1 /* 2 * linux/fs/nfs/dir.c 3 * 4 * Copyright (C) 1992 Rick Sladkey 5 * 6 * nfs directory handling functions 7 * 8 * 10 Apr 1996 Added silly rename for unlink --okir 9 * 28 Sep 1996 Improved directory cache --okir 10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de 11 * Re-implemented silly rename for unlink, newly implemented 12 * silly rename for nfs_rename() following the suggestions 13 * of Olaf Kirch (okir) found in this file. 14 * Following Linus comments on my original hack, this version 15 * depends only on the dcache stuff and doesn't touch the inode 16 * layer (iput() and friends). 17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM 18 */ 19 20 #include <linux/time.h> 21 #include <linux/errno.h> 22 #include <linux/stat.h> 23 #include <linux/fcntl.h> 24 #include <linux/string.h> 25 #include <linux/kernel.h> 26 #include <linux/slab.h> 27 #include <linux/mm.h> 28 #include <linux/sunrpc/clnt.h> 29 #include <linux/nfs_fs.h> 30 #include <linux/nfs_mount.h> 31 #include <linux/pagemap.h> 32 #include <linux/smp_lock.h> 33 #include <linux/pagevec.h> 34 #include <linux/namei.h> 35 #include <linux/mount.h> 36 #include <linux/sched.h> 37 38 #include "nfs4_fs.h" 39 #include "delegation.h" 40 #include "iostat.h" 41 #include "internal.h" 42 43 /* #define NFS_DEBUG_VERBOSE 1 */ 44 45 static int nfs_opendir(struct inode *, struct file *); 46 static int nfs_readdir(struct file *, void *, filldir_t); 47 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *); 48 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *); 49 static int nfs_mkdir(struct inode *, struct dentry *, int); 50 static int nfs_rmdir(struct inode *, struct dentry *); 51 static int nfs_unlink(struct inode *, struct dentry *); 52 static int nfs_symlink(struct inode *, struct dentry *, const char *); 53 static int nfs_link(struct dentry *, struct inode *, struct dentry *); 54 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t); 55 static int nfs_rename(struct inode *, struct dentry *, 56 struct inode *, struct dentry *); 57 static int nfs_fsync_dir(struct file *, struct dentry *, int); 58 static loff_t nfs_llseek_dir(struct file *, loff_t, int); 59 60 const struct file_operations nfs_dir_operations = { 61 .llseek = nfs_llseek_dir, 62 .read = generic_read_dir, 63 .readdir = nfs_readdir, 64 .open = nfs_opendir, 65 .release = nfs_release, 66 .fsync = nfs_fsync_dir, 67 }; 68 69 const struct inode_operations nfs_dir_inode_operations = { 70 .create = nfs_create, 71 .lookup = nfs_lookup, 72 .link = nfs_link, 73 .unlink = nfs_unlink, 74 .symlink = nfs_symlink, 75 .mkdir = nfs_mkdir, 76 .rmdir = nfs_rmdir, 77 .mknod = nfs_mknod, 78 .rename = nfs_rename, 79 .permission = nfs_permission, 80 .getattr = nfs_getattr, 81 .setattr = nfs_setattr, 82 }; 83 84 #ifdef CONFIG_NFS_V3 85 const struct inode_operations nfs3_dir_inode_operations = { 86 .create = nfs_create, 87 .lookup = nfs_lookup, 88 .link = nfs_link, 89 .unlink = nfs_unlink, 90 .symlink = nfs_symlink, 91 .mkdir = nfs_mkdir, 92 .rmdir = nfs_rmdir, 93 .mknod = nfs_mknod, 94 .rename = nfs_rename, 95 .permission = nfs_permission, 96 .getattr = nfs_getattr, 97 .setattr = nfs_setattr, 98 .listxattr = nfs3_listxattr, 99 .getxattr = nfs3_getxattr, 100 .setxattr = nfs3_setxattr, 101 .removexattr = nfs3_removexattr, 102 }; 103 #endif /* CONFIG_NFS_V3 */ 104 105 #ifdef CONFIG_NFS_V4 106 107 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *); 108 const struct inode_operations nfs4_dir_inode_operations = { 109 .create = nfs_create, 110 .lookup = nfs_atomic_lookup, 111 .link = nfs_link, 112 .unlink = nfs_unlink, 113 .symlink = nfs_symlink, 114 .mkdir = nfs_mkdir, 115 .rmdir = nfs_rmdir, 116 .mknod = nfs_mknod, 117 .rename = nfs_rename, 118 .permission = nfs_permission, 119 .getattr = nfs_getattr, 120 .setattr = nfs_setattr, 121 .getxattr = nfs4_getxattr, 122 .setxattr = nfs4_setxattr, 123 .listxattr = nfs4_listxattr, 124 }; 125 126 #endif /* CONFIG_NFS_V4 */ 127 128 /* 129 * Open file 130 */ 131 static int 132 nfs_opendir(struct inode *inode, struct file *filp) 133 { 134 int res; 135 136 dfprintk(VFS, "NFS: opendir(%s/%ld)\n", 137 inode->i_sb->s_id, inode->i_ino); 138 139 lock_kernel(); 140 /* Call generic open code in order to cache credentials */ 141 res = nfs_open(inode, filp); 142 unlock_kernel(); 143 return res; 144 } 145 146 typedef __be32 * (*decode_dirent_t)(__be32 *, struct nfs_entry *, int); 147 typedef struct { 148 struct file *file; 149 struct page *page; 150 unsigned long page_index; 151 __be32 *ptr; 152 u64 *dir_cookie; 153 loff_t current_index; 154 struct nfs_entry *entry; 155 decode_dirent_t decode; 156 int plus; 157 int error; 158 unsigned long timestamp; 159 int timestamp_valid; 160 } nfs_readdir_descriptor_t; 161 162 /* Now we cache directories properly, by stuffing the dirent 163 * data directly in the page cache. 164 * 165 * Inode invalidation due to refresh etc. takes care of 166 * _everything_, no sloppy entry flushing logic, no extraneous 167 * copying, network direct to page cache, the way it was meant 168 * to be. 169 * 170 * NOTE: Dirent information verification is done always by the 171 * page-in of the RPC reply, nowhere else, this simplies 172 * things substantially. 173 */ 174 static 175 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page *page) 176 { 177 struct file *file = desc->file; 178 struct inode *inode = file->f_path.dentry->d_inode; 179 struct rpc_cred *cred = nfs_file_cred(file); 180 unsigned long timestamp; 181 int error; 182 183 dfprintk(DIRCACHE, "NFS: %s: reading cookie %Lu into page %lu\n", 184 __FUNCTION__, (long long)desc->entry->cookie, 185 page->index); 186 187 again: 188 timestamp = jiffies; 189 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, desc->entry->cookie, page, 190 NFS_SERVER(inode)->dtsize, desc->plus); 191 if (error < 0) { 192 /* We requested READDIRPLUS, but the server doesn't grok it */ 193 if (error == -ENOTSUPP && desc->plus) { 194 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS; 195 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 196 desc->plus = 0; 197 goto again; 198 } 199 goto error; 200 } 201 desc->timestamp = timestamp; 202 desc->timestamp_valid = 1; 203 SetPageUptodate(page); 204 /* Ensure consistent page alignment of the data. 205 * Note: assumes we have exclusive access to this mapping either 206 * through inode->i_mutex or some other mechanism. 207 */ 208 if (page->index == 0 && invalidate_inode_pages2_range(inode->i_mapping, PAGE_CACHE_SIZE, -1) < 0) { 209 /* Should never happen */ 210 nfs_zap_mapping(inode, inode->i_mapping); 211 } 212 unlock_page(page); 213 return 0; 214 error: 215 unlock_page(page); 216 desc->error = error; 217 return -EIO; 218 } 219 220 static inline 221 int dir_decode(nfs_readdir_descriptor_t *desc) 222 { 223 __be32 *p = desc->ptr; 224 p = desc->decode(p, desc->entry, desc->plus); 225 if (IS_ERR(p)) 226 return PTR_ERR(p); 227 desc->ptr = p; 228 if (desc->timestamp_valid) 229 desc->entry->fattr->time_start = desc->timestamp; 230 else 231 desc->entry->fattr->valid &= ~NFS_ATTR_FATTR; 232 return 0; 233 } 234 235 static inline 236 void dir_page_release(nfs_readdir_descriptor_t *desc) 237 { 238 kunmap(desc->page); 239 page_cache_release(desc->page); 240 desc->page = NULL; 241 desc->ptr = NULL; 242 } 243 244 /* 245 * Given a pointer to a buffer that has already been filled by a call 246 * to readdir, find the next entry with cookie '*desc->dir_cookie'. 247 * 248 * If the end of the buffer has been reached, return -EAGAIN, if not, 249 * return the offset within the buffer of the next entry to be 250 * read. 251 */ 252 static inline 253 int find_dirent(nfs_readdir_descriptor_t *desc) 254 { 255 struct nfs_entry *entry = desc->entry; 256 int loop_count = 0, 257 status; 258 259 while((status = dir_decode(desc)) == 0) { 260 dfprintk(DIRCACHE, "NFS: %s: examining cookie %Lu\n", 261 __FUNCTION__, (unsigned long long)entry->cookie); 262 if (entry->prev_cookie == *desc->dir_cookie) 263 break; 264 if (loop_count++ > 200) { 265 loop_count = 0; 266 schedule(); 267 } 268 } 269 return status; 270 } 271 272 /* 273 * Given a pointer to a buffer that has already been filled by a call 274 * to readdir, find the entry at offset 'desc->file->f_pos'. 275 * 276 * If the end of the buffer has been reached, return -EAGAIN, if not, 277 * return the offset within the buffer of the next entry to be 278 * read. 279 */ 280 static inline 281 int find_dirent_index(nfs_readdir_descriptor_t *desc) 282 { 283 struct nfs_entry *entry = desc->entry; 284 int loop_count = 0, 285 status; 286 287 for(;;) { 288 status = dir_decode(desc); 289 if (status) 290 break; 291 292 dfprintk(DIRCACHE, "NFS: found cookie %Lu at index %Ld\n", 293 (unsigned long long)entry->cookie, desc->current_index); 294 295 if (desc->file->f_pos == desc->current_index) { 296 *desc->dir_cookie = entry->cookie; 297 break; 298 } 299 desc->current_index++; 300 if (loop_count++ > 200) { 301 loop_count = 0; 302 schedule(); 303 } 304 } 305 return status; 306 } 307 308 /* 309 * Find the given page, and call find_dirent() or find_dirent_index in 310 * order to try to return the next entry. 311 */ 312 static inline 313 int find_dirent_page(nfs_readdir_descriptor_t *desc) 314 { 315 struct inode *inode = desc->file->f_path.dentry->d_inode; 316 struct page *page; 317 int status; 318 319 dfprintk(DIRCACHE, "NFS: %s: searching page %ld for target %Lu\n", 320 __FUNCTION__, desc->page_index, 321 (long long) *desc->dir_cookie); 322 323 /* If we find the page in the page_cache, we cannot be sure 324 * how fresh the data is, so we will ignore readdir_plus attributes. 325 */ 326 desc->timestamp_valid = 0; 327 page = read_cache_page(inode->i_mapping, desc->page_index, 328 (filler_t *)nfs_readdir_filler, desc); 329 if (IS_ERR(page)) { 330 status = PTR_ERR(page); 331 goto out; 332 } 333 334 /* NOTE: Someone else may have changed the READDIRPLUS flag */ 335 desc->page = page; 336 desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */ 337 if (*desc->dir_cookie != 0) 338 status = find_dirent(desc); 339 else 340 status = find_dirent_index(desc); 341 if (status < 0) 342 dir_page_release(desc); 343 out: 344 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, status); 345 return status; 346 } 347 348 /* 349 * Recurse through the page cache pages, and return a 350 * filled nfs_entry structure of the next directory entry if possible. 351 * 352 * The target for the search is '*desc->dir_cookie' if non-0, 353 * 'desc->file->f_pos' otherwise 354 */ 355 static inline 356 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc) 357 { 358 int loop_count = 0; 359 int res; 360 361 /* Always search-by-index from the beginning of the cache */ 362 if (*desc->dir_cookie == 0) { 363 dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for offset %Ld\n", 364 (long long)desc->file->f_pos); 365 desc->page_index = 0; 366 desc->entry->cookie = desc->entry->prev_cookie = 0; 367 desc->entry->eof = 0; 368 desc->current_index = 0; 369 } else 370 dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for cookie %Lu\n", 371 (unsigned long long)*desc->dir_cookie); 372 373 for (;;) { 374 res = find_dirent_page(desc); 375 if (res != -EAGAIN) 376 break; 377 /* Align to beginning of next page */ 378 desc->page_index ++; 379 if (loop_count++ > 200) { 380 loop_count = 0; 381 schedule(); 382 } 383 } 384 385 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, res); 386 return res; 387 } 388 389 static inline unsigned int dt_type(struct inode *inode) 390 { 391 return (inode->i_mode >> 12) & 15; 392 } 393 394 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc); 395 396 /* 397 * Once we've found the start of the dirent within a page: fill 'er up... 398 */ 399 static 400 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent, 401 filldir_t filldir) 402 { 403 struct file *file = desc->file; 404 struct nfs_entry *entry = desc->entry; 405 struct dentry *dentry = NULL; 406 u64 fileid; 407 int loop_count = 0, 408 res; 409 410 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling starting @ cookie %Lu\n", 411 (unsigned long long)entry->cookie); 412 413 for(;;) { 414 unsigned d_type = DT_UNKNOWN; 415 /* Note: entry->prev_cookie contains the cookie for 416 * retrieving the current dirent on the server */ 417 fileid = entry->ino; 418 419 /* Get a dentry if we have one */ 420 if (dentry != NULL) 421 dput(dentry); 422 dentry = nfs_readdir_lookup(desc); 423 424 /* Use readdirplus info */ 425 if (dentry != NULL && dentry->d_inode != NULL) { 426 d_type = dt_type(dentry->d_inode); 427 fileid = NFS_FILEID(dentry->d_inode); 428 } 429 430 res = filldir(dirent, entry->name, entry->len, 431 file->f_pos, nfs_compat_user_ino64(fileid), 432 d_type); 433 if (res < 0) 434 break; 435 file->f_pos++; 436 *desc->dir_cookie = entry->cookie; 437 if (dir_decode(desc) != 0) { 438 desc->page_index ++; 439 break; 440 } 441 if (loop_count++ > 200) { 442 loop_count = 0; 443 schedule(); 444 } 445 } 446 dir_page_release(desc); 447 if (dentry != NULL) 448 dput(dentry); 449 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n", 450 (unsigned long long)*desc->dir_cookie, res); 451 return res; 452 } 453 454 /* 455 * If we cannot find a cookie in our cache, we suspect that this is 456 * because it points to a deleted file, so we ask the server to return 457 * whatever it thinks is the next entry. We then feed this to filldir. 458 * If all goes well, we should then be able to find our way round the 459 * cache on the next call to readdir_search_pagecache(); 460 * 461 * NOTE: we cannot add the anonymous page to the pagecache because 462 * the data it contains might not be page aligned. Besides, 463 * we should already have a complete representation of the 464 * directory in the page cache by the time we get here. 465 */ 466 static inline 467 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent, 468 filldir_t filldir) 469 { 470 struct file *file = desc->file; 471 struct inode *inode = file->f_path.dentry->d_inode; 472 struct rpc_cred *cred = nfs_file_cred(file); 473 struct page *page = NULL; 474 int status; 475 unsigned long timestamp; 476 477 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n", 478 (unsigned long long)*desc->dir_cookie); 479 480 page = alloc_page(GFP_HIGHUSER); 481 if (!page) { 482 status = -ENOMEM; 483 goto out; 484 } 485 timestamp = jiffies; 486 desc->error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, *desc->dir_cookie, 487 page, 488 NFS_SERVER(inode)->dtsize, 489 desc->plus); 490 desc->page = page; 491 desc->ptr = kmap(page); /* matching kunmap in nfs_do_filldir */ 492 if (desc->error >= 0) { 493 desc->timestamp = timestamp; 494 desc->timestamp_valid = 1; 495 if ((status = dir_decode(desc)) == 0) 496 desc->entry->prev_cookie = *desc->dir_cookie; 497 } else 498 status = -EIO; 499 if (status < 0) 500 goto out_release; 501 502 status = nfs_do_filldir(desc, dirent, filldir); 503 504 /* Reset read descriptor so it searches the page cache from 505 * the start upon the next call to readdir_search_pagecache() */ 506 desc->page_index = 0; 507 desc->entry->cookie = desc->entry->prev_cookie = 0; 508 desc->entry->eof = 0; 509 out: 510 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", 511 __FUNCTION__, status); 512 return status; 513 out_release: 514 dir_page_release(desc); 515 goto out; 516 } 517 518 /* The file offset position represents the dirent entry number. A 519 last cookie cache takes care of the common case of reading the 520 whole directory. 521 */ 522 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir) 523 { 524 struct dentry *dentry = filp->f_path.dentry; 525 struct inode *inode = dentry->d_inode; 526 nfs_readdir_descriptor_t my_desc, 527 *desc = &my_desc; 528 struct nfs_entry my_entry; 529 struct nfs_fh fh; 530 struct nfs_fattr fattr; 531 long res; 532 533 dfprintk(VFS, "NFS: readdir(%s/%s) starting at cookie %Lu\n", 534 dentry->d_parent->d_name.name, dentry->d_name.name, 535 (long long)filp->f_pos); 536 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS); 537 538 lock_kernel(); 539 540 /* 541 * filp->f_pos points to the dirent entry number. 542 * *desc->dir_cookie has the cookie for the next entry. We have 543 * to either find the entry with the appropriate number or 544 * revalidate the cookie. 545 */ 546 memset(desc, 0, sizeof(*desc)); 547 548 desc->file = filp; 549 desc->dir_cookie = &nfs_file_open_context(filp)->dir_cookie; 550 desc->decode = NFS_PROTO(inode)->decode_dirent; 551 desc->plus = NFS_USE_READDIRPLUS(inode); 552 553 my_entry.cookie = my_entry.prev_cookie = 0; 554 my_entry.eof = 0; 555 my_entry.fh = &fh; 556 my_entry.fattr = &fattr; 557 nfs_fattr_init(&fattr); 558 desc->entry = &my_entry; 559 560 nfs_block_sillyrename(dentry); 561 res = nfs_revalidate_mapping_nolock(inode, filp->f_mapping); 562 if (res < 0) 563 goto out; 564 565 while(!desc->entry->eof) { 566 res = readdir_search_pagecache(desc); 567 568 if (res == -EBADCOOKIE) { 569 /* This means either end of directory */ 570 if (*desc->dir_cookie && desc->entry->cookie != *desc->dir_cookie) { 571 /* Or that the server has 'lost' a cookie */ 572 res = uncached_readdir(desc, dirent, filldir); 573 if (res >= 0) 574 continue; 575 } 576 res = 0; 577 break; 578 } 579 if (res == -ETOOSMALL && desc->plus) { 580 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 581 nfs_zap_caches(inode); 582 desc->plus = 0; 583 desc->entry->eof = 0; 584 continue; 585 } 586 if (res < 0) 587 break; 588 589 res = nfs_do_filldir(desc, dirent, filldir); 590 if (res < 0) { 591 res = 0; 592 break; 593 } 594 } 595 out: 596 nfs_unblock_sillyrename(dentry); 597 unlock_kernel(); 598 if (res > 0) 599 res = 0; 600 dfprintk(VFS, "NFS: readdir(%s/%s) returns %ld\n", 601 dentry->d_parent->d_name.name, dentry->d_name.name, 602 res); 603 return res; 604 } 605 606 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin) 607 { 608 mutex_lock(&filp->f_path.dentry->d_inode->i_mutex); 609 switch (origin) { 610 case 1: 611 offset += filp->f_pos; 612 case 0: 613 if (offset >= 0) 614 break; 615 default: 616 offset = -EINVAL; 617 goto out; 618 } 619 if (offset != filp->f_pos) { 620 filp->f_pos = offset; 621 nfs_file_open_context(filp)->dir_cookie = 0; 622 } 623 out: 624 mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex); 625 return offset; 626 } 627 628 /* 629 * All directory operations under NFS are synchronous, so fsync() 630 * is a dummy operation. 631 */ 632 static int nfs_fsync_dir(struct file *filp, struct dentry *dentry, int datasync) 633 { 634 dfprintk(VFS, "NFS: fsync_dir(%s/%s) datasync %d\n", 635 dentry->d_parent->d_name.name, dentry->d_name.name, 636 datasync); 637 638 return 0; 639 } 640 641 /** 642 * nfs_force_lookup_revalidate - Mark the directory as having changed 643 * @dir - pointer to directory inode 644 * 645 * This forces the revalidation code in nfs_lookup_revalidate() to do a 646 * full lookup on all child dentries of 'dir' whenever a change occurs 647 * on the server that might have invalidated our dcache. 648 * 649 * The caller should be holding dir->i_lock 650 */ 651 void nfs_force_lookup_revalidate(struct inode *dir) 652 { 653 NFS_I(dir)->cache_change_attribute = jiffies; 654 } 655 656 /* 657 * A check for whether or not the parent directory has changed. 658 * In the case it has, we assume that the dentries are untrustworthy 659 * and may need to be looked up again. 660 */ 661 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry) 662 { 663 if (IS_ROOT(dentry)) 664 return 1; 665 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 666 return 0; 667 /* Revalidate nfsi->cache_change_attribute before we declare a match */ 668 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0) 669 return 0; 670 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 671 return 0; 672 return 1; 673 } 674 675 /* 676 * Return the intent data that applies to this particular path component 677 * 678 * Note that the current set of intents only apply to the very last 679 * component of the path. 680 * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT. 681 */ 682 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask) 683 { 684 if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT)) 685 return 0; 686 return nd->flags & mask; 687 } 688 689 /* 690 * Use intent information to check whether or not we're going to do 691 * an O_EXCL create using this path component. 692 */ 693 static int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd) 694 { 695 if (NFS_PROTO(dir)->version == 2) 696 return 0; 697 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_CREATE) == 0) 698 return 0; 699 return (nd->intent.open.flags & O_EXCL) != 0; 700 } 701 702 /* 703 * Inode and filehandle revalidation for lookups. 704 * 705 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL, 706 * or if the intent information indicates that we're about to open this 707 * particular file and the "nocto" mount flag is not set. 708 * 709 */ 710 static inline 711 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd) 712 { 713 struct nfs_server *server = NFS_SERVER(inode); 714 715 if (nd != NULL) { 716 /* VFS wants an on-the-wire revalidation */ 717 if (nd->flags & LOOKUP_REVAL) 718 goto out_force; 719 /* This is an open(2) */ 720 if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 && 721 !(server->flags & NFS_MOUNT_NOCTO) && 722 (S_ISREG(inode->i_mode) || 723 S_ISDIR(inode->i_mode))) 724 goto out_force; 725 return 0; 726 } 727 return nfs_revalidate_inode(server, inode); 728 out_force: 729 return __nfs_revalidate_inode(server, inode); 730 } 731 732 /* 733 * We judge how long we want to trust negative 734 * dentries by looking at the parent inode mtime. 735 * 736 * If parent mtime has changed, we revalidate, else we wait for a 737 * period corresponding to the parent's attribute cache timeout value. 738 */ 739 static inline 740 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry, 741 struct nameidata *nd) 742 { 743 /* Don't revalidate a negative dentry if we're creating a new file */ 744 if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0) 745 return 0; 746 return !nfs_check_verifier(dir, dentry); 747 } 748 749 /* 750 * This is called every time the dcache has a lookup hit, 751 * and we should check whether we can really trust that 752 * lookup. 753 * 754 * NOTE! The hit can be a negative hit too, don't assume 755 * we have an inode! 756 * 757 * If the parent directory is seen to have changed, we throw out the 758 * cached dentry and do a new lookup. 759 */ 760 static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd) 761 { 762 struct inode *dir; 763 struct inode *inode; 764 struct dentry *parent; 765 int error; 766 struct nfs_fh fhandle; 767 struct nfs_fattr fattr; 768 769 parent = dget_parent(dentry); 770 lock_kernel(); 771 dir = parent->d_inode; 772 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE); 773 inode = dentry->d_inode; 774 775 if (!inode) { 776 if (nfs_neg_need_reval(dir, dentry, nd)) 777 goto out_bad; 778 goto out_valid; 779 } 780 781 if (is_bad_inode(inode)) { 782 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n", 783 __FUNCTION__, dentry->d_parent->d_name.name, 784 dentry->d_name.name); 785 goto out_bad; 786 } 787 788 /* Force a full look up iff the parent directory has changed */ 789 if (!nfs_is_exclusive_create(dir, nd) && nfs_check_verifier(dir, dentry)) { 790 if (nfs_lookup_verify_inode(inode, nd)) 791 goto out_zap_parent; 792 goto out_valid; 793 } 794 795 if (NFS_STALE(inode)) 796 goto out_bad; 797 798 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr); 799 if (error) 800 goto out_bad; 801 if (nfs_compare_fh(NFS_FH(inode), &fhandle)) 802 goto out_bad; 803 if ((error = nfs_refresh_inode(inode, &fattr)) != 0) 804 goto out_bad; 805 806 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 807 out_valid: 808 unlock_kernel(); 809 dput(parent); 810 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n", 811 __FUNCTION__, dentry->d_parent->d_name.name, 812 dentry->d_name.name); 813 return 1; 814 out_zap_parent: 815 nfs_zap_caches(dir); 816 out_bad: 817 nfs_mark_for_revalidate(dir); 818 if (inode && S_ISDIR(inode->i_mode)) { 819 /* Purge readdir caches. */ 820 nfs_zap_caches(inode); 821 /* If we have submounts, don't unhash ! */ 822 if (have_submounts(dentry)) 823 goto out_valid; 824 shrink_dcache_parent(dentry); 825 } 826 d_drop(dentry); 827 unlock_kernel(); 828 dput(parent); 829 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n", 830 __FUNCTION__, dentry->d_parent->d_name.name, 831 dentry->d_name.name); 832 return 0; 833 } 834 835 /* 836 * This is called from dput() when d_count is going to 0. 837 */ 838 static int nfs_dentry_delete(struct dentry *dentry) 839 { 840 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n", 841 dentry->d_parent->d_name.name, dentry->d_name.name, 842 dentry->d_flags); 843 844 /* Unhash any dentry with a stale inode */ 845 if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode)) 846 return 1; 847 848 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 849 /* Unhash it, so that ->d_iput() would be called */ 850 return 1; 851 } 852 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) { 853 /* Unhash it, so that ancestors of killed async unlink 854 * files will be cleaned up during umount */ 855 return 1; 856 } 857 return 0; 858 859 } 860 861 /* 862 * Called when the dentry loses inode. 863 * We use it to clean up silly-renamed files. 864 */ 865 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode) 866 { 867 if (S_ISDIR(inode->i_mode)) 868 /* drop any readdir cache as it could easily be old */ 869 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA; 870 871 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 872 lock_kernel(); 873 drop_nlink(inode); 874 nfs_complete_unlink(dentry, inode); 875 unlock_kernel(); 876 } 877 iput(inode); 878 } 879 880 struct dentry_operations nfs_dentry_operations = { 881 .d_revalidate = nfs_lookup_revalidate, 882 .d_delete = nfs_dentry_delete, 883 .d_iput = nfs_dentry_iput, 884 }; 885 886 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd) 887 { 888 struct dentry *res; 889 struct dentry *parent; 890 struct inode *inode = NULL; 891 int error; 892 struct nfs_fh fhandle; 893 struct nfs_fattr fattr; 894 895 dfprintk(VFS, "NFS: lookup(%s/%s)\n", 896 dentry->d_parent->d_name.name, dentry->d_name.name); 897 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP); 898 899 res = ERR_PTR(-ENAMETOOLONG); 900 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 901 goto out; 902 903 res = ERR_PTR(-ENOMEM); 904 dentry->d_op = NFS_PROTO(dir)->dentry_ops; 905 906 lock_kernel(); 907 908 /* 909 * If we're doing an exclusive create, optimize away the lookup 910 * but don't hash the dentry. 911 */ 912 if (nfs_is_exclusive_create(dir, nd)) { 913 d_instantiate(dentry, NULL); 914 res = NULL; 915 goto out_unlock; 916 } 917 918 parent = dentry->d_parent; 919 /* Protect against concurrent sillydeletes */ 920 nfs_block_sillyrename(parent); 921 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr); 922 if (error == -ENOENT) 923 goto no_entry; 924 if (error < 0) { 925 res = ERR_PTR(error); 926 goto out_unblock_sillyrename; 927 } 928 inode = nfs_fhget(dentry->d_sb, &fhandle, &fattr); 929 res = (struct dentry *)inode; 930 if (IS_ERR(res)) 931 goto out_unblock_sillyrename; 932 933 no_entry: 934 res = d_materialise_unique(dentry, inode); 935 if (res != NULL) { 936 if (IS_ERR(res)) 937 goto out_unblock_sillyrename; 938 dentry = res; 939 } 940 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 941 out_unblock_sillyrename: 942 nfs_unblock_sillyrename(parent); 943 out_unlock: 944 unlock_kernel(); 945 out: 946 return res; 947 } 948 949 #ifdef CONFIG_NFS_V4 950 static int nfs_open_revalidate(struct dentry *, struct nameidata *); 951 952 struct dentry_operations nfs4_dentry_operations = { 953 .d_revalidate = nfs_open_revalidate, 954 .d_delete = nfs_dentry_delete, 955 .d_iput = nfs_dentry_iput, 956 }; 957 958 /* 959 * Use intent information to determine whether we need to substitute 960 * the NFSv4-style stateful OPEN for the LOOKUP call 961 */ 962 static int is_atomic_open(struct inode *dir, struct nameidata *nd) 963 { 964 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0) 965 return 0; 966 /* NFS does not (yet) have a stateful open for directories */ 967 if (nd->flags & LOOKUP_DIRECTORY) 968 return 0; 969 /* Are we trying to write to a read only partition? */ 970 if (IS_RDONLY(dir) && (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE))) 971 return 0; 972 return 1; 973 } 974 975 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd) 976 { 977 struct dentry *res = NULL; 978 int error; 979 980 dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n", 981 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 982 983 /* Check that we are indeed trying to open this file */ 984 if (!is_atomic_open(dir, nd)) 985 goto no_open; 986 987 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) { 988 res = ERR_PTR(-ENAMETOOLONG); 989 goto out; 990 } 991 dentry->d_op = NFS_PROTO(dir)->dentry_ops; 992 993 /* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash 994 * the dentry. */ 995 if (nd->intent.open.flags & O_EXCL) { 996 d_instantiate(dentry, NULL); 997 goto out; 998 } 999 1000 /* Open the file on the server */ 1001 lock_kernel(); 1002 res = nfs4_atomic_open(dir, dentry, nd); 1003 unlock_kernel(); 1004 if (IS_ERR(res)) { 1005 error = PTR_ERR(res); 1006 switch (error) { 1007 /* Make a negative dentry */ 1008 case -ENOENT: 1009 res = NULL; 1010 goto out; 1011 /* This turned out not to be a regular file */ 1012 case -EISDIR: 1013 case -ENOTDIR: 1014 goto no_open; 1015 case -ELOOP: 1016 if (!(nd->intent.open.flags & O_NOFOLLOW)) 1017 goto no_open; 1018 /* case -EINVAL: */ 1019 default: 1020 goto out; 1021 } 1022 } else if (res != NULL) 1023 dentry = res; 1024 out: 1025 return res; 1026 no_open: 1027 return nfs_lookup(dir, dentry, nd); 1028 } 1029 1030 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd) 1031 { 1032 struct dentry *parent = NULL; 1033 struct inode *inode = dentry->d_inode; 1034 struct inode *dir; 1035 int openflags, ret = 0; 1036 1037 parent = dget_parent(dentry); 1038 dir = parent->d_inode; 1039 if (!is_atomic_open(dir, nd)) 1040 goto no_open; 1041 /* We can't create new files in nfs_open_revalidate(), so we 1042 * optimize away revalidation of negative dentries. 1043 */ 1044 if (inode == NULL) { 1045 if (!nfs_neg_need_reval(dir, dentry, nd)) 1046 ret = 1; 1047 goto out; 1048 } 1049 1050 /* NFS only supports OPEN on regular files */ 1051 if (!S_ISREG(inode->i_mode)) 1052 goto no_open; 1053 openflags = nd->intent.open.flags; 1054 /* We cannot do exclusive creation on a positive dentry */ 1055 if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL)) 1056 goto no_open; 1057 /* We can't create new files, or truncate existing ones here */ 1058 openflags &= ~(O_CREAT|O_TRUNC); 1059 1060 /* 1061 * Note: we're not holding inode->i_mutex and so may be racing with 1062 * operations that change the directory. We therefore save the 1063 * change attribute *before* we do the RPC call. 1064 */ 1065 lock_kernel(); 1066 ret = nfs4_open_revalidate(dir, dentry, openflags, nd); 1067 unlock_kernel(); 1068 out: 1069 dput(parent); 1070 if (!ret) 1071 d_drop(dentry); 1072 return ret; 1073 no_open: 1074 dput(parent); 1075 if (inode != NULL && nfs_have_delegation(inode, FMODE_READ)) 1076 return 1; 1077 return nfs_lookup_revalidate(dentry, nd); 1078 } 1079 #endif /* CONFIG_NFSV4 */ 1080 1081 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc) 1082 { 1083 struct dentry *parent = desc->file->f_path.dentry; 1084 struct inode *dir = parent->d_inode; 1085 struct nfs_entry *entry = desc->entry; 1086 struct dentry *dentry, *alias; 1087 struct qstr name = { 1088 .name = entry->name, 1089 .len = entry->len, 1090 }; 1091 struct inode *inode; 1092 unsigned long verf = nfs_save_change_attribute(dir); 1093 1094 switch (name.len) { 1095 case 2: 1096 if (name.name[0] == '.' && name.name[1] == '.') 1097 return dget_parent(parent); 1098 break; 1099 case 1: 1100 if (name.name[0] == '.') 1101 return dget(parent); 1102 } 1103 1104 spin_lock(&dir->i_lock); 1105 if (NFS_I(dir)->cache_validity & NFS_INO_INVALID_DATA) { 1106 spin_unlock(&dir->i_lock); 1107 return NULL; 1108 } 1109 spin_unlock(&dir->i_lock); 1110 1111 name.hash = full_name_hash(name.name, name.len); 1112 dentry = d_lookup(parent, &name); 1113 if (dentry != NULL) { 1114 /* Is this a positive dentry that matches the readdir info? */ 1115 if (dentry->d_inode != NULL && 1116 (NFS_FILEID(dentry->d_inode) == entry->ino || 1117 d_mountpoint(dentry))) { 1118 if (!desc->plus || entry->fh->size == 0) 1119 return dentry; 1120 if (nfs_compare_fh(NFS_FH(dentry->d_inode), 1121 entry->fh) == 0) 1122 goto out_renew; 1123 } 1124 /* No, so d_drop to allow one to be created */ 1125 d_drop(dentry); 1126 dput(dentry); 1127 } 1128 if (!desc->plus || !(entry->fattr->valid & NFS_ATTR_FATTR)) 1129 return NULL; 1130 if (name.len > NFS_SERVER(dir)->namelen) 1131 return NULL; 1132 /* Note: caller is already holding the dir->i_mutex! */ 1133 dentry = d_alloc(parent, &name); 1134 if (dentry == NULL) 1135 return NULL; 1136 dentry->d_op = NFS_PROTO(dir)->dentry_ops; 1137 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr); 1138 if (IS_ERR(inode)) { 1139 dput(dentry); 1140 return NULL; 1141 } 1142 1143 alias = d_materialise_unique(dentry, inode); 1144 if (alias != NULL) { 1145 dput(dentry); 1146 if (IS_ERR(alias)) 1147 return NULL; 1148 dentry = alias; 1149 } 1150 1151 out_renew: 1152 nfs_set_verifier(dentry, verf); 1153 return dentry; 1154 } 1155 1156 /* 1157 * Code common to create, mkdir, and mknod. 1158 */ 1159 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle, 1160 struct nfs_fattr *fattr) 1161 { 1162 struct dentry *parent = dget_parent(dentry); 1163 struct inode *dir = parent->d_inode; 1164 struct inode *inode; 1165 int error = -EACCES; 1166 1167 d_drop(dentry); 1168 1169 /* We may have been initialized further down */ 1170 if (dentry->d_inode) 1171 goto out; 1172 if (fhandle->size == 0) { 1173 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr); 1174 if (error) 1175 goto out_error; 1176 } 1177 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1178 if (!(fattr->valid & NFS_ATTR_FATTR)) { 1179 struct nfs_server *server = NFS_SB(dentry->d_sb); 1180 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr); 1181 if (error < 0) 1182 goto out_error; 1183 } 1184 inode = nfs_fhget(dentry->d_sb, fhandle, fattr); 1185 error = PTR_ERR(inode); 1186 if (IS_ERR(inode)) 1187 goto out_error; 1188 d_add(dentry, inode); 1189 out: 1190 dput(parent); 1191 return 0; 1192 out_error: 1193 nfs_mark_for_revalidate(dir); 1194 dput(parent); 1195 return error; 1196 } 1197 1198 /* 1199 * Following a failed create operation, we drop the dentry rather 1200 * than retain a negative dentry. This avoids a problem in the event 1201 * that the operation succeeded on the server, but an error in the 1202 * reply path made it appear to have failed. 1203 */ 1204 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode, 1205 struct nameidata *nd) 1206 { 1207 struct iattr attr; 1208 int error; 1209 int open_flags = 0; 1210 1211 dfprintk(VFS, "NFS: create(%s/%ld), %s\n", 1212 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1213 1214 attr.ia_mode = mode; 1215 attr.ia_valid = ATTR_MODE; 1216 1217 if ((nd->flags & LOOKUP_CREATE) != 0) 1218 open_flags = nd->intent.open.flags; 1219 1220 lock_kernel(); 1221 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, nd); 1222 if (error != 0) 1223 goto out_err; 1224 unlock_kernel(); 1225 return 0; 1226 out_err: 1227 unlock_kernel(); 1228 d_drop(dentry); 1229 return error; 1230 } 1231 1232 /* 1233 * See comments for nfs_proc_create regarding failed operations. 1234 */ 1235 static int 1236 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev) 1237 { 1238 struct iattr attr; 1239 int status; 1240 1241 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n", 1242 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1243 1244 if (!new_valid_dev(rdev)) 1245 return -EINVAL; 1246 1247 attr.ia_mode = mode; 1248 attr.ia_valid = ATTR_MODE; 1249 1250 lock_kernel(); 1251 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev); 1252 if (status != 0) 1253 goto out_err; 1254 unlock_kernel(); 1255 return 0; 1256 out_err: 1257 unlock_kernel(); 1258 d_drop(dentry); 1259 return status; 1260 } 1261 1262 /* 1263 * See comments for nfs_proc_create regarding failed operations. 1264 */ 1265 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 1266 { 1267 struct iattr attr; 1268 int error; 1269 1270 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n", 1271 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1272 1273 attr.ia_valid = ATTR_MODE; 1274 attr.ia_mode = mode | S_IFDIR; 1275 1276 lock_kernel(); 1277 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr); 1278 if (error != 0) 1279 goto out_err; 1280 unlock_kernel(); 1281 return 0; 1282 out_err: 1283 d_drop(dentry); 1284 unlock_kernel(); 1285 return error; 1286 } 1287 1288 static void nfs_dentry_handle_enoent(struct dentry *dentry) 1289 { 1290 if (dentry->d_inode != NULL && !d_unhashed(dentry)) 1291 d_delete(dentry); 1292 } 1293 1294 static int nfs_rmdir(struct inode *dir, struct dentry *dentry) 1295 { 1296 int error; 1297 1298 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n", 1299 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1300 1301 lock_kernel(); 1302 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1303 /* Ensure the VFS deletes this inode */ 1304 if (error == 0 && dentry->d_inode != NULL) 1305 clear_nlink(dentry->d_inode); 1306 else if (error == -ENOENT) 1307 nfs_dentry_handle_enoent(dentry); 1308 unlock_kernel(); 1309 1310 return error; 1311 } 1312 1313 static int nfs_sillyrename(struct inode *dir, struct dentry *dentry) 1314 { 1315 static unsigned int sillycounter; 1316 const int fileidsize = sizeof(NFS_FILEID(dentry->d_inode))*2; 1317 const int countersize = sizeof(sillycounter)*2; 1318 const int slen = sizeof(".nfs")+fileidsize+countersize-1; 1319 char silly[slen+1]; 1320 struct qstr qsilly; 1321 struct dentry *sdentry; 1322 int error = -EIO; 1323 1324 dfprintk(VFS, "NFS: silly-rename(%s/%s, ct=%d)\n", 1325 dentry->d_parent->d_name.name, dentry->d_name.name, 1326 atomic_read(&dentry->d_count)); 1327 nfs_inc_stats(dir, NFSIOS_SILLYRENAME); 1328 1329 /* 1330 * We don't allow a dentry to be silly-renamed twice. 1331 */ 1332 error = -EBUSY; 1333 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1334 goto out; 1335 1336 sprintf(silly, ".nfs%*.*Lx", 1337 fileidsize, fileidsize, 1338 (unsigned long long)NFS_FILEID(dentry->d_inode)); 1339 1340 /* Return delegation in anticipation of the rename */ 1341 nfs_inode_return_delegation(dentry->d_inode); 1342 1343 sdentry = NULL; 1344 do { 1345 char *suffix = silly + slen - countersize; 1346 1347 dput(sdentry); 1348 sillycounter++; 1349 sprintf(suffix, "%*.*x", countersize, countersize, sillycounter); 1350 1351 dfprintk(VFS, "NFS: trying to rename %s to %s\n", 1352 dentry->d_name.name, silly); 1353 1354 sdentry = lookup_one_len(silly, dentry->d_parent, slen); 1355 /* 1356 * N.B. Better to return EBUSY here ... it could be 1357 * dangerous to delete the file while it's in use. 1358 */ 1359 if (IS_ERR(sdentry)) 1360 goto out; 1361 } while(sdentry->d_inode != NULL); /* need negative lookup */ 1362 1363 qsilly.name = silly; 1364 qsilly.len = strlen(silly); 1365 if (dentry->d_inode) { 1366 error = NFS_PROTO(dir)->rename(dir, &dentry->d_name, 1367 dir, &qsilly); 1368 nfs_mark_for_revalidate(dentry->d_inode); 1369 } else 1370 error = NFS_PROTO(dir)->rename(dir, &dentry->d_name, 1371 dir, &qsilly); 1372 if (!error) { 1373 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1374 d_move(dentry, sdentry); 1375 error = nfs_async_unlink(dir, dentry); 1376 /* If we return 0 we don't unlink */ 1377 } 1378 dput(sdentry); 1379 out: 1380 return error; 1381 } 1382 1383 /* 1384 * Remove a file after making sure there are no pending writes, 1385 * and after checking that the file has only one user. 1386 * 1387 * We invalidate the attribute cache and free the inode prior to the operation 1388 * to avoid possible races if the server reuses the inode. 1389 */ 1390 static int nfs_safe_remove(struct dentry *dentry) 1391 { 1392 struct inode *dir = dentry->d_parent->d_inode; 1393 struct inode *inode = dentry->d_inode; 1394 int error = -EBUSY; 1395 1396 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n", 1397 dentry->d_parent->d_name.name, dentry->d_name.name); 1398 1399 /* If the dentry was sillyrenamed, we simply call d_delete() */ 1400 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1401 error = 0; 1402 goto out; 1403 } 1404 1405 if (inode != NULL) { 1406 nfs_inode_return_delegation(inode); 1407 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name); 1408 /* The VFS may want to delete this inode */ 1409 if (error == 0) 1410 drop_nlink(inode); 1411 nfs_mark_for_revalidate(inode); 1412 } else 1413 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name); 1414 if (error == -ENOENT) 1415 nfs_dentry_handle_enoent(dentry); 1416 out: 1417 return error; 1418 } 1419 1420 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode 1421 * belongs to an active ".nfs..." file and we return -EBUSY. 1422 * 1423 * If sillyrename() returns 0, we do nothing, otherwise we unlink. 1424 */ 1425 static int nfs_unlink(struct inode *dir, struct dentry *dentry) 1426 { 1427 int error; 1428 int need_rehash = 0; 1429 1430 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id, 1431 dir->i_ino, dentry->d_name.name); 1432 1433 lock_kernel(); 1434 spin_lock(&dcache_lock); 1435 spin_lock(&dentry->d_lock); 1436 if (atomic_read(&dentry->d_count) > 1) { 1437 spin_unlock(&dentry->d_lock); 1438 spin_unlock(&dcache_lock); 1439 /* Start asynchronous writeout of the inode */ 1440 write_inode_now(dentry->d_inode, 0); 1441 error = nfs_sillyrename(dir, dentry); 1442 unlock_kernel(); 1443 return error; 1444 } 1445 if (!d_unhashed(dentry)) { 1446 __d_drop(dentry); 1447 need_rehash = 1; 1448 } 1449 spin_unlock(&dentry->d_lock); 1450 spin_unlock(&dcache_lock); 1451 error = nfs_safe_remove(dentry); 1452 if (!error || error == -ENOENT) { 1453 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1454 } else if (need_rehash) 1455 d_rehash(dentry); 1456 unlock_kernel(); 1457 return error; 1458 } 1459 1460 /* 1461 * To create a symbolic link, most file systems instantiate a new inode, 1462 * add a page to it containing the path, then write it out to the disk 1463 * using prepare_write/commit_write. 1464 * 1465 * Unfortunately the NFS client can't create the in-core inode first 1466 * because it needs a file handle to create an in-core inode (see 1467 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the 1468 * symlink request has completed on the server. 1469 * 1470 * So instead we allocate a raw page, copy the symname into it, then do 1471 * the SYMLINK request with the page as the buffer. If it succeeds, we 1472 * now have a new file handle and can instantiate an in-core NFS inode 1473 * and move the raw page into its mapping. 1474 */ 1475 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 1476 { 1477 struct pagevec lru_pvec; 1478 struct page *page; 1479 char *kaddr; 1480 struct iattr attr; 1481 unsigned int pathlen = strlen(symname); 1482 int error; 1483 1484 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id, 1485 dir->i_ino, dentry->d_name.name, symname); 1486 1487 if (pathlen > PAGE_SIZE) 1488 return -ENAMETOOLONG; 1489 1490 attr.ia_mode = S_IFLNK | S_IRWXUGO; 1491 attr.ia_valid = ATTR_MODE; 1492 1493 lock_kernel(); 1494 1495 page = alloc_page(GFP_HIGHUSER); 1496 if (!page) { 1497 unlock_kernel(); 1498 return -ENOMEM; 1499 } 1500 1501 kaddr = kmap_atomic(page, KM_USER0); 1502 memcpy(kaddr, symname, pathlen); 1503 if (pathlen < PAGE_SIZE) 1504 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen); 1505 kunmap_atomic(kaddr, KM_USER0); 1506 1507 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr); 1508 if (error != 0) { 1509 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n", 1510 dir->i_sb->s_id, dir->i_ino, 1511 dentry->d_name.name, symname, error); 1512 d_drop(dentry); 1513 __free_page(page); 1514 unlock_kernel(); 1515 return error; 1516 } 1517 1518 /* 1519 * No big deal if we can't add this page to the page cache here. 1520 * READLINK will get the missing page from the server if needed. 1521 */ 1522 pagevec_init(&lru_pvec, 0); 1523 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0, 1524 GFP_KERNEL)) { 1525 pagevec_add(&lru_pvec, page); 1526 pagevec_lru_add(&lru_pvec); 1527 SetPageUptodate(page); 1528 unlock_page(page); 1529 } else 1530 __free_page(page); 1531 1532 unlock_kernel(); 1533 return 0; 1534 } 1535 1536 static int 1537 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 1538 { 1539 struct inode *inode = old_dentry->d_inode; 1540 int error; 1541 1542 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n", 1543 old_dentry->d_parent->d_name.name, old_dentry->d_name.name, 1544 dentry->d_parent->d_name.name, dentry->d_name.name); 1545 1546 lock_kernel(); 1547 d_drop(dentry); 1548 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name); 1549 if (error == 0) { 1550 atomic_inc(&inode->i_count); 1551 d_add(dentry, inode); 1552 } 1553 unlock_kernel(); 1554 return error; 1555 } 1556 1557 /* 1558 * RENAME 1559 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a 1560 * different file handle for the same inode after a rename (e.g. when 1561 * moving to a different directory). A fail-safe method to do so would 1562 * be to look up old_dir/old_name, create a link to new_dir/new_name and 1563 * rename the old file using the sillyrename stuff. This way, the original 1564 * file in old_dir will go away when the last process iput()s the inode. 1565 * 1566 * FIXED. 1567 * 1568 * It actually works quite well. One needs to have the possibility for 1569 * at least one ".nfs..." file in each directory the file ever gets 1570 * moved or linked to which happens automagically with the new 1571 * implementation that only depends on the dcache stuff instead of 1572 * using the inode layer 1573 * 1574 * Unfortunately, things are a little more complicated than indicated 1575 * above. For a cross-directory move, we want to make sure we can get 1576 * rid of the old inode after the operation. This means there must be 1577 * no pending writes (if it's a file), and the use count must be 1. 1578 * If these conditions are met, we can drop the dentries before doing 1579 * the rename. 1580 */ 1581 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry, 1582 struct inode *new_dir, struct dentry *new_dentry) 1583 { 1584 struct inode *old_inode = old_dentry->d_inode; 1585 struct inode *new_inode = new_dentry->d_inode; 1586 struct dentry *dentry = NULL, *rehash = NULL; 1587 int error = -EBUSY; 1588 1589 /* 1590 * To prevent any new references to the target during the rename, 1591 * we unhash the dentry and free the inode in advance. 1592 */ 1593 lock_kernel(); 1594 if (!d_unhashed(new_dentry)) { 1595 d_drop(new_dentry); 1596 rehash = new_dentry; 1597 } 1598 1599 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n", 1600 old_dentry->d_parent->d_name.name, old_dentry->d_name.name, 1601 new_dentry->d_parent->d_name.name, new_dentry->d_name.name, 1602 atomic_read(&new_dentry->d_count)); 1603 1604 /* 1605 * First check whether the target is busy ... we can't 1606 * safely do _any_ rename if the target is in use. 1607 * 1608 * For files, make a copy of the dentry and then do a 1609 * silly-rename. If the silly-rename succeeds, the 1610 * copied dentry is hashed and becomes the new target. 1611 */ 1612 if (!new_inode) 1613 goto go_ahead; 1614 if (S_ISDIR(new_inode->i_mode)) { 1615 error = -EISDIR; 1616 if (!S_ISDIR(old_inode->i_mode)) 1617 goto out; 1618 } else if (atomic_read(&new_dentry->d_count) > 2) { 1619 int err; 1620 /* copy the target dentry's name */ 1621 dentry = d_alloc(new_dentry->d_parent, 1622 &new_dentry->d_name); 1623 if (!dentry) 1624 goto out; 1625 1626 /* silly-rename the existing target ... */ 1627 err = nfs_sillyrename(new_dir, new_dentry); 1628 if (!err) { 1629 new_dentry = rehash = dentry; 1630 new_inode = NULL; 1631 /* instantiate the replacement target */ 1632 d_instantiate(new_dentry, NULL); 1633 } else if (atomic_read(&new_dentry->d_count) > 1) 1634 /* dentry still busy? */ 1635 goto out; 1636 } else 1637 drop_nlink(new_inode); 1638 1639 go_ahead: 1640 /* 1641 * ... prune child dentries and writebacks if needed. 1642 */ 1643 if (atomic_read(&old_dentry->d_count) > 1) { 1644 if (S_ISREG(old_inode->i_mode)) 1645 nfs_wb_all(old_inode); 1646 shrink_dcache_parent(old_dentry); 1647 } 1648 nfs_inode_return_delegation(old_inode); 1649 1650 if (new_inode != NULL) { 1651 nfs_inode_return_delegation(new_inode); 1652 d_delete(new_dentry); 1653 } 1654 1655 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name, 1656 new_dir, &new_dentry->d_name); 1657 nfs_mark_for_revalidate(old_inode); 1658 out: 1659 if (rehash) 1660 d_rehash(rehash); 1661 if (!error) { 1662 d_move(old_dentry, new_dentry); 1663 nfs_set_verifier(new_dentry, 1664 nfs_save_change_attribute(new_dir)); 1665 } else if (error == -ENOENT) 1666 nfs_dentry_handle_enoent(old_dentry); 1667 1668 /* new dentry created? */ 1669 if (dentry) 1670 dput(dentry); 1671 unlock_kernel(); 1672 return error; 1673 } 1674 1675 static DEFINE_SPINLOCK(nfs_access_lru_lock); 1676 static LIST_HEAD(nfs_access_lru_list); 1677 static atomic_long_t nfs_access_nr_entries; 1678 1679 static void nfs_access_free_entry(struct nfs_access_entry *entry) 1680 { 1681 put_rpccred(entry->cred); 1682 kfree(entry); 1683 smp_mb__before_atomic_dec(); 1684 atomic_long_dec(&nfs_access_nr_entries); 1685 smp_mb__after_atomic_dec(); 1686 } 1687 1688 int nfs_access_cache_shrinker(int nr_to_scan, gfp_t gfp_mask) 1689 { 1690 LIST_HEAD(head); 1691 struct nfs_inode *nfsi; 1692 struct nfs_access_entry *cache; 1693 1694 restart: 1695 spin_lock(&nfs_access_lru_lock); 1696 list_for_each_entry(nfsi, &nfs_access_lru_list, access_cache_inode_lru) { 1697 struct rw_semaphore *s_umount; 1698 struct inode *inode; 1699 1700 if (nr_to_scan-- == 0) 1701 break; 1702 s_umount = &nfsi->vfs_inode.i_sb->s_umount; 1703 if (!down_read_trylock(s_umount)) 1704 continue; 1705 inode = igrab(&nfsi->vfs_inode); 1706 if (inode == NULL) { 1707 up_read(s_umount); 1708 continue; 1709 } 1710 spin_lock(&inode->i_lock); 1711 if (list_empty(&nfsi->access_cache_entry_lru)) 1712 goto remove_lru_entry; 1713 cache = list_entry(nfsi->access_cache_entry_lru.next, 1714 struct nfs_access_entry, lru); 1715 list_move(&cache->lru, &head); 1716 rb_erase(&cache->rb_node, &nfsi->access_cache); 1717 if (!list_empty(&nfsi->access_cache_entry_lru)) 1718 list_move_tail(&nfsi->access_cache_inode_lru, 1719 &nfs_access_lru_list); 1720 else { 1721 remove_lru_entry: 1722 list_del_init(&nfsi->access_cache_inode_lru); 1723 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags); 1724 } 1725 spin_unlock(&inode->i_lock); 1726 spin_unlock(&nfs_access_lru_lock); 1727 iput(inode); 1728 up_read(s_umount); 1729 goto restart; 1730 } 1731 spin_unlock(&nfs_access_lru_lock); 1732 while (!list_empty(&head)) { 1733 cache = list_entry(head.next, struct nfs_access_entry, lru); 1734 list_del(&cache->lru); 1735 nfs_access_free_entry(cache); 1736 } 1737 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure; 1738 } 1739 1740 static void __nfs_access_zap_cache(struct inode *inode) 1741 { 1742 struct nfs_inode *nfsi = NFS_I(inode); 1743 struct rb_root *root_node = &nfsi->access_cache; 1744 struct rb_node *n, *dispose = NULL; 1745 struct nfs_access_entry *entry; 1746 1747 /* Unhook entries from the cache */ 1748 while ((n = rb_first(root_node)) != NULL) { 1749 entry = rb_entry(n, struct nfs_access_entry, rb_node); 1750 rb_erase(n, root_node); 1751 list_del(&entry->lru); 1752 n->rb_left = dispose; 1753 dispose = n; 1754 } 1755 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS; 1756 spin_unlock(&inode->i_lock); 1757 1758 /* Now kill them all! */ 1759 while (dispose != NULL) { 1760 n = dispose; 1761 dispose = n->rb_left; 1762 nfs_access_free_entry(rb_entry(n, struct nfs_access_entry, rb_node)); 1763 } 1764 } 1765 1766 void nfs_access_zap_cache(struct inode *inode) 1767 { 1768 /* Remove from global LRU init */ 1769 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) { 1770 spin_lock(&nfs_access_lru_lock); 1771 list_del_init(&NFS_I(inode)->access_cache_inode_lru); 1772 spin_unlock(&nfs_access_lru_lock); 1773 } 1774 1775 spin_lock(&inode->i_lock); 1776 /* This will release the spinlock */ 1777 __nfs_access_zap_cache(inode); 1778 } 1779 1780 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred) 1781 { 1782 struct rb_node *n = NFS_I(inode)->access_cache.rb_node; 1783 struct nfs_access_entry *entry; 1784 1785 while (n != NULL) { 1786 entry = rb_entry(n, struct nfs_access_entry, rb_node); 1787 1788 if (cred < entry->cred) 1789 n = n->rb_left; 1790 else if (cred > entry->cred) 1791 n = n->rb_right; 1792 else 1793 return entry; 1794 } 1795 return NULL; 1796 } 1797 1798 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res) 1799 { 1800 struct nfs_inode *nfsi = NFS_I(inode); 1801 struct nfs_access_entry *cache; 1802 int err = -ENOENT; 1803 1804 spin_lock(&inode->i_lock); 1805 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 1806 goto out_zap; 1807 cache = nfs_access_search_rbtree(inode, cred); 1808 if (cache == NULL) 1809 goto out; 1810 if (!time_in_range(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo)) 1811 goto out_stale; 1812 res->jiffies = cache->jiffies; 1813 res->cred = cache->cred; 1814 res->mask = cache->mask; 1815 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru); 1816 err = 0; 1817 out: 1818 spin_unlock(&inode->i_lock); 1819 return err; 1820 out_stale: 1821 rb_erase(&cache->rb_node, &nfsi->access_cache); 1822 list_del(&cache->lru); 1823 spin_unlock(&inode->i_lock); 1824 nfs_access_free_entry(cache); 1825 return -ENOENT; 1826 out_zap: 1827 /* This will release the spinlock */ 1828 __nfs_access_zap_cache(inode); 1829 return -ENOENT; 1830 } 1831 1832 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set) 1833 { 1834 struct nfs_inode *nfsi = NFS_I(inode); 1835 struct rb_root *root_node = &nfsi->access_cache; 1836 struct rb_node **p = &root_node->rb_node; 1837 struct rb_node *parent = NULL; 1838 struct nfs_access_entry *entry; 1839 1840 spin_lock(&inode->i_lock); 1841 while (*p != NULL) { 1842 parent = *p; 1843 entry = rb_entry(parent, struct nfs_access_entry, rb_node); 1844 1845 if (set->cred < entry->cred) 1846 p = &parent->rb_left; 1847 else if (set->cred > entry->cred) 1848 p = &parent->rb_right; 1849 else 1850 goto found; 1851 } 1852 rb_link_node(&set->rb_node, parent, p); 1853 rb_insert_color(&set->rb_node, root_node); 1854 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 1855 spin_unlock(&inode->i_lock); 1856 return; 1857 found: 1858 rb_replace_node(parent, &set->rb_node, root_node); 1859 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 1860 list_del(&entry->lru); 1861 spin_unlock(&inode->i_lock); 1862 nfs_access_free_entry(entry); 1863 } 1864 1865 static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set) 1866 { 1867 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL); 1868 if (cache == NULL) 1869 return; 1870 RB_CLEAR_NODE(&cache->rb_node); 1871 cache->jiffies = set->jiffies; 1872 cache->cred = get_rpccred(set->cred); 1873 cache->mask = set->mask; 1874 1875 nfs_access_add_rbtree(inode, cache); 1876 1877 /* Update accounting */ 1878 smp_mb__before_atomic_inc(); 1879 atomic_long_inc(&nfs_access_nr_entries); 1880 smp_mb__after_atomic_inc(); 1881 1882 /* Add inode to global LRU list */ 1883 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) { 1884 spin_lock(&nfs_access_lru_lock); 1885 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, &nfs_access_lru_list); 1886 spin_unlock(&nfs_access_lru_lock); 1887 } 1888 } 1889 1890 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask) 1891 { 1892 struct nfs_access_entry cache; 1893 int status; 1894 1895 status = nfs_access_get_cached(inode, cred, &cache); 1896 if (status == 0) 1897 goto out; 1898 1899 /* Be clever: ask server to check for all possible rights */ 1900 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ; 1901 cache.cred = cred; 1902 cache.jiffies = jiffies; 1903 status = NFS_PROTO(inode)->access(inode, &cache); 1904 if (status != 0) 1905 return status; 1906 nfs_access_add_cache(inode, &cache); 1907 out: 1908 if ((cache.mask & mask) == mask) 1909 return 0; 1910 return -EACCES; 1911 } 1912 1913 static int nfs_open_permission_mask(int openflags) 1914 { 1915 int mask = 0; 1916 1917 if (openflags & FMODE_READ) 1918 mask |= MAY_READ; 1919 if (openflags & FMODE_WRITE) 1920 mask |= MAY_WRITE; 1921 if (openflags & FMODE_EXEC) 1922 mask |= MAY_EXEC; 1923 return mask; 1924 } 1925 1926 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags) 1927 { 1928 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags)); 1929 } 1930 1931 int nfs_permission(struct inode *inode, int mask, struct nameidata *nd) 1932 { 1933 struct rpc_cred *cred; 1934 int res = 0; 1935 1936 nfs_inc_stats(inode, NFSIOS_VFSACCESS); 1937 1938 if (mask == 0) 1939 goto out; 1940 /* Is this sys_access() ? */ 1941 if (nd != NULL && (nd->flags & LOOKUP_ACCESS)) 1942 goto force_lookup; 1943 1944 switch (inode->i_mode & S_IFMT) { 1945 case S_IFLNK: 1946 goto out; 1947 case S_IFREG: 1948 /* NFSv4 has atomic_open... */ 1949 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN) 1950 && nd != NULL 1951 && (nd->flags & LOOKUP_OPEN)) 1952 goto out; 1953 break; 1954 case S_IFDIR: 1955 /* 1956 * Optimize away all write operations, since the server 1957 * will check permissions when we perform the op. 1958 */ 1959 if ((mask & MAY_WRITE) && !(mask & MAY_READ)) 1960 goto out; 1961 } 1962 1963 force_lookup: 1964 lock_kernel(); 1965 1966 if (!NFS_PROTO(inode)->access) 1967 goto out_notsup; 1968 1969 cred = rpcauth_lookupcred(NFS_CLIENT(inode)->cl_auth, 0); 1970 if (!IS_ERR(cred)) { 1971 res = nfs_do_access(inode, cred, mask); 1972 put_rpccred(cred); 1973 } else 1974 res = PTR_ERR(cred); 1975 unlock_kernel(); 1976 out: 1977 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n", 1978 inode->i_sb->s_id, inode->i_ino, mask, res); 1979 return res; 1980 out_notsup: 1981 res = nfs_revalidate_inode(NFS_SERVER(inode), inode); 1982 if (res == 0) 1983 res = generic_permission(inode, mask, NULL); 1984 unlock_kernel(); 1985 goto out; 1986 } 1987 1988 /* 1989 * Local variables: 1990 * version-control: t 1991 * kept-new-versions: 5 1992 * End: 1993 */ 1994