xref: /openbmc/linux/fs/nfs/dir.c (revision 64c70b1c)
1 /*
2  *  linux/fs/nfs/dir.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  nfs directory handling functions
7  *
8  * 10 Apr 1996	Added silly rename for unlink	--okir
9  * 28 Sep 1996	Improved directory cache --okir
10  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
11  *              Re-implemented silly rename for unlink, newly implemented
12  *              silly rename for nfs_rename() following the suggestions
13  *              of Olaf Kirch (okir) found in this file.
14  *              Following Linus comments on my original hack, this version
15  *              depends only on the dcache stuff and doesn't touch the inode
16  *              layer (iput() and friends).
17  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
18  */
19 
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/smp_lock.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/sched.h>
37 
38 #include "nfs4_fs.h"
39 #include "delegation.h"
40 #include "iostat.h"
41 
42 /* #define NFS_DEBUG_VERBOSE 1 */
43 
44 static int nfs_opendir(struct inode *, struct file *);
45 static int nfs_readdir(struct file *, void *, filldir_t);
46 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
47 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *);
48 static int nfs_mkdir(struct inode *, struct dentry *, int);
49 static int nfs_rmdir(struct inode *, struct dentry *);
50 static int nfs_unlink(struct inode *, struct dentry *);
51 static int nfs_symlink(struct inode *, struct dentry *, const char *);
52 static int nfs_link(struct dentry *, struct inode *, struct dentry *);
53 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t);
54 static int nfs_rename(struct inode *, struct dentry *,
55 		      struct inode *, struct dentry *);
56 static int nfs_fsync_dir(struct file *, struct dentry *, int);
57 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
58 
59 const struct file_operations nfs_dir_operations = {
60 	.llseek		= nfs_llseek_dir,
61 	.read		= generic_read_dir,
62 	.readdir	= nfs_readdir,
63 	.open		= nfs_opendir,
64 	.release	= nfs_release,
65 	.fsync		= nfs_fsync_dir,
66 };
67 
68 const struct inode_operations nfs_dir_inode_operations = {
69 	.create		= nfs_create,
70 	.lookup		= nfs_lookup,
71 	.link		= nfs_link,
72 	.unlink		= nfs_unlink,
73 	.symlink	= nfs_symlink,
74 	.mkdir		= nfs_mkdir,
75 	.rmdir		= nfs_rmdir,
76 	.mknod		= nfs_mknod,
77 	.rename		= nfs_rename,
78 	.permission	= nfs_permission,
79 	.getattr	= nfs_getattr,
80 	.setattr	= nfs_setattr,
81 };
82 
83 #ifdef CONFIG_NFS_V3
84 const struct inode_operations nfs3_dir_inode_operations = {
85 	.create		= nfs_create,
86 	.lookup		= nfs_lookup,
87 	.link		= nfs_link,
88 	.unlink		= nfs_unlink,
89 	.symlink	= nfs_symlink,
90 	.mkdir		= nfs_mkdir,
91 	.rmdir		= nfs_rmdir,
92 	.mknod		= nfs_mknod,
93 	.rename		= nfs_rename,
94 	.permission	= nfs_permission,
95 	.getattr	= nfs_getattr,
96 	.setattr	= nfs_setattr,
97 	.listxattr	= nfs3_listxattr,
98 	.getxattr	= nfs3_getxattr,
99 	.setxattr	= nfs3_setxattr,
100 	.removexattr	= nfs3_removexattr,
101 };
102 #endif  /* CONFIG_NFS_V3 */
103 
104 #ifdef CONFIG_NFS_V4
105 
106 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
107 const struct inode_operations nfs4_dir_inode_operations = {
108 	.create		= nfs_create,
109 	.lookup		= nfs_atomic_lookup,
110 	.link		= nfs_link,
111 	.unlink		= nfs_unlink,
112 	.symlink	= nfs_symlink,
113 	.mkdir		= nfs_mkdir,
114 	.rmdir		= nfs_rmdir,
115 	.mknod		= nfs_mknod,
116 	.rename		= nfs_rename,
117 	.permission	= nfs_permission,
118 	.getattr	= nfs_getattr,
119 	.setattr	= nfs_setattr,
120 	.getxattr       = nfs4_getxattr,
121 	.setxattr       = nfs4_setxattr,
122 	.listxattr      = nfs4_listxattr,
123 };
124 
125 #endif /* CONFIG_NFS_V4 */
126 
127 /*
128  * Open file
129  */
130 static int
131 nfs_opendir(struct inode *inode, struct file *filp)
132 {
133 	int res;
134 
135 	dfprintk(VFS, "NFS: opendir(%s/%ld)\n",
136 			inode->i_sb->s_id, inode->i_ino);
137 
138 	lock_kernel();
139 	/* Call generic open code in order to cache credentials */
140 	res = nfs_open(inode, filp);
141 	unlock_kernel();
142 	return res;
143 }
144 
145 typedef __be32 * (*decode_dirent_t)(__be32 *, struct nfs_entry *, int);
146 typedef struct {
147 	struct file	*file;
148 	struct page	*page;
149 	unsigned long	page_index;
150 	__be32		*ptr;
151 	u64		*dir_cookie;
152 	loff_t		current_index;
153 	struct nfs_entry *entry;
154 	decode_dirent_t	decode;
155 	int		plus;
156 	int		error;
157 	unsigned long	timestamp;
158 	int		timestamp_valid;
159 } nfs_readdir_descriptor_t;
160 
161 /* Now we cache directories properly, by stuffing the dirent
162  * data directly in the page cache.
163  *
164  * Inode invalidation due to refresh etc. takes care of
165  * _everything_, no sloppy entry flushing logic, no extraneous
166  * copying, network direct to page cache, the way it was meant
167  * to be.
168  *
169  * NOTE: Dirent information verification is done always by the
170  *	 page-in of the RPC reply, nowhere else, this simplies
171  *	 things substantially.
172  */
173 static
174 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page *page)
175 {
176 	struct file	*file = desc->file;
177 	struct inode	*inode = file->f_path.dentry->d_inode;
178 	struct rpc_cred	*cred = nfs_file_cred(file);
179 	unsigned long	timestamp;
180 	int		error;
181 
182 	dfprintk(DIRCACHE, "NFS: %s: reading cookie %Lu into page %lu\n",
183 			__FUNCTION__, (long long)desc->entry->cookie,
184 			page->index);
185 
186  again:
187 	timestamp = jiffies;
188 	error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, desc->entry->cookie, page,
189 					  NFS_SERVER(inode)->dtsize, desc->plus);
190 	if (error < 0) {
191 		/* We requested READDIRPLUS, but the server doesn't grok it */
192 		if (error == -ENOTSUPP && desc->plus) {
193 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
194 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_FLAGS(inode));
195 			desc->plus = 0;
196 			goto again;
197 		}
198 		goto error;
199 	}
200 	desc->timestamp = timestamp;
201 	desc->timestamp_valid = 1;
202 	SetPageUptodate(page);
203 	spin_lock(&inode->i_lock);
204 	NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATIME;
205 	spin_unlock(&inode->i_lock);
206 	/* Ensure consistent page alignment of the data.
207 	 * Note: assumes we have exclusive access to this mapping either
208 	 *	 through inode->i_mutex or some other mechanism.
209 	 */
210 	if (page->index == 0 && invalidate_inode_pages2_range(inode->i_mapping, PAGE_CACHE_SIZE, -1) < 0) {
211 		/* Should never happen */
212 		nfs_zap_mapping(inode, inode->i_mapping);
213 	}
214 	unlock_page(page);
215 	return 0;
216  error:
217 	SetPageError(page);
218 	unlock_page(page);
219 	nfs_zap_caches(inode);
220 	desc->error = error;
221 	return -EIO;
222 }
223 
224 static inline
225 int dir_decode(nfs_readdir_descriptor_t *desc)
226 {
227 	__be32	*p = desc->ptr;
228 	p = desc->decode(p, desc->entry, desc->plus);
229 	if (IS_ERR(p))
230 		return PTR_ERR(p);
231 	desc->ptr = p;
232 	if (desc->timestamp_valid)
233 		desc->entry->fattr->time_start = desc->timestamp;
234 	else
235 		desc->entry->fattr->valid &= ~NFS_ATTR_FATTR;
236 	return 0;
237 }
238 
239 static inline
240 void dir_page_release(nfs_readdir_descriptor_t *desc)
241 {
242 	kunmap(desc->page);
243 	page_cache_release(desc->page);
244 	desc->page = NULL;
245 	desc->ptr = NULL;
246 }
247 
248 /*
249  * Given a pointer to a buffer that has already been filled by a call
250  * to readdir, find the next entry with cookie '*desc->dir_cookie'.
251  *
252  * If the end of the buffer has been reached, return -EAGAIN, if not,
253  * return the offset within the buffer of the next entry to be
254  * read.
255  */
256 static inline
257 int find_dirent(nfs_readdir_descriptor_t *desc)
258 {
259 	struct nfs_entry *entry = desc->entry;
260 	int		loop_count = 0,
261 			status;
262 
263 	while((status = dir_decode(desc)) == 0) {
264 		dfprintk(DIRCACHE, "NFS: %s: examining cookie %Lu\n",
265 				__FUNCTION__, (unsigned long long)entry->cookie);
266 		if (entry->prev_cookie == *desc->dir_cookie)
267 			break;
268 		if (loop_count++ > 200) {
269 			loop_count = 0;
270 			schedule();
271 		}
272 	}
273 	return status;
274 }
275 
276 /*
277  * Given a pointer to a buffer that has already been filled by a call
278  * to readdir, find the entry at offset 'desc->file->f_pos'.
279  *
280  * If the end of the buffer has been reached, return -EAGAIN, if not,
281  * return the offset within the buffer of the next entry to be
282  * read.
283  */
284 static inline
285 int find_dirent_index(nfs_readdir_descriptor_t *desc)
286 {
287 	struct nfs_entry *entry = desc->entry;
288 	int		loop_count = 0,
289 			status;
290 
291 	for(;;) {
292 		status = dir_decode(desc);
293 		if (status)
294 			break;
295 
296 		dfprintk(DIRCACHE, "NFS: found cookie %Lu at index %Ld\n",
297 				(unsigned long long)entry->cookie, desc->current_index);
298 
299 		if (desc->file->f_pos == desc->current_index) {
300 			*desc->dir_cookie = entry->cookie;
301 			break;
302 		}
303 		desc->current_index++;
304 		if (loop_count++ > 200) {
305 			loop_count = 0;
306 			schedule();
307 		}
308 	}
309 	return status;
310 }
311 
312 /*
313  * Find the given page, and call find_dirent() or find_dirent_index in
314  * order to try to return the next entry.
315  */
316 static inline
317 int find_dirent_page(nfs_readdir_descriptor_t *desc)
318 {
319 	struct inode	*inode = desc->file->f_path.dentry->d_inode;
320 	struct page	*page;
321 	int		status;
322 
323 	dfprintk(DIRCACHE, "NFS: %s: searching page %ld for target %Lu\n",
324 			__FUNCTION__, desc->page_index,
325 			(long long) *desc->dir_cookie);
326 
327 	/* If we find the page in the page_cache, we cannot be sure
328 	 * how fresh the data is, so we will ignore readdir_plus attributes.
329 	 */
330 	desc->timestamp_valid = 0;
331 	page = read_cache_page(inode->i_mapping, desc->page_index,
332 			       (filler_t *)nfs_readdir_filler, desc);
333 	if (IS_ERR(page)) {
334 		status = PTR_ERR(page);
335 		goto out;
336 	}
337 
338 	/* NOTE: Someone else may have changed the READDIRPLUS flag */
339 	desc->page = page;
340 	desc->ptr = kmap(page);		/* matching kunmap in nfs_do_filldir */
341 	if (*desc->dir_cookie != 0)
342 		status = find_dirent(desc);
343 	else
344 		status = find_dirent_index(desc);
345 	if (status < 0)
346 		dir_page_release(desc);
347  out:
348 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, status);
349 	return status;
350 }
351 
352 /*
353  * Recurse through the page cache pages, and return a
354  * filled nfs_entry structure of the next directory entry if possible.
355  *
356  * The target for the search is '*desc->dir_cookie' if non-0,
357  * 'desc->file->f_pos' otherwise
358  */
359 static inline
360 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
361 {
362 	int		loop_count = 0;
363 	int		res;
364 
365 	/* Always search-by-index from the beginning of the cache */
366 	if (*desc->dir_cookie == 0) {
367 		dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for offset %Ld\n",
368 				(long long)desc->file->f_pos);
369 		desc->page_index = 0;
370 		desc->entry->cookie = desc->entry->prev_cookie = 0;
371 		desc->entry->eof = 0;
372 		desc->current_index = 0;
373 	} else
374 		dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for cookie %Lu\n",
375 				(unsigned long long)*desc->dir_cookie);
376 
377 	for (;;) {
378 		res = find_dirent_page(desc);
379 		if (res != -EAGAIN)
380 			break;
381 		/* Align to beginning of next page */
382 		desc->page_index ++;
383 		if (loop_count++ > 200) {
384 			loop_count = 0;
385 			schedule();
386 		}
387 	}
388 
389 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, res);
390 	return res;
391 }
392 
393 static inline unsigned int dt_type(struct inode *inode)
394 {
395 	return (inode->i_mode >> 12) & 15;
396 }
397 
398 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc);
399 
400 /*
401  * Once we've found the start of the dirent within a page: fill 'er up...
402  */
403 static
404 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
405 		   filldir_t filldir)
406 {
407 	struct file	*file = desc->file;
408 	struct nfs_entry *entry = desc->entry;
409 	struct dentry	*dentry = NULL;
410 	unsigned long	fileid;
411 	int		loop_count = 0,
412 			res;
413 
414 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling starting @ cookie %Lu\n",
415 			(unsigned long long)entry->cookie);
416 
417 	for(;;) {
418 		unsigned d_type = DT_UNKNOWN;
419 		/* Note: entry->prev_cookie contains the cookie for
420 		 *	 retrieving the current dirent on the server */
421 		fileid = nfs_fileid_to_ino_t(entry->ino);
422 
423 		/* Get a dentry if we have one */
424 		if (dentry != NULL)
425 			dput(dentry);
426 		dentry = nfs_readdir_lookup(desc);
427 
428 		/* Use readdirplus info */
429 		if (dentry != NULL && dentry->d_inode != NULL) {
430 			d_type = dt_type(dentry->d_inode);
431 			fileid = dentry->d_inode->i_ino;
432 		}
433 
434 		res = filldir(dirent, entry->name, entry->len,
435 			      file->f_pos, fileid, d_type);
436 		if (res < 0)
437 			break;
438 		file->f_pos++;
439 		*desc->dir_cookie = entry->cookie;
440 		if (dir_decode(desc) != 0) {
441 			desc->page_index ++;
442 			break;
443 		}
444 		if (loop_count++ > 200) {
445 			loop_count = 0;
446 			schedule();
447 		}
448 	}
449 	dir_page_release(desc);
450 	if (dentry != NULL)
451 		dput(dentry);
452 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
453 			(unsigned long long)*desc->dir_cookie, res);
454 	return res;
455 }
456 
457 /*
458  * If we cannot find a cookie in our cache, we suspect that this is
459  * because it points to a deleted file, so we ask the server to return
460  * whatever it thinks is the next entry. We then feed this to filldir.
461  * If all goes well, we should then be able to find our way round the
462  * cache on the next call to readdir_search_pagecache();
463  *
464  * NOTE: we cannot add the anonymous page to the pagecache because
465  *	 the data it contains might not be page aligned. Besides,
466  *	 we should already have a complete representation of the
467  *	 directory in the page cache by the time we get here.
468  */
469 static inline
470 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
471 		     filldir_t filldir)
472 {
473 	struct file	*file = desc->file;
474 	struct inode	*inode = file->f_path.dentry->d_inode;
475 	struct rpc_cred	*cred = nfs_file_cred(file);
476 	struct page	*page = NULL;
477 	int		status;
478 	unsigned long	timestamp;
479 
480 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
481 			(unsigned long long)*desc->dir_cookie);
482 
483 	page = alloc_page(GFP_HIGHUSER);
484 	if (!page) {
485 		status = -ENOMEM;
486 		goto out;
487 	}
488 	timestamp = jiffies;
489 	desc->error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, *desc->dir_cookie,
490 						page,
491 						NFS_SERVER(inode)->dtsize,
492 						desc->plus);
493 	spin_lock(&inode->i_lock);
494 	NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATIME;
495 	spin_unlock(&inode->i_lock);
496 	desc->page = page;
497 	desc->ptr = kmap(page);		/* matching kunmap in nfs_do_filldir */
498 	if (desc->error >= 0) {
499 		desc->timestamp = timestamp;
500 		desc->timestamp_valid = 1;
501 		if ((status = dir_decode(desc)) == 0)
502 			desc->entry->prev_cookie = *desc->dir_cookie;
503 	} else
504 		status = -EIO;
505 	if (status < 0)
506 		goto out_release;
507 
508 	status = nfs_do_filldir(desc, dirent, filldir);
509 
510 	/* Reset read descriptor so it searches the page cache from
511 	 * the start upon the next call to readdir_search_pagecache() */
512 	desc->page_index = 0;
513 	desc->entry->cookie = desc->entry->prev_cookie = 0;
514 	desc->entry->eof = 0;
515  out:
516 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
517 			__FUNCTION__, status);
518 	return status;
519  out_release:
520 	dir_page_release(desc);
521 	goto out;
522 }
523 
524 /* The file offset position represents the dirent entry number.  A
525    last cookie cache takes care of the common case of reading the
526    whole directory.
527  */
528 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
529 {
530 	struct dentry	*dentry = filp->f_path.dentry;
531 	struct inode	*inode = dentry->d_inode;
532 	nfs_readdir_descriptor_t my_desc,
533 			*desc = &my_desc;
534 	struct nfs_entry my_entry;
535 	struct nfs_fh	 fh;
536 	struct nfs_fattr fattr;
537 	long		res;
538 
539 	dfprintk(VFS, "NFS: readdir(%s/%s) starting at cookie %Lu\n",
540 			dentry->d_parent->d_name.name, dentry->d_name.name,
541 			(long long)filp->f_pos);
542 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
543 
544 	lock_kernel();
545 
546 	res = nfs_revalidate_mapping_nolock(inode, filp->f_mapping);
547 	if (res < 0) {
548 		unlock_kernel();
549 		return res;
550 	}
551 
552 	/*
553 	 * filp->f_pos points to the dirent entry number.
554 	 * *desc->dir_cookie has the cookie for the next entry. We have
555 	 * to either find the entry with the appropriate number or
556 	 * revalidate the cookie.
557 	 */
558 	memset(desc, 0, sizeof(*desc));
559 
560 	desc->file = filp;
561 	desc->dir_cookie = &((struct nfs_open_context *)filp->private_data)->dir_cookie;
562 	desc->decode = NFS_PROTO(inode)->decode_dirent;
563 	desc->plus = NFS_USE_READDIRPLUS(inode);
564 
565 	my_entry.cookie = my_entry.prev_cookie = 0;
566 	my_entry.eof = 0;
567 	my_entry.fh = &fh;
568 	my_entry.fattr = &fattr;
569 	nfs_fattr_init(&fattr);
570 	desc->entry = &my_entry;
571 
572 	while(!desc->entry->eof) {
573 		res = readdir_search_pagecache(desc);
574 
575 		if (res == -EBADCOOKIE) {
576 			/* This means either end of directory */
577 			if (*desc->dir_cookie && desc->entry->cookie != *desc->dir_cookie) {
578 				/* Or that the server has 'lost' a cookie */
579 				res = uncached_readdir(desc, dirent, filldir);
580 				if (res >= 0)
581 					continue;
582 			}
583 			res = 0;
584 			break;
585 		}
586 		if (res == -ETOOSMALL && desc->plus) {
587 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_FLAGS(inode));
588 			nfs_zap_caches(inode);
589 			desc->plus = 0;
590 			desc->entry->eof = 0;
591 			continue;
592 		}
593 		if (res < 0)
594 			break;
595 
596 		res = nfs_do_filldir(desc, dirent, filldir);
597 		if (res < 0) {
598 			res = 0;
599 			break;
600 		}
601 	}
602 	unlock_kernel();
603 	if (res > 0)
604 		res = 0;
605 	dfprintk(VFS, "NFS: readdir(%s/%s) returns %ld\n",
606 			dentry->d_parent->d_name.name, dentry->d_name.name,
607 			res);
608 	return res;
609 }
610 
611 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
612 {
613 	mutex_lock(&filp->f_path.dentry->d_inode->i_mutex);
614 	switch (origin) {
615 		case 1:
616 			offset += filp->f_pos;
617 		case 0:
618 			if (offset >= 0)
619 				break;
620 		default:
621 			offset = -EINVAL;
622 			goto out;
623 	}
624 	if (offset != filp->f_pos) {
625 		filp->f_pos = offset;
626 		((struct nfs_open_context *)filp->private_data)->dir_cookie = 0;
627 	}
628 out:
629 	mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex);
630 	return offset;
631 }
632 
633 /*
634  * All directory operations under NFS are synchronous, so fsync()
635  * is a dummy operation.
636  */
637 static int nfs_fsync_dir(struct file *filp, struct dentry *dentry, int datasync)
638 {
639 	dfprintk(VFS, "NFS: fsync_dir(%s/%s) datasync %d\n",
640 			dentry->d_parent->d_name.name, dentry->d_name.name,
641 			datasync);
642 
643 	return 0;
644 }
645 
646 /*
647  * A check for whether or not the parent directory has changed.
648  * In the case it has, we assume that the dentries are untrustworthy
649  * and may need to be looked up again.
650  */
651 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
652 {
653 	unsigned long verf;
654 
655 	if (IS_ROOT(dentry))
656 		return 1;
657 	verf = (unsigned long)dentry->d_fsdata;
658 	if (nfs_caches_unstable(dir)
659 			|| verf != NFS_I(dir)->cache_change_attribute)
660 		return 0;
661 	return 1;
662 }
663 
664 static inline void nfs_set_verifier(struct dentry * dentry, unsigned long verf)
665 {
666 	dentry->d_fsdata = (void *)verf;
667 }
668 
669 static void nfs_refresh_verifier(struct dentry * dentry, unsigned long verf)
670 {
671 	nfs_set_verifier(dentry, verf);
672 }
673 
674 /*
675  * Whenever an NFS operation succeeds, we know that the dentry
676  * is valid, so we update the revalidation timestamp.
677  */
678 static inline void nfs_renew_times(struct dentry * dentry)
679 {
680 	dentry->d_time = jiffies;
681 }
682 
683 /*
684  * Return the intent data that applies to this particular path component
685  *
686  * Note that the current set of intents only apply to the very last
687  * component of the path.
688  * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
689  */
690 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask)
691 {
692 	if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT))
693 		return 0;
694 	return nd->flags & mask;
695 }
696 
697 /*
698  * Inode and filehandle revalidation for lookups.
699  *
700  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
701  * or if the intent information indicates that we're about to open this
702  * particular file and the "nocto" mount flag is not set.
703  *
704  */
705 static inline
706 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
707 {
708 	struct nfs_server *server = NFS_SERVER(inode);
709 
710 	if (nd != NULL) {
711 		/* VFS wants an on-the-wire revalidation */
712 		if (nd->flags & LOOKUP_REVAL)
713 			goto out_force;
714 		/* This is an open(2) */
715 		if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
716 				!(server->flags & NFS_MOUNT_NOCTO) &&
717 				(S_ISREG(inode->i_mode) ||
718 				 S_ISDIR(inode->i_mode)))
719 			goto out_force;
720 	}
721 	return nfs_revalidate_inode(server, inode);
722 out_force:
723 	return __nfs_revalidate_inode(server, inode);
724 }
725 
726 /*
727  * We judge how long we want to trust negative
728  * dentries by looking at the parent inode mtime.
729  *
730  * If parent mtime has changed, we revalidate, else we wait for a
731  * period corresponding to the parent's attribute cache timeout value.
732  */
733 static inline
734 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
735 		       struct nameidata *nd)
736 {
737 	/* Don't revalidate a negative dentry if we're creating a new file */
738 	if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
739 		return 0;
740 	return !nfs_check_verifier(dir, dentry);
741 }
742 
743 /*
744  * This is called every time the dcache has a lookup hit,
745  * and we should check whether we can really trust that
746  * lookup.
747  *
748  * NOTE! The hit can be a negative hit too, don't assume
749  * we have an inode!
750  *
751  * If the parent directory is seen to have changed, we throw out the
752  * cached dentry and do a new lookup.
753  */
754 static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd)
755 {
756 	struct inode *dir;
757 	struct inode *inode;
758 	struct dentry *parent;
759 	int error;
760 	struct nfs_fh fhandle;
761 	struct nfs_fattr fattr;
762 	unsigned long verifier;
763 
764 	parent = dget_parent(dentry);
765 	lock_kernel();
766 	dir = parent->d_inode;
767 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
768 	inode = dentry->d_inode;
769 
770 	/* Revalidate parent directory attribute cache */
771 	if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
772 		goto out_zap_parent;
773 
774 	if (!inode) {
775 		if (nfs_neg_need_reval(dir, dentry, nd))
776 			goto out_bad;
777 		goto out_valid;
778 	}
779 
780 	if (is_bad_inode(inode)) {
781 		dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
782 				__FUNCTION__, dentry->d_parent->d_name.name,
783 				dentry->d_name.name);
784 		goto out_bad;
785 	}
786 
787 	/* Force a full look up iff the parent directory has changed */
788 	if (nfs_check_verifier(dir, dentry)) {
789 		if (nfs_lookup_verify_inode(inode, nd))
790 			goto out_zap_parent;
791 		goto out_valid;
792 	}
793 
794 	if (NFS_STALE(inode))
795 		goto out_bad;
796 
797 	verifier = nfs_save_change_attribute(dir);
798 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
799 	if (error)
800 		goto out_bad;
801 	if (nfs_compare_fh(NFS_FH(inode), &fhandle))
802 		goto out_bad;
803 	if ((error = nfs_refresh_inode(inode, &fattr)) != 0)
804 		goto out_bad;
805 
806 	nfs_renew_times(dentry);
807 	nfs_refresh_verifier(dentry, verifier);
808  out_valid:
809 	unlock_kernel();
810 	dput(parent);
811 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
812 			__FUNCTION__, dentry->d_parent->d_name.name,
813 			dentry->d_name.name);
814 	return 1;
815 out_zap_parent:
816 	nfs_zap_caches(dir);
817  out_bad:
818 	NFS_CACHEINV(dir);
819 	if (inode && S_ISDIR(inode->i_mode)) {
820 		/* Purge readdir caches. */
821 		nfs_zap_caches(inode);
822 		/* If we have submounts, don't unhash ! */
823 		if (have_submounts(dentry))
824 			goto out_valid;
825 		shrink_dcache_parent(dentry);
826 	}
827 	d_drop(dentry);
828 	unlock_kernel();
829 	dput(parent);
830 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
831 			__FUNCTION__, dentry->d_parent->d_name.name,
832 			dentry->d_name.name);
833 	return 0;
834 }
835 
836 /*
837  * This is called from dput() when d_count is going to 0.
838  */
839 static int nfs_dentry_delete(struct dentry *dentry)
840 {
841 	dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
842 		dentry->d_parent->d_name.name, dentry->d_name.name,
843 		dentry->d_flags);
844 
845 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
846 		/* Unhash it, so that ->d_iput() would be called */
847 		return 1;
848 	}
849 	if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
850 		/* Unhash it, so that ancestors of killed async unlink
851 		 * files will be cleaned up during umount */
852 		return 1;
853 	}
854 	return 0;
855 
856 }
857 
858 /*
859  * Called when the dentry loses inode.
860  * We use it to clean up silly-renamed files.
861  */
862 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
863 {
864 	nfs_inode_return_delegation(inode);
865 	if (S_ISDIR(inode->i_mode))
866 		/* drop any readdir cache as it could easily be old */
867 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
868 
869 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
870 		lock_kernel();
871 		drop_nlink(inode);
872 		nfs_complete_unlink(dentry);
873 		unlock_kernel();
874 	}
875 	/* When creating a negative dentry, we want to renew d_time */
876 	nfs_renew_times(dentry);
877 	iput(inode);
878 }
879 
880 struct dentry_operations nfs_dentry_operations = {
881 	.d_revalidate	= nfs_lookup_revalidate,
882 	.d_delete	= nfs_dentry_delete,
883 	.d_iput		= nfs_dentry_iput,
884 };
885 
886 /*
887  * Use intent information to check whether or not we're going to do
888  * an O_EXCL create using this path component.
889  */
890 static inline
891 int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
892 {
893 	if (NFS_PROTO(dir)->version == 2)
894 		return 0;
895 	if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_CREATE) == 0)
896 		return 0;
897 	return (nd->intent.open.flags & O_EXCL) != 0;
898 }
899 
900 static inline int nfs_reval_fsid(struct vfsmount *mnt, struct inode *dir,
901 				 struct nfs_fh *fh, struct nfs_fattr *fattr)
902 {
903 	struct nfs_server *server = NFS_SERVER(dir);
904 
905 	if (!nfs_fsid_equal(&server->fsid, &fattr->fsid))
906 		/* Revalidate fsid on root dir */
907 		return __nfs_revalidate_inode(server, mnt->mnt_root->d_inode);
908 	return 0;
909 }
910 
911 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
912 {
913 	struct dentry *res;
914 	struct inode *inode = NULL;
915 	int error;
916 	struct nfs_fh fhandle;
917 	struct nfs_fattr fattr;
918 
919 	dfprintk(VFS, "NFS: lookup(%s/%s)\n",
920 		dentry->d_parent->d_name.name, dentry->d_name.name);
921 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
922 
923 	res = ERR_PTR(-ENAMETOOLONG);
924 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
925 		goto out;
926 
927 	res = ERR_PTR(-ENOMEM);
928 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
929 
930 	lock_kernel();
931 
932 	/*
933 	 * If we're doing an exclusive create, optimize away the lookup
934 	 * but don't hash the dentry.
935 	 */
936 	if (nfs_is_exclusive_create(dir, nd)) {
937 		d_instantiate(dentry, NULL);
938 		res = NULL;
939 		goto out_unlock;
940 	}
941 
942 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
943 	if (error == -ENOENT)
944 		goto no_entry;
945 	if (error < 0) {
946 		res = ERR_PTR(error);
947 		goto out_unlock;
948 	}
949 	error = nfs_reval_fsid(nd->mnt, dir, &fhandle, &fattr);
950 	if (error < 0) {
951 		res = ERR_PTR(error);
952 		goto out_unlock;
953 	}
954 	inode = nfs_fhget(dentry->d_sb, &fhandle, &fattr);
955 	res = (struct dentry *)inode;
956 	if (IS_ERR(res))
957 		goto out_unlock;
958 
959 no_entry:
960 	res = d_materialise_unique(dentry, inode);
961 	if (res != NULL) {
962 		struct dentry *parent;
963 		if (IS_ERR(res))
964 			goto out_unlock;
965 		/* Was a directory renamed! */
966 		parent = dget_parent(res);
967 		if (!IS_ROOT(parent))
968 			nfs_mark_for_revalidate(parent->d_inode);
969 		dput(parent);
970 		dentry = res;
971 	}
972 	nfs_renew_times(dentry);
973 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
974 out_unlock:
975 	unlock_kernel();
976 out:
977 	return res;
978 }
979 
980 #ifdef CONFIG_NFS_V4
981 static int nfs_open_revalidate(struct dentry *, struct nameidata *);
982 
983 struct dentry_operations nfs4_dentry_operations = {
984 	.d_revalidate	= nfs_open_revalidate,
985 	.d_delete	= nfs_dentry_delete,
986 	.d_iput		= nfs_dentry_iput,
987 };
988 
989 /*
990  * Use intent information to determine whether we need to substitute
991  * the NFSv4-style stateful OPEN for the LOOKUP call
992  */
993 static int is_atomic_open(struct inode *dir, struct nameidata *nd)
994 {
995 	if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
996 		return 0;
997 	/* NFS does not (yet) have a stateful open for directories */
998 	if (nd->flags & LOOKUP_DIRECTORY)
999 		return 0;
1000 	/* Are we trying to write to a read only partition? */
1001 	if (IS_RDONLY(dir) && (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE)))
1002 		return 0;
1003 	return 1;
1004 }
1005 
1006 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
1007 {
1008 	struct dentry *res = NULL;
1009 	int error;
1010 
1011 	dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
1012 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1013 
1014 	/* Check that we are indeed trying to open this file */
1015 	if (!is_atomic_open(dir, nd))
1016 		goto no_open;
1017 
1018 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
1019 		res = ERR_PTR(-ENAMETOOLONG);
1020 		goto out;
1021 	}
1022 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1023 
1024 	/* Let vfs_create() deal with O_EXCL */
1025 	if (nd->intent.open.flags & O_EXCL) {
1026 		d_add(dentry, NULL);
1027 		goto out;
1028 	}
1029 
1030 	/* Open the file on the server */
1031 	lock_kernel();
1032 	/* Revalidate parent directory attribute cache */
1033 	error = nfs_revalidate_inode(NFS_SERVER(dir), dir);
1034 	if (error < 0) {
1035 		res = ERR_PTR(error);
1036 		unlock_kernel();
1037 		goto out;
1038 	}
1039 
1040 	if (nd->intent.open.flags & O_CREAT) {
1041 		nfs_begin_data_update(dir);
1042 		res = nfs4_atomic_open(dir, dentry, nd);
1043 		nfs_end_data_update(dir);
1044 	} else
1045 		res = nfs4_atomic_open(dir, dentry, nd);
1046 	unlock_kernel();
1047 	if (IS_ERR(res)) {
1048 		error = PTR_ERR(res);
1049 		switch (error) {
1050 			/* Make a negative dentry */
1051 			case -ENOENT:
1052 				res = NULL;
1053 				goto out;
1054 			/* This turned out not to be a regular file */
1055 			case -EISDIR:
1056 			case -ENOTDIR:
1057 				goto no_open;
1058 			case -ELOOP:
1059 				if (!(nd->intent.open.flags & O_NOFOLLOW))
1060 					goto no_open;
1061 			/* case -EINVAL: */
1062 			default:
1063 				goto out;
1064 		}
1065 	} else if (res != NULL)
1066 		dentry = res;
1067 	nfs_renew_times(dentry);
1068 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1069 out:
1070 	return res;
1071 no_open:
1072 	return nfs_lookup(dir, dentry, nd);
1073 }
1074 
1075 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1076 {
1077 	struct dentry *parent = NULL;
1078 	struct inode *inode = dentry->d_inode;
1079 	struct inode *dir;
1080 	unsigned long verifier;
1081 	int openflags, ret = 0;
1082 
1083 	parent = dget_parent(dentry);
1084 	dir = parent->d_inode;
1085 	if (!is_atomic_open(dir, nd))
1086 		goto no_open;
1087 	/* We can't create new files in nfs_open_revalidate(), so we
1088 	 * optimize away revalidation of negative dentries.
1089 	 */
1090 	if (inode == NULL)
1091 		goto out;
1092 	/* NFS only supports OPEN on regular files */
1093 	if (!S_ISREG(inode->i_mode))
1094 		goto no_open;
1095 	openflags = nd->intent.open.flags;
1096 	/* We cannot do exclusive creation on a positive dentry */
1097 	if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1098 		goto no_open;
1099 	/* We can't create new files, or truncate existing ones here */
1100 	openflags &= ~(O_CREAT|O_TRUNC);
1101 
1102 	/*
1103 	 * Note: we're not holding inode->i_mutex and so may be racing with
1104 	 * operations that change the directory. We therefore save the
1105 	 * change attribute *before* we do the RPC call.
1106 	 */
1107 	lock_kernel();
1108 	verifier = nfs_save_change_attribute(dir);
1109 	ret = nfs4_open_revalidate(dir, dentry, openflags, nd);
1110 	if (!ret)
1111 		nfs_refresh_verifier(dentry, verifier);
1112 	unlock_kernel();
1113 out:
1114 	dput(parent);
1115 	if (!ret)
1116 		d_drop(dentry);
1117 	return ret;
1118 no_open:
1119 	dput(parent);
1120 	if (inode != NULL && nfs_have_delegation(inode, FMODE_READ))
1121 		return 1;
1122 	return nfs_lookup_revalidate(dentry, nd);
1123 }
1124 #endif /* CONFIG_NFSV4 */
1125 
1126 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc)
1127 {
1128 	struct dentry *parent = desc->file->f_path.dentry;
1129 	struct inode *dir = parent->d_inode;
1130 	struct nfs_entry *entry = desc->entry;
1131 	struct dentry *dentry, *alias;
1132 	struct qstr name = {
1133 		.name = entry->name,
1134 		.len = entry->len,
1135 	};
1136 	struct inode *inode;
1137 
1138 	switch (name.len) {
1139 		case 2:
1140 			if (name.name[0] == '.' && name.name[1] == '.')
1141 				return dget_parent(parent);
1142 			break;
1143 		case 1:
1144 			if (name.name[0] == '.')
1145 				return dget(parent);
1146 	}
1147 	name.hash = full_name_hash(name.name, name.len);
1148 	dentry = d_lookup(parent, &name);
1149 	if (dentry != NULL) {
1150 		/* Is this a positive dentry that matches the readdir info? */
1151 		if (dentry->d_inode != NULL &&
1152 				(NFS_FILEID(dentry->d_inode) == entry->ino ||
1153 				d_mountpoint(dentry))) {
1154 			if (!desc->plus || entry->fh->size == 0)
1155 				return dentry;
1156 			if (nfs_compare_fh(NFS_FH(dentry->d_inode),
1157 						entry->fh) == 0)
1158 				goto out_renew;
1159 		}
1160 		/* No, so d_drop to allow one to be created */
1161 		d_drop(dentry);
1162 		dput(dentry);
1163 	}
1164 	if (!desc->plus || !(entry->fattr->valid & NFS_ATTR_FATTR))
1165 		return NULL;
1166 	/* Note: caller is already holding the dir->i_mutex! */
1167 	dentry = d_alloc(parent, &name);
1168 	if (dentry == NULL)
1169 		return NULL;
1170 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1171 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
1172 	if (IS_ERR(inode)) {
1173 		dput(dentry);
1174 		return NULL;
1175 	}
1176 
1177 	alias = d_materialise_unique(dentry, inode);
1178 	if (alias != NULL) {
1179 		dput(dentry);
1180 		if (IS_ERR(alias))
1181 			return NULL;
1182 		dentry = alias;
1183 	}
1184 
1185 	nfs_renew_times(dentry);
1186 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1187 	return dentry;
1188 out_renew:
1189 	nfs_renew_times(dentry);
1190 	nfs_refresh_verifier(dentry, nfs_save_change_attribute(dir));
1191 	return dentry;
1192 }
1193 
1194 /*
1195  * Code common to create, mkdir, and mknod.
1196  */
1197 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1198 				struct nfs_fattr *fattr)
1199 {
1200 	struct inode *inode;
1201 	int error = -EACCES;
1202 
1203 	/* We may have been initialized further down */
1204 	if (dentry->d_inode)
1205 		return 0;
1206 	if (fhandle->size == 0) {
1207 		struct inode *dir = dentry->d_parent->d_inode;
1208 		error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1209 		if (error)
1210 			return error;
1211 	}
1212 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1213 		struct nfs_server *server = NFS_SB(dentry->d_sb);
1214 		error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1215 		if (error < 0)
1216 			return error;
1217 	}
1218 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1219 	error = PTR_ERR(inode);
1220 	if (IS_ERR(inode))
1221 		return error;
1222 	d_instantiate(dentry, inode);
1223 	if (d_unhashed(dentry))
1224 		d_rehash(dentry);
1225 	return 0;
1226 }
1227 
1228 /*
1229  * Following a failed create operation, we drop the dentry rather
1230  * than retain a negative dentry. This avoids a problem in the event
1231  * that the operation succeeded on the server, but an error in the
1232  * reply path made it appear to have failed.
1233  */
1234 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode,
1235 		struct nameidata *nd)
1236 {
1237 	struct iattr attr;
1238 	int error;
1239 	int open_flags = 0;
1240 
1241 	dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1242 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1243 
1244 	attr.ia_mode = mode;
1245 	attr.ia_valid = ATTR_MODE;
1246 
1247 	if (nd && (nd->flags & LOOKUP_CREATE))
1248 		open_flags = nd->intent.open.flags;
1249 
1250 	lock_kernel();
1251 	nfs_begin_data_update(dir);
1252 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, nd);
1253 	nfs_end_data_update(dir);
1254 	if (error != 0)
1255 		goto out_err;
1256 	nfs_renew_times(dentry);
1257 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1258 	unlock_kernel();
1259 	return 0;
1260 out_err:
1261 	unlock_kernel();
1262 	d_drop(dentry);
1263 	return error;
1264 }
1265 
1266 /*
1267  * See comments for nfs_proc_create regarding failed operations.
1268  */
1269 static int
1270 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev)
1271 {
1272 	struct iattr attr;
1273 	int status;
1274 
1275 	dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1276 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1277 
1278 	if (!new_valid_dev(rdev))
1279 		return -EINVAL;
1280 
1281 	attr.ia_mode = mode;
1282 	attr.ia_valid = ATTR_MODE;
1283 
1284 	lock_kernel();
1285 	nfs_begin_data_update(dir);
1286 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1287 	nfs_end_data_update(dir);
1288 	if (status != 0)
1289 		goto out_err;
1290 	nfs_renew_times(dentry);
1291 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1292 	unlock_kernel();
1293 	return 0;
1294 out_err:
1295 	unlock_kernel();
1296 	d_drop(dentry);
1297 	return status;
1298 }
1299 
1300 /*
1301  * See comments for nfs_proc_create regarding failed operations.
1302  */
1303 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1304 {
1305 	struct iattr attr;
1306 	int error;
1307 
1308 	dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1309 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1310 
1311 	attr.ia_valid = ATTR_MODE;
1312 	attr.ia_mode = mode | S_IFDIR;
1313 
1314 	lock_kernel();
1315 	nfs_begin_data_update(dir);
1316 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1317 	nfs_end_data_update(dir);
1318 	if (error != 0)
1319 		goto out_err;
1320 	nfs_renew_times(dentry);
1321 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1322 	unlock_kernel();
1323 	return 0;
1324 out_err:
1325 	d_drop(dentry);
1326 	unlock_kernel();
1327 	return error;
1328 }
1329 
1330 static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1331 {
1332 	int error;
1333 
1334 	dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1335 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1336 
1337 	lock_kernel();
1338 	nfs_begin_data_update(dir);
1339 	error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1340 	/* Ensure the VFS deletes this inode */
1341 	if (error == 0 && dentry->d_inode != NULL)
1342 		clear_nlink(dentry->d_inode);
1343 	nfs_end_data_update(dir);
1344 	unlock_kernel();
1345 
1346 	return error;
1347 }
1348 
1349 static int nfs_sillyrename(struct inode *dir, struct dentry *dentry)
1350 {
1351 	static unsigned int sillycounter;
1352 	const int      i_inosize  = sizeof(dir->i_ino)*2;
1353 	const int      countersize = sizeof(sillycounter)*2;
1354 	const int      slen       = sizeof(".nfs") + i_inosize + countersize - 1;
1355 	char           silly[slen+1];
1356 	struct qstr    qsilly;
1357 	struct dentry *sdentry;
1358 	int            error = -EIO;
1359 
1360 	dfprintk(VFS, "NFS: silly-rename(%s/%s, ct=%d)\n",
1361 		dentry->d_parent->d_name.name, dentry->d_name.name,
1362 		atomic_read(&dentry->d_count));
1363 	nfs_inc_stats(dir, NFSIOS_SILLYRENAME);
1364 
1365 	/*
1366 	 * We don't allow a dentry to be silly-renamed twice.
1367 	 */
1368 	error = -EBUSY;
1369 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1370 		goto out;
1371 
1372 	sprintf(silly, ".nfs%*.*lx",
1373 		i_inosize, i_inosize, dentry->d_inode->i_ino);
1374 
1375 	/* Return delegation in anticipation of the rename */
1376 	nfs_inode_return_delegation(dentry->d_inode);
1377 
1378 	sdentry = NULL;
1379 	do {
1380 		char *suffix = silly + slen - countersize;
1381 
1382 		dput(sdentry);
1383 		sillycounter++;
1384 		sprintf(suffix, "%*.*x", countersize, countersize, sillycounter);
1385 
1386 		dfprintk(VFS, "NFS: trying to rename %s to %s\n",
1387 				dentry->d_name.name, silly);
1388 
1389 		sdentry = lookup_one_len(silly, dentry->d_parent, slen);
1390 		/*
1391 		 * N.B. Better to return EBUSY here ... it could be
1392 		 * dangerous to delete the file while it's in use.
1393 		 */
1394 		if (IS_ERR(sdentry))
1395 			goto out;
1396 	} while(sdentry->d_inode != NULL); /* need negative lookup */
1397 
1398 	qsilly.name = silly;
1399 	qsilly.len  = strlen(silly);
1400 	nfs_begin_data_update(dir);
1401 	if (dentry->d_inode) {
1402 		nfs_begin_data_update(dentry->d_inode);
1403 		error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1404 				dir, &qsilly);
1405 		nfs_mark_for_revalidate(dentry->d_inode);
1406 		nfs_end_data_update(dentry->d_inode);
1407 	} else
1408 		error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1409 				dir, &qsilly);
1410 	nfs_end_data_update(dir);
1411 	if (!error) {
1412 		nfs_renew_times(dentry);
1413 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1414 		d_move(dentry, sdentry);
1415 		error = nfs_async_unlink(dentry);
1416  		/* If we return 0 we don't unlink */
1417 	}
1418 	dput(sdentry);
1419 out:
1420 	return error;
1421 }
1422 
1423 /*
1424  * Remove a file after making sure there are no pending writes,
1425  * and after checking that the file has only one user.
1426  *
1427  * We invalidate the attribute cache and free the inode prior to the operation
1428  * to avoid possible races if the server reuses the inode.
1429  */
1430 static int nfs_safe_remove(struct dentry *dentry)
1431 {
1432 	struct inode *dir = dentry->d_parent->d_inode;
1433 	struct inode *inode = dentry->d_inode;
1434 	int error = -EBUSY;
1435 
1436 	dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1437 		dentry->d_parent->d_name.name, dentry->d_name.name);
1438 
1439 	/* If the dentry was sillyrenamed, we simply call d_delete() */
1440 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1441 		error = 0;
1442 		goto out;
1443 	}
1444 
1445 	nfs_begin_data_update(dir);
1446 	if (inode != NULL) {
1447 		nfs_inode_return_delegation(inode);
1448 		nfs_begin_data_update(inode);
1449 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1450 		/* The VFS may want to delete this inode */
1451 		if (error == 0)
1452 			drop_nlink(inode);
1453 		nfs_mark_for_revalidate(inode);
1454 		nfs_end_data_update(inode);
1455 	} else
1456 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1457 	nfs_end_data_update(dir);
1458 out:
1459 	return error;
1460 }
1461 
1462 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1463  *  belongs to an active ".nfs..." file and we return -EBUSY.
1464  *
1465  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1466  */
1467 static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1468 {
1469 	int error;
1470 	int need_rehash = 0;
1471 
1472 	dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1473 		dir->i_ino, dentry->d_name.name);
1474 
1475 	lock_kernel();
1476 	spin_lock(&dcache_lock);
1477 	spin_lock(&dentry->d_lock);
1478 	if (atomic_read(&dentry->d_count) > 1) {
1479 		spin_unlock(&dentry->d_lock);
1480 		spin_unlock(&dcache_lock);
1481 		/* Start asynchronous writeout of the inode */
1482 		write_inode_now(dentry->d_inode, 0);
1483 		error = nfs_sillyrename(dir, dentry);
1484 		unlock_kernel();
1485 		return error;
1486 	}
1487 	if (!d_unhashed(dentry)) {
1488 		__d_drop(dentry);
1489 		need_rehash = 1;
1490 	}
1491 	spin_unlock(&dentry->d_lock);
1492 	spin_unlock(&dcache_lock);
1493 	error = nfs_safe_remove(dentry);
1494 	if (!error) {
1495 		nfs_renew_times(dentry);
1496 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1497 	} else if (need_rehash)
1498 		d_rehash(dentry);
1499 	unlock_kernel();
1500 	return error;
1501 }
1502 
1503 /*
1504  * To create a symbolic link, most file systems instantiate a new inode,
1505  * add a page to it containing the path, then write it out to the disk
1506  * using prepare_write/commit_write.
1507  *
1508  * Unfortunately the NFS client can't create the in-core inode first
1509  * because it needs a file handle to create an in-core inode (see
1510  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1511  * symlink request has completed on the server.
1512  *
1513  * So instead we allocate a raw page, copy the symname into it, then do
1514  * the SYMLINK request with the page as the buffer.  If it succeeds, we
1515  * now have a new file handle and can instantiate an in-core NFS inode
1516  * and move the raw page into its mapping.
1517  */
1518 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1519 {
1520 	struct pagevec lru_pvec;
1521 	struct page *page;
1522 	char *kaddr;
1523 	struct iattr attr;
1524 	unsigned int pathlen = strlen(symname);
1525 	int error;
1526 
1527 	dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1528 		dir->i_ino, dentry->d_name.name, symname);
1529 
1530 	if (pathlen > PAGE_SIZE)
1531 		return -ENAMETOOLONG;
1532 
1533 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
1534 	attr.ia_valid = ATTR_MODE;
1535 
1536 	lock_kernel();
1537 
1538 	page = alloc_page(GFP_KERNEL);
1539 	if (!page) {
1540 		unlock_kernel();
1541 		return -ENOMEM;
1542 	}
1543 
1544 	kaddr = kmap_atomic(page, KM_USER0);
1545 	memcpy(kaddr, symname, pathlen);
1546 	if (pathlen < PAGE_SIZE)
1547 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1548 	kunmap_atomic(kaddr, KM_USER0);
1549 
1550 	nfs_begin_data_update(dir);
1551 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1552 	nfs_end_data_update(dir);
1553 	if (error != 0) {
1554 		dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1555 			dir->i_sb->s_id, dir->i_ino,
1556 			dentry->d_name.name, symname, error);
1557 		d_drop(dentry);
1558 		__free_page(page);
1559 		unlock_kernel();
1560 		return error;
1561 	}
1562 
1563 	/*
1564 	 * No big deal if we can't add this page to the page cache here.
1565 	 * READLINK will get the missing page from the server if needed.
1566 	 */
1567 	pagevec_init(&lru_pvec, 0);
1568 	if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1569 							GFP_KERNEL)) {
1570 		pagevec_add(&lru_pvec, page);
1571 		pagevec_lru_add(&lru_pvec);
1572 		SetPageUptodate(page);
1573 		unlock_page(page);
1574 	} else
1575 		__free_page(page);
1576 
1577 	unlock_kernel();
1578 	return 0;
1579 }
1580 
1581 static int
1582 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1583 {
1584 	struct inode *inode = old_dentry->d_inode;
1585 	int error;
1586 
1587 	dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1588 		old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1589 		dentry->d_parent->d_name.name, dentry->d_name.name);
1590 
1591 	lock_kernel();
1592 	nfs_begin_data_update(dir);
1593 	nfs_begin_data_update(inode);
1594 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1595 	if (error == 0) {
1596 		atomic_inc(&inode->i_count);
1597 		d_instantiate(dentry, inode);
1598 	}
1599 	nfs_end_data_update(inode);
1600 	nfs_end_data_update(dir);
1601 	unlock_kernel();
1602 	return error;
1603 }
1604 
1605 /*
1606  * RENAME
1607  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1608  * different file handle for the same inode after a rename (e.g. when
1609  * moving to a different directory). A fail-safe method to do so would
1610  * be to look up old_dir/old_name, create a link to new_dir/new_name and
1611  * rename the old file using the sillyrename stuff. This way, the original
1612  * file in old_dir will go away when the last process iput()s the inode.
1613  *
1614  * FIXED.
1615  *
1616  * It actually works quite well. One needs to have the possibility for
1617  * at least one ".nfs..." file in each directory the file ever gets
1618  * moved or linked to which happens automagically with the new
1619  * implementation that only depends on the dcache stuff instead of
1620  * using the inode layer
1621  *
1622  * Unfortunately, things are a little more complicated than indicated
1623  * above. For a cross-directory move, we want to make sure we can get
1624  * rid of the old inode after the operation.  This means there must be
1625  * no pending writes (if it's a file), and the use count must be 1.
1626  * If these conditions are met, we can drop the dentries before doing
1627  * the rename.
1628  */
1629 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1630 		      struct inode *new_dir, struct dentry *new_dentry)
1631 {
1632 	struct inode *old_inode = old_dentry->d_inode;
1633 	struct inode *new_inode = new_dentry->d_inode;
1634 	struct dentry *dentry = NULL, *rehash = NULL;
1635 	int error = -EBUSY;
1636 
1637 	/*
1638 	 * To prevent any new references to the target during the rename,
1639 	 * we unhash the dentry and free the inode in advance.
1640 	 */
1641 	lock_kernel();
1642 	if (!d_unhashed(new_dentry)) {
1643 		d_drop(new_dentry);
1644 		rehash = new_dentry;
1645 	}
1646 
1647 	dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1648 		 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1649 		 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1650 		 atomic_read(&new_dentry->d_count));
1651 
1652 	/*
1653 	 * First check whether the target is busy ... we can't
1654 	 * safely do _any_ rename if the target is in use.
1655 	 *
1656 	 * For files, make a copy of the dentry and then do a
1657 	 * silly-rename. If the silly-rename succeeds, the
1658 	 * copied dentry is hashed and becomes the new target.
1659 	 */
1660 	if (!new_inode)
1661 		goto go_ahead;
1662 	if (S_ISDIR(new_inode->i_mode)) {
1663 		error = -EISDIR;
1664 		if (!S_ISDIR(old_inode->i_mode))
1665 			goto out;
1666 	} else if (atomic_read(&new_dentry->d_count) > 2) {
1667 		int err;
1668 		/* copy the target dentry's name */
1669 		dentry = d_alloc(new_dentry->d_parent,
1670 				 &new_dentry->d_name);
1671 		if (!dentry)
1672 			goto out;
1673 
1674 		/* silly-rename the existing target ... */
1675 		err = nfs_sillyrename(new_dir, new_dentry);
1676 		if (!err) {
1677 			new_dentry = rehash = dentry;
1678 			new_inode = NULL;
1679 			/* instantiate the replacement target */
1680 			d_instantiate(new_dentry, NULL);
1681 		} else if (atomic_read(&new_dentry->d_count) > 1)
1682 			/* dentry still busy? */
1683 			goto out;
1684 	} else
1685 		drop_nlink(new_inode);
1686 
1687 go_ahead:
1688 	/*
1689 	 * ... prune child dentries and writebacks if needed.
1690 	 */
1691 	if (atomic_read(&old_dentry->d_count) > 1) {
1692 		if (S_ISREG(old_inode->i_mode))
1693 			nfs_wb_all(old_inode);
1694 		shrink_dcache_parent(old_dentry);
1695 	}
1696 	nfs_inode_return_delegation(old_inode);
1697 
1698 	if (new_inode != NULL) {
1699 		nfs_inode_return_delegation(new_inode);
1700 		d_delete(new_dentry);
1701 	}
1702 
1703 	nfs_begin_data_update(old_dir);
1704 	nfs_begin_data_update(new_dir);
1705 	nfs_begin_data_update(old_inode);
1706 	error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1707 					   new_dir, &new_dentry->d_name);
1708 	nfs_mark_for_revalidate(old_inode);
1709 	nfs_end_data_update(old_inode);
1710 	nfs_end_data_update(new_dir);
1711 	nfs_end_data_update(old_dir);
1712 out:
1713 	if (rehash)
1714 		d_rehash(rehash);
1715 	if (!error) {
1716 		d_move(old_dentry, new_dentry);
1717 		nfs_renew_times(new_dentry);
1718 		nfs_refresh_verifier(new_dentry, nfs_save_change_attribute(new_dir));
1719 	}
1720 
1721 	/* new dentry created? */
1722 	if (dentry)
1723 		dput(dentry);
1724 	unlock_kernel();
1725 	return error;
1726 }
1727 
1728 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1729 static LIST_HEAD(nfs_access_lru_list);
1730 static atomic_long_t nfs_access_nr_entries;
1731 
1732 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1733 {
1734 	put_rpccred(entry->cred);
1735 	kfree(entry);
1736 	smp_mb__before_atomic_dec();
1737 	atomic_long_dec(&nfs_access_nr_entries);
1738 	smp_mb__after_atomic_dec();
1739 }
1740 
1741 int nfs_access_cache_shrinker(int nr_to_scan, gfp_t gfp_mask)
1742 {
1743 	LIST_HEAD(head);
1744 	struct nfs_inode *nfsi;
1745 	struct nfs_access_entry *cache;
1746 
1747 	spin_lock(&nfs_access_lru_lock);
1748 restart:
1749 	list_for_each_entry(nfsi, &nfs_access_lru_list, access_cache_inode_lru) {
1750 		struct inode *inode;
1751 
1752 		if (nr_to_scan-- == 0)
1753 			break;
1754 		inode = igrab(&nfsi->vfs_inode);
1755 		if (inode == NULL)
1756 			continue;
1757 		spin_lock(&inode->i_lock);
1758 		if (list_empty(&nfsi->access_cache_entry_lru))
1759 			goto remove_lru_entry;
1760 		cache = list_entry(nfsi->access_cache_entry_lru.next,
1761 				struct nfs_access_entry, lru);
1762 		list_move(&cache->lru, &head);
1763 		rb_erase(&cache->rb_node, &nfsi->access_cache);
1764 		if (!list_empty(&nfsi->access_cache_entry_lru))
1765 			list_move_tail(&nfsi->access_cache_inode_lru,
1766 					&nfs_access_lru_list);
1767 		else {
1768 remove_lru_entry:
1769 			list_del_init(&nfsi->access_cache_inode_lru);
1770 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1771 		}
1772 		spin_unlock(&inode->i_lock);
1773 		iput(inode);
1774 		goto restart;
1775 	}
1776 	spin_unlock(&nfs_access_lru_lock);
1777 	while (!list_empty(&head)) {
1778 		cache = list_entry(head.next, struct nfs_access_entry, lru);
1779 		list_del(&cache->lru);
1780 		nfs_access_free_entry(cache);
1781 	}
1782 	return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
1783 }
1784 
1785 static void __nfs_access_zap_cache(struct inode *inode)
1786 {
1787 	struct nfs_inode *nfsi = NFS_I(inode);
1788 	struct rb_root *root_node = &nfsi->access_cache;
1789 	struct rb_node *n, *dispose = NULL;
1790 	struct nfs_access_entry *entry;
1791 
1792 	/* Unhook entries from the cache */
1793 	while ((n = rb_first(root_node)) != NULL) {
1794 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
1795 		rb_erase(n, root_node);
1796 		list_del(&entry->lru);
1797 		n->rb_left = dispose;
1798 		dispose = n;
1799 	}
1800 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
1801 	spin_unlock(&inode->i_lock);
1802 
1803 	/* Now kill them all! */
1804 	while (dispose != NULL) {
1805 		n = dispose;
1806 		dispose = n->rb_left;
1807 		nfs_access_free_entry(rb_entry(n, struct nfs_access_entry, rb_node));
1808 	}
1809 }
1810 
1811 void nfs_access_zap_cache(struct inode *inode)
1812 {
1813 	/* Remove from global LRU init */
1814 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_FLAGS(inode))) {
1815 		spin_lock(&nfs_access_lru_lock);
1816 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
1817 		spin_unlock(&nfs_access_lru_lock);
1818 	}
1819 
1820 	spin_lock(&inode->i_lock);
1821 	/* This will release the spinlock */
1822 	__nfs_access_zap_cache(inode);
1823 }
1824 
1825 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
1826 {
1827 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
1828 	struct nfs_access_entry *entry;
1829 
1830 	while (n != NULL) {
1831 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
1832 
1833 		if (cred < entry->cred)
1834 			n = n->rb_left;
1835 		else if (cred > entry->cred)
1836 			n = n->rb_right;
1837 		else
1838 			return entry;
1839 	}
1840 	return NULL;
1841 }
1842 
1843 int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
1844 {
1845 	struct nfs_inode *nfsi = NFS_I(inode);
1846 	struct nfs_access_entry *cache;
1847 	int err = -ENOENT;
1848 
1849 	spin_lock(&inode->i_lock);
1850 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
1851 		goto out_zap;
1852 	cache = nfs_access_search_rbtree(inode, cred);
1853 	if (cache == NULL)
1854 		goto out;
1855 	if (time_after(jiffies, cache->jiffies + NFS_ATTRTIMEO(inode)))
1856 		goto out_stale;
1857 	res->jiffies = cache->jiffies;
1858 	res->cred = cache->cred;
1859 	res->mask = cache->mask;
1860 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
1861 	err = 0;
1862 out:
1863 	spin_unlock(&inode->i_lock);
1864 	return err;
1865 out_stale:
1866 	rb_erase(&cache->rb_node, &nfsi->access_cache);
1867 	list_del(&cache->lru);
1868 	spin_unlock(&inode->i_lock);
1869 	nfs_access_free_entry(cache);
1870 	return -ENOENT;
1871 out_zap:
1872 	/* This will release the spinlock */
1873 	__nfs_access_zap_cache(inode);
1874 	return -ENOENT;
1875 }
1876 
1877 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
1878 {
1879 	struct nfs_inode *nfsi = NFS_I(inode);
1880 	struct rb_root *root_node = &nfsi->access_cache;
1881 	struct rb_node **p = &root_node->rb_node;
1882 	struct rb_node *parent = NULL;
1883 	struct nfs_access_entry *entry;
1884 
1885 	spin_lock(&inode->i_lock);
1886 	while (*p != NULL) {
1887 		parent = *p;
1888 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
1889 
1890 		if (set->cred < entry->cred)
1891 			p = &parent->rb_left;
1892 		else if (set->cred > entry->cred)
1893 			p = &parent->rb_right;
1894 		else
1895 			goto found;
1896 	}
1897 	rb_link_node(&set->rb_node, parent, p);
1898 	rb_insert_color(&set->rb_node, root_node);
1899 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1900 	spin_unlock(&inode->i_lock);
1901 	return;
1902 found:
1903 	rb_replace_node(parent, &set->rb_node, root_node);
1904 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1905 	list_del(&entry->lru);
1906 	spin_unlock(&inode->i_lock);
1907 	nfs_access_free_entry(entry);
1908 }
1909 
1910 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
1911 {
1912 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
1913 	if (cache == NULL)
1914 		return;
1915 	RB_CLEAR_NODE(&cache->rb_node);
1916 	cache->jiffies = set->jiffies;
1917 	cache->cred = get_rpccred(set->cred);
1918 	cache->mask = set->mask;
1919 
1920 	nfs_access_add_rbtree(inode, cache);
1921 
1922 	/* Update accounting */
1923 	smp_mb__before_atomic_inc();
1924 	atomic_long_inc(&nfs_access_nr_entries);
1925 	smp_mb__after_atomic_inc();
1926 
1927 	/* Add inode to global LRU list */
1928 	if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_FLAGS(inode))) {
1929 		spin_lock(&nfs_access_lru_lock);
1930 		list_add_tail(&NFS_I(inode)->access_cache_inode_lru, &nfs_access_lru_list);
1931 		spin_unlock(&nfs_access_lru_lock);
1932 	}
1933 }
1934 
1935 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
1936 {
1937 	struct nfs_access_entry cache;
1938 	int status;
1939 
1940 	status = nfs_access_get_cached(inode, cred, &cache);
1941 	if (status == 0)
1942 		goto out;
1943 
1944 	/* Be clever: ask server to check for all possible rights */
1945 	cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
1946 	cache.cred = cred;
1947 	cache.jiffies = jiffies;
1948 	status = NFS_PROTO(inode)->access(inode, &cache);
1949 	if (status != 0)
1950 		return status;
1951 	nfs_access_add_cache(inode, &cache);
1952 out:
1953 	if ((cache.mask & mask) == mask)
1954 		return 0;
1955 	return -EACCES;
1956 }
1957 
1958 int nfs_permission(struct inode *inode, int mask, struct nameidata *nd)
1959 {
1960 	struct rpc_cred *cred;
1961 	int res = 0;
1962 
1963 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
1964 
1965 	if (mask == 0)
1966 		goto out;
1967 	/* Is this sys_access() ? */
1968 	if (nd != NULL && (nd->flags & LOOKUP_ACCESS))
1969 		goto force_lookup;
1970 
1971 	switch (inode->i_mode & S_IFMT) {
1972 		case S_IFLNK:
1973 			goto out;
1974 		case S_IFREG:
1975 			/* NFSv4 has atomic_open... */
1976 			if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
1977 					&& nd != NULL
1978 					&& (nd->flags & LOOKUP_OPEN))
1979 				goto out;
1980 			break;
1981 		case S_IFDIR:
1982 			/*
1983 			 * Optimize away all write operations, since the server
1984 			 * will check permissions when we perform the op.
1985 			 */
1986 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
1987 				goto out;
1988 	}
1989 
1990 force_lookup:
1991 	lock_kernel();
1992 
1993 	if (!NFS_PROTO(inode)->access)
1994 		goto out_notsup;
1995 
1996 	cred = rpcauth_lookupcred(NFS_CLIENT(inode)->cl_auth, 0);
1997 	if (!IS_ERR(cred)) {
1998 		res = nfs_do_access(inode, cred, mask);
1999 		put_rpccred(cred);
2000 	} else
2001 		res = PTR_ERR(cred);
2002 	unlock_kernel();
2003 out:
2004 	dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
2005 		inode->i_sb->s_id, inode->i_ino, mask, res);
2006 	return res;
2007 out_notsup:
2008 	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2009 	if (res == 0)
2010 		res = generic_permission(inode, mask, NULL);
2011 	unlock_kernel();
2012 	goto out;
2013 }
2014 
2015 /*
2016  * Local variables:
2017  *  version-control: t
2018  *  kept-new-versions: 5
2019  * End:
2020  */
2021