xref: /openbmc/linux/fs/nfs/dir.c (revision 612896ec)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/nfs/dir.c
4  *
5  *  Copyright (C) 1992  Rick Sladkey
6  *
7  *  nfs directory handling functions
8  *
9  * 10 Apr 1996	Added silly rename for unlink	--okir
10  * 28 Sep 1996	Improved directory cache --okir
11  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
12  *              Re-implemented silly rename for unlink, newly implemented
13  *              silly rename for nfs_rename() following the suggestions
14  *              of Olaf Kirch (okir) found in this file.
15  *              Following Linus comments on my original hack, this version
16  *              depends only on the dcache stuff and doesn't touch the inode
17  *              layer (iput() and friends).
18  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
19  */
20 
21 #include <linux/compat.h>
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/errno.h>
25 #include <linux/stat.h>
26 #include <linux/fcntl.h>
27 #include <linux/string.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/mm.h>
31 #include <linux/sunrpc/clnt.h>
32 #include <linux/nfs_fs.h>
33 #include <linux/nfs_mount.h>
34 #include <linux/pagemap.h>
35 #include <linux/pagevec.h>
36 #include <linux/namei.h>
37 #include <linux/mount.h>
38 #include <linux/swap.h>
39 #include <linux/sched.h>
40 #include <linux/kmemleak.h>
41 #include <linux/xattr.h>
42 #include <linux/xxhash.h>
43 
44 #include "delegation.h"
45 #include "iostat.h"
46 #include "internal.h"
47 #include "fscache.h"
48 
49 #include "nfstrace.h"
50 
51 /* #define NFS_DEBUG_VERBOSE 1 */
52 
53 static int nfs_opendir(struct inode *, struct file *);
54 static int nfs_closedir(struct inode *, struct file *);
55 static int nfs_readdir(struct file *, struct dir_context *);
56 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
57 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
58 static void nfs_readdir_clear_array(struct page*);
59 
60 const struct file_operations nfs_dir_operations = {
61 	.llseek		= nfs_llseek_dir,
62 	.read		= generic_read_dir,
63 	.iterate_shared	= nfs_readdir,
64 	.open		= nfs_opendir,
65 	.release	= nfs_closedir,
66 	.fsync		= nfs_fsync_dir,
67 };
68 
69 const struct address_space_operations nfs_dir_aops = {
70 	.freepage = nfs_readdir_clear_array,
71 };
72 
73 #define NFS_INIT_DTSIZE PAGE_SIZE
74 
75 static struct nfs_open_dir_context *
76 alloc_nfs_open_dir_context(struct inode *dir)
77 {
78 	struct nfs_inode *nfsi = NFS_I(dir);
79 	struct nfs_open_dir_context *ctx;
80 
81 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL_ACCOUNT);
82 	if (ctx != NULL) {
83 		ctx->attr_gencount = nfsi->attr_gencount;
84 		ctx->dtsize = NFS_INIT_DTSIZE;
85 		spin_lock(&dir->i_lock);
86 		if (list_empty(&nfsi->open_files) &&
87 		    (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
88 			nfs_set_cache_invalid(dir,
89 					      NFS_INO_INVALID_DATA |
90 						      NFS_INO_REVAL_FORCED);
91 		list_add_tail_rcu(&ctx->list, &nfsi->open_files);
92 		memcpy(ctx->verf, nfsi->cookieverf, sizeof(ctx->verf));
93 		spin_unlock(&dir->i_lock);
94 		return ctx;
95 	}
96 	return  ERR_PTR(-ENOMEM);
97 }
98 
99 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
100 {
101 	spin_lock(&dir->i_lock);
102 	list_del_rcu(&ctx->list);
103 	spin_unlock(&dir->i_lock);
104 	kfree_rcu(ctx, rcu_head);
105 }
106 
107 /*
108  * Open file
109  */
110 static int
111 nfs_opendir(struct inode *inode, struct file *filp)
112 {
113 	int res = 0;
114 	struct nfs_open_dir_context *ctx;
115 
116 	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
117 
118 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
119 
120 	ctx = alloc_nfs_open_dir_context(inode);
121 	if (IS_ERR(ctx)) {
122 		res = PTR_ERR(ctx);
123 		goto out;
124 	}
125 	filp->private_data = ctx;
126 out:
127 	return res;
128 }
129 
130 static int
131 nfs_closedir(struct inode *inode, struct file *filp)
132 {
133 	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
134 	return 0;
135 }
136 
137 struct nfs_cache_array_entry {
138 	u64 cookie;
139 	u64 ino;
140 	const char *name;
141 	unsigned int name_len;
142 	unsigned char d_type;
143 };
144 
145 struct nfs_cache_array {
146 	u64 change_attr;
147 	u64 last_cookie;
148 	unsigned int size;
149 	unsigned char page_full : 1,
150 		      page_is_eof : 1,
151 		      cookies_are_ordered : 1;
152 	struct nfs_cache_array_entry array[];
153 };
154 
155 struct nfs_readdir_descriptor {
156 	struct file	*file;
157 	struct page	*page;
158 	struct dir_context *ctx;
159 	pgoff_t		page_index;
160 	pgoff_t		page_index_max;
161 	u64		dir_cookie;
162 	u64		last_cookie;
163 	loff_t		current_index;
164 
165 	__be32		verf[NFS_DIR_VERIFIER_SIZE];
166 	unsigned long	dir_verifier;
167 	unsigned long	timestamp;
168 	unsigned long	gencount;
169 	unsigned long	attr_gencount;
170 	unsigned int	cache_entry_index;
171 	unsigned int	buffer_fills;
172 	unsigned int	dtsize;
173 	bool clear_cache;
174 	bool plus;
175 	bool eob;
176 	bool eof;
177 };
178 
179 static void nfs_set_dtsize(struct nfs_readdir_descriptor *desc, unsigned int sz)
180 {
181 	struct nfs_server *server = NFS_SERVER(file_inode(desc->file));
182 	unsigned int maxsize = server->dtsize;
183 
184 	if (sz > maxsize)
185 		sz = maxsize;
186 	if (sz < NFS_MIN_FILE_IO_SIZE)
187 		sz = NFS_MIN_FILE_IO_SIZE;
188 	desc->dtsize = sz;
189 }
190 
191 static void nfs_shrink_dtsize(struct nfs_readdir_descriptor *desc)
192 {
193 	nfs_set_dtsize(desc, desc->dtsize >> 1);
194 }
195 
196 static void nfs_grow_dtsize(struct nfs_readdir_descriptor *desc)
197 {
198 	nfs_set_dtsize(desc, desc->dtsize << 1);
199 }
200 
201 static void nfs_readdir_page_init_array(struct page *page, u64 last_cookie,
202 					u64 change_attr)
203 {
204 	struct nfs_cache_array *array;
205 
206 	array = kmap_atomic(page);
207 	array->change_attr = change_attr;
208 	array->last_cookie = last_cookie;
209 	array->size = 0;
210 	array->page_full = 0;
211 	array->page_is_eof = 0;
212 	array->cookies_are_ordered = 1;
213 	kunmap_atomic(array);
214 }
215 
216 /*
217  * we are freeing strings created by nfs_add_to_readdir_array()
218  */
219 static void nfs_readdir_clear_array(struct page *page)
220 {
221 	struct nfs_cache_array *array;
222 	unsigned int i;
223 
224 	array = kmap_atomic(page);
225 	for (i = 0; i < array->size; i++)
226 		kfree(array->array[i].name);
227 	array->size = 0;
228 	kunmap_atomic(array);
229 }
230 
231 static void nfs_readdir_page_reinit_array(struct page *page, u64 last_cookie,
232 					  u64 change_attr)
233 {
234 	nfs_readdir_clear_array(page);
235 	nfs_readdir_page_init_array(page, last_cookie, change_attr);
236 }
237 
238 static struct page *
239 nfs_readdir_page_array_alloc(u64 last_cookie, gfp_t gfp_flags)
240 {
241 	struct page *page = alloc_page(gfp_flags);
242 	if (page)
243 		nfs_readdir_page_init_array(page, last_cookie, 0);
244 	return page;
245 }
246 
247 static void nfs_readdir_page_array_free(struct page *page)
248 {
249 	if (page) {
250 		nfs_readdir_clear_array(page);
251 		put_page(page);
252 	}
253 }
254 
255 static void nfs_readdir_array_set_eof(struct nfs_cache_array *array)
256 {
257 	array->page_is_eof = 1;
258 	array->page_full = 1;
259 }
260 
261 static bool nfs_readdir_array_is_full(struct nfs_cache_array *array)
262 {
263 	return array->page_full;
264 }
265 
266 /*
267  * the caller is responsible for freeing qstr.name
268  * when called by nfs_readdir_add_to_array, the strings will be freed in
269  * nfs_clear_readdir_array()
270  */
271 static const char *nfs_readdir_copy_name(const char *name, unsigned int len)
272 {
273 	const char *ret = kmemdup_nul(name, len, GFP_KERNEL);
274 
275 	/*
276 	 * Avoid a kmemleak false positive. The pointer to the name is stored
277 	 * in a page cache page which kmemleak does not scan.
278 	 */
279 	if (ret != NULL)
280 		kmemleak_not_leak(ret);
281 	return ret;
282 }
283 
284 static size_t nfs_readdir_array_maxentries(void)
285 {
286 	return (PAGE_SIZE - sizeof(struct nfs_cache_array)) /
287 	       sizeof(struct nfs_cache_array_entry);
288 }
289 
290 /*
291  * Check that the next array entry lies entirely within the page bounds
292  */
293 static int nfs_readdir_array_can_expand(struct nfs_cache_array *array)
294 {
295 	if (array->page_full)
296 		return -ENOSPC;
297 	if (array->size == nfs_readdir_array_maxentries()) {
298 		array->page_full = 1;
299 		return -ENOSPC;
300 	}
301 	return 0;
302 }
303 
304 static int nfs_readdir_page_array_append(struct page *page,
305 					 const struct nfs_entry *entry,
306 					 u64 *cookie)
307 {
308 	struct nfs_cache_array *array;
309 	struct nfs_cache_array_entry *cache_entry;
310 	const char *name;
311 	int ret = -ENOMEM;
312 
313 	name = nfs_readdir_copy_name(entry->name, entry->len);
314 
315 	array = kmap_atomic(page);
316 	if (!name)
317 		goto out;
318 	ret = nfs_readdir_array_can_expand(array);
319 	if (ret) {
320 		kfree(name);
321 		goto out;
322 	}
323 
324 	cache_entry = &array->array[array->size];
325 	cache_entry->cookie = array->last_cookie;
326 	cache_entry->ino = entry->ino;
327 	cache_entry->d_type = entry->d_type;
328 	cache_entry->name_len = entry->len;
329 	cache_entry->name = name;
330 	array->last_cookie = entry->cookie;
331 	if (array->last_cookie <= cache_entry->cookie)
332 		array->cookies_are_ordered = 0;
333 	array->size++;
334 	if (entry->eof != 0)
335 		nfs_readdir_array_set_eof(array);
336 out:
337 	*cookie = array->last_cookie;
338 	kunmap_atomic(array);
339 	return ret;
340 }
341 
342 #define NFS_READDIR_COOKIE_MASK (U32_MAX >> 14)
343 /*
344  * Hash algorithm allowing content addressible access to sequences
345  * of directory cookies. Content is addressed by the value of the
346  * cookie index of the first readdir entry in a page.
347  *
348  * The xxhash algorithm is chosen because it is fast, and is supposed
349  * to result in a decent flat distribution of hashes.
350  *
351  * We then select only the first 18 bits to avoid issues with excessive
352  * memory use for the page cache XArray. 18 bits should allow the caching
353  * of 262144 pages of sequences of readdir entries. Since each page holds
354  * 127 readdir entries for a typical 64-bit system, that works out to a
355  * cache of ~ 33 million entries per directory.
356  */
357 static pgoff_t nfs_readdir_page_cookie_hash(u64 cookie)
358 {
359 	if (cookie == 0)
360 		return 0;
361 	return xxhash(&cookie, sizeof(cookie), 0) & NFS_READDIR_COOKIE_MASK;
362 }
363 
364 static bool nfs_readdir_page_validate(struct page *page, u64 last_cookie,
365 				      u64 change_attr)
366 {
367 	struct nfs_cache_array *array = kmap_atomic(page);
368 	int ret = true;
369 
370 	if (array->change_attr != change_attr)
371 		ret = false;
372 	if (array->size > 0 && array->array[0].cookie != last_cookie)
373 		ret = false;
374 	kunmap_atomic(array);
375 	return ret;
376 }
377 
378 static void nfs_readdir_page_unlock_and_put(struct page *page)
379 {
380 	unlock_page(page);
381 	put_page(page);
382 }
383 
384 static struct page *nfs_readdir_page_get_locked(struct address_space *mapping,
385 						u64 last_cookie,
386 						u64 change_attr)
387 {
388 	pgoff_t index = nfs_readdir_page_cookie_hash(last_cookie);
389 	struct page *page;
390 
391 	page = grab_cache_page(mapping, index);
392 	if (!page)
393 		return NULL;
394 	if (PageUptodate(page)) {
395 		if (nfs_readdir_page_validate(page, last_cookie, change_attr))
396 			return page;
397 		nfs_readdir_clear_array(page);
398 	}
399 	nfs_readdir_page_init_array(page, last_cookie, change_attr);
400 	SetPageUptodate(page);
401 	return page;
402 }
403 
404 static u64 nfs_readdir_page_last_cookie(struct page *page)
405 {
406 	struct nfs_cache_array *array;
407 	u64 ret;
408 
409 	array = kmap_atomic(page);
410 	ret = array->last_cookie;
411 	kunmap_atomic(array);
412 	return ret;
413 }
414 
415 static bool nfs_readdir_page_needs_filling(struct page *page)
416 {
417 	struct nfs_cache_array *array;
418 	bool ret;
419 
420 	array = kmap_atomic(page);
421 	ret = !nfs_readdir_array_is_full(array);
422 	kunmap_atomic(array);
423 	return ret;
424 }
425 
426 static void nfs_readdir_page_set_eof(struct page *page)
427 {
428 	struct nfs_cache_array *array;
429 
430 	array = kmap_atomic(page);
431 	nfs_readdir_array_set_eof(array);
432 	kunmap_atomic(array);
433 }
434 
435 static struct page *nfs_readdir_page_get_next(struct address_space *mapping,
436 					      u64 cookie, u64 change_attr)
437 {
438 	struct page *page;
439 
440 	page = nfs_readdir_page_get_locked(mapping, cookie, change_attr);
441 	if (!page)
442 		return NULL;
443 	if (nfs_readdir_page_last_cookie(page) != cookie)
444 		nfs_readdir_page_reinit_array(page, cookie, change_attr);
445 	return page;
446 }
447 
448 static inline
449 int is_32bit_api(void)
450 {
451 #ifdef CONFIG_COMPAT
452 	return in_compat_syscall();
453 #else
454 	return (BITS_PER_LONG == 32);
455 #endif
456 }
457 
458 static
459 bool nfs_readdir_use_cookie(const struct file *filp)
460 {
461 	if ((filp->f_mode & FMODE_32BITHASH) ||
462 	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
463 		return false;
464 	return true;
465 }
466 
467 static void nfs_readdir_seek_next_array(struct nfs_cache_array *array,
468 					struct nfs_readdir_descriptor *desc)
469 {
470 	if (array->page_full) {
471 		desc->last_cookie = array->last_cookie;
472 		desc->current_index += array->size;
473 		desc->cache_entry_index = 0;
474 		desc->page_index++;
475 	} else
476 		desc->last_cookie = array->array[0].cookie;
477 }
478 
479 static void nfs_readdir_rewind_search(struct nfs_readdir_descriptor *desc)
480 {
481 	desc->current_index = 0;
482 	desc->last_cookie = 0;
483 	desc->page_index = 0;
484 }
485 
486 static int nfs_readdir_search_for_pos(struct nfs_cache_array *array,
487 				      struct nfs_readdir_descriptor *desc)
488 {
489 	loff_t diff = desc->ctx->pos - desc->current_index;
490 	unsigned int index;
491 
492 	if (diff < 0)
493 		goto out_eof;
494 	if (diff >= array->size) {
495 		if (array->page_is_eof)
496 			goto out_eof;
497 		nfs_readdir_seek_next_array(array, desc);
498 		return -EAGAIN;
499 	}
500 
501 	index = (unsigned int)diff;
502 	desc->dir_cookie = array->array[index].cookie;
503 	desc->cache_entry_index = index;
504 	return 0;
505 out_eof:
506 	desc->eof = true;
507 	return -EBADCOOKIE;
508 }
509 
510 static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array,
511 					      u64 cookie)
512 {
513 	if (!array->cookies_are_ordered)
514 		return true;
515 	/* Optimisation for monotonically increasing cookies */
516 	if (cookie >= array->last_cookie)
517 		return false;
518 	if (array->size && cookie < array->array[0].cookie)
519 		return false;
520 	return true;
521 }
522 
523 static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array,
524 					 struct nfs_readdir_descriptor *desc)
525 {
526 	unsigned int i;
527 	int status = -EAGAIN;
528 
529 	if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie))
530 		goto check_eof;
531 
532 	for (i = 0; i < array->size; i++) {
533 		if (array->array[i].cookie == desc->dir_cookie) {
534 			if (nfs_readdir_use_cookie(desc->file))
535 				desc->ctx->pos = desc->dir_cookie;
536 			else
537 				desc->ctx->pos = desc->current_index + i;
538 			desc->cache_entry_index = i;
539 			return 0;
540 		}
541 	}
542 check_eof:
543 	if (array->page_is_eof) {
544 		status = -EBADCOOKIE;
545 		if (desc->dir_cookie == array->last_cookie)
546 			desc->eof = true;
547 	} else
548 		nfs_readdir_seek_next_array(array, desc);
549 	return status;
550 }
551 
552 static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc)
553 {
554 	struct nfs_cache_array *array;
555 	int status;
556 
557 	array = kmap_atomic(desc->page);
558 
559 	if (desc->dir_cookie == 0)
560 		status = nfs_readdir_search_for_pos(array, desc);
561 	else
562 		status = nfs_readdir_search_for_cookie(array, desc);
563 
564 	kunmap_atomic(array);
565 	return status;
566 }
567 
568 /* Fill a page with xdr information before transferring to the cache page */
569 static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc,
570 				  __be32 *verf, u64 cookie,
571 				  struct page **pages, size_t bufsize,
572 				  __be32 *verf_res)
573 {
574 	struct inode *inode = file_inode(desc->file);
575 	struct nfs_readdir_arg arg = {
576 		.dentry = file_dentry(desc->file),
577 		.cred = desc->file->f_cred,
578 		.verf = verf,
579 		.cookie = cookie,
580 		.pages = pages,
581 		.page_len = bufsize,
582 		.plus = desc->plus,
583 	};
584 	struct nfs_readdir_res res = {
585 		.verf = verf_res,
586 	};
587 	unsigned long	timestamp, gencount;
588 	int		error;
589 
590  again:
591 	timestamp = jiffies;
592 	gencount = nfs_inc_attr_generation_counter();
593 	desc->dir_verifier = nfs_save_change_attribute(inode);
594 	error = NFS_PROTO(inode)->readdir(&arg, &res);
595 	if (error < 0) {
596 		/* We requested READDIRPLUS, but the server doesn't grok it */
597 		if (error == -ENOTSUPP && desc->plus) {
598 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
599 			desc->plus = arg.plus = false;
600 			goto again;
601 		}
602 		goto error;
603 	}
604 	desc->timestamp = timestamp;
605 	desc->gencount = gencount;
606 error:
607 	return error;
608 }
609 
610 static int xdr_decode(struct nfs_readdir_descriptor *desc,
611 		      struct nfs_entry *entry, struct xdr_stream *xdr)
612 {
613 	struct inode *inode = file_inode(desc->file);
614 	int error;
615 
616 	error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
617 	if (error)
618 		return error;
619 	entry->fattr->time_start = desc->timestamp;
620 	entry->fattr->gencount = desc->gencount;
621 	return 0;
622 }
623 
624 /* Match file and dirent using either filehandle or fileid
625  * Note: caller is responsible for checking the fsid
626  */
627 static
628 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
629 {
630 	struct inode *inode;
631 	struct nfs_inode *nfsi;
632 
633 	if (d_really_is_negative(dentry))
634 		return 0;
635 
636 	inode = d_inode(dentry);
637 	if (is_bad_inode(inode) || NFS_STALE(inode))
638 		return 0;
639 
640 	nfsi = NFS_I(inode);
641 	if (entry->fattr->fileid != nfsi->fileid)
642 		return 0;
643 	if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
644 		return 0;
645 	return 1;
646 }
647 
648 #define NFS_READDIR_CACHE_USAGE_THRESHOLD (8UL)
649 
650 static bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx,
651 				unsigned int cache_hits,
652 				unsigned int cache_misses)
653 {
654 	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
655 		return false;
656 	if (ctx->pos == 0 ||
657 	    cache_hits + cache_misses > NFS_READDIR_CACHE_USAGE_THRESHOLD)
658 		return true;
659 	return false;
660 }
661 
662 /*
663  * This function is called by the getattr code to request the
664  * use of readdirplus to accelerate any future lookups in the same
665  * directory.
666  */
667 void nfs_readdir_record_entry_cache_hit(struct inode *dir)
668 {
669 	struct nfs_inode *nfsi = NFS_I(dir);
670 	struct nfs_open_dir_context *ctx;
671 
672 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
673 	    S_ISDIR(dir->i_mode)) {
674 		rcu_read_lock();
675 		list_for_each_entry_rcu (ctx, &nfsi->open_files, list)
676 			atomic_inc(&ctx->cache_hits);
677 		rcu_read_unlock();
678 	}
679 }
680 
681 /*
682  * This function is mainly for use by nfs_getattr().
683  *
684  * If this is an 'ls -l', we want to force use of readdirplus.
685  */
686 void nfs_readdir_record_entry_cache_miss(struct inode *dir)
687 {
688 	struct nfs_inode *nfsi = NFS_I(dir);
689 	struct nfs_open_dir_context *ctx;
690 
691 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
692 	    S_ISDIR(dir->i_mode)) {
693 		rcu_read_lock();
694 		list_for_each_entry_rcu (ctx, &nfsi->open_files, list)
695 			atomic_inc(&ctx->cache_misses);
696 		rcu_read_unlock();
697 	}
698 }
699 
700 static void nfs_lookup_advise_force_readdirplus(struct inode *dir,
701 						unsigned int flags)
702 {
703 	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
704 		return;
705 	if (flags & (LOOKUP_EXCL | LOOKUP_PARENT | LOOKUP_REVAL))
706 		return;
707 	nfs_readdir_record_entry_cache_miss(dir);
708 }
709 
710 static
711 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
712 		unsigned long dir_verifier)
713 {
714 	struct qstr filename = QSTR_INIT(entry->name, entry->len);
715 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
716 	struct dentry *dentry;
717 	struct dentry *alias;
718 	struct inode *inode;
719 	int status;
720 
721 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
722 		return;
723 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
724 		return;
725 	if (filename.len == 0)
726 		return;
727 	/* Validate that the name doesn't contain any illegal '\0' */
728 	if (strnlen(filename.name, filename.len) != filename.len)
729 		return;
730 	/* ...or '/' */
731 	if (strnchr(filename.name, filename.len, '/'))
732 		return;
733 	if (filename.name[0] == '.') {
734 		if (filename.len == 1)
735 			return;
736 		if (filename.len == 2 && filename.name[1] == '.')
737 			return;
738 	}
739 	filename.hash = full_name_hash(parent, filename.name, filename.len);
740 
741 	dentry = d_lookup(parent, &filename);
742 again:
743 	if (!dentry) {
744 		dentry = d_alloc_parallel(parent, &filename, &wq);
745 		if (IS_ERR(dentry))
746 			return;
747 	}
748 	if (!d_in_lookup(dentry)) {
749 		/* Is there a mountpoint here? If so, just exit */
750 		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
751 					&entry->fattr->fsid))
752 			goto out;
753 		if (nfs_same_file(dentry, entry)) {
754 			if (!entry->fh->size)
755 				goto out;
756 			nfs_set_verifier(dentry, dir_verifier);
757 			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
758 			if (!status)
759 				nfs_setsecurity(d_inode(dentry), entry->fattr);
760 			trace_nfs_readdir_lookup_revalidate(d_inode(parent),
761 							    dentry, 0, status);
762 			goto out;
763 		} else {
764 			trace_nfs_readdir_lookup_revalidate_failed(
765 				d_inode(parent), dentry, 0);
766 			d_invalidate(dentry);
767 			dput(dentry);
768 			dentry = NULL;
769 			goto again;
770 		}
771 	}
772 	if (!entry->fh->size) {
773 		d_lookup_done(dentry);
774 		goto out;
775 	}
776 
777 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
778 	alias = d_splice_alias(inode, dentry);
779 	d_lookup_done(dentry);
780 	if (alias) {
781 		if (IS_ERR(alias))
782 			goto out;
783 		dput(dentry);
784 		dentry = alias;
785 	}
786 	nfs_set_verifier(dentry, dir_verifier);
787 	trace_nfs_readdir_lookup(d_inode(parent), dentry, 0);
788 out:
789 	dput(dentry);
790 }
791 
792 static int nfs_readdir_entry_decode(struct nfs_readdir_descriptor *desc,
793 				    struct nfs_entry *entry,
794 				    struct xdr_stream *stream)
795 {
796 	int ret;
797 
798 	if (entry->fattr->label)
799 		entry->fattr->label->len = NFS4_MAXLABELLEN;
800 	ret = xdr_decode(desc, entry, stream);
801 	if (ret || !desc->plus)
802 		return ret;
803 	nfs_prime_dcache(file_dentry(desc->file), entry, desc->dir_verifier);
804 	return 0;
805 }
806 
807 /* Perform conversion from xdr to cache array */
808 static int nfs_readdir_page_filler(struct nfs_readdir_descriptor *desc,
809 				   struct nfs_entry *entry,
810 				   struct page **xdr_pages, unsigned int buflen,
811 				   struct page **arrays, size_t narrays,
812 				   u64 change_attr)
813 {
814 	struct address_space *mapping = desc->file->f_mapping;
815 	struct xdr_stream stream;
816 	struct xdr_buf buf;
817 	struct page *scratch, *new, *page = *arrays;
818 	u64 cookie;
819 	int status;
820 
821 	scratch = alloc_page(GFP_KERNEL);
822 	if (scratch == NULL)
823 		return -ENOMEM;
824 
825 	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
826 	xdr_set_scratch_page(&stream, scratch);
827 
828 	do {
829 		status = nfs_readdir_entry_decode(desc, entry, &stream);
830 		if (status != 0)
831 			break;
832 
833 		status = nfs_readdir_page_array_append(page, entry, &cookie);
834 		if (status != -ENOSPC)
835 			continue;
836 
837 		if (page->mapping != mapping) {
838 			if (!--narrays)
839 				break;
840 			new = nfs_readdir_page_array_alloc(cookie, GFP_KERNEL);
841 			if (!new)
842 				break;
843 			arrays++;
844 			*arrays = page = new;
845 		} else {
846 			new = nfs_readdir_page_get_next(mapping, cookie,
847 							change_attr);
848 			if (!new)
849 				break;
850 			if (page != *arrays)
851 				nfs_readdir_page_unlock_and_put(page);
852 			page = new;
853 		}
854 		desc->page_index_max++;
855 		status = nfs_readdir_page_array_append(page, entry, &cookie);
856 	} while (!status && !entry->eof);
857 
858 	switch (status) {
859 	case -EBADCOOKIE:
860 		if (!entry->eof)
861 			break;
862 		nfs_readdir_page_set_eof(page);
863 		fallthrough;
864 	case -EAGAIN:
865 		status = 0;
866 		break;
867 	case -ENOSPC:
868 		status = 0;
869 		if (!desc->plus)
870 			break;
871 		while (!nfs_readdir_entry_decode(desc, entry, &stream))
872 			;
873 	}
874 
875 	if (page != *arrays)
876 		nfs_readdir_page_unlock_and_put(page);
877 
878 	put_page(scratch);
879 	return status;
880 }
881 
882 static void nfs_readdir_free_pages(struct page **pages, size_t npages)
883 {
884 	while (npages--)
885 		put_page(pages[npages]);
886 	kfree(pages);
887 }
888 
889 /*
890  * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
891  * to nfs_readdir_free_pages()
892  */
893 static struct page **nfs_readdir_alloc_pages(size_t npages)
894 {
895 	struct page **pages;
896 	size_t i;
897 
898 	pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL);
899 	if (!pages)
900 		return NULL;
901 	for (i = 0; i < npages; i++) {
902 		struct page *page = alloc_page(GFP_KERNEL);
903 		if (page == NULL)
904 			goto out_freepages;
905 		pages[i] = page;
906 	}
907 	return pages;
908 
909 out_freepages:
910 	nfs_readdir_free_pages(pages, i);
911 	return NULL;
912 }
913 
914 static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc,
915 				    __be32 *verf_arg, __be32 *verf_res,
916 				    struct page **arrays, size_t narrays)
917 {
918 	u64 change_attr;
919 	struct page **pages;
920 	struct page *page = *arrays;
921 	struct nfs_entry *entry;
922 	size_t array_size;
923 	struct inode *inode = file_inode(desc->file);
924 	unsigned int dtsize = desc->dtsize;
925 	unsigned int pglen;
926 	int status = -ENOMEM;
927 
928 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
929 	if (!entry)
930 		return -ENOMEM;
931 	entry->cookie = nfs_readdir_page_last_cookie(page);
932 	entry->fh = nfs_alloc_fhandle();
933 	entry->fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
934 	entry->server = NFS_SERVER(inode);
935 	if (entry->fh == NULL || entry->fattr == NULL)
936 		goto out;
937 
938 	array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT;
939 	pages = nfs_readdir_alloc_pages(array_size);
940 	if (!pages)
941 		goto out;
942 
943 	change_attr = inode_peek_iversion_raw(inode);
944 	status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie, pages,
945 					dtsize, verf_res);
946 	if (status < 0)
947 		goto free_pages;
948 
949 	pglen = status;
950 	if (pglen != 0)
951 		status = nfs_readdir_page_filler(desc, entry, pages, pglen,
952 						 arrays, narrays, change_attr);
953 	else
954 		nfs_readdir_page_set_eof(page);
955 	desc->buffer_fills++;
956 
957 free_pages:
958 	nfs_readdir_free_pages(pages, array_size);
959 out:
960 	nfs_free_fattr(entry->fattr);
961 	nfs_free_fhandle(entry->fh);
962 	kfree(entry);
963 	return status;
964 }
965 
966 static void nfs_readdir_page_put(struct nfs_readdir_descriptor *desc)
967 {
968 	put_page(desc->page);
969 	desc->page = NULL;
970 }
971 
972 static void
973 nfs_readdir_page_unlock_and_put_cached(struct nfs_readdir_descriptor *desc)
974 {
975 	unlock_page(desc->page);
976 	nfs_readdir_page_put(desc);
977 }
978 
979 static struct page *
980 nfs_readdir_page_get_cached(struct nfs_readdir_descriptor *desc)
981 {
982 	struct address_space *mapping = desc->file->f_mapping;
983 	u64 change_attr = inode_peek_iversion_raw(mapping->host);
984 	u64 cookie = desc->last_cookie;
985 	struct page *page;
986 
987 	page = nfs_readdir_page_get_locked(mapping, cookie, change_attr);
988 	if (!page)
989 		return NULL;
990 	if (desc->clear_cache && !nfs_readdir_page_needs_filling(page))
991 		nfs_readdir_page_reinit_array(page, cookie, change_attr);
992 	return page;
993 }
994 
995 /*
996  * Returns 0 if desc->dir_cookie was found on page desc->page_index
997  * and locks the page to prevent removal from the page cache.
998  */
999 static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc)
1000 {
1001 	struct inode *inode = file_inode(desc->file);
1002 	struct nfs_inode *nfsi = NFS_I(inode);
1003 	__be32 verf[NFS_DIR_VERIFIER_SIZE];
1004 	int res;
1005 
1006 	desc->page = nfs_readdir_page_get_cached(desc);
1007 	if (!desc->page)
1008 		return -ENOMEM;
1009 	if (nfs_readdir_page_needs_filling(desc->page)) {
1010 		/* Grow the dtsize if we had to go back for more pages */
1011 		if (desc->page_index == desc->page_index_max)
1012 			nfs_grow_dtsize(desc);
1013 		desc->page_index_max = desc->page_index;
1014 		trace_nfs_readdir_cache_fill(desc->file, nfsi->cookieverf,
1015 					     desc->last_cookie,
1016 					     desc->page->index, desc->dtsize);
1017 		res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf,
1018 					       &desc->page, 1);
1019 		if (res < 0) {
1020 			nfs_readdir_page_unlock_and_put_cached(desc);
1021 			trace_nfs_readdir_cache_fill_done(inode, res);
1022 			if (res == -EBADCOOKIE || res == -ENOTSYNC) {
1023 				invalidate_inode_pages2(desc->file->f_mapping);
1024 				nfs_readdir_rewind_search(desc);
1025 				trace_nfs_readdir_invalidate_cache_range(
1026 					inode, 0, MAX_LFS_FILESIZE);
1027 				return -EAGAIN;
1028 			}
1029 			return res;
1030 		}
1031 		/*
1032 		 * Set the cookie verifier if the page cache was empty
1033 		 */
1034 		if (desc->last_cookie == 0 &&
1035 		    memcmp(nfsi->cookieverf, verf, sizeof(nfsi->cookieverf))) {
1036 			memcpy(nfsi->cookieverf, verf,
1037 			       sizeof(nfsi->cookieverf));
1038 			invalidate_inode_pages2_range(desc->file->f_mapping, 1,
1039 						      -1);
1040 			trace_nfs_readdir_invalidate_cache_range(
1041 				inode, 1, MAX_LFS_FILESIZE);
1042 		}
1043 		desc->clear_cache = false;
1044 	}
1045 	res = nfs_readdir_search_array(desc);
1046 	if (res == 0)
1047 		return 0;
1048 	nfs_readdir_page_unlock_and_put_cached(desc);
1049 	return res;
1050 }
1051 
1052 /* Search for desc->dir_cookie from the beginning of the page cache */
1053 static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc)
1054 {
1055 	int res;
1056 
1057 	do {
1058 		res = find_and_lock_cache_page(desc);
1059 	} while (res == -EAGAIN);
1060 	return res;
1061 }
1062 
1063 /*
1064  * Once we've found the start of the dirent within a page: fill 'er up...
1065  */
1066 static void nfs_do_filldir(struct nfs_readdir_descriptor *desc,
1067 			   const __be32 *verf)
1068 {
1069 	struct file	*file = desc->file;
1070 	struct nfs_cache_array *array;
1071 	unsigned int i;
1072 
1073 	array = kmap(desc->page);
1074 	for (i = desc->cache_entry_index; i < array->size; i++) {
1075 		struct nfs_cache_array_entry *ent;
1076 
1077 		ent = &array->array[i];
1078 		if (!dir_emit(desc->ctx, ent->name, ent->name_len,
1079 		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
1080 			desc->eob = true;
1081 			break;
1082 		}
1083 		memcpy(desc->verf, verf, sizeof(desc->verf));
1084 		if (i == array->size - 1) {
1085 			desc->dir_cookie = array->last_cookie;
1086 			nfs_readdir_seek_next_array(array, desc);
1087 		} else {
1088 			desc->dir_cookie = array->array[i + 1].cookie;
1089 			desc->last_cookie = array->array[0].cookie;
1090 		}
1091 		if (nfs_readdir_use_cookie(file))
1092 			desc->ctx->pos = desc->dir_cookie;
1093 		else
1094 			desc->ctx->pos++;
1095 	}
1096 	if (array->page_is_eof)
1097 		desc->eof = !desc->eob;
1098 
1099 	kunmap(desc->page);
1100 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n",
1101 			(unsigned long long)desc->dir_cookie);
1102 }
1103 
1104 /*
1105  * If we cannot find a cookie in our cache, we suspect that this is
1106  * because it points to a deleted file, so we ask the server to return
1107  * whatever it thinks is the next entry. We then feed this to filldir.
1108  * If all goes well, we should then be able to find our way round the
1109  * cache on the next call to readdir_search_pagecache();
1110  *
1111  * NOTE: we cannot add the anonymous page to the pagecache because
1112  *	 the data it contains might not be page aligned. Besides,
1113  *	 we should already have a complete representation of the
1114  *	 directory in the page cache by the time we get here.
1115  */
1116 static int uncached_readdir(struct nfs_readdir_descriptor *desc)
1117 {
1118 	struct page	**arrays;
1119 	size_t		i, sz = 512;
1120 	__be32		verf[NFS_DIR_VERIFIER_SIZE];
1121 	int		status = -ENOMEM;
1122 
1123 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n",
1124 			(unsigned long long)desc->dir_cookie);
1125 
1126 	arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL);
1127 	if (!arrays)
1128 		goto out;
1129 	arrays[0] = nfs_readdir_page_array_alloc(desc->dir_cookie, GFP_KERNEL);
1130 	if (!arrays[0])
1131 		goto out;
1132 
1133 	desc->page_index = 0;
1134 	desc->cache_entry_index = 0;
1135 	desc->last_cookie = desc->dir_cookie;
1136 	desc->page_index_max = 0;
1137 
1138 	trace_nfs_readdir_uncached(desc->file, desc->verf, desc->last_cookie,
1139 				   -1, desc->dtsize);
1140 
1141 	status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz);
1142 	if (status < 0) {
1143 		trace_nfs_readdir_uncached_done(file_inode(desc->file), status);
1144 		goto out_free;
1145 	}
1146 
1147 	for (i = 0; !desc->eob && i < sz && arrays[i]; i++) {
1148 		desc->page = arrays[i];
1149 		nfs_do_filldir(desc, verf);
1150 	}
1151 	desc->page = NULL;
1152 
1153 	/*
1154 	 * Grow the dtsize if we have to go back for more pages,
1155 	 * or shrink it if we're reading too many.
1156 	 */
1157 	if (!desc->eof) {
1158 		if (!desc->eob)
1159 			nfs_grow_dtsize(desc);
1160 		else if (desc->buffer_fills == 1 &&
1161 			 i < (desc->page_index_max >> 1))
1162 			nfs_shrink_dtsize(desc);
1163 	}
1164 out_free:
1165 	for (i = 0; i < sz && arrays[i]; i++)
1166 		nfs_readdir_page_array_free(arrays[i]);
1167 out:
1168 	if (!nfs_readdir_use_cookie(desc->file))
1169 		nfs_readdir_rewind_search(desc);
1170 	desc->page_index_max = -1;
1171 	kfree(arrays);
1172 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
1173 	return status;
1174 }
1175 
1176 #define NFS_READDIR_CACHE_MISS_THRESHOLD (16UL)
1177 
1178 static bool nfs_readdir_handle_cache_misses(struct inode *inode,
1179 					    struct nfs_readdir_descriptor *desc,
1180 					    unsigned int cache_misses,
1181 					    bool force_clear)
1182 {
1183 	if (desc->ctx->pos == 0 || !desc->plus)
1184 		return false;
1185 	if (cache_misses <= NFS_READDIR_CACHE_MISS_THRESHOLD && !force_clear)
1186 		return false;
1187 	trace_nfs_readdir_force_readdirplus(inode);
1188 	return true;
1189 }
1190 
1191 /* The file offset position represents the dirent entry number.  A
1192    last cookie cache takes care of the common case of reading the
1193    whole directory.
1194  */
1195 static int nfs_readdir(struct file *file, struct dir_context *ctx)
1196 {
1197 	struct dentry	*dentry = file_dentry(file);
1198 	struct inode	*inode = d_inode(dentry);
1199 	struct nfs_inode *nfsi = NFS_I(inode);
1200 	struct nfs_open_dir_context *dir_ctx = file->private_data;
1201 	struct nfs_readdir_descriptor *desc;
1202 	unsigned int cache_hits, cache_misses;
1203 	bool force_clear;
1204 	int res;
1205 
1206 	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
1207 			file, (long long)ctx->pos);
1208 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
1209 
1210 	/*
1211 	 * ctx->pos points to the dirent entry number.
1212 	 * *desc->dir_cookie has the cookie for the next entry. We have
1213 	 * to either find the entry with the appropriate number or
1214 	 * revalidate the cookie.
1215 	 */
1216 	nfs_revalidate_mapping(inode, file->f_mapping);
1217 
1218 	res = -ENOMEM;
1219 	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
1220 	if (!desc)
1221 		goto out;
1222 	desc->file = file;
1223 	desc->ctx = ctx;
1224 	desc->page_index_max = -1;
1225 
1226 	spin_lock(&file->f_lock);
1227 	desc->dir_cookie = dir_ctx->dir_cookie;
1228 	desc->page_index = dir_ctx->page_index;
1229 	desc->last_cookie = dir_ctx->last_cookie;
1230 	desc->attr_gencount = dir_ctx->attr_gencount;
1231 	desc->eof = dir_ctx->eof;
1232 	nfs_set_dtsize(desc, dir_ctx->dtsize);
1233 	memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf));
1234 	cache_hits = atomic_xchg(&dir_ctx->cache_hits, 0);
1235 	cache_misses = atomic_xchg(&dir_ctx->cache_misses, 0);
1236 	force_clear = dir_ctx->force_clear;
1237 	spin_unlock(&file->f_lock);
1238 
1239 	if (desc->eof) {
1240 		res = 0;
1241 		goto out_free;
1242 	}
1243 
1244 	desc->plus = nfs_use_readdirplus(inode, ctx, cache_hits, cache_misses);
1245 	force_clear = nfs_readdir_handle_cache_misses(inode, desc, cache_misses,
1246 						      force_clear);
1247 	desc->clear_cache = force_clear;
1248 
1249 	do {
1250 		res = readdir_search_pagecache(desc);
1251 
1252 		if (res == -EBADCOOKIE) {
1253 			res = 0;
1254 			/* This means either end of directory */
1255 			if (desc->dir_cookie && !desc->eof) {
1256 				/* Or that the server has 'lost' a cookie */
1257 				res = uncached_readdir(desc);
1258 				if (res == 0)
1259 					continue;
1260 				if (res == -EBADCOOKIE || res == -ENOTSYNC)
1261 					res = 0;
1262 			}
1263 			break;
1264 		}
1265 		if (res == -ETOOSMALL && desc->plus) {
1266 			nfs_zap_caches(inode);
1267 			desc->plus = false;
1268 			desc->eof = false;
1269 			continue;
1270 		}
1271 		if (res < 0)
1272 			break;
1273 
1274 		nfs_do_filldir(desc, nfsi->cookieverf);
1275 		nfs_readdir_page_unlock_and_put_cached(desc);
1276 		if (desc->page_index == desc->page_index_max)
1277 			desc->clear_cache = force_clear;
1278 	} while (!desc->eob && !desc->eof);
1279 
1280 	spin_lock(&file->f_lock);
1281 	dir_ctx->dir_cookie = desc->dir_cookie;
1282 	dir_ctx->last_cookie = desc->last_cookie;
1283 	dir_ctx->attr_gencount = desc->attr_gencount;
1284 	dir_ctx->page_index = desc->page_index;
1285 	dir_ctx->force_clear = force_clear;
1286 	dir_ctx->eof = desc->eof;
1287 	dir_ctx->dtsize = desc->dtsize;
1288 	memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf));
1289 	spin_unlock(&file->f_lock);
1290 out_free:
1291 	kfree(desc);
1292 
1293 out:
1294 	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
1295 	return res;
1296 }
1297 
1298 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
1299 {
1300 	struct nfs_open_dir_context *dir_ctx = filp->private_data;
1301 
1302 	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
1303 			filp, offset, whence);
1304 
1305 	switch (whence) {
1306 	default:
1307 		return -EINVAL;
1308 	case SEEK_SET:
1309 		if (offset < 0)
1310 			return -EINVAL;
1311 		spin_lock(&filp->f_lock);
1312 		break;
1313 	case SEEK_CUR:
1314 		if (offset == 0)
1315 			return filp->f_pos;
1316 		spin_lock(&filp->f_lock);
1317 		offset += filp->f_pos;
1318 		if (offset < 0) {
1319 			spin_unlock(&filp->f_lock);
1320 			return -EINVAL;
1321 		}
1322 	}
1323 	if (offset != filp->f_pos) {
1324 		filp->f_pos = offset;
1325 		dir_ctx->page_index = 0;
1326 		if (!nfs_readdir_use_cookie(filp)) {
1327 			dir_ctx->dir_cookie = 0;
1328 			dir_ctx->last_cookie = 0;
1329 		} else {
1330 			dir_ctx->dir_cookie = offset;
1331 			dir_ctx->last_cookie = offset;
1332 		}
1333 		dir_ctx->eof = false;
1334 	}
1335 	spin_unlock(&filp->f_lock);
1336 	return offset;
1337 }
1338 
1339 /*
1340  * All directory operations under NFS are synchronous, so fsync()
1341  * is a dummy operation.
1342  */
1343 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1344 			 int datasync)
1345 {
1346 	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1347 
1348 	nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC);
1349 	return 0;
1350 }
1351 
1352 /**
1353  * nfs_force_lookup_revalidate - Mark the directory as having changed
1354  * @dir: pointer to directory inode
1355  *
1356  * This forces the revalidation code in nfs_lookup_revalidate() to do a
1357  * full lookup on all child dentries of 'dir' whenever a change occurs
1358  * on the server that might have invalidated our dcache.
1359  *
1360  * Note that we reserve bit '0' as a tag to let us know when a dentry
1361  * was revalidated while holding a delegation on its inode.
1362  *
1363  * The caller should be holding dir->i_lock
1364  */
1365 void nfs_force_lookup_revalidate(struct inode *dir)
1366 {
1367 	NFS_I(dir)->cache_change_attribute += 2;
1368 }
1369 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1370 
1371 /**
1372  * nfs_verify_change_attribute - Detects NFS remote directory changes
1373  * @dir: pointer to parent directory inode
1374  * @verf: previously saved change attribute
1375  *
1376  * Return "false" if the verifiers doesn't match the change attribute.
1377  * This would usually indicate that the directory contents have changed on
1378  * the server, and that any dentries need revalidating.
1379  */
1380 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1381 {
1382 	return (verf & ~1UL) == nfs_save_change_attribute(dir);
1383 }
1384 
1385 static void nfs_set_verifier_delegated(unsigned long *verf)
1386 {
1387 	*verf |= 1UL;
1388 }
1389 
1390 #if IS_ENABLED(CONFIG_NFS_V4)
1391 static void nfs_unset_verifier_delegated(unsigned long *verf)
1392 {
1393 	*verf &= ~1UL;
1394 }
1395 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1396 
1397 static bool nfs_test_verifier_delegated(unsigned long verf)
1398 {
1399 	return verf & 1;
1400 }
1401 
1402 static bool nfs_verifier_is_delegated(struct dentry *dentry)
1403 {
1404 	return nfs_test_verifier_delegated(dentry->d_time);
1405 }
1406 
1407 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1408 {
1409 	struct inode *inode = d_inode(dentry);
1410 	struct inode *dir = d_inode(dentry->d_parent);
1411 
1412 	if (!nfs_verify_change_attribute(dir, verf))
1413 		return;
1414 	if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
1415 		nfs_set_verifier_delegated(&verf);
1416 	dentry->d_time = verf;
1417 }
1418 
1419 /**
1420  * nfs_set_verifier - save a parent directory verifier in the dentry
1421  * @dentry: pointer to dentry
1422  * @verf: verifier to save
1423  *
1424  * Saves the parent directory verifier in @dentry. If the inode has
1425  * a delegation, we also tag the dentry as having been revalidated
1426  * while holding a delegation so that we know we don't have to
1427  * look it up again after a directory change.
1428  */
1429 void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1430 {
1431 
1432 	spin_lock(&dentry->d_lock);
1433 	nfs_set_verifier_locked(dentry, verf);
1434 	spin_unlock(&dentry->d_lock);
1435 }
1436 EXPORT_SYMBOL_GPL(nfs_set_verifier);
1437 
1438 #if IS_ENABLED(CONFIG_NFS_V4)
1439 /**
1440  * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1441  * @inode: pointer to inode
1442  *
1443  * Iterates through the dentries in the inode alias list and clears
1444  * the tag used to indicate that the dentry has been revalidated
1445  * while holding a delegation.
1446  * This function is intended for use when the delegation is being
1447  * returned or revoked.
1448  */
1449 void nfs_clear_verifier_delegated(struct inode *inode)
1450 {
1451 	struct dentry *alias;
1452 
1453 	if (!inode)
1454 		return;
1455 	spin_lock(&inode->i_lock);
1456 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1457 		spin_lock(&alias->d_lock);
1458 		nfs_unset_verifier_delegated(&alias->d_time);
1459 		spin_unlock(&alias->d_lock);
1460 	}
1461 	spin_unlock(&inode->i_lock);
1462 }
1463 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1464 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1465 
1466 static int nfs_dentry_verify_change(struct inode *dir, struct dentry *dentry)
1467 {
1468 	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE) &&
1469 	    d_really_is_negative(dentry))
1470 		return dentry->d_time == inode_peek_iversion_raw(dir);
1471 	return nfs_verify_change_attribute(dir, dentry->d_time);
1472 }
1473 
1474 /*
1475  * A check for whether or not the parent directory has changed.
1476  * In the case it has, we assume that the dentries are untrustworthy
1477  * and may need to be looked up again.
1478  * If rcu_walk prevents us from performing a full check, return 0.
1479  */
1480 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1481 			      int rcu_walk)
1482 {
1483 	if (IS_ROOT(dentry))
1484 		return 1;
1485 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1486 		return 0;
1487 	if (!nfs_dentry_verify_change(dir, dentry))
1488 		return 0;
1489 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1490 	if (nfs_mapping_need_revalidate_inode(dir)) {
1491 		if (rcu_walk)
1492 			return 0;
1493 		if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1494 			return 0;
1495 	}
1496 	if (!nfs_dentry_verify_change(dir, dentry))
1497 		return 0;
1498 	return 1;
1499 }
1500 
1501 /*
1502  * Use intent information to check whether or not we're going to do
1503  * an O_EXCL create using this path component.
1504  */
1505 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1506 {
1507 	if (NFS_PROTO(dir)->version == 2)
1508 		return 0;
1509 	return flags & LOOKUP_EXCL;
1510 }
1511 
1512 /*
1513  * Inode and filehandle revalidation for lookups.
1514  *
1515  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1516  * or if the intent information indicates that we're about to open this
1517  * particular file and the "nocto" mount flag is not set.
1518  *
1519  */
1520 static
1521 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1522 {
1523 	struct nfs_server *server = NFS_SERVER(inode);
1524 	int ret;
1525 
1526 	if (IS_AUTOMOUNT(inode))
1527 		return 0;
1528 
1529 	if (flags & LOOKUP_OPEN) {
1530 		switch (inode->i_mode & S_IFMT) {
1531 		case S_IFREG:
1532 			/* A NFSv4 OPEN will revalidate later */
1533 			if (server->caps & NFS_CAP_ATOMIC_OPEN)
1534 				goto out;
1535 			fallthrough;
1536 		case S_IFDIR:
1537 			if (server->flags & NFS_MOUNT_NOCTO)
1538 				break;
1539 			/* NFS close-to-open cache consistency validation */
1540 			goto out_force;
1541 		}
1542 	}
1543 
1544 	/* VFS wants an on-the-wire revalidation */
1545 	if (flags & LOOKUP_REVAL)
1546 		goto out_force;
1547 out:
1548 	if (inode->i_nlink > 0 ||
1549 	    (inode->i_nlink == 0 &&
1550 	     test_bit(NFS_INO_PRESERVE_UNLINKED, &NFS_I(inode)->flags)))
1551 		return 0;
1552 	else
1553 		return -ESTALE;
1554 out_force:
1555 	if (flags & LOOKUP_RCU)
1556 		return -ECHILD;
1557 	ret = __nfs_revalidate_inode(server, inode);
1558 	if (ret != 0)
1559 		return ret;
1560 	goto out;
1561 }
1562 
1563 static void nfs_mark_dir_for_revalidate(struct inode *inode)
1564 {
1565 	spin_lock(&inode->i_lock);
1566 	nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE);
1567 	spin_unlock(&inode->i_lock);
1568 }
1569 
1570 /*
1571  * We judge how long we want to trust negative
1572  * dentries by looking at the parent inode mtime.
1573  *
1574  * If parent mtime has changed, we revalidate, else we wait for a
1575  * period corresponding to the parent's attribute cache timeout value.
1576  *
1577  * If LOOKUP_RCU prevents us from performing a full check, return 1
1578  * suggesting a reval is needed.
1579  *
1580  * Note that when creating a new file, or looking up a rename target,
1581  * then it shouldn't be necessary to revalidate a negative dentry.
1582  */
1583 static inline
1584 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1585 		       unsigned int flags)
1586 {
1587 	if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1588 		return 0;
1589 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1590 		return 1;
1591 	/* Case insensitive server? Revalidate negative dentries */
1592 	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1593 		return 1;
1594 	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1595 }
1596 
1597 static int
1598 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1599 			   struct inode *inode, int error)
1600 {
1601 	switch (error) {
1602 	case 1:
1603 		break;
1604 	case 0:
1605 		/*
1606 		 * We can't d_drop the root of a disconnected tree:
1607 		 * its d_hash is on the s_anon list and d_drop() would hide
1608 		 * it from shrink_dcache_for_unmount(), leading to busy
1609 		 * inodes on unmount and further oopses.
1610 		 */
1611 		if (inode && IS_ROOT(dentry))
1612 			error = 1;
1613 		break;
1614 	}
1615 	trace_nfs_lookup_revalidate_exit(dir, dentry, 0, error);
1616 	return error;
1617 }
1618 
1619 static int
1620 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1621 			       unsigned int flags)
1622 {
1623 	int ret = 1;
1624 	if (nfs_neg_need_reval(dir, dentry, flags)) {
1625 		if (flags & LOOKUP_RCU)
1626 			return -ECHILD;
1627 		ret = 0;
1628 	}
1629 	return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1630 }
1631 
1632 static int
1633 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1634 				struct inode *inode)
1635 {
1636 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1637 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1638 }
1639 
1640 static int nfs_lookup_revalidate_dentry(struct inode *dir,
1641 					struct dentry *dentry,
1642 					struct inode *inode, unsigned int flags)
1643 {
1644 	struct nfs_fh *fhandle;
1645 	struct nfs_fattr *fattr;
1646 	unsigned long dir_verifier;
1647 	int ret;
1648 
1649 	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1650 
1651 	ret = -ENOMEM;
1652 	fhandle = nfs_alloc_fhandle();
1653 	fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
1654 	if (fhandle == NULL || fattr == NULL)
1655 		goto out;
1656 
1657 	dir_verifier = nfs_save_change_attribute(dir);
1658 	ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1659 	if (ret < 0) {
1660 		switch (ret) {
1661 		case -ESTALE:
1662 		case -ENOENT:
1663 			ret = 0;
1664 			break;
1665 		case -ETIMEDOUT:
1666 			if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1667 				ret = 1;
1668 		}
1669 		goto out;
1670 	}
1671 
1672 	/* Request help from readdirplus */
1673 	nfs_lookup_advise_force_readdirplus(dir, flags);
1674 
1675 	ret = 0;
1676 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1677 		goto out;
1678 	if (nfs_refresh_inode(inode, fattr) < 0)
1679 		goto out;
1680 
1681 	nfs_setsecurity(inode, fattr);
1682 	nfs_set_verifier(dentry, dir_verifier);
1683 
1684 	ret = 1;
1685 out:
1686 	nfs_free_fattr(fattr);
1687 	nfs_free_fhandle(fhandle);
1688 
1689 	/*
1690 	 * If the lookup failed despite the dentry change attribute being
1691 	 * a match, then we should revalidate the directory cache.
1692 	 */
1693 	if (!ret && nfs_dentry_verify_change(dir, dentry))
1694 		nfs_mark_dir_for_revalidate(dir);
1695 	return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1696 }
1697 
1698 /*
1699  * This is called every time the dcache has a lookup hit,
1700  * and we should check whether we can really trust that
1701  * lookup.
1702  *
1703  * NOTE! The hit can be a negative hit too, don't assume
1704  * we have an inode!
1705  *
1706  * If the parent directory is seen to have changed, we throw out the
1707  * cached dentry and do a new lookup.
1708  */
1709 static int
1710 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1711 			 unsigned int flags)
1712 {
1713 	struct inode *inode;
1714 	int error;
1715 
1716 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1717 	inode = d_inode(dentry);
1718 
1719 	if (!inode)
1720 		return nfs_lookup_revalidate_negative(dir, dentry, flags);
1721 
1722 	if (is_bad_inode(inode)) {
1723 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1724 				__func__, dentry);
1725 		goto out_bad;
1726 	}
1727 
1728 	if (nfs_verifier_is_delegated(dentry))
1729 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1730 
1731 	/* Force a full look up iff the parent directory has changed */
1732 	if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1733 	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1734 		error = nfs_lookup_verify_inode(inode, flags);
1735 		if (error) {
1736 			if (error == -ESTALE)
1737 				nfs_mark_dir_for_revalidate(dir);
1738 			goto out_bad;
1739 		}
1740 		goto out_valid;
1741 	}
1742 
1743 	if (flags & LOOKUP_RCU)
1744 		return -ECHILD;
1745 
1746 	if (NFS_STALE(inode))
1747 		goto out_bad;
1748 
1749 	return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags);
1750 out_valid:
1751 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1752 out_bad:
1753 	if (flags & LOOKUP_RCU)
1754 		return -ECHILD;
1755 	return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1756 }
1757 
1758 static int
1759 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1760 			int (*reval)(struct inode *, struct dentry *, unsigned int))
1761 {
1762 	struct dentry *parent;
1763 	struct inode *dir;
1764 	int ret;
1765 
1766 	if (flags & LOOKUP_RCU) {
1767 		parent = READ_ONCE(dentry->d_parent);
1768 		dir = d_inode_rcu(parent);
1769 		if (!dir)
1770 			return -ECHILD;
1771 		ret = reval(dir, dentry, flags);
1772 		if (parent != READ_ONCE(dentry->d_parent))
1773 			return -ECHILD;
1774 	} else {
1775 		parent = dget_parent(dentry);
1776 		ret = reval(d_inode(parent), dentry, flags);
1777 		dput(parent);
1778 	}
1779 	return ret;
1780 }
1781 
1782 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1783 {
1784 	return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1785 }
1786 
1787 /*
1788  * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1789  * when we don't really care about the dentry name. This is called when a
1790  * pathwalk ends on a dentry that was not found via a normal lookup in the
1791  * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1792  *
1793  * In this situation, we just want to verify that the inode itself is OK
1794  * since the dentry might have changed on the server.
1795  */
1796 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1797 {
1798 	struct inode *inode = d_inode(dentry);
1799 	int error = 0;
1800 
1801 	/*
1802 	 * I believe we can only get a negative dentry here in the case of a
1803 	 * procfs-style symlink. Just assume it's correct for now, but we may
1804 	 * eventually need to do something more here.
1805 	 */
1806 	if (!inode) {
1807 		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1808 				__func__, dentry);
1809 		return 1;
1810 	}
1811 
1812 	if (is_bad_inode(inode)) {
1813 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1814 				__func__, dentry);
1815 		return 0;
1816 	}
1817 
1818 	error = nfs_lookup_verify_inode(inode, flags);
1819 	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1820 			__func__, inode->i_ino, error ? "invalid" : "valid");
1821 	return !error;
1822 }
1823 
1824 /*
1825  * This is called from dput() when d_count is going to 0.
1826  */
1827 static int nfs_dentry_delete(const struct dentry *dentry)
1828 {
1829 	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1830 		dentry, dentry->d_flags);
1831 
1832 	/* Unhash any dentry with a stale inode */
1833 	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1834 		return 1;
1835 
1836 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1837 		/* Unhash it, so that ->d_iput() would be called */
1838 		return 1;
1839 	}
1840 	if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1841 		/* Unhash it, so that ancestors of killed async unlink
1842 		 * files will be cleaned up during umount */
1843 		return 1;
1844 	}
1845 	return 0;
1846 
1847 }
1848 
1849 /* Ensure that we revalidate inode->i_nlink */
1850 static void nfs_drop_nlink(struct inode *inode)
1851 {
1852 	spin_lock(&inode->i_lock);
1853 	/* drop the inode if we're reasonably sure this is the last link */
1854 	if (inode->i_nlink > 0)
1855 		drop_nlink(inode);
1856 	NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1857 	nfs_set_cache_invalid(
1858 		inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME |
1859 			       NFS_INO_INVALID_NLINK);
1860 	spin_unlock(&inode->i_lock);
1861 }
1862 
1863 /*
1864  * Called when the dentry loses inode.
1865  * We use it to clean up silly-renamed files.
1866  */
1867 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1868 {
1869 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1870 		nfs_complete_unlink(dentry, inode);
1871 		nfs_drop_nlink(inode);
1872 	}
1873 	iput(inode);
1874 }
1875 
1876 static void nfs_d_release(struct dentry *dentry)
1877 {
1878 	/* free cached devname value, if it survived that far */
1879 	if (unlikely(dentry->d_fsdata)) {
1880 		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1881 			WARN_ON(1);
1882 		else
1883 			kfree(dentry->d_fsdata);
1884 	}
1885 }
1886 
1887 const struct dentry_operations nfs_dentry_operations = {
1888 	.d_revalidate	= nfs_lookup_revalidate,
1889 	.d_weak_revalidate	= nfs_weak_revalidate,
1890 	.d_delete	= nfs_dentry_delete,
1891 	.d_iput		= nfs_dentry_iput,
1892 	.d_automount	= nfs_d_automount,
1893 	.d_release	= nfs_d_release,
1894 };
1895 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1896 
1897 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1898 {
1899 	struct dentry *res;
1900 	struct inode *inode = NULL;
1901 	struct nfs_fh *fhandle = NULL;
1902 	struct nfs_fattr *fattr = NULL;
1903 	unsigned long dir_verifier;
1904 	int error;
1905 
1906 	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1907 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1908 
1909 	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1910 		return ERR_PTR(-ENAMETOOLONG);
1911 
1912 	/*
1913 	 * If we're doing an exclusive create, optimize away the lookup
1914 	 * but don't hash the dentry.
1915 	 */
1916 	if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1917 		return NULL;
1918 
1919 	res = ERR_PTR(-ENOMEM);
1920 	fhandle = nfs_alloc_fhandle();
1921 	fattr = nfs_alloc_fattr_with_label(NFS_SERVER(dir));
1922 	if (fhandle == NULL || fattr == NULL)
1923 		goto out;
1924 
1925 	dir_verifier = nfs_save_change_attribute(dir);
1926 	trace_nfs_lookup_enter(dir, dentry, flags);
1927 	error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1928 	if (error == -ENOENT) {
1929 		if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1930 			dir_verifier = inode_peek_iversion_raw(dir);
1931 		goto no_entry;
1932 	}
1933 	if (error < 0) {
1934 		res = ERR_PTR(error);
1935 		goto out;
1936 	}
1937 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1938 	res = ERR_CAST(inode);
1939 	if (IS_ERR(res))
1940 		goto out;
1941 
1942 	/* Notify readdir to use READDIRPLUS */
1943 	nfs_lookup_advise_force_readdirplus(dir, flags);
1944 
1945 no_entry:
1946 	res = d_splice_alias(inode, dentry);
1947 	if (res != NULL) {
1948 		if (IS_ERR(res))
1949 			goto out;
1950 		dentry = res;
1951 	}
1952 	nfs_set_verifier(dentry, dir_verifier);
1953 out:
1954 	trace_nfs_lookup_exit(dir, dentry, flags, PTR_ERR_OR_ZERO(res));
1955 	nfs_free_fattr(fattr);
1956 	nfs_free_fhandle(fhandle);
1957 	return res;
1958 }
1959 EXPORT_SYMBOL_GPL(nfs_lookup);
1960 
1961 void nfs_d_prune_case_insensitive_aliases(struct inode *inode)
1962 {
1963 	/* Case insensitive server? Revalidate dentries */
1964 	if (inode && nfs_server_capable(inode, NFS_CAP_CASE_INSENSITIVE))
1965 		d_prune_aliases(inode);
1966 }
1967 EXPORT_SYMBOL_GPL(nfs_d_prune_case_insensitive_aliases);
1968 
1969 #if IS_ENABLED(CONFIG_NFS_V4)
1970 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1971 
1972 const struct dentry_operations nfs4_dentry_operations = {
1973 	.d_revalidate	= nfs4_lookup_revalidate,
1974 	.d_weak_revalidate	= nfs_weak_revalidate,
1975 	.d_delete	= nfs_dentry_delete,
1976 	.d_iput		= nfs_dentry_iput,
1977 	.d_automount	= nfs_d_automount,
1978 	.d_release	= nfs_d_release,
1979 };
1980 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1981 
1982 static fmode_t flags_to_mode(int flags)
1983 {
1984 	fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1985 	if ((flags & O_ACCMODE) != O_WRONLY)
1986 		res |= FMODE_READ;
1987 	if ((flags & O_ACCMODE) != O_RDONLY)
1988 		res |= FMODE_WRITE;
1989 	return res;
1990 }
1991 
1992 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1993 {
1994 	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1995 }
1996 
1997 static int do_open(struct inode *inode, struct file *filp)
1998 {
1999 	nfs_fscache_open_file(inode, filp);
2000 	return 0;
2001 }
2002 
2003 static int nfs_finish_open(struct nfs_open_context *ctx,
2004 			   struct dentry *dentry,
2005 			   struct file *file, unsigned open_flags)
2006 {
2007 	int err;
2008 
2009 	err = finish_open(file, dentry, do_open);
2010 	if (err)
2011 		goto out;
2012 	if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
2013 		nfs_file_set_open_context(file, ctx);
2014 	else
2015 		err = -EOPENSTALE;
2016 out:
2017 	return err;
2018 }
2019 
2020 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
2021 		    struct file *file, unsigned open_flags,
2022 		    umode_t mode)
2023 {
2024 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2025 	struct nfs_open_context *ctx;
2026 	struct dentry *res;
2027 	struct iattr attr = { .ia_valid = ATTR_OPEN };
2028 	struct inode *inode;
2029 	unsigned int lookup_flags = 0;
2030 	unsigned long dir_verifier;
2031 	bool switched = false;
2032 	int created = 0;
2033 	int err;
2034 
2035 	/* Expect a negative dentry */
2036 	BUG_ON(d_inode(dentry));
2037 
2038 	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
2039 			dir->i_sb->s_id, dir->i_ino, dentry);
2040 
2041 	err = nfs_check_flags(open_flags);
2042 	if (err)
2043 		return err;
2044 
2045 	/* NFS only supports OPEN on regular files */
2046 	if ((open_flags & O_DIRECTORY)) {
2047 		if (!d_in_lookup(dentry)) {
2048 			/*
2049 			 * Hashed negative dentry with O_DIRECTORY: dentry was
2050 			 * revalidated and is fine, no need to perform lookup
2051 			 * again
2052 			 */
2053 			return -ENOENT;
2054 		}
2055 		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
2056 		goto no_open;
2057 	}
2058 
2059 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
2060 		return -ENAMETOOLONG;
2061 
2062 	if (open_flags & O_CREAT) {
2063 		struct nfs_server *server = NFS_SERVER(dir);
2064 
2065 		if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
2066 			mode &= ~current_umask();
2067 
2068 		attr.ia_valid |= ATTR_MODE;
2069 		attr.ia_mode = mode;
2070 	}
2071 	if (open_flags & O_TRUNC) {
2072 		attr.ia_valid |= ATTR_SIZE;
2073 		attr.ia_size = 0;
2074 	}
2075 
2076 	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
2077 		d_drop(dentry);
2078 		switched = true;
2079 		dentry = d_alloc_parallel(dentry->d_parent,
2080 					  &dentry->d_name, &wq);
2081 		if (IS_ERR(dentry))
2082 			return PTR_ERR(dentry);
2083 		if (unlikely(!d_in_lookup(dentry)))
2084 			return finish_no_open(file, dentry);
2085 	}
2086 
2087 	ctx = create_nfs_open_context(dentry, open_flags, file);
2088 	err = PTR_ERR(ctx);
2089 	if (IS_ERR(ctx))
2090 		goto out;
2091 
2092 	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
2093 	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
2094 	if (created)
2095 		file->f_mode |= FMODE_CREATED;
2096 	if (IS_ERR(inode)) {
2097 		err = PTR_ERR(inode);
2098 		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2099 		put_nfs_open_context(ctx);
2100 		d_drop(dentry);
2101 		switch (err) {
2102 		case -ENOENT:
2103 			d_splice_alias(NULL, dentry);
2104 			if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
2105 				dir_verifier = inode_peek_iversion_raw(dir);
2106 			else
2107 				dir_verifier = nfs_save_change_attribute(dir);
2108 			nfs_set_verifier(dentry, dir_verifier);
2109 			break;
2110 		case -EISDIR:
2111 		case -ENOTDIR:
2112 			goto no_open;
2113 		case -ELOOP:
2114 			if (!(open_flags & O_NOFOLLOW))
2115 				goto no_open;
2116 			break;
2117 			/* case -EINVAL: */
2118 		default:
2119 			break;
2120 		}
2121 		goto out;
2122 	}
2123 
2124 	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
2125 	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2126 	put_nfs_open_context(ctx);
2127 out:
2128 	if (unlikely(switched)) {
2129 		d_lookup_done(dentry);
2130 		dput(dentry);
2131 	}
2132 	return err;
2133 
2134 no_open:
2135 	res = nfs_lookup(dir, dentry, lookup_flags);
2136 	if (!res) {
2137 		inode = d_inode(dentry);
2138 		if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2139 		    !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)))
2140 			res = ERR_PTR(-ENOTDIR);
2141 		else if (inode && S_ISREG(inode->i_mode))
2142 			res = ERR_PTR(-EOPENSTALE);
2143 	} else if (!IS_ERR(res)) {
2144 		inode = d_inode(res);
2145 		if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2146 		    !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) {
2147 			dput(res);
2148 			res = ERR_PTR(-ENOTDIR);
2149 		} else if (inode && S_ISREG(inode->i_mode)) {
2150 			dput(res);
2151 			res = ERR_PTR(-EOPENSTALE);
2152 		}
2153 	}
2154 	if (switched) {
2155 		d_lookup_done(dentry);
2156 		if (!res)
2157 			res = dentry;
2158 		else
2159 			dput(dentry);
2160 	}
2161 	if (IS_ERR(res))
2162 		return PTR_ERR(res);
2163 	return finish_no_open(file, res);
2164 }
2165 EXPORT_SYMBOL_GPL(nfs_atomic_open);
2166 
2167 static int
2168 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
2169 			  unsigned int flags)
2170 {
2171 	struct inode *inode;
2172 
2173 	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
2174 		goto full_reval;
2175 	if (d_mountpoint(dentry))
2176 		goto full_reval;
2177 
2178 	inode = d_inode(dentry);
2179 
2180 	/* We can't create new files in nfs_open_revalidate(), so we
2181 	 * optimize away revalidation of negative dentries.
2182 	 */
2183 	if (inode == NULL)
2184 		goto full_reval;
2185 
2186 	if (nfs_verifier_is_delegated(dentry))
2187 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
2188 
2189 	/* NFS only supports OPEN on regular files */
2190 	if (!S_ISREG(inode->i_mode))
2191 		goto full_reval;
2192 
2193 	/* We cannot do exclusive creation on a positive dentry */
2194 	if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
2195 		goto reval_dentry;
2196 
2197 	/* Check if the directory changed */
2198 	if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
2199 		goto reval_dentry;
2200 
2201 	/* Let f_op->open() actually open (and revalidate) the file */
2202 	return 1;
2203 reval_dentry:
2204 	if (flags & LOOKUP_RCU)
2205 		return -ECHILD;
2206 	return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags);
2207 
2208 full_reval:
2209 	return nfs_do_lookup_revalidate(dir, dentry, flags);
2210 }
2211 
2212 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
2213 {
2214 	return __nfs_lookup_revalidate(dentry, flags,
2215 			nfs4_do_lookup_revalidate);
2216 }
2217 
2218 #endif /* CONFIG_NFSV4 */
2219 
2220 struct dentry *
2221 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
2222 				struct nfs_fattr *fattr)
2223 {
2224 	struct dentry *parent = dget_parent(dentry);
2225 	struct inode *dir = d_inode(parent);
2226 	struct inode *inode;
2227 	struct dentry *d;
2228 	int error;
2229 
2230 	d_drop(dentry);
2231 
2232 	if (fhandle->size == 0) {
2233 		error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
2234 		if (error)
2235 			goto out_error;
2236 	}
2237 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2238 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
2239 		struct nfs_server *server = NFS_SB(dentry->d_sb);
2240 		error = server->nfs_client->rpc_ops->getattr(server, fhandle,
2241 				fattr, NULL);
2242 		if (error < 0)
2243 			goto out_error;
2244 	}
2245 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
2246 	d = d_splice_alias(inode, dentry);
2247 out:
2248 	dput(parent);
2249 	return d;
2250 out_error:
2251 	d = ERR_PTR(error);
2252 	goto out;
2253 }
2254 EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
2255 
2256 /*
2257  * Code common to create, mkdir, and mknod.
2258  */
2259 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
2260 				struct nfs_fattr *fattr)
2261 {
2262 	struct dentry *d;
2263 
2264 	d = nfs_add_or_obtain(dentry, fhandle, fattr);
2265 	if (IS_ERR(d))
2266 		return PTR_ERR(d);
2267 
2268 	/* Callers don't care */
2269 	dput(d);
2270 	return 0;
2271 }
2272 EXPORT_SYMBOL_GPL(nfs_instantiate);
2273 
2274 /*
2275  * Following a failed create operation, we drop the dentry rather
2276  * than retain a negative dentry. This avoids a problem in the event
2277  * that the operation succeeded on the server, but an error in the
2278  * reply path made it appear to have failed.
2279  */
2280 int nfs_create(struct user_namespace *mnt_userns, struct inode *dir,
2281 	       struct dentry *dentry, umode_t mode, bool excl)
2282 {
2283 	struct iattr attr;
2284 	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
2285 	int error;
2286 
2287 	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
2288 			dir->i_sb->s_id, dir->i_ino, dentry);
2289 
2290 	attr.ia_mode = mode;
2291 	attr.ia_valid = ATTR_MODE;
2292 
2293 	trace_nfs_create_enter(dir, dentry, open_flags);
2294 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
2295 	trace_nfs_create_exit(dir, dentry, open_flags, error);
2296 	if (error != 0)
2297 		goto out_err;
2298 	return 0;
2299 out_err:
2300 	d_drop(dentry);
2301 	return error;
2302 }
2303 EXPORT_SYMBOL_GPL(nfs_create);
2304 
2305 /*
2306  * See comments for nfs_proc_create regarding failed operations.
2307  */
2308 int
2309 nfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2310 	  struct dentry *dentry, umode_t mode, dev_t rdev)
2311 {
2312 	struct iattr attr;
2313 	int status;
2314 
2315 	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
2316 			dir->i_sb->s_id, dir->i_ino, dentry);
2317 
2318 	attr.ia_mode = mode;
2319 	attr.ia_valid = ATTR_MODE;
2320 
2321 	trace_nfs_mknod_enter(dir, dentry);
2322 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
2323 	trace_nfs_mknod_exit(dir, dentry, status);
2324 	if (status != 0)
2325 		goto out_err;
2326 	return 0;
2327 out_err:
2328 	d_drop(dentry);
2329 	return status;
2330 }
2331 EXPORT_SYMBOL_GPL(nfs_mknod);
2332 
2333 /*
2334  * See comments for nfs_proc_create regarding failed operations.
2335  */
2336 int nfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2337 	      struct dentry *dentry, umode_t mode)
2338 {
2339 	struct iattr attr;
2340 	int error;
2341 
2342 	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
2343 			dir->i_sb->s_id, dir->i_ino, dentry);
2344 
2345 	attr.ia_valid = ATTR_MODE;
2346 	attr.ia_mode = mode | S_IFDIR;
2347 
2348 	trace_nfs_mkdir_enter(dir, dentry);
2349 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
2350 	trace_nfs_mkdir_exit(dir, dentry, error);
2351 	if (error != 0)
2352 		goto out_err;
2353 	return 0;
2354 out_err:
2355 	d_drop(dentry);
2356 	return error;
2357 }
2358 EXPORT_SYMBOL_GPL(nfs_mkdir);
2359 
2360 static void nfs_dentry_handle_enoent(struct dentry *dentry)
2361 {
2362 	if (simple_positive(dentry))
2363 		d_delete(dentry);
2364 }
2365 
2366 static void nfs_dentry_remove_handle_error(struct inode *dir,
2367 					   struct dentry *dentry, int error)
2368 {
2369 	switch (error) {
2370 	case -ENOENT:
2371 		d_delete(dentry);
2372 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2373 		break;
2374 	case 0:
2375 		nfs_d_prune_case_insensitive_aliases(d_inode(dentry));
2376 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2377 	}
2378 }
2379 
2380 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
2381 {
2382 	int error;
2383 
2384 	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
2385 			dir->i_sb->s_id, dir->i_ino, dentry);
2386 
2387 	trace_nfs_rmdir_enter(dir, dentry);
2388 	if (d_really_is_positive(dentry)) {
2389 		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2390 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2391 		/* Ensure the VFS deletes this inode */
2392 		switch (error) {
2393 		case 0:
2394 			clear_nlink(d_inode(dentry));
2395 			break;
2396 		case -ENOENT:
2397 			nfs_dentry_handle_enoent(dentry);
2398 		}
2399 		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2400 	} else
2401 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2402 	nfs_dentry_remove_handle_error(dir, dentry, error);
2403 	trace_nfs_rmdir_exit(dir, dentry, error);
2404 
2405 	return error;
2406 }
2407 EXPORT_SYMBOL_GPL(nfs_rmdir);
2408 
2409 /*
2410  * Remove a file after making sure there are no pending writes,
2411  * and after checking that the file has only one user.
2412  *
2413  * We invalidate the attribute cache and free the inode prior to the operation
2414  * to avoid possible races if the server reuses the inode.
2415  */
2416 static int nfs_safe_remove(struct dentry *dentry)
2417 {
2418 	struct inode *dir = d_inode(dentry->d_parent);
2419 	struct inode *inode = d_inode(dentry);
2420 	int error = -EBUSY;
2421 
2422 	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2423 
2424 	/* If the dentry was sillyrenamed, we simply call d_delete() */
2425 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2426 		error = 0;
2427 		goto out;
2428 	}
2429 
2430 	trace_nfs_remove_enter(dir, dentry);
2431 	if (inode != NULL) {
2432 		error = NFS_PROTO(dir)->remove(dir, dentry);
2433 		if (error == 0)
2434 			nfs_drop_nlink(inode);
2435 	} else
2436 		error = NFS_PROTO(dir)->remove(dir, dentry);
2437 	if (error == -ENOENT)
2438 		nfs_dentry_handle_enoent(dentry);
2439 	trace_nfs_remove_exit(dir, dentry, error);
2440 out:
2441 	return error;
2442 }
2443 
2444 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
2445  *  belongs to an active ".nfs..." file and we return -EBUSY.
2446  *
2447  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
2448  */
2449 int nfs_unlink(struct inode *dir, struct dentry *dentry)
2450 {
2451 	int error;
2452 	int need_rehash = 0;
2453 
2454 	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2455 		dir->i_ino, dentry);
2456 
2457 	trace_nfs_unlink_enter(dir, dentry);
2458 	spin_lock(&dentry->d_lock);
2459 	if (d_count(dentry) > 1 && !test_bit(NFS_INO_PRESERVE_UNLINKED,
2460 					     &NFS_I(d_inode(dentry))->flags)) {
2461 		spin_unlock(&dentry->d_lock);
2462 		/* Start asynchronous writeout of the inode */
2463 		write_inode_now(d_inode(dentry), 0);
2464 		error = nfs_sillyrename(dir, dentry);
2465 		goto out;
2466 	}
2467 	if (!d_unhashed(dentry)) {
2468 		__d_drop(dentry);
2469 		need_rehash = 1;
2470 	}
2471 	spin_unlock(&dentry->d_lock);
2472 	error = nfs_safe_remove(dentry);
2473 	nfs_dentry_remove_handle_error(dir, dentry, error);
2474 	if (need_rehash)
2475 		d_rehash(dentry);
2476 out:
2477 	trace_nfs_unlink_exit(dir, dentry, error);
2478 	return error;
2479 }
2480 EXPORT_SYMBOL_GPL(nfs_unlink);
2481 
2482 /*
2483  * To create a symbolic link, most file systems instantiate a new inode,
2484  * add a page to it containing the path, then write it out to the disk
2485  * using prepare_write/commit_write.
2486  *
2487  * Unfortunately the NFS client can't create the in-core inode first
2488  * because it needs a file handle to create an in-core inode (see
2489  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
2490  * symlink request has completed on the server.
2491  *
2492  * So instead we allocate a raw page, copy the symname into it, then do
2493  * the SYMLINK request with the page as the buffer.  If it succeeds, we
2494  * now have a new file handle and can instantiate an in-core NFS inode
2495  * and move the raw page into its mapping.
2496  */
2497 int nfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
2498 		struct dentry *dentry, const char *symname)
2499 {
2500 	struct page *page;
2501 	char *kaddr;
2502 	struct iattr attr;
2503 	unsigned int pathlen = strlen(symname);
2504 	int error;
2505 
2506 	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2507 		dir->i_ino, dentry, symname);
2508 
2509 	if (pathlen > PAGE_SIZE)
2510 		return -ENAMETOOLONG;
2511 
2512 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
2513 	attr.ia_valid = ATTR_MODE;
2514 
2515 	page = alloc_page(GFP_USER);
2516 	if (!page)
2517 		return -ENOMEM;
2518 
2519 	kaddr = page_address(page);
2520 	memcpy(kaddr, symname, pathlen);
2521 	if (pathlen < PAGE_SIZE)
2522 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2523 
2524 	trace_nfs_symlink_enter(dir, dentry);
2525 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
2526 	trace_nfs_symlink_exit(dir, dentry, error);
2527 	if (error != 0) {
2528 		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2529 			dir->i_sb->s_id, dir->i_ino,
2530 			dentry, symname, error);
2531 		d_drop(dentry);
2532 		__free_page(page);
2533 		return error;
2534 	}
2535 
2536 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2537 
2538 	/*
2539 	 * No big deal if we can't add this page to the page cache here.
2540 	 * READLINK will get the missing page from the server if needed.
2541 	 */
2542 	if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2543 							GFP_KERNEL)) {
2544 		SetPageUptodate(page);
2545 		unlock_page(page);
2546 		/*
2547 		 * add_to_page_cache_lru() grabs an extra page refcount.
2548 		 * Drop it here to avoid leaking this page later.
2549 		 */
2550 		put_page(page);
2551 	} else
2552 		__free_page(page);
2553 
2554 	return 0;
2555 }
2556 EXPORT_SYMBOL_GPL(nfs_symlink);
2557 
2558 int
2559 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2560 {
2561 	struct inode *inode = d_inode(old_dentry);
2562 	int error;
2563 
2564 	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2565 		old_dentry, dentry);
2566 
2567 	trace_nfs_link_enter(inode, dir, dentry);
2568 	d_drop(dentry);
2569 	if (S_ISREG(inode->i_mode))
2570 		nfs_sync_inode(inode);
2571 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2572 	if (error == 0) {
2573 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2574 		ihold(inode);
2575 		d_add(dentry, inode);
2576 	}
2577 	trace_nfs_link_exit(inode, dir, dentry, error);
2578 	return error;
2579 }
2580 EXPORT_SYMBOL_GPL(nfs_link);
2581 
2582 /*
2583  * RENAME
2584  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2585  * different file handle for the same inode after a rename (e.g. when
2586  * moving to a different directory). A fail-safe method to do so would
2587  * be to look up old_dir/old_name, create a link to new_dir/new_name and
2588  * rename the old file using the sillyrename stuff. This way, the original
2589  * file in old_dir will go away when the last process iput()s the inode.
2590  *
2591  * FIXED.
2592  *
2593  * It actually works quite well. One needs to have the possibility for
2594  * at least one ".nfs..." file in each directory the file ever gets
2595  * moved or linked to which happens automagically with the new
2596  * implementation that only depends on the dcache stuff instead of
2597  * using the inode layer
2598  *
2599  * Unfortunately, things are a little more complicated than indicated
2600  * above. For a cross-directory move, we want to make sure we can get
2601  * rid of the old inode after the operation.  This means there must be
2602  * no pending writes (if it's a file), and the use count must be 1.
2603  * If these conditions are met, we can drop the dentries before doing
2604  * the rename.
2605  */
2606 int nfs_rename(struct user_namespace *mnt_userns, struct inode *old_dir,
2607 	       struct dentry *old_dentry, struct inode *new_dir,
2608 	       struct dentry *new_dentry, unsigned int flags)
2609 {
2610 	struct inode *old_inode = d_inode(old_dentry);
2611 	struct inode *new_inode = d_inode(new_dentry);
2612 	struct dentry *dentry = NULL, *rehash = NULL;
2613 	struct rpc_task *task;
2614 	int error = -EBUSY;
2615 
2616 	if (flags)
2617 		return -EINVAL;
2618 
2619 	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2620 		 old_dentry, new_dentry,
2621 		 d_count(new_dentry));
2622 
2623 	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2624 	/*
2625 	 * For non-directories, check whether the target is busy and if so,
2626 	 * make a copy of the dentry and then do a silly-rename. If the
2627 	 * silly-rename succeeds, the copied dentry is hashed and becomes
2628 	 * the new target.
2629 	 */
2630 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2631 		/*
2632 		 * To prevent any new references to the target during the
2633 		 * rename, we unhash the dentry in advance.
2634 		 */
2635 		if (!d_unhashed(new_dentry)) {
2636 			d_drop(new_dentry);
2637 			rehash = new_dentry;
2638 		}
2639 
2640 		if (d_count(new_dentry) > 2) {
2641 			int err;
2642 
2643 			/* copy the target dentry's name */
2644 			dentry = d_alloc(new_dentry->d_parent,
2645 					 &new_dentry->d_name);
2646 			if (!dentry)
2647 				goto out;
2648 
2649 			/* silly-rename the existing target ... */
2650 			err = nfs_sillyrename(new_dir, new_dentry);
2651 			if (err)
2652 				goto out;
2653 
2654 			new_dentry = dentry;
2655 			rehash = NULL;
2656 			new_inode = NULL;
2657 		}
2658 	}
2659 
2660 	if (S_ISREG(old_inode->i_mode))
2661 		nfs_sync_inode(old_inode);
2662 	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2663 	if (IS_ERR(task)) {
2664 		error = PTR_ERR(task);
2665 		goto out;
2666 	}
2667 
2668 	error = rpc_wait_for_completion_task(task);
2669 	if (error != 0) {
2670 		((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2671 		/* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2672 		smp_wmb();
2673 	} else
2674 		error = task->tk_status;
2675 	rpc_put_task(task);
2676 	/* Ensure the inode attributes are revalidated */
2677 	if (error == 0) {
2678 		spin_lock(&old_inode->i_lock);
2679 		NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2680 		nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE |
2681 							 NFS_INO_INVALID_CTIME |
2682 							 NFS_INO_REVAL_FORCED);
2683 		spin_unlock(&old_inode->i_lock);
2684 	}
2685 out:
2686 	if (rehash)
2687 		d_rehash(rehash);
2688 	trace_nfs_rename_exit(old_dir, old_dentry,
2689 			new_dir, new_dentry, error);
2690 	if (!error) {
2691 		if (new_inode != NULL)
2692 			nfs_drop_nlink(new_inode);
2693 		/*
2694 		 * The d_move() should be here instead of in an async RPC completion
2695 		 * handler because we need the proper locks to move the dentry.  If
2696 		 * we're interrupted by a signal, the async RPC completion handler
2697 		 * should mark the directories for revalidation.
2698 		 */
2699 		d_move(old_dentry, new_dentry);
2700 		nfs_set_verifier(old_dentry,
2701 					nfs_save_change_attribute(new_dir));
2702 	} else if (error == -ENOENT)
2703 		nfs_dentry_handle_enoent(old_dentry);
2704 
2705 	/* new dentry created? */
2706 	if (dentry)
2707 		dput(dentry);
2708 	return error;
2709 }
2710 EXPORT_SYMBOL_GPL(nfs_rename);
2711 
2712 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2713 static LIST_HEAD(nfs_access_lru_list);
2714 static atomic_long_t nfs_access_nr_entries;
2715 
2716 static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2717 module_param(nfs_access_max_cachesize, ulong, 0644);
2718 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2719 
2720 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2721 {
2722 	put_group_info(entry->group_info);
2723 	kfree_rcu(entry, rcu_head);
2724 	smp_mb__before_atomic();
2725 	atomic_long_dec(&nfs_access_nr_entries);
2726 	smp_mb__after_atomic();
2727 }
2728 
2729 static void nfs_access_free_list(struct list_head *head)
2730 {
2731 	struct nfs_access_entry *cache;
2732 
2733 	while (!list_empty(head)) {
2734 		cache = list_entry(head->next, struct nfs_access_entry, lru);
2735 		list_del(&cache->lru);
2736 		nfs_access_free_entry(cache);
2737 	}
2738 }
2739 
2740 static unsigned long
2741 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2742 {
2743 	LIST_HEAD(head);
2744 	struct nfs_inode *nfsi, *next;
2745 	struct nfs_access_entry *cache;
2746 	long freed = 0;
2747 
2748 	spin_lock(&nfs_access_lru_lock);
2749 	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2750 		struct inode *inode;
2751 
2752 		if (nr_to_scan-- == 0)
2753 			break;
2754 		inode = &nfsi->vfs_inode;
2755 		spin_lock(&inode->i_lock);
2756 		if (list_empty(&nfsi->access_cache_entry_lru))
2757 			goto remove_lru_entry;
2758 		cache = list_entry(nfsi->access_cache_entry_lru.next,
2759 				struct nfs_access_entry, lru);
2760 		list_move(&cache->lru, &head);
2761 		rb_erase(&cache->rb_node, &nfsi->access_cache);
2762 		freed++;
2763 		if (!list_empty(&nfsi->access_cache_entry_lru))
2764 			list_move_tail(&nfsi->access_cache_inode_lru,
2765 					&nfs_access_lru_list);
2766 		else {
2767 remove_lru_entry:
2768 			list_del_init(&nfsi->access_cache_inode_lru);
2769 			smp_mb__before_atomic();
2770 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2771 			smp_mb__after_atomic();
2772 		}
2773 		spin_unlock(&inode->i_lock);
2774 	}
2775 	spin_unlock(&nfs_access_lru_lock);
2776 	nfs_access_free_list(&head);
2777 	return freed;
2778 }
2779 
2780 unsigned long
2781 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2782 {
2783 	int nr_to_scan = sc->nr_to_scan;
2784 	gfp_t gfp_mask = sc->gfp_mask;
2785 
2786 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2787 		return SHRINK_STOP;
2788 	return nfs_do_access_cache_scan(nr_to_scan);
2789 }
2790 
2791 
2792 unsigned long
2793 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2794 {
2795 	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2796 }
2797 
2798 static void
2799 nfs_access_cache_enforce_limit(void)
2800 {
2801 	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2802 	unsigned long diff;
2803 	unsigned int nr_to_scan;
2804 
2805 	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2806 		return;
2807 	nr_to_scan = 100;
2808 	diff = nr_entries - nfs_access_max_cachesize;
2809 	if (diff < nr_to_scan)
2810 		nr_to_scan = diff;
2811 	nfs_do_access_cache_scan(nr_to_scan);
2812 }
2813 
2814 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2815 {
2816 	struct rb_root *root_node = &nfsi->access_cache;
2817 	struct rb_node *n;
2818 	struct nfs_access_entry *entry;
2819 
2820 	/* Unhook entries from the cache */
2821 	while ((n = rb_first(root_node)) != NULL) {
2822 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2823 		rb_erase(n, root_node);
2824 		list_move(&entry->lru, head);
2825 	}
2826 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2827 }
2828 
2829 void nfs_access_zap_cache(struct inode *inode)
2830 {
2831 	LIST_HEAD(head);
2832 
2833 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2834 		return;
2835 	/* Remove from global LRU init */
2836 	spin_lock(&nfs_access_lru_lock);
2837 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2838 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2839 
2840 	spin_lock(&inode->i_lock);
2841 	__nfs_access_zap_cache(NFS_I(inode), &head);
2842 	spin_unlock(&inode->i_lock);
2843 	spin_unlock(&nfs_access_lru_lock);
2844 	nfs_access_free_list(&head);
2845 }
2846 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2847 
2848 static int access_cmp(const struct cred *a, const struct nfs_access_entry *b)
2849 {
2850 	struct group_info *ga, *gb;
2851 	int g;
2852 
2853 	if (uid_lt(a->fsuid, b->fsuid))
2854 		return -1;
2855 	if (uid_gt(a->fsuid, b->fsuid))
2856 		return 1;
2857 
2858 	if (gid_lt(a->fsgid, b->fsgid))
2859 		return -1;
2860 	if (gid_gt(a->fsgid, b->fsgid))
2861 		return 1;
2862 
2863 	ga = a->group_info;
2864 	gb = b->group_info;
2865 	if (ga == gb)
2866 		return 0;
2867 	if (ga == NULL)
2868 		return -1;
2869 	if (gb == NULL)
2870 		return 1;
2871 	if (ga->ngroups < gb->ngroups)
2872 		return -1;
2873 	if (ga->ngroups > gb->ngroups)
2874 		return 1;
2875 
2876 	for (g = 0; g < ga->ngroups; g++) {
2877 		if (gid_lt(ga->gid[g], gb->gid[g]))
2878 			return -1;
2879 		if (gid_gt(ga->gid[g], gb->gid[g]))
2880 			return 1;
2881 	}
2882 	return 0;
2883 }
2884 
2885 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2886 {
2887 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2888 
2889 	while (n != NULL) {
2890 		struct nfs_access_entry *entry =
2891 			rb_entry(n, struct nfs_access_entry, rb_node);
2892 		int cmp = access_cmp(cred, entry);
2893 
2894 		if (cmp < 0)
2895 			n = n->rb_left;
2896 		else if (cmp > 0)
2897 			n = n->rb_right;
2898 		else
2899 			return entry;
2900 	}
2901 	return NULL;
2902 }
2903 
2904 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, u32 *mask, bool may_block)
2905 {
2906 	struct nfs_inode *nfsi = NFS_I(inode);
2907 	struct nfs_access_entry *cache;
2908 	bool retry = true;
2909 	int err;
2910 
2911 	spin_lock(&inode->i_lock);
2912 	for(;;) {
2913 		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2914 			goto out_zap;
2915 		cache = nfs_access_search_rbtree(inode, cred);
2916 		err = -ENOENT;
2917 		if (cache == NULL)
2918 			goto out;
2919 		/* Found an entry, is our attribute cache valid? */
2920 		if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2921 			break;
2922 		if (!retry)
2923 			break;
2924 		err = -ECHILD;
2925 		if (!may_block)
2926 			goto out;
2927 		spin_unlock(&inode->i_lock);
2928 		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2929 		if (err)
2930 			return err;
2931 		spin_lock(&inode->i_lock);
2932 		retry = false;
2933 	}
2934 	*mask = cache->mask;
2935 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2936 	err = 0;
2937 out:
2938 	spin_unlock(&inode->i_lock);
2939 	return err;
2940 out_zap:
2941 	spin_unlock(&inode->i_lock);
2942 	nfs_access_zap_cache(inode);
2943 	return -ENOENT;
2944 }
2945 
2946 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, u32 *mask)
2947 {
2948 	/* Only check the most recently returned cache entry,
2949 	 * but do it without locking.
2950 	 */
2951 	struct nfs_inode *nfsi = NFS_I(inode);
2952 	struct nfs_access_entry *cache;
2953 	int err = -ECHILD;
2954 	struct list_head *lh;
2955 
2956 	rcu_read_lock();
2957 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2958 		goto out;
2959 	lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
2960 	cache = list_entry(lh, struct nfs_access_entry, lru);
2961 	if (lh == &nfsi->access_cache_entry_lru ||
2962 	    access_cmp(cred, cache) != 0)
2963 		cache = NULL;
2964 	if (cache == NULL)
2965 		goto out;
2966 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2967 		goto out;
2968 	*mask = cache->mask;
2969 	err = 0;
2970 out:
2971 	rcu_read_unlock();
2972 	return err;
2973 }
2974 
2975 int nfs_access_get_cached(struct inode *inode, const struct cred *cred,
2976 			  u32 *mask, bool may_block)
2977 {
2978 	int status;
2979 
2980 	status = nfs_access_get_cached_rcu(inode, cred, mask);
2981 	if (status != 0)
2982 		status = nfs_access_get_cached_locked(inode, cred, mask,
2983 		    may_block);
2984 
2985 	return status;
2986 }
2987 EXPORT_SYMBOL_GPL(nfs_access_get_cached);
2988 
2989 static void nfs_access_add_rbtree(struct inode *inode,
2990 				  struct nfs_access_entry *set,
2991 				  const struct cred *cred)
2992 {
2993 	struct nfs_inode *nfsi = NFS_I(inode);
2994 	struct rb_root *root_node = &nfsi->access_cache;
2995 	struct rb_node **p = &root_node->rb_node;
2996 	struct rb_node *parent = NULL;
2997 	struct nfs_access_entry *entry;
2998 	int cmp;
2999 
3000 	spin_lock(&inode->i_lock);
3001 	while (*p != NULL) {
3002 		parent = *p;
3003 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
3004 		cmp = access_cmp(cred, entry);
3005 
3006 		if (cmp < 0)
3007 			p = &parent->rb_left;
3008 		else if (cmp > 0)
3009 			p = &parent->rb_right;
3010 		else
3011 			goto found;
3012 	}
3013 	rb_link_node(&set->rb_node, parent, p);
3014 	rb_insert_color(&set->rb_node, root_node);
3015 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
3016 	spin_unlock(&inode->i_lock);
3017 	return;
3018 found:
3019 	rb_replace_node(parent, &set->rb_node, root_node);
3020 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
3021 	list_del(&entry->lru);
3022 	spin_unlock(&inode->i_lock);
3023 	nfs_access_free_entry(entry);
3024 }
3025 
3026 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set,
3027 			  const struct cred *cred)
3028 {
3029 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
3030 	if (cache == NULL)
3031 		return;
3032 	RB_CLEAR_NODE(&cache->rb_node);
3033 	cache->fsuid = cred->fsuid;
3034 	cache->fsgid = cred->fsgid;
3035 	cache->group_info = get_group_info(cred->group_info);
3036 	cache->mask = set->mask;
3037 
3038 	/* The above field assignments must be visible
3039 	 * before this item appears on the lru.  We cannot easily
3040 	 * use rcu_assign_pointer, so just force the memory barrier.
3041 	 */
3042 	smp_wmb();
3043 	nfs_access_add_rbtree(inode, cache, cred);
3044 
3045 	/* Update accounting */
3046 	smp_mb__before_atomic();
3047 	atomic_long_inc(&nfs_access_nr_entries);
3048 	smp_mb__after_atomic();
3049 
3050 	/* Add inode to global LRU list */
3051 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
3052 		spin_lock(&nfs_access_lru_lock);
3053 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
3054 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
3055 					&nfs_access_lru_list);
3056 		spin_unlock(&nfs_access_lru_lock);
3057 	}
3058 	nfs_access_cache_enforce_limit();
3059 }
3060 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
3061 
3062 #define NFS_MAY_READ (NFS_ACCESS_READ)
3063 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
3064 		NFS_ACCESS_EXTEND | \
3065 		NFS_ACCESS_DELETE)
3066 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
3067 		NFS_ACCESS_EXTEND)
3068 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
3069 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
3070 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
3071 static int
3072 nfs_access_calc_mask(u32 access_result, umode_t umode)
3073 {
3074 	int mask = 0;
3075 
3076 	if (access_result & NFS_MAY_READ)
3077 		mask |= MAY_READ;
3078 	if (S_ISDIR(umode)) {
3079 		if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
3080 			mask |= MAY_WRITE;
3081 		if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
3082 			mask |= MAY_EXEC;
3083 	} else if (S_ISREG(umode)) {
3084 		if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
3085 			mask |= MAY_WRITE;
3086 		if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
3087 			mask |= MAY_EXEC;
3088 	} else if (access_result & NFS_MAY_WRITE)
3089 			mask |= MAY_WRITE;
3090 	return mask;
3091 }
3092 
3093 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
3094 {
3095 	entry->mask = access_result;
3096 }
3097 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
3098 
3099 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
3100 {
3101 	struct nfs_access_entry cache;
3102 	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
3103 	int cache_mask = -1;
3104 	int status;
3105 
3106 	trace_nfs_access_enter(inode);
3107 
3108 	status = nfs_access_get_cached(inode, cred, &cache.mask, may_block);
3109 	if (status == 0)
3110 		goto out_cached;
3111 
3112 	status = -ECHILD;
3113 	if (!may_block)
3114 		goto out;
3115 
3116 	/*
3117 	 * Determine which access bits we want to ask for...
3118 	 */
3119 	cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND |
3120 		     nfs_access_xattr_mask(NFS_SERVER(inode));
3121 	if (S_ISDIR(inode->i_mode))
3122 		cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
3123 	else
3124 		cache.mask |= NFS_ACCESS_EXECUTE;
3125 	status = NFS_PROTO(inode)->access(inode, &cache, cred);
3126 	if (status != 0) {
3127 		if (status == -ESTALE) {
3128 			if (!S_ISDIR(inode->i_mode))
3129 				nfs_set_inode_stale(inode);
3130 			else
3131 				nfs_zap_caches(inode);
3132 		}
3133 		goto out;
3134 	}
3135 	nfs_access_add_cache(inode, &cache, cred);
3136 out_cached:
3137 	cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
3138 	if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
3139 		status = -EACCES;
3140 out:
3141 	trace_nfs_access_exit(inode, mask, cache_mask, status);
3142 	return status;
3143 }
3144 
3145 static int nfs_open_permission_mask(int openflags)
3146 {
3147 	int mask = 0;
3148 
3149 	if (openflags & __FMODE_EXEC) {
3150 		/* ONLY check exec rights */
3151 		mask = MAY_EXEC;
3152 	} else {
3153 		if ((openflags & O_ACCMODE) != O_WRONLY)
3154 			mask |= MAY_READ;
3155 		if ((openflags & O_ACCMODE) != O_RDONLY)
3156 			mask |= MAY_WRITE;
3157 	}
3158 
3159 	return mask;
3160 }
3161 
3162 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
3163 {
3164 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
3165 }
3166 EXPORT_SYMBOL_GPL(nfs_may_open);
3167 
3168 static int nfs_execute_ok(struct inode *inode, int mask)
3169 {
3170 	struct nfs_server *server = NFS_SERVER(inode);
3171 	int ret = 0;
3172 
3173 	if (S_ISDIR(inode->i_mode))
3174 		return 0;
3175 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) {
3176 		if (mask & MAY_NOT_BLOCK)
3177 			return -ECHILD;
3178 		ret = __nfs_revalidate_inode(server, inode);
3179 	}
3180 	if (ret == 0 && !execute_ok(inode))
3181 		ret = -EACCES;
3182 	return ret;
3183 }
3184 
3185 int nfs_permission(struct user_namespace *mnt_userns,
3186 		   struct inode *inode,
3187 		   int mask)
3188 {
3189 	const struct cred *cred = current_cred();
3190 	int res = 0;
3191 
3192 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
3193 
3194 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
3195 		goto out;
3196 	/* Is this sys_access() ? */
3197 	if (mask & (MAY_ACCESS | MAY_CHDIR))
3198 		goto force_lookup;
3199 
3200 	switch (inode->i_mode & S_IFMT) {
3201 		case S_IFLNK:
3202 			goto out;
3203 		case S_IFREG:
3204 			if ((mask & MAY_OPEN) &&
3205 			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
3206 				return 0;
3207 			break;
3208 		case S_IFDIR:
3209 			/*
3210 			 * Optimize away all write operations, since the server
3211 			 * will check permissions when we perform the op.
3212 			 */
3213 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
3214 				goto out;
3215 	}
3216 
3217 force_lookup:
3218 	if (!NFS_PROTO(inode)->access)
3219 		goto out_notsup;
3220 
3221 	res = nfs_do_access(inode, cred, mask);
3222 out:
3223 	if (!res && (mask & MAY_EXEC))
3224 		res = nfs_execute_ok(inode, mask);
3225 
3226 	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
3227 		inode->i_sb->s_id, inode->i_ino, mask, res);
3228 	return res;
3229 out_notsup:
3230 	if (mask & MAY_NOT_BLOCK)
3231 		return -ECHILD;
3232 
3233 	res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE |
3234 						  NFS_INO_INVALID_OTHER);
3235 	if (res == 0)
3236 		res = generic_permission(&init_user_ns, inode, mask);
3237 	goto out;
3238 }
3239 EXPORT_SYMBOL_GPL(nfs_permission);
3240