xref: /openbmc/linux/fs/nfs/dir.c (revision 68eaba4c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/nfs/dir.c
4  *
5  *  Copyright (C) 1992  Rick Sladkey
6  *
7  *  nfs directory handling functions
8  *
9  * 10 Apr 1996	Added silly rename for unlink	--okir
10  * 28 Sep 1996	Improved directory cache --okir
11  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
12  *              Re-implemented silly rename for unlink, newly implemented
13  *              silly rename for nfs_rename() following the suggestions
14  *              of Olaf Kirch (okir) found in this file.
15  *              Following Linus comments on my original hack, this version
16  *              depends only on the dcache stuff and doesn't touch the inode
17  *              layer (iput() and friends).
18  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
19  */
20 
21 #include <linux/module.h>
22 #include <linux/time.h>
23 #include <linux/errno.h>
24 #include <linux/stat.h>
25 #include <linux/fcntl.h>
26 #include <linux/string.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/mm.h>
30 #include <linux/sunrpc/clnt.h>
31 #include <linux/nfs_fs.h>
32 #include <linux/nfs_mount.h>
33 #include <linux/pagemap.h>
34 #include <linux/pagevec.h>
35 #include <linux/namei.h>
36 #include <linux/mount.h>
37 #include <linux/swap.h>
38 #include <linux/sched.h>
39 #include <linux/kmemleak.h>
40 #include <linux/xattr.h>
41 
42 #include "delegation.h"
43 #include "iostat.h"
44 #include "internal.h"
45 #include "fscache.h"
46 
47 #include "nfstrace.h"
48 
49 /* #define NFS_DEBUG_VERBOSE 1 */
50 
51 static int nfs_opendir(struct inode *, struct file *);
52 static int nfs_closedir(struct inode *, struct file *);
53 static int nfs_readdir(struct file *, struct dir_context *);
54 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
55 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
56 static void nfs_readdir_clear_array(struct page*);
57 
58 const struct file_operations nfs_dir_operations = {
59 	.llseek		= nfs_llseek_dir,
60 	.read		= generic_read_dir,
61 	.iterate_shared	= nfs_readdir,
62 	.open		= nfs_opendir,
63 	.release	= nfs_closedir,
64 	.fsync		= nfs_fsync_dir,
65 };
66 
67 const struct address_space_operations nfs_dir_aops = {
68 	.freepage = nfs_readdir_clear_array,
69 };
70 
71 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir)
72 {
73 	struct nfs_inode *nfsi = NFS_I(dir);
74 	struct nfs_open_dir_context *ctx;
75 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
76 	if (ctx != NULL) {
77 		ctx->duped = 0;
78 		ctx->attr_gencount = nfsi->attr_gencount;
79 		ctx->dir_cookie = 0;
80 		ctx->dup_cookie = 0;
81 		ctx->page_index = 0;
82 		spin_lock(&dir->i_lock);
83 		if (list_empty(&nfsi->open_files) &&
84 		    (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
85 			nfs_set_cache_invalid(dir,
86 					      NFS_INO_INVALID_DATA |
87 						      NFS_INO_REVAL_FORCED);
88 		list_add(&ctx->list, &nfsi->open_files);
89 		clear_bit(NFS_INO_FORCE_READDIR, &nfsi->flags);
90 		spin_unlock(&dir->i_lock);
91 		return ctx;
92 	}
93 	return  ERR_PTR(-ENOMEM);
94 }
95 
96 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
97 {
98 	spin_lock(&dir->i_lock);
99 	list_del(&ctx->list);
100 	spin_unlock(&dir->i_lock);
101 	kfree(ctx);
102 }
103 
104 /*
105  * Open file
106  */
107 static int
108 nfs_opendir(struct inode *inode, struct file *filp)
109 {
110 	int res = 0;
111 	struct nfs_open_dir_context *ctx;
112 
113 	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
114 
115 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
116 
117 	ctx = alloc_nfs_open_dir_context(inode);
118 	if (IS_ERR(ctx)) {
119 		res = PTR_ERR(ctx);
120 		goto out;
121 	}
122 	filp->private_data = ctx;
123 out:
124 	return res;
125 }
126 
127 static int
128 nfs_closedir(struct inode *inode, struct file *filp)
129 {
130 	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
131 	return 0;
132 }
133 
134 struct nfs_cache_array_entry {
135 	u64 cookie;
136 	u64 ino;
137 	const char *name;
138 	unsigned int name_len;
139 	unsigned char d_type;
140 };
141 
142 struct nfs_cache_array {
143 	u64 last_cookie;
144 	unsigned int size;
145 	unsigned char page_full : 1,
146 		      page_is_eof : 1,
147 		      cookies_are_ordered : 1;
148 	struct nfs_cache_array_entry array[];
149 };
150 
151 struct nfs_readdir_descriptor {
152 	struct file	*file;
153 	struct page	*page;
154 	struct dir_context *ctx;
155 	pgoff_t		page_index;
156 	u64		dir_cookie;
157 	u64		last_cookie;
158 	u64		dup_cookie;
159 	loff_t		current_index;
160 	loff_t		prev_index;
161 
162 	__be32		verf[NFS_DIR_VERIFIER_SIZE];
163 	unsigned long	dir_verifier;
164 	unsigned long	timestamp;
165 	unsigned long	gencount;
166 	unsigned long	attr_gencount;
167 	unsigned int	cache_entry_index;
168 	signed char duped;
169 	bool plus;
170 	bool eof;
171 };
172 
173 static void nfs_readdir_array_init(struct nfs_cache_array *array)
174 {
175 	memset(array, 0, sizeof(struct nfs_cache_array));
176 }
177 
178 static void nfs_readdir_page_init_array(struct page *page, u64 last_cookie)
179 {
180 	struct nfs_cache_array *array;
181 
182 	array = kmap_atomic(page);
183 	nfs_readdir_array_init(array);
184 	array->last_cookie = last_cookie;
185 	array->cookies_are_ordered = 1;
186 	kunmap_atomic(array);
187 }
188 
189 /*
190  * we are freeing strings created by nfs_add_to_readdir_array()
191  */
192 static
193 void nfs_readdir_clear_array(struct page *page)
194 {
195 	struct nfs_cache_array *array;
196 	int i;
197 
198 	array = kmap_atomic(page);
199 	for (i = 0; i < array->size; i++)
200 		kfree(array->array[i].name);
201 	nfs_readdir_array_init(array);
202 	kunmap_atomic(array);
203 }
204 
205 static struct page *
206 nfs_readdir_page_array_alloc(u64 last_cookie, gfp_t gfp_flags)
207 {
208 	struct page *page = alloc_page(gfp_flags);
209 	if (page)
210 		nfs_readdir_page_init_array(page, last_cookie);
211 	return page;
212 }
213 
214 static void nfs_readdir_page_array_free(struct page *page)
215 {
216 	if (page) {
217 		nfs_readdir_clear_array(page);
218 		put_page(page);
219 	}
220 }
221 
222 static void nfs_readdir_array_set_eof(struct nfs_cache_array *array)
223 {
224 	array->page_is_eof = 1;
225 	array->page_full = 1;
226 }
227 
228 static bool nfs_readdir_array_is_full(struct nfs_cache_array *array)
229 {
230 	return array->page_full;
231 }
232 
233 /*
234  * the caller is responsible for freeing qstr.name
235  * when called by nfs_readdir_add_to_array, the strings will be freed in
236  * nfs_clear_readdir_array()
237  */
238 static const char *nfs_readdir_copy_name(const char *name, unsigned int len)
239 {
240 	const char *ret = kmemdup_nul(name, len, GFP_KERNEL);
241 
242 	/*
243 	 * Avoid a kmemleak false positive. The pointer to the name is stored
244 	 * in a page cache page which kmemleak does not scan.
245 	 */
246 	if (ret != NULL)
247 		kmemleak_not_leak(ret);
248 	return ret;
249 }
250 
251 /*
252  * Check that the next array entry lies entirely within the page bounds
253  */
254 static int nfs_readdir_array_can_expand(struct nfs_cache_array *array)
255 {
256 	struct nfs_cache_array_entry *cache_entry;
257 
258 	if (array->page_full)
259 		return -ENOSPC;
260 	cache_entry = &array->array[array->size + 1];
261 	if ((char *)cache_entry - (char *)array > PAGE_SIZE) {
262 		array->page_full = 1;
263 		return -ENOSPC;
264 	}
265 	return 0;
266 }
267 
268 static
269 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
270 {
271 	struct nfs_cache_array *array;
272 	struct nfs_cache_array_entry *cache_entry;
273 	const char *name;
274 	int ret;
275 
276 	name = nfs_readdir_copy_name(entry->name, entry->len);
277 	if (!name)
278 		return -ENOMEM;
279 
280 	array = kmap_atomic(page);
281 	ret = nfs_readdir_array_can_expand(array);
282 	if (ret) {
283 		kfree(name);
284 		goto out;
285 	}
286 
287 	cache_entry = &array->array[array->size];
288 	cache_entry->cookie = entry->prev_cookie;
289 	cache_entry->ino = entry->ino;
290 	cache_entry->d_type = entry->d_type;
291 	cache_entry->name_len = entry->len;
292 	cache_entry->name = name;
293 	array->last_cookie = entry->cookie;
294 	if (array->last_cookie <= cache_entry->cookie)
295 		array->cookies_are_ordered = 0;
296 	array->size++;
297 	if (entry->eof != 0)
298 		nfs_readdir_array_set_eof(array);
299 out:
300 	kunmap_atomic(array);
301 	return ret;
302 }
303 
304 static struct page *nfs_readdir_page_get_locked(struct address_space *mapping,
305 						pgoff_t index, u64 last_cookie)
306 {
307 	struct page *page;
308 
309 	page = grab_cache_page(mapping, index);
310 	if (page && !PageUptodate(page)) {
311 		nfs_readdir_page_init_array(page, last_cookie);
312 		if (invalidate_inode_pages2_range(mapping, index + 1, -1) < 0)
313 			nfs_zap_mapping(mapping->host, mapping);
314 		SetPageUptodate(page);
315 	}
316 
317 	return page;
318 }
319 
320 static u64 nfs_readdir_page_last_cookie(struct page *page)
321 {
322 	struct nfs_cache_array *array;
323 	u64 ret;
324 
325 	array = kmap_atomic(page);
326 	ret = array->last_cookie;
327 	kunmap_atomic(array);
328 	return ret;
329 }
330 
331 static bool nfs_readdir_page_needs_filling(struct page *page)
332 {
333 	struct nfs_cache_array *array;
334 	bool ret;
335 
336 	array = kmap_atomic(page);
337 	ret = !nfs_readdir_array_is_full(array);
338 	kunmap_atomic(array);
339 	return ret;
340 }
341 
342 static void nfs_readdir_page_set_eof(struct page *page)
343 {
344 	struct nfs_cache_array *array;
345 
346 	array = kmap_atomic(page);
347 	nfs_readdir_array_set_eof(array);
348 	kunmap_atomic(array);
349 }
350 
351 static void nfs_readdir_page_unlock_and_put(struct page *page)
352 {
353 	unlock_page(page);
354 	put_page(page);
355 }
356 
357 static struct page *nfs_readdir_page_get_next(struct address_space *mapping,
358 					      pgoff_t index, u64 cookie)
359 {
360 	struct page *page;
361 
362 	page = nfs_readdir_page_get_locked(mapping, index, cookie);
363 	if (page) {
364 		if (nfs_readdir_page_last_cookie(page) == cookie)
365 			return page;
366 		nfs_readdir_page_unlock_and_put(page);
367 	}
368 	return NULL;
369 }
370 
371 static inline
372 int is_32bit_api(void)
373 {
374 #ifdef CONFIG_COMPAT
375 	return in_compat_syscall();
376 #else
377 	return (BITS_PER_LONG == 32);
378 #endif
379 }
380 
381 static
382 bool nfs_readdir_use_cookie(const struct file *filp)
383 {
384 	if ((filp->f_mode & FMODE_32BITHASH) ||
385 	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
386 		return false;
387 	return true;
388 }
389 
390 static int nfs_readdir_search_for_pos(struct nfs_cache_array *array,
391 				      struct nfs_readdir_descriptor *desc)
392 {
393 	loff_t diff = desc->ctx->pos - desc->current_index;
394 	unsigned int index;
395 
396 	if (diff < 0)
397 		goto out_eof;
398 	if (diff >= array->size) {
399 		if (array->page_is_eof)
400 			goto out_eof;
401 		return -EAGAIN;
402 	}
403 
404 	index = (unsigned int)diff;
405 	desc->dir_cookie = array->array[index].cookie;
406 	desc->cache_entry_index = index;
407 	return 0;
408 out_eof:
409 	desc->eof = true;
410 	return -EBADCOOKIE;
411 }
412 
413 static bool
414 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
415 {
416 	if (nfsi->cache_validity & (NFS_INO_INVALID_CHANGE |
417 				    NFS_INO_INVALID_DATA))
418 		return false;
419 	smp_rmb();
420 	return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
421 }
422 
423 static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array,
424 					      u64 cookie)
425 {
426 	if (!array->cookies_are_ordered)
427 		return true;
428 	/* Optimisation for monotonically increasing cookies */
429 	if (cookie >= array->last_cookie)
430 		return false;
431 	if (array->size && cookie < array->array[0].cookie)
432 		return false;
433 	return true;
434 }
435 
436 static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array,
437 					 struct nfs_readdir_descriptor *desc)
438 {
439 	int i;
440 	loff_t new_pos;
441 	int status = -EAGAIN;
442 
443 	if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie))
444 		goto check_eof;
445 
446 	for (i = 0; i < array->size; i++) {
447 		if (array->array[i].cookie == desc->dir_cookie) {
448 			struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
449 
450 			new_pos = desc->current_index + i;
451 			if (desc->attr_gencount != nfsi->attr_gencount ||
452 			    !nfs_readdir_inode_mapping_valid(nfsi)) {
453 				desc->duped = 0;
454 				desc->attr_gencount = nfsi->attr_gencount;
455 			} else if (new_pos < desc->prev_index) {
456 				if (desc->duped > 0
457 				    && desc->dup_cookie == desc->dir_cookie) {
458 					if (printk_ratelimit()) {
459 						pr_notice("NFS: directory %pD2 contains a readdir loop."
460 								"Please contact your server vendor.  "
461 								"The file: %s has duplicate cookie %llu\n",
462 								desc->file, array->array[i].name, desc->dir_cookie);
463 					}
464 					status = -ELOOP;
465 					goto out;
466 				}
467 				desc->dup_cookie = desc->dir_cookie;
468 				desc->duped = -1;
469 			}
470 			if (nfs_readdir_use_cookie(desc->file))
471 				desc->ctx->pos = desc->dir_cookie;
472 			else
473 				desc->ctx->pos = new_pos;
474 			desc->prev_index = new_pos;
475 			desc->cache_entry_index = i;
476 			return 0;
477 		}
478 	}
479 check_eof:
480 	if (array->page_is_eof) {
481 		status = -EBADCOOKIE;
482 		if (desc->dir_cookie == array->last_cookie)
483 			desc->eof = true;
484 	}
485 out:
486 	return status;
487 }
488 
489 static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc)
490 {
491 	struct nfs_cache_array *array;
492 	int status;
493 
494 	array = kmap_atomic(desc->page);
495 
496 	if (desc->dir_cookie == 0)
497 		status = nfs_readdir_search_for_pos(array, desc);
498 	else
499 		status = nfs_readdir_search_for_cookie(array, desc);
500 
501 	if (status == -EAGAIN) {
502 		desc->last_cookie = array->last_cookie;
503 		desc->current_index += array->size;
504 		desc->page_index++;
505 	}
506 	kunmap_atomic(array);
507 	return status;
508 }
509 
510 /* Fill a page with xdr information before transferring to the cache page */
511 static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc,
512 				  __be32 *verf, u64 cookie,
513 				  struct page **pages, size_t bufsize,
514 				  __be32 *verf_res)
515 {
516 	struct inode *inode = file_inode(desc->file);
517 	struct nfs_readdir_arg arg = {
518 		.dentry = file_dentry(desc->file),
519 		.cred = desc->file->f_cred,
520 		.verf = verf,
521 		.cookie = cookie,
522 		.pages = pages,
523 		.page_len = bufsize,
524 		.plus = desc->plus,
525 	};
526 	struct nfs_readdir_res res = {
527 		.verf = verf_res,
528 	};
529 	unsigned long	timestamp, gencount;
530 	int		error;
531 
532  again:
533 	timestamp = jiffies;
534 	gencount = nfs_inc_attr_generation_counter();
535 	desc->dir_verifier = nfs_save_change_attribute(inode);
536 	error = NFS_PROTO(inode)->readdir(&arg, &res);
537 	if (error < 0) {
538 		/* We requested READDIRPLUS, but the server doesn't grok it */
539 		if (error == -ENOTSUPP && desc->plus) {
540 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
541 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
542 			desc->plus = arg.plus = false;
543 			goto again;
544 		}
545 		goto error;
546 	}
547 	desc->timestamp = timestamp;
548 	desc->gencount = gencount;
549 error:
550 	return error;
551 }
552 
553 static int xdr_decode(struct nfs_readdir_descriptor *desc,
554 		      struct nfs_entry *entry, struct xdr_stream *xdr)
555 {
556 	struct inode *inode = file_inode(desc->file);
557 	int error;
558 
559 	error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
560 	if (error)
561 		return error;
562 	entry->fattr->time_start = desc->timestamp;
563 	entry->fattr->gencount = desc->gencount;
564 	return 0;
565 }
566 
567 /* Match file and dirent using either filehandle or fileid
568  * Note: caller is responsible for checking the fsid
569  */
570 static
571 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
572 {
573 	struct inode *inode;
574 	struct nfs_inode *nfsi;
575 
576 	if (d_really_is_negative(dentry))
577 		return 0;
578 
579 	inode = d_inode(dentry);
580 	if (is_bad_inode(inode) || NFS_STALE(inode))
581 		return 0;
582 
583 	nfsi = NFS_I(inode);
584 	if (entry->fattr->fileid != nfsi->fileid)
585 		return 0;
586 	if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
587 		return 0;
588 	return 1;
589 }
590 
591 static
592 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
593 {
594 	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
595 		return false;
596 	if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
597 		return true;
598 	if (ctx->pos == 0)
599 		return true;
600 	return false;
601 }
602 
603 /*
604  * This function is called by the lookup and getattr code to request the
605  * use of readdirplus to accelerate any future lookups in the same
606  * directory.
607  */
608 void nfs_advise_use_readdirplus(struct inode *dir)
609 {
610 	struct nfs_inode *nfsi = NFS_I(dir);
611 
612 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
613 	    !list_empty(&nfsi->open_files))
614 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
615 }
616 
617 /*
618  * This function is mainly for use by nfs_getattr().
619  *
620  * If this is an 'ls -l', we want to force use of readdirplus.
621  * Do this by checking if there is an active file descriptor
622  * and calling nfs_advise_use_readdirplus, then forcing a
623  * cache flush.
624  */
625 void nfs_force_use_readdirplus(struct inode *dir)
626 {
627 	struct nfs_inode *nfsi = NFS_I(dir);
628 
629 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
630 	    !list_empty(&nfsi->open_files)) {
631 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
632 		set_bit(NFS_INO_FORCE_READDIR, &nfsi->flags);
633 	}
634 }
635 
636 static
637 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
638 		unsigned long dir_verifier)
639 {
640 	struct qstr filename = QSTR_INIT(entry->name, entry->len);
641 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
642 	struct dentry *dentry;
643 	struct dentry *alias;
644 	struct inode *inode;
645 	int status;
646 
647 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
648 		return;
649 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
650 		return;
651 	if (filename.len == 0)
652 		return;
653 	/* Validate that the name doesn't contain any illegal '\0' */
654 	if (strnlen(filename.name, filename.len) != filename.len)
655 		return;
656 	/* ...or '/' */
657 	if (strnchr(filename.name, filename.len, '/'))
658 		return;
659 	if (filename.name[0] == '.') {
660 		if (filename.len == 1)
661 			return;
662 		if (filename.len == 2 && filename.name[1] == '.')
663 			return;
664 	}
665 	filename.hash = full_name_hash(parent, filename.name, filename.len);
666 
667 	dentry = d_lookup(parent, &filename);
668 again:
669 	if (!dentry) {
670 		dentry = d_alloc_parallel(parent, &filename, &wq);
671 		if (IS_ERR(dentry))
672 			return;
673 	}
674 	if (!d_in_lookup(dentry)) {
675 		/* Is there a mountpoint here? If so, just exit */
676 		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
677 					&entry->fattr->fsid))
678 			goto out;
679 		if (nfs_same_file(dentry, entry)) {
680 			if (!entry->fh->size)
681 				goto out;
682 			nfs_set_verifier(dentry, dir_verifier);
683 			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
684 			if (!status)
685 				nfs_setsecurity(d_inode(dentry), entry->fattr);
686 			goto out;
687 		} else {
688 			d_invalidate(dentry);
689 			dput(dentry);
690 			dentry = NULL;
691 			goto again;
692 		}
693 	}
694 	if (!entry->fh->size) {
695 		d_lookup_done(dentry);
696 		goto out;
697 	}
698 
699 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
700 	alias = d_splice_alias(inode, dentry);
701 	d_lookup_done(dentry);
702 	if (alias) {
703 		if (IS_ERR(alias))
704 			goto out;
705 		dput(dentry);
706 		dentry = alias;
707 	}
708 	nfs_set_verifier(dentry, dir_verifier);
709 out:
710 	dput(dentry);
711 }
712 
713 /* Perform conversion from xdr to cache array */
714 static int nfs_readdir_page_filler(struct nfs_readdir_descriptor *desc,
715 				   struct nfs_entry *entry,
716 				   struct page **xdr_pages,
717 				   unsigned int buflen,
718 				   struct page **arrays,
719 				   size_t narrays)
720 {
721 	struct address_space *mapping = desc->file->f_mapping;
722 	struct xdr_stream stream;
723 	struct xdr_buf buf;
724 	struct page *scratch, *new, *page = *arrays;
725 	int status;
726 
727 	scratch = alloc_page(GFP_KERNEL);
728 	if (scratch == NULL)
729 		return -ENOMEM;
730 
731 	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
732 	xdr_set_scratch_page(&stream, scratch);
733 
734 	do {
735 		if (entry->fattr->label)
736 			entry->fattr->label->len = NFS4_MAXLABELLEN;
737 
738 		status = xdr_decode(desc, entry, &stream);
739 		if (status != 0)
740 			break;
741 
742 		if (desc->plus)
743 			nfs_prime_dcache(file_dentry(desc->file), entry,
744 					desc->dir_verifier);
745 
746 		status = nfs_readdir_add_to_array(entry, page);
747 		if (status != -ENOSPC)
748 			continue;
749 
750 		if (page->mapping != mapping) {
751 			if (!--narrays)
752 				break;
753 			new = nfs_readdir_page_array_alloc(entry->prev_cookie,
754 							   GFP_KERNEL);
755 			if (!new)
756 				break;
757 			arrays++;
758 			*arrays = page = new;
759 		} else {
760 			new = nfs_readdir_page_get_next(mapping,
761 							page->index + 1,
762 							entry->prev_cookie);
763 			if (!new)
764 				break;
765 			if (page != *arrays)
766 				nfs_readdir_page_unlock_and_put(page);
767 			page = new;
768 		}
769 		status = nfs_readdir_add_to_array(entry, page);
770 	} while (!status && !entry->eof);
771 
772 	switch (status) {
773 	case -EBADCOOKIE:
774 		if (entry->eof) {
775 			nfs_readdir_page_set_eof(page);
776 			status = 0;
777 		}
778 		break;
779 	case -ENOSPC:
780 	case -EAGAIN:
781 		status = 0;
782 		break;
783 	}
784 
785 	if (page != *arrays)
786 		nfs_readdir_page_unlock_and_put(page);
787 
788 	put_page(scratch);
789 	return status;
790 }
791 
792 static void nfs_readdir_free_pages(struct page **pages, size_t npages)
793 {
794 	while (npages--)
795 		put_page(pages[npages]);
796 	kfree(pages);
797 }
798 
799 /*
800  * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
801  * to nfs_readdir_free_pages()
802  */
803 static struct page **nfs_readdir_alloc_pages(size_t npages)
804 {
805 	struct page **pages;
806 	size_t i;
807 
808 	pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL);
809 	if (!pages)
810 		return NULL;
811 	for (i = 0; i < npages; i++) {
812 		struct page *page = alloc_page(GFP_KERNEL);
813 		if (page == NULL)
814 			goto out_freepages;
815 		pages[i] = page;
816 	}
817 	return pages;
818 
819 out_freepages:
820 	nfs_readdir_free_pages(pages, i);
821 	return NULL;
822 }
823 
824 static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc,
825 				    __be32 *verf_arg, __be32 *verf_res,
826 				    struct page **arrays, size_t narrays)
827 {
828 	struct page **pages;
829 	struct page *page = *arrays;
830 	struct nfs_entry *entry;
831 	size_t array_size;
832 	struct inode *inode = file_inode(desc->file);
833 	size_t dtsize = NFS_SERVER(inode)->dtsize;
834 	int status = -ENOMEM;
835 
836 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
837 	if (!entry)
838 		return -ENOMEM;
839 	entry->cookie = nfs_readdir_page_last_cookie(page);
840 	entry->fh = nfs_alloc_fhandle();
841 	entry->fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
842 	entry->server = NFS_SERVER(inode);
843 	if (entry->fh == NULL || entry->fattr == NULL)
844 		goto out;
845 
846 	array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT;
847 	pages = nfs_readdir_alloc_pages(array_size);
848 	if (!pages)
849 		goto out;
850 
851 	do {
852 		unsigned int pglen;
853 		status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie,
854 						pages, dtsize,
855 						verf_res);
856 		if (status < 0)
857 			break;
858 
859 		pglen = status;
860 		if (pglen == 0) {
861 			nfs_readdir_page_set_eof(page);
862 			break;
863 		}
864 
865 		verf_arg = verf_res;
866 
867 		status = nfs_readdir_page_filler(desc, entry, pages, pglen,
868 						 arrays, narrays);
869 	} while (!status && nfs_readdir_page_needs_filling(page));
870 
871 	nfs_readdir_free_pages(pages, array_size);
872 out:
873 	nfs_free_fattr(entry->fattr);
874 	nfs_free_fhandle(entry->fh);
875 	kfree(entry);
876 	return status;
877 }
878 
879 static void nfs_readdir_page_put(struct nfs_readdir_descriptor *desc)
880 {
881 	put_page(desc->page);
882 	desc->page = NULL;
883 }
884 
885 static void
886 nfs_readdir_page_unlock_and_put_cached(struct nfs_readdir_descriptor *desc)
887 {
888 	unlock_page(desc->page);
889 	nfs_readdir_page_put(desc);
890 }
891 
892 static struct page *
893 nfs_readdir_page_get_cached(struct nfs_readdir_descriptor *desc)
894 {
895 	return nfs_readdir_page_get_locked(desc->file->f_mapping,
896 					   desc->page_index,
897 					   desc->last_cookie);
898 }
899 
900 /*
901  * Returns 0 if desc->dir_cookie was found on page desc->page_index
902  * and locks the page to prevent removal from the page cache.
903  */
904 static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc)
905 {
906 	struct inode *inode = file_inode(desc->file);
907 	struct nfs_inode *nfsi = NFS_I(inode);
908 	__be32 verf[NFS_DIR_VERIFIER_SIZE];
909 	int res;
910 
911 	desc->page = nfs_readdir_page_get_cached(desc);
912 	if (!desc->page)
913 		return -ENOMEM;
914 	if (nfs_readdir_page_needs_filling(desc->page)) {
915 		res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf,
916 					       &desc->page, 1);
917 		if (res < 0) {
918 			nfs_readdir_page_unlock_and_put_cached(desc);
919 			if (res == -EBADCOOKIE || res == -ENOTSYNC) {
920 				invalidate_inode_pages2(desc->file->f_mapping);
921 				desc->page_index = 0;
922 				return -EAGAIN;
923 			}
924 			return res;
925 		}
926 		/*
927 		 * Set the cookie verifier if the page cache was empty
928 		 */
929 		if (desc->page_index == 0)
930 			memcpy(nfsi->cookieverf, verf,
931 			       sizeof(nfsi->cookieverf));
932 	}
933 	res = nfs_readdir_search_array(desc);
934 	if (res == 0)
935 		return 0;
936 	nfs_readdir_page_unlock_and_put_cached(desc);
937 	return res;
938 }
939 
940 static bool nfs_readdir_dont_search_cache(struct nfs_readdir_descriptor *desc)
941 {
942 	struct address_space *mapping = desc->file->f_mapping;
943 	struct inode *dir = file_inode(desc->file);
944 	unsigned int dtsize = NFS_SERVER(dir)->dtsize;
945 	loff_t size = i_size_read(dir);
946 
947 	/*
948 	 * Default to uncached readdir if the page cache is empty, and
949 	 * we're looking for a non-zero cookie in a large directory.
950 	 */
951 	return desc->dir_cookie != 0 && mapping->nrpages == 0 && size > dtsize;
952 }
953 
954 /* Search for desc->dir_cookie from the beginning of the page cache */
955 static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc)
956 {
957 	int res;
958 
959 	if (nfs_readdir_dont_search_cache(desc))
960 		return -EBADCOOKIE;
961 
962 	do {
963 		if (desc->page_index == 0) {
964 			desc->current_index = 0;
965 			desc->prev_index = 0;
966 			desc->last_cookie = 0;
967 		}
968 		res = find_and_lock_cache_page(desc);
969 	} while (res == -EAGAIN);
970 	return res;
971 }
972 
973 /*
974  * Once we've found the start of the dirent within a page: fill 'er up...
975  */
976 static void nfs_do_filldir(struct nfs_readdir_descriptor *desc,
977 			   const __be32 *verf)
978 {
979 	struct file	*file = desc->file;
980 	struct nfs_cache_array *array;
981 	unsigned int i = 0;
982 
983 	array = kmap(desc->page);
984 	for (i = desc->cache_entry_index; i < array->size; i++) {
985 		struct nfs_cache_array_entry *ent;
986 
987 		ent = &array->array[i];
988 		if (!dir_emit(desc->ctx, ent->name, ent->name_len,
989 		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
990 			desc->eof = true;
991 			break;
992 		}
993 		memcpy(desc->verf, verf, sizeof(desc->verf));
994 		if (i < (array->size-1))
995 			desc->dir_cookie = array->array[i+1].cookie;
996 		else
997 			desc->dir_cookie = array->last_cookie;
998 		if (nfs_readdir_use_cookie(file))
999 			desc->ctx->pos = desc->dir_cookie;
1000 		else
1001 			desc->ctx->pos++;
1002 		if (desc->duped != 0)
1003 			desc->duped = 1;
1004 	}
1005 	if (array->page_is_eof)
1006 		desc->eof = true;
1007 
1008 	kunmap(desc->page);
1009 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n",
1010 			(unsigned long long)desc->dir_cookie);
1011 }
1012 
1013 /*
1014  * If we cannot find a cookie in our cache, we suspect that this is
1015  * because it points to a deleted file, so we ask the server to return
1016  * whatever it thinks is the next entry. We then feed this to filldir.
1017  * If all goes well, we should then be able to find our way round the
1018  * cache on the next call to readdir_search_pagecache();
1019  *
1020  * NOTE: we cannot add the anonymous page to the pagecache because
1021  *	 the data it contains might not be page aligned. Besides,
1022  *	 we should already have a complete representation of the
1023  *	 directory in the page cache by the time we get here.
1024  */
1025 static int uncached_readdir(struct nfs_readdir_descriptor *desc)
1026 {
1027 	struct page	**arrays;
1028 	size_t		i, sz = 512;
1029 	__be32		verf[NFS_DIR_VERIFIER_SIZE];
1030 	int		status = -ENOMEM;
1031 
1032 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n",
1033 			(unsigned long long)desc->dir_cookie);
1034 
1035 	arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL);
1036 	if (!arrays)
1037 		goto out;
1038 	arrays[0] = nfs_readdir_page_array_alloc(desc->dir_cookie, GFP_KERNEL);
1039 	if (!arrays[0])
1040 		goto out;
1041 
1042 	desc->page_index = 0;
1043 	desc->last_cookie = desc->dir_cookie;
1044 	desc->duped = 0;
1045 
1046 	status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz);
1047 
1048 	for (i = 0; !desc->eof && i < sz && arrays[i]; i++) {
1049 		desc->page = arrays[i];
1050 		nfs_do_filldir(desc, verf);
1051 	}
1052 	desc->page = NULL;
1053 
1054 
1055 	for (i = 0; i < sz && arrays[i]; i++)
1056 		nfs_readdir_page_array_free(arrays[i]);
1057 out:
1058 	kfree(arrays);
1059 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
1060 	return status;
1061 }
1062 
1063 /* The file offset position represents the dirent entry number.  A
1064    last cookie cache takes care of the common case of reading the
1065    whole directory.
1066  */
1067 static int nfs_readdir(struct file *file, struct dir_context *ctx)
1068 {
1069 	struct dentry	*dentry = file_dentry(file);
1070 	struct inode	*inode = d_inode(dentry);
1071 	struct nfs_inode *nfsi = NFS_I(inode);
1072 	struct nfs_open_dir_context *dir_ctx = file->private_data;
1073 	struct nfs_readdir_descriptor *desc;
1074 	pgoff_t page_index;
1075 	int res;
1076 
1077 	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
1078 			file, (long long)ctx->pos);
1079 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
1080 
1081 	/*
1082 	 * ctx->pos points to the dirent entry number.
1083 	 * *desc->dir_cookie has the cookie for the next entry. We have
1084 	 * to either find the entry with the appropriate number or
1085 	 * revalidate the cookie.
1086 	 */
1087 	if (ctx->pos == 0 || nfs_attribute_cache_expired(inode)) {
1088 		res = nfs_revalidate_mapping(inode, file->f_mapping);
1089 		if (res < 0)
1090 			goto out;
1091 	}
1092 
1093 	res = -ENOMEM;
1094 	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
1095 	if (!desc)
1096 		goto out;
1097 	desc->file = file;
1098 	desc->ctx = ctx;
1099 	desc->plus = nfs_use_readdirplus(inode, ctx);
1100 
1101 	spin_lock(&file->f_lock);
1102 	desc->dir_cookie = dir_ctx->dir_cookie;
1103 	desc->dup_cookie = dir_ctx->dup_cookie;
1104 	desc->duped = dir_ctx->duped;
1105 	page_index = dir_ctx->page_index;
1106 	desc->attr_gencount = dir_ctx->attr_gencount;
1107 	memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf));
1108 	spin_unlock(&file->f_lock);
1109 
1110 	if (test_and_clear_bit(NFS_INO_FORCE_READDIR, &nfsi->flags) &&
1111 	    list_is_singular(&nfsi->open_files))
1112 		invalidate_mapping_pages(inode->i_mapping, page_index + 1, -1);
1113 
1114 	do {
1115 		res = readdir_search_pagecache(desc);
1116 
1117 		if (res == -EBADCOOKIE) {
1118 			res = 0;
1119 			/* This means either end of directory */
1120 			if (desc->dir_cookie && !desc->eof) {
1121 				/* Or that the server has 'lost' a cookie */
1122 				res = uncached_readdir(desc);
1123 				if (res == 0)
1124 					continue;
1125 				if (res == -EBADCOOKIE || res == -ENOTSYNC)
1126 					res = 0;
1127 			}
1128 			break;
1129 		}
1130 		if (res == -ETOOSMALL && desc->plus) {
1131 			clear_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
1132 			nfs_zap_caches(inode);
1133 			desc->page_index = 0;
1134 			desc->plus = false;
1135 			desc->eof = false;
1136 			continue;
1137 		}
1138 		if (res < 0)
1139 			break;
1140 
1141 		nfs_do_filldir(desc, nfsi->cookieverf);
1142 		nfs_readdir_page_unlock_and_put_cached(desc);
1143 	} while (!desc->eof);
1144 
1145 	spin_lock(&file->f_lock);
1146 	dir_ctx->dir_cookie = desc->dir_cookie;
1147 	dir_ctx->dup_cookie = desc->dup_cookie;
1148 	dir_ctx->duped = desc->duped;
1149 	dir_ctx->attr_gencount = desc->attr_gencount;
1150 	dir_ctx->page_index = desc->page_index;
1151 	memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf));
1152 	spin_unlock(&file->f_lock);
1153 
1154 	kfree(desc);
1155 
1156 out:
1157 	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
1158 	return res;
1159 }
1160 
1161 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
1162 {
1163 	struct nfs_open_dir_context *dir_ctx = filp->private_data;
1164 
1165 	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
1166 			filp, offset, whence);
1167 
1168 	switch (whence) {
1169 	default:
1170 		return -EINVAL;
1171 	case SEEK_SET:
1172 		if (offset < 0)
1173 			return -EINVAL;
1174 		spin_lock(&filp->f_lock);
1175 		break;
1176 	case SEEK_CUR:
1177 		if (offset == 0)
1178 			return filp->f_pos;
1179 		spin_lock(&filp->f_lock);
1180 		offset += filp->f_pos;
1181 		if (offset < 0) {
1182 			spin_unlock(&filp->f_lock);
1183 			return -EINVAL;
1184 		}
1185 	}
1186 	if (offset != filp->f_pos) {
1187 		filp->f_pos = offset;
1188 		if (nfs_readdir_use_cookie(filp))
1189 			dir_ctx->dir_cookie = offset;
1190 		else
1191 			dir_ctx->dir_cookie = 0;
1192 		if (offset == 0)
1193 			memset(dir_ctx->verf, 0, sizeof(dir_ctx->verf));
1194 		dir_ctx->duped = 0;
1195 	}
1196 	spin_unlock(&filp->f_lock);
1197 	return offset;
1198 }
1199 
1200 /*
1201  * All directory operations under NFS are synchronous, so fsync()
1202  * is a dummy operation.
1203  */
1204 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1205 			 int datasync)
1206 {
1207 	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1208 
1209 	nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC);
1210 	return 0;
1211 }
1212 
1213 /**
1214  * nfs_force_lookup_revalidate - Mark the directory as having changed
1215  * @dir: pointer to directory inode
1216  *
1217  * This forces the revalidation code in nfs_lookup_revalidate() to do a
1218  * full lookup on all child dentries of 'dir' whenever a change occurs
1219  * on the server that might have invalidated our dcache.
1220  *
1221  * Note that we reserve bit '0' as a tag to let us know when a dentry
1222  * was revalidated while holding a delegation on its inode.
1223  *
1224  * The caller should be holding dir->i_lock
1225  */
1226 void nfs_force_lookup_revalidate(struct inode *dir)
1227 {
1228 	NFS_I(dir)->cache_change_attribute += 2;
1229 }
1230 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1231 
1232 /**
1233  * nfs_verify_change_attribute - Detects NFS remote directory changes
1234  * @dir: pointer to parent directory inode
1235  * @verf: previously saved change attribute
1236  *
1237  * Return "false" if the verifiers doesn't match the change attribute.
1238  * This would usually indicate that the directory contents have changed on
1239  * the server, and that any dentries need revalidating.
1240  */
1241 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1242 {
1243 	return (verf & ~1UL) == nfs_save_change_attribute(dir);
1244 }
1245 
1246 static void nfs_set_verifier_delegated(unsigned long *verf)
1247 {
1248 	*verf |= 1UL;
1249 }
1250 
1251 #if IS_ENABLED(CONFIG_NFS_V4)
1252 static void nfs_unset_verifier_delegated(unsigned long *verf)
1253 {
1254 	*verf &= ~1UL;
1255 }
1256 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1257 
1258 static bool nfs_test_verifier_delegated(unsigned long verf)
1259 {
1260 	return verf & 1;
1261 }
1262 
1263 static bool nfs_verifier_is_delegated(struct dentry *dentry)
1264 {
1265 	return nfs_test_verifier_delegated(dentry->d_time);
1266 }
1267 
1268 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1269 {
1270 	struct inode *inode = d_inode(dentry);
1271 	struct inode *dir = d_inode(dentry->d_parent);
1272 
1273 	if (!nfs_verify_change_attribute(dir, verf))
1274 		return;
1275 	if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
1276 		nfs_set_verifier_delegated(&verf);
1277 	dentry->d_time = verf;
1278 }
1279 
1280 /**
1281  * nfs_set_verifier - save a parent directory verifier in the dentry
1282  * @dentry: pointer to dentry
1283  * @verf: verifier to save
1284  *
1285  * Saves the parent directory verifier in @dentry. If the inode has
1286  * a delegation, we also tag the dentry as having been revalidated
1287  * while holding a delegation so that we know we don't have to
1288  * look it up again after a directory change.
1289  */
1290 void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1291 {
1292 
1293 	spin_lock(&dentry->d_lock);
1294 	nfs_set_verifier_locked(dentry, verf);
1295 	spin_unlock(&dentry->d_lock);
1296 }
1297 EXPORT_SYMBOL_GPL(nfs_set_verifier);
1298 
1299 #if IS_ENABLED(CONFIG_NFS_V4)
1300 /**
1301  * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1302  * @inode: pointer to inode
1303  *
1304  * Iterates through the dentries in the inode alias list and clears
1305  * the tag used to indicate that the dentry has been revalidated
1306  * while holding a delegation.
1307  * This function is intended for use when the delegation is being
1308  * returned or revoked.
1309  */
1310 void nfs_clear_verifier_delegated(struct inode *inode)
1311 {
1312 	struct dentry *alias;
1313 
1314 	if (!inode)
1315 		return;
1316 	spin_lock(&inode->i_lock);
1317 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1318 		spin_lock(&alias->d_lock);
1319 		nfs_unset_verifier_delegated(&alias->d_time);
1320 		spin_unlock(&alias->d_lock);
1321 	}
1322 	spin_unlock(&inode->i_lock);
1323 }
1324 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1325 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1326 
1327 static int nfs_dentry_verify_change(struct inode *dir, struct dentry *dentry)
1328 {
1329 	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE) &&
1330 	    d_really_is_negative(dentry))
1331 		return dentry->d_time == inode_peek_iversion_raw(dir);
1332 	return nfs_verify_change_attribute(dir, dentry->d_time);
1333 }
1334 
1335 /*
1336  * A check for whether or not the parent directory has changed.
1337  * In the case it has, we assume that the dentries are untrustworthy
1338  * and may need to be looked up again.
1339  * If rcu_walk prevents us from performing a full check, return 0.
1340  */
1341 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1342 			      int rcu_walk)
1343 {
1344 	if (IS_ROOT(dentry))
1345 		return 1;
1346 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1347 		return 0;
1348 	if (!nfs_dentry_verify_change(dir, dentry))
1349 		return 0;
1350 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1351 	if (nfs_mapping_need_revalidate_inode(dir)) {
1352 		if (rcu_walk)
1353 			return 0;
1354 		if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1355 			return 0;
1356 	}
1357 	if (!nfs_dentry_verify_change(dir, dentry))
1358 		return 0;
1359 	return 1;
1360 }
1361 
1362 /*
1363  * Use intent information to check whether or not we're going to do
1364  * an O_EXCL create using this path component.
1365  */
1366 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1367 {
1368 	if (NFS_PROTO(dir)->version == 2)
1369 		return 0;
1370 	return flags & LOOKUP_EXCL;
1371 }
1372 
1373 /*
1374  * Inode and filehandle revalidation for lookups.
1375  *
1376  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1377  * or if the intent information indicates that we're about to open this
1378  * particular file and the "nocto" mount flag is not set.
1379  *
1380  */
1381 static
1382 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1383 {
1384 	struct nfs_server *server = NFS_SERVER(inode);
1385 	int ret;
1386 
1387 	if (IS_AUTOMOUNT(inode))
1388 		return 0;
1389 
1390 	if (flags & LOOKUP_OPEN) {
1391 		switch (inode->i_mode & S_IFMT) {
1392 		case S_IFREG:
1393 			/* A NFSv4 OPEN will revalidate later */
1394 			if (server->caps & NFS_CAP_ATOMIC_OPEN)
1395 				goto out;
1396 			fallthrough;
1397 		case S_IFDIR:
1398 			if (server->flags & NFS_MOUNT_NOCTO)
1399 				break;
1400 			/* NFS close-to-open cache consistency validation */
1401 			goto out_force;
1402 		}
1403 	}
1404 
1405 	/* VFS wants an on-the-wire revalidation */
1406 	if (flags & LOOKUP_REVAL)
1407 		goto out_force;
1408 out:
1409 	return (inode->i_nlink == 0) ? -ESTALE : 0;
1410 out_force:
1411 	if (flags & LOOKUP_RCU)
1412 		return -ECHILD;
1413 	ret = __nfs_revalidate_inode(server, inode);
1414 	if (ret != 0)
1415 		return ret;
1416 	goto out;
1417 }
1418 
1419 static void nfs_mark_dir_for_revalidate(struct inode *inode)
1420 {
1421 	spin_lock(&inode->i_lock);
1422 	nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE);
1423 	spin_unlock(&inode->i_lock);
1424 }
1425 
1426 /*
1427  * We judge how long we want to trust negative
1428  * dentries by looking at the parent inode mtime.
1429  *
1430  * If parent mtime has changed, we revalidate, else we wait for a
1431  * period corresponding to the parent's attribute cache timeout value.
1432  *
1433  * If LOOKUP_RCU prevents us from performing a full check, return 1
1434  * suggesting a reval is needed.
1435  *
1436  * Note that when creating a new file, or looking up a rename target,
1437  * then it shouldn't be necessary to revalidate a negative dentry.
1438  */
1439 static inline
1440 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1441 		       unsigned int flags)
1442 {
1443 	if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1444 		return 0;
1445 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1446 		return 1;
1447 	/* Case insensitive server? Revalidate negative dentries */
1448 	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1449 		return 1;
1450 	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1451 }
1452 
1453 static int
1454 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1455 			   struct inode *inode, int error)
1456 {
1457 	switch (error) {
1458 	case 1:
1459 		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1460 			__func__, dentry);
1461 		return 1;
1462 	case 0:
1463 		/*
1464 		 * We can't d_drop the root of a disconnected tree:
1465 		 * its d_hash is on the s_anon list and d_drop() would hide
1466 		 * it from shrink_dcache_for_unmount(), leading to busy
1467 		 * inodes on unmount and further oopses.
1468 		 */
1469 		if (inode && IS_ROOT(dentry))
1470 			return 1;
1471 		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1472 				__func__, dentry);
1473 		return 0;
1474 	}
1475 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1476 				__func__, dentry, error);
1477 	return error;
1478 }
1479 
1480 static int
1481 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1482 			       unsigned int flags)
1483 {
1484 	int ret = 1;
1485 	if (nfs_neg_need_reval(dir, dentry, flags)) {
1486 		if (flags & LOOKUP_RCU)
1487 			return -ECHILD;
1488 		ret = 0;
1489 	}
1490 	return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1491 }
1492 
1493 static int
1494 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1495 				struct inode *inode)
1496 {
1497 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1498 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1499 }
1500 
1501 static int
1502 nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry,
1503 			     struct inode *inode)
1504 {
1505 	struct nfs_fh *fhandle;
1506 	struct nfs_fattr *fattr;
1507 	unsigned long dir_verifier;
1508 	int ret;
1509 
1510 	ret = -ENOMEM;
1511 	fhandle = nfs_alloc_fhandle();
1512 	fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
1513 	if (fhandle == NULL || fattr == NULL)
1514 		goto out;
1515 
1516 	dir_verifier = nfs_save_change_attribute(dir);
1517 	ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1518 	if (ret < 0) {
1519 		switch (ret) {
1520 		case -ESTALE:
1521 		case -ENOENT:
1522 			ret = 0;
1523 			break;
1524 		case -ETIMEDOUT:
1525 			if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1526 				ret = 1;
1527 		}
1528 		goto out;
1529 	}
1530 	ret = 0;
1531 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1532 		goto out;
1533 	if (nfs_refresh_inode(inode, fattr) < 0)
1534 		goto out;
1535 
1536 	nfs_setsecurity(inode, fattr);
1537 	nfs_set_verifier(dentry, dir_verifier);
1538 
1539 	/* set a readdirplus hint that we had a cache miss */
1540 	nfs_force_use_readdirplus(dir);
1541 	ret = 1;
1542 out:
1543 	nfs_free_fattr(fattr);
1544 	nfs_free_fhandle(fhandle);
1545 
1546 	/*
1547 	 * If the lookup failed despite the dentry change attribute being
1548 	 * a match, then we should revalidate the directory cache.
1549 	 */
1550 	if (!ret && nfs_dentry_verify_change(dir, dentry))
1551 		nfs_mark_dir_for_revalidate(dir);
1552 	return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1553 }
1554 
1555 /*
1556  * This is called every time the dcache has a lookup hit,
1557  * and we should check whether we can really trust that
1558  * lookup.
1559  *
1560  * NOTE! The hit can be a negative hit too, don't assume
1561  * we have an inode!
1562  *
1563  * If the parent directory is seen to have changed, we throw out the
1564  * cached dentry and do a new lookup.
1565  */
1566 static int
1567 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1568 			 unsigned int flags)
1569 {
1570 	struct inode *inode;
1571 	int error;
1572 
1573 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1574 	inode = d_inode(dentry);
1575 
1576 	if (!inode)
1577 		return nfs_lookup_revalidate_negative(dir, dentry, flags);
1578 
1579 	if (is_bad_inode(inode)) {
1580 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1581 				__func__, dentry);
1582 		goto out_bad;
1583 	}
1584 
1585 	if (nfs_verifier_is_delegated(dentry))
1586 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1587 
1588 	/* Force a full look up iff the parent directory has changed */
1589 	if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1590 	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1591 		error = nfs_lookup_verify_inode(inode, flags);
1592 		if (error) {
1593 			if (error == -ESTALE)
1594 				nfs_mark_dir_for_revalidate(dir);
1595 			goto out_bad;
1596 		}
1597 		nfs_advise_use_readdirplus(dir);
1598 		goto out_valid;
1599 	}
1600 
1601 	if (flags & LOOKUP_RCU)
1602 		return -ECHILD;
1603 
1604 	if (NFS_STALE(inode))
1605 		goto out_bad;
1606 
1607 	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1608 	error = nfs_lookup_revalidate_dentry(dir, dentry, inode);
1609 	trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1610 	return error;
1611 out_valid:
1612 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1613 out_bad:
1614 	if (flags & LOOKUP_RCU)
1615 		return -ECHILD;
1616 	return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1617 }
1618 
1619 static int
1620 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1621 			int (*reval)(struct inode *, struct dentry *, unsigned int))
1622 {
1623 	struct dentry *parent;
1624 	struct inode *dir;
1625 	int ret;
1626 
1627 	if (flags & LOOKUP_RCU) {
1628 		parent = READ_ONCE(dentry->d_parent);
1629 		dir = d_inode_rcu(parent);
1630 		if (!dir)
1631 			return -ECHILD;
1632 		ret = reval(dir, dentry, flags);
1633 		if (parent != READ_ONCE(dentry->d_parent))
1634 			return -ECHILD;
1635 	} else {
1636 		parent = dget_parent(dentry);
1637 		ret = reval(d_inode(parent), dentry, flags);
1638 		dput(parent);
1639 	}
1640 	return ret;
1641 }
1642 
1643 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1644 {
1645 	return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1646 }
1647 
1648 /*
1649  * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1650  * when we don't really care about the dentry name. This is called when a
1651  * pathwalk ends on a dentry that was not found via a normal lookup in the
1652  * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1653  *
1654  * In this situation, we just want to verify that the inode itself is OK
1655  * since the dentry might have changed on the server.
1656  */
1657 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1658 {
1659 	struct inode *inode = d_inode(dentry);
1660 	int error = 0;
1661 
1662 	/*
1663 	 * I believe we can only get a negative dentry here in the case of a
1664 	 * procfs-style symlink. Just assume it's correct for now, but we may
1665 	 * eventually need to do something more here.
1666 	 */
1667 	if (!inode) {
1668 		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1669 				__func__, dentry);
1670 		return 1;
1671 	}
1672 
1673 	if (is_bad_inode(inode)) {
1674 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1675 				__func__, dentry);
1676 		return 0;
1677 	}
1678 
1679 	error = nfs_lookup_verify_inode(inode, flags);
1680 	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1681 			__func__, inode->i_ino, error ? "invalid" : "valid");
1682 	return !error;
1683 }
1684 
1685 /*
1686  * This is called from dput() when d_count is going to 0.
1687  */
1688 static int nfs_dentry_delete(const struct dentry *dentry)
1689 {
1690 	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1691 		dentry, dentry->d_flags);
1692 
1693 	/* Unhash any dentry with a stale inode */
1694 	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1695 		return 1;
1696 
1697 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1698 		/* Unhash it, so that ->d_iput() would be called */
1699 		return 1;
1700 	}
1701 	if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1702 		/* Unhash it, so that ancestors of killed async unlink
1703 		 * files will be cleaned up during umount */
1704 		return 1;
1705 	}
1706 	return 0;
1707 
1708 }
1709 
1710 /* Ensure that we revalidate inode->i_nlink */
1711 static void nfs_drop_nlink(struct inode *inode)
1712 {
1713 	spin_lock(&inode->i_lock);
1714 	/* drop the inode if we're reasonably sure this is the last link */
1715 	if (inode->i_nlink > 0)
1716 		drop_nlink(inode);
1717 	NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1718 	nfs_set_cache_invalid(
1719 		inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME |
1720 			       NFS_INO_INVALID_NLINK);
1721 	spin_unlock(&inode->i_lock);
1722 }
1723 
1724 /*
1725  * Called when the dentry loses inode.
1726  * We use it to clean up silly-renamed files.
1727  */
1728 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1729 {
1730 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1731 		nfs_complete_unlink(dentry, inode);
1732 		nfs_drop_nlink(inode);
1733 	}
1734 	iput(inode);
1735 }
1736 
1737 static void nfs_d_release(struct dentry *dentry)
1738 {
1739 	/* free cached devname value, if it survived that far */
1740 	if (unlikely(dentry->d_fsdata)) {
1741 		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1742 			WARN_ON(1);
1743 		else
1744 			kfree(dentry->d_fsdata);
1745 	}
1746 }
1747 
1748 const struct dentry_operations nfs_dentry_operations = {
1749 	.d_revalidate	= nfs_lookup_revalidate,
1750 	.d_weak_revalidate	= nfs_weak_revalidate,
1751 	.d_delete	= nfs_dentry_delete,
1752 	.d_iput		= nfs_dentry_iput,
1753 	.d_automount	= nfs_d_automount,
1754 	.d_release	= nfs_d_release,
1755 };
1756 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1757 
1758 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1759 {
1760 	struct dentry *res;
1761 	struct inode *inode = NULL;
1762 	struct nfs_fh *fhandle = NULL;
1763 	struct nfs_fattr *fattr = NULL;
1764 	unsigned long dir_verifier;
1765 	int error;
1766 
1767 	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1768 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1769 
1770 	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1771 		return ERR_PTR(-ENAMETOOLONG);
1772 
1773 	/*
1774 	 * If we're doing an exclusive create, optimize away the lookup
1775 	 * but don't hash the dentry.
1776 	 */
1777 	if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1778 		return NULL;
1779 
1780 	res = ERR_PTR(-ENOMEM);
1781 	fhandle = nfs_alloc_fhandle();
1782 	fattr = nfs_alloc_fattr_with_label(NFS_SERVER(dir));
1783 	if (fhandle == NULL || fattr == NULL)
1784 		goto out;
1785 
1786 	dir_verifier = nfs_save_change_attribute(dir);
1787 	trace_nfs_lookup_enter(dir, dentry, flags);
1788 	error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1789 	if (error == -ENOENT) {
1790 		if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1791 			dir_verifier = inode_peek_iversion_raw(dir);
1792 		goto no_entry;
1793 	}
1794 	if (error < 0) {
1795 		res = ERR_PTR(error);
1796 		goto out;
1797 	}
1798 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1799 	res = ERR_CAST(inode);
1800 	if (IS_ERR(res))
1801 		goto out;
1802 
1803 	/* Notify readdir to use READDIRPLUS */
1804 	nfs_force_use_readdirplus(dir);
1805 
1806 no_entry:
1807 	res = d_splice_alias(inode, dentry);
1808 	if (res != NULL) {
1809 		if (IS_ERR(res))
1810 			goto out;
1811 		dentry = res;
1812 	}
1813 	nfs_set_verifier(dentry, dir_verifier);
1814 out:
1815 	trace_nfs_lookup_exit(dir, dentry, flags, PTR_ERR_OR_ZERO(res));
1816 	nfs_free_fattr(fattr);
1817 	nfs_free_fhandle(fhandle);
1818 	return res;
1819 }
1820 EXPORT_SYMBOL_GPL(nfs_lookup);
1821 
1822 void nfs_d_prune_case_insensitive_aliases(struct inode *inode)
1823 {
1824 	/* Case insensitive server? Revalidate dentries */
1825 	if (inode && nfs_server_capable(inode, NFS_CAP_CASE_INSENSITIVE))
1826 		d_prune_aliases(inode);
1827 }
1828 EXPORT_SYMBOL_GPL(nfs_d_prune_case_insensitive_aliases);
1829 
1830 #if IS_ENABLED(CONFIG_NFS_V4)
1831 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1832 
1833 const struct dentry_operations nfs4_dentry_operations = {
1834 	.d_revalidate	= nfs4_lookup_revalidate,
1835 	.d_weak_revalidate	= nfs_weak_revalidate,
1836 	.d_delete	= nfs_dentry_delete,
1837 	.d_iput		= nfs_dentry_iput,
1838 	.d_automount	= nfs_d_automount,
1839 	.d_release	= nfs_d_release,
1840 };
1841 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1842 
1843 static fmode_t flags_to_mode(int flags)
1844 {
1845 	fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1846 	if ((flags & O_ACCMODE) != O_WRONLY)
1847 		res |= FMODE_READ;
1848 	if ((flags & O_ACCMODE) != O_RDONLY)
1849 		res |= FMODE_WRITE;
1850 	return res;
1851 }
1852 
1853 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1854 {
1855 	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1856 }
1857 
1858 static int do_open(struct inode *inode, struct file *filp)
1859 {
1860 	nfs_fscache_open_file(inode, filp);
1861 	return 0;
1862 }
1863 
1864 static int nfs_finish_open(struct nfs_open_context *ctx,
1865 			   struct dentry *dentry,
1866 			   struct file *file, unsigned open_flags)
1867 {
1868 	int err;
1869 
1870 	err = finish_open(file, dentry, do_open);
1871 	if (err)
1872 		goto out;
1873 	if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1874 		nfs_file_set_open_context(file, ctx);
1875 	else
1876 		err = -EOPENSTALE;
1877 out:
1878 	return err;
1879 }
1880 
1881 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1882 		    struct file *file, unsigned open_flags,
1883 		    umode_t mode)
1884 {
1885 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1886 	struct nfs_open_context *ctx;
1887 	struct dentry *res;
1888 	struct iattr attr = { .ia_valid = ATTR_OPEN };
1889 	struct inode *inode;
1890 	unsigned int lookup_flags = 0;
1891 	unsigned long dir_verifier;
1892 	bool switched = false;
1893 	int created = 0;
1894 	int err;
1895 
1896 	/* Expect a negative dentry */
1897 	BUG_ON(d_inode(dentry));
1898 
1899 	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1900 			dir->i_sb->s_id, dir->i_ino, dentry);
1901 
1902 	err = nfs_check_flags(open_flags);
1903 	if (err)
1904 		return err;
1905 
1906 	/* NFS only supports OPEN on regular files */
1907 	if ((open_flags & O_DIRECTORY)) {
1908 		if (!d_in_lookup(dentry)) {
1909 			/*
1910 			 * Hashed negative dentry with O_DIRECTORY: dentry was
1911 			 * revalidated and is fine, no need to perform lookup
1912 			 * again
1913 			 */
1914 			return -ENOENT;
1915 		}
1916 		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1917 		goto no_open;
1918 	}
1919 
1920 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1921 		return -ENAMETOOLONG;
1922 
1923 	if (open_flags & O_CREAT) {
1924 		struct nfs_server *server = NFS_SERVER(dir);
1925 
1926 		if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1927 			mode &= ~current_umask();
1928 
1929 		attr.ia_valid |= ATTR_MODE;
1930 		attr.ia_mode = mode;
1931 	}
1932 	if (open_flags & O_TRUNC) {
1933 		attr.ia_valid |= ATTR_SIZE;
1934 		attr.ia_size = 0;
1935 	}
1936 
1937 	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1938 		d_drop(dentry);
1939 		switched = true;
1940 		dentry = d_alloc_parallel(dentry->d_parent,
1941 					  &dentry->d_name, &wq);
1942 		if (IS_ERR(dentry))
1943 			return PTR_ERR(dentry);
1944 		if (unlikely(!d_in_lookup(dentry)))
1945 			return finish_no_open(file, dentry);
1946 	}
1947 
1948 	ctx = create_nfs_open_context(dentry, open_flags, file);
1949 	err = PTR_ERR(ctx);
1950 	if (IS_ERR(ctx))
1951 		goto out;
1952 
1953 	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1954 	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
1955 	if (created)
1956 		file->f_mode |= FMODE_CREATED;
1957 	if (IS_ERR(inode)) {
1958 		err = PTR_ERR(inode);
1959 		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1960 		put_nfs_open_context(ctx);
1961 		d_drop(dentry);
1962 		switch (err) {
1963 		case -ENOENT:
1964 			d_splice_alias(NULL, dentry);
1965 			if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1966 				dir_verifier = inode_peek_iversion_raw(dir);
1967 			else
1968 				dir_verifier = nfs_save_change_attribute(dir);
1969 			nfs_set_verifier(dentry, dir_verifier);
1970 			break;
1971 		case -EISDIR:
1972 		case -ENOTDIR:
1973 			goto no_open;
1974 		case -ELOOP:
1975 			if (!(open_flags & O_NOFOLLOW))
1976 				goto no_open;
1977 			break;
1978 			/* case -EINVAL: */
1979 		default:
1980 			break;
1981 		}
1982 		goto out;
1983 	}
1984 
1985 	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
1986 	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1987 	put_nfs_open_context(ctx);
1988 out:
1989 	if (unlikely(switched)) {
1990 		d_lookup_done(dentry);
1991 		dput(dentry);
1992 	}
1993 	return err;
1994 
1995 no_open:
1996 	res = nfs_lookup(dir, dentry, lookup_flags);
1997 	if (switched) {
1998 		d_lookup_done(dentry);
1999 		if (!res)
2000 			res = dentry;
2001 		else
2002 			dput(dentry);
2003 	}
2004 	if (IS_ERR(res))
2005 		return PTR_ERR(res);
2006 	return finish_no_open(file, res);
2007 }
2008 EXPORT_SYMBOL_GPL(nfs_atomic_open);
2009 
2010 static int
2011 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
2012 			  unsigned int flags)
2013 {
2014 	struct inode *inode;
2015 
2016 	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
2017 		goto full_reval;
2018 	if (d_mountpoint(dentry))
2019 		goto full_reval;
2020 
2021 	inode = d_inode(dentry);
2022 
2023 	/* We can't create new files in nfs_open_revalidate(), so we
2024 	 * optimize away revalidation of negative dentries.
2025 	 */
2026 	if (inode == NULL)
2027 		goto full_reval;
2028 
2029 	if (nfs_verifier_is_delegated(dentry))
2030 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
2031 
2032 	/* NFS only supports OPEN on regular files */
2033 	if (!S_ISREG(inode->i_mode))
2034 		goto full_reval;
2035 
2036 	/* We cannot do exclusive creation on a positive dentry */
2037 	if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
2038 		goto reval_dentry;
2039 
2040 	/* Check if the directory changed */
2041 	if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
2042 		goto reval_dentry;
2043 
2044 	/* Let f_op->open() actually open (and revalidate) the file */
2045 	return 1;
2046 reval_dentry:
2047 	if (flags & LOOKUP_RCU)
2048 		return -ECHILD;
2049 	return nfs_lookup_revalidate_dentry(dir, dentry, inode);
2050 
2051 full_reval:
2052 	return nfs_do_lookup_revalidate(dir, dentry, flags);
2053 }
2054 
2055 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
2056 {
2057 	return __nfs_lookup_revalidate(dentry, flags,
2058 			nfs4_do_lookup_revalidate);
2059 }
2060 
2061 #endif /* CONFIG_NFSV4 */
2062 
2063 struct dentry *
2064 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
2065 				struct nfs_fattr *fattr)
2066 {
2067 	struct dentry *parent = dget_parent(dentry);
2068 	struct inode *dir = d_inode(parent);
2069 	struct inode *inode;
2070 	struct dentry *d;
2071 	int error;
2072 
2073 	d_drop(dentry);
2074 
2075 	if (fhandle->size == 0) {
2076 		error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
2077 		if (error)
2078 			goto out_error;
2079 	}
2080 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2081 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
2082 		struct nfs_server *server = NFS_SB(dentry->d_sb);
2083 		error = server->nfs_client->rpc_ops->getattr(server, fhandle,
2084 				fattr, NULL);
2085 		if (error < 0)
2086 			goto out_error;
2087 	}
2088 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
2089 	d = d_splice_alias(inode, dentry);
2090 out:
2091 	dput(parent);
2092 	return d;
2093 out_error:
2094 	d = ERR_PTR(error);
2095 	goto out;
2096 }
2097 EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
2098 
2099 /*
2100  * Code common to create, mkdir, and mknod.
2101  */
2102 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
2103 				struct nfs_fattr *fattr)
2104 {
2105 	struct dentry *d;
2106 
2107 	d = nfs_add_or_obtain(dentry, fhandle, fattr);
2108 	if (IS_ERR(d))
2109 		return PTR_ERR(d);
2110 
2111 	/* Callers don't care */
2112 	dput(d);
2113 	return 0;
2114 }
2115 EXPORT_SYMBOL_GPL(nfs_instantiate);
2116 
2117 /*
2118  * Following a failed create operation, we drop the dentry rather
2119  * than retain a negative dentry. This avoids a problem in the event
2120  * that the operation succeeded on the server, but an error in the
2121  * reply path made it appear to have failed.
2122  */
2123 int nfs_create(struct user_namespace *mnt_userns, struct inode *dir,
2124 	       struct dentry *dentry, umode_t mode, bool excl)
2125 {
2126 	struct iattr attr;
2127 	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
2128 	int error;
2129 
2130 	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
2131 			dir->i_sb->s_id, dir->i_ino, dentry);
2132 
2133 	attr.ia_mode = mode;
2134 	attr.ia_valid = ATTR_MODE;
2135 
2136 	trace_nfs_create_enter(dir, dentry, open_flags);
2137 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
2138 	trace_nfs_create_exit(dir, dentry, open_flags, error);
2139 	if (error != 0)
2140 		goto out_err;
2141 	return 0;
2142 out_err:
2143 	d_drop(dentry);
2144 	return error;
2145 }
2146 EXPORT_SYMBOL_GPL(nfs_create);
2147 
2148 /*
2149  * See comments for nfs_proc_create regarding failed operations.
2150  */
2151 int
2152 nfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2153 	  struct dentry *dentry, umode_t mode, dev_t rdev)
2154 {
2155 	struct iattr attr;
2156 	int status;
2157 
2158 	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
2159 			dir->i_sb->s_id, dir->i_ino, dentry);
2160 
2161 	attr.ia_mode = mode;
2162 	attr.ia_valid = ATTR_MODE;
2163 
2164 	trace_nfs_mknod_enter(dir, dentry);
2165 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
2166 	trace_nfs_mknod_exit(dir, dentry, status);
2167 	if (status != 0)
2168 		goto out_err;
2169 	return 0;
2170 out_err:
2171 	d_drop(dentry);
2172 	return status;
2173 }
2174 EXPORT_SYMBOL_GPL(nfs_mknod);
2175 
2176 /*
2177  * See comments for nfs_proc_create regarding failed operations.
2178  */
2179 int nfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2180 	      struct dentry *dentry, umode_t mode)
2181 {
2182 	struct iattr attr;
2183 	int error;
2184 
2185 	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
2186 			dir->i_sb->s_id, dir->i_ino, dentry);
2187 
2188 	attr.ia_valid = ATTR_MODE;
2189 	attr.ia_mode = mode | S_IFDIR;
2190 
2191 	trace_nfs_mkdir_enter(dir, dentry);
2192 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
2193 	trace_nfs_mkdir_exit(dir, dentry, error);
2194 	if (error != 0)
2195 		goto out_err;
2196 	return 0;
2197 out_err:
2198 	d_drop(dentry);
2199 	return error;
2200 }
2201 EXPORT_SYMBOL_GPL(nfs_mkdir);
2202 
2203 static void nfs_dentry_handle_enoent(struct dentry *dentry)
2204 {
2205 	if (simple_positive(dentry))
2206 		d_delete(dentry);
2207 }
2208 
2209 static void nfs_dentry_remove_handle_error(struct inode *dir,
2210 					   struct dentry *dentry, int error)
2211 {
2212 	switch (error) {
2213 	case -ENOENT:
2214 		d_delete(dentry);
2215 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2216 		break;
2217 	case 0:
2218 		nfs_d_prune_case_insensitive_aliases(d_inode(dentry));
2219 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2220 	}
2221 }
2222 
2223 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
2224 {
2225 	int error;
2226 
2227 	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
2228 			dir->i_sb->s_id, dir->i_ino, dentry);
2229 
2230 	trace_nfs_rmdir_enter(dir, dentry);
2231 	if (d_really_is_positive(dentry)) {
2232 		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2233 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2234 		/* Ensure the VFS deletes this inode */
2235 		switch (error) {
2236 		case 0:
2237 			clear_nlink(d_inode(dentry));
2238 			break;
2239 		case -ENOENT:
2240 			nfs_dentry_handle_enoent(dentry);
2241 		}
2242 		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2243 	} else
2244 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2245 	nfs_dentry_remove_handle_error(dir, dentry, error);
2246 	trace_nfs_rmdir_exit(dir, dentry, error);
2247 
2248 	return error;
2249 }
2250 EXPORT_SYMBOL_GPL(nfs_rmdir);
2251 
2252 /*
2253  * Remove a file after making sure there are no pending writes,
2254  * and after checking that the file has only one user.
2255  *
2256  * We invalidate the attribute cache and free the inode prior to the operation
2257  * to avoid possible races if the server reuses the inode.
2258  */
2259 static int nfs_safe_remove(struct dentry *dentry)
2260 {
2261 	struct inode *dir = d_inode(dentry->d_parent);
2262 	struct inode *inode = d_inode(dentry);
2263 	int error = -EBUSY;
2264 
2265 	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2266 
2267 	/* If the dentry was sillyrenamed, we simply call d_delete() */
2268 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2269 		error = 0;
2270 		goto out;
2271 	}
2272 
2273 	trace_nfs_remove_enter(dir, dentry);
2274 	if (inode != NULL) {
2275 		error = NFS_PROTO(dir)->remove(dir, dentry);
2276 		if (error == 0)
2277 			nfs_drop_nlink(inode);
2278 	} else
2279 		error = NFS_PROTO(dir)->remove(dir, dentry);
2280 	if (error == -ENOENT)
2281 		nfs_dentry_handle_enoent(dentry);
2282 	trace_nfs_remove_exit(dir, dentry, error);
2283 out:
2284 	return error;
2285 }
2286 
2287 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
2288  *  belongs to an active ".nfs..." file and we return -EBUSY.
2289  *
2290  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
2291  */
2292 int nfs_unlink(struct inode *dir, struct dentry *dentry)
2293 {
2294 	int error;
2295 	int need_rehash = 0;
2296 
2297 	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2298 		dir->i_ino, dentry);
2299 
2300 	trace_nfs_unlink_enter(dir, dentry);
2301 	spin_lock(&dentry->d_lock);
2302 	if (d_count(dentry) > 1) {
2303 		spin_unlock(&dentry->d_lock);
2304 		/* Start asynchronous writeout of the inode */
2305 		write_inode_now(d_inode(dentry), 0);
2306 		error = nfs_sillyrename(dir, dentry);
2307 		goto out;
2308 	}
2309 	if (!d_unhashed(dentry)) {
2310 		__d_drop(dentry);
2311 		need_rehash = 1;
2312 	}
2313 	spin_unlock(&dentry->d_lock);
2314 	error = nfs_safe_remove(dentry);
2315 	nfs_dentry_remove_handle_error(dir, dentry, error);
2316 	if (need_rehash)
2317 		d_rehash(dentry);
2318 out:
2319 	trace_nfs_unlink_exit(dir, dentry, error);
2320 	return error;
2321 }
2322 EXPORT_SYMBOL_GPL(nfs_unlink);
2323 
2324 /*
2325  * To create a symbolic link, most file systems instantiate a new inode,
2326  * add a page to it containing the path, then write it out to the disk
2327  * using prepare_write/commit_write.
2328  *
2329  * Unfortunately the NFS client can't create the in-core inode first
2330  * because it needs a file handle to create an in-core inode (see
2331  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
2332  * symlink request has completed on the server.
2333  *
2334  * So instead we allocate a raw page, copy the symname into it, then do
2335  * the SYMLINK request with the page as the buffer.  If it succeeds, we
2336  * now have a new file handle and can instantiate an in-core NFS inode
2337  * and move the raw page into its mapping.
2338  */
2339 int nfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
2340 		struct dentry *dentry, const char *symname)
2341 {
2342 	struct page *page;
2343 	char *kaddr;
2344 	struct iattr attr;
2345 	unsigned int pathlen = strlen(symname);
2346 	int error;
2347 
2348 	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2349 		dir->i_ino, dentry, symname);
2350 
2351 	if (pathlen > PAGE_SIZE)
2352 		return -ENAMETOOLONG;
2353 
2354 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
2355 	attr.ia_valid = ATTR_MODE;
2356 
2357 	page = alloc_page(GFP_USER);
2358 	if (!page)
2359 		return -ENOMEM;
2360 
2361 	kaddr = page_address(page);
2362 	memcpy(kaddr, symname, pathlen);
2363 	if (pathlen < PAGE_SIZE)
2364 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2365 
2366 	trace_nfs_symlink_enter(dir, dentry);
2367 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
2368 	trace_nfs_symlink_exit(dir, dentry, error);
2369 	if (error != 0) {
2370 		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2371 			dir->i_sb->s_id, dir->i_ino,
2372 			dentry, symname, error);
2373 		d_drop(dentry);
2374 		__free_page(page);
2375 		return error;
2376 	}
2377 
2378 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2379 
2380 	/*
2381 	 * No big deal if we can't add this page to the page cache here.
2382 	 * READLINK will get the missing page from the server if needed.
2383 	 */
2384 	if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2385 							GFP_KERNEL)) {
2386 		SetPageUptodate(page);
2387 		unlock_page(page);
2388 		/*
2389 		 * add_to_page_cache_lru() grabs an extra page refcount.
2390 		 * Drop it here to avoid leaking this page later.
2391 		 */
2392 		put_page(page);
2393 	} else
2394 		__free_page(page);
2395 
2396 	return 0;
2397 }
2398 EXPORT_SYMBOL_GPL(nfs_symlink);
2399 
2400 int
2401 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2402 {
2403 	struct inode *inode = d_inode(old_dentry);
2404 	int error;
2405 
2406 	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2407 		old_dentry, dentry);
2408 
2409 	trace_nfs_link_enter(inode, dir, dentry);
2410 	d_drop(dentry);
2411 	if (S_ISREG(inode->i_mode))
2412 		nfs_sync_inode(inode);
2413 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2414 	if (error == 0) {
2415 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2416 		ihold(inode);
2417 		d_add(dentry, inode);
2418 	}
2419 	trace_nfs_link_exit(inode, dir, dentry, error);
2420 	return error;
2421 }
2422 EXPORT_SYMBOL_GPL(nfs_link);
2423 
2424 /*
2425  * RENAME
2426  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2427  * different file handle for the same inode after a rename (e.g. when
2428  * moving to a different directory). A fail-safe method to do so would
2429  * be to look up old_dir/old_name, create a link to new_dir/new_name and
2430  * rename the old file using the sillyrename stuff. This way, the original
2431  * file in old_dir will go away when the last process iput()s the inode.
2432  *
2433  * FIXED.
2434  *
2435  * It actually works quite well. One needs to have the possibility for
2436  * at least one ".nfs..." file in each directory the file ever gets
2437  * moved or linked to which happens automagically with the new
2438  * implementation that only depends on the dcache stuff instead of
2439  * using the inode layer
2440  *
2441  * Unfortunately, things are a little more complicated than indicated
2442  * above. For a cross-directory move, we want to make sure we can get
2443  * rid of the old inode after the operation.  This means there must be
2444  * no pending writes (if it's a file), and the use count must be 1.
2445  * If these conditions are met, we can drop the dentries before doing
2446  * the rename.
2447  */
2448 int nfs_rename(struct user_namespace *mnt_userns, struct inode *old_dir,
2449 	       struct dentry *old_dentry, struct inode *new_dir,
2450 	       struct dentry *new_dentry, unsigned int flags)
2451 {
2452 	struct inode *old_inode = d_inode(old_dentry);
2453 	struct inode *new_inode = d_inode(new_dentry);
2454 	struct dentry *dentry = NULL, *rehash = NULL;
2455 	struct rpc_task *task;
2456 	int error = -EBUSY;
2457 
2458 	if (flags)
2459 		return -EINVAL;
2460 
2461 	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2462 		 old_dentry, new_dentry,
2463 		 d_count(new_dentry));
2464 
2465 	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2466 	/*
2467 	 * For non-directories, check whether the target is busy and if so,
2468 	 * make a copy of the dentry and then do a silly-rename. If the
2469 	 * silly-rename succeeds, the copied dentry is hashed and becomes
2470 	 * the new target.
2471 	 */
2472 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2473 		/*
2474 		 * To prevent any new references to the target during the
2475 		 * rename, we unhash the dentry in advance.
2476 		 */
2477 		if (!d_unhashed(new_dentry)) {
2478 			d_drop(new_dentry);
2479 			rehash = new_dentry;
2480 		}
2481 
2482 		if (d_count(new_dentry) > 2) {
2483 			int err;
2484 
2485 			/* copy the target dentry's name */
2486 			dentry = d_alloc(new_dentry->d_parent,
2487 					 &new_dentry->d_name);
2488 			if (!dentry)
2489 				goto out;
2490 
2491 			/* silly-rename the existing target ... */
2492 			err = nfs_sillyrename(new_dir, new_dentry);
2493 			if (err)
2494 				goto out;
2495 
2496 			new_dentry = dentry;
2497 			rehash = NULL;
2498 			new_inode = NULL;
2499 		}
2500 	}
2501 
2502 	if (S_ISREG(old_inode->i_mode))
2503 		nfs_sync_inode(old_inode);
2504 	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2505 	if (IS_ERR(task)) {
2506 		error = PTR_ERR(task);
2507 		goto out;
2508 	}
2509 
2510 	error = rpc_wait_for_completion_task(task);
2511 	if (error != 0) {
2512 		((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2513 		/* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2514 		smp_wmb();
2515 	} else
2516 		error = task->tk_status;
2517 	rpc_put_task(task);
2518 	/* Ensure the inode attributes are revalidated */
2519 	if (error == 0) {
2520 		spin_lock(&old_inode->i_lock);
2521 		NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2522 		nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE |
2523 							 NFS_INO_INVALID_CTIME |
2524 							 NFS_INO_REVAL_FORCED);
2525 		spin_unlock(&old_inode->i_lock);
2526 	}
2527 out:
2528 	if (rehash)
2529 		d_rehash(rehash);
2530 	trace_nfs_rename_exit(old_dir, old_dentry,
2531 			new_dir, new_dentry, error);
2532 	if (!error) {
2533 		if (new_inode != NULL)
2534 			nfs_drop_nlink(new_inode);
2535 		/*
2536 		 * The d_move() should be here instead of in an async RPC completion
2537 		 * handler because we need the proper locks to move the dentry.  If
2538 		 * we're interrupted by a signal, the async RPC completion handler
2539 		 * should mark the directories for revalidation.
2540 		 */
2541 		d_move(old_dentry, new_dentry);
2542 		nfs_set_verifier(old_dentry,
2543 					nfs_save_change_attribute(new_dir));
2544 	} else if (error == -ENOENT)
2545 		nfs_dentry_handle_enoent(old_dentry);
2546 
2547 	/* new dentry created? */
2548 	if (dentry)
2549 		dput(dentry);
2550 	return error;
2551 }
2552 EXPORT_SYMBOL_GPL(nfs_rename);
2553 
2554 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2555 static LIST_HEAD(nfs_access_lru_list);
2556 static atomic_long_t nfs_access_nr_entries;
2557 
2558 static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2559 module_param(nfs_access_max_cachesize, ulong, 0644);
2560 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2561 
2562 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2563 {
2564 	put_group_info(entry->group_info);
2565 	kfree_rcu(entry, rcu_head);
2566 	smp_mb__before_atomic();
2567 	atomic_long_dec(&nfs_access_nr_entries);
2568 	smp_mb__after_atomic();
2569 }
2570 
2571 static void nfs_access_free_list(struct list_head *head)
2572 {
2573 	struct nfs_access_entry *cache;
2574 
2575 	while (!list_empty(head)) {
2576 		cache = list_entry(head->next, struct nfs_access_entry, lru);
2577 		list_del(&cache->lru);
2578 		nfs_access_free_entry(cache);
2579 	}
2580 }
2581 
2582 static unsigned long
2583 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2584 {
2585 	LIST_HEAD(head);
2586 	struct nfs_inode *nfsi, *next;
2587 	struct nfs_access_entry *cache;
2588 	long freed = 0;
2589 
2590 	spin_lock(&nfs_access_lru_lock);
2591 	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2592 		struct inode *inode;
2593 
2594 		if (nr_to_scan-- == 0)
2595 			break;
2596 		inode = &nfsi->vfs_inode;
2597 		spin_lock(&inode->i_lock);
2598 		if (list_empty(&nfsi->access_cache_entry_lru))
2599 			goto remove_lru_entry;
2600 		cache = list_entry(nfsi->access_cache_entry_lru.next,
2601 				struct nfs_access_entry, lru);
2602 		list_move(&cache->lru, &head);
2603 		rb_erase(&cache->rb_node, &nfsi->access_cache);
2604 		freed++;
2605 		if (!list_empty(&nfsi->access_cache_entry_lru))
2606 			list_move_tail(&nfsi->access_cache_inode_lru,
2607 					&nfs_access_lru_list);
2608 		else {
2609 remove_lru_entry:
2610 			list_del_init(&nfsi->access_cache_inode_lru);
2611 			smp_mb__before_atomic();
2612 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2613 			smp_mb__after_atomic();
2614 		}
2615 		spin_unlock(&inode->i_lock);
2616 	}
2617 	spin_unlock(&nfs_access_lru_lock);
2618 	nfs_access_free_list(&head);
2619 	return freed;
2620 }
2621 
2622 unsigned long
2623 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2624 {
2625 	int nr_to_scan = sc->nr_to_scan;
2626 	gfp_t gfp_mask = sc->gfp_mask;
2627 
2628 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2629 		return SHRINK_STOP;
2630 	return nfs_do_access_cache_scan(nr_to_scan);
2631 }
2632 
2633 
2634 unsigned long
2635 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2636 {
2637 	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2638 }
2639 
2640 static void
2641 nfs_access_cache_enforce_limit(void)
2642 {
2643 	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2644 	unsigned long diff;
2645 	unsigned int nr_to_scan;
2646 
2647 	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2648 		return;
2649 	nr_to_scan = 100;
2650 	diff = nr_entries - nfs_access_max_cachesize;
2651 	if (diff < nr_to_scan)
2652 		nr_to_scan = diff;
2653 	nfs_do_access_cache_scan(nr_to_scan);
2654 }
2655 
2656 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2657 {
2658 	struct rb_root *root_node = &nfsi->access_cache;
2659 	struct rb_node *n;
2660 	struct nfs_access_entry *entry;
2661 
2662 	/* Unhook entries from the cache */
2663 	while ((n = rb_first(root_node)) != NULL) {
2664 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2665 		rb_erase(n, root_node);
2666 		list_move(&entry->lru, head);
2667 	}
2668 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2669 }
2670 
2671 void nfs_access_zap_cache(struct inode *inode)
2672 {
2673 	LIST_HEAD(head);
2674 
2675 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2676 		return;
2677 	/* Remove from global LRU init */
2678 	spin_lock(&nfs_access_lru_lock);
2679 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2680 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2681 
2682 	spin_lock(&inode->i_lock);
2683 	__nfs_access_zap_cache(NFS_I(inode), &head);
2684 	spin_unlock(&inode->i_lock);
2685 	spin_unlock(&nfs_access_lru_lock);
2686 	nfs_access_free_list(&head);
2687 }
2688 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2689 
2690 static int access_cmp(const struct cred *a, const struct nfs_access_entry *b)
2691 {
2692 	struct group_info *ga, *gb;
2693 	int g;
2694 
2695 	if (uid_lt(a->fsuid, b->fsuid))
2696 		return -1;
2697 	if (uid_gt(a->fsuid, b->fsuid))
2698 		return 1;
2699 
2700 	if (gid_lt(a->fsgid, b->fsgid))
2701 		return -1;
2702 	if (gid_gt(a->fsgid, b->fsgid))
2703 		return 1;
2704 
2705 	ga = a->group_info;
2706 	gb = b->group_info;
2707 	if (ga == gb)
2708 		return 0;
2709 	if (ga == NULL)
2710 		return -1;
2711 	if (gb == NULL)
2712 		return 1;
2713 	if (ga->ngroups < gb->ngroups)
2714 		return -1;
2715 	if (ga->ngroups > gb->ngroups)
2716 		return 1;
2717 
2718 	for (g = 0; g < ga->ngroups; g++) {
2719 		if (gid_lt(ga->gid[g], gb->gid[g]))
2720 			return -1;
2721 		if (gid_gt(ga->gid[g], gb->gid[g]))
2722 			return 1;
2723 	}
2724 	return 0;
2725 }
2726 
2727 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2728 {
2729 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2730 
2731 	while (n != NULL) {
2732 		struct nfs_access_entry *entry =
2733 			rb_entry(n, struct nfs_access_entry, rb_node);
2734 		int cmp = access_cmp(cred, entry);
2735 
2736 		if (cmp < 0)
2737 			n = n->rb_left;
2738 		else if (cmp > 0)
2739 			n = n->rb_right;
2740 		else
2741 			return entry;
2742 	}
2743 	return NULL;
2744 }
2745 
2746 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, u32 *mask, bool may_block)
2747 {
2748 	struct nfs_inode *nfsi = NFS_I(inode);
2749 	struct nfs_access_entry *cache;
2750 	bool retry = true;
2751 	int err;
2752 
2753 	spin_lock(&inode->i_lock);
2754 	for(;;) {
2755 		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2756 			goto out_zap;
2757 		cache = nfs_access_search_rbtree(inode, cred);
2758 		err = -ENOENT;
2759 		if (cache == NULL)
2760 			goto out;
2761 		/* Found an entry, is our attribute cache valid? */
2762 		if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2763 			break;
2764 		if (!retry)
2765 			break;
2766 		err = -ECHILD;
2767 		if (!may_block)
2768 			goto out;
2769 		spin_unlock(&inode->i_lock);
2770 		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2771 		if (err)
2772 			return err;
2773 		spin_lock(&inode->i_lock);
2774 		retry = false;
2775 	}
2776 	*mask = cache->mask;
2777 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2778 	err = 0;
2779 out:
2780 	spin_unlock(&inode->i_lock);
2781 	return err;
2782 out_zap:
2783 	spin_unlock(&inode->i_lock);
2784 	nfs_access_zap_cache(inode);
2785 	return -ENOENT;
2786 }
2787 
2788 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, u32 *mask)
2789 {
2790 	/* Only check the most recently returned cache entry,
2791 	 * but do it without locking.
2792 	 */
2793 	struct nfs_inode *nfsi = NFS_I(inode);
2794 	struct nfs_access_entry *cache;
2795 	int err = -ECHILD;
2796 	struct list_head *lh;
2797 
2798 	rcu_read_lock();
2799 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2800 		goto out;
2801 	lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
2802 	cache = list_entry(lh, struct nfs_access_entry, lru);
2803 	if (lh == &nfsi->access_cache_entry_lru ||
2804 	    access_cmp(cred, cache) != 0)
2805 		cache = NULL;
2806 	if (cache == NULL)
2807 		goto out;
2808 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2809 		goto out;
2810 	*mask = cache->mask;
2811 	err = 0;
2812 out:
2813 	rcu_read_unlock();
2814 	return err;
2815 }
2816 
2817 int nfs_access_get_cached(struct inode *inode, const struct cred *cred,
2818 			  u32 *mask, bool may_block)
2819 {
2820 	int status;
2821 
2822 	status = nfs_access_get_cached_rcu(inode, cred, mask);
2823 	if (status != 0)
2824 		status = nfs_access_get_cached_locked(inode, cred, mask,
2825 		    may_block);
2826 
2827 	return status;
2828 }
2829 EXPORT_SYMBOL_GPL(nfs_access_get_cached);
2830 
2831 static void nfs_access_add_rbtree(struct inode *inode,
2832 				  struct nfs_access_entry *set,
2833 				  const struct cred *cred)
2834 {
2835 	struct nfs_inode *nfsi = NFS_I(inode);
2836 	struct rb_root *root_node = &nfsi->access_cache;
2837 	struct rb_node **p = &root_node->rb_node;
2838 	struct rb_node *parent = NULL;
2839 	struct nfs_access_entry *entry;
2840 	int cmp;
2841 
2842 	spin_lock(&inode->i_lock);
2843 	while (*p != NULL) {
2844 		parent = *p;
2845 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2846 		cmp = access_cmp(cred, entry);
2847 
2848 		if (cmp < 0)
2849 			p = &parent->rb_left;
2850 		else if (cmp > 0)
2851 			p = &parent->rb_right;
2852 		else
2853 			goto found;
2854 	}
2855 	rb_link_node(&set->rb_node, parent, p);
2856 	rb_insert_color(&set->rb_node, root_node);
2857 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2858 	spin_unlock(&inode->i_lock);
2859 	return;
2860 found:
2861 	rb_replace_node(parent, &set->rb_node, root_node);
2862 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2863 	list_del(&entry->lru);
2864 	spin_unlock(&inode->i_lock);
2865 	nfs_access_free_entry(entry);
2866 }
2867 
2868 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set,
2869 			  const struct cred *cred)
2870 {
2871 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2872 	if (cache == NULL)
2873 		return;
2874 	RB_CLEAR_NODE(&cache->rb_node);
2875 	cache->fsuid = cred->fsuid;
2876 	cache->fsgid = cred->fsgid;
2877 	cache->group_info = get_group_info(cred->group_info);
2878 	cache->mask = set->mask;
2879 
2880 	/* The above field assignments must be visible
2881 	 * before this item appears on the lru.  We cannot easily
2882 	 * use rcu_assign_pointer, so just force the memory barrier.
2883 	 */
2884 	smp_wmb();
2885 	nfs_access_add_rbtree(inode, cache, cred);
2886 
2887 	/* Update accounting */
2888 	smp_mb__before_atomic();
2889 	atomic_long_inc(&nfs_access_nr_entries);
2890 	smp_mb__after_atomic();
2891 
2892 	/* Add inode to global LRU list */
2893 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2894 		spin_lock(&nfs_access_lru_lock);
2895 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2896 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2897 					&nfs_access_lru_list);
2898 		spin_unlock(&nfs_access_lru_lock);
2899 	}
2900 	nfs_access_cache_enforce_limit();
2901 }
2902 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2903 
2904 #define NFS_MAY_READ (NFS_ACCESS_READ)
2905 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2906 		NFS_ACCESS_EXTEND | \
2907 		NFS_ACCESS_DELETE)
2908 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2909 		NFS_ACCESS_EXTEND)
2910 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2911 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2912 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2913 static int
2914 nfs_access_calc_mask(u32 access_result, umode_t umode)
2915 {
2916 	int mask = 0;
2917 
2918 	if (access_result & NFS_MAY_READ)
2919 		mask |= MAY_READ;
2920 	if (S_ISDIR(umode)) {
2921 		if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2922 			mask |= MAY_WRITE;
2923 		if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2924 			mask |= MAY_EXEC;
2925 	} else if (S_ISREG(umode)) {
2926 		if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2927 			mask |= MAY_WRITE;
2928 		if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2929 			mask |= MAY_EXEC;
2930 	} else if (access_result & NFS_MAY_WRITE)
2931 			mask |= MAY_WRITE;
2932 	return mask;
2933 }
2934 
2935 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2936 {
2937 	entry->mask = access_result;
2938 }
2939 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2940 
2941 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
2942 {
2943 	struct nfs_access_entry cache;
2944 	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2945 	int cache_mask = -1;
2946 	int status;
2947 
2948 	trace_nfs_access_enter(inode);
2949 
2950 	status = nfs_access_get_cached(inode, cred, &cache.mask, may_block);
2951 	if (status == 0)
2952 		goto out_cached;
2953 
2954 	status = -ECHILD;
2955 	if (!may_block)
2956 		goto out;
2957 
2958 	/*
2959 	 * Determine which access bits we want to ask for...
2960 	 */
2961 	cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND;
2962 	if (nfs_server_capable(inode, NFS_CAP_XATTR)) {
2963 		cache.mask |= NFS_ACCESS_XAREAD | NFS_ACCESS_XAWRITE |
2964 		    NFS_ACCESS_XALIST;
2965 	}
2966 	if (S_ISDIR(inode->i_mode))
2967 		cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
2968 	else
2969 		cache.mask |= NFS_ACCESS_EXECUTE;
2970 	status = NFS_PROTO(inode)->access(inode, &cache, cred);
2971 	if (status != 0) {
2972 		if (status == -ESTALE) {
2973 			if (!S_ISDIR(inode->i_mode))
2974 				nfs_set_inode_stale(inode);
2975 			else
2976 				nfs_zap_caches(inode);
2977 		}
2978 		goto out;
2979 	}
2980 	nfs_access_add_cache(inode, &cache, cred);
2981 out_cached:
2982 	cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
2983 	if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2984 		status = -EACCES;
2985 out:
2986 	trace_nfs_access_exit(inode, mask, cache_mask, status);
2987 	return status;
2988 }
2989 
2990 static int nfs_open_permission_mask(int openflags)
2991 {
2992 	int mask = 0;
2993 
2994 	if (openflags & __FMODE_EXEC) {
2995 		/* ONLY check exec rights */
2996 		mask = MAY_EXEC;
2997 	} else {
2998 		if ((openflags & O_ACCMODE) != O_WRONLY)
2999 			mask |= MAY_READ;
3000 		if ((openflags & O_ACCMODE) != O_RDONLY)
3001 			mask |= MAY_WRITE;
3002 	}
3003 
3004 	return mask;
3005 }
3006 
3007 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
3008 {
3009 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
3010 }
3011 EXPORT_SYMBOL_GPL(nfs_may_open);
3012 
3013 static int nfs_execute_ok(struct inode *inode, int mask)
3014 {
3015 	struct nfs_server *server = NFS_SERVER(inode);
3016 	int ret = 0;
3017 
3018 	if (S_ISDIR(inode->i_mode))
3019 		return 0;
3020 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) {
3021 		if (mask & MAY_NOT_BLOCK)
3022 			return -ECHILD;
3023 		ret = __nfs_revalidate_inode(server, inode);
3024 	}
3025 	if (ret == 0 && !execute_ok(inode))
3026 		ret = -EACCES;
3027 	return ret;
3028 }
3029 
3030 int nfs_permission(struct user_namespace *mnt_userns,
3031 		   struct inode *inode,
3032 		   int mask)
3033 {
3034 	const struct cred *cred = current_cred();
3035 	int res = 0;
3036 
3037 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
3038 
3039 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
3040 		goto out;
3041 	/* Is this sys_access() ? */
3042 	if (mask & (MAY_ACCESS | MAY_CHDIR))
3043 		goto force_lookup;
3044 
3045 	switch (inode->i_mode & S_IFMT) {
3046 		case S_IFLNK:
3047 			goto out;
3048 		case S_IFREG:
3049 			if ((mask & MAY_OPEN) &&
3050 			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
3051 				return 0;
3052 			break;
3053 		case S_IFDIR:
3054 			/*
3055 			 * Optimize away all write operations, since the server
3056 			 * will check permissions when we perform the op.
3057 			 */
3058 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
3059 				goto out;
3060 	}
3061 
3062 force_lookup:
3063 	if (!NFS_PROTO(inode)->access)
3064 		goto out_notsup;
3065 
3066 	res = nfs_do_access(inode, cred, mask);
3067 out:
3068 	if (!res && (mask & MAY_EXEC))
3069 		res = nfs_execute_ok(inode, mask);
3070 
3071 	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
3072 		inode->i_sb->s_id, inode->i_ino, mask, res);
3073 	return res;
3074 out_notsup:
3075 	if (mask & MAY_NOT_BLOCK)
3076 		return -ECHILD;
3077 
3078 	res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE |
3079 						  NFS_INO_INVALID_OTHER);
3080 	if (res == 0)
3081 		res = generic_permission(&init_user_ns, inode, mask);
3082 	goto out;
3083 }
3084 EXPORT_SYMBOL_GPL(nfs_permission);
3085