xref: /openbmc/linux/fs/nfs/dir.c (revision 5c816641)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/nfs/dir.c
4  *
5  *  Copyright (C) 1992  Rick Sladkey
6  *
7  *  nfs directory handling functions
8  *
9  * 10 Apr 1996	Added silly rename for unlink	--okir
10  * 28 Sep 1996	Improved directory cache --okir
11  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
12  *              Re-implemented silly rename for unlink, newly implemented
13  *              silly rename for nfs_rename() following the suggestions
14  *              of Olaf Kirch (okir) found in this file.
15  *              Following Linus comments on my original hack, this version
16  *              depends only on the dcache stuff and doesn't touch the inode
17  *              layer (iput() and friends).
18  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
19  */
20 
21 #include <linux/compat.h>
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/errno.h>
25 #include <linux/stat.h>
26 #include <linux/fcntl.h>
27 #include <linux/string.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/mm.h>
31 #include <linux/sunrpc/clnt.h>
32 #include <linux/nfs_fs.h>
33 #include <linux/nfs_mount.h>
34 #include <linux/pagemap.h>
35 #include <linux/pagevec.h>
36 #include <linux/namei.h>
37 #include <linux/mount.h>
38 #include <linux/swap.h>
39 #include <linux/sched.h>
40 #include <linux/kmemleak.h>
41 #include <linux/xattr.h>
42 
43 #include "delegation.h"
44 #include "iostat.h"
45 #include "internal.h"
46 #include "fscache.h"
47 
48 #include "nfstrace.h"
49 
50 /* #define NFS_DEBUG_VERBOSE 1 */
51 
52 static int nfs_opendir(struct inode *, struct file *);
53 static int nfs_closedir(struct inode *, struct file *);
54 static int nfs_readdir(struct file *, struct dir_context *);
55 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
56 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
57 static void nfs_readdir_clear_array(struct page*);
58 
59 const struct file_operations nfs_dir_operations = {
60 	.llseek		= nfs_llseek_dir,
61 	.read		= generic_read_dir,
62 	.iterate_shared	= nfs_readdir,
63 	.open		= nfs_opendir,
64 	.release	= nfs_closedir,
65 	.fsync		= nfs_fsync_dir,
66 };
67 
68 const struct address_space_operations nfs_dir_aops = {
69 	.freepage = nfs_readdir_clear_array,
70 };
71 
72 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir)
73 {
74 	struct nfs_inode *nfsi = NFS_I(dir);
75 	struct nfs_open_dir_context *ctx;
76 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
77 	if (ctx != NULL) {
78 		ctx->duped = 0;
79 		ctx->attr_gencount = nfsi->attr_gencount;
80 		ctx->dir_cookie = 0;
81 		ctx->dup_cookie = 0;
82 		ctx->page_index = 0;
83 		ctx->eof = false;
84 		spin_lock(&dir->i_lock);
85 		if (list_empty(&nfsi->open_files) &&
86 		    (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
87 			nfs_set_cache_invalid(dir,
88 					      NFS_INO_INVALID_DATA |
89 						      NFS_INO_REVAL_FORCED);
90 		list_add(&ctx->list, &nfsi->open_files);
91 		clear_bit(NFS_INO_FORCE_READDIR, &nfsi->flags);
92 		spin_unlock(&dir->i_lock);
93 		return ctx;
94 	}
95 	return  ERR_PTR(-ENOMEM);
96 }
97 
98 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
99 {
100 	spin_lock(&dir->i_lock);
101 	list_del(&ctx->list);
102 	spin_unlock(&dir->i_lock);
103 	kfree(ctx);
104 }
105 
106 /*
107  * Open file
108  */
109 static int
110 nfs_opendir(struct inode *inode, struct file *filp)
111 {
112 	int res = 0;
113 	struct nfs_open_dir_context *ctx;
114 
115 	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
116 
117 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
118 
119 	ctx = alloc_nfs_open_dir_context(inode);
120 	if (IS_ERR(ctx)) {
121 		res = PTR_ERR(ctx);
122 		goto out;
123 	}
124 	filp->private_data = ctx;
125 out:
126 	return res;
127 }
128 
129 static int
130 nfs_closedir(struct inode *inode, struct file *filp)
131 {
132 	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
133 	return 0;
134 }
135 
136 struct nfs_cache_array_entry {
137 	u64 cookie;
138 	u64 ino;
139 	const char *name;
140 	unsigned int name_len;
141 	unsigned char d_type;
142 };
143 
144 struct nfs_cache_array {
145 	u64 last_cookie;
146 	unsigned int size;
147 	unsigned char page_full : 1,
148 		      page_is_eof : 1,
149 		      cookies_are_ordered : 1;
150 	struct nfs_cache_array_entry array[];
151 };
152 
153 struct nfs_readdir_descriptor {
154 	struct file	*file;
155 	struct page	*page;
156 	struct dir_context *ctx;
157 	pgoff_t		page_index;
158 	u64		dir_cookie;
159 	u64		last_cookie;
160 	u64		dup_cookie;
161 	loff_t		current_index;
162 	loff_t		prev_index;
163 
164 	__be32		verf[NFS_DIR_VERIFIER_SIZE];
165 	unsigned long	dir_verifier;
166 	unsigned long	timestamp;
167 	unsigned long	gencount;
168 	unsigned long	attr_gencount;
169 	unsigned int	cache_entry_index;
170 	signed char duped;
171 	bool plus;
172 	bool eob;
173 	bool eof;
174 };
175 
176 static void nfs_readdir_array_init(struct nfs_cache_array *array)
177 {
178 	memset(array, 0, sizeof(struct nfs_cache_array));
179 }
180 
181 static void nfs_readdir_page_init_array(struct page *page, u64 last_cookie)
182 {
183 	struct nfs_cache_array *array;
184 
185 	array = kmap_atomic(page);
186 	nfs_readdir_array_init(array);
187 	array->last_cookie = last_cookie;
188 	array->cookies_are_ordered = 1;
189 	kunmap_atomic(array);
190 }
191 
192 /*
193  * we are freeing strings created by nfs_add_to_readdir_array()
194  */
195 static
196 void nfs_readdir_clear_array(struct page *page)
197 {
198 	struct nfs_cache_array *array;
199 	int i;
200 
201 	array = kmap_atomic(page);
202 	for (i = 0; i < array->size; i++)
203 		kfree(array->array[i].name);
204 	nfs_readdir_array_init(array);
205 	kunmap_atomic(array);
206 }
207 
208 static struct page *
209 nfs_readdir_page_array_alloc(u64 last_cookie, gfp_t gfp_flags)
210 {
211 	struct page *page = alloc_page(gfp_flags);
212 	if (page)
213 		nfs_readdir_page_init_array(page, last_cookie);
214 	return page;
215 }
216 
217 static void nfs_readdir_page_array_free(struct page *page)
218 {
219 	if (page) {
220 		nfs_readdir_clear_array(page);
221 		put_page(page);
222 	}
223 }
224 
225 static void nfs_readdir_array_set_eof(struct nfs_cache_array *array)
226 {
227 	array->page_is_eof = 1;
228 	array->page_full = 1;
229 }
230 
231 static bool nfs_readdir_array_is_full(struct nfs_cache_array *array)
232 {
233 	return array->page_full;
234 }
235 
236 /*
237  * the caller is responsible for freeing qstr.name
238  * when called by nfs_readdir_add_to_array, the strings will be freed in
239  * nfs_clear_readdir_array()
240  */
241 static const char *nfs_readdir_copy_name(const char *name, unsigned int len)
242 {
243 	const char *ret = kmemdup_nul(name, len, GFP_KERNEL);
244 
245 	/*
246 	 * Avoid a kmemleak false positive. The pointer to the name is stored
247 	 * in a page cache page which kmemleak does not scan.
248 	 */
249 	if (ret != NULL)
250 		kmemleak_not_leak(ret);
251 	return ret;
252 }
253 
254 /*
255  * Check that the next array entry lies entirely within the page bounds
256  */
257 static int nfs_readdir_array_can_expand(struct nfs_cache_array *array)
258 {
259 	struct nfs_cache_array_entry *cache_entry;
260 
261 	if (array->page_full)
262 		return -ENOSPC;
263 	cache_entry = &array->array[array->size + 1];
264 	if ((char *)cache_entry - (char *)array > PAGE_SIZE) {
265 		array->page_full = 1;
266 		return -ENOSPC;
267 	}
268 	return 0;
269 }
270 
271 static
272 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
273 {
274 	struct nfs_cache_array *array;
275 	struct nfs_cache_array_entry *cache_entry;
276 	const char *name;
277 	int ret;
278 
279 	name = nfs_readdir_copy_name(entry->name, entry->len);
280 	if (!name)
281 		return -ENOMEM;
282 
283 	array = kmap_atomic(page);
284 	ret = nfs_readdir_array_can_expand(array);
285 	if (ret) {
286 		kfree(name);
287 		goto out;
288 	}
289 
290 	cache_entry = &array->array[array->size];
291 	cache_entry->cookie = entry->prev_cookie;
292 	cache_entry->ino = entry->ino;
293 	cache_entry->d_type = entry->d_type;
294 	cache_entry->name_len = entry->len;
295 	cache_entry->name = name;
296 	array->last_cookie = entry->cookie;
297 	if (array->last_cookie <= cache_entry->cookie)
298 		array->cookies_are_ordered = 0;
299 	array->size++;
300 	if (entry->eof != 0)
301 		nfs_readdir_array_set_eof(array);
302 out:
303 	kunmap_atomic(array);
304 	return ret;
305 }
306 
307 static struct page *nfs_readdir_page_get_locked(struct address_space *mapping,
308 						pgoff_t index, u64 last_cookie)
309 {
310 	struct page *page;
311 
312 	page = grab_cache_page(mapping, index);
313 	if (page && !PageUptodate(page)) {
314 		nfs_readdir_page_init_array(page, last_cookie);
315 		if (invalidate_inode_pages2_range(mapping, index + 1, -1) < 0)
316 			nfs_zap_mapping(mapping->host, mapping);
317 		SetPageUptodate(page);
318 	}
319 
320 	return page;
321 }
322 
323 static u64 nfs_readdir_page_last_cookie(struct page *page)
324 {
325 	struct nfs_cache_array *array;
326 	u64 ret;
327 
328 	array = kmap_atomic(page);
329 	ret = array->last_cookie;
330 	kunmap_atomic(array);
331 	return ret;
332 }
333 
334 static bool nfs_readdir_page_needs_filling(struct page *page)
335 {
336 	struct nfs_cache_array *array;
337 	bool ret;
338 
339 	array = kmap_atomic(page);
340 	ret = !nfs_readdir_array_is_full(array);
341 	kunmap_atomic(array);
342 	return ret;
343 }
344 
345 static void nfs_readdir_page_set_eof(struct page *page)
346 {
347 	struct nfs_cache_array *array;
348 
349 	array = kmap_atomic(page);
350 	nfs_readdir_array_set_eof(array);
351 	kunmap_atomic(array);
352 }
353 
354 static void nfs_readdir_page_unlock_and_put(struct page *page)
355 {
356 	unlock_page(page);
357 	put_page(page);
358 }
359 
360 static struct page *nfs_readdir_page_get_next(struct address_space *mapping,
361 					      pgoff_t index, u64 cookie)
362 {
363 	struct page *page;
364 
365 	page = nfs_readdir_page_get_locked(mapping, index, cookie);
366 	if (page) {
367 		if (nfs_readdir_page_last_cookie(page) == cookie)
368 			return page;
369 		nfs_readdir_page_unlock_and_put(page);
370 	}
371 	return NULL;
372 }
373 
374 static inline
375 int is_32bit_api(void)
376 {
377 #ifdef CONFIG_COMPAT
378 	return in_compat_syscall();
379 #else
380 	return (BITS_PER_LONG == 32);
381 #endif
382 }
383 
384 static
385 bool nfs_readdir_use_cookie(const struct file *filp)
386 {
387 	if ((filp->f_mode & FMODE_32BITHASH) ||
388 	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
389 		return false;
390 	return true;
391 }
392 
393 static int nfs_readdir_search_for_pos(struct nfs_cache_array *array,
394 				      struct nfs_readdir_descriptor *desc)
395 {
396 	loff_t diff = desc->ctx->pos - desc->current_index;
397 	unsigned int index;
398 
399 	if (diff < 0)
400 		goto out_eof;
401 	if (diff >= array->size) {
402 		if (array->page_is_eof)
403 			goto out_eof;
404 		return -EAGAIN;
405 	}
406 
407 	index = (unsigned int)diff;
408 	desc->dir_cookie = array->array[index].cookie;
409 	desc->cache_entry_index = index;
410 	return 0;
411 out_eof:
412 	desc->eof = true;
413 	return -EBADCOOKIE;
414 }
415 
416 static bool
417 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
418 {
419 	if (nfsi->cache_validity & (NFS_INO_INVALID_CHANGE |
420 				    NFS_INO_INVALID_DATA))
421 		return false;
422 	smp_rmb();
423 	return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
424 }
425 
426 static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array,
427 					      u64 cookie)
428 {
429 	if (!array->cookies_are_ordered)
430 		return true;
431 	/* Optimisation for monotonically increasing cookies */
432 	if (cookie >= array->last_cookie)
433 		return false;
434 	if (array->size && cookie < array->array[0].cookie)
435 		return false;
436 	return true;
437 }
438 
439 static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array,
440 					 struct nfs_readdir_descriptor *desc)
441 {
442 	int i;
443 	loff_t new_pos;
444 	int status = -EAGAIN;
445 
446 	if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie))
447 		goto check_eof;
448 
449 	for (i = 0; i < array->size; i++) {
450 		if (array->array[i].cookie == desc->dir_cookie) {
451 			struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
452 
453 			new_pos = desc->current_index + i;
454 			if (desc->attr_gencount != nfsi->attr_gencount ||
455 			    !nfs_readdir_inode_mapping_valid(nfsi)) {
456 				desc->duped = 0;
457 				desc->attr_gencount = nfsi->attr_gencount;
458 			} else if (new_pos < desc->prev_index) {
459 				if (desc->duped > 0
460 				    && desc->dup_cookie == desc->dir_cookie) {
461 					if (printk_ratelimit()) {
462 						pr_notice("NFS: directory %pD2 contains a readdir loop."
463 								"Please contact your server vendor.  "
464 								"The file: %s has duplicate cookie %llu\n",
465 								desc->file, array->array[i].name, desc->dir_cookie);
466 					}
467 					status = -ELOOP;
468 					goto out;
469 				}
470 				desc->dup_cookie = desc->dir_cookie;
471 				desc->duped = -1;
472 			}
473 			if (nfs_readdir_use_cookie(desc->file))
474 				desc->ctx->pos = desc->dir_cookie;
475 			else
476 				desc->ctx->pos = new_pos;
477 			desc->prev_index = new_pos;
478 			desc->cache_entry_index = i;
479 			return 0;
480 		}
481 	}
482 check_eof:
483 	if (array->page_is_eof) {
484 		status = -EBADCOOKIE;
485 		if (desc->dir_cookie == array->last_cookie)
486 			desc->eof = true;
487 	}
488 out:
489 	return status;
490 }
491 
492 static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc)
493 {
494 	struct nfs_cache_array *array;
495 	int status;
496 
497 	array = kmap_atomic(desc->page);
498 
499 	if (desc->dir_cookie == 0)
500 		status = nfs_readdir_search_for_pos(array, desc);
501 	else
502 		status = nfs_readdir_search_for_cookie(array, desc);
503 
504 	if (status == -EAGAIN) {
505 		desc->last_cookie = array->last_cookie;
506 		desc->current_index += array->size;
507 		desc->page_index++;
508 	}
509 	kunmap_atomic(array);
510 	return status;
511 }
512 
513 /* Fill a page with xdr information before transferring to the cache page */
514 static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc,
515 				  __be32 *verf, u64 cookie,
516 				  struct page **pages, size_t bufsize,
517 				  __be32 *verf_res)
518 {
519 	struct inode *inode = file_inode(desc->file);
520 	struct nfs_readdir_arg arg = {
521 		.dentry = file_dentry(desc->file),
522 		.cred = desc->file->f_cred,
523 		.verf = verf,
524 		.cookie = cookie,
525 		.pages = pages,
526 		.page_len = bufsize,
527 		.plus = desc->plus,
528 	};
529 	struct nfs_readdir_res res = {
530 		.verf = verf_res,
531 	};
532 	unsigned long	timestamp, gencount;
533 	int		error;
534 
535  again:
536 	timestamp = jiffies;
537 	gencount = nfs_inc_attr_generation_counter();
538 	desc->dir_verifier = nfs_save_change_attribute(inode);
539 	error = NFS_PROTO(inode)->readdir(&arg, &res);
540 	if (error < 0) {
541 		/* We requested READDIRPLUS, but the server doesn't grok it */
542 		if (error == -ENOTSUPP && desc->plus) {
543 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
544 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
545 			desc->plus = arg.plus = false;
546 			goto again;
547 		}
548 		goto error;
549 	}
550 	desc->timestamp = timestamp;
551 	desc->gencount = gencount;
552 error:
553 	return error;
554 }
555 
556 static int xdr_decode(struct nfs_readdir_descriptor *desc,
557 		      struct nfs_entry *entry, struct xdr_stream *xdr)
558 {
559 	struct inode *inode = file_inode(desc->file);
560 	int error;
561 
562 	error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
563 	if (error)
564 		return error;
565 	entry->fattr->time_start = desc->timestamp;
566 	entry->fattr->gencount = desc->gencount;
567 	return 0;
568 }
569 
570 /* Match file and dirent using either filehandle or fileid
571  * Note: caller is responsible for checking the fsid
572  */
573 static
574 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
575 {
576 	struct inode *inode;
577 	struct nfs_inode *nfsi;
578 
579 	if (d_really_is_negative(dentry))
580 		return 0;
581 
582 	inode = d_inode(dentry);
583 	if (is_bad_inode(inode) || NFS_STALE(inode))
584 		return 0;
585 
586 	nfsi = NFS_I(inode);
587 	if (entry->fattr->fileid != nfsi->fileid)
588 		return 0;
589 	if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
590 		return 0;
591 	return 1;
592 }
593 
594 static
595 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
596 {
597 	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
598 		return false;
599 	if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
600 		return true;
601 	if (ctx->pos == 0)
602 		return true;
603 	return false;
604 }
605 
606 /*
607  * This function is called by the lookup and getattr code to request the
608  * use of readdirplus to accelerate any future lookups in the same
609  * directory.
610  */
611 void nfs_advise_use_readdirplus(struct inode *dir)
612 {
613 	struct nfs_inode *nfsi = NFS_I(dir);
614 
615 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
616 	    !list_empty(&nfsi->open_files))
617 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
618 }
619 
620 /*
621  * This function is mainly for use by nfs_getattr().
622  *
623  * If this is an 'ls -l', we want to force use of readdirplus.
624  * Do this by checking if there is an active file descriptor
625  * and calling nfs_advise_use_readdirplus, then forcing a
626  * cache flush.
627  */
628 void nfs_force_use_readdirplus(struct inode *dir)
629 {
630 	struct nfs_inode *nfsi = NFS_I(dir);
631 
632 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
633 	    !list_empty(&nfsi->open_files)) {
634 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
635 		set_bit(NFS_INO_FORCE_READDIR, &nfsi->flags);
636 	}
637 }
638 
639 static
640 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
641 		unsigned long dir_verifier)
642 {
643 	struct qstr filename = QSTR_INIT(entry->name, entry->len);
644 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
645 	struct dentry *dentry;
646 	struct dentry *alias;
647 	struct inode *inode;
648 	int status;
649 
650 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
651 		return;
652 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
653 		return;
654 	if (filename.len == 0)
655 		return;
656 	/* Validate that the name doesn't contain any illegal '\0' */
657 	if (strnlen(filename.name, filename.len) != filename.len)
658 		return;
659 	/* ...or '/' */
660 	if (strnchr(filename.name, filename.len, '/'))
661 		return;
662 	if (filename.name[0] == '.') {
663 		if (filename.len == 1)
664 			return;
665 		if (filename.len == 2 && filename.name[1] == '.')
666 			return;
667 	}
668 	filename.hash = full_name_hash(parent, filename.name, filename.len);
669 
670 	dentry = d_lookup(parent, &filename);
671 again:
672 	if (!dentry) {
673 		dentry = d_alloc_parallel(parent, &filename, &wq);
674 		if (IS_ERR(dentry))
675 			return;
676 	}
677 	if (!d_in_lookup(dentry)) {
678 		/* Is there a mountpoint here? If so, just exit */
679 		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
680 					&entry->fattr->fsid))
681 			goto out;
682 		if (nfs_same_file(dentry, entry)) {
683 			if (!entry->fh->size)
684 				goto out;
685 			nfs_set_verifier(dentry, dir_verifier);
686 			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
687 			if (!status)
688 				nfs_setsecurity(d_inode(dentry), entry->fattr);
689 			goto out;
690 		} else {
691 			d_invalidate(dentry);
692 			dput(dentry);
693 			dentry = NULL;
694 			goto again;
695 		}
696 	}
697 	if (!entry->fh->size) {
698 		d_lookup_done(dentry);
699 		goto out;
700 	}
701 
702 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
703 	alias = d_splice_alias(inode, dentry);
704 	d_lookup_done(dentry);
705 	if (alias) {
706 		if (IS_ERR(alias))
707 			goto out;
708 		dput(dentry);
709 		dentry = alias;
710 	}
711 	nfs_set_verifier(dentry, dir_verifier);
712 out:
713 	dput(dentry);
714 }
715 
716 /* Perform conversion from xdr to cache array */
717 static int nfs_readdir_page_filler(struct nfs_readdir_descriptor *desc,
718 				   struct nfs_entry *entry,
719 				   struct page **xdr_pages,
720 				   unsigned int buflen,
721 				   struct page **arrays,
722 				   size_t narrays)
723 {
724 	struct address_space *mapping = desc->file->f_mapping;
725 	struct xdr_stream stream;
726 	struct xdr_buf buf;
727 	struct page *scratch, *new, *page = *arrays;
728 	int status;
729 
730 	scratch = alloc_page(GFP_KERNEL);
731 	if (scratch == NULL)
732 		return -ENOMEM;
733 
734 	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
735 	xdr_set_scratch_page(&stream, scratch);
736 
737 	do {
738 		if (entry->fattr->label)
739 			entry->fattr->label->len = NFS4_MAXLABELLEN;
740 
741 		status = xdr_decode(desc, entry, &stream);
742 		if (status != 0)
743 			break;
744 
745 		if (desc->plus)
746 			nfs_prime_dcache(file_dentry(desc->file), entry,
747 					desc->dir_verifier);
748 
749 		status = nfs_readdir_add_to_array(entry, page);
750 		if (status != -ENOSPC)
751 			continue;
752 
753 		if (page->mapping != mapping) {
754 			if (!--narrays)
755 				break;
756 			new = nfs_readdir_page_array_alloc(entry->prev_cookie,
757 							   GFP_KERNEL);
758 			if (!new)
759 				break;
760 			arrays++;
761 			*arrays = page = new;
762 		} else {
763 			new = nfs_readdir_page_get_next(mapping,
764 							page->index + 1,
765 							entry->prev_cookie);
766 			if (!new)
767 				break;
768 			if (page != *arrays)
769 				nfs_readdir_page_unlock_and_put(page);
770 			page = new;
771 		}
772 		status = nfs_readdir_add_to_array(entry, page);
773 	} while (!status && !entry->eof);
774 
775 	switch (status) {
776 	case -EBADCOOKIE:
777 		if (entry->eof) {
778 			nfs_readdir_page_set_eof(page);
779 			status = 0;
780 		}
781 		break;
782 	case -ENOSPC:
783 	case -EAGAIN:
784 		status = 0;
785 		break;
786 	}
787 
788 	if (page != *arrays)
789 		nfs_readdir_page_unlock_and_put(page);
790 
791 	put_page(scratch);
792 	return status;
793 }
794 
795 static void nfs_readdir_free_pages(struct page **pages, size_t npages)
796 {
797 	while (npages--)
798 		put_page(pages[npages]);
799 	kfree(pages);
800 }
801 
802 /*
803  * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
804  * to nfs_readdir_free_pages()
805  */
806 static struct page **nfs_readdir_alloc_pages(size_t npages)
807 {
808 	struct page **pages;
809 	size_t i;
810 
811 	pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL);
812 	if (!pages)
813 		return NULL;
814 	for (i = 0; i < npages; i++) {
815 		struct page *page = alloc_page(GFP_KERNEL);
816 		if (page == NULL)
817 			goto out_freepages;
818 		pages[i] = page;
819 	}
820 	return pages;
821 
822 out_freepages:
823 	nfs_readdir_free_pages(pages, i);
824 	return NULL;
825 }
826 
827 static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc,
828 				    __be32 *verf_arg, __be32 *verf_res,
829 				    struct page **arrays, size_t narrays)
830 {
831 	struct page **pages;
832 	struct page *page = *arrays;
833 	struct nfs_entry *entry;
834 	size_t array_size;
835 	struct inode *inode = file_inode(desc->file);
836 	size_t dtsize = NFS_SERVER(inode)->dtsize;
837 	int status = -ENOMEM;
838 
839 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
840 	if (!entry)
841 		return -ENOMEM;
842 	entry->cookie = nfs_readdir_page_last_cookie(page);
843 	entry->fh = nfs_alloc_fhandle();
844 	entry->fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
845 	entry->server = NFS_SERVER(inode);
846 	if (entry->fh == NULL || entry->fattr == NULL)
847 		goto out;
848 
849 	array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT;
850 	pages = nfs_readdir_alloc_pages(array_size);
851 	if (!pages)
852 		goto out;
853 
854 	do {
855 		unsigned int pglen;
856 		status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie,
857 						pages, dtsize,
858 						verf_res);
859 		if (status < 0)
860 			break;
861 
862 		pglen = status;
863 		if (pglen == 0) {
864 			nfs_readdir_page_set_eof(page);
865 			break;
866 		}
867 
868 		verf_arg = verf_res;
869 
870 		status = nfs_readdir_page_filler(desc, entry, pages, pglen,
871 						 arrays, narrays);
872 	} while (!status && nfs_readdir_page_needs_filling(page) &&
873 		page_mapping(page));
874 
875 	nfs_readdir_free_pages(pages, array_size);
876 out:
877 	nfs_free_fattr(entry->fattr);
878 	nfs_free_fhandle(entry->fh);
879 	kfree(entry);
880 	return status;
881 }
882 
883 static void nfs_readdir_page_put(struct nfs_readdir_descriptor *desc)
884 {
885 	put_page(desc->page);
886 	desc->page = NULL;
887 }
888 
889 static void
890 nfs_readdir_page_unlock_and_put_cached(struct nfs_readdir_descriptor *desc)
891 {
892 	unlock_page(desc->page);
893 	nfs_readdir_page_put(desc);
894 }
895 
896 static struct page *
897 nfs_readdir_page_get_cached(struct nfs_readdir_descriptor *desc)
898 {
899 	return nfs_readdir_page_get_locked(desc->file->f_mapping,
900 					   desc->page_index,
901 					   desc->last_cookie);
902 }
903 
904 /*
905  * Returns 0 if desc->dir_cookie was found on page desc->page_index
906  * and locks the page to prevent removal from the page cache.
907  */
908 static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc)
909 {
910 	struct inode *inode = file_inode(desc->file);
911 	struct nfs_inode *nfsi = NFS_I(inode);
912 	__be32 verf[NFS_DIR_VERIFIER_SIZE];
913 	int res;
914 
915 	desc->page = nfs_readdir_page_get_cached(desc);
916 	if (!desc->page)
917 		return -ENOMEM;
918 	if (nfs_readdir_page_needs_filling(desc->page)) {
919 		res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf,
920 					       &desc->page, 1);
921 		if (res < 0) {
922 			nfs_readdir_page_unlock_and_put_cached(desc);
923 			if (res == -EBADCOOKIE || res == -ENOTSYNC) {
924 				invalidate_inode_pages2(desc->file->f_mapping);
925 				desc->page_index = 0;
926 				return -EAGAIN;
927 			}
928 			return res;
929 		}
930 		/*
931 		 * Set the cookie verifier if the page cache was empty
932 		 */
933 		if (desc->page_index == 0)
934 			memcpy(nfsi->cookieverf, verf,
935 			       sizeof(nfsi->cookieverf));
936 	}
937 	res = nfs_readdir_search_array(desc);
938 	if (res == 0)
939 		return 0;
940 	nfs_readdir_page_unlock_and_put_cached(desc);
941 	return res;
942 }
943 
944 static bool nfs_readdir_dont_search_cache(struct nfs_readdir_descriptor *desc)
945 {
946 	struct address_space *mapping = desc->file->f_mapping;
947 	struct inode *dir = file_inode(desc->file);
948 	unsigned int dtsize = NFS_SERVER(dir)->dtsize;
949 	loff_t size = i_size_read(dir);
950 
951 	/*
952 	 * Default to uncached readdir if the page cache is empty, and
953 	 * we're looking for a non-zero cookie in a large directory.
954 	 */
955 	return desc->dir_cookie != 0 && mapping->nrpages == 0 && size > dtsize;
956 }
957 
958 /* Search for desc->dir_cookie from the beginning of the page cache */
959 static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc)
960 {
961 	int res;
962 
963 	if (nfs_readdir_dont_search_cache(desc))
964 		return -EBADCOOKIE;
965 
966 	do {
967 		if (desc->page_index == 0) {
968 			desc->current_index = 0;
969 			desc->prev_index = 0;
970 			desc->last_cookie = 0;
971 		}
972 		res = find_and_lock_cache_page(desc);
973 	} while (res == -EAGAIN);
974 	return res;
975 }
976 
977 /*
978  * Once we've found the start of the dirent within a page: fill 'er up...
979  */
980 static void nfs_do_filldir(struct nfs_readdir_descriptor *desc,
981 			   const __be32 *verf)
982 {
983 	struct file	*file = desc->file;
984 	struct nfs_cache_array *array;
985 	unsigned int i = 0;
986 
987 	array = kmap(desc->page);
988 	for (i = desc->cache_entry_index; i < array->size; i++) {
989 		struct nfs_cache_array_entry *ent;
990 
991 		ent = &array->array[i];
992 		if (!dir_emit(desc->ctx, ent->name, ent->name_len,
993 		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
994 			desc->eob = true;
995 			break;
996 		}
997 		memcpy(desc->verf, verf, sizeof(desc->verf));
998 		if (i < (array->size-1))
999 			desc->dir_cookie = array->array[i+1].cookie;
1000 		else
1001 			desc->dir_cookie = array->last_cookie;
1002 		if (nfs_readdir_use_cookie(file))
1003 			desc->ctx->pos = desc->dir_cookie;
1004 		else
1005 			desc->ctx->pos++;
1006 		if (desc->duped != 0)
1007 			desc->duped = 1;
1008 	}
1009 	if (array->page_is_eof)
1010 		desc->eof = !desc->eob;
1011 
1012 	kunmap(desc->page);
1013 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n",
1014 			(unsigned long long)desc->dir_cookie);
1015 }
1016 
1017 /*
1018  * If we cannot find a cookie in our cache, we suspect that this is
1019  * because it points to a deleted file, so we ask the server to return
1020  * whatever it thinks is the next entry. We then feed this to filldir.
1021  * If all goes well, we should then be able to find our way round the
1022  * cache on the next call to readdir_search_pagecache();
1023  *
1024  * NOTE: we cannot add the anonymous page to the pagecache because
1025  *	 the data it contains might not be page aligned. Besides,
1026  *	 we should already have a complete representation of the
1027  *	 directory in the page cache by the time we get here.
1028  */
1029 static int uncached_readdir(struct nfs_readdir_descriptor *desc)
1030 {
1031 	struct page	**arrays;
1032 	size_t		i, sz = 512;
1033 	__be32		verf[NFS_DIR_VERIFIER_SIZE];
1034 	int		status = -ENOMEM;
1035 
1036 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n",
1037 			(unsigned long long)desc->dir_cookie);
1038 
1039 	arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL);
1040 	if (!arrays)
1041 		goto out;
1042 	arrays[0] = nfs_readdir_page_array_alloc(desc->dir_cookie, GFP_KERNEL);
1043 	if (!arrays[0])
1044 		goto out;
1045 
1046 	desc->page_index = 0;
1047 	desc->cache_entry_index = 0;
1048 	desc->last_cookie = desc->dir_cookie;
1049 	desc->duped = 0;
1050 
1051 	status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz);
1052 
1053 	for (i = 0; !desc->eob && i < sz && arrays[i]; i++) {
1054 		desc->page = arrays[i];
1055 		nfs_do_filldir(desc, verf);
1056 	}
1057 	desc->page = NULL;
1058 
1059 
1060 	for (i = 0; i < sz && arrays[i]; i++)
1061 		nfs_readdir_page_array_free(arrays[i]);
1062 out:
1063 	kfree(arrays);
1064 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
1065 	return status;
1066 }
1067 
1068 /* The file offset position represents the dirent entry number.  A
1069    last cookie cache takes care of the common case of reading the
1070    whole directory.
1071  */
1072 static int nfs_readdir(struct file *file, struct dir_context *ctx)
1073 {
1074 	struct dentry	*dentry = file_dentry(file);
1075 	struct inode	*inode = d_inode(dentry);
1076 	struct nfs_inode *nfsi = NFS_I(inode);
1077 	struct nfs_open_dir_context *dir_ctx = file->private_data;
1078 	struct nfs_readdir_descriptor *desc;
1079 	pgoff_t page_index;
1080 	int res;
1081 
1082 	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
1083 			file, (long long)ctx->pos);
1084 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
1085 
1086 	/*
1087 	 * ctx->pos points to the dirent entry number.
1088 	 * *desc->dir_cookie has the cookie for the next entry. We have
1089 	 * to either find the entry with the appropriate number or
1090 	 * revalidate the cookie.
1091 	 */
1092 	if (ctx->pos == 0 || nfs_attribute_cache_expired(inode)) {
1093 		res = nfs_revalidate_mapping(inode, file->f_mapping);
1094 		if (res < 0)
1095 			goto out;
1096 	}
1097 
1098 	res = -ENOMEM;
1099 	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
1100 	if (!desc)
1101 		goto out;
1102 	desc->file = file;
1103 	desc->ctx = ctx;
1104 	desc->plus = nfs_use_readdirplus(inode, ctx);
1105 
1106 	spin_lock(&file->f_lock);
1107 	desc->dir_cookie = dir_ctx->dir_cookie;
1108 	desc->dup_cookie = dir_ctx->dup_cookie;
1109 	desc->duped = dir_ctx->duped;
1110 	page_index = dir_ctx->page_index;
1111 	desc->attr_gencount = dir_ctx->attr_gencount;
1112 	desc->eof = dir_ctx->eof;
1113 	memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf));
1114 	spin_unlock(&file->f_lock);
1115 
1116 	if (desc->eof) {
1117 		res = 0;
1118 		goto out_free;
1119 	}
1120 
1121 	if (test_and_clear_bit(NFS_INO_FORCE_READDIR, &nfsi->flags) &&
1122 	    list_is_singular(&nfsi->open_files))
1123 		invalidate_mapping_pages(inode->i_mapping, page_index + 1, -1);
1124 
1125 	do {
1126 		res = readdir_search_pagecache(desc);
1127 
1128 		if (res == -EBADCOOKIE) {
1129 			res = 0;
1130 			/* This means either end of directory */
1131 			if (desc->dir_cookie && !desc->eof) {
1132 				/* Or that the server has 'lost' a cookie */
1133 				res = uncached_readdir(desc);
1134 				if (res == 0)
1135 					continue;
1136 				if (res == -EBADCOOKIE || res == -ENOTSYNC)
1137 					res = 0;
1138 			}
1139 			break;
1140 		}
1141 		if (res == -ETOOSMALL && desc->plus) {
1142 			clear_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
1143 			nfs_zap_caches(inode);
1144 			desc->page_index = 0;
1145 			desc->plus = false;
1146 			desc->eof = false;
1147 			continue;
1148 		}
1149 		if (res < 0)
1150 			break;
1151 
1152 		nfs_do_filldir(desc, nfsi->cookieverf);
1153 		nfs_readdir_page_unlock_and_put_cached(desc);
1154 	} while (!desc->eob && !desc->eof);
1155 
1156 	spin_lock(&file->f_lock);
1157 	dir_ctx->dir_cookie = desc->dir_cookie;
1158 	dir_ctx->dup_cookie = desc->dup_cookie;
1159 	dir_ctx->duped = desc->duped;
1160 	dir_ctx->attr_gencount = desc->attr_gencount;
1161 	dir_ctx->page_index = desc->page_index;
1162 	dir_ctx->eof = desc->eof;
1163 	memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf));
1164 	spin_unlock(&file->f_lock);
1165 out_free:
1166 	kfree(desc);
1167 
1168 out:
1169 	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
1170 	return res;
1171 }
1172 
1173 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
1174 {
1175 	struct nfs_open_dir_context *dir_ctx = filp->private_data;
1176 
1177 	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
1178 			filp, offset, whence);
1179 
1180 	switch (whence) {
1181 	default:
1182 		return -EINVAL;
1183 	case SEEK_SET:
1184 		if (offset < 0)
1185 			return -EINVAL;
1186 		spin_lock(&filp->f_lock);
1187 		break;
1188 	case SEEK_CUR:
1189 		if (offset == 0)
1190 			return filp->f_pos;
1191 		spin_lock(&filp->f_lock);
1192 		offset += filp->f_pos;
1193 		if (offset < 0) {
1194 			spin_unlock(&filp->f_lock);
1195 			return -EINVAL;
1196 		}
1197 	}
1198 	if (offset != filp->f_pos) {
1199 		filp->f_pos = offset;
1200 		if (nfs_readdir_use_cookie(filp))
1201 			dir_ctx->dir_cookie = offset;
1202 		else
1203 			dir_ctx->dir_cookie = 0;
1204 		if (offset == 0)
1205 			memset(dir_ctx->verf, 0, sizeof(dir_ctx->verf));
1206 		dir_ctx->duped = 0;
1207 		dir_ctx->eof = false;
1208 	}
1209 	spin_unlock(&filp->f_lock);
1210 	return offset;
1211 }
1212 
1213 /*
1214  * All directory operations under NFS are synchronous, so fsync()
1215  * is a dummy operation.
1216  */
1217 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1218 			 int datasync)
1219 {
1220 	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1221 
1222 	nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC);
1223 	return 0;
1224 }
1225 
1226 /**
1227  * nfs_force_lookup_revalidate - Mark the directory as having changed
1228  * @dir: pointer to directory inode
1229  *
1230  * This forces the revalidation code in nfs_lookup_revalidate() to do a
1231  * full lookup on all child dentries of 'dir' whenever a change occurs
1232  * on the server that might have invalidated our dcache.
1233  *
1234  * Note that we reserve bit '0' as a tag to let us know when a dentry
1235  * was revalidated while holding a delegation on its inode.
1236  *
1237  * The caller should be holding dir->i_lock
1238  */
1239 void nfs_force_lookup_revalidate(struct inode *dir)
1240 {
1241 	NFS_I(dir)->cache_change_attribute += 2;
1242 }
1243 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1244 
1245 /**
1246  * nfs_verify_change_attribute - Detects NFS remote directory changes
1247  * @dir: pointer to parent directory inode
1248  * @verf: previously saved change attribute
1249  *
1250  * Return "false" if the verifiers doesn't match the change attribute.
1251  * This would usually indicate that the directory contents have changed on
1252  * the server, and that any dentries need revalidating.
1253  */
1254 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1255 {
1256 	return (verf & ~1UL) == nfs_save_change_attribute(dir);
1257 }
1258 
1259 static void nfs_set_verifier_delegated(unsigned long *verf)
1260 {
1261 	*verf |= 1UL;
1262 }
1263 
1264 #if IS_ENABLED(CONFIG_NFS_V4)
1265 static void nfs_unset_verifier_delegated(unsigned long *verf)
1266 {
1267 	*verf &= ~1UL;
1268 }
1269 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1270 
1271 static bool nfs_test_verifier_delegated(unsigned long verf)
1272 {
1273 	return verf & 1;
1274 }
1275 
1276 static bool nfs_verifier_is_delegated(struct dentry *dentry)
1277 {
1278 	return nfs_test_verifier_delegated(dentry->d_time);
1279 }
1280 
1281 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1282 {
1283 	struct inode *inode = d_inode(dentry);
1284 	struct inode *dir = d_inode(dentry->d_parent);
1285 
1286 	if (!nfs_verify_change_attribute(dir, verf))
1287 		return;
1288 	if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
1289 		nfs_set_verifier_delegated(&verf);
1290 	dentry->d_time = verf;
1291 }
1292 
1293 /**
1294  * nfs_set_verifier - save a parent directory verifier in the dentry
1295  * @dentry: pointer to dentry
1296  * @verf: verifier to save
1297  *
1298  * Saves the parent directory verifier in @dentry. If the inode has
1299  * a delegation, we also tag the dentry as having been revalidated
1300  * while holding a delegation so that we know we don't have to
1301  * look it up again after a directory change.
1302  */
1303 void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1304 {
1305 
1306 	spin_lock(&dentry->d_lock);
1307 	nfs_set_verifier_locked(dentry, verf);
1308 	spin_unlock(&dentry->d_lock);
1309 }
1310 EXPORT_SYMBOL_GPL(nfs_set_verifier);
1311 
1312 #if IS_ENABLED(CONFIG_NFS_V4)
1313 /**
1314  * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1315  * @inode: pointer to inode
1316  *
1317  * Iterates through the dentries in the inode alias list and clears
1318  * the tag used to indicate that the dentry has been revalidated
1319  * while holding a delegation.
1320  * This function is intended for use when the delegation is being
1321  * returned or revoked.
1322  */
1323 void nfs_clear_verifier_delegated(struct inode *inode)
1324 {
1325 	struct dentry *alias;
1326 
1327 	if (!inode)
1328 		return;
1329 	spin_lock(&inode->i_lock);
1330 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1331 		spin_lock(&alias->d_lock);
1332 		nfs_unset_verifier_delegated(&alias->d_time);
1333 		spin_unlock(&alias->d_lock);
1334 	}
1335 	spin_unlock(&inode->i_lock);
1336 }
1337 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1338 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1339 
1340 static int nfs_dentry_verify_change(struct inode *dir, struct dentry *dentry)
1341 {
1342 	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE) &&
1343 	    d_really_is_negative(dentry))
1344 		return dentry->d_time == inode_peek_iversion_raw(dir);
1345 	return nfs_verify_change_attribute(dir, dentry->d_time);
1346 }
1347 
1348 /*
1349  * A check for whether or not the parent directory has changed.
1350  * In the case it has, we assume that the dentries are untrustworthy
1351  * and may need to be looked up again.
1352  * If rcu_walk prevents us from performing a full check, return 0.
1353  */
1354 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1355 			      int rcu_walk)
1356 {
1357 	if (IS_ROOT(dentry))
1358 		return 1;
1359 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1360 		return 0;
1361 	if (!nfs_dentry_verify_change(dir, dentry))
1362 		return 0;
1363 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1364 	if (nfs_mapping_need_revalidate_inode(dir)) {
1365 		if (rcu_walk)
1366 			return 0;
1367 		if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1368 			return 0;
1369 	}
1370 	if (!nfs_dentry_verify_change(dir, dentry))
1371 		return 0;
1372 	return 1;
1373 }
1374 
1375 /*
1376  * Use intent information to check whether or not we're going to do
1377  * an O_EXCL create using this path component.
1378  */
1379 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1380 {
1381 	if (NFS_PROTO(dir)->version == 2)
1382 		return 0;
1383 	return flags & LOOKUP_EXCL;
1384 }
1385 
1386 /*
1387  * Inode and filehandle revalidation for lookups.
1388  *
1389  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1390  * or if the intent information indicates that we're about to open this
1391  * particular file and the "nocto" mount flag is not set.
1392  *
1393  */
1394 static
1395 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1396 {
1397 	struct nfs_server *server = NFS_SERVER(inode);
1398 	int ret;
1399 
1400 	if (IS_AUTOMOUNT(inode))
1401 		return 0;
1402 
1403 	if (flags & LOOKUP_OPEN) {
1404 		switch (inode->i_mode & S_IFMT) {
1405 		case S_IFREG:
1406 			/* A NFSv4 OPEN will revalidate later */
1407 			if (server->caps & NFS_CAP_ATOMIC_OPEN)
1408 				goto out;
1409 			fallthrough;
1410 		case S_IFDIR:
1411 			if (server->flags & NFS_MOUNT_NOCTO)
1412 				break;
1413 			/* NFS close-to-open cache consistency validation */
1414 			goto out_force;
1415 		}
1416 	}
1417 
1418 	/* VFS wants an on-the-wire revalidation */
1419 	if (flags & LOOKUP_REVAL)
1420 		goto out_force;
1421 out:
1422 	return (inode->i_nlink == 0) ? -ESTALE : 0;
1423 out_force:
1424 	if (flags & LOOKUP_RCU)
1425 		return -ECHILD;
1426 	ret = __nfs_revalidate_inode(server, inode);
1427 	if (ret != 0)
1428 		return ret;
1429 	goto out;
1430 }
1431 
1432 static void nfs_mark_dir_for_revalidate(struct inode *inode)
1433 {
1434 	spin_lock(&inode->i_lock);
1435 	nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE);
1436 	spin_unlock(&inode->i_lock);
1437 }
1438 
1439 /*
1440  * We judge how long we want to trust negative
1441  * dentries by looking at the parent inode mtime.
1442  *
1443  * If parent mtime has changed, we revalidate, else we wait for a
1444  * period corresponding to the parent's attribute cache timeout value.
1445  *
1446  * If LOOKUP_RCU prevents us from performing a full check, return 1
1447  * suggesting a reval is needed.
1448  *
1449  * Note that when creating a new file, or looking up a rename target,
1450  * then it shouldn't be necessary to revalidate a negative dentry.
1451  */
1452 static inline
1453 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1454 		       unsigned int flags)
1455 {
1456 	if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1457 		return 0;
1458 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1459 		return 1;
1460 	/* Case insensitive server? Revalidate negative dentries */
1461 	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1462 		return 1;
1463 	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1464 }
1465 
1466 static int
1467 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1468 			   struct inode *inode, int error)
1469 {
1470 	switch (error) {
1471 	case 1:
1472 		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1473 			__func__, dentry);
1474 		return 1;
1475 	case 0:
1476 		/*
1477 		 * We can't d_drop the root of a disconnected tree:
1478 		 * its d_hash is on the s_anon list and d_drop() would hide
1479 		 * it from shrink_dcache_for_unmount(), leading to busy
1480 		 * inodes on unmount and further oopses.
1481 		 */
1482 		if (inode && IS_ROOT(dentry))
1483 			return 1;
1484 		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1485 				__func__, dentry);
1486 		return 0;
1487 	}
1488 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1489 				__func__, dentry, error);
1490 	return error;
1491 }
1492 
1493 static int
1494 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1495 			       unsigned int flags)
1496 {
1497 	int ret = 1;
1498 	if (nfs_neg_need_reval(dir, dentry, flags)) {
1499 		if (flags & LOOKUP_RCU)
1500 			return -ECHILD;
1501 		ret = 0;
1502 	}
1503 	return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1504 }
1505 
1506 static int
1507 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1508 				struct inode *inode)
1509 {
1510 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1511 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1512 }
1513 
1514 static int
1515 nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry,
1516 			     struct inode *inode)
1517 {
1518 	struct nfs_fh *fhandle;
1519 	struct nfs_fattr *fattr;
1520 	unsigned long dir_verifier;
1521 	int ret;
1522 
1523 	ret = -ENOMEM;
1524 	fhandle = nfs_alloc_fhandle();
1525 	fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
1526 	if (fhandle == NULL || fattr == NULL)
1527 		goto out;
1528 
1529 	dir_verifier = nfs_save_change_attribute(dir);
1530 	ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1531 	if (ret < 0) {
1532 		switch (ret) {
1533 		case -ESTALE:
1534 		case -ENOENT:
1535 			ret = 0;
1536 			break;
1537 		case -ETIMEDOUT:
1538 			if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1539 				ret = 1;
1540 		}
1541 		goto out;
1542 	}
1543 	ret = 0;
1544 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1545 		goto out;
1546 	if (nfs_refresh_inode(inode, fattr) < 0)
1547 		goto out;
1548 
1549 	nfs_setsecurity(inode, fattr);
1550 	nfs_set_verifier(dentry, dir_verifier);
1551 
1552 	/* set a readdirplus hint that we had a cache miss */
1553 	nfs_force_use_readdirplus(dir);
1554 	ret = 1;
1555 out:
1556 	nfs_free_fattr(fattr);
1557 	nfs_free_fhandle(fhandle);
1558 
1559 	/*
1560 	 * If the lookup failed despite the dentry change attribute being
1561 	 * a match, then we should revalidate the directory cache.
1562 	 */
1563 	if (!ret && nfs_dentry_verify_change(dir, dentry))
1564 		nfs_mark_dir_for_revalidate(dir);
1565 	return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1566 }
1567 
1568 /*
1569  * This is called every time the dcache has a lookup hit,
1570  * and we should check whether we can really trust that
1571  * lookup.
1572  *
1573  * NOTE! The hit can be a negative hit too, don't assume
1574  * we have an inode!
1575  *
1576  * If the parent directory is seen to have changed, we throw out the
1577  * cached dentry and do a new lookup.
1578  */
1579 static int
1580 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1581 			 unsigned int flags)
1582 {
1583 	struct inode *inode;
1584 	int error;
1585 
1586 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1587 	inode = d_inode(dentry);
1588 
1589 	if (!inode)
1590 		return nfs_lookup_revalidate_negative(dir, dentry, flags);
1591 
1592 	if (is_bad_inode(inode)) {
1593 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1594 				__func__, dentry);
1595 		goto out_bad;
1596 	}
1597 
1598 	if (nfs_verifier_is_delegated(dentry))
1599 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1600 
1601 	/* Force a full look up iff the parent directory has changed */
1602 	if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1603 	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1604 		error = nfs_lookup_verify_inode(inode, flags);
1605 		if (error) {
1606 			if (error == -ESTALE)
1607 				nfs_mark_dir_for_revalidate(dir);
1608 			goto out_bad;
1609 		}
1610 		nfs_advise_use_readdirplus(dir);
1611 		goto out_valid;
1612 	}
1613 
1614 	if (flags & LOOKUP_RCU)
1615 		return -ECHILD;
1616 
1617 	if (NFS_STALE(inode))
1618 		goto out_bad;
1619 
1620 	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1621 	error = nfs_lookup_revalidate_dentry(dir, dentry, inode);
1622 	trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1623 	return error;
1624 out_valid:
1625 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1626 out_bad:
1627 	if (flags & LOOKUP_RCU)
1628 		return -ECHILD;
1629 	return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1630 }
1631 
1632 static int
1633 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1634 			int (*reval)(struct inode *, struct dentry *, unsigned int))
1635 {
1636 	struct dentry *parent;
1637 	struct inode *dir;
1638 	int ret;
1639 
1640 	if (flags & LOOKUP_RCU) {
1641 		parent = READ_ONCE(dentry->d_parent);
1642 		dir = d_inode_rcu(parent);
1643 		if (!dir)
1644 			return -ECHILD;
1645 		ret = reval(dir, dentry, flags);
1646 		if (parent != READ_ONCE(dentry->d_parent))
1647 			return -ECHILD;
1648 	} else {
1649 		parent = dget_parent(dentry);
1650 		ret = reval(d_inode(parent), dentry, flags);
1651 		dput(parent);
1652 	}
1653 	return ret;
1654 }
1655 
1656 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1657 {
1658 	return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1659 }
1660 
1661 /*
1662  * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1663  * when we don't really care about the dentry name. This is called when a
1664  * pathwalk ends on a dentry that was not found via a normal lookup in the
1665  * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1666  *
1667  * In this situation, we just want to verify that the inode itself is OK
1668  * since the dentry might have changed on the server.
1669  */
1670 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1671 {
1672 	struct inode *inode = d_inode(dentry);
1673 	int error = 0;
1674 
1675 	/*
1676 	 * I believe we can only get a negative dentry here in the case of a
1677 	 * procfs-style symlink. Just assume it's correct for now, but we may
1678 	 * eventually need to do something more here.
1679 	 */
1680 	if (!inode) {
1681 		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1682 				__func__, dentry);
1683 		return 1;
1684 	}
1685 
1686 	if (is_bad_inode(inode)) {
1687 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1688 				__func__, dentry);
1689 		return 0;
1690 	}
1691 
1692 	error = nfs_lookup_verify_inode(inode, flags);
1693 	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1694 			__func__, inode->i_ino, error ? "invalid" : "valid");
1695 	return !error;
1696 }
1697 
1698 /*
1699  * This is called from dput() when d_count is going to 0.
1700  */
1701 static int nfs_dentry_delete(const struct dentry *dentry)
1702 {
1703 	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1704 		dentry, dentry->d_flags);
1705 
1706 	/* Unhash any dentry with a stale inode */
1707 	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1708 		return 1;
1709 
1710 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1711 		/* Unhash it, so that ->d_iput() would be called */
1712 		return 1;
1713 	}
1714 	if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1715 		/* Unhash it, so that ancestors of killed async unlink
1716 		 * files will be cleaned up during umount */
1717 		return 1;
1718 	}
1719 	return 0;
1720 
1721 }
1722 
1723 /* Ensure that we revalidate inode->i_nlink */
1724 static void nfs_drop_nlink(struct inode *inode)
1725 {
1726 	spin_lock(&inode->i_lock);
1727 	/* drop the inode if we're reasonably sure this is the last link */
1728 	if (inode->i_nlink > 0)
1729 		drop_nlink(inode);
1730 	NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1731 	nfs_set_cache_invalid(
1732 		inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME |
1733 			       NFS_INO_INVALID_NLINK);
1734 	spin_unlock(&inode->i_lock);
1735 }
1736 
1737 /*
1738  * Called when the dentry loses inode.
1739  * We use it to clean up silly-renamed files.
1740  */
1741 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1742 {
1743 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1744 		nfs_complete_unlink(dentry, inode);
1745 		nfs_drop_nlink(inode);
1746 	}
1747 	iput(inode);
1748 }
1749 
1750 static void nfs_d_release(struct dentry *dentry)
1751 {
1752 	/* free cached devname value, if it survived that far */
1753 	if (unlikely(dentry->d_fsdata)) {
1754 		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1755 			WARN_ON(1);
1756 		else
1757 			kfree(dentry->d_fsdata);
1758 	}
1759 }
1760 
1761 const struct dentry_operations nfs_dentry_operations = {
1762 	.d_revalidate	= nfs_lookup_revalidate,
1763 	.d_weak_revalidate	= nfs_weak_revalidate,
1764 	.d_delete	= nfs_dentry_delete,
1765 	.d_iput		= nfs_dentry_iput,
1766 	.d_automount	= nfs_d_automount,
1767 	.d_release	= nfs_d_release,
1768 };
1769 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1770 
1771 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1772 {
1773 	struct dentry *res;
1774 	struct inode *inode = NULL;
1775 	struct nfs_fh *fhandle = NULL;
1776 	struct nfs_fattr *fattr = NULL;
1777 	unsigned long dir_verifier;
1778 	int error;
1779 
1780 	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1781 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1782 
1783 	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1784 		return ERR_PTR(-ENAMETOOLONG);
1785 
1786 	/*
1787 	 * If we're doing an exclusive create, optimize away the lookup
1788 	 * but don't hash the dentry.
1789 	 */
1790 	if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1791 		return NULL;
1792 
1793 	res = ERR_PTR(-ENOMEM);
1794 	fhandle = nfs_alloc_fhandle();
1795 	fattr = nfs_alloc_fattr_with_label(NFS_SERVER(dir));
1796 	if (fhandle == NULL || fattr == NULL)
1797 		goto out;
1798 
1799 	dir_verifier = nfs_save_change_attribute(dir);
1800 	trace_nfs_lookup_enter(dir, dentry, flags);
1801 	error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1802 	if (error == -ENOENT) {
1803 		if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1804 			dir_verifier = inode_peek_iversion_raw(dir);
1805 		goto no_entry;
1806 	}
1807 	if (error < 0) {
1808 		res = ERR_PTR(error);
1809 		goto out;
1810 	}
1811 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1812 	res = ERR_CAST(inode);
1813 	if (IS_ERR(res))
1814 		goto out;
1815 
1816 	/* Notify readdir to use READDIRPLUS */
1817 	nfs_force_use_readdirplus(dir);
1818 
1819 no_entry:
1820 	res = d_splice_alias(inode, dentry);
1821 	if (res != NULL) {
1822 		if (IS_ERR(res))
1823 			goto out;
1824 		dentry = res;
1825 	}
1826 	nfs_set_verifier(dentry, dir_verifier);
1827 out:
1828 	trace_nfs_lookup_exit(dir, dentry, flags, PTR_ERR_OR_ZERO(res));
1829 	nfs_free_fattr(fattr);
1830 	nfs_free_fhandle(fhandle);
1831 	return res;
1832 }
1833 EXPORT_SYMBOL_GPL(nfs_lookup);
1834 
1835 void nfs_d_prune_case_insensitive_aliases(struct inode *inode)
1836 {
1837 	/* Case insensitive server? Revalidate dentries */
1838 	if (inode && nfs_server_capable(inode, NFS_CAP_CASE_INSENSITIVE))
1839 		d_prune_aliases(inode);
1840 }
1841 EXPORT_SYMBOL_GPL(nfs_d_prune_case_insensitive_aliases);
1842 
1843 #if IS_ENABLED(CONFIG_NFS_V4)
1844 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1845 
1846 const struct dentry_operations nfs4_dentry_operations = {
1847 	.d_revalidate	= nfs4_lookup_revalidate,
1848 	.d_weak_revalidate	= nfs_weak_revalidate,
1849 	.d_delete	= nfs_dentry_delete,
1850 	.d_iput		= nfs_dentry_iput,
1851 	.d_automount	= nfs_d_automount,
1852 	.d_release	= nfs_d_release,
1853 };
1854 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1855 
1856 static fmode_t flags_to_mode(int flags)
1857 {
1858 	fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1859 	if ((flags & O_ACCMODE) != O_WRONLY)
1860 		res |= FMODE_READ;
1861 	if ((flags & O_ACCMODE) != O_RDONLY)
1862 		res |= FMODE_WRITE;
1863 	return res;
1864 }
1865 
1866 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1867 {
1868 	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1869 }
1870 
1871 static int do_open(struct inode *inode, struct file *filp)
1872 {
1873 	nfs_fscache_open_file(inode, filp);
1874 	return 0;
1875 }
1876 
1877 static int nfs_finish_open(struct nfs_open_context *ctx,
1878 			   struct dentry *dentry,
1879 			   struct file *file, unsigned open_flags)
1880 {
1881 	int err;
1882 
1883 	err = finish_open(file, dentry, do_open);
1884 	if (err)
1885 		goto out;
1886 	if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1887 		nfs_file_set_open_context(file, ctx);
1888 	else
1889 		err = -EOPENSTALE;
1890 out:
1891 	return err;
1892 }
1893 
1894 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1895 		    struct file *file, unsigned open_flags,
1896 		    umode_t mode)
1897 {
1898 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1899 	struct nfs_open_context *ctx;
1900 	struct dentry *res;
1901 	struct iattr attr = { .ia_valid = ATTR_OPEN };
1902 	struct inode *inode;
1903 	unsigned int lookup_flags = 0;
1904 	unsigned long dir_verifier;
1905 	bool switched = false;
1906 	int created = 0;
1907 	int err;
1908 
1909 	/* Expect a negative dentry */
1910 	BUG_ON(d_inode(dentry));
1911 
1912 	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1913 			dir->i_sb->s_id, dir->i_ino, dentry);
1914 
1915 	err = nfs_check_flags(open_flags);
1916 	if (err)
1917 		return err;
1918 
1919 	/* NFS only supports OPEN on regular files */
1920 	if ((open_flags & O_DIRECTORY)) {
1921 		if (!d_in_lookup(dentry)) {
1922 			/*
1923 			 * Hashed negative dentry with O_DIRECTORY: dentry was
1924 			 * revalidated and is fine, no need to perform lookup
1925 			 * again
1926 			 */
1927 			return -ENOENT;
1928 		}
1929 		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1930 		goto no_open;
1931 	}
1932 
1933 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1934 		return -ENAMETOOLONG;
1935 
1936 	if (open_flags & O_CREAT) {
1937 		struct nfs_server *server = NFS_SERVER(dir);
1938 
1939 		if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1940 			mode &= ~current_umask();
1941 
1942 		attr.ia_valid |= ATTR_MODE;
1943 		attr.ia_mode = mode;
1944 	}
1945 	if (open_flags & O_TRUNC) {
1946 		attr.ia_valid |= ATTR_SIZE;
1947 		attr.ia_size = 0;
1948 	}
1949 
1950 	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1951 		d_drop(dentry);
1952 		switched = true;
1953 		dentry = d_alloc_parallel(dentry->d_parent,
1954 					  &dentry->d_name, &wq);
1955 		if (IS_ERR(dentry))
1956 			return PTR_ERR(dentry);
1957 		if (unlikely(!d_in_lookup(dentry)))
1958 			return finish_no_open(file, dentry);
1959 	}
1960 
1961 	ctx = create_nfs_open_context(dentry, open_flags, file);
1962 	err = PTR_ERR(ctx);
1963 	if (IS_ERR(ctx))
1964 		goto out;
1965 
1966 	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1967 	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
1968 	if (created)
1969 		file->f_mode |= FMODE_CREATED;
1970 	if (IS_ERR(inode)) {
1971 		err = PTR_ERR(inode);
1972 		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1973 		put_nfs_open_context(ctx);
1974 		d_drop(dentry);
1975 		switch (err) {
1976 		case -ENOENT:
1977 			d_splice_alias(NULL, dentry);
1978 			if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1979 				dir_verifier = inode_peek_iversion_raw(dir);
1980 			else
1981 				dir_verifier = nfs_save_change_attribute(dir);
1982 			nfs_set_verifier(dentry, dir_verifier);
1983 			break;
1984 		case -EISDIR:
1985 		case -ENOTDIR:
1986 			goto no_open;
1987 		case -ELOOP:
1988 			if (!(open_flags & O_NOFOLLOW))
1989 				goto no_open;
1990 			break;
1991 			/* case -EINVAL: */
1992 		default:
1993 			break;
1994 		}
1995 		goto out;
1996 	}
1997 
1998 	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
1999 	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2000 	put_nfs_open_context(ctx);
2001 out:
2002 	if (unlikely(switched)) {
2003 		d_lookup_done(dentry);
2004 		dput(dentry);
2005 	}
2006 	return err;
2007 
2008 no_open:
2009 	res = nfs_lookup(dir, dentry, lookup_flags);
2010 	if (!res) {
2011 		inode = d_inode(dentry);
2012 		if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2013 		    !S_ISDIR(inode->i_mode))
2014 			res = ERR_PTR(-ENOTDIR);
2015 		else if (inode && S_ISREG(inode->i_mode))
2016 			res = ERR_PTR(-EOPENSTALE);
2017 	} else if (!IS_ERR(res)) {
2018 		inode = d_inode(res);
2019 		if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2020 		    !S_ISDIR(inode->i_mode)) {
2021 			dput(res);
2022 			res = ERR_PTR(-ENOTDIR);
2023 		} else if (inode && S_ISREG(inode->i_mode)) {
2024 			dput(res);
2025 			res = ERR_PTR(-EOPENSTALE);
2026 		}
2027 	}
2028 	if (switched) {
2029 		d_lookup_done(dentry);
2030 		if (!res)
2031 			res = dentry;
2032 		else
2033 			dput(dentry);
2034 	}
2035 	if (IS_ERR(res))
2036 		return PTR_ERR(res);
2037 	return finish_no_open(file, res);
2038 }
2039 EXPORT_SYMBOL_GPL(nfs_atomic_open);
2040 
2041 static int
2042 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
2043 			  unsigned int flags)
2044 {
2045 	struct inode *inode;
2046 
2047 	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
2048 		goto full_reval;
2049 	if (d_mountpoint(dentry))
2050 		goto full_reval;
2051 
2052 	inode = d_inode(dentry);
2053 
2054 	/* We can't create new files in nfs_open_revalidate(), so we
2055 	 * optimize away revalidation of negative dentries.
2056 	 */
2057 	if (inode == NULL)
2058 		goto full_reval;
2059 
2060 	if (nfs_verifier_is_delegated(dentry))
2061 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
2062 
2063 	/* NFS only supports OPEN on regular files */
2064 	if (!S_ISREG(inode->i_mode))
2065 		goto full_reval;
2066 
2067 	/* We cannot do exclusive creation on a positive dentry */
2068 	if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
2069 		goto reval_dentry;
2070 
2071 	/* Check if the directory changed */
2072 	if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
2073 		goto reval_dentry;
2074 
2075 	/* Let f_op->open() actually open (and revalidate) the file */
2076 	return 1;
2077 reval_dentry:
2078 	if (flags & LOOKUP_RCU)
2079 		return -ECHILD;
2080 	return nfs_lookup_revalidate_dentry(dir, dentry, inode);
2081 
2082 full_reval:
2083 	return nfs_do_lookup_revalidate(dir, dentry, flags);
2084 }
2085 
2086 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
2087 {
2088 	return __nfs_lookup_revalidate(dentry, flags,
2089 			nfs4_do_lookup_revalidate);
2090 }
2091 
2092 #endif /* CONFIG_NFSV4 */
2093 
2094 struct dentry *
2095 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
2096 				struct nfs_fattr *fattr)
2097 {
2098 	struct dentry *parent = dget_parent(dentry);
2099 	struct inode *dir = d_inode(parent);
2100 	struct inode *inode;
2101 	struct dentry *d;
2102 	int error;
2103 
2104 	d_drop(dentry);
2105 
2106 	if (fhandle->size == 0) {
2107 		error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
2108 		if (error)
2109 			goto out_error;
2110 	}
2111 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2112 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
2113 		struct nfs_server *server = NFS_SB(dentry->d_sb);
2114 		error = server->nfs_client->rpc_ops->getattr(server, fhandle,
2115 				fattr, NULL);
2116 		if (error < 0)
2117 			goto out_error;
2118 	}
2119 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
2120 	d = d_splice_alias(inode, dentry);
2121 out:
2122 	dput(parent);
2123 	return d;
2124 out_error:
2125 	d = ERR_PTR(error);
2126 	goto out;
2127 }
2128 EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
2129 
2130 /*
2131  * Code common to create, mkdir, and mknod.
2132  */
2133 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
2134 				struct nfs_fattr *fattr)
2135 {
2136 	struct dentry *d;
2137 
2138 	d = nfs_add_or_obtain(dentry, fhandle, fattr);
2139 	if (IS_ERR(d))
2140 		return PTR_ERR(d);
2141 
2142 	/* Callers don't care */
2143 	dput(d);
2144 	return 0;
2145 }
2146 EXPORT_SYMBOL_GPL(nfs_instantiate);
2147 
2148 /*
2149  * Following a failed create operation, we drop the dentry rather
2150  * than retain a negative dentry. This avoids a problem in the event
2151  * that the operation succeeded on the server, but an error in the
2152  * reply path made it appear to have failed.
2153  */
2154 int nfs_create(struct user_namespace *mnt_userns, struct inode *dir,
2155 	       struct dentry *dentry, umode_t mode, bool excl)
2156 {
2157 	struct iattr attr;
2158 	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
2159 	int error;
2160 
2161 	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
2162 			dir->i_sb->s_id, dir->i_ino, dentry);
2163 
2164 	attr.ia_mode = mode;
2165 	attr.ia_valid = ATTR_MODE;
2166 
2167 	trace_nfs_create_enter(dir, dentry, open_flags);
2168 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
2169 	trace_nfs_create_exit(dir, dentry, open_flags, error);
2170 	if (error != 0)
2171 		goto out_err;
2172 	return 0;
2173 out_err:
2174 	d_drop(dentry);
2175 	return error;
2176 }
2177 EXPORT_SYMBOL_GPL(nfs_create);
2178 
2179 /*
2180  * See comments for nfs_proc_create regarding failed operations.
2181  */
2182 int
2183 nfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2184 	  struct dentry *dentry, umode_t mode, dev_t rdev)
2185 {
2186 	struct iattr attr;
2187 	int status;
2188 
2189 	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
2190 			dir->i_sb->s_id, dir->i_ino, dentry);
2191 
2192 	attr.ia_mode = mode;
2193 	attr.ia_valid = ATTR_MODE;
2194 
2195 	trace_nfs_mknod_enter(dir, dentry);
2196 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
2197 	trace_nfs_mknod_exit(dir, dentry, status);
2198 	if (status != 0)
2199 		goto out_err;
2200 	return 0;
2201 out_err:
2202 	d_drop(dentry);
2203 	return status;
2204 }
2205 EXPORT_SYMBOL_GPL(nfs_mknod);
2206 
2207 /*
2208  * See comments for nfs_proc_create regarding failed operations.
2209  */
2210 int nfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2211 	      struct dentry *dentry, umode_t mode)
2212 {
2213 	struct iattr attr;
2214 	int error;
2215 
2216 	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
2217 			dir->i_sb->s_id, dir->i_ino, dentry);
2218 
2219 	attr.ia_valid = ATTR_MODE;
2220 	attr.ia_mode = mode | S_IFDIR;
2221 
2222 	trace_nfs_mkdir_enter(dir, dentry);
2223 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
2224 	trace_nfs_mkdir_exit(dir, dentry, error);
2225 	if (error != 0)
2226 		goto out_err;
2227 	return 0;
2228 out_err:
2229 	d_drop(dentry);
2230 	return error;
2231 }
2232 EXPORT_SYMBOL_GPL(nfs_mkdir);
2233 
2234 static void nfs_dentry_handle_enoent(struct dentry *dentry)
2235 {
2236 	if (simple_positive(dentry))
2237 		d_delete(dentry);
2238 }
2239 
2240 static void nfs_dentry_remove_handle_error(struct inode *dir,
2241 					   struct dentry *dentry, int error)
2242 {
2243 	switch (error) {
2244 	case -ENOENT:
2245 		d_delete(dentry);
2246 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2247 		break;
2248 	case 0:
2249 		nfs_d_prune_case_insensitive_aliases(d_inode(dentry));
2250 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2251 	}
2252 }
2253 
2254 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
2255 {
2256 	int error;
2257 
2258 	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
2259 			dir->i_sb->s_id, dir->i_ino, dentry);
2260 
2261 	trace_nfs_rmdir_enter(dir, dentry);
2262 	if (d_really_is_positive(dentry)) {
2263 		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2264 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2265 		/* Ensure the VFS deletes this inode */
2266 		switch (error) {
2267 		case 0:
2268 			clear_nlink(d_inode(dentry));
2269 			break;
2270 		case -ENOENT:
2271 			nfs_dentry_handle_enoent(dentry);
2272 		}
2273 		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2274 	} else
2275 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2276 	nfs_dentry_remove_handle_error(dir, dentry, error);
2277 	trace_nfs_rmdir_exit(dir, dentry, error);
2278 
2279 	return error;
2280 }
2281 EXPORT_SYMBOL_GPL(nfs_rmdir);
2282 
2283 /*
2284  * Remove a file after making sure there are no pending writes,
2285  * and after checking that the file has only one user.
2286  *
2287  * We invalidate the attribute cache and free the inode prior to the operation
2288  * to avoid possible races if the server reuses the inode.
2289  */
2290 static int nfs_safe_remove(struct dentry *dentry)
2291 {
2292 	struct inode *dir = d_inode(dentry->d_parent);
2293 	struct inode *inode = d_inode(dentry);
2294 	int error = -EBUSY;
2295 
2296 	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2297 
2298 	/* If the dentry was sillyrenamed, we simply call d_delete() */
2299 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2300 		error = 0;
2301 		goto out;
2302 	}
2303 
2304 	trace_nfs_remove_enter(dir, dentry);
2305 	if (inode != NULL) {
2306 		error = NFS_PROTO(dir)->remove(dir, dentry);
2307 		if (error == 0)
2308 			nfs_drop_nlink(inode);
2309 	} else
2310 		error = NFS_PROTO(dir)->remove(dir, dentry);
2311 	if (error == -ENOENT)
2312 		nfs_dentry_handle_enoent(dentry);
2313 	trace_nfs_remove_exit(dir, dentry, error);
2314 out:
2315 	return error;
2316 }
2317 
2318 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
2319  *  belongs to an active ".nfs..." file and we return -EBUSY.
2320  *
2321  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
2322  */
2323 int nfs_unlink(struct inode *dir, struct dentry *dentry)
2324 {
2325 	int error;
2326 	int need_rehash = 0;
2327 
2328 	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2329 		dir->i_ino, dentry);
2330 
2331 	trace_nfs_unlink_enter(dir, dentry);
2332 	spin_lock(&dentry->d_lock);
2333 	if (d_count(dentry) > 1) {
2334 		spin_unlock(&dentry->d_lock);
2335 		/* Start asynchronous writeout of the inode */
2336 		write_inode_now(d_inode(dentry), 0);
2337 		error = nfs_sillyrename(dir, dentry);
2338 		goto out;
2339 	}
2340 	if (!d_unhashed(dentry)) {
2341 		__d_drop(dentry);
2342 		need_rehash = 1;
2343 	}
2344 	spin_unlock(&dentry->d_lock);
2345 	error = nfs_safe_remove(dentry);
2346 	nfs_dentry_remove_handle_error(dir, dentry, error);
2347 	if (need_rehash)
2348 		d_rehash(dentry);
2349 out:
2350 	trace_nfs_unlink_exit(dir, dentry, error);
2351 	return error;
2352 }
2353 EXPORT_SYMBOL_GPL(nfs_unlink);
2354 
2355 /*
2356  * To create a symbolic link, most file systems instantiate a new inode,
2357  * add a page to it containing the path, then write it out to the disk
2358  * using prepare_write/commit_write.
2359  *
2360  * Unfortunately the NFS client can't create the in-core inode first
2361  * because it needs a file handle to create an in-core inode (see
2362  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
2363  * symlink request has completed on the server.
2364  *
2365  * So instead we allocate a raw page, copy the symname into it, then do
2366  * the SYMLINK request with the page as the buffer.  If it succeeds, we
2367  * now have a new file handle and can instantiate an in-core NFS inode
2368  * and move the raw page into its mapping.
2369  */
2370 int nfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
2371 		struct dentry *dentry, const char *symname)
2372 {
2373 	struct page *page;
2374 	char *kaddr;
2375 	struct iattr attr;
2376 	unsigned int pathlen = strlen(symname);
2377 	int error;
2378 
2379 	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2380 		dir->i_ino, dentry, symname);
2381 
2382 	if (pathlen > PAGE_SIZE)
2383 		return -ENAMETOOLONG;
2384 
2385 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
2386 	attr.ia_valid = ATTR_MODE;
2387 
2388 	page = alloc_page(GFP_USER);
2389 	if (!page)
2390 		return -ENOMEM;
2391 
2392 	kaddr = page_address(page);
2393 	memcpy(kaddr, symname, pathlen);
2394 	if (pathlen < PAGE_SIZE)
2395 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2396 
2397 	trace_nfs_symlink_enter(dir, dentry);
2398 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
2399 	trace_nfs_symlink_exit(dir, dentry, error);
2400 	if (error != 0) {
2401 		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2402 			dir->i_sb->s_id, dir->i_ino,
2403 			dentry, symname, error);
2404 		d_drop(dentry);
2405 		__free_page(page);
2406 		return error;
2407 	}
2408 
2409 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2410 
2411 	/*
2412 	 * No big deal if we can't add this page to the page cache here.
2413 	 * READLINK will get the missing page from the server if needed.
2414 	 */
2415 	if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2416 							GFP_KERNEL)) {
2417 		SetPageUptodate(page);
2418 		unlock_page(page);
2419 		/*
2420 		 * add_to_page_cache_lru() grabs an extra page refcount.
2421 		 * Drop it here to avoid leaking this page later.
2422 		 */
2423 		put_page(page);
2424 	} else
2425 		__free_page(page);
2426 
2427 	return 0;
2428 }
2429 EXPORT_SYMBOL_GPL(nfs_symlink);
2430 
2431 int
2432 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2433 {
2434 	struct inode *inode = d_inode(old_dentry);
2435 	int error;
2436 
2437 	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2438 		old_dentry, dentry);
2439 
2440 	trace_nfs_link_enter(inode, dir, dentry);
2441 	d_drop(dentry);
2442 	if (S_ISREG(inode->i_mode))
2443 		nfs_sync_inode(inode);
2444 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2445 	if (error == 0) {
2446 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2447 		ihold(inode);
2448 		d_add(dentry, inode);
2449 	}
2450 	trace_nfs_link_exit(inode, dir, dentry, error);
2451 	return error;
2452 }
2453 EXPORT_SYMBOL_GPL(nfs_link);
2454 
2455 /*
2456  * RENAME
2457  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2458  * different file handle for the same inode after a rename (e.g. when
2459  * moving to a different directory). A fail-safe method to do so would
2460  * be to look up old_dir/old_name, create a link to new_dir/new_name and
2461  * rename the old file using the sillyrename stuff. This way, the original
2462  * file in old_dir will go away when the last process iput()s the inode.
2463  *
2464  * FIXED.
2465  *
2466  * It actually works quite well. One needs to have the possibility for
2467  * at least one ".nfs..." file in each directory the file ever gets
2468  * moved or linked to which happens automagically with the new
2469  * implementation that only depends on the dcache stuff instead of
2470  * using the inode layer
2471  *
2472  * Unfortunately, things are a little more complicated than indicated
2473  * above. For a cross-directory move, we want to make sure we can get
2474  * rid of the old inode after the operation.  This means there must be
2475  * no pending writes (if it's a file), and the use count must be 1.
2476  * If these conditions are met, we can drop the dentries before doing
2477  * the rename.
2478  */
2479 int nfs_rename(struct user_namespace *mnt_userns, struct inode *old_dir,
2480 	       struct dentry *old_dentry, struct inode *new_dir,
2481 	       struct dentry *new_dentry, unsigned int flags)
2482 {
2483 	struct inode *old_inode = d_inode(old_dentry);
2484 	struct inode *new_inode = d_inode(new_dentry);
2485 	struct dentry *dentry = NULL, *rehash = NULL;
2486 	struct rpc_task *task;
2487 	int error = -EBUSY;
2488 
2489 	if (flags)
2490 		return -EINVAL;
2491 
2492 	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2493 		 old_dentry, new_dentry,
2494 		 d_count(new_dentry));
2495 
2496 	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2497 	/*
2498 	 * For non-directories, check whether the target is busy and if so,
2499 	 * make a copy of the dentry and then do a silly-rename. If the
2500 	 * silly-rename succeeds, the copied dentry is hashed and becomes
2501 	 * the new target.
2502 	 */
2503 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2504 		/*
2505 		 * To prevent any new references to the target during the
2506 		 * rename, we unhash the dentry in advance.
2507 		 */
2508 		if (!d_unhashed(new_dentry)) {
2509 			d_drop(new_dentry);
2510 			rehash = new_dentry;
2511 		}
2512 
2513 		if (d_count(new_dentry) > 2) {
2514 			int err;
2515 
2516 			/* copy the target dentry's name */
2517 			dentry = d_alloc(new_dentry->d_parent,
2518 					 &new_dentry->d_name);
2519 			if (!dentry)
2520 				goto out;
2521 
2522 			/* silly-rename the existing target ... */
2523 			err = nfs_sillyrename(new_dir, new_dentry);
2524 			if (err)
2525 				goto out;
2526 
2527 			new_dentry = dentry;
2528 			rehash = NULL;
2529 			new_inode = NULL;
2530 		}
2531 	}
2532 
2533 	if (S_ISREG(old_inode->i_mode))
2534 		nfs_sync_inode(old_inode);
2535 	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2536 	if (IS_ERR(task)) {
2537 		error = PTR_ERR(task);
2538 		goto out;
2539 	}
2540 
2541 	error = rpc_wait_for_completion_task(task);
2542 	if (error != 0) {
2543 		((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2544 		/* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2545 		smp_wmb();
2546 	} else
2547 		error = task->tk_status;
2548 	rpc_put_task(task);
2549 	/* Ensure the inode attributes are revalidated */
2550 	if (error == 0) {
2551 		spin_lock(&old_inode->i_lock);
2552 		NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2553 		nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE |
2554 							 NFS_INO_INVALID_CTIME |
2555 							 NFS_INO_REVAL_FORCED);
2556 		spin_unlock(&old_inode->i_lock);
2557 	}
2558 out:
2559 	if (rehash)
2560 		d_rehash(rehash);
2561 	trace_nfs_rename_exit(old_dir, old_dentry,
2562 			new_dir, new_dentry, error);
2563 	if (!error) {
2564 		if (new_inode != NULL)
2565 			nfs_drop_nlink(new_inode);
2566 		/*
2567 		 * The d_move() should be here instead of in an async RPC completion
2568 		 * handler because we need the proper locks to move the dentry.  If
2569 		 * we're interrupted by a signal, the async RPC completion handler
2570 		 * should mark the directories for revalidation.
2571 		 */
2572 		d_move(old_dentry, new_dentry);
2573 		nfs_set_verifier(old_dentry,
2574 					nfs_save_change_attribute(new_dir));
2575 	} else if (error == -ENOENT)
2576 		nfs_dentry_handle_enoent(old_dentry);
2577 
2578 	/* new dentry created? */
2579 	if (dentry)
2580 		dput(dentry);
2581 	return error;
2582 }
2583 EXPORT_SYMBOL_GPL(nfs_rename);
2584 
2585 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2586 static LIST_HEAD(nfs_access_lru_list);
2587 static atomic_long_t nfs_access_nr_entries;
2588 
2589 static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2590 module_param(nfs_access_max_cachesize, ulong, 0644);
2591 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2592 
2593 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2594 {
2595 	put_group_info(entry->group_info);
2596 	kfree_rcu(entry, rcu_head);
2597 	smp_mb__before_atomic();
2598 	atomic_long_dec(&nfs_access_nr_entries);
2599 	smp_mb__after_atomic();
2600 }
2601 
2602 static void nfs_access_free_list(struct list_head *head)
2603 {
2604 	struct nfs_access_entry *cache;
2605 
2606 	while (!list_empty(head)) {
2607 		cache = list_entry(head->next, struct nfs_access_entry, lru);
2608 		list_del(&cache->lru);
2609 		nfs_access_free_entry(cache);
2610 	}
2611 }
2612 
2613 static unsigned long
2614 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2615 {
2616 	LIST_HEAD(head);
2617 	struct nfs_inode *nfsi, *next;
2618 	struct nfs_access_entry *cache;
2619 	long freed = 0;
2620 
2621 	spin_lock(&nfs_access_lru_lock);
2622 	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2623 		struct inode *inode;
2624 
2625 		if (nr_to_scan-- == 0)
2626 			break;
2627 		inode = &nfsi->vfs_inode;
2628 		spin_lock(&inode->i_lock);
2629 		if (list_empty(&nfsi->access_cache_entry_lru))
2630 			goto remove_lru_entry;
2631 		cache = list_entry(nfsi->access_cache_entry_lru.next,
2632 				struct nfs_access_entry, lru);
2633 		list_move(&cache->lru, &head);
2634 		rb_erase(&cache->rb_node, &nfsi->access_cache);
2635 		freed++;
2636 		if (!list_empty(&nfsi->access_cache_entry_lru))
2637 			list_move_tail(&nfsi->access_cache_inode_lru,
2638 					&nfs_access_lru_list);
2639 		else {
2640 remove_lru_entry:
2641 			list_del_init(&nfsi->access_cache_inode_lru);
2642 			smp_mb__before_atomic();
2643 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2644 			smp_mb__after_atomic();
2645 		}
2646 		spin_unlock(&inode->i_lock);
2647 	}
2648 	spin_unlock(&nfs_access_lru_lock);
2649 	nfs_access_free_list(&head);
2650 	return freed;
2651 }
2652 
2653 unsigned long
2654 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2655 {
2656 	int nr_to_scan = sc->nr_to_scan;
2657 	gfp_t gfp_mask = sc->gfp_mask;
2658 
2659 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2660 		return SHRINK_STOP;
2661 	return nfs_do_access_cache_scan(nr_to_scan);
2662 }
2663 
2664 
2665 unsigned long
2666 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2667 {
2668 	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2669 }
2670 
2671 static void
2672 nfs_access_cache_enforce_limit(void)
2673 {
2674 	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2675 	unsigned long diff;
2676 	unsigned int nr_to_scan;
2677 
2678 	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2679 		return;
2680 	nr_to_scan = 100;
2681 	diff = nr_entries - nfs_access_max_cachesize;
2682 	if (diff < nr_to_scan)
2683 		nr_to_scan = diff;
2684 	nfs_do_access_cache_scan(nr_to_scan);
2685 }
2686 
2687 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2688 {
2689 	struct rb_root *root_node = &nfsi->access_cache;
2690 	struct rb_node *n;
2691 	struct nfs_access_entry *entry;
2692 
2693 	/* Unhook entries from the cache */
2694 	while ((n = rb_first(root_node)) != NULL) {
2695 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2696 		rb_erase(n, root_node);
2697 		list_move(&entry->lru, head);
2698 	}
2699 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2700 }
2701 
2702 void nfs_access_zap_cache(struct inode *inode)
2703 {
2704 	LIST_HEAD(head);
2705 
2706 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2707 		return;
2708 	/* Remove from global LRU init */
2709 	spin_lock(&nfs_access_lru_lock);
2710 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2711 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2712 
2713 	spin_lock(&inode->i_lock);
2714 	__nfs_access_zap_cache(NFS_I(inode), &head);
2715 	spin_unlock(&inode->i_lock);
2716 	spin_unlock(&nfs_access_lru_lock);
2717 	nfs_access_free_list(&head);
2718 }
2719 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2720 
2721 static int access_cmp(const struct cred *a, const struct nfs_access_entry *b)
2722 {
2723 	struct group_info *ga, *gb;
2724 	int g;
2725 
2726 	if (uid_lt(a->fsuid, b->fsuid))
2727 		return -1;
2728 	if (uid_gt(a->fsuid, b->fsuid))
2729 		return 1;
2730 
2731 	if (gid_lt(a->fsgid, b->fsgid))
2732 		return -1;
2733 	if (gid_gt(a->fsgid, b->fsgid))
2734 		return 1;
2735 
2736 	ga = a->group_info;
2737 	gb = b->group_info;
2738 	if (ga == gb)
2739 		return 0;
2740 	if (ga == NULL)
2741 		return -1;
2742 	if (gb == NULL)
2743 		return 1;
2744 	if (ga->ngroups < gb->ngroups)
2745 		return -1;
2746 	if (ga->ngroups > gb->ngroups)
2747 		return 1;
2748 
2749 	for (g = 0; g < ga->ngroups; g++) {
2750 		if (gid_lt(ga->gid[g], gb->gid[g]))
2751 			return -1;
2752 		if (gid_gt(ga->gid[g], gb->gid[g]))
2753 			return 1;
2754 	}
2755 	return 0;
2756 }
2757 
2758 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2759 {
2760 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2761 
2762 	while (n != NULL) {
2763 		struct nfs_access_entry *entry =
2764 			rb_entry(n, struct nfs_access_entry, rb_node);
2765 		int cmp = access_cmp(cred, entry);
2766 
2767 		if (cmp < 0)
2768 			n = n->rb_left;
2769 		else if (cmp > 0)
2770 			n = n->rb_right;
2771 		else
2772 			return entry;
2773 	}
2774 	return NULL;
2775 }
2776 
2777 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, u32 *mask, bool may_block)
2778 {
2779 	struct nfs_inode *nfsi = NFS_I(inode);
2780 	struct nfs_access_entry *cache;
2781 	bool retry = true;
2782 	int err;
2783 
2784 	spin_lock(&inode->i_lock);
2785 	for(;;) {
2786 		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2787 			goto out_zap;
2788 		cache = nfs_access_search_rbtree(inode, cred);
2789 		err = -ENOENT;
2790 		if (cache == NULL)
2791 			goto out;
2792 		/* Found an entry, is our attribute cache valid? */
2793 		if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2794 			break;
2795 		if (!retry)
2796 			break;
2797 		err = -ECHILD;
2798 		if (!may_block)
2799 			goto out;
2800 		spin_unlock(&inode->i_lock);
2801 		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2802 		if (err)
2803 			return err;
2804 		spin_lock(&inode->i_lock);
2805 		retry = false;
2806 	}
2807 	*mask = cache->mask;
2808 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2809 	err = 0;
2810 out:
2811 	spin_unlock(&inode->i_lock);
2812 	return err;
2813 out_zap:
2814 	spin_unlock(&inode->i_lock);
2815 	nfs_access_zap_cache(inode);
2816 	return -ENOENT;
2817 }
2818 
2819 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, u32 *mask)
2820 {
2821 	/* Only check the most recently returned cache entry,
2822 	 * but do it without locking.
2823 	 */
2824 	struct nfs_inode *nfsi = NFS_I(inode);
2825 	struct nfs_access_entry *cache;
2826 	int err = -ECHILD;
2827 	struct list_head *lh;
2828 
2829 	rcu_read_lock();
2830 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2831 		goto out;
2832 	lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
2833 	cache = list_entry(lh, struct nfs_access_entry, lru);
2834 	if (lh == &nfsi->access_cache_entry_lru ||
2835 	    access_cmp(cred, cache) != 0)
2836 		cache = NULL;
2837 	if (cache == NULL)
2838 		goto out;
2839 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2840 		goto out;
2841 	*mask = cache->mask;
2842 	err = 0;
2843 out:
2844 	rcu_read_unlock();
2845 	return err;
2846 }
2847 
2848 int nfs_access_get_cached(struct inode *inode, const struct cred *cred,
2849 			  u32 *mask, bool may_block)
2850 {
2851 	int status;
2852 
2853 	status = nfs_access_get_cached_rcu(inode, cred, mask);
2854 	if (status != 0)
2855 		status = nfs_access_get_cached_locked(inode, cred, mask,
2856 		    may_block);
2857 
2858 	return status;
2859 }
2860 EXPORT_SYMBOL_GPL(nfs_access_get_cached);
2861 
2862 static void nfs_access_add_rbtree(struct inode *inode,
2863 				  struct nfs_access_entry *set,
2864 				  const struct cred *cred)
2865 {
2866 	struct nfs_inode *nfsi = NFS_I(inode);
2867 	struct rb_root *root_node = &nfsi->access_cache;
2868 	struct rb_node **p = &root_node->rb_node;
2869 	struct rb_node *parent = NULL;
2870 	struct nfs_access_entry *entry;
2871 	int cmp;
2872 
2873 	spin_lock(&inode->i_lock);
2874 	while (*p != NULL) {
2875 		parent = *p;
2876 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2877 		cmp = access_cmp(cred, entry);
2878 
2879 		if (cmp < 0)
2880 			p = &parent->rb_left;
2881 		else if (cmp > 0)
2882 			p = &parent->rb_right;
2883 		else
2884 			goto found;
2885 	}
2886 	rb_link_node(&set->rb_node, parent, p);
2887 	rb_insert_color(&set->rb_node, root_node);
2888 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2889 	spin_unlock(&inode->i_lock);
2890 	return;
2891 found:
2892 	rb_replace_node(parent, &set->rb_node, root_node);
2893 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2894 	list_del(&entry->lru);
2895 	spin_unlock(&inode->i_lock);
2896 	nfs_access_free_entry(entry);
2897 }
2898 
2899 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set,
2900 			  const struct cred *cred)
2901 {
2902 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2903 	if (cache == NULL)
2904 		return;
2905 	RB_CLEAR_NODE(&cache->rb_node);
2906 	cache->fsuid = cred->fsuid;
2907 	cache->fsgid = cred->fsgid;
2908 	cache->group_info = get_group_info(cred->group_info);
2909 	cache->mask = set->mask;
2910 
2911 	/* The above field assignments must be visible
2912 	 * before this item appears on the lru.  We cannot easily
2913 	 * use rcu_assign_pointer, so just force the memory barrier.
2914 	 */
2915 	smp_wmb();
2916 	nfs_access_add_rbtree(inode, cache, cred);
2917 
2918 	/* Update accounting */
2919 	smp_mb__before_atomic();
2920 	atomic_long_inc(&nfs_access_nr_entries);
2921 	smp_mb__after_atomic();
2922 
2923 	/* Add inode to global LRU list */
2924 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2925 		spin_lock(&nfs_access_lru_lock);
2926 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2927 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2928 					&nfs_access_lru_list);
2929 		spin_unlock(&nfs_access_lru_lock);
2930 	}
2931 	nfs_access_cache_enforce_limit();
2932 }
2933 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2934 
2935 #define NFS_MAY_READ (NFS_ACCESS_READ)
2936 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2937 		NFS_ACCESS_EXTEND | \
2938 		NFS_ACCESS_DELETE)
2939 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2940 		NFS_ACCESS_EXTEND)
2941 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2942 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2943 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2944 static int
2945 nfs_access_calc_mask(u32 access_result, umode_t umode)
2946 {
2947 	int mask = 0;
2948 
2949 	if (access_result & NFS_MAY_READ)
2950 		mask |= MAY_READ;
2951 	if (S_ISDIR(umode)) {
2952 		if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2953 			mask |= MAY_WRITE;
2954 		if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2955 			mask |= MAY_EXEC;
2956 	} else if (S_ISREG(umode)) {
2957 		if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2958 			mask |= MAY_WRITE;
2959 		if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2960 			mask |= MAY_EXEC;
2961 	} else if (access_result & NFS_MAY_WRITE)
2962 			mask |= MAY_WRITE;
2963 	return mask;
2964 }
2965 
2966 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2967 {
2968 	entry->mask = access_result;
2969 }
2970 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2971 
2972 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
2973 {
2974 	struct nfs_access_entry cache;
2975 	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2976 	int cache_mask = -1;
2977 	int status;
2978 
2979 	trace_nfs_access_enter(inode);
2980 
2981 	status = nfs_access_get_cached(inode, cred, &cache.mask, may_block);
2982 	if (status == 0)
2983 		goto out_cached;
2984 
2985 	status = -ECHILD;
2986 	if (!may_block)
2987 		goto out;
2988 
2989 	/*
2990 	 * Determine which access bits we want to ask for...
2991 	 */
2992 	cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND;
2993 	if (nfs_server_capable(inode, NFS_CAP_XATTR)) {
2994 		cache.mask |= NFS_ACCESS_XAREAD | NFS_ACCESS_XAWRITE |
2995 		    NFS_ACCESS_XALIST;
2996 	}
2997 	if (S_ISDIR(inode->i_mode))
2998 		cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
2999 	else
3000 		cache.mask |= NFS_ACCESS_EXECUTE;
3001 	status = NFS_PROTO(inode)->access(inode, &cache, cred);
3002 	if (status != 0) {
3003 		if (status == -ESTALE) {
3004 			if (!S_ISDIR(inode->i_mode))
3005 				nfs_set_inode_stale(inode);
3006 			else
3007 				nfs_zap_caches(inode);
3008 		}
3009 		goto out;
3010 	}
3011 	nfs_access_add_cache(inode, &cache, cred);
3012 out_cached:
3013 	cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
3014 	if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
3015 		status = -EACCES;
3016 out:
3017 	trace_nfs_access_exit(inode, mask, cache_mask, status);
3018 	return status;
3019 }
3020 
3021 static int nfs_open_permission_mask(int openflags)
3022 {
3023 	int mask = 0;
3024 
3025 	if (openflags & __FMODE_EXEC) {
3026 		/* ONLY check exec rights */
3027 		mask = MAY_EXEC;
3028 	} else {
3029 		if ((openflags & O_ACCMODE) != O_WRONLY)
3030 			mask |= MAY_READ;
3031 		if ((openflags & O_ACCMODE) != O_RDONLY)
3032 			mask |= MAY_WRITE;
3033 	}
3034 
3035 	return mask;
3036 }
3037 
3038 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
3039 {
3040 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
3041 }
3042 EXPORT_SYMBOL_GPL(nfs_may_open);
3043 
3044 static int nfs_execute_ok(struct inode *inode, int mask)
3045 {
3046 	struct nfs_server *server = NFS_SERVER(inode);
3047 	int ret = 0;
3048 
3049 	if (S_ISDIR(inode->i_mode))
3050 		return 0;
3051 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) {
3052 		if (mask & MAY_NOT_BLOCK)
3053 			return -ECHILD;
3054 		ret = __nfs_revalidate_inode(server, inode);
3055 	}
3056 	if (ret == 0 && !execute_ok(inode))
3057 		ret = -EACCES;
3058 	return ret;
3059 }
3060 
3061 int nfs_permission(struct user_namespace *mnt_userns,
3062 		   struct inode *inode,
3063 		   int mask)
3064 {
3065 	const struct cred *cred = current_cred();
3066 	int res = 0;
3067 
3068 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
3069 
3070 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
3071 		goto out;
3072 	/* Is this sys_access() ? */
3073 	if (mask & (MAY_ACCESS | MAY_CHDIR))
3074 		goto force_lookup;
3075 
3076 	switch (inode->i_mode & S_IFMT) {
3077 		case S_IFLNK:
3078 			goto out;
3079 		case S_IFREG:
3080 			if ((mask & MAY_OPEN) &&
3081 			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
3082 				return 0;
3083 			break;
3084 		case S_IFDIR:
3085 			/*
3086 			 * Optimize away all write operations, since the server
3087 			 * will check permissions when we perform the op.
3088 			 */
3089 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
3090 				goto out;
3091 	}
3092 
3093 force_lookup:
3094 	if (!NFS_PROTO(inode)->access)
3095 		goto out_notsup;
3096 
3097 	res = nfs_do_access(inode, cred, mask);
3098 out:
3099 	if (!res && (mask & MAY_EXEC))
3100 		res = nfs_execute_ok(inode, mask);
3101 
3102 	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
3103 		inode->i_sb->s_id, inode->i_ino, mask, res);
3104 	return res;
3105 out_notsup:
3106 	if (mask & MAY_NOT_BLOCK)
3107 		return -ECHILD;
3108 
3109 	res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE |
3110 						  NFS_INO_INVALID_OTHER);
3111 	if (res == 0)
3112 		res = generic_permission(&init_user_ns, inode, mask);
3113 	goto out;
3114 }
3115 EXPORT_SYMBOL_GPL(nfs_permission);
3116