | NFS_MAY_EXECUTE
2430 		     | NFS_MAY_WRITE | NFS_MAY_READ;
2431 	cache.cred = cred;
2432 	status = NFS_PROTO(inode)->access(inode, &cache);
2433 	if (status != 0) {
2434 		if (status == -ESTALE) {
2435 			nfs_zap_caches(inode);
2436 			if (!S_ISDIR(inode->i_mode))
2437 				set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2438 		}
2439 		goto out;
2440 	}
2441 	nfs_access_add_cache(inode, &cache);
2442 out_cached:
2443 	cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
2444 	if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2445 		status = -EACCES;
2446 out:
2447 	trace_nfs_access_exit(inode, status);
2448 	return status;
2449 }
2450 
2451 static int nfs_open_permission_mask(int openflags)
2452 {
2453 	int mask = 0;
2454 
2455 	if (openflags & __FMODE_EXEC) {
2456 		/* ONLY check exec rights */
2457 		mask = MAY_EXEC;
2458 	} else {
2459 		if ((openflags & O_ACCMODE) != O_WRONLY)
2460 			mask |= MAY_READ;
2461 		if ((openflags & O_ACCMODE) != O_RDONLY)
2462 			mask |= MAY_WRITE;
2463 	}
2464 
2465 	return mask;
2466 }
2467 
2468 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2469 {
2470 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2471 }
2472 EXPORT_SYMBOL_GPL(nfs_may_open);
2473 
2474 static int nfs_execute_ok(struct inode *inode, int mask)
2475 {
2476 	struct nfs_server *server = NFS_SERVER(inode);
2477 	int ret = 0;
2478 
2479 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) {
2480 		if (mask & MAY_NOT_BLOCK)
2481 			return -ECHILD;
2482 		ret = __nfs_revalidate_inode(server, inode);
2483 	}
2484 	if (ret == 0 && !execute_ok(inode))
2485 		ret = -EACCES;
2486 	return ret;
2487 }
2488 
2489 int nfs_permission(struct inode *inode, int mask)
2490 {
2491 	struct rpc_cred *cred;
2492 	int res = 0;
2493 
2494 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2495 
2496 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2497 		goto out;
2498 	/* Is this sys_access() ? */
2499 	if (mask & (MAY_ACCESS | MAY_CHDIR))
2500 		goto force_lookup;
2501 
2502 	switch (inode->i_mode & S_IFMT) {
2503 		case S_IFLNK:
2504 			goto out;
2505 		case S_IFREG:
2506 			if ((mask & MAY_OPEN) &&
2507 			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2508 				return 0;
2509 			break;
2510 		case S_IFDIR:
2511 			/*
2512 			 * Optimize away all write operations, since the server
2513 			 * will check permissions when we perform the op.
2514 			 */
2515 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2516 				goto out;
2517 	}
2518 
2519 force_lookup:
2520 	if (!NFS_PROTO(inode)->access)
2521 		goto out_notsup;
2522 
2523 	/* Always try fast lookups first */
2524 	rcu_read_lock();
2525 	cred = rpc_lookup_cred_nonblock();
2526 	if (!IS_ERR(cred))
2527 		res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK);
2528 	else
2529 		res = PTR_ERR(cred);
2530 	rcu_read_unlock();
2531 	if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) {
2532 		/* Fast lookup failed, try the slow way */
2533 		cred = rpc_lookup_cred();
2534 		if (!IS_ERR(cred)) {
2535 			res = nfs_do_access(inode, cred, mask);
2536 			put_rpccred(cred);
2537 		} else
2538 			res = PTR_ERR(cred);
2539 	}
2540 out:
2541 	if (!res && (mask & MAY_EXEC))
2542 		res = nfs_execute_ok(inode, mask);
2543 
2544 	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2545 		inode->i_sb->s_id, inode->i_ino, mask, res);
2546 	return res;
2547 out_notsup:
2548 	if (mask & MAY_NOT_BLOCK)
2549 		return -ECHILD;
2550 
2551 	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2552 	if (res == 0)
2553 		res = generic_permission(inode, mask);
2554 	goto out;
2555 }
2556 EXPORT_SYMBOL_GPL(nfs_permission);
2557 
2558 /*
2559  * Local variables:
2560  *  version-control: t
2561  *  kept-new-versions: 5
2562  * End:
2563  */
2564