xref: /openbmc/linux/fs/nfs/dir.c (revision 61f02e0a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/nfs/dir.c
4  *
5  *  Copyright (C) 1992  Rick Sladkey
6  *
7  *  nfs directory handling functions
8  *
9  * 10 Apr 1996	Added silly rename for unlink	--okir
10  * 28 Sep 1996	Improved directory cache --okir
11  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
12  *              Re-implemented silly rename for unlink, newly implemented
13  *              silly rename for nfs_rename() following the suggestions
14  *              of Olaf Kirch (okir) found in this file.
15  *              Following Linus comments on my original hack, this version
16  *              depends only on the dcache stuff and doesn't touch the inode
17  *              layer (iput() and friends).
18  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
19  */
20 
21 #include <linux/compat.h>
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/errno.h>
25 #include <linux/stat.h>
26 #include <linux/fcntl.h>
27 #include <linux/string.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/mm.h>
31 #include <linux/sunrpc/clnt.h>
32 #include <linux/nfs_fs.h>
33 #include <linux/nfs_mount.h>
34 #include <linux/pagemap.h>
35 #include <linux/pagevec.h>
36 #include <linux/namei.h>
37 #include <linux/mount.h>
38 #include <linux/swap.h>
39 #include <linux/sched.h>
40 #include <linux/kmemleak.h>
41 #include <linux/xattr.h>
42 #include <linux/hash.h>
43 
44 #include "delegation.h"
45 #include "iostat.h"
46 #include "internal.h"
47 #include "fscache.h"
48 
49 #include "nfstrace.h"
50 
51 /* #define NFS_DEBUG_VERBOSE 1 */
52 
53 static int nfs_opendir(struct inode *, struct file *);
54 static int nfs_closedir(struct inode *, struct file *);
55 static int nfs_readdir(struct file *, struct dir_context *);
56 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
57 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
58 static void nfs_readdir_free_folio(struct folio *);
59 
60 const struct file_operations nfs_dir_operations = {
61 	.llseek		= nfs_llseek_dir,
62 	.read		= generic_read_dir,
63 	.iterate_shared	= nfs_readdir,
64 	.open		= nfs_opendir,
65 	.release	= nfs_closedir,
66 	.fsync		= nfs_fsync_dir,
67 };
68 
69 const struct address_space_operations nfs_dir_aops = {
70 	.free_folio = nfs_readdir_free_folio,
71 };
72 
73 #define NFS_INIT_DTSIZE PAGE_SIZE
74 
75 static struct nfs_open_dir_context *
76 alloc_nfs_open_dir_context(struct inode *dir)
77 {
78 	struct nfs_inode *nfsi = NFS_I(dir);
79 	struct nfs_open_dir_context *ctx;
80 
81 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL_ACCOUNT);
82 	if (ctx != NULL) {
83 		ctx->attr_gencount = nfsi->attr_gencount;
84 		ctx->dtsize = NFS_INIT_DTSIZE;
85 		spin_lock(&dir->i_lock);
86 		if (list_empty(&nfsi->open_files) &&
87 		    (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
88 			nfs_set_cache_invalid(dir,
89 					      NFS_INO_INVALID_DATA |
90 						      NFS_INO_REVAL_FORCED);
91 		list_add_tail_rcu(&ctx->list, &nfsi->open_files);
92 		memcpy(ctx->verf, nfsi->cookieverf, sizeof(ctx->verf));
93 		spin_unlock(&dir->i_lock);
94 		return ctx;
95 	}
96 	return  ERR_PTR(-ENOMEM);
97 }
98 
99 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
100 {
101 	spin_lock(&dir->i_lock);
102 	list_del_rcu(&ctx->list);
103 	spin_unlock(&dir->i_lock);
104 	kfree_rcu(ctx, rcu_head);
105 }
106 
107 /*
108  * Open file
109  */
110 static int
111 nfs_opendir(struct inode *inode, struct file *filp)
112 {
113 	int res = 0;
114 	struct nfs_open_dir_context *ctx;
115 
116 	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
117 
118 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
119 
120 	ctx = alloc_nfs_open_dir_context(inode);
121 	if (IS_ERR(ctx)) {
122 		res = PTR_ERR(ctx);
123 		goto out;
124 	}
125 	filp->private_data = ctx;
126 out:
127 	return res;
128 }
129 
130 static int
131 nfs_closedir(struct inode *inode, struct file *filp)
132 {
133 	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
134 	return 0;
135 }
136 
137 struct nfs_cache_array_entry {
138 	u64 cookie;
139 	u64 ino;
140 	const char *name;
141 	unsigned int name_len;
142 	unsigned char d_type;
143 };
144 
145 struct nfs_cache_array {
146 	u64 change_attr;
147 	u64 last_cookie;
148 	unsigned int size;
149 	unsigned char page_full : 1,
150 		      page_is_eof : 1,
151 		      cookies_are_ordered : 1;
152 	struct nfs_cache_array_entry array[];
153 };
154 
155 struct nfs_readdir_descriptor {
156 	struct file	*file;
157 	struct folio	*folio;
158 	struct dir_context *ctx;
159 	pgoff_t		folio_index;
160 	pgoff_t		folio_index_max;
161 	u64		dir_cookie;
162 	u64		last_cookie;
163 	loff_t		current_index;
164 
165 	__be32		verf[NFS_DIR_VERIFIER_SIZE];
166 	unsigned long	dir_verifier;
167 	unsigned long	timestamp;
168 	unsigned long	gencount;
169 	unsigned long	attr_gencount;
170 	unsigned int	cache_entry_index;
171 	unsigned int	buffer_fills;
172 	unsigned int	dtsize;
173 	bool clear_cache;
174 	bool plus;
175 	bool eob;
176 	bool eof;
177 };
178 
179 static void nfs_set_dtsize(struct nfs_readdir_descriptor *desc, unsigned int sz)
180 {
181 	struct nfs_server *server = NFS_SERVER(file_inode(desc->file));
182 	unsigned int maxsize = server->dtsize;
183 
184 	if (sz > maxsize)
185 		sz = maxsize;
186 	if (sz < NFS_MIN_FILE_IO_SIZE)
187 		sz = NFS_MIN_FILE_IO_SIZE;
188 	desc->dtsize = sz;
189 }
190 
191 static void nfs_shrink_dtsize(struct nfs_readdir_descriptor *desc)
192 {
193 	nfs_set_dtsize(desc, desc->dtsize >> 1);
194 }
195 
196 static void nfs_grow_dtsize(struct nfs_readdir_descriptor *desc)
197 {
198 	nfs_set_dtsize(desc, desc->dtsize << 1);
199 }
200 
201 static void nfs_readdir_page_init_array(struct page *page, u64 last_cookie,
202 					u64 change_attr)
203 {
204 	struct nfs_cache_array *array;
205 
206 	array = kmap_local_page(page);
207 	array->change_attr = change_attr;
208 	array->last_cookie = last_cookie;
209 	array->size = 0;
210 	array->page_full = 0;
211 	array->page_is_eof = 0;
212 	array->cookies_are_ordered = 1;
213 	kunmap_local(array);
214 }
215 
216 /*
217  * we are freeing strings created by nfs_add_to_readdir_array()
218  */
219 static void nfs_readdir_clear_array(struct page *page)
220 {
221 	struct nfs_cache_array *array;
222 	unsigned int i;
223 
224 	array = kmap_local_page(page);
225 	for (i = 0; i < array->size; i++)
226 		kfree(array->array[i].name);
227 	array->size = 0;
228 	kunmap_local(array);
229 }
230 
231 static void nfs_readdir_free_folio(struct folio *folio)
232 {
233 	nfs_readdir_clear_array(&folio->page);
234 }
235 
236 static void nfs_readdir_page_reinit_array(struct page *page, u64 last_cookie,
237 					  u64 change_attr)
238 {
239 	nfs_readdir_clear_array(page);
240 	nfs_readdir_page_init_array(page, last_cookie, change_attr);
241 }
242 
243 static struct page *
244 nfs_readdir_page_array_alloc(u64 last_cookie, gfp_t gfp_flags)
245 {
246 	struct page *page = alloc_page(gfp_flags);
247 	if (page)
248 		nfs_readdir_page_init_array(page, last_cookie, 0);
249 	return page;
250 }
251 
252 static void nfs_readdir_page_array_free(struct page *page)
253 {
254 	if (page) {
255 		nfs_readdir_clear_array(page);
256 		put_page(page);
257 	}
258 }
259 
260 static u64 nfs_readdir_array_index_cookie(struct nfs_cache_array *array)
261 {
262 	return array->size == 0 ? array->last_cookie : array->array[0].cookie;
263 }
264 
265 static void nfs_readdir_array_set_eof(struct nfs_cache_array *array)
266 {
267 	array->page_is_eof = 1;
268 	array->page_full = 1;
269 }
270 
271 static bool nfs_readdir_array_is_full(struct nfs_cache_array *array)
272 {
273 	return array->page_full;
274 }
275 
276 /*
277  * the caller is responsible for freeing qstr.name
278  * when called by nfs_readdir_add_to_array, the strings will be freed in
279  * nfs_clear_readdir_array()
280  */
281 static const char *nfs_readdir_copy_name(const char *name, unsigned int len)
282 {
283 	const char *ret = kmemdup_nul(name, len, GFP_KERNEL);
284 
285 	/*
286 	 * Avoid a kmemleak false positive. The pointer to the name is stored
287 	 * in a page cache page which kmemleak does not scan.
288 	 */
289 	if (ret != NULL)
290 		kmemleak_not_leak(ret);
291 	return ret;
292 }
293 
294 static size_t nfs_readdir_array_maxentries(void)
295 {
296 	return (PAGE_SIZE - sizeof(struct nfs_cache_array)) /
297 	       sizeof(struct nfs_cache_array_entry);
298 }
299 
300 /*
301  * Check that the next array entry lies entirely within the page bounds
302  */
303 static int nfs_readdir_array_can_expand(struct nfs_cache_array *array)
304 {
305 	if (array->page_full)
306 		return -ENOSPC;
307 	if (array->size == nfs_readdir_array_maxentries()) {
308 		array->page_full = 1;
309 		return -ENOSPC;
310 	}
311 	return 0;
312 }
313 
314 static int nfs_readdir_page_array_append(struct page *page,
315 					  const struct nfs_entry *entry,
316 					  u64 *cookie)
317 {
318 	struct nfs_cache_array *array;
319 	struct nfs_cache_array_entry *cache_entry;
320 	const char *name;
321 	int ret = -ENOMEM;
322 
323 	name = nfs_readdir_copy_name(entry->name, entry->len);
324 
325 	array = kmap_atomic(page);
326 	if (!name)
327 		goto out;
328 	ret = nfs_readdir_array_can_expand(array);
329 	if (ret) {
330 		kfree(name);
331 		goto out;
332 	}
333 
334 	cache_entry = &array->array[array->size];
335 	cache_entry->cookie = array->last_cookie;
336 	cache_entry->ino = entry->ino;
337 	cache_entry->d_type = entry->d_type;
338 	cache_entry->name_len = entry->len;
339 	cache_entry->name = name;
340 	array->last_cookie = entry->cookie;
341 	if (array->last_cookie <= cache_entry->cookie)
342 		array->cookies_are_ordered = 0;
343 	array->size++;
344 	if (entry->eof != 0)
345 		nfs_readdir_array_set_eof(array);
346 out:
347 	*cookie = array->last_cookie;
348 	kunmap_atomic(array);
349 	return ret;
350 }
351 
352 #define NFS_READDIR_COOKIE_MASK (U32_MAX >> 14)
353 /*
354  * Hash algorithm allowing content addressible access to sequences
355  * of directory cookies. Content is addressed by the value of the
356  * cookie index of the first readdir entry in a page.
357  *
358  * We select only the first 18 bits to avoid issues with excessive
359  * memory use for the page cache XArray. 18 bits should allow the caching
360  * of 262144 pages of sequences of readdir entries. Since each page holds
361  * 127 readdir entries for a typical 64-bit system, that works out to a
362  * cache of ~ 33 million entries per directory.
363  */
364 static pgoff_t nfs_readdir_page_cookie_hash(u64 cookie)
365 {
366 	if (cookie == 0)
367 		return 0;
368 	return hash_64(cookie, 18);
369 }
370 
371 static bool nfs_readdir_page_validate(struct page *page, u64 last_cookie,
372 				      u64 change_attr)
373 {
374 	struct nfs_cache_array *array = kmap_local_page(page);
375 	int ret = true;
376 
377 	if (array->change_attr != change_attr)
378 		ret = false;
379 	if (nfs_readdir_array_index_cookie(array) != last_cookie)
380 		ret = false;
381 	kunmap_local(array);
382 	return ret;
383 }
384 
385 static void nfs_readdir_page_unlock_and_put(struct page *page)
386 {
387 	unlock_page(page);
388 	put_page(page);
389 }
390 
391 static void nfs_readdir_page_init_and_validate(struct page *page, u64 cookie,
392 					       u64 change_attr)
393 {
394 	if (PageUptodate(page)) {
395 		if (nfs_readdir_page_validate(page, cookie, change_attr))
396 			return;
397 		nfs_readdir_clear_array(page);
398 	}
399 	nfs_readdir_page_init_array(page, cookie, change_attr);
400 	SetPageUptodate(page);
401 }
402 
403 static struct page *nfs_readdir_page_get_locked(struct address_space *mapping,
404 						u64 cookie, u64 change_attr)
405 {
406 	pgoff_t index = nfs_readdir_page_cookie_hash(cookie);
407 	struct page *page;
408 
409 	page = grab_cache_page(mapping, index);
410 	if (!page)
411 		return NULL;
412 	nfs_readdir_page_init_and_validate(page, cookie, change_attr);
413 	return page;
414 }
415 
416 static u64 nfs_readdir_page_last_cookie(struct page *page)
417 {
418 	struct nfs_cache_array *array;
419 	u64 ret;
420 
421 	array = kmap_local_page(page);
422 	ret = array->last_cookie;
423 	kunmap_local(array);
424 	return ret;
425 }
426 
427 static bool nfs_readdir_page_needs_filling(struct page *page)
428 {
429 	struct nfs_cache_array *array;
430 	bool ret;
431 
432 	array = kmap_local_page(page);
433 	ret = !nfs_readdir_array_is_full(array);
434 	kunmap_local(array);
435 	return ret;
436 }
437 
438 static void nfs_readdir_page_set_eof(struct page *page)
439 {
440 	struct nfs_cache_array *array;
441 
442 	array = kmap_local_page(page);
443 	nfs_readdir_array_set_eof(array);
444 	kunmap_local(array);
445 }
446 
447 static struct page *nfs_readdir_page_get_next(struct address_space *mapping,
448 					      u64 cookie, u64 change_attr)
449 {
450 	pgoff_t index = nfs_readdir_page_cookie_hash(cookie);
451 	struct page *page;
452 
453 	page = grab_cache_page_nowait(mapping, index);
454 	if (!page)
455 		return NULL;
456 	nfs_readdir_page_init_and_validate(page, cookie, change_attr);
457 	if (nfs_readdir_page_last_cookie(page) != cookie)
458 		nfs_readdir_page_reinit_array(page, cookie, change_attr);
459 	return page;
460 }
461 
462 static inline
463 int is_32bit_api(void)
464 {
465 #ifdef CONFIG_COMPAT
466 	return in_compat_syscall();
467 #else
468 	return (BITS_PER_LONG == 32);
469 #endif
470 }
471 
472 static
473 bool nfs_readdir_use_cookie(const struct file *filp)
474 {
475 	if ((filp->f_mode & FMODE_32BITHASH) ||
476 	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
477 		return false;
478 	return true;
479 }
480 
481 static void nfs_readdir_seek_next_array(struct nfs_cache_array *array,
482 					struct nfs_readdir_descriptor *desc)
483 {
484 	if (array->page_full) {
485 		desc->last_cookie = array->last_cookie;
486 		desc->current_index += array->size;
487 		desc->cache_entry_index = 0;
488 		desc->folio_index++;
489 	} else
490 		desc->last_cookie = nfs_readdir_array_index_cookie(array);
491 }
492 
493 static void nfs_readdir_rewind_search(struct nfs_readdir_descriptor *desc)
494 {
495 	desc->current_index = 0;
496 	desc->last_cookie = 0;
497 	desc->folio_index = 0;
498 }
499 
500 static int nfs_readdir_search_for_pos(struct nfs_cache_array *array,
501 				      struct nfs_readdir_descriptor *desc)
502 {
503 	loff_t diff = desc->ctx->pos - desc->current_index;
504 	unsigned int index;
505 
506 	if (diff < 0)
507 		goto out_eof;
508 	if (diff >= array->size) {
509 		if (array->page_is_eof)
510 			goto out_eof;
511 		nfs_readdir_seek_next_array(array, desc);
512 		return -EAGAIN;
513 	}
514 
515 	index = (unsigned int)diff;
516 	desc->dir_cookie = array->array[index].cookie;
517 	desc->cache_entry_index = index;
518 	return 0;
519 out_eof:
520 	desc->eof = true;
521 	return -EBADCOOKIE;
522 }
523 
524 static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array,
525 					      u64 cookie)
526 {
527 	if (!array->cookies_are_ordered)
528 		return true;
529 	/* Optimisation for monotonically increasing cookies */
530 	if (cookie >= array->last_cookie)
531 		return false;
532 	if (array->size && cookie < array->array[0].cookie)
533 		return false;
534 	return true;
535 }
536 
537 static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array,
538 					 struct nfs_readdir_descriptor *desc)
539 {
540 	unsigned int i;
541 	int status = -EAGAIN;
542 
543 	if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie))
544 		goto check_eof;
545 
546 	for (i = 0; i < array->size; i++) {
547 		if (array->array[i].cookie == desc->dir_cookie) {
548 			if (nfs_readdir_use_cookie(desc->file))
549 				desc->ctx->pos = desc->dir_cookie;
550 			else
551 				desc->ctx->pos = desc->current_index + i;
552 			desc->cache_entry_index = i;
553 			return 0;
554 		}
555 	}
556 check_eof:
557 	if (array->page_is_eof) {
558 		status = -EBADCOOKIE;
559 		if (desc->dir_cookie == array->last_cookie)
560 			desc->eof = true;
561 	} else
562 		nfs_readdir_seek_next_array(array, desc);
563 	return status;
564 }
565 
566 static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc)
567 {
568 	struct nfs_cache_array *array;
569 	int status;
570 
571 	array = kmap_local_folio(desc->folio, 0);
572 
573 	if (desc->dir_cookie == 0)
574 		status = nfs_readdir_search_for_pos(array, desc);
575 	else
576 		status = nfs_readdir_search_for_cookie(array, desc);
577 
578 	kunmap_local(array);
579 	return status;
580 }
581 
582 /* Fill a page with xdr information before transferring to the cache page */
583 static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc,
584 				  __be32 *verf, u64 cookie,
585 				  struct page **pages, size_t bufsize,
586 				  __be32 *verf_res)
587 {
588 	struct inode *inode = file_inode(desc->file);
589 	struct nfs_readdir_arg arg = {
590 		.dentry = file_dentry(desc->file),
591 		.cred = desc->file->f_cred,
592 		.verf = verf,
593 		.cookie = cookie,
594 		.pages = pages,
595 		.page_len = bufsize,
596 		.plus = desc->plus,
597 	};
598 	struct nfs_readdir_res res = {
599 		.verf = verf_res,
600 	};
601 	unsigned long	timestamp, gencount;
602 	int		error;
603 
604  again:
605 	timestamp = jiffies;
606 	gencount = nfs_inc_attr_generation_counter();
607 	desc->dir_verifier = nfs_save_change_attribute(inode);
608 	error = NFS_PROTO(inode)->readdir(&arg, &res);
609 	if (error < 0) {
610 		/* We requested READDIRPLUS, but the server doesn't grok it */
611 		if (error == -ENOTSUPP && desc->plus) {
612 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
613 			desc->plus = arg.plus = false;
614 			goto again;
615 		}
616 		goto error;
617 	}
618 	desc->timestamp = timestamp;
619 	desc->gencount = gencount;
620 error:
621 	return error;
622 }
623 
624 static int xdr_decode(struct nfs_readdir_descriptor *desc,
625 		      struct nfs_entry *entry, struct xdr_stream *xdr)
626 {
627 	struct inode *inode = file_inode(desc->file);
628 	int error;
629 
630 	error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
631 	if (error)
632 		return error;
633 	entry->fattr->time_start = desc->timestamp;
634 	entry->fattr->gencount = desc->gencount;
635 	return 0;
636 }
637 
638 /* Match file and dirent using either filehandle or fileid
639  * Note: caller is responsible for checking the fsid
640  */
641 static
642 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
643 {
644 	struct inode *inode;
645 	struct nfs_inode *nfsi;
646 
647 	if (d_really_is_negative(dentry))
648 		return 0;
649 
650 	inode = d_inode(dentry);
651 	if (is_bad_inode(inode) || NFS_STALE(inode))
652 		return 0;
653 
654 	nfsi = NFS_I(inode);
655 	if (entry->fattr->fileid != nfsi->fileid)
656 		return 0;
657 	if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
658 		return 0;
659 	return 1;
660 }
661 
662 #define NFS_READDIR_CACHE_USAGE_THRESHOLD (8UL)
663 
664 static bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx,
665 				unsigned int cache_hits,
666 				unsigned int cache_misses)
667 {
668 	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
669 		return false;
670 	if (ctx->pos == 0 ||
671 	    cache_hits + cache_misses > NFS_READDIR_CACHE_USAGE_THRESHOLD)
672 		return true;
673 	return false;
674 }
675 
676 /*
677  * This function is called by the getattr code to request the
678  * use of readdirplus to accelerate any future lookups in the same
679  * directory.
680  */
681 void nfs_readdir_record_entry_cache_hit(struct inode *dir)
682 {
683 	struct nfs_inode *nfsi = NFS_I(dir);
684 	struct nfs_open_dir_context *ctx;
685 
686 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
687 	    S_ISDIR(dir->i_mode)) {
688 		rcu_read_lock();
689 		list_for_each_entry_rcu (ctx, &nfsi->open_files, list)
690 			atomic_inc(&ctx->cache_hits);
691 		rcu_read_unlock();
692 	}
693 }
694 
695 /*
696  * This function is mainly for use by nfs_getattr().
697  *
698  * If this is an 'ls -l', we want to force use of readdirplus.
699  */
700 void nfs_readdir_record_entry_cache_miss(struct inode *dir)
701 {
702 	struct nfs_inode *nfsi = NFS_I(dir);
703 	struct nfs_open_dir_context *ctx;
704 
705 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
706 	    S_ISDIR(dir->i_mode)) {
707 		rcu_read_lock();
708 		list_for_each_entry_rcu (ctx, &nfsi->open_files, list)
709 			atomic_inc(&ctx->cache_misses);
710 		rcu_read_unlock();
711 	}
712 }
713 
714 static void nfs_lookup_advise_force_readdirplus(struct inode *dir,
715 						unsigned int flags)
716 {
717 	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
718 		return;
719 	if (flags & (LOOKUP_EXCL | LOOKUP_PARENT | LOOKUP_REVAL))
720 		return;
721 	nfs_readdir_record_entry_cache_miss(dir);
722 }
723 
724 static
725 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
726 		unsigned long dir_verifier)
727 {
728 	struct qstr filename = QSTR_INIT(entry->name, entry->len);
729 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
730 	struct dentry *dentry;
731 	struct dentry *alias;
732 	struct inode *inode;
733 	int status;
734 
735 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
736 		return;
737 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
738 		return;
739 	if (filename.len == 0)
740 		return;
741 	/* Validate that the name doesn't contain any illegal '\0' */
742 	if (strnlen(filename.name, filename.len) != filename.len)
743 		return;
744 	/* ...or '/' */
745 	if (strnchr(filename.name, filename.len, '/'))
746 		return;
747 	if (filename.name[0] == '.') {
748 		if (filename.len == 1)
749 			return;
750 		if (filename.len == 2 && filename.name[1] == '.')
751 			return;
752 	}
753 	filename.hash = full_name_hash(parent, filename.name, filename.len);
754 
755 	dentry = d_lookup(parent, &filename);
756 again:
757 	if (!dentry) {
758 		dentry = d_alloc_parallel(parent, &filename, &wq);
759 		if (IS_ERR(dentry))
760 			return;
761 	}
762 	if (!d_in_lookup(dentry)) {
763 		/* Is there a mountpoint here? If so, just exit */
764 		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
765 					&entry->fattr->fsid))
766 			goto out;
767 		if (nfs_same_file(dentry, entry)) {
768 			if (!entry->fh->size)
769 				goto out;
770 			nfs_set_verifier(dentry, dir_verifier);
771 			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
772 			if (!status)
773 				nfs_setsecurity(d_inode(dentry), entry->fattr);
774 			trace_nfs_readdir_lookup_revalidate(d_inode(parent),
775 							    dentry, 0, status);
776 			goto out;
777 		} else {
778 			trace_nfs_readdir_lookup_revalidate_failed(
779 				d_inode(parent), dentry, 0);
780 			d_invalidate(dentry);
781 			dput(dentry);
782 			dentry = NULL;
783 			goto again;
784 		}
785 	}
786 	if (!entry->fh->size) {
787 		d_lookup_done(dentry);
788 		goto out;
789 	}
790 
791 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
792 	alias = d_splice_alias(inode, dentry);
793 	d_lookup_done(dentry);
794 	if (alias) {
795 		if (IS_ERR(alias))
796 			goto out;
797 		dput(dentry);
798 		dentry = alias;
799 	}
800 	nfs_set_verifier(dentry, dir_verifier);
801 	trace_nfs_readdir_lookup(d_inode(parent), dentry, 0);
802 out:
803 	dput(dentry);
804 }
805 
806 static int nfs_readdir_entry_decode(struct nfs_readdir_descriptor *desc,
807 				    struct nfs_entry *entry,
808 				    struct xdr_stream *stream)
809 {
810 	int ret;
811 
812 	if (entry->fattr->label)
813 		entry->fattr->label->len = NFS4_MAXLABELLEN;
814 	ret = xdr_decode(desc, entry, stream);
815 	if (ret || !desc->plus)
816 		return ret;
817 	nfs_prime_dcache(file_dentry(desc->file), entry, desc->dir_verifier);
818 	return 0;
819 }
820 
821 /* Perform conversion from xdr to cache array */
822 static int nfs_readdir_folio_filler(struct nfs_readdir_descriptor *desc,
823 				    struct nfs_entry *entry,
824 				    struct page **xdr_pages, unsigned int buflen,
825 				    struct folio **arrays, size_t narrays,
826 				    u64 change_attr)
827 {
828 	struct address_space *mapping = desc->file->f_mapping;
829 	struct folio *folio = *arrays;
830 	struct xdr_stream stream;
831 	struct page *scratch, *new;
832 	struct xdr_buf buf;
833 	u64 cookie;
834 	int status;
835 
836 	scratch = alloc_page(GFP_KERNEL);
837 	if (scratch == NULL)
838 		return -ENOMEM;
839 
840 	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
841 	xdr_set_scratch_page(&stream, scratch);
842 
843 	do {
844 		status = nfs_readdir_entry_decode(desc, entry, &stream);
845 		if (status != 0)
846 			break;
847 
848 		status = nfs_readdir_page_array_append(folio_page(folio, 0), entry, &cookie);
849 		if (status != -ENOSPC)
850 			continue;
851 
852 		if (folio->mapping != mapping) {
853 			if (!--narrays)
854 				break;
855 			new = nfs_readdir_page_array_alloc(cookie, GFP_KERNEL);
856 			if (!new)
857 				break;
858 			arrays++;
859 			*arrays = folio = page_folio(new);
860 		} else {
861 			new = nfs_readdir_page_get_next(mapping, cookie,
862 							change_attr);
863 			if (!new)
864 				break;
865 			if (folio != *arrays)
866 				nfs_readdir_page_unlock_and_put(folio_page(folio, 0));
867 			folio = page_folio(new);
868 		}
869 		desc->folio_index_max++;
870 		status = nfs_readdir_page_array_append(folio_page(folio, 0), entry, &cookie);
871 	} while (!status && !entry->eof);
872 
873 	switch (status) {
874 	case -EBADCOOKIE:
875 		if (!entry->eof)
876 			break;
877 		nfs_readdir_page_set_eof(folio_page(folio, 0));
878 		fallthrough;
879 	case -EAGAIN:
880 		status = 0;
881 		break;
882 	case -ENOSPC:
883 		status = 0;
884 		if (!desc->plus)
885 			break;
886 		while (!nfs_readdir_entry_decode(desc, entry, &stream))
887 			;
888 	}
889 
890 	if (folio != *arrays)
891 		nfs_readdir_page_unlock_and_put(folio_page(folio, 0));
892 
893 	put_page(scratch);
894 	return status;
895 }
896 
897 static void nfs_readdir_free_pages(struct page **pages, size_t npages)
898 {
899 	while (npages--)
900 		put_page(pages[npages]);
901 	kfree(pages);
902 }
903 
904 /*
905  * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
906  * to nfs_readdir_free_pages()
907  */
908 static struct page **nfs_readdir_alloc_pages(size_t npages)
909 {
910 	struct page **pages;
911 	size_t i;
912 
913 	pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL);
914 	if (!pages)
915 		return NULL;
916 	for (i = 0; i < npages; i++) {
917 		struct page *page = alloc_page(GFP_KERNEL);
918 		if (page == NULL)
919 			goto out_freepages;
920 		pages[i] = page;
921 	}
922 	return pages;
923 
924 out_freepages:
925 	nfs_readdir_free_pages(pages, i);
926 	return NULL;
927 }
928 
929 static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc,
930 				    __be32 *verf_arg, __be32 *verf_res,
931 				    struct folio **arrays, size_t narrays)
932 {
933 	u64 change_attr;
934 	struct page **pages;
935 	struct folio *folio = *arrays;
936 	struct nfs_entry *entry;
937 	size_t array_size;
938 	struct inode *inode = file_inode(desc->file);
939 	unsigned int dtsize = desc->dtsize;
940 	unsigned int pglen;
941 	int status = -ENOMEM;
942 
943 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
944 	if (!entry)
945 		return -ENOMEM;
946 	entry->cookie = nfs_readdir_page_last_cookie(folio_page(folio, 0));
947 	entry->fh = nfs_alloc_fhandle();
948 	entry->fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
949 	entry->server = NFS_SERVER(inode);
950 	if (entry->fh == NULL || entry->fattr == NULL)
951 		goto out;
952 
953 	array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT;
954 	pages = nfs_readdir_alloc_pages(array_size);
955 	if (!pages)
956 		goto out;
957 
958 	change_attr = inode_peek_iversion_raw(inode);
959 	status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie, pages,
960 					dtsize, verf_res);
961 	if (status < 0)
962 		goto free_pages;
963 
964 	pglen = status;
965 	if (pglen != 0)
966 		status = nfs_readdir_folio_filler(desc, entry, pages, pglen,
967 						  arrays, narrays, change_attr);
968 	else
969 		nfs_readdir_page_set_eof(folio_page(folio, 0));
970 	desc->buffer_fills++;
971 
972 free_pages:
973 	nfs_readdir_free_pages(pages, array_size);
974 out:
975 	nfs_free_fattr(entry->fattr);
976 	nfs_free_fhandle(entry->fh);
977 	kfree(entry);
978 	return status;
979 }
980 
981 static void nfs_readdir_folio_put(struct nfs_readdir_descriptor *desc)
982 {
983 	folio_put(desc->folio);
984 	desc->folio = NULL;
985 }
986 
987 static void
988 nfs_readdir_folio_unlock_and_put_cached(struct nfs_readdir_descriptor *desc)
989 {
990 	folio_unlock(desc->folio);
991 	nfs_readdir_folio_put(desc);
992 }
993 
994 static struct folio *
995 nfs_readdir_folio_get_cached(struct nfs_readdir_descriptor *desc)
996 {
997 	struct address_space *mapping = desc->file->f_mapping;
998 	u64 change_attr = inode_peek_iversion_raw(mapping->host);
999 	u64 cookie = desc->last_cookie;
1000 	struct page *page;
1001 
1002 	page = nfs_readdir_page_get_locked(mapping, cookie, change_attr);
1003 	if (!page)
1004 		return NULL;
1005 	if (desc->clear_cache && !nfs_readdir_page_needs_filling(page))
1006 		nfs_readdir_page_reinit_array(page, cookie, change_attr);
1007 	return page_folio(page);
1008 }
1009 
1010 /*
1011  * Returns 0 if desc->dir_cookie was found on page desc->page_index
1012  * and locks the page to prevent removal from the page cache.
1013  */
1014 static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc)
1015 {
1016 	struct inode *inode = file_inode(desc->file);
1017 	struct nfs_inode *nfsi = NFS_I(inode);
1018 	__be32 verf[NFS_DIR_VERIFIER_SIZE];
1019 	int res;
1020 
1021 	desc->folio = nfs_readdir_folio_get_cached(desc);
1022 	if (!desc->folio)
1023 		return -ENOMEM;
1024 	if (nfs_readdir_page_needs_filling(folio_page(desc->folio, 0))) {
1025 		/* Grow the dtsize if we had to go back for more pages */
1026 		if (desc->folio_index == desc->folio_index_max)
1027 			nfs_grow_dtsize(desc);
1028 		desc->folio_index_max = desc->folio_index;
1029 		trace_nfs_readdir_cache_fill(desc->file, nfsi->cookieverf,
1030 					     desc->last_cookie,
1031 					     desc->folio->index, desc->dtsize);
1032 		res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf,
1033 					       &desc->folio, 1);
1034 		if (res < 0) {
1035 			nfs_readdir_folio_unlock_and_put_cached(desc);
1036 			trace_nfs_readdir_cache_fill_done(inode, res);
1037 			if (res == -EBADCOOKIE || res == -ENOTSYNC) {
1038 				invalidate_inode_pages2(desc->file->f_mapping);
1039 				nfs_readdir_rewind_search(desc);
1040 				trace_nfs_readdir_invalidate_cache_range(
1041 					inode, 0, MAX_LFS_FILESIZE);
1042 				return -EAGAIN;
1043 			}
1044 			return res;
1045 		}
1046 		/*
1047 		 * Set the cookie verifier if the page cache was empty
1048 		 */
1049 		if (desc->last_cookie == 0 &&
1050 		    memcmp(nfsi->cookieverf, verf, sizeof(nfsi->cookieverf))) {
1051 			memcpy(nfsi->cookieverf, verf,
1052 			       sizeof(nfsi->cookieverf));
1053 			invalidate_inode_pages2_range(desc->file->f_mapping, 1,
1054 						      -1);
1055 			trace_nfs_readdir_invalidate_cache_range(
1056 				inode, 1, MAX_LFS_FILESIZE);
1057 		}
1058 		desc->clear_cache = false;
1059 	}
1060 	res = nfs_readdir_search_array(desc);
1061 	if (res == 0)
1062 		return 0;
1063 	nfs_readdir_folio_unlock_and_put_cached(desc);
1064 	return res;
1065 }
1066 
1067 /* Search for desc->dir_cookie from the beginning of the page cache */
1068 static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc)
1069 {
1070 	int res;
1071 
1072 	do {
1073 		res = find_and_lock_cache_page(desc);
1074 	} while (res == -EAGAIN);
1075 	return res;
1076 }
1077 
1078 #define NFS_READDIR_CACHE_MISS_THRESHOLD (16UL)
1079 
1080 /*
1081  * Once we've found the start of the dirent within a page: fill 'er up...
1082  */
1083 static void nfs_do_filldir(struct nfs_readdir_descriptor *desc,
1084 			   const __be32 *verf)
1085 {
1086 	struct file	*file = desc->file;
1087 	struct nfs_cache_array *array;
1088 	unsigned int i;
1089 	bool first_emit = !desc->dir_cookie;
1090 
1091 	array = kmap_local_folio(desc->folio, 0);
1092 	for (i = desc->cache_entry_index; i < array->size; i++) {
1093 		struct nfs_cache_array_entry *ent;
1094 
1095 		ent = &array->array[i];
1096 		if (!dir_emit(desc->ctx, ent->name, ent->name_len,
1097 		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
1098 			desc->eob = true;
1099 			break;
1100 		}
1101 		memcpy(desc->verf, verf, sizeof(desc->verf));
1102 		if (i == array->size - 1) {
1103 			desc->dir_cookie = array->last_cookie;
1104 			nfs_readdir_seek_next_array(array, desc);
1105 		} else {
1106 			desc->dir_cookie = array->array[i + 1].cookie;
1107 			desc->last_cookie = array->array[0].cookie;
1108 		}
1109 		if (nfs_readdir_use_cookie(file))
1110 			desc->ctx->pos = desc->dir_cookie;
1111 		else
1112 			desc->ctx->pos++;
1113 		if (first_emit && i > NFS_READDIR_CACHE_MISS_THRESHOLD + 1) {
1114 			desc->eob = true;
1115 			break;
1116 		}
1117 	}
1118 	if (array->page_is_eof)
1119 		desc->eof = !desc->eob;
1120 
1121 	kunmap_local(array);
1122 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n",
1123 			(unsigned long long)desc->dir_cookie);
1124 }
1125 
1126 /*
1127  * If we cannot find a cookie in our cache, we suspect that this is
1128  * because it points to a deleted file, so we ask the server to return
1129  * whatever it thinks is the next entry. We then feed this to filldir.
1130  * If all goes well, we should then be able to find our way round the
1131  * cache on the next call to readdir_search_pagecache();
1132  *
1133  * NOTE: we cannot add the anonymous page to the pagecache because
1134  *	 the data it contains might not be page aligned. Besides,
1135  *	 we should already have a complete representation of the
1136  *	 directory in the page cache by the time we get here.
1137  */
1138 static int uncached_readdir(struct nfs_readdir_descriptor *desc)
1139 {
1140 	struct folio	**arrays;
1141 	size_t		i, sz = 512;
1142 	__be32		verf[NFS_DIR_VERIFIER_SIZE];
1143 	int		status = -ENOMEM;
1144 
1145 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n",
1146 			(unsigned long long)desc->dir_cookie);
1147 
1148 	arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL);
1149 	if (!arrays)
1150 		goto out;
1151 	arrays[0] = page_folio(nfs_readdir_page_array_alloc(desc->dir_cookie, GFP_KERNEL));
1152 	if (!arrays[0])
1153 		goto out;
1154 
1155 	desc->folio_index = 0;
1156 	desc->cache_entry_index = 0;
1157 	desc->last_cookie = desc->dir_cookie;
1158 	desc->folio_index_max = 0;
1159 
1160 	trace_nfs_readdir_uncached(desc->file, desc->verf, desc->last_cookie,
1161 				   -1, desc->dtsize);
1162 
1163 	status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz);
1164 	if (status < 0) {
1165 		trace_nfs_readdir_uncached_done(file_inode(desc->file), status);
1166 		goto out_free;
1167 	}
1168 
1169 	for (i = 0; !desc->eob && i < sz && arrays[i]; i++) {
1170 		desc->folio = arrays[i];
1171 		nfs_do_filldir(desc, verf);
1172 	}
1173 	desc->folio = NULL;
1174 
1175 	/*
1176 	 * Grow the dtsize if we have to go back for more pages,
1177 	 * or shrink it if we're reading too many.
1178 	 */
1179 	if (!desc->eof) {
1180 		if (!desc->eob)
1181 			nfs_grow_dtsize(desc);
1182 		else if (desc->buffer_fills == 1 &&
1183 			 i < (desc->folio_index_max >> 1))
1184 			nfs_shrink_dtsize(desc);
1185 	}
1186 out_free:
1187 	for (i = 0; i < sz && arrays[i]; i++)
1188 		nfs_readdir_page_array_free(folio_page(arrays[i], 0));
1189 out:
1190 	if (!nfs_readdir_use_cookie(desc->file))
1191 		nfs_readdir_rewind_search(desc);
1192 	desc->folio_index_max = -1;
1193 	kfree(arrays);
1194 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
1195 	return status;
1196 }
1197 
1198 static bool nfs_readdir_handle_cache_misses(struct inode *inode,
1199 					    struct nfs_readdir_descriptor *desc,
1200 					    unsigned int cache_misses,
1201 					    bool force_clear)
1202 {
1203 	if (desc->ctx->pos == 0 || !desc->plus)
1204 		return false;
1205 	if (cache_misses <= NFS_READDIR_CACHE_MISS_THRESHOLD && !force_clear)
1206 		return false;
1207 	trace_nfs_readdir_force_readdirplus(inode);
1208 	return true;
1209 }
1210 
1211 /* The file offset position represents the dirent entry number.  A
1212    last cookie cache takes care of the common case of reading the
1213    whole directory.
1214  */
1215 static int nfs_readdir(struct file *file, struct dir_context *ctx)
1216 {
1217 	struct dentry	*dentry = file_dentry(file);
1218 	struct inode	*inode = d_inode(dentry);
1219 	struct nfs_inode *nfsi = NFS_I(inode);
1220 	struct nfs_open_dir_context *dir_ctx = file->private_data;
1221 	struct nfs_readdir_descriptor *desc;
1222 	unsigned int cache_hits, cache_misses;
1223 	bool force_clear;
1224 	int res;
1225 
1226 	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
1227 			file, (long long)ctx->pos);
1228 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
1229 
1230 	/*
1231 	 * ctx->pos points to the dirent entry number.
1232 	 * *desc->dir_cookie has the cookie for the next entry. We have
1233 	 * to either find the entry with the appropriate number or
1234 	 * revalidate the cookie.
1235 	 */
1236 	nfs_revalidate_mapping(inode, file->f_mapping);
1237 
1238 	res = -ENOMEM;
1239 	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
1240 	if (!desc)
1241 		goto out;
1242 	desc->file = file;
1243 	desc->ctx = ctx;
1244 	desc->folio_index_max = -1;
1245 
1246 	spin_lock(&file->f_lock);
1247 	desc->dir_cookie = dir_ctx->dir_cookie;
1248 	desc->folio_index = dir_ctx->page_index;
1249 	desc->last_cookie = dir_ctx->last_cookie;
1250 	desc->attr_gencount = dir_ctx->attr_gencount;
1251 	desc->eof = dir_ctx->eof;
1252 	nfs_set_dtsize(desc, dir_ctx->dtsize);
1253 	memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf));
1254 	cache_hits = atomic_xchg(&dir_ctx->cache_hits, 0);
1255 	cache_misses = atomic_xchg(&dir_ctx->cache_misses, 0);
1256 	force_clear = dir_ctx->force_clear;
1257 	spin_unlock(&file->f_lock);
1258 
1259 	if (desc->eof) {
1260 		res = 0;
1261 		goto out_free;
1262 	}
1263 
1264 	desc->plus = nfs_use_readdirplus(inode, ctx, cache_hits, cache_misses);
1265 	force_clear = nfs_readdir_handle_cache_misses(inode, desc, cache_misses,
1266 						      force_clear);
1267 	desc->clear_cache = force_clear;
1268 
1269 	do {
1270 		res = readdir_search_pagecache(desc);
1271 
1272 		if (res == -EBADCOOKIE) {
1273 			res = 0;
1274 			/* This means either end of directory */
1275 			if (desc->dir_cookie && !desc->eof) {
1276 				/* Or that the server has 'lost' a cookie */
1277 				res = uncached_readdir(desc);
1278 				if (res == 0)
1279 					continue;
1280 				if (res == -EBADCOOKIE || res == -ENOTSYNC)
1281 					res = 0;
1282 			}
1283 			break;
1284 		}
1285 		if (res == -ETOOSMALL && desc->plus) {
1286 			nfs_zap_caches(inode);
1287 			desc->plus = false;
1288 			desc->eof = false;
1289 			continue;
1290 		}
1291 		if (res < 0)
1292 			break;
1293 
1294 		nfs_do_filldir(desc, nfsi->cookieverf);
1295 		nfs_readdir_folio_unlock_and_put_cached(desc);
1296 		if (desc->folio_index == desc->folio_index_max)
1297 			desc->clear_cache = force_clear;
1298 	} while (!desc->eob && !desc->eof);
1299 
1300 	spin_lock(&file->f_lock);
1301 	dir_ctx->dir_cookie = desc->dir_cookie;
1302 	dir_ctx->last_cookie = desc->last_cookie;
1303 	dir_ctx->attr_gencount = desc->attr_gencount;
1304 	dir_ctx->page_index = desc->folio_index;
1305 	dir_ctx->force_clear = force_clear;
1306 	dir_ctx->eof = desc->eof;
1307 	dir_ctx->dtsize = desc->dtsize;
1308 	memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf));
1309 	spin_unlock(&file->f_lock);
1310 out_free:
1311 	kfree(desc);
1312 
1313 out:
1314 	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
1315 	return res;
1316 }
1317 
1318 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
1319 {
1320 	struct nfs_open_dir_context *dir_ctx = filp->private_data;
1321 
1322 	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
1323 			filp, offset, whence);
1324 
1325 	switch (whence) {
1326 	default:
1327 		return -EINVAL;
1328 	case SEEK_SET:
1329 		if (offset < 0)
1330 			return -EINVAL;
1331 		spin_lock(&filp->f_lock);
1332 		break;
1333 	case SEEK_CUR:
1334 		if (offset == 0)
1335 			return filp->f_pos;
1336 		spin_lock(&filp->f_lock);
1337 		offset += filp->f_pos;
1338 		if (offset < 0) {
1339 			spin_unlock(&filp->f_lock);
1340 			return -EINVAL;
1341 		}
1342 	}
1343 	if (offset != filp->f_pos) {
1344 		filp->f_pos = offset;
1345 		dir_ctx->page_index = 0;
1346 		if (!nfs_readdir_use_cookie(filp)) {
1347 			dir_ctx->dir_cookie = 0;
1348 			dir_ctx->last_cookie = 0;
1349 		} else {
1350 			dir_ctx->dir_cookie = offset;
1351 			dir_ctx->last_cookie = offset;
1352 		}
1353 		dir_ctx->eof = false;
1354 	}
1355 	spin_unlock(&filp->f_lock);
1356 	return offset;
1357 }
1358 
1359 /*
1360  * All directory operations under NFS are synchronous, so fsync()
1361  * is a dummy operation.
1362  */
1363 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1364 			 int datasync)
1365 {
1366 	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1367 
1368 	nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC);
1369 	return 0;
1370 }
1371 
1372 /**
1373  * nfs_force_lookup_revalidate - Mark the directory as having changed
1374  * @dir: pointer to directory inode
1375  *
1376  * This forces the revalidation code in nfs_lookup_revalidate() to do a
1377  * full lookup on all child dentries of 'dir' whenever a change occurs
1378  * on the server that might have invalidated our dcache.
1379  *
1380  * Note that we reserve bit '0' as a tag to let us know when a dentry
1381  * was revalidated while holding a delegation on its inode.
1382  *
1383  * The caller should be holding dir->i_lock
1384  */
1385 void nfs_force_lookup_revalidate(struct inode *dir)
1386 {
1387 	NFS_I(dir)->cache_change_attribute += 2;
1388 }
1389 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1390 
1391 /**
1392  * nfs_verify_change_attribute - Detects NFS remote directory changes
1393  * @dir: pointer to parent directory inode
1394  * @verf: previously saved change attribute
1395  *
1396  * Return "false" if the verifiers doesn't match the change attribute.
1397  * This would usually indicate that the directory contents have changed on
1398  * the server, and that any dentries need revalidating.
1399  */
1400 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1401 {
1402 	return (verf & ~1UL) == nfs_save_change_attribute(dir);
1403 }
1404 
1405 static void nfs_set_verifier_delegated(unsigned long *verf)
1406 {
1407 	*verf |= 1UL;
1408 }
1409 
1410 #if IS_ENABLED(CONFIG_NFS_V4)
1411 static void nfs_unset_verifier_delegated(unsigned long *verf)
1412 {
1413 	*verf &= ~1UL;
1414 }
1415 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1416 
1417 static bool nfs_test_verifier_delegated(unsigned long verf)
1418 {
1419 	return verf & 1;
1420 }
1421 
1422 static bool nfs_verifier_is_delegated(struct dentry *dentry)
1423 {
1424 	return nfs_test_verifier_delegated(dentry->d_time);
1425 }
1426 
1427 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1428 {
1429 	struct inode *inode = d_inode(dentry);
1430 	struct inode *dir = d_inode(dentry->d_parent);
1431 
1432 	if (!nfs_verify_change_attribute(dir, verf))
1433 		return;
1434 	if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
1435 		nfs_set_verifier_delegated(&verf);
1436 	dentry->d_time = verf;
1437 }
1438 
1439 /**
1440  * nfs_set_verifier - save a parent directory verifier in the dentry
1441  * @dentry: pointer to dentry
1442  * @verf: verifier to save
1443  *
1444  * Saves the parent directory verifier in @dentry. If the inode has
1445  * a delegation, we also tag the dentry as having been revalidated
1446  * while holding a delegation so that we know we don't have to
1447  * look it up again after a directory change.
1448  */
1449 void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1450 {
1451 
1452 	spin_lock(&dentry->d_lock);
1453 	nfs_set_verifier_locked(dentry, verf);
1454 	spin_unlock(&dentry->d_lock);
1455 }
1456 EXPORT_SYMBOL_GPL(nfs_set_verifier);
1457 
1458 #if IS_ENABLED(CONFIG_NFS_V4)
1459 /**
1460  * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1461  * @inode: pointer to inode
1462  *
1463  * Iterates through the dentries in the inode alias list and clears
1464  * the tag used to indicate that the dentry has been revalidated
1465  * while holding a delegation.
1466  * This function is intended for use when the delegation is being
1467  * returned or revoked.
1468  */
1469 void nfs_clear_verifier_delegated(struct inode *inode)
1470 {
1471 	struct dentry *alias;
1472 
1473 	if (!inode)
1474 		return;
1475 	spin_lock(&inode->i_lock);
1476 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1477 		spin_lock(&alias->d_lock);
1478 		nfs_unset_verifier_delegated(&alias->d_time);
1479 		spin_unlock(&alias->d_lock);
1480 	}
1481 	spin_unlock(&inode->i_lock);
1482 }
1483 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1484 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1485 
1486 static int nfs_dentry_verify_change(struct inode *dir, struct dentry *dentry)
1487 {
1488 	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE) &&
1489 	    d_really_is_negative(dentry))
1490 		return dentry->d_time == inode_peek_iversion_raw(dir);
1491 	return nfs_verify_change_attribute(dir, dentry->d_time);
1492 }
1493 
1494 /*
1495  * A check for whether or not the parent directory has changed.
1496  * In the case it has, we assume that the dentries are untrustworthy
1497  * and may need to be looked up again.
1498  * If rcu_walk prevents us from performing a full check, return 0.
1499  */
1500 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1501 			      int rcu_walk)
1502 {
1503 	if (IS_ROOT(dentry))
1504 		return 1;
1505 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1506 		return 0;
1507 	if (!nfs_dentry_verify_change(dir, dentry))
1508 		return 0;
1509 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1510 	if (nfs_mapping_need_revalidate_inode(dir)) {
1511 		if (rcu_walk)
1512 			return 0;
1513 		if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1514 			return 0;
1515 	}
1516 	if (!nfs_dentry_verify_change(dir, dentry))
1517 		return 0;
1518 	return 1;
1519 }
1520 
1521 /*
1522  * Use intent information to check whether or not we're going to do
1523  * an O_EXCL create using this path component.
1524  */
1525 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1526 {
1527 	if (NFS_PROTO(dir)->version == 2)
1528 		return 0;
1529 	return flags & LOOKUP_EXCL;
1530 }
1531 
1532 /*
1533  * Inode and filehandle revalidation for lookups.
1534  *
1535  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1536  * or if the intent information indicates that we're about to open this
1537  * particular file and the "nocto" mount flag is not set.
1538  *
1539  */
1540 static
1541 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1542 {
1543 	struct nfs_server *server = NFS_SERVER(inode);
1544 	int ret;
1545 
1546 	if (IS_AUTOMOUNT(inode))
1547 		return 0;
1548 
1549 	if (flags & LOOKUP_OPEN) {
1550 		switch (inode->i_mode & S_IFMT) {
1551 		case S_IFREG:
1552 			/* A NFSv4 OPEN will revalidate later */
1553 			if (server->caps & NFS_CAP_ATOMIC_OPEN)
1554 				goto out;
1555 			fallthrough;
1556 		case S_IFDIR:
1557 			if (server->flags & NFS_MOUNT_NOCTO)
1558 				break;
1559 			/* NFS close-to-open cache consistency validation */
1560 			goto out_force;
1561 		}
1562 	}
1563 
1564 	/* VFS wants an on-the-wire revalidation */
1565 	if (flags & LOOKUP_REVAL)
1566 		goto out_force;
1567 out:
1568 	if (inode->i_nlink > 0 ||
1569 	    (inode->i_nlink == 0 &&
1570 	     test_bit(NFS_INO_PRESERVE_UNLINKED, &NFS_I(inode)->flags)))
1571 		return 0;
1572 	else
1573 		return -ESTALE;
1574 out_force:
1575 	if (flags & LOOKUP_RCU)
1576 		return -ECHILD;
1577 	ret = __nfs_revalidate_inode(server, inode);
1578 	if (ret != 0)
1579 		return ret;
1580 	goto out;
1581 }
1582 
1583 static void nfs_mark_dir_for_revalidate(struct inode *inode)
1584 {
1585 	spin_lock(&inode->i_lock);
1586 	nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE);
1587 	spin_unlock(&inode->i_lock);
1588 }
1589 
1590 /*
1591  * We judge how long we want to trust negative
1592  * dentries by looking at the parent inode mtime.
1593  *
1594  * If parent mtime has changed, we revalidate, else we wait for a
1595  * period corresponding to the parent's attribute cache timeout value.
1596  *
1597  * If LOOKUP_RCU prevents us from performing a full check, return 1
1598  * suggesting a reval is needed.
1599  *
1600  * Note that when creating a new file, or looking up a rename target,
1601  * then it shouldn't be necessary to revalidate a negative dentry.
1602  */
1603 static inline
1604 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1605 		       unsigned int flags)
1606 {
1607 	if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1608 		return 0;
1609 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1610 		return 1;
1611 	/* Case insensitive server? Revalidate negative dentries */
1612 	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1613 		return 1;
1614 	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1615 }
1616 
1617 static int
1618 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1619 			   struct inode *inode, int error)
1620 {
1621 	switch (error) {
1622 	case 1:
1623 		break;
1624 	case 0:
1625 		/*
1626 		 * We can't d_drop the root of a disconnected tree:
1627 		 * its d_hash is on the s_anon list and d_drop() would hide
1628 		 * it from shrink_dcache_for_unmount(), leading to busy
1629 		 * inodes on unmount and further oopses.
1630 		 */
1631 		if (inode && IS_ROOT(dentry))
1632 			error = 1;
1633 		break;
1634 	}
1635 	trace_nfs_lookup_revalidate_exit(dir, dentry, 0, error);
1636 	return error;
1637 }
1638 
1639 static int
1640 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1641 			       unsigned int flags)
1642 {
1643 	int ret = 1;
1644 	if (nfs_neg_need_reval(dir, dentry, flags)) {
1645 		if (flags & LOOKUP_RCU)
1646 			return -ECHILD;
1647 		ret = 0;
1648 	}
1649 	return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1650 }
1651 
1652 static int
1653 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1654 				struct inode *inode)
1655 {
1656 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1657 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1658 }
1659 
1660 static int nfs_lookup_revalidate_dentry(struct inode *dir,
1661 					struct dentry *dentry,
1662 					struct inode *inode, unsigned int flags)
1663 {
1664 	struct nfs_fh *fhandle;
1665 	struct nfs_fattr *fattr;
1666 	unsigned long dir_verifier;
1667 	int ret;
1668 
1669 	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1670 
1671 	ret = -ENOMEM;
1672 	fhandle = nfs_alloc_fhandle();
1673 	fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
1674 	if (fhandle == NULL || fattr == NULL)
1675 		goto out;
1676 
1677 	dir_verifier = nfs_save_change_attribute(dir);
1678 	ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1679 	if (ret < 0) {
1680 		switch (ret) {
1681 		case -ESTALE:
1682 		case -ENOENT:
1683 			ret = 0;
1684 			break;
1685 		case -ETIMEDOUT:
1686 			if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1687 				ret = 1;
1688 		}
1689 		goto out;
1690 	}
1691 
1692 	/* Request help from readdirplus */
1693 	nfs_lookup_advise_force_readdirplus(dir, flags);
1694 
1695 	ret = 0;
1696 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1697 		goto out;
1698 	if (nfs_refresh_inode(inode, fattr) < 0)
1699 		goto out;
1700 
1701 	nfs_setsecurity(inode, fattr);
1702 	nfs_set_verifier(dentry, dir_verifier);
1703 
1704 	ret = 1;
1705 out:
1706 	nfs_free_fattr(fattr);
1707 	nfs_free_fhandle(fhandle);
1708 
1709 	/*
1710 	 * If the lookup failed despite the dentry change attribute being
1711 	 * a match, then we should revalidate the directory cache.
1712 	 */
1713 	if (!ret && nfs_dentry_verify_change(dir, dentry))
1714 		nfs_mark_dir_for_revalidate(dir);
1715 	return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1716 }
1717 
1718 /*
1719  * This is called every time the dcache has a lookup hit,
1720  * and we should check whether we can really trust that
1721  * lookup.
1722  *
1723  * NOTE! The hit can be a negative hit too, don't assume
1724  * we have an inode!
1725  *
1726  * If the parent directory is seen to have changed, we throw out the
1727  * cached dentry and do a new lookup.
1728  */
1729 static int
1730 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1731 			 unsigned int flags)
1732 {
1733 	struct inode *inode;
1734 	int error;
1735 
1736 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1737 	inode = d_inode(dentry);
1738 
1739 	if (!inode)
1740 		return nfs_lookup_revalidate_negative(dir, dentry, flags);
1741 
1742 	if (is_bad_inode(inode)) {
1743 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1744 				__func__, dentry);
1745 		goto out_bad;
1746 	}
1747 
1748 	if ((flags & LOOKUP_RENAME_TARGET) && d_count(dentry) < 2 &&
1749 	    nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1750 		goto out_bad;
1751 
1752 	if (nfs_verifier_is_delegated(dentry))
1753 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1754 
1755 	/* Force a full look up iff the parent directory has changed */
1756 	if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1757 	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1758 		error = nfs_lookup_verify_inode(inode, flags);
1759 		if (error) {
1760 			if (error == -ESTALE)
1761 				nfs_mark_dir_for_revalidate(dir);
1762 			goto out_bad;
1763 		}
1764 		goto out_valid;
1765 	}
1766 
1767 	if (flags & LOOKUP_RCU)
1768 		return -ECHILD;
1769 
1770 	if (NFS_STALE(inode))
1771 		goto out_bad;
1772 
1773 	return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags);
1774 out_valid:
1775 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1776 out_bad:
1777 	if (flags & LOOKUP_RCU)
1778 		return -ECHILD;
1779 	return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1780 }
1781 
1782 static int
1783 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1784 			int (*reval)(struct inode *, struct dentry *, unsigned int))
1785 {
1786 	struct dentry *parent;
1787 	struct inode *dir;
1788 	int ret;
1789 
1790 	if (flags & LOOKUP_RCU) {
1791 		if (dentry->d_fsdata == NFS_FSDATA_BLOCKED)
1792 			return -ECHILD;
1793 		parent = READ_ONCE(dentry->d_parent);
1794 		dir = d_inode_rcu(parent);
1795 		if (!dir)
1796 			return -ECHILD;
1797 		ret = reval(dir, dentry, flags);
1798 		if (parent != READ_ONCE(dentry->d_parent))
1799 			return -ECHILD;
1800 	} else {
1801 		/* Wait for unlink to complete */
1802 		wait_var_event(&dentry->d_fsdata,
1803 			       dentry->d_fsdata != NFS_FSDATA_BLOCKED);
1804 		parent = dget_parent(dentry);
1805 		ret = reval(d_inode(parent), dentry, flags);
1806 		dput(parent);
1807 	}
1808 	return ret;
1809 }
1810 
1811 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1812 {
1813 	return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1814 }
1815 
1816 /*
1817  * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1818  * when we don't really care about the dentry name. This is called when a
1819  * pathwalk ends on a dentry that was not found via a normal lookup in the
1820  * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1821  *
1822  * In this situation, we just want to verify that the inode itself is OK
1823  * since the dentry might have changed on the server.
1824  */
1825 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1826 {
1827 	struct inode *inode = d_inode(dentry);
1828 	int error = 0;
1829 
1830 	/*
1831 	 * I believe we can only get a negative dentry here in the case of a
1832 	 * procfs-style symlink. Just assume it's correct for now, but we may
1833 	 * eventually need to do something more here.
1834 	 */
1835 	if (!inode) {
1836 		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1837 				__func__, dentry);
1838 		return 1;
1839 	}
1840 
1841 	if (is_bad_inode(inode)) {
1842 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1843 				__func__, dentry);
1844 		return 0;
1845 	}
1846 
1847 	error = nfs_lookup_verify_inode(inode, flags);
1848 	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1849 			__func__, inode->i_ino, error ? "invalid" : "valid");
1850 	return !error;
1851 }
1852 
1853 /*
1854  * This is called from dput() when d_count is going to 0.
1855  */
1856 static int nfs_dentry_delete(const struct dentry *dentry)
1857 {
1858 	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1859 		dentry, dentry->d_flags);
1860 
1861 	/* Unhash any dentry with a stale inode */
1862 	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1863 		return 1;
1864 
1865 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1866 		/* Unhash it, so that ->d_iput() would be called */
1867 		return 1;
1868 	}
1869 	if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1870 		/* Unhash it, so that ancestors of killed async unlink
1871 		 * files will be cleaned up during umount */
1872 		return 1;
1873 	}
1874 	return 0;
1875 
1876 }
1877 
1878 /* Ensure that we revalidate inode->i_nlink */
1879 static void nfs_drop_nlink(struct inode *inode)
1880 {
1881 	spin_lock(&inode->i_lock);
1882 	/* drop the inode if we're reasonably sure this is the last link */
1883 	if (inode->i_nlink > 0)
1884 		drop_nlink(inode);
1885 	NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1886 	nfs_set_cache_invalid(
1887 		inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME |
1888 			       NFS_INO_INVALID_NLINK);
1889 	spin_unlock(&inode->i_lock);
1890 }
1891 
1892 /*
1893  * Called when the dentry loses inode.
1894  * We use it to clean up silly-renamed files.
1895  */
1896 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1897 {
1898 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1899 		nfs_complete_unlink(dentry, inode);
1900 		nfs_drop_nlink(inode);
1901 	}
1902 	iput(inode);
1903 }
1904 
1905 static void nfs_d_release(struct dentry *dentry)
1906 {
1907 	/* free cached devname value, if it survived that far */
1908 	if (unlikely(dentry->d_fsdata)) {
1909 		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1910 			WARN_ON(1);
1911 		else
1912 			kfree(dentry->d_fsdata);
1913 	}
1914 }
1915 
1916 const struct dentry_operations nfs_dentry_operations = {
1917 	.d_revalidate	= nfs_lookup_revalidate,
1918 	.d_weak_revalidate	= nfs_weak_revalidate,
1919 	.d_delete	= nfs_dentry_delete,
1920 	.d_iput		= nfs_dentry_iput,
1921 	.d_automount	= nfs_d_automount,
1922 	.d_release	= nfs_d_release,
1923 };
1924 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1925 
1926 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1927 {
1928 	struct dentry *res;
1929 	struct inode *inode = NULL;
1930 	struct nfs_fh *fhandle = NULL;
1931 	struct nfs_fattr *fattr = NULL;
1932 	unsigned long dir_verifier;
1933 	int error;
1934 
1935 	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1936 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1937 
1938 	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1939 		return ERR_PTR(-ENAMETOOLONG);
1940 
1941 	/*
1942 	 * If we're doing an exclusive create, optimize away the lookup
1943 	 * but don't hash the dentry.
1944 	 */
1945 	if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1946 		return NULL;
1947 
1948 	res = ERR_PTR(-ENOMEM);
1949 	fhandle = nfs_alloc_fhandle();
1950 	fattr = nfs_alloc_fattr_with_label(NFS_SERVER(dir));
1951 	if (fhandle == NULL || fattr == NULL)
1952 		goto out;
1953 
1954 	dir_verifier = nfs_save_change_attribute(dir);
1955 	trace_nfs_lookup_enter(dir, dentry, flags);
1956 	error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1957 	if (error == -ENOENT) {
1958 		if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1959 			dir_verifier = inode_peek_iversion_raw(dir);
1960 		goto no_entry;
1961 	}
1962 	if (error < 0) {
1963 		res = ERR_PTR(error);
1964 		goto out;
1965 	}
1966 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1967 	res = ERR_CAST(inode);
1968 	if (IS_ERR(res))
1969 		goto out;
1970 
1971 	/* Notify readdir to use READDIRPLUS */
1972 	nfs_lookup_advise_force_readdirplus(dir, flags);
1973 
1974 no_entry:
1975 	res = d_splice_alias(inode, dentry);
1976 	if (res != NULL) {
1977 		if (IS_ERR(res))
1978 			goto out;
1979 		dentry = res;
1980 	}
1981 	nfs_set_verifier(dentry, dir_verifier);
1982 out:
1983 	trace_nfs_lookup_exit(dir, dentry, flags, PTR_ERR_OR_ZERO(res));
1984 	nfs_free_fattr(fattr);
1985 	nfs_free_fhandle(fhandle);
1986 	return res;
1987 }
1988 EXPORT_SYMBOL_GPL(nfs_lookup);
1989 
1990 void nfs_d_prune_case_insensitive_aliases(struct inode *inode)
1991 {
1992 	/* Case insensitive server? Revalidate dentries */
1993 	if (inode && nfs_server_capable(inode, NFS_CAP_CASE_INSENSITIVE))
1994 		d_prune_aliases(inode);
1995 }
1996 EXPORT_SYMBOL_GPL(nfs_d_prune_case_insensitive_aliases);
1997 
1998 #if IS_ENABLED(CONFIG_NFS_V4)
1999 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
2000 
2001 const struct dentry_operations nfs4_dentry_operations = {
2002 	.d_revalidate	= nfs4_lookup_revalidate,
2003 	.d_weak_revalidate	= nfs_weak_revalidate,
2004 	.d_delete	= nfs_dentry_delete,
2005 	.d_iput		= nfs_dentry_iput,
2006 	.d_automount	= nfs_d_automount,
2007 	.d_release	= nfs_d_release,
2008 };
2009 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
2010 
2011 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
2012 {
2013 	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
2014 }
2015 
2016 static int do_open(struct inode *inode, struct file *filp)
2017 {
2018 	nfs_fscache_open_file(inode, filp);
2019 	return 0;
2020 }
2021 
2022 static int nfs_finish_open(struct nfs_open_context *ctx,
2023 			   struct dentry *dentry,
2024 			   struct file *file, unsigned open_flags)
2025 {
2026 	int err;
2027 
2028 	err = finish_open(file, dentry, do_open);
2029 	if (err)
2030 		goto out;
2031 	if (S_ISREG(file_inode(file)->i_mode))
2032 		nfs_file_set_open_context(file, ctx);
2033 	else
2034 		err = -EOPENSTALE;
2035 out:
2036 	return err;
2037 }
2038 
2039 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
2040 		    struct file *file, unsigned open_flags,
2041 		    umode_t mode)
2042 {
2043 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2044 	struct nfs_open_context *ctx;
2045 	struct dentry *res;
2046 	struct iattr attr = { .ia_valid = ATTR_OPEN };
2047 	struct inode *inode;
2048 	unsigned int lookup_flags = 0;
2049 	unsigned long dir_verifier;
2050 	bool switched = false;
2051 	int created = 0;
2052 	int err;
2053 
2054 	/* Expect a negative dentry */
2055 	BUG_ON(d_inode(dentry));
2056 
2057 	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
2058 			dir->i_sb->s_id, dir->i_ino, dentry);
2059 
2060 	err = nfs_check_flags(open_flags);
2061 	if (err)
2062 		return err;
2063 
2064 	/* NFS only supports OPEN on regular files */
2065 	if ((open_flags & O_DIRECTORY)) {
2066 		if (!d_in_lookup(dentry)) {
2067 			/*
2068 			 * Hashed negative dentry with O_DIRECTORY: dentry was
2069 			 * revalidated and is fine, no need to perform lookup
2070 			 * again
2071 			 */
2072 			return -ENOENT;
2073 		}
2074 		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
2075 		goto no_open;
2076 	}
2077 
2078 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
2079 		return -ENAMETOOLONG;
2080 
2081 	if (open_flags & O_CREAT) {
2082 		struct nfs_server *server = NFS_SERVER(dir);
2083 
2084 		if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
2085 			mode &= ~current_umask();
2086 
2087 		attr.ia_valid |= ATTR_MODE;
2088 		attr.ia_mode = mode;
2089 	}
2090 	if (open_flags & O_TRUNC) {
2091 		attr.ia_valid |= ATTR_SIZE;
2092 		attr.ia_size = 0;
2093 	}
2094 
2095 	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
2096 		d_drop(dentry);
2097 		switched = true;
2098 		dentry = d_alloc_parallel(dentry->d_parent,
2099 					  &dentry->d_name, &wq);
2100 		if (IS_ERR(dentry))
2101 			return PTR_ERR(dentry);
2102 		if (unlikely(!d_in_lookup(dentry)))
2103 			return finish_no_open(file, dentry);
2104 	}
2105 
2106 	ctx = create_nfs_open_context(dentry, open_flags, file);
2107 	err = PTR_ERR(ctx);
2108 	if (IS_ERR(ctx))
2109 		goto out;
2110 
2111 	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
2112 	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
2113 	if (created)
2114 		file->f_mode |= FMODE_CREATED;
2115 	if (IS_ERR(inode)) {
2116 		err = PTR_ERR(inode);
2117 		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2118 		put_nfs_open_context(ctx);
2119 		d_drop(dentry);
2120 		switch (err) {
2121 		case -ENOENT:
2122 			d_splice_alias(NULL, dentry);
2123 			if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
2124 				dir_verifier = inode_peek_iversion_raw(dir);
2125 			else
2126 				dir_verifier = nfs_save_change_attribute(dir);
2127 			nfs_set_verifier(dentry, dir_verifier);
2128 			break;
2129 		case -EISDIR:
2130 		case -ENOTDIR:
2131 			goto no_open;
2132 		case -ELOOP:
2133 			if (!(open_flags & O_NOFOLLOW))
2134 				goto no_open;
2135 			break;
2136 			/* case -EINVAL: */
2137 		default:
2138 			break;
2139 		}
2140 		goto out;
2141 	}
2142 	file->f_mode |= FMODE_CAN_ODIRECT;
2143 
2144 	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
2145 	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2146 	put_nfs_open_context(ctx);
2147 out:
2148 	if (unlikely(switched)) {
2149 		d_lookup_done(dentry);
2150 		dput(dentry);
2151 	}
2152 	return err;
2153 
2154 no_open:
2155 	res = nfs_lookup(dir, dentry, lookup_flags);
2156 	if (!res) {
2157 		inode = d_inode(dentry);
2158 		if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2159 		    !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)))
2160 			res = ERR_PTR(-ENOTDIR);
2161 		else if (inode && S_ISREG(inode->i_mode))
2162 			res = ERR_PTR(-EOPENSTALE);
2163 	} else if (!IS_ERR(res)) {
2164 		inode = d_inode(res);
2165 		if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2166 		    !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) {
2167 			dput(res);
2168 			res = ERR_PTR(-ENOTDIR);
2169 		} else if (inode && S_ISREG(inode->i_mode)) {
2170 			dput(res);
2171 			res = ERR_PTR(-EOPENSTALE);
2172 		}
2173 	}
2174 	if (switched) {
2175 		d_lookup_done(dentry);
2176 		if (!res)
2177 			res = dentry;
2178 		else
2179 			dput(dentry);
2180 	}
2181 	if (IS_ERR(res))
2182 		return PTR_ERR(res);
2183 	return finish_no_open(file, res);
2184 }
2185 EXPORT_SYMBOL_GPL(nfs_atomic_open);
2186 
2187 static int
2188 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
2189 			  unsigned int flags)
2190 {
2191 	struct inode *inode;
2192 
2193 	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
2194 		goto full_reval;
2195 	if (d_mountpoint(dentry))
2196 		goto full_reval;
2197 
2198 	inode = d_inode(dentry);
2199 
2200 	/* We can't create new files in nfs_open_revalidate(), so we
2201 	 * optimize away revalidation of negative dentries.
2202 	 */
2203 	if (inode == NULL)
2204 		goto full_reval;
2205 
2206 	if (nfs_verifier_is_delegated(dentry))
2207 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
2208 
2209 	/* NFS only supports OPEN on regular files */
2210 	if (!S_ISREG(inode->i_mode))
2211 		goto full_reval;
2212 
2213 	/* We cannot do exclusive creation on a positive dentry */
2214 	if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
2215 		goto reval_dentry;
2216 
2217 	/* Check if the directory changed */
2218 	if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
2219 		goto reval_dentry;
2220 
2221 	/* Let f_op->open() actually open (and revalidate) the file */
2222 	return 1;
2223 reval_dentry:
2224 	if (flags & LOOKUP_RCU)
2225 		return -ECHILD;
2226 	return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags);
2227 
2228 full_reval:
2229 	return nfs_do_lookup_revalidate(dir, dentry, flags);
2230 }
2231 
2232 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
2233 {
2234 	return __nfs_lookup_revalidate(dentry, flags,
2235 			nfs4_do_lookup_revalidate);
2236 }
2237 
2238 #endif /* CONFIG_NFSV4 */
2239 
2240 struct dentry *
2241 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
2242 				struct nfs_fattr *fattr)
2243 {
2244 	struct dentry *parent = dget_parent(dentry);
2245 	struct inode *dir = d_inode(parent);
2246 	struct inode *inode;
2247 	struct dentry *d;
2248 	int error;
2249 
2250 	d_drop(dentry);
2251 
2252 	if (fhandle->size == 0) {
2253 		error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
2254 		if (error)
2255 			goto out_error;
2256 	}
2257 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2258 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
2259 		struct nfs_server *server = NFS_SB(dentry->d_sb);
2260 		error = server->nfs_client->rpc_ops->getattr(server, fhandle,
2261 				fattr, NULL);
2262 		if (error < 0)
2263 			goto out_error;
2264 	}
2265 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
2266 	d = d_splice_alias(inode, dentry);
2267 out:
2268 	dput(parent);
2269 	return d;
2270 out_error:
2271 	d = ERR_PTR(error);
2272 	goto out;
2273 }
2274 EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
2275 
2276 /*
2277  * Code common to create, mkdir, and mknod.
2278  */
2279 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
2280 				struct nfs_fattr *fattr)
2281 {
2282 	struct dentry *d;
2283 
2284 	d = nfs_add_or_obtain(dentry, fhandle, fattr);
2285 	if (IS_ERR(d))
2286 		return PTR_ERR(d);
2287 
2288 	/* Callers don't care */
2289 	dput(d);
2290 	return 0;
2291 }
2292 EXPORT_SYMBOL_GPL(nfs_instantiate);
2293 
2294 /*
2295  * Following a failed create operation, we drop the dentry rather
2296  * than retain a negative dentry. This avoids a problem in the event
2297  * that the operation succeeded on the server, but an error in the
2298  * reply path made it appear to have failed.
2299  */
2300 int nfs_create(struct mnt_idmap *idmap, struct inode *dir,
2301 	       struct dentry *dentry, umode_t mode, bool excl)
2302 {
2303 	struct iattr attr;
2304 	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
2305 	int error;
2306 
2307 	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
2308 			dir->i_sb->s_id, dir->i_ino, dentry);
2309 
2310 	attr.ia_mode = mode;
2311 	attr.ia_valid = ATTR_MODE;
2312 
2313 	trace_nfs_create_enter(dir, dentry, open_flags);
2314 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
2315 	trace_nfs_create_exit(dir, dentry, open_flags, error);
2316 	if (error != 0)
2317 		goto out_err;
2318 	return 0;
2319 out_err:
2320 	d_drop(dentry);
2321 	return error;
2322 }
2323 EXPORT_SYMBOL_GPL(nfs_create);
2324 
2325 /*
2326  * See comments for nfs_proc_create regarding failed operations.
2327  */
2328 int
2329 nfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
2330 	  struct dentry *dentry, umode_t mode, dev_t rdev)
2331 {
2332 	struct iattr attr;
2333 	int status;
2334 
2335 	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
2336 			dir->i_sb->s_id, dir->i_ino, dentry);
2337 
2338 	attr.ia_mode = mode;
2339 	attr.ia_valid = ATTR_MODE;
2340 
2341 	trace_nfs_mknod_enter(dir, dentry);
2342 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
2343 	trace_nfs_mknod_exit(dir, dentry, status);
2344 	if (status != 0)
2345 		goto out_err;
2346 	return 0;
2347 out_err:
2348 	d_drop(dentry);
2349 	return status;
2350 }
2351 EXPORT_SYMBOL_GPL(nfs_mknod);
2352 
2353 /*
2354  * See comments for nfs_proc_create regarding failed operations.
2355  */
2356 int nfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
2357 	      struct dentry *dentry, umode_t mode)
2358 {
2359 	struct iattr attr;
2360 	int error;
2361 
2362 	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
2363 			dir->i_sb->s_id, dir->i_ino, dentry);
2364 
2365 	attr.ia_valid = ATTR_MODE;
2366 	attr.ia_mode = mode | S_IFDIR;
2367 
2368 	trace_nfs_mkdir_enter(dir, dentry);
2369 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
2370 	trace_nfs_mkdir_exit(dir, dentry, error);
2371 	if (error != 0)
2372 		goto out_err;
2373 	return 0;
2374 out_err:
2375 	d_drop(dentry);
2376 	return error;
2377 }
2378 EXPORT_SYMBOL_GPL(nfs_mkdir);
2379 
2380 static void nfs_dentry_handle_enoent(struct dentry *dentry)
2381 {
2382 	if (simple_positive(dentry))
2383 		d_delete(dentry);
2384 }
2385 
2386 static void nfs_dentry_remove_handle_error(struct inode *dir,
2387 					   struct dentry *dentry, int error)
2388 {
2389 	switch (error) {
2390 	case -ENOENT:
2391 		if (d_really_is_positive(dentry))
2392 			d_delete(dentry);
2393 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2394 		break;
2395 	case 0:
2396 		nfs_d_prune_case_insensitive_aliases(d_inode(dentry));
2397 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2398 	}
2399 }
2400 
2401 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
2402 {
2403 	int error;
2404 
2405 	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
2406 			dir->i_sb->s_id, dir->i_ino, dentry);
2407 
2408 	trace_nfs_rmdir_enter(dir, dentry);
2409 	if (d_really_is_positive(dentry)) {
2410 		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2411 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2412 		/* Ensure the VFS deletes this inode */
2413 		switch (error) {
2414 		case 0:
2415 			clear_nlink(d_inode(dentry));
2416 			break;
2417 		case -ENOENT:
2418 			nfs_dentry_handle_enoent(dentry);
2419 		}
2420 		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2421 	} else
2422 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2423 	nfs_dentry_remove_handle_error(dir, dentry, error);
2424 	trace_nfs_rmdir_exit(dir, dentry, error);
2425 
2426 	return error;
2427 }
2428 EXPORT_SYMBOL_GPL(nfs_rmdir);
2429 
2430 /*
2431  * Remove a file after making sure there are no pending writes,
2432  * and after checking that the file has only one user.
2433  *
2434  * We invalidate the attribute cache and free the inode prior to the operation
2435  * to avoid possible races if the server reuses the inode.
2436  */
2437 static int nfs_safe_remove(struct dentry *dentry)
2438 {
2439 	struct inode *dir = d_inode(dentry->d_parent);
2440 	struct inode *inode = d_inode(dentry);
2441 	int error = -EBUSY;
2442 
2443 	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2444 
2445 	/* If the dentry was sillyrenamed, we simply call d_delete() */
2446 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2447 		error = 0;
2448 		goto out;
2449 	}
2450 
2451 	trace_nfs_remove_enter(dir, dentry);
2452 	if (inode != NULL) {
2453 		error = NFS_PROTO(dir)->remove(dir, dentry);
2454 		if (error == 0)
2455 			nfs_drop_nlink(inode);
2456 	} else
2457 		error = NFS_PROTO(dir)->remove(dir, dentry);
2458 	if (error == -ENOENT)
2459 		nfs_dentry_handle_enoent(dentry);
2460 	trace_nfs_remove_exit(dir, dentry, error);
2461 out:
2462 	return error;
2463 }
2464 
2465 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
2466  *  belongs to an active ".nfs..." file and we return -EBUSY.
2467  *
2468  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
2469  */
2470 int nfs_unlink(struct inode *dir, struct dentry *dentry)
2471 {
2472 	int error;
2473 
2474 	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2475 		dir->i_ino, dentry);
2476 
2477 	trace_nfs_unlink_enter(dir, dentry);
2478 	spin_lock(&dentry->d_lock);
2479 	if (d_count(dentry) > 1 && !test_bit(NFS_INO_PRESERVE_UNLINKED,
2480 					     &NFS_I(d_inode(dentry))->flags)) {
2481 		spin_unlock(&dentry->d_lock);
2482 		/* Start asynchronous writeout of the inode */
2483 		write_inode_now(d_inode(dentry), 0);
2484 		error = nfs_sillyrename(dir, dentry);
2485 		goto out;
2486 	}
2487 	/* We must prevent any concurrent open until the unlink
2488 	 * completes.  ->d_revalidate will wait for ->d_fsdata
2489 	 * to clear.  We set it here to ensure no lookup succeeds until
2490 	 * the unlink is complete on the server.
2491 	 */
2492 	error = -ETXTBSY;
2493 	if (WARN_ON(dentry->d_flags & DCACHE_NFSFS_RENAMED) ||
2494 	    WARN_ON(dentry->d_fsdata == NFS_FSDATA_BLOCKED)) {
2495 		spin_unlock(&dentry->d_lock);
2496 		goto out;
2497 	}
2498 	/* old devname */
2499 	kfree(dentry->d_fsdata);
2500 	dentry->d_fsdata = NFS_FSDATA_BLOCKED;
2501 
2502 	spin_unlock(&dentry->d_lock);
2503 	error = nfs_safe_remove(dentry);
2504 	nfs_dentry_remove_handle_error(dir, dentry, error);
2505 	dentry->d_fsdata = NULL;
2506 	wake_up_var(&dentry->d_fsdata);
2507 out:
2508 	trace_nfs_unlink_exit(dir, dentry, error);
2509 	return error;
2510 }
2511 EXPORT_SYMBOL_GPL(nfs_unlink);
2512 
2513 /*
2514  * To create a symbolic link, most file systems instantiate a new inode,
2515  * add a page to it containing the path, then write it out to the disk
2516  * using prepare_write/commit_write.
2517  *
2518  * Unfortunately the NFS client can't create the in-core inode first
2519  * because it needs a file handle to create an in-core inode (see
2520  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
2521  * symlink request has completed on the server.
2522  *
2523  * So instead we allocate a raw page, copy the symname into it, then do
2524  * the SYMLINK request with the page as the buffer.  If it succeeds, we
2525  * now have a new file handle and can instantiate an in-core NFS inode
2526  * and move the raw page into its mapping.
2527  */
2528 int nfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
2529 		struct dentry *dentry, const char *symname)
2530 {
2531 	struct page *page;
2532 	char *kaddr;
2533 	struct iattr attr;
2534 	unsigned int pathlen = strlen(symname);
2535 	int error;
2536 
2537 	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2538 		dir->i_ino, dentry, symname);
2539 
2540 	if (pathlen > PAGE_SIZE)
2541 		return -ENAMETOOLONG;
2542 
2543 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
2544 	attr.ia_valid = ATTR_MODE;
2545 
2546 	page = alloc_page(GFP_USER);
2547 	if (!page)
2548 		return -ENOMEM;
2549 
2550 	kaddr = page_address(page);
2551 	memcpy(kaddr, symname, pathlen);
2552 	if (pathlen < PAGE_SIZE)
2553 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2554 
2555 	trace_nfs_symlink_enter(dir, dentry);
2556 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
2557 	trace_nfs_symlink_exit(dir, dentry, error);
2558 	if (error != 0) {
2559 		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2560 			dir->i_sb->s_id, dir->i_ino,
2561 			dentry, symname, error);
2562 		d_drop(dentry);
2563 		__free_page(page);
2564 		return error;
2565 	}
2566 
2567 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2568 
2569 	/*
2570 	 * No big deal if we can't add this page to the page cache here.
2571 	 * READLINK will get the missing page from the server if needed.
2572 	 */
2573 	if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2574 							GFP_KERNEL)) {
2575 		SetPageUptodate(page);
2576 		unlock_page(page);
2577 		/*
2578 		 * add_to_page_cache_lru() grabs an extra page refcount.
2579 		 * Drop it here to avoid leaking this page later.
2580 		 */
2581 		put_page(page);
2582 	} else
2583 		__free_page(page);
2584 
2585 	return 0;
2586 }
2587 EXPORT_SYMBOL_GPL(nfs_symlink);
2588 
2589 int
2590 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2591 {
2592 	struct inode *inode = d_inode(old_dentry);
2593 	int error;
2594 
2595 	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2596 		old_dentry, dentry);
2597 
2598 	trace_nfs_link_enter(inode, dir, dentry);
2599 	d_drop(dentry);
2600 	if (S_ISREG(inode->i_mode))
2601 		nfs_sync_inode(inode);
2602 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2603 	if (error == 0) {
2604 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2605 		ihold(inode);
2606 		d_add(dentry, inode);
2607 	}
2608 	trace_nfs_link_exit(inode, dir, dentry, error);
2609 	return error;
2610 }
2611 EXPORT_SYMBOL_GPL(nfs_link);
2612 
2613 static void
2614 nfs_unblock_rename(struct rpc_task *task, struct nfs_renamedata *data)
2615 {
2616 	struct dentry *new_dentry = data->new_dentry;
2617 
2618 	new_dentry->d_fsdata = NULL;
2619 	wake_up_var(&new_dentry->d_fsdata);
2620 }
2621 
2622 /*
2623  * RENAME
2624  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2625  * different file handle for the same inode after a rename (e.g. when
2626  * moving to a different directory). A fail-safe method to do so would
2627  * be to look up old_dir/old_name, create a link to new_dir/new_name and
2628  * rename the old file using the sillyrename stuff. This way, the original
2629  * file in old_dir will go away when the last process iput()s the inode.
2630  *
2631  * FIXED.
2632  *
2633  * It actually works quite well. One needs to have the possibility for
2634  * at least one ".nfs..." file in each directory the file ever gets
2635  * moved or linked to which happens automagically with the new
2636  * implementation that only depends on the dcache stuff instead of
2637  * using the inode layer
2638  *
2639  * Unfortunately, things are a little more complicated than indicated
2640  * above. For a cross-directory move, we want to make sure we can get
2641  * rid of the old inode after the operation.  This means there must be
2642  * no pending writes (if it's a file), and the use count must be 1.
2643  * If these conditions are met, we can drop the dentries before doing
2644  * the rename.
2645  */
2646 int nfs_rename(struct mnt_idmap *idmap, struct inode *old_dir,
2647 	       struct dentry *old_dentry, struct inode *new_dir,
2648 	       struct dentry *new_dentry, unsigned int flags)
2649 {
2650 	struct inode *old_inode = d_inode(old_dentry);
2651 	struct inode *new_inode = d_inode(new_dentry);
2652 	struct dentry *dentry = NULL;
2653 	struct rpc_task *task;
2654 	bool must_unblock = false;
2655 	int error = -EBUSY;
2656 
2657 	if (flags)
2658 		return -EINVAL;
2659 
2660 	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2661 		 old_dentry, new_dentry,
2662 		 d_count(new_dentry));
2663 
2664 	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2665 	/*
2666 	 * For non-directories, check whether the target is busy and if so,
2667 	 * make a copy of the dentry and then do a silly-rename. If the
2668 	 * silly-rename succeeds, the copied dentry is hashed and becomes
2669 	 * the new target.
2670 	 */
2671 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2672 		/* We must prevent any concurrent open until the unlink
2673 		 * completes.  ->d_revalidate will wait for ->d_fsdata
2674 		 * to clear.  We set it here to ensure no lookup succeeds until
2675 		 * the unlink is complete on the server.
2676 		 */
2677 		error = -ETXTBSY;
2678 		if (WARN_ON(new_dentry->d_flags & DCACHE_NFSFS_RENAMED) ||
2679 		    WARN_ON(new_dentry->d_fsdata == NFS_FSDATA_BLOCKED))
2680 			goto out;
2681 		if (new_dentry->d_fsdata) {
2682 			/* old devname */
2683 			kfree(new_dentry->d_fsdata);
2684 			new_dentry->d_fsdata = NULL;
2685 		}
2686 
2687 		spin_lock(&new_dentry->d_lock);
2688 		if (d_count(new_dentry) > 2) {
2689 			int err;
2690 
2691 			spin_unlock(&new_dentry->d_lock);
2692 
2693 			/* copy the target dentry's name */
2694 			dentry = d_alloc(new_dentry->d_parent,
2695 					 &new_dentry->d_name);
2696 			if (!dentry)
2697 				goto out;
2698 
2699 			/* silly-rename the existing target ... */
2700 			err = nfs_sillyrename(new_dir, new_dentry);
2701 			if (err)
2702 				goto out;
2703 
2704 			new_dentry = dentry;
2705 			new_inode = NULL;
2706 		} else {
2707 			new_dentry->d_fsdata = NFS_FSDATA_BLOCKED;
2708 			must_unblock = true;
2709 			spin_unlock(&new_dentry->d_lock);
2710 		}
2711 
2712 	}
2713 
2714 	if (S_ISREG(old_inode->i_mode))
2715 		nfs_sync_inode(old_inode);
2716 	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry,
2717 				must_unblock ? nfs_unblock_rename : NULL);
2718 	if (IS_ERR(task)) {
2719 		error = PTR_ERR(task);
2720 		goto out;
2721 	}
2722 
2723 	error = rpc_wait_for_completion_task(task);
2724 	if (error != 0) {
2725 		((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2726 		/* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2727 		smp_wmb();
2728 	} else
2729 		error = task->tk_status;
2730 	rpc_put_task(task);
2731 	/* Ensure the inode attributes are revalidated */
2732 	if (error == 0) {
2733 		spin_lock(&old_inode->i_lock);
2734 		NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2735 		nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE |
2736 							 NFS_INO_INVALID_CTIME |
2737 							 NFS_INO_REVAL_FORCED);
2738 		spin_unlock(&old_inode->i_lock);
2739 	}
2740 out:
2741 	trace_nfs_rename_exit(old_dir, old_dentry,
2742 			new_dir, new_dentry, error);
2743 	if (!error) {
2744 		if (new_inode != NULL)
2745 			nfs_drop_nlink(new_inode);
2746 		/*
2747 		 * The d_move() should be here instead of in an async RPC completion
2748 		 * handler because we need the proper locks to move the dentry.  If
2749 		 * we're interrupted by a signal, the async RPC completion handler
2750 		 * should mark the directories for revalidation.
2751 		 */
2752 		d_move(old_dentry, new_dentry);
2753 		nfs_set_verifier(old_dentry,
2754 					nfs_save_change_attribute(new_dir));
2755 	} else if (error == -ENOENT)
2756 		nfs_dentry_handle_enoent(old_dentry);
2757 
2758 	/* new dentry created? */
2759 	if (dentry)
2760 		dput(dentry);
2761 	return error;
2762 }
2763 EXPORT_SYMBOL_GPL(nfs_rename);
2764 
2765 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2766 static LIST_HEAD(nfs_access_lru_list);
2767 static atomic_long_t nfs_access_nr_entries;
2768 
2769 static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2770 module_param(nfs_access_max_cachesize, ulong, 0644);
2771 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2772 
2773 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2774 {
2775 	put_group_info(entry->group_info);
2776 	kfree_rcu(entry, rcu_head);
2777 	smp_mb__before_atomic();
2778 	atomic_long_dec(&nfs_access_nr_entries);
2779 	smp_mb__after_atomic();
2780 }
2781 
2782 static void nfs_access_free_list(struct list_head *head)
2783 {
2784 	struct nfs_access_entry *cache;
2785 
2786 	while (!list_empty(head)) {
2787 		cache = list_entry(head->next, struct nfs_access_entry, lru);
2788 		list_del(&cache->lru);
2789 		nfs_access_free_entry(cache);
2790 	}
2791 }
2792 
2793 static unsigned long
2794 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2795 {
2796 	LIST_HEAD(head);
2797 	struct nfs_inode *nfsi, *next;
2798 	struct nfs_access_entry *cache;
2799 	long freed = 0;
2800 
2801 	spin_lock(&nfs_access_lru_lock);
2802 	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2803 		struct inode *inode;
2804 
2805 		if (nr_to_scan-- == 0)
2806 			break;
2807 		inode = &nfsi->vfs_inode;
2808 		spin_lock(&inode->i_lock);
2809 		if (list_empty(&nfsi->access_cache_entry_lru))
2810 			goto remove_lru_entry;
2811 		cache = list_entry(nfsi->access_cache_entry_lru.next,
2812 				struct nfs_access_entry, lru);
2813 		list_move(&cache->lru, &head);
2814 		rb_erase(&cache->rb_node, &nfsi->access_cache);
2815 		freed++;
2816 		if (!list_empty(&nfsi->access_cache_entry_lru))
2817 			list_move_tail(&nfsi->access_cache_inode_lru,
2818 					&nfs_access_lru_list);
2819 		else {
2820 remove_lru_entry:
2821 			list_del_init(&nfsi->access_cache_inode_lru);
2822 			smp_mb__before_atomic();
2823 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2824 			smp_mb__after_atomic();
2825 		}
2826 		spin_unlock(&inode->i_lock);
2827 	}
2828 	spin_unlock(&nfs_access_lru_lock);
2829 	nfs_access_free_list(&head);
2830 	return freed;
2831 }
2832 
2833 unsigned long
2834 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2835 {
2836 	int nr_to_scan = sc->nr_to_scan;
2837 	gfp_t gfp_mask = sc->gfp_mask;
2838 
2839 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2840 		return SHRINK_STOP;
2841 	return nfs_do_access_cache_scan(nr_to_scan);
2842 }
2843 
2844 
2845 unsigned long
2846 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2847 {
2848 	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2849 }
2850 
2851 static void
2852 nfs_access_cache_enforce_limit(void)
2853 {
2854 	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2855 	unsigned long diff;
2856 	unsigned int nr_to_scan;
2857 
2858 	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2859 		return;
2860 	nr_to_scan = 100;
2861 	diff = nr_entries - nfs_access_max_cachesize;
2862 	if (diff < nr_to_scan)
2863 		nr_to_scan = diff;
2864 	nfs_do_access_cache_scan(nr_to_scan);
2865 }
2866 
2867 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2868 {
2869 	struct rb_root *root_node = &nfsi->access_cache;
2870 	struct rb_node *n;
2871 	struct nfs_access_entry *entry;
2872 
2873 	/* Unhook entries from the cache */
2874 	while ((n = rb_first(root_node)) != NULL) {
2875 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2876 		rb_erase(n, root_node);
2877 		list_move(&entry->lru, head);
2878 	}
2879 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2880 }
2881 
2882 void nfs_access_zap_cache(struct inode *inode)
2883 {
2884 	LIST_HEAD(head);
2885 
2886 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2887 		return;
2888 	/* Remove from global LRU init */
2889 	spin_lock(&nfs_access_lru_lock);
2890 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2891 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2892 
2893 	spin_lock(&inode->i_lock);
2894 	__nfs_access_zap_cache(NFS_I(inode), &head);
2895 	spin_unlock(&inode->i_lock);
2896 	spin_unlock(&nfs_access_lru_lock);
2897 	nfs_access_free_list(&head);
2898 }
2899 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2900 
2901 static int access_cmp(const struct cred *a, const struct nfs_access_entry *b)
2902 {
2903 	struct group_info *ga, *gb;
2904 	int g;
2905 
2906 	if (uid_lt(a->fsuid, b->fsuid))
2907 		return -1;
2908 	if (uid_gt(a->fsuid, b->fsuid))
2909 		return 1;
2910 
2911 	if (gid_lt(a->fsgid, b->fsgid))
2912 		return -1;
2913 	if (gid_gt(a->fsgid, b->fsgid))
2914 		return 1;
2915 
2916 	ga = a->group_info;
2917 	gb = b->group_info;
2918 	if (ga == gb)
2919 		return 0;
2920 	if (ga == NULL)
2921 		return -1;
2922 	if (gb == NULL)
2923 		return 1;
2924 	if (ga->ngroups < gb->ngroups)
2925 		return -1;
2926 	if (ga->ngroups > gb->ngroups)
2927 		return 1;
2928 
2929 	for (g = 0; g < ga->ngroups; g++) {
2930 		if (gid_lt(ga->gid[g], gb->gid[g]))
2931 			return -1;
2932 		if (gid_gt(ga->gid[g], gb->gid[g]))
2933 			return 1;
2934 	}
2935 	return 0;
2936 }
2937 
2938 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2939 {
2940 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2941 
2942 	while (n != NULL) {
2943 		struct nfs_access_entry *entry =
2944 			rb_entry(n, struct nfs_access_entry, rb_node);
2945 		int cmp = access_cmp(cred, entry);
2946 
2947 		if (cmp < 0)
2948 			n = n->rb_left;
2949 		else if (cmp > 0)
2950 			n = n->rb_right;
2951 		else
2952 			return entry;
2953 	}
2954 	return NULL;
2955 }
2956 
2957 static u64 nfs_access_login_time(const struct task_struct *task,
2958 				 const struct cred *cred)
2959 {
2960 	const struct task_struct *parent;
2961 	const struct cred *pcred;
2962 	u64 ret;
2963 
2964 	rcu_read_lock();
2965 	for (;;) {
2966 		parent = rcu_dereference(task->real_parent);
2967 		pcred = rcu_dereference(parent->cred);
2968 		if (parent == task || cred_fscmp(pcred, cred) != 0)
2969 			break;
2970 		task = parent;
2971 	}
2972 	ret = task->start_time;
2973 	rcu_read_unlock();
2974 	return ret;
2975 }
2976 
2977 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, u32 *mask, bool may_block)
2978 {
2979 	struct nfs_inode *nfsi = NFS_I(inode);
2980 	u64 login_time = nfs_access_login_time(current, cred);
2981 	struct nfs_access_entry *cache;
2982 	bool retry = true;
2983 	int err;
2984 
2985 	spin_lock(&inode->i_lock);
2986 	for(;;) {
2987 		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2988 			goto out_zap;
2989 		cache = nfs_access_search_rbtree(inode, cred);
2990 		err = -ENOENT;
2991 		if (cache == NULL)
2992 			goto out;
2993 		/* Found an entry, is our attribute cache valid? */
2994 		if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2995 			break;
2996 		if (!retry)
2997 			break;
2998 		err = -ECHILD;
2999 		if (!may_block)
3000 			goto out;
3001 		spin_unlock(&inode->i_lock);
3002 		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
3003 		if (err)
3004 			return err;
3005 		spin_lock(&inode->i_lock);
3006 		retry = false;
3007 	}
3008 	err = -ENOENT;
3009 	if ((s64)(login_time - cache->timestamp) > 0)
3010 		goto out;
3011 	*mask = cache->mask;
3012 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
3013 	err = 0;
3014 out:
3015 	spin_unlock(&inode->i_lock);
3016 	return err;
3017 out_zap:
3018 	spin_unlock(&inode->i_lock);
3019 	nfs_access_zap_cache(inode);
3020 	return -ENOENT;
3021 }
3022 
3023 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, u32 *mask)
3024 {
3025 	/* Only check the most recently returned cache entry,
3026 	 * but do it without locking.
3027 	 */
3028 	struct nfs_inode *nfsi = NFS_I(inode);
3029 	u64 login_time = nfs_access_login_time(current, cred);
3030 	struct nfs_access_entry *cache;
3031 	int err = -ECHILD;
3032 	struct list_head *lh;
3033 
3034 	rcu_read_lock();
3035 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
3036 		goto out;
3037 	lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
3038 	cache = list_entry(lh, struct nfs_access_entry, lru);
3039 	if (lh == &nfsi->access_cache_entry_lru ||
3040 	    access_cmp(cred, cache) != 0)
3041 		cache = NULL;
3042 	if (cache == NULL)
3043 		goto out;
3044 	if ((s64)(login_time - cache->timestamp) > 0)
3045 		goto out;
3046 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
3047 		goto out;
3048 	*mask = cache->mask;
3049 	err = 0;
3050 out:
3051 	rcu_read_unlock();
3052 	return err;
3053 }
3054 
3055 int nfs_access_get_cached(struct inode *inode, const struct cred *cred,
3056 			  u32 *mask, bool may_block)
3057 {
3058 	int status;
3059 
3060 	status = nfs_access_get_cached_rcu(inode, cred, mask);
3061 	if (status != 0)
3062 		status = nfs_access_get_cached_locked(inode, cred, mask,
3063 		    may_block);
3064 
3065 	return status;
3066 }
3067 EXPORT_SYMBOL_GPL(nfs_access_get_cached);
3068 
3069 static void nfs_access_add_rbtree(struct inode *inode,
3070 				  struct nfs_access_entry *set,
3071 				  const struct cred *cred)
3072 {
3073 	struct nfs_inode *nfsi = NFS_I(inode);
3074 	struct rb_root *root_node = &nfsi->access_cache;
3075 	struct rb_node **p = &root_node->rb_node;
3076 	struct rb_node *parent = NULL;
3077 	struct nfs_access_entry *entry;
3078 	int cmp;
3079 
3080 	spin_lock(&inode->i_lock);
3081 	while (*p != NULL) {
3082 		parent = *p;
3083 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
3084 		cmp = access_cmp(cred, entry);
3085 
3086 		if (cmp < 0)
3087 			p = &parent->rb_left;
3088 		else if (cmp > 0)
3089 			p = &parent->rb_right;
3090 		else
3091 			goto found;
3092 	}
3093 	rb_link_node(&set->rb_node, parent, p);
3094 	rb_insert_color(&set->rb_node, root_node);
3095 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
3096 	spin_unlock(&inode->i_lock);
3097 	return;
3098 found:
3099 	rb_replace_node(parent, &set->rb_node, root_node);
3100 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
3101 	list_del(&entry->lru);
3102 	spin_unlock(&inode->i_lock);
3103 	nfs_access_free_entry(entry);
3104 }
3105 
3106 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set,
3107 			  const struct cred *cred)
3108 {
3109 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
3110 	if (cache == NULL)
3111 		return;
3112 	RB_CLEAR_NODE(&cache->rb_node);
3113 	cache->fsuid = cred->fsuid;
3114 	cache->fsgid = cred->fsgid;
3115 	cache->group_info = get_group_info(cred->group_info);
3116 	cache->mask = set->mask;
3117 	cache->timestamp = ktime_get_ns();
3118 
3119 	/* The above field assignments must be visible
3120 	 * before this item appears on the lru.  We cannot easily
3121 	 * use rcu_assign_pointer, so just force the memory barrier.
3122 	 */
3123 	smp_wmb();
3124 	nfs_access_add_rbtree(inode, cache, cred);
3125 
3126 	/* Update accounting */
3127 	smp_mb__before_atomic();
3128 	atomic_long_inc(&nfs_access_nr_entries);
3129 	smp_mb__after_atomic();
3130 
3131 	/* Add inode to global LRU list */
3132 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
3133 		spin_lock(&nfs_access_lru_lock);
3134 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
3135 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
3136 					&nfs_access_lru_list);
3137 		spin_unlock(&nfs_access_lru_lock);
3138 	}
3139 	nfs_access_cache_enforce_limit();
3140 }
3141 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
3142 
3143 #define NFS_MAY_READ (NFS_ACCESS_READ)
3144 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
3145 		NFS_ACCESS_EXTEND | \
3146 		NFS_ACCESS_DELETE)
3147 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
3148 		NFS_ACCESS_EXTEND)
3149 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
3150 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
3151 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
3152 static int
3153 nfs_access_calc_mask(u32 access_result, umode_t umode)
3154 {
3155 	int mask = 0;
3156 
3157 	if (access_result & NFS_MAY_READ)
3158 		mask |= MAY_READ;
3159 	if (S_ISDIR(umode)) {
3160 		if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
3161 			mask |= MAY_WRITE;
3162 		if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
3163 			mask |= MAY_EXEC;
3164 	} else if (S_ISREG(umode)) {
3165 		if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
3166 			mask |= MAY_WRITE;
3167 		if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
3168 			mask |= MAY_EXEC;
3169 	} else if (access_result & NFS_MAY_WRITE)
3170 			mask |= MAY_WRITE;
3171 	return mask;
3172 }
3173 
3174 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
3175 {
3176 	entry->mask = access_result;
3177 }
3178 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
3179 
3180 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
3181 {
3182 	struct nfs_access_entry cache;
3183 	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
3184 	int cache_mask = -1;
3185 	int status;
3186 
3187 	trace_nfs_access_enter(inode);
3188 
3189 	status = nfs_access_get_cached(inode, cred, &cache.mask, may_block);
3190 	if (status == 0)
3191 		goto out_cached;
3192 
3193 	status = -ECHILD;
3194 	if (!may_block)
3195 		goto out;
3196 
3197 	/*
3198 	 * Determine which access bits we want to ask for...
3199 	 */
3200 	cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND |
3201 		     nfs_access_xattr_mask(NFS_SERVER(inode));
3202 	if (S_ISDIR(inode->i_mode))
3203 		cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
3204 	else
3205 		cache.mask |= NFS_ACCESS_EXECUTE;
3206 	status = NFS_PROTO(inode)->access(inode, &cache, cred);
3207 	if (status != 0) {
3208 		if (status == -ESTALE) {
3209 			if (!S_ISDIR(inode->i_mode))
3210 				nfs_set_inode_stale(inode);
3211 			else
3212 				nfs_zap_caches(inode);
3213 		}
3214 		goto out;
3215 	}
3216 	nfs_access_add_cache(inode, &cache, cred);
3217 out_cached:
3218 	cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
3219 	if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
3220 		status = -EACCES;
3221 out:
3222 	trace_nfs_access_exit(inode, mask, cache_mask, status);
3223 	return status;
3224 }
3225 
3226 static int nfs_open_permission_mask(int openflags)
3227 {
3228 	int mask = 0;
3229 
3230 	if (openflags & __FMODE_EXEC) {
3231 		/* ONLY check exec rights */
3232 		mask = MAY_EXEC;
3233 	} else {
3234 		if ((openflags & O_ACCMODE) != O_WRONLY)
3235 			mask |= MAY_READ;
3236 		if ((openflags & O_ACCMODE) != O_RDONLY)
3237 			mask |= MAY_WRITE;
3238 	}
3239 
3240 	return mask;
3241 }
3242 
3243 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
3244 {
3245 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
3246 }
3247 EXPORT_SYMBOL_GPL(nfs_may_open);
3248 
3249 static int nfs_execute_ok(struct inode *inode, int mask)
3250 {
3251 	struct nfs_server *server = NFS_SERVER(inode);
3252 	int ret = 0;
3253 
3254 	if (S_ISDIR(inode->i_mode))
3255 		return 0;
3256 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) {
3257 		if (mask & MAY_NOT_BLOCK)
3258 			return -ECHILD;
3259 		ret = __nfs_revalidate_inode(server, inode);
3260 	}
3261 	if (ret == 0 && !execute_ok(inode))
3262 		ret = -EACCES;
3263 	return ret;
3264 }
3265 
3266 int nfs_permission(struct mnt_idmap *idmap,
3267 		   struct inode *inode,
3268 		   int mask)
3269 {
3270 	const struct cred *cred = current_cred();
3271 	int res = 0;
3272 
3273 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
3274 
3275 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
3276 		goto out;
3277 	/* Is this sys_access() ? */
3278 	if (mask & (MAY_ACCESS | MAY_CHDIR))
3279 		goto force_lookup;
3280 
3281 	switch (inode->i_mode & S_IFMT) {
3282 		case S_IFLNK:
3283 			goto out;
3284 		case S_IFREG:
3285 			if ((mask & MAY_OPEN) &&
3286 			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
3287 				return 0;
3288 			break;
3289 		case S_IFDIR:
3290 			/*
3291 			 * Optimize away all write operations, since the server
3292 			 * will check permissions when we perform the op.
3293 			 */
3294 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
3295 				goto out;
3296 	}
3297 
3298 force_lookup:
3299 	if (!NFS_PROTO(inode)->access)
3300 		goto out_notsup;
3301 
3302 	res = nfs_do_access(inode, cred, mask);
3303 out:
3304 	if (!res && (mask & MAY_EXEC))
3305 		res = nfs_execute_ok(inode, mask);
3306 
3307 	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
3308 		inode->i_sb->s_id, inode->i_ino, mask, res);
3309 	return res;
3310 out_notsup:
3311 	if (mask & MAY_NOT_BLOCK)
3312 		return -ECHILD;
3313 
3314 	res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE |
3315 						  NFS_INO_INVALID_OTHER);
3316 	if (res == 0)
3317 		res = generic_permission(&nop_mnt_idmap, inode, mask);
3318 	goto out;
3319 }
3320 EXPORT_SYMBOL_GPL(nfs_permission);
3321