xref: /openbmc/linux/fs/nfs/dir.c (revision 63519fbc)
1 /*
2  *  linux/fs/nfs/dir.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  nfs directory handling functions
7  *
8  * 10 Apr 1996	Added silly rename for unlink	--okir
9  * 28 Sep 1996	Improved directory cache --okir
10  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
11  *              Re-implemented silly rename for unlink, newly implemented
12  *              silly rename for nfs_rename() following the suggestions
13  *              of Olaf Kirch (okir) found in this file.
14  *              Following Linus comments on my original hack, this version
15  *              depends only on the dcache stuff and doesn't touch the inode
16  *              layer (iput() and friends).
17  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
18  */
19 
20 #include <linux/module.h>
21 #include <linux/time.h>
22 #include <linux/errno.h>
23 #include <linux/stat.h>
24 #include <linux/fcntl.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/mm.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/nfs_fs.h>
31 #include <linux/nfs_mount.h>
32 #include <linux/pagemap.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/swap.h>
37 #include <linux/sched.h>
38 #include <linux/kmemleak.h>
39 #include <linux/xattr.h>
40 
41 #include "delegation.h"
42 #include "iostat.h"
43 #include "internal.h"
44 #include "fscache.h"
45 
46 #include "nfstrace.h"
47 
48 /* #define NFS_DEBUG_VERBOSE 1 */
49 
50 static int nfs_opendir(struct inode *, struct file *);
51 static int nfs_closedir(struct inode *, struct file *);
52 static int nfs_readdir(struct file *, struct dir_context *);
53 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
54 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
55 static void nfs_readdir_clear_array(struct page*);
56 
57 const struct file_operations nfs_dir_operations = {
58 	.llseek		= nfs_llseek_dir,
59 	.read		= generic_read_dir,
60 	.iterate_shared	= nfs_readdir,
61 	.open		= nfs_opendir,
62 	.release	= nfs_closedir,
63 	.fsync		= nfs_fsync_dir,
64 };
65 
66 const struct address_space_operations nfs_dir_aops = {
67 	.freepage = nfs_readdir_clear_array,
68 };
69 
70 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
71 {
72 	struct nfs_inode *nfsi = NFS_I(dir);
73 	struct nfs_open_dir_context *ctx;
74 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
75 	if (ctx != NULL) {
76 		ctx->duped = 0;
77 		ctx->attr_gencount = nfsi->attr_gencount;
78 		ctx->dir_cookie = 0;
79 		ctx->dup_cookie = 0;
80 		ctx->cred = get_rpccred(cred);
81 		spin_lock(&dir->i_lock);
82 		list_add(&ctx->list, &nfsi->open_files);
83 		spin_unlock(&dir->i_lock);
84 		return ctx;
85 	}
86 	return  ERR_PTR(-ENOMEM);
87 }
88 
89 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
90 {
91 	spin_lock(&dir->i_lock);
92 	list_del(&ctx->list);
93 	spin_unlock(&dir->i_lock);
94 	put_rpccred(ctx->cred);
95 	kfree(ctx);
96 }
97 
98 /*
99  * Open file
100  */
101 static int
102 nfs_opendir(struct inode *inode, struct file *filp)
103 {
104 	int res = 0;
105 	struct nfs_open_dir_context *ctx;
106 	struct rpc_cred *cred;
107 
108 	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
109 
110 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
111 
112 	cred = rpc_lookup_cred();
113 	if (IS_ERR(cred))
114 		return PTR_ERR(cred);
115 	ctx = alloc_nfs_open_dir_context(inode, cred);
116 	if (IS_ERR(ctx)) {
117 		res = PTR_ERR(ctx);
118 		goto out;
119 	}
120 	filp->private_data = ctx;
121 	if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
122 		/* This is a mountpoint, so d_revalidate will never
123 		 * have been called, so we need to refresh the
124 		 * inode (for close-open consistency) ourselves.
125 		 */
126 		__nfs_revalidate_inode(NFS_SERVER(inode), inode);
127 	}
128 out:
129 	put_rpccred(cred);
130 	return res;
131 }
132 
133 static int
134 nfs_closedir(struct inode *inode, struct file *filp)
135 {
136 	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
137 	return 0;
138 }
139 
140 struct nfs_cache_array_entry {
141 	u64 cookie;
142 	u64 ino;
143 	struct qstr string;
144 	unsigned char d_type;
145 };
146 
147 struct nfs_cache_array {
148 	atomic_t refcount;
149 	int size;
150 	int eof_index;
151 	u64 last_cookie;
152 	struct nfs_cache_array_entry array[0];
153 };
154 
155 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
156 typedef struct {
157 	struct file	*file;
158 	struct page	*page;
159 	struct dir_context *ctx;
160 	unsigned long	page_index;
161 	u64		*dir_cookie;
162 	u64		last_cookie;
163 	loff_t		current_index;
164 	decode_dirent_t	decode;
165 
166 	unsigned long	timestamp;
167 	unsigned long	gencount;
168 	unsigned int	cache_entry_index;
169 	unsigned int	plus:1;
170 	unsigned int	eof:1;
171 } nfs_readdir_descriptor_t;
172 
173 /*
174  * The caller is responsible for calling nfs_readdir_release_array(page)
175  */
176 static
177 struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
178 {
179 	void *ptr;
180 	if (page == NULL)
181 		return ERR_PTR(-EIO);
182 	ptr = kmap(page);
183 	if (ptr == NULL)
184 		return ERR_PTR(-ENOMEM);
185 	return ptr;
186 }
187 
188 static
189 void nfs_readdir_release_array(struct page *page)
190 {
191 	kunmap(page);
192 }
193 
194 /*
195  * we are freeing strings created by nfs_add_to_readdir_array()
196  */
197 static
198 void nfs_readdir_clear_array(struct page *page)
199 {
200 	struct nfs_cache_array *array;
201 	int i;
202 
203 	array = kmap_atomic(page);
204 	if (atomic_dec_and_test(&array->refcount))
205 		for (i = 0; i < array->size; i++)
206 			kfree(array->array[i].string.name);
207 	kunmap_atomic(array);
208 }
209 
210 static bool grab_page(struct page *page)
211 {
212 	struct nfs_cache_array *array = kmap_atomic(page);
213 	bool res = atomic_inc_not_zero(&array->refcount);
214 	kunmap_atomic(array);
215 	return res;
216 }
217 
218 /*
219  * the caller is responsible for freeing qstr.name
220  * when called by nfs_readdir_add_to_array, the strings will be freed in
221  * nfs_clear_readdir_array()
222  */
223 static
224 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
225 {
226 	string->len = len;
227 	string->name = kmemdup(name, len, GFP_KERNEL);
228 	if (string->name == NULL)
229 		return -ENOMEM;
230 	/*
231 	 * Avoid a kmemleak false positive. The pointer to the name is stored
232 	 * in a page cache page which kmemleak does not scan.
233 	 */
234 	kmemleak_not_leak(string->name);
235 	string->hash = full_name_hash(NULL, name, len);
236 	return 0;
237 }
238 
239 static
240 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
241 {
242 	struct nfs_cache_array *array = nfs_readdir_get_array(page);
243 	struct nfs_cache_array_entry *cache_entry;
244 	int ret;
245 
246 	if (IS_ERR(array))
247 		return PTR_ERR(array);
248 
249 	cache_entry = &array->array[array->size];
250 
251 	/* Check that this entry lies within the page bounds */
252 	ret = -ENOSPC;
253 	if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
254 		goto out;
255 
256 	cache_entry->cookie = entry->prev_cookie;
257 	cache_entry->ino = entry->ino;
258 	cache_entry->d_type = entry->d_type;
259 	ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
260 	if (ret)
261 		goto out;
262 	array->last_cookie = entry->cookie;
263 	array->size++;
264 	if (entry->eof != 0)
265 		array->eof_index = array->size;
266 out:
267 	nfs_readdir_release_array(page);
268 	return ret;
269 }
270 
271 static
272 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
273 {
274 	loff_t diff = desc->ctx->pos - desc->current_index;
275 	unsigned int index;
276 
277 	if (diff < 0)
278 		goto out_eof;
279 	if (diff >= array->size) {
280 		if (array->eof_index >= 0)
281 			goto out_eof;
282 		return -EAGAIN;
283 	}
284 
285 	index = (unsigned int)diff;
286 	*desc->dir_cookie = array->array[index].cookie;
287 	desc->cache_entry_index = index;
288 	return 0;
289 out_eof:
290 	desc->eof = 1;
291 	return -EBADCOOKIE;
292 }
293 
294 static bool
295 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
296 {
297 	if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
298 		return false;
299 	smp_rmb();
300 	return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
301 }
302 
303 static
304 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
305 {
306 	int i;
307 	loff_t new_pos;
308 	int status = -EAGAIN;
309 
310 	for (i = 0; i < array->size; i++) {
311 		if (array->array[i].cookie == *desc->dir_cookie) {
312 			struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
313 			struct nfs_open_dir_context *ctx = desc->file->private_data;
314 
315 			new_pos = desc->current_index + i;
316 			if (ctx->attr_gencount != nfsi->attr_gencount ||
317 			    !nfs_readdir_inode_mapping_valid(nfsi)) {
318 				ctx->duped = 0;
319 				ctx->attr_gencount = nfsi->attr_gencount;
320 			} else if (new_pos < desc->ctx->pos) {
321 				if (ctx->duped > 0
322 				    && ctx->dup_cookie == *desc->dir_cookie) {
323 					if (printk_ratelimit()) {
324 						pr_notice("NFS: directory %pD2 contains a readdir loop."
325 								"Please contact your server vendor.  "
326 								"The file: %.*s has duplicate cookie %llu\n",
327 								desc->file, array->array[i].string.len,
328 								array->array[i].string.name, *desc->dir_cookie);
329 					}
330 					status = -ELOOP;
331 					goto out;
332 				}
333 				ctx->dup_cookie = *desc->dir_cookie;
334 				ctx->duped = -1;
335 			}
336 			desc->ctx->pos = new_pos;
337 			desc->cache_entry_index = i;
338 			return 0;
339 		}
340 	}
341 	if (array->eof_index >= 0) {
342 		status = -EBADCOOKIE;
343 		if (*desc->dir_cookie == array->last_cookie)
344 			desc->eof = 1;
345 	}
346 out:
347 	return status;
348 }
349 
350 static
351 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
352 {
353 	struct nfs_cache_array *array;
354 	int status;
355 
356 	array = nfs_readdir_get_array(desc->page);
357 	if (IS_ERR(array)) {
358 		status = PTR_ERR(array);
359 		goto out;
360 	}
361 
362 	if (*desc->dir_cookie == 0)
363 		status = nfs_readdir_search_for_pos(array, desc);
364 	else
365 		status = nfs_readdir_search_for_cookie(array, desc);
366 
367 	if (status == -EAGAIN) {
368 		desc->last_cookie = array->last_cookie;
369 		desc->current_index += array->size;
370 		desc->page_index++;
371 	}
372 	nfs_readdir_release_array(desc->page);
373 out:
374 	return status;
375 }
376 
377 /* Fill a page with xdr information before transferring to the cache page */
378 static
379 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
380 			struct nfs_entry *entry, struct file *file, struct inode *inode)
381 {
382 	struct nfs_open_dir_context *ctx = file->private_data;
383 	struct rpc_cred	*cred = ctx->cred;
384 	unsigned long	timestamp, gencount;
385 	int		error;
386 
387  again:
388 	timestamp = jiffies;
389 	gencount = nfs_inc_attr_generation_counter();
390 	error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
391 					  NFS_SERVER(inode)->dtsize, desc->plus);
392 	if (error < 0) {
393 		/* We requested READDIRPLUS, but the server doesn't grok it */
394 		if (error == -ENOTSUPP && desc->plus) {
395 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
396 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
397 			desc->plus = 0;
398 			goto again;
399 		}
400 		goto error;
401 	}
402 	desc->timestamp = timestamp;
403 	desc->gencount = gencount;
404 error:
405 	return error;
406 }
407 
408 static int xdr_decode(nfs_readdir_descriptor_t *desc,
409 		      struct nfs_entry *entry, struct xdr_stream *xdr)
410 {
411 	int error;
412 
413 	error = desc->decode(xdr, entry, desc->plus);
414 	if (error)
415 		return error;
416 	entry->fattr->time_start = desc->timestamp;
417 	entry->fattr->gencount = desc->gencount;
418 	return 0;
419 }
420 
421 /* Match file and dirent using either filehandle or fileid
422  * Note: caller is responsible for checking the fsid
423  */
424 static
425 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
426 {
427 	struct inode *inode;
428 	struct nfs_inode *nfsi;
429 
430 	if (d_really_is_negative(dentry))
431 		return 0;
432 
433 	inode = d_inode(dentry);
434 	if (is_bad_inode(inode) || NFS_STALE(inode))
435 		return 0;
436 
437 	nfsi = NFS_I(inode);
438 	if (entry->fattr->fileid != nfsi->fileid)
439 		return 0;
440 	if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
441 		return 0;
442 	return 1;
443 }
444 
445 static
446 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
447 {
448 	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
449 		return false;
450 	if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
451 		return true;
452 	if (ctx->pos == 0)
453 		return true;
454 	return false;
455 }
456 
457 /*
458  * This function is called by the lookup and getattr code to request the
459  * use of readdirplus to accelerate any future lookups in the same
460  * directory.
461  */
462 static
463 void nfs_advise_use_readdirplus(struct inode *dir)
464 {
465 	struct nfs_inode *nfsi = NFS_I(dir);
466 
467 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
468 	    !list_empty(&nfsi->open_files))
469 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
470 }
471 
472 /*
473  * This function is mainly for use by nfs_getattr().
474  *
475  * If this is an 'ls -l', we want to force use of readdirplus.
476  * Do this by checking if there is an active file descriptor
477  * and calling nfs_advise_use_readdirplus, then forcing a
478  * cache flush.
479  */
480 void nfs_force_use_readdirplus(struct inode *dir)
481 {
482 	struct nfs_inode *nfsi = NFS_I(dir);
483 
484 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
485 	    !list_empty(&nfsi->open_files)) {
486 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
487 		invalidate_mapping_pages(dir->i_mapping, 0, -1);
488 	}
489 }
490 
491 static
492 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
493 {
494 	struct qstr filename = QSTR_INIT(entry->name, entry->len);
495 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
496 	struct dentry *dentry;
497 	struct dentry *alias;
498 	struct inode *dir = d_inode(parent);
499 	struct inode *inode;
500 	int status;
501 
502 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
503 		return;
504 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
505 		return;
506 	if (filename.len == 0)
507 		return;
508 	/* Validate that the name doesn't contain any illegal '\0' */
509 	if (strnlen(filename.name, filename.len) != filename.len)
510 		return;
511 	/* ...or '/' */
512 	if (strnchr(filename.name, filename.len, '/'))
513 		return;
514 	if (filename.name[0] == '.') {
515 		if (filename.len == 1)
516 			return;
517 		if (filename.len == 2 && filename.name[1] == '.')
518 			return;
519 	}
520 	filename.hash = full_name_hash(parent, filename.name, filename.len);
521 
522 	dentry = d_lookup(parent, &filename);
523 again:
524 	if (!dentry) {
525 		dentry = d_alloc_parallel(parent, &filename, &wq);
526 		if (IS_ERR(dentry))
527 			return;
528 	}
529 	if (!d_in_lookup(dentry)) {
530 		/* Is there a mountpoint here? If so, just exit */
531 		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
532 					&entry->fattr->fsid))
533 			goto out;
534 		if (nfs_same_file(dentry, entry)) {
535 			if (!entry->fh->size)
536 				goto out;
537 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
538 			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
539 			if (!status)
540 				nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
541 			goto out;
542 		} else {
543 			d_invalidate(dentry);
544 			dput(dentry);
545 			dentry = NULL;
546 			goto again;
547 		}
548 	}
549 	if (!entry->fh->size) {
550 		d_lookup_done(dentry);
551 		goto out;
552 	}
553 
554 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
555 	alias = d_splice_alias(inode, dentry);
556 	d_lookup_done(dentry);
557 	if (alias) {
558 		if (IS_ERR(alias))
559 			goto out;
560 		dput(dentry);
561 		dentry = alias;
562 	}
563 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
564 out:
565 	dput(dentry);
566 }
567 
568 /* Perform conversion from xdr to cache array */
569 static
570 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
571 				struct page **xdr_pages, struct page *page, unsigned int buflen)
572 {
573 	struct xdr_stream stream;
574 	struct xdr_buf buf;
575 	struct page *scratch;
576 	struct nfs_cache_array *array;
577 	unsigned int count = 0;
578 	int status;
579 
580 	scratch = alloc_page(GFP_KERNEL);
581 	if (scratch == NULL)
582 		return -ENOMEM;
583 
584 	if (buflen == 0)
585 		goto out_nopages;
586 
587 	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
588 	xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
589 
590 	do {
591 		status = xdr_decode(desc, entry, &stream);
592 		if (status != 0) {
593 			if (status == -EAGAIN)
594 				status = 0;
595 			break;
596 		}
597 
598 		count++;
599 
600 		if (desc->plus != 0)
601 			nfs_prime_dcache(file_dentry(desc->file), entry);
602 
603 		status = nfs_readdir_add_to_array(entry, page);
604 		if (status != 0)
605 			break;
606 	} while (!entry->eof);
607 
608 out_nopages:
609 	if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
610 		array = nfs_readdir_get_array(page);
611 		if (!IS_ERR(array)) {
612 			array->eof_index = array->size;
613 			status = 0;
614 			nfs_readdir_release_array(page);
615 		} else
616 			status = PTR_ERR(array);
617 	}
618 
619 	put_page(scratch);
620 	return status;
621 }
622 
623 static
624 void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
625 {
626 	unsigned int i;
627 	for (i = 0; i < npages; i++)
628 		put_page(pages[i]);
629 }
630 
631 /*
632  * nfs_readdir_large_page will allocate pages that must be freed with a call
633  * to nfs_readdir_free_pagearray
634  */
635 static
636 int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
637 {
638 	unsigned int i;
639 
640 	for (i = 0; i < npages; i++) {
641 		struct page *page = alloc_page(GFP_KERNEL);
642 		if (page == NULL)
643 			goto out_freepages;
644 		pages[i] = page;
645 	}
646 	return 0;
647 
648 out_freepages:
649 	nfs_readdir_free_pages(pages, i);
650 	return -ENOMEM;
651 }
652 
653 static
654 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
655 {
656 	struct page *pages[NFS_MAX_READDIR_PAGES];
657 	struct nfs_entry entry;
658 	struct file	*file = desc->file;
659 	struct nfs_cache_array *array;
660 	int status = -ENOMEM;
661 	unsigned int array_size = ARRAY_SIZE(pages);
662 
663 	entry.prev_cookie = 0;
664 	entry.cookie = desc->last_cookie;
665 	entry.eof = 0;
666 	entry.fh = nfs_alloc_fhandle();
667 	entry.fattr = nfs_alloc_fattr();
668 	entry.server = NFS_SERVER(inode);
669 	if (entry.fh == NULL || entry.fattr == NULL)
670 		goto out;
671 
672 	entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
673 	if (IS_ERR(entry.label)) {
674 		status = PTR_ERR(entry.label);
675 		goto out;
676 	}
677 
678 	array = nfs_readdir_get_array(page);
679 	if (IS_ERR(array)) {
680 		status = PTR_ERR(array);
681 		goto out_label_free;
682 	}
683 	memset(array, 0, sizeof(struct nfs_cache_array));
684 	atomic_set(&array->refcount, 1);
685 	array->eof_index = -1;
686 
687 	status = nfs_readdir_alloc_pages(pages, array_size);
688 	if (status < 0)
689 		goto out_release_array;
690 	do {
691 		unsigned int pglen;
692 		status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
693 
694 		if (status < 0)
695 			break;
696 		pglen = status;
697 		status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
698 		if (status < 0) {
699 			if (status == -ENOSPC)
700 				status = 0;
701 			break;
702 		}
703 	} while (array->eof_index < 0);
704 
705 	nfs_readdir_free_pages(pages, array_size);
706 out_release_array:
707 	nfs_readdir_release_array(page);
708 out_label_free:
709 	nfs4_label_free(entry.label);
710 out:
711 	nfs_free_fattr(entry.fattr);
712 	nfs_free_fhandle(entry.fh);
713 	return status;
714 }
715 
716 /*
717  * Now we cache directories properly, by converting xdr information
718  * to an array that can be used for lookups later.  This results in
719  * fewer cache pages, since we can store more information on each page.
720  * We only need to convert from xdr once so future lookups are much simpler
721  */
722 static
723 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
724 {
725 	struct inode	*inode = file_inode(desc->file);
726 	int ret;
727 
728 	ret = nfs_readdir_xdr_to_array(desc, page, inode);
729 	if (ret < 0)
730 		goto error;
731 	SetPageUptodate(page);
732 
733 	if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
734 		/* Should never happen */
735 		nfs_zap_mapping(inode, inode->i_mapping);
736 	}
737 	unlock_page(page);
738 	return 0;
739  error:
740 	unlock_page(page);
741 	return ret;
742 }
743 
744 static
745 void cache_page_release(nfs_readdir_descriptor_t *desc)
746 {
747 	nfs_readdir_clear_array(desc->page);
748 	put_page(desc->page);
749 	desc->page = NULL;
750 }
751 
752 static
753 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
754 {
755 	struct page *page;
756 
757 	for (;;) {
758 		page = read_cache_page(desc->file->f_mapping,
759 			desc->page_index, (filler_t *)nfs_readdir_filler, desc);
760 		if (IS_ERR(page) || grab_page(page))
761 			break;
762 		put_page(page);
763 	}
764 	return page;
765 }
766 
767 /*
768  * Returns 0 if desc->dir_cookie was found on page desc->page_index
769  */
770 static
771 int find_cache_page(nfs_readdir_descriptor_t *desc)
772 {
773 	int res;
774 
775 	desc->page = get_cache_page(desc);
776 	if (IS_ERR(desc->page))
777 		return PTR_ERR(desc->page);
778 
779 	res = nfs_readdir_search_array(desc);
780 	if (res != 0)
781 		cache_page_release(desc);
782 	return res;
783 }
784 
785 /* Search for desc->dir_cookie from the beginning of the page cache */
786 static inline
787 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
788 {
789 	int res;
790 
791 	if (desc->page_index == 0) {
792 		desc->current_index = 0;
793 		desc->last_cookie = 0;
794 	}
795 	do {
796 		res = find_cache_page(desc);
797 	} while (res == -EAGAIN);
798 	return res;
799 }
800 
801 /*
802  * Once we've found the start of the dirent within a page: fill 'er up...
803  */
804 static
805 int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
806 {
807 	struct file	*file = desc->file;
808 	int i = 0;
809 	int res = 0;
810 	struct nfs_cache_array *array = NULL;
811 	struct nfs_open_dir_context *ctx = file->private_data;
812 
813 	array = nfs_readdir_get_array(desc->page);
814 	if (IS_ERR(array)) {
815 		res = PTR_ERR(array);
816 		goto out;
817 	}
818 
819 	for (i = desc->cache_entry_index; i < array->size; i++) {
820 		struct nfs_cache_array_entry *ent;
821 
822 		ent = &array->array[i];
823 		if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
824 		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
825 			desc->eof = 1;
826 			break;
827 		}
828 		desc->ctx->pos++;
829 		if (i < (array->size-1))
830 			*desc->dir_cookie = array->array[i+1].cookie;
831 		else
832 			*desc->dir_cookie = array->last_cookie;
833 		if (ctx->duped != 0)
834 			ctx->duped = 1;
835 	}
836 	if (array->eof_index >= 0)
837 		desc->eof = 1;
838 
839 	nfs_readdir_release_array(desc->page);
840 out:
841 	cache_page_release(desc);
842 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
843 			(unsigned long long)*desc->dir_cookie, res);
844 	return res;
845 }
846 
847 /*
848  * If we cannot find a cookie in our cache, we suspect that this is
849  * because it points to a deleted file, so we ask the server to return
850  * whatever it thinks is the next entry. We then feed this to filldir.
851  * If all goes well, we should then be able to find our way round the
852  * cache on the next call to readdir_search_pagecache();
853  *
854  * NOTE: we cannot add the anonymous page to the pagecache because
855  *	 the data it contains might not be page aligned. Besides,
856  *	 we should already have a complete representation of the
857  *	 directory in the page cache by the time we get here.
858  */
859 static inline
860 int uncached_readdir(nfs_readdir_descriptor_t *desc)
861 {
862 	struct page	*page = NULL;
863 	int		status;
864 	struct inode *inode = file_inode(desc->file);
865 	struct nfs_open_dir_context *ctx = desc->file->private_data;
866 
867 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
868 			(unsigned long long)*desc->dir_cookie);
869 
870 	page = alloc_page(GFP_HIGHUSER);
871 	if (!page) {
872 		status = -ENOMEM;
873 		goto out;
874 	}
875 
876 	desc->page_index = 0;
877 	desc->last_cookie = *desc->dir_cookie;
878 	desc->page = page;
879 	ctx->duped = 0;
880 
881 	status = nfs_readdir_xdr_to_array(desc, page, inode);
882 	if (status < 0)
883 		goto out_release;
884 
885 	status = nfs_do_filldir(desc);
886 
887  out:
888 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
889 			__func__, status);
890 	return status;
891  out_release:
892 	cache_page_release(desc);
893 	goto out;
894 }
895 
896 /* The file offset position represents the dirent entry number.  A
897    last cookie cache takes care of the common case of reading the
898    whole directory.
899  */
900 static int nfs_readdir(struct file *file, struct dir_context *ctx)
901 {
902 	struct dentry	*dentry = file_dentry(file);
903 	struct inode	*inode = d_inode(dentry);
904 	nfs_readdir_descriptor_t my_desc,
905 			*desc = &my_desc;
906 	struct nfs_open_dir_context *dir_ctx = file->private_data;
907 	int res = 0;
908 
909 	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
910 			file, (long long)ctx->pos);
911 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
912 
913 	/*
914 	 * ctx->pos points to the dirent entry number.
915 	 * *desc->dir_cookie has the cookie for the next entry. We have
916 	 * to either find the entry with the appropriate number or
917 	 * revalidate the cookie.
918 	 */
919 	memset(desc, 0, sizeof(*desc));
920 
921 	desc->file = file;
922 	desc->ctx = ctx;
923 	desc->dir_cookie = &dir_ctx->dir_cookie;
924 	desc->decode = NFS_PROTO(inode)->decode_dirent;
925 	desc->plus = nfs_use_readdirplus(inode, ctx) ? 1 : 0;
926 
927 	if (ctx->pos == 0 || nfs_attribute_cache_expired(inode))
928 		res = nfs_revalidate_mapping(inode, file->f_mapping);
929 	if (res < 0)
930 		goto out;
931 
932 	do {
933 		res = readdir_search_pagecache(desc);
934 
935 		if (res == -EBADCOOKIE) {
936 			res = 0;
937 			/* This means either end of directory */
938 			if (*desc->dir_cookie && desc->eof == 0) {
939 				/* Or that the server has 'lost' a cookie */
940 				res = uncached_readdir(desc);
941 				if (res == 0)
942 					continue;
943 			}
944 			break;
945 		}
946 		if (res == -ETOOSMALL && desc->plus) {
947 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
948 			nfs_zap_caches(inode);
949 			desc->page_index = 0;
950 			desc->plus = 0;
951 			desc->eof = 0;
952 			continue;
953 		}
954 		if (res < 0)
955 			break;
956 
957 		res = nfs_do_filldir(desc);
958 		if (res < 0)
959 			break;
960 	} while (!desc->eof);
961 out:
962 	if (res > 0)
963 		res = 0;
964 	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
965 	return res;
966 }
967 
968 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
969 {
970 	struct nfs_open_dir_context *dir_ctx = filp->private_data;
971 
972 	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
973 			filp, offset, whence);
974 
975 	switch (whence) {
976 		case 1:
977 			offset += filp->f_pos;
978 		case 0:
979 			if (offset >= 0)
980 				break;
981 		default:
982 			return -EINVAL;
983 	}
984 	if (offset != filp->f_pos) {
985 		filp->f_pos = offset;
986 		dir_ctx->dir_cookie = 0;
987 		dir_ctx->duped = 0;
988 	}
989 	return offset;
990 }
991 
992 /*
993  * All directory operations under NFS are synchronous, so fsync()
994  * is a dummy operation.
995  */
996 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
997 			 int datasync)
998 {
999 	struct inode *inode = file_inode(filp);
1000 
1001 	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1002 
1003 	inode_lock(inode);
1004 	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
1005 	inode_unlock(inode);
1006 	return 0;
1007 }
1008 
1009 /**
1010  * nfs_force_lookup_revalidate - Mark the directory as having changed
1011  * @dir - pointer to directory inode
1012  *
1013  * This forces the revalidation code in nfs_lookup_revalidate() to do a
1014  * full lookup on all child dentries of 'dir' whenever a change occurs
1015  * on the server that might have invalidated our dcache.
1016  *
1017  * The caller should be holding dir->i_lock
1018  */
1019 void nfs_force_lookup_revalidate(struct inode *dir)
1020 {
1021 	NFS_I(dir)->cache_change_attribute++;
1022 }
1023 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1024 
1025 /*
1026  * A check for whether or not the parent directory has changed.
1027  * In the case it has, we assume that the dentries are untrustworthy
1028  * and may need to be looked up again.
1029  * If rcu_walk prevents us from performing a full check, return 0.
1030  */
1031 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1032 			      int rcu_walk)
1033 {
1034 	int ret;
1035 
1036 	if (IS_ROOT(dentry))
1037 		return 1;
1038 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1039 		return 0;
1040 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1041 		return 0;
1042 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1043 	if (rcu_walk)
1044 		ret = nfs_revalidate_inode_rcu(NFS_SERVER(dir), dir);
1045 	else
1046 		ret = nfs_revalidate_inode(NFS_SERVER(dir), dir);
1047 	if (ret < 0)
1048 		return 0;
1049 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1050 		return 0;
1051 	return 1;
1052 }
1053 
1054 /*
1055  * Use intent information to check whether or not we're going to do
1056  * an O_EXCL create using this path component.
1057  */
1058 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1059 {
1060 	if (NFS_PROTO(dir)->version == 2)
1061 		return 0;
1062 	return flags & LOOKUP_EXCL;
1063 }
1064 
1065 /*
1066  * Inode and filehandle revalidation for lookups.
1067  *
1068  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1069  * or if the intent information indicates that we're about to open this
1070  * particular file and the "nocto" mount flag is not set.
1071  *
1072  */
1073 static
1074 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1075 {
1076 	struct nfs_server *server = NFS_SERVER(inode);
1077 	int ret;
1078 
1079 	if (IS_AUTOMOUNT(inode))
1080 		return 0;
1081 	/* VFS wants an on-the-wire revalidation */
1082 	if (flags & LOOKUP_REVAL)
1083 		goto out_force;
1084 	/* This is an open(2) */
1085 	if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) &&
1086 	    (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
1087 		goto out_force;
1088 out:
1089 	return (inode->i_nlink == 0) ? -ENOENT : 0;
1090 out_force:
1091 	if (flags & LOOKUP_RCU)
1092 		return -ECHILD;
1093 	ret = __nfs_revalidate_inode(server, inode);
1094 	if (ret != 0)
1095 		return ret;
1096 	goto out;
1097 }
1098 
1099 /*
1100  * We judge how long we want to trust negative
1101  * dentries by looking at the parent inode mtime.
1102  *
1103  * If parent mtime has changed, we revalidate, else we wait for a
1104  * period corresponding to the parent's attribute cache timeout value.
1105  *
1106  * If LOOKUP_RCU prevents us from performing a full check, return 1
1107  * suggesting a reval is needed.
1108  */
1109 static inline
1110 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1111 		       unsigned int flags)
1112 {
1113 	/* Don't revalidate a negative dentry if we're creating a new file */
1114 	if (flags & LOOKUP_CREATE)
1115 		return 0;
1116 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1117 		return 1;
1118 	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1119 }
1120 
1121 /*
1122  * This is called every time the dcache has a lookup hit,
1123  * and we should check whether we can really trust that
1124  * lookup.
1125  *
1126  * NOTE! The hit can be a negative hit too, don't assume
1127  * we have an inode!
1128  *
1129  * If the parent directory is seen to have changed, we throw out the
1130  * cached dentry and do a new lookup.
1131  */
1132 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1133 {
1134 	struct inode *dir;
1135 	struct inode *inode;
1136 	struct dentry *parent;
1137 	struct nfs_fh *fhandle = NULL;
1138 	struct nfs_fattr *fattr = NULL;
1139 	struct nfs4_label *label = NULL;
1140 	int error;
1141 
1142 	if (flags & LOOKUP_RCU) {
1143 		parent = ACCESS_ONCE(dentry->d_parent);
1144 		dir = d_inode_rcu(parent);
1145 		if (!dir)
1146 			return -ECHILD;
1147 	} else {
1148 		parent = dget_parent(dentry);
1149 		dir = d_inode(parent);
1150 	}
1151 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1152 	inode = d_inode(dentry);
1153 
1154 	if (!inode) {
1155 		if (nfs_neg_need_reval(dir, dentry, flags)) {
1156 			if (flags & LOOKUP_RCU)
1157 				return -ECHILD;
1158 			goto out_bad;
1159 		}
1160 		goto out_valid;
1161 	}
1162 
1163 	if (is_bad_inode(inode)) {
1164 		if (flags & LOOKUP_RCU)
1165 			return -ECHILD;
1166 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1167 				__func__, dentry);
1168 		goto out_bad;
1169 	}
1170 
1171 	if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1172 		goto out_set_verifier;
1173 
1174 	/* Force a full look up iff the parent directory has changed */
1175 	if (!nfs_is_exclusive_create(dir, flags) &&
1176 	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1177 
1178 		if (nfs_lookup_verify_inode(inode, flags)) {
1179 			if (flags & LOOKUP_RCU)
1180 				return -ECHILD;
1181 			goto out_zap_parent;
1182 		}
1183 		nfs_advise_use_readdirplus(dir);
1184 		goto out_valid;
1185 	}
1186 
1187 	if (flags & LOOKUP_RCU)
1188 		return -ECHILD;
1189 
1190 	if (NFS_STALE(inode))
1191 		goto out_bad;
1192 
1193 	error = -ENOMEM;
1194 	fhandle = nfs_alloc_fhandle();
1195 	fattr = nfs_alloc_fattr();
1196 	if (fhandle == NULL || fattr == NULL)
1197 		goto out_error;
1198 
1199 	label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
1200 	if (IS_ERR(label))
1201 		goto out_error;
1202 
1203 	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1204 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1205 	trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1206 	if (error)
1207 		goto out_bad;
1208 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1209 		goto out_bad;
1210 	if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1211 		goto out_bad;
1212 
1213 	nfs_setsecurity(inode, fattr, label);
1214 
1215 	nfs_free_fattr(fattr);
1216 	nfs_free_fhandle(fhandle);
1217 	nfs4_label_free(label);
1218 
1219 	/* set a readdirplus hint that we had a cache miss */
1220 	nfs_force_use_readdirplus(dir);
1221 
1222 out_set_verifier:
1223 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1224  out_valid:
1225 	if (flags & LOOKUP_RCU) {
1226 		if (parent != ACCESS_ONCE(dentry->d_parent))
1227 			return -ECHILD;
1228 	} else
1229 		dput(parent);
1230 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1231 			__func__, dentry);
1232 	return 1;
1233 out_zap_parent:
1234 	nfs_zap_caches(dir);
1235  out_bad:
1236 	WARN_ON(flags & LOOKUP_RCU);
1237 	nfs_free_fattr(fattr);
1238 	nfs_free_fhandle(fhandle);
1239 	nfs4_label_free(label);
1240 	nfs_mark_for_revalidate(dir);
1241 	if (inode && S_ISDIR(inode->i_mode)) {
1242 		/* Purge readdir caches. */
1243 		nfs_zap_caches(inode);
1244 		/*
1245 		 * We can't d_drop the root of a disconnected tree:
1246 		 * its d_hash is on the s_anon list and d_drop() would hide
1247 		 * it from shrink_dcache_for_unmount(), leading to busy
1248 		 * inodes on unmount and further oopses.
1249 		 */
1250 		if (IS_ROOT(dentry))
1251 			goto out_valid;
1252 	}
1253 	dput(parent);
1254 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1255 			__func__, dentry);
1256 	return 0;
1257 out_error:
1258 	WARN_ON(flags & LOOKUP_RCU);
1259 	nfs_free_fattr(fattr);
1260 	nfs_free_fhandle(fhandle);
1261 	nfs4_label_free(label);
1262 	dput(parent);
1263 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1264 			__func__, dentry, error);
1265 	return error;
1266 }
1267 
1268 /*
1269  * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1270  * when we don't really care about the dentry name. This is called when a
1271  * pathwalk ends on a dentry that was not found via a normal lookup in the
1272  * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1273  *
1274  * In this situation, we just want to verify that the inode itself is OK
1275  * since the dentry might have changed on the server.
1276  */
1277 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1278 {
1279 	int error;
1280 	struct inode *inode = d_inode(dentry);
1281 
1282 	/*
1283 	 * I believe we can only get a negative dentry here in the case of a
1284 	 * procfs-style symlink. Just assume it's correct for now, but we may
1285 	 * eventually need to do something more here.
1286 	 */
1287 	if (!inode) {
1288 		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1289 				__func__, dentry);
1290 		return 1;
1291 	}
1292 
1293 	if (is_bad_inode(inode)) {
1294 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1295 				__func__, dentry);
1296 		return 0;
1297 	}
1298 
1299 	error = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1300 	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1301 			__func__, inode->i_ino, error ? "invalid" : "valid");
1302 	return !error;
1303 }
1304 
1305 /*
1306  * This is called from dput() when d_count is going to 0.
1307  */
1308 static int nfs_dentry_delete(const struct dentry *dentry)
1309 {
1310 	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1311 		dentry, dentry->d_flags);
1312 
1313 	/* Unhash any dentry with a stale inode */
1314 	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1315 		return 1;
1316 
1317 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1318 		/* Unhash it, so that ->d_iput() would be called */
1319 		return 1;
1320 	}
1321 	if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1322 		/* Unhash it, so that ancestors of killed async unlink
1323 		 * files will be cleaned up during umount */
1324 		return 1;
1325 	}
1326 	return 0;
1327 
1328 }
1329 
1330 /* Ensure that we revalidate inode->i_nlink */
1331 static void nfs_drop_nlink(struct inode *inode)
1332 {
1333 	spin_lock(&inode->i_lock);
1334 	/* drop the inode if we're reasonably sure this is the last link */
1335 	if (inode->i_nlink == 1)
1336 		clear_nlink(inode);
1337 	NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR;
1338 	spin_unlock(&inode->i_lock);
1339 }
1340 
1341 /*
1342  * Called when the dentry loses inode.
1343  * We use it to clean up silly-renamed files.
1344  */
1345 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1346 {
1347 	if (S_ISDIR(inode->i_mode))
1348 		/* drop any readdir cache as it could easily be old */
1349 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1350 
1351 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1352 		nfs_complete_unlink(dentry, inode);
1353 		nfs_drop_nlink(inode);
1354 	}
1355 	iput(inode);
1356 }
1357 
1358 static void nfs_d_release(struct dentry *dentry)
1359 {
1360 	/* free cached devname value, if it survived that far */
1361 	if (unlikely(dentry->d_fsdata)) {
1362 		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1363 			WARN_ON(1);
1364 		else
1365 			kfree(dentry->d_fsdata);
1366 	}
1367 }
1368 
1369 const struct dentry_operations nfs_dentry_operations = {
1370 	.d_revalidate	= nfs_lookup_revalidate,
1371 	.d_weak_revalidate	= nfs_weak_revalidate,
1372 	.d_delete	= nfs_dentry_delete,
1373 	.d_iput		= nfs_dentry_iput,
1374 	.d_automount	= nfs_d_automount,
1375 	.d_release	= nfs_d_release,
1376 };
1377 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1378 
1379 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1380 {
1381 	struct dentry *res;
1382 	struct inode *inode = NULL;
1383 	struct nfs_fh *fhandle = NULL;
1384 	struct nfs_fattr *fattr = NULL;
1385 	struct nfs4_label *label = NULL;
1386 	int error;
1387 
1388 	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1389 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1390 
1391 	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1392 		return ERR_PTR(-ENAMETOOLONG);
1393 
1394 	/*
1395 	 * If we're doing an exclusive create, optimize away the lookup
1396 	 * but don't hash the dentry.
1397 	 */
1398 	if (nfs_is_exclusive_create(dir, flags))
1399 		return NULL;
1400 
1401 	res = ERR_PTR(-ENOMEM);
1402 	fhandle = nfs_alloc_fhandle();
1403 	fattr = nfs_alloc_fattr();
1404 	if (fhandle == NULL || fattr == NULL)
1405 		goto out;
1406 
1407 	label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1408 	if (IS_ERR(label))
1409 		goto out;
1410 
1411 	trace_nfs_lookup_enter(dir, dentry, flags);
1412 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1413 	if (error == -ENOENT)
1414 		goto no_entry;
1415 	if (error < 0) {
1416 		res = ERR_PTR(error);
1417 		goto out_label;
1418 	}
1419 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1420 	res = ERR_CAST(inode);
1421 	if (IS_ERR(res))
1422 		goto out_label;
1423 
1424 	/* Notify readdir to use READDIRPLUS */
1425 	nfs_force_use_readdirplus(dir);
1426 
1427 no_entry:
1428 	res = d_splice_alias(inode, dentry);
1429 	if (res != NULL) {
1430 		if (IS_ERR(res))
1431 			goto out_label;
1432 		dentry = res;
1433 	}
1434 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1435 out_label:
1436 	trace_nfs_lookup_exit(dir, dentry, flags, error);
1437 	nfs4_label_free(label);
1438 out:
1439 	nfs_free_fattr(fattr);
1440 	nfs_free_fhandle(fhandle);
1441 	return res;
1442 }
1443 EXPORT_SYMBOL_GPL(nfs_lookup);
1444 
1445 #if IS_ENABLED(CONFIG_NFS_V4)
1446 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1447 
1448 const struct dentry_operations nfs4_dentry_operations = {
1449 	.d_revalidate	= nfs4_lookup_revalidate,
1450 	.d_delete	= nfs_dentry_delete,
1451 	.d_iput		= nfs_dentry_iput,
1452 	.d_automount	= nfs_d_automount,
1453 	.d_release	= nfs_d_release,
1454 };
1455 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1456 
1457 static fmode_t flags_to_mode(int flags)
1458 {
1459 	fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1460 	if ((flags & O_ACCMODE) != O_WRONLY)
1461 		res |= FMODE_READ;
1462 	if ((flags & O_ACCMODE) != O_RDONLY)
1463 		res |= FMODE_WRITE;
1464 	return res;
1465 }
1466 
1467 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1468 {
1469 	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1470 }
1471 
1472 static int do_open(struct inode *inode, struct file *filp)
1473 {
1474 	nfs_fscache_open_file(inode, filp);
1475 	return 0;
1476 }
1477 
1478 static int nfs_finish_open(struct nfs_open_context *ctx,
1479 			   struct dentry *dentry,
1480 			   struct file *file, unsigned open_flags,
1481 			   int *opened)
1482 {
1483 	int err;
1484 
1485 	err = finish_open(file, dentry, do_open, opened);
1486 	if (err)
1487 		goto out;
1488 	nfs_file_set_open_context(file, ctx);
1489 
1490 out:
1491 	return err;
1492 }
1493 
1494 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1495 		    struct file *file, unsigned open_flags,
1496 		    umode_t mode, int *opened)
1497 {
1498 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1499 	struct nfs_open_context *ctx;
1500 	struct dentry *res;
1501 	struct iattr attr = { .ia_valid = ATTR_OPEN };
1502 	struct inode *inode;
1503 	unsigned int lookup_flags = 0;
1504 	bool switched = false;
1505 	int err;
1506 
1507 	/* Expect a negative dentry */
1508 	BUG_ON(d_inode(dentry));
1509 
1510 	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1511 			dir->i_sb->s_id, dir->i_ino, dentry);
1512 
1513 	err = nfs_check_flags(open_flags);
1514 	if (err)
1515 		return err;
1516 
1517 	/* NFS only supports OPEN on regular files */
1518 	if ((open_flags & O_DIRECTORY)) {
1519 		if (!d_in_lookup(dentry)) {
1520 			/*
1521 			 * Hashed negative dentry with O_DIRECTORY: dentry was
1522 			 * revalidated and is fine, no need to perform lookup
1523 			 * again
1524 			 */
1525 			return -ENOENT;
1526 		}
1527 		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1528 		goto no_open;
1529 	}
1530 
1531 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1532 		return -ENAMETOOLONG;
1533 
1534 	if (open_flags & O_CREAT) {
1535 		attr.ia_valid |= ATTR_MODE;
1536 		attr.ia_mode = mode & ~current_umask();
1537 	}
1538 	if (open_flags & O_TRUNC) {
1539 		attr.ia_valid |= ATTR_SIZE;
1540 		attr.ia_size = 0;
1541 	}
1542 
1543 	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1544 		d_drop(dentry);
1545 		switched = true;
1546 		dentry = d_alloc_parallel(dentry->d_parent,
1547 					  &dentry->d_name, &wq);
1548 		if (IS_ERR(dentry))
1549 			return PTR_ERR(dentry);
1550 		if (unlikely(!d_in_lookup(dentry)))
1551 			return finish_no_open(file, dentry);
1552 	}
1553 
1554 	ctx = create_nfs_open_context(dentry, open_flags, file);
1555 	err = PTR_ERR(ctx);
1556 	if (IS_ERR(ctx))
1557 		goto out;
1558 
1559 	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1560 	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, opened);
1561 	if (IS_ERR(inode)) {
1562 		err = PTR_ERR(inode);
1563 		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1564 		put_nfs_open_context(ctx);
1565 		d_drop(dentry);
1566 		switch (err) {
1567 		case -ENOENT:
1568 			d_add(dentry, NULL);
1569 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1570 			break;
1571 		case -EISDIR:
1572 		case -ENOTDIR:
1573 			goto no_open;
1574 		case -ELOOP:
1575 			if (!(open_flags & O_NOFOLLOW))
1576 				goto no_open;
1577 			break;
1578 			/* case -EINVAL: */
1579 		default:
1580 			break;
1581 		}
1582 		goto out;
1583 	}
1584 
1585 	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags, opened);
1586 	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1587 	put_nfs_open_context(ctx);
1588 out:
1589 	if (unlikely(switched)) {
1590 		d_lookup_done(dentry);
1591 		dput(dentry);
1592 	}
1593 	return err;
1594 
1595 no_open:
1596 	res = nfs_lookup(dir, dentry, lookup_flags);
1597 	if (switched) {
1598 		d_lookup_done(dentry);
1599 		if (!res)
1600 			res = dentry;
1601 		else
1602 			dput(dentry);
1603 	}
1604 	if (IS_ERR(res))
1605 		return PTR_ERR(res);
1606 	return finish_no_open(file, res);
1607 }
1608 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1609 
1610 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1611 {
1612 	struct inode *inode;
1613 	int ret = 0;
1614 
1615 	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1616 		goto no_open;
1617 	if (d_mountpoint(dentry))
1618 		goto no_open;
1619 	if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1)
1620 		goto no_open;
1621 
1622 	inode = d_inode(dentry);
1623 
1624 	/* We can't create new files in nfs_open_revalidate(), so we
1625 	 * optimize away revalidation of negative dentries.
1626 	 */
1627 	if (inode == NULL) {
1628 		struct dentry *parent;
1629 		struct inode *dir;
1630 
1631 		if (flags & LOOKUP_RCU) {
1632 			parent = ACCESS_ONCE(dentry->d_parent);
1633 			dir = d_inode_rcu(parent);
1634 			if (!dir)
1635 				return -ECHILD;
1636 		} else {
1637 			parent = dget_parent(dentry);
1638 			dir = d_inode(parent);
1639 		}
1640 		if (!nfs_neg_need_reval(dir, dentry, flags))
1641 			ret = 1;
1642 		else if (flags & LOOKUP_RCU)
1643 			ret = -ECHILD;
1644 		if (!(flags & LOOKUP_RCU))
1645 			dput(parent);
1646 		else if (parent != ACCESS_ONCE(dentry->d_parent))
1647 			return -ECHILD;
1648 		goto out;
1649 	}
1650 
1651 	/* NFS only supports OPEN on regular files */
1652 	if (!S_ISREG(inode->i_mode))
1653 		goto no_open;
1654 	/* We cannot do exclusive creation on a positive dentry */
1655 	if (flags & LOOKUP_EXCL)
1656 		goto no_open;
1657 
1658 	/* Let f_op->open() actually open (and revalidate) the file */
1659 	ret = 1;
1660 
1661 out:
1662 	return ret;
1663 
1664 no_open:
1665 	return nfs_lookup_revalidate(dentry, flags);
1666 }
1667 
1668 #endif /* CONFIG_NFSV4 */
1669 
1670 /*
1671  * Code common to create, mkdir, and mknod.
1672  */
1673 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1674 				struct nfs_fattr *fattr,
1675 				struct nfs4_label *label)
1676 {
1677 	struct dentry *parent = dget_parent(dentry);
1678 	struct inode *dir = d_inode(parent);
1679 	struct inode *inode;
1680 	int error = -EACCES;
1681 
1682 	d_drop(dentry);
1683 
1684 	/* We may have been initialized further down */
1685 	if (d_really_is_positive(dentry))
1686 		goto out;
1687 	if (fhandle->size == 0) {
1688 		error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1689 		if (error)
1690 			goto out_error;
1691 	}
1692 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1693 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1694 		struct nfs_server *server = NFS_SB(dentry->d_sb);
1695 		error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL);
1696 		if (error < 0)
1697 			goto out_error;
1698 	}
1699 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1700 	error = PTR_ERR(inode);
1701 	if (IS_ERR(inode))
1702 		goto out_error;
1703 	d_add(dentry, inode);
1704 out:
1705 	dput(parent);
1706 	return 0;
1707 out_error:
1708 	nfs_mark_for_revalidate(dir);
1709 	dput(parent);
1710 	return error;
1711 }
1712 EXPORT_SYMBOL_GPL(nfs_instantiate);
1713 
1714 /*
1715  * Following a failed create operation, we drop the dentry rather
1716  * than retain a negative dentry. This avoids a problem in the event
1717  * that the operation succeeded on the server, but an error in the
1718  * reply path made it appear to have failed.
1719  */
1720 int nfs_create(struct inode *dir, struct dentry *dentry,
1721 		umode_t mode, bool excl)
1722 {
1723 	struct iattr attr;
1724 	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1725 	int error;
1726 
1727 	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1728 			dir->i_sb->s_id, dir->i_ino, dentry);
1729 
1730 	attr.ia_mode = mode;
1731 	attr.ia_valid = ATTR_MODE;
1732 
1733 	trace_nfs_create_enter(dir, dentry, open_flags);
1734 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1735 	trace_nfs_create_exit(dir, dentry, open_flags, error);
1736 	if (error != 0)
1737 		goto out_err;
1738 	return 0;
1739 out_err:
1740 	d_drop(dentry);
1741 	return error;
1742 }
1743 EXPORT_SYMBOL_GPL(nfs_create);
1744 
1745 /*
1746  * See comments for nfs_proc_create regarding failed operations.
1747  */
1748 int
1749 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1750 {
1751 	struct iattr attr;
1752 	int status;
1753 
1754 	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1755 			dir->i_sb->s_id, dir->i_ino, dentry);
1756 
1757 	attr.ia_mode = mode;
1758 	attr.ia_valid = ATTR_MODE;
1759 
1760 	trace_nfs_mknod_enter(dir, dentry);
1761 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1762 	trace_nfs_mknod_exit(dir, dentry, status);
1763 	if (status != 0)
1764 		goto out_err;
1765 	return 0;
1766 out_err:
1767 	d_drop(dentry);
1768 	return status;
1769 }
1770 EXPORT_SYMBOL_GPL(nfs_mknod);
1771 
1772 /*
1773  * See comments for nfs_proc_create regarding failed operations.
1774  */
1775 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1776 {
1777 	struct iattr attr;
1778 	int error;
1779 
1780 	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1781 			dir->i_sb->s_id, dir->i_ino, dentry);
1782 
1783 	attr.ia_valid = ATTR_MODE;
1784 	attr.ia_mode = mode | S_IFDIR;
1785 
1786 	trace_nfs_mkdir_enter(dir, dentry);
1787 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1788 	trace_nfs_mkdir_exit(dir, dentry, error);
1789 	if (error != 0)
1790 		goto out_err;
1791 	return 0;
1792 out_err:
1793 	d_drop(dentry);
1794 	return error;
1795 }
1796 EXPORT_SYMBOL_GPL(nfs_mkdir);
1797 
1798 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1799 {
1800 	if (simple_positive(dentry))
1801 		d_delete(dentry);
1802 }
1803 
1804 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1805 {
1806 	int error;
1807 
1808 	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1809 			dir->i_sb->s_id, dir->i_ino, dentry);
1810 
1811 	trace_nfs_rmdir_enter(dir, dentry);
1812 	if (d_really_is_positive(dentry)) {
1813 		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1814 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1815 		/* Ensure the VFS deletes this inode */
1816 		switch (error) {
1817 		case 0:
1818 			clear_nlink(d_inode(dentry));
1819 			break;
1820 		case -ENOENT:
1821 			nfs_dentry_handle_enoent(dentry);
1822 		}
1823 		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1824 	} else
1825 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1826 	trace_nfs_rmdir_exit(dir, dentry, error);
1827 
1828 	return error;
1829 }
1830 EXPORT_SYMBOL_GPL(nfs_rmdir);
1831 
1832 /*
1833  * Remove a file after making sure there are no pending writes,
1834  * and after checking that the file has only one user.
1835  *
1836  * We invalidate the attribute cache and free the inode prior to the operation
1837  * to avoid possible races if the server reuses the inode.
1838  */
1839 static int nfs_safe_remove(struct dentry *dentry)
1840 {
1841 	struct inode *dir = d_inode(dentry->d_parent);
1842 	struct inode *inode = d_inode(dentry);
1843 	int error = -EBUSY;
1844 
1845 	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
1846 
1847 	/* If the dentry was sillyrenamed, we simply call d_delete() */
1848 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1849 		error = 0;
1850 		goto out;
1851 	}
1852 
1853 	trace_nfs_remove_enter(dir, dentry);
1854 	if (inode != NULL) {
1855 		NFS_PROTO(inode)->return_delegation(inode);
1856 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1857 		if (error == 0)
1858 			nfs_drop_nlink(inode);
1859 	} else
1860 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1861 	if (error == -ENOENT)
1862 		nfs_dentry_handle_enoent(dentry);
1863 	trace_nfs_remove_exit(dir, dentry, error);
1864 out:
1865 	return error;
1866 }
1867 
1868 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1869  *  belongs to an active ".nfs..." file and we return -EBUSY.
1870  *
1871  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1872  */
1873 int nfs_unlink(struct inode *dir, struct dentry *dentry)
1874 {
1875 	int error;
1876 	int need_rehash = 0;
1877 
1878 	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
1879 		dir->i_ino, dentry);
1880 
1881 	trace_nfs_unlink_enter(dir, dentry);
1882 	spin_lock(&dentry->d_lock);
1883 	if (d_count(dentry) > 1) {
1884 		spin_unlock(&dentry->d_lock);
1885 		/* Start asynchronous writeout of the inode */
1886 		write_inode_now(d_inode(dentry), 0);
1887 		error = nfs_sillyrename(dir, dentry);
1888 		goto out;
1889 	}
1890 	if (!d_unhashed(dentry)) {
1891 		__d_drop(dentry);
1892 		need_rehash = 1;
1893 	}
1894 	spin_unlock(&dentry->d_lock);
1895 	error = nfs_safe_remove(dentry);
1896 	if (!error || error == -ENOENT) {
1897 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1898 	} else if (need_rehash)
1899 		d_rehash(dentry);
1900 out:
1901 	trace_nfs_unlink_exit(dir, dentry, error);
1902 	return error;
1903 }
1904 EXPORT_SYMBOL_GPL(nfs_unlink);
1905 
1906 /*
1907  * To create a symbolic link, most file systems instantiate a new inode,
1908  * add a page to it containing the path, then write it out to the disk
1909  * using prepare_write/commit_write.
1910  *
1911  * Unfortunately the NFS client can't create the in-core inode first
1912  * because it needs a file handle to create an in-core inode (see
1913  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1914  * symlink request has completed on the server.
1915  *
1916  * So instead we allocate a raw page, copy the symname into it, then do
1917  * the SYMLINK request with the page as the buffer.  If it succeeds, we
1918  * now have a new file handle and can instantiate an in-core NFS inode
1919  * and move the raw page into its mapping.
1920  */
1921 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1922 {
1923 	struct page *page;
1924 	char *kaddr;
1925 	struct iattr attr;
1926 	unsigned int pathlen = strlen(symname);
1927 	int error;
1928 
1929 	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
1930 		dir->i_ino, dentry, symname);
1931 
1932 	if (pathlen > PAGE_SIZE)
1933 		return -ENAMETOOLONG;
1934 
1935 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
1936 	attr.ia_valid = ATTR_MODE;
1937 
1938 	page = alloc_page(GFP_USER);
1939 	if (!page)
1940 		return -ENOMEM;
1941 
1942 	kaddr = page_address(page);
1943 	memcpy(kaddr, symname, pathlen);
1944 	if (pathlen < PAGE_SIZE)
1945 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1946 
1947 	trace_nfs_symlink_enter(dir, dentry);
1948 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1949 	trace_nfs_symlink_exit(dir, dentry, error);
1950 	if (error != 0) {
1951 		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1952 			dir->i_sb->s_id, dir->i_ino,
1953 			dentry, symname, error);
1954 		d_drop(dentry);
1955 		__free_page(page);
1956 		return error;
1957 	}
1958 
1959 	/*
1960 	 * No big deal if we can't add this page to the page cache here.
1961 	 * READLINK will get the missing page from the server if needed.
1962 	 */
1963 	if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
1964 							GFP_KERNEL)) {
1965 		SetPageUptodate(page);
1966 		unlock_page(page);
1967 		/*
1968 		 * add_to_page_cache_lru() grabs an extra page refcount.
1969 		 * Drop it here to avoid leaking this page later.
1970 		 */
1971 		put_page(page);
1972 	} else
1973 		__free_page(page);
1974 
1975 	return 0;
1976 }
1977 EXPORT_SYMBOL_GPL(nfs_symlink);
1978 
1979 int
1980 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1981 {
1982 	struct inode *inode = d_inode(old_dentry);
1983 	int error;
1984 
1985 	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
1986 		old_dentry, dentry);
1987 
1988 	trace_nfs_link_enter(inode, dir, dentry);
1989 	NFS_PROTO(inode)->return_delegation(inode);
1990 
1991 	d_drop(dentry);
1992 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1993 	if (error == 0) {
1994 		ihold(inode);
1995 		d_add(dentry, inode);
1996 	}
1997 	trace_nfs_link_exit(inode, dir, dentry, error);
1998 	return error;
1999 }
2000 EXPORT_SYMBOL_GPL(nfs_link);
2001 
2002 /*
2003  * RENAME
2004  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2005  * different file handle for the same inode after a rename (e.g. when
2006  * moving to a different directory). A fail-safe method to do so would
2007  * be to look up old_dir/old_name, create a link to new_dir/new_name and
2008  * rename the old file using the sillyrename stuff. This way, the original
2009  * file in old_dir will go away when the last process iput()s the inode.
2010  *
2011  * FIXED.
2012  *
2013  * It actually works quite well. One needs to have the possibility for
2014  * at least one ".nfs..." file in each directory the file ever gets
2015  * moved or linked to which happens automagically with the new
2016  * implementation that only depends on the dcache stuff instead of
2017  * using the inode layer
2018  *
2019  * Unfortunately, things are a little more complicated than indicated
2020  * above. For a cross-directory move, we want to make sure we can get
2021  * rid of the old inode after the operation.  This means there must be
2022  * no pending writes (if it's a file), and the use count must be 1.
2023  * If these conditions are met, we can drop the dentries before doing
2024  * the rename.
2025  */
2026 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2027 	       struct inode *new_dir, struct dentry *new_dentry,
2028 	       unsigned int flags)
2029 {
2030 	struct inode *old_inode = d_inode(old_dentry);
2031 	struct inode *new_inode = d_inode(new_dentry);
2032 	struct dentry *dentry = NULL, *rehash = NULL;
2033 	struct rpc_task *task;
2034 	int error = -EBUSY;
2035 
2036 	if (flags)
2037 		return -EINVAL;
2038 
2039 	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2040 		 old_dentry, new_dentry,
2041 		 d_count(new_dentry));
2042 
2043 	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2044 	/*
2045 	 * For non-directories, check whether the target is busy and if so,
2046 	 * make a copy of the dentry and then do a silly-rename. If the
2047 	 * silly-rename succeeds, the copied dentry is hashed and becomes
2048 	 * the new target.
2049 	 */
2050 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2051 		/*
2052 		 * To prevent any new references to the target during the
2053 		 * rename, we unhash the dentry in advance.
2054 		 */
2055 		if (!d_unhashed(new_dentry)) {
2056 			d_drop(new_dentry);
2057 			rehash = new_dentry;
2058 		}
2059 
2060 		if (d_count(new_dentry) > 2) {
2061 			int err;
2062 
2063 			/* copy the target dentry's name */
2064 			dentry = d_alloc(new_dentry->d_parent,
2065 					 &new_dentry->d_name);
2066 			if (!dentry)
2067 				goto out;
2068 
2069 			/* silly-rename the existing target ... */
2070 			err = nfs_sillyrename(new_dir, new_dentry);
2071 			if (err)
2072 				goto out;
2073 
2074 			new_dentry = dentry;
2075 			rehash = NULL;
2076 			new_inode = NULL;
2077 		}
2078 	}
2079 
2080 	NFS_PROTO(old_inode)->return_delegation(old_inode);
2081 	if (new_inode != NULL)
2082 		NFS_PROTO(new_inode)->return_delegation(new_inode);
2083 
2084 	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2085 	if (IS_ERR(task)) {
2086 		error = PTR_ERR(task);
2087 		goto out;
2088 	}
2089 
2090 	error = rpc_wait_for_completion_task(task);
2091 	if (error == 0)
2092 		error = task->tk_status;
2093 	rpc_put_task(task);
2094 	nfs_mark_for_revalidate(old_inode);
2095 out:
2096 	if (rehash)
2097 		d_rehash(rehash);
2098 	trace_nfs_rename_exit(old_dir, old_dentry,
2099 			new_dir, new_dentry, error);
2100 	if (!error) {
2101 		if (new_inode != NULL)
2102 			nfs_drop_nlink(new_inode);
2103 		d_move(old_dentry, new_dentry);
2104 		nfs_set_verifier(new_dentry,
2105 					nfs_save_change_attribute(new_dir));
2106 	} else if (error == -ENOENT)
2107 		nfs_dentry_handle_enoent(old_dentry);
2108 
2109 	/* new dentry created? */
2110 	if (dentry)
2111 		dput(dentry);
2112 	return error;
2113 }
2114 EXPORT_SYMBOL_GPL(nfs_rename);
2115 
2116 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2117 static LIST_HEAD(nfs_access_lru_list);
2118 static atomic_long_t nfs_access_nr_entries;
2119 
2120 static unsigned long nfs_access_max_cachesize = ULONG_MAX;
2121 module_param(nfs_access_max_cachesize, ulong, 0644);
2122 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2123 
2124 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2125 {
2126 	put_rpccred(entry->cred);
2127 	kfree_rcu(entry, rcu_head);
2128 	smp_mb__before_atomic();
2129 	atomic_long_dec(&nfs_access_nr_entries);
2130 	smp_mb__after_atomic();
2131 }
2132 
2133 static void nfs_access_free_list(struct list_head *head)
2134 {
2135 	struct nfs_access_entry *cache;
2136 
2137 	while (!list_empty(head)) {
2138 		cache = list_entry(head->next, struct nfs_access_entry, lru);
2139 		list_del(&cache->lru);
2140 		nfs_access_free_entry(cache);
2141 	}
2142 }
2143 
2144 static unsigned long
2145 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2146 {
2147 	LIST_HEAD(head);
2148 	struct nfs_inode *nfsi, *next;
2149 	struct nfs_access_entry *cache;
2150 	long freed = 0;
2151 
2152 	spin_lock(&nfs_access_lru_lock);
2153 	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2154 		struct inode *inode;
2155 
2156 		if (nr_to_scan-- == 0)
2157 			break;
2158 		inode = &nfsi->vfs_inode;
2159 		spin_lock(&inode->i_lock);
2160 		if (list_empty(&nfsi->access_cache_entry_lru))
2161 			goto remove_lru_entry;
2162 		cache = list_entry(nfsi->access_cache_entry_lru.next,
2163 				struct nfs_access_entry, lru);
2164 		list_move(&cache->lru, &head);
2165 		rb_erase(&cache->rb_node, &nfsi->access_cache);
2166 		freed++;
2167 		if (!list_empty(&nfsi->access_cache_entry_lru))
2168 			list_move_tail(&nfsi->access_cache_inode_lru,
2169 					&nfs_access_lru_list);
2170 		else {
2171 remove_lru_entry:
2172 			list_del_init(&nfsi->access_cache_inode_lru);
2173 			smp_mb__before_atomic();
2174 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2175 			smp_mb__after_atomic();
2176 		}
2177 		spin_unlock(&inode->i_lock);
2178 	}
2179 	spin_unlock(&nfs_access_lru_lock);
2180 	nfs_access_free_list(&head);
2181 	return freed;
2182 }
2183 
2184 unsigned long
2185 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2186 {
2187 	int nr_to_scan = sc->nr_to_scan;
2188 	gfp_t gfp_mask = sc->gfp_mask;
2189 
2190 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2191 		return SHRINK_STOP;
2192 	return nfs_do_access_cache_scan(nr_to_scan);
2193 }
2194 
2195 
2196 unsigned long
2197 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2198 {
2199 	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2200 }
2201 
2202 static void
2203 nfs_access_cache_enforce_limit(void)
2204 {
2205 	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2206 	unsigned long diff;
2207 	unsigned int nr_to_scan;
2208 
2209 	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2210 		return;
2211 	nr_to_scan = 100;
2212 	diff = nr_entries - nfs_access_max_cachesize;
2213 	if (diff < nr_to_scan)
2214 		nr_to_scan = diff;
2215 	nfs_do_access_cache_scan(nr_to_scan);
2216 }
2217 
2218 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2219 {
2220 	struct rb_root *root_node = &nfsi->access_cache;
2221 	struct rb_node *n;
2222 	struct nfs_access_entry *entry;
2223 
2224 	/* Unhook entries from the cache */
2225 	while ((n = rb_first(root_node)) != NULL) {
2226 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2227 		rb_erase(n, root_node);
2228 		list_move(&entry->lru, head);
2229 	}
2230 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2231 }
2232 
2233 void nfs_access_zap_cache(struct inode *inode)
2234 {
2235 	LIST_HEAD(head);
2236 
2237 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2238 		return;
2239 	/* Remove from global LRU init */
2240 	spin_lock(&nfs_access_lru_lock);
2241 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2242 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2243 
2244 	spin_lock(&inode->i_lock);
2245 	__nfs_access_zap_cache(NFS_I(inode), &head);
2246 	spin_unlock(&inode->i_lock);
2247 	spin_unlock(&nfs_access_lru_lock);
2248 	nfs_access_free_list(&head);
2249 }
2250 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2251 
2252 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2253 {
2254 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2255 	struct nfs_access_entry *entry;
2256 
2257 	while (n != NULL) {
2258 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2259 
2260 		if (cred < entry->cred)
2261 			n = n->rb_left;
2262 		else if (cred > entry->cred)
2263 			n = n->rb_right;
2264 		else
2265 			return entry;
2266 	}
2267 	return NULL;
2268 }
2269 
2270 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res, bool may_block)
2271 {
2272 	struct nfs_inode *nfsi = NFS_I(inode);
2273 	struct nfs_access_entry *cache;
2274 	bool retry = true;
2275 	int err;
2276 
2277 	spin_lock(&inode->i_lock);
2278 	for(;;) {
2279 		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2280 			goto out_zap;
2281 		cache = nfs_access_search_rbtree(inode, cred);
2282 		err = -ENOENT;
2283 		if (cache == NULL)
2284 			goto out;
2285 		/* Found an entry, is our attribute cache valid? */
2286 		if (!nfs_attribute_cache_expired(inode) &&
2287 		    !(nfsi->cache_validity & NFS_INO_INVALID_ATTR))
2288 			break;
2289 		err = -ECHILD;
2290 		if (!may_block)
2291 			goto out;
2292 		if (!retry)
2293 			goto out_zap;
2294 		spin_unlock(&inode->i_lock);
2295 		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2296 		if (err)
2297 			return err;
2298 		spin_lock(&inode->i_lock);
2299 		retry = false;
2300 	}
2301 	res->jiffies = cache->jiffies;
2302 	res->cred = cache->cred;
2303 	res->mask = cache->mask;
2304 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2305 	err = 0;
2306 out:
2307 	spin_unlock(&inode->i_lock);
2308 	return err;
2309 out_zap:
2310 	spin_unlock(&inode->i_lock);
2311 	nfs_access_zap_cache(inode);
2312 	return -ENOENT;
2313 }
2314 
2315 static int nfs_access_get_cached_rcu(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2316 {
2317 	/* Only check the most recently returned cache entry,
2318 	 * but do it without locking.
2319 	 */
2320 	struct nfs_inode *nfsi = NFS_I(inode);
2321 	struct nfs_access_entry *cache;
2322 	int err = -ECHILD;
2323 	struct list_head *lh;
2324 
2325 	rcu_read_lock();
2326 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2327 		goto out;
2328 	lh = rcu_dereference(nfsi->access_cache_entry_lru.prev);
2329 	cache = list_entry(lh, struct nfs_access_entry, lru);
2330 	if (lh == &nfsi->access_cache_entry_lru ||
2331 	    cred != cache->cred)
2332 		cache = NULL;
2333 	if (cache == NULL)
2334 		goto out;
2335 	err = nfs_revalidate_inode_rcu(NFS_SERVER(inode), inode);
2336 	if (err)
2337 		goto out;
2338 	res->jiffies = cache->jiffies;
2339 	res->cred = cache->cred;
2340 	res->mask = cache->mask;
2341 out:
2342 	rcu_read_unlock();
2343 	return err;
2344 }
2345 
2346 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2347 {
2348 	struct nfs_inode *nfsi = NFS_I(inode);
2349 	struct rb_root *root_node = &nfsi->access_cache;
2350 	struct rb_node **p = &root_node->rb_node;
2351 	struct rb_node *parent = NULL;
2352 	struct nfs_access_entry *entry;
2353 
2354 	spin_lock(&inode->i_lock);
2355 	while (*p != NULL) {
2356 		parent = *p;
2357 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2358 
2359 		if (set->cred < entry->cred)
2360 			p = &parent->rb_left;
2361 		else if (set->cred > entry->cred)
2362 			p = &parent->rb_right;
2363 		else
2364 			goto found;
2365 	}
2366 	rb_link_node(&set->rb_node, parent, p);
2367 	rb_insert_color(&set->rb_node, root_node);
2368 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2369 	spin_unlock(&inode->i_lock);
2370 	return;
2371 found:
2372 	rb_replace_node(parent, &set->rb_node, root_node);
2373 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2374 	list_del(&entry->lru);
2375 	spin_unlock(&inode->i_lock);
2376 	nfs_access_free_entry(entry);
2377 }
2378 
2379 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2380 {
2381 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2382 	if (cache == NULL)
2383 		return;
2384 	RB_CLEAR_NODE(&cache->rb_node);
2385 	cache->jiffies = set->jiffies;
2386 	cache->cred = get_rpccred(set->cred);
2387 	cache->mask = set->mask;
2388 
2389 	/* The above field assignments must be visible
2390 	 * before this item appears on the lru.  We cannot easily
2391 	 * use rcu_assign_pointer, so just force the memory barrier.
2392 	 */
2393 	smp_wmb();
2394 	nfs_access_add_rbtree(inode, cache);
2395 
2396 	/* Update accounting */
2397 	smp_mb__before_atomic();
2398 	atomic_long_inc(&nfs_access_nr_entries);
2399 	smp_mb__after_atomic();
2400 
2401 	/* Add inode to global LRU list */
2402 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2403 		spin_lock(&nfs_access_lru_lock);
2404 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2405 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2406 					&nfs_access_lru_list);
2407 		spin_unlock(&nfs_access_lru_lock);
2408 	}
2409 	nfs_access_cache_enforce_limit();
2410 }
2411 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2412 
2413 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2414 {
2415 	entry->mask = 0;
2416 	if (access_result & NFS4_ACCESS_READ)
2417 		entry->mask |= MAY_READ;
2418 	if (access_result &
2419 	    (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
2420 		entry->mask |= MAY_WRITE;
2421 	if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
2422 		entry->mask |= MAY_EXEC;
2423 }
2424 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2425 
2426 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2427 {
2428 	struct nfs_access_entry cache;
2429 	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2430 	int status;
2431 
2432 	trace_nfs_access_enter(inode);
2433 
2434 	status = nfs_access_get_cached_rcu(inode, cred, &cache);
2435 	if (status != 0)
2436 		status = nfs_access_get_cached(inode, cred, &cache, may_block);
2437 	if (status == 0)
2438 		goto out_cached;
2439 
2440 	status = -ECHILD;
2441 	if (!may_block)
2442 		goto out;
2443 
2444 	/* Be clever: ask server to check for all possible rights */
2445 	cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2446 	cache.cred = cred;
2447 	cache.jiffies = jiffies;
2448 	status = NFS_PROTO(inode)->access(inode, &cache);
2449 	if (status != 0) {
2450 		if (status == -ESTALE) {
2451 			nfs_zap_caches(inode);
2452 			if (!S_ISDIR(inode->i_mode))
2453 				set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2454 		}
2455 		goto out;
2456 	}
2457 	nfs_access_add_cache(inode, &cache);
2458 out_cached:
2459 	if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2460 		status = -EACCES;
2461 out:
2462 	trace_nfs_access_exit(inode, status);
2463 	return status;
2464 }
2465 
2466 static int nfs_open_permission_mask(int openflags)
2467 {
2468 	int mask = 0;
2469 
2470 	if (openflags & __FMODE_EXEC) {
2471 		/* ONLY check exec rights */
2472 		mask = MAY_EXEC;
2473 	} else {
2474 		if ((openflags & O_ACCMODE) != O_WRONLY)
2475 			mask |= MAY_READ;
2476 		if ((openflags & O_ACCMODE) != O_RDONLY)
2477 			mask |= MAY_WRITE;
2478 	}
2479 
2480 	return mask;
2481 }
2482 
2483 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2484 {
2485 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2486 }
2487 EXPORT_SYMBOL_GPL(nfs_may_open);
2488 
2489 static int nfs_execute_ok(struct inode *inode, int mask)
2490 {
2491 	struct nfs_server *server = NFS_SERVER(inode);
2492 	int ret;
2493 
2494 	if (mask & MAY_NOT_BLOCK)
2495 		ret = nfs_revalidate_inode_rcu(server, inode);
2496 	else
2497 		ret = nfs_revalidate_inode(server, inode);
2498 	if (ret == 0 && !execute_ok(inode))
2499 		ret = -EACCES;
2500 	return ret;
2501 }
2502 
2503 int nfs_permission(struct inode *inode, int mask)
2504 {
2505 	struct rpc_cred *cred;
2506 	int res = 0;
2507 
2508 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2509 
2510 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2511 		goto out;
2512 	/* Is this sys_access() ? */
2513 	if (mask & (MAY_ACCESS | MAY_CHDIR))
2514 		goto force_lookup;
2515 
2516 	switch (inode->i_mode & S_IFMT) {
2517 		case S_IFLNK:
2518 			goto out;
2519 		case S_IFREG:
2520 			if ((mask & MAY_OPEN) &&
2521 			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2522 				return 0;
2523 			break;
2524 		case S_IFDIR:
2525 			/*
2526 			 * Optimize away all write operations, since the server
2527 			 * will check permissions when we perform the op.
2528 			 */
2529 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2530 				goto out;
2531 	}
2532 
2533 force_lookup:
2534 	if (!NFS_PROTO(inode)->access)
2535 		goto out_notsup;
2536 
2537 	/* Always try fast lookups first */
2538 	rcu_read_lock();
2539 	cred = rpc_lookup_cred_nonblock();
2540 	if (!IS_ERR(cred))
2541 		res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK);
2542 	else
2543 		res = PTR_ERR(cred);
2544 	rcu_read_unlock();
2545 	if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) {
2546 		/* Fast lookup failed, try the slow way */
2547 		cred = rpc_lookup_cred();
2548 		if (!IS_ERR(cred)) {
2549 			res = nfs_do_access(inode, cred, mask);
2550 			put_rpccred(cred);
2551 		} else
2552 			res = PTR_ERR(cred);
2553 	}
2554 out:
2555 	if (!res && (mask & MAY_EXEC))
2556 		res = nfs_execute_ok(inode, mask);
2557 
2558 	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2559 		inode->i_sb->s_id, inode->i_ino, mask, res);
2560 	return res;
2561 out_notsup:
2562 	if (mask & MAY_NOT_BLOCK)
2563 		return -ECHILD;
2564 
2565 	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2566 	if (res == 0)
2567 		res = generic_permission(inode, mask);
2568 	goto out;
2569 }
2570 EXPORT_SYMBOL_GPL(nfs_permission);
2571 
2572 /*
2573  * Local variables:
2574  *  version-control: t
2575  *  kept-new-versions: 5
2576  * End:
2577  */
2578