xref: /openbmc/linux/fs/nfs/dir.c (revision 5bd8e16d)
1 /*
2  *  linux/fs/nfs/dir.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  nfs directory handling functions
7  *
8  * 10 Apr 1996	Added silly rename for unlink	--okir
9  * 28 Sep 1996	Improved directory cache --okir
10  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
11  *              Re-implemented silly rename for unlink, newly implemented
12  *              silly rename for nfs_rename() following the suggestions
13  *              of Olaf Kirch (okir) found in this file.
14  *              Following Linus comments on my original hack, this version
15  *              depends only on the dcache stuff and doesn't touch the inode
16  *              layer (iput() and friends).
17  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
18  */
19 
20 #include <linux/module.h>
21 #include <linux/time.h>
22 #include <linux/errno.h>
23 #include <linux/stat.h>
24 #include <linux/fcntl.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/mm.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/nfs_fs.h>
31 #include <linux/nfs_mount.h>
32 #include <linux/pagemap.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/swap.h>
37 #include <linux/sched.h>
38 #include <linux/kmemleak.h>
39 #include <linux/xattr.h>
40 
41 #include "delegation.h"
42 #include "iostat.h"
43 #include "internal.h"
44 #include "fscache.h"
45 
46 #include "nfstrace.h"
47 
48 /* #define NFS_DEBUG_VERBOSE 1 */
49 
50 static int nfs_opendir(struct inode *, struct file *);
51 static int nfs_closedir(struct inode *, struct file *);
52 static int nfs_readdir(struct file *, struct dir_context *);
53 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
54 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
55 static void nfs_readdir_clear_array(struct page*);
56 
57 const struct file_operations nfs_dir_operations = {
58 	.llseek		= nfs_llseek_dir,
59 	.read		= generic_read_dir,
60 	.iterate	= nfs_readdir,
61 	.open		= nfs_opendir,
62 	.release	= nfs_closedir,
63 	.fsync		= nfs_fsync_dir,
64 };
65 
66 const struct address_space_operations nfs_dir_aops = {
67 	.freepage = nfs_readdir_clear_array,
68 };
69 
70 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
71 {
72 	struct nfs_open_dir_context *ctx;
73 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
74 	if (ctx != NULL) {
75 		ctx->duped = 0;
76 		ctx->attr_gencount = NFS_I(dir)->attr_gencount;
77 		ctx->dir_cookie = 0;
78 		ctx->dup_cookie = 0;
79 		ctx->cred = get_rpccred(cred);
80 		return ctx;
81 	}
82 	return  ERR_PTR(-ENOMEM);
83 }
84 
85 static void put_nfs_open_dir_context(struct nfs_open_dir_context *ctx)
86 {
87 	put_rpccred(ctx->cred);
88 	kfree(ctx);
89 }
90 
91 /*
92  * Open file
93  */
94 static int
95 nfs_opendir(struct inode *inode, struct file *filp)
96 {
97 	int res = 0;
98 	struct nfs_open_dir_context *ctx;
99 	struct rpc_cred *cred;
100 
101 	dfprintk(FILE, "NFS: open dir(%s/%s)\n",
102 			filp->f_path.dentry->d_parent->d_name.name,
103 			filp->f_path.dentry->d_name.name);
104 
105 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
106 
107 	cred = rpc_lookup_cred();
108 	if (IS_ERR(cred))
109 		return PTR_ERR(cred);
110 	ctx = alloc_nfs_open_dir_context(inode, cred);
111 	if (IS_ERR(ctx)) {
112 		res = PTR_ERR(ctx);
113 		goto out;
114 	}
115 	filp->private_data = ctx;
116 	if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
117 		/* This is a mountpoint, so d_revalidate will never
118 		 * have been called, so we need to refresh the
119 		 * inode (for close-open consistency) ourselves.
120 		 */
121 		__nfs_revalidate_inode(NFS_SERVER(inode), inode);
122 	}
123 out:
124 	put_rpccred(cred);
125 	return res;
126 }
127 
128 static int
129 nfs_closedir(struct inode *inode, struct file *filp)
130 {
131 	put_nfs_open_dir_context(filp->private_data);
132 	return 0;
133 }
134 
135 struct nfs_cache_array_entry {
136 	u64 cookie;
137 	u64 ino;
138 	struct qstr string;
139 	unsigned char d_type;
140 };
141 
142 struct nfs_cache_array {
143 	int size;
144 	int eof_index;
145 	u64 last_cookie;
146 	struct nfs_cache_array_entry array[0];
147 };
148 
149 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
150 typedef struct {
151 	struct file	*file;
152 	struct page	*page;
153 	struct dir_context *ctx;
154 	unsigned long	page_index;
155 	u64		*dir_cookie;
156 	u64		last_cookie;
157 	loff_t		current_index;
158 	decode_dirent_t	decode;
159 
160 	unsigned long	timestamp;
161 	unsigned long	gencount;
162 	unsigned int	cache_entry_index;
163 	unsigned int	plus:1;
164 	unsigned int	eof:1;
165 } nfs_readdir_descriptor_t;
166 
167 /*
168  * The caller is responsible for calling nfs_readdir_release_array(page)
169  */
170 static
171 struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
172 {
173 	void *ptr;
174 	if (page == NULL)
175 		return ERR_PTR(-EIO);
176 	ptr = kmap(page);
177 	if (ptr == NULL)
178 		return ERR_PTR(-ENOMEM);
179 	return ptr;
180 }
181 
182 static
183 void nfs_readdir_release_array(struct page *page)
184 {
185 	kunmap(page);
186 }
187 
188 /*
189  * we are freeing strings created by nfs_add_to_readdir_array()
190  */
191 static
192 void nfs_readdir_clear_array(struct page *page)
193 {
194 	struct nfs_cache_array *array;
195 	int i;
196 
197 	array = kmap_atomic(page);
198 	for (i = 0; i < array->size; i++)
199 		kfree(array->array[i].string.name);
200 	kunmap_atomic(array);
201 }
202 
203 /*
204  * the caller is responsible for freeing qstr.name
205  * when called by nfs_readdir_add_to_array, the strings will be freed in
206  * nfs_clear_readdir_array()
207  */
208 static
209 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
210 {
211 	string->len = len;
212 	string->name = kmemdup(name, len, GFP_KERNEL);
213 	if (string->name == NULL)
214 		return -ENOMEM;
215 	/*
216 	 * Avoid a kmemleak false positive. The pointer to the name is stored
217 	 * in a page cache page which kmemleak does not scan.
218 	 */
219 	kmemleak_not_leak(string->name);
220 	string->hash = full_name_hash(name, len);
221 	return 0;
222 }
223 
224 static
225 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
226 {
227 	struct nfs_cache_array *array = nfs_readdir_get_array(page);
228 	struct nfs_cache_array_entry *cache_entry;
229 	int ret;
230 
231 	if (IS_ERR(array))
232 		return PTR_ERR(array);
233 
234 	cache_entry = &array->array[array->size];
235 
236 	/* Check that this entry lies within the page bounds */
237 	ret = -ENOSPC;
238 	if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
239 		goto out;
240 
241 	cache_entry->cookie = entry->prev_cookie;
242 	cache_entry->ino = entry->ino;
243 	cache_entry->d_type = entry->d_type;
244 	ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
245 	if (ret)
246 		goto out;
247 	array->last_cookie = entry->cookie;
248 	array->size++;
249 	if (entry->eof != 0)
250 		array->eof_index = array->size;
251 out:
252 	nfs_readdir_release_array(page);
253 	return ret;
254 }
255 
256 static
257 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
258 {
259 	loff_t diff = desc->ctx->pos - desc->current_index;
260 	unsigned int index;
261 
262 	if (diff < 0)
263 		goto out_eof;
264 	if (diff >= array->size) {
265 		if (array->eof_index >= 0)
266 			goto out_eof;
267 		return -EAGAIN;
268 	}
269 
270 	index = (unsigned int)diff;
271 	*desc->dir_cookie = array->array[index].cookie;
272 	desc->cache_entry_index = index;
273 	return 0;
274 out_eof:
275 	desc->eof = 1;
276 	return -EBADCOOKIE;
277 }
278 
279 static
280 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
281 {
282 	int i;
283 	loff_t new_pos;
284 	int status = -EAGAIN;
285 
286 	for (i = 0; i < array->size; i++) {
287 		if (array->array[i].cookie == *desc->dir_cookie) {
288 			struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
289 			struct nfs_open_dir_context *ctx = desc->file->private_data;
290 
291 			new_pos = desc->current_index + i;
292 			if (ctx->attr_gencount != nfsi->attr_gencount
293 			    || (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))) {
294 				ctx->duped = 0;
295 				ctx->attr_gencount = nfsi->attr_gencount;
296 			} else if (new_pos < desc->ctx->pos) {
297 				if (ctx->duped > 0
298 				    && ctx->dup_cookie == *desc->dir_cookie) {
299 					if (printk_ratelimit()) {
300 						pr_notice("NFS: directory %s/%s contains a readdir loop."
301 								"Please contact your server vendor.  "
302 								"The file: %s has duplicate cookie %llu\n",
303 								desc->file->f_dentry->d_parent->d_name.name,
304 								desc->file->f_dentry->d_name.name,
305 								array->array[i].string.name,
306 								*desc->dir_cookie);
307 					}
308 					status = -ELOOP;
309 					goto out;
310 				}
311 				ctx->dup_cookie = *desc->dir_cookie;
312 				ctx->duped = -1;
313 			}
314 			desc->ctx->pos = new_pos;
315 			desc->cache_entry_index = i;
316 			return 0;
317 		}
318 	}
319 	if (array->eof_index >= 0) {
320 		status = -EBADCOOKIE;
321 		if (*desc->dir_cookie == array->last_cookie)
322 			desc->eof = 1;
323 	}
324 out:
325 	return status;
326 }
327 
328 static
329 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
330 {
331 	struct nfs_cache_array *array;
332 	int status;
333 
334 	array = nfs_readdir_get_array(desc->page);
335 	if (IS_ERR(array)) {
336 		status = PTR_ERR(array);
337 		goto out;
338 	}
339 
340 	if (*desc->dir_cookie == 0)
341 		status = nfs_readdir_search_for_pos(array, desc);
342 	else
343 		status = nfs_readdir_search_for_cookie(array, desc);
344 
345 	if (status == -EAGAIN) {
346 		desc->last_cookie = array->last_cookie;
347 		desc->current_index += array->size;
348 		desc->page_index++;
349 	}
350 	nfs_readdir_release_array(desc->page);
351 out:
352 	return status;
353 }
354 
355 /* Fill a page with xdr information before transferring to the cache page */
356 static
357 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
358 			struct nfs_entry *entry, struct file *file, struct inode *inode)
359 {
360 	struct nfs_open_dir_context *ctx = file->private_data;
361 	struct rpc_cred	*cred = ctx->cred;
362 	unsigned long	timestamp, gencount;
363 	int		error;
364 
365  again:
366 	timestamp = jiffies;
367 	gencount = nfs_inc_attr_generation_counter();
368 	error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages,
369 					  NFS_SERVER(inode)->dtsize, desc->plus);
370 	if (error < 0) {
371 		/* We requested READDIRPLUS, but the server doesn't grok it */
372 		if (error == -ENOTSUPP && desc->plus) {
373 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
374 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
375 			desc->plus = 0;
376 			goto again;
377 		}
378 		goto error;
379 	}
380 	desc->timestamp = timestamp;
381 	desc->gencount = gencount;
382 error:
383 	return error;
384 }
385 
386 static int xdr_decode(nfs_readdir_descriptor_t *desc,
387 		      struct nfs_entry *entry, struct xdr_stream *xdr)
388 {
389 	int error;
390 
391 	error = desc->decode(xdr, entry, desc->plus);
392 	if (error)
393 		return error;
394 	entry->fattr->time_start = desc->timestamp;
395 	entry->fattr->gencount = desc->gencount;
396 	return 0;
397 }
398 
399 static
400 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
401 {
402 	if (dentry->d_inode == NULL)
403 		goto different;
404 	if (nfs_compare_fh(entry->fh, NFS_FH(dentry->d_inode)) != 0)
405 		goto different;
406 	return 1;
407 different:
408 	return 0;
409 }
410 
411 static
412 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
413 {
414 	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
415 		return false;
416 	if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
417 		return true;
418 	if (ctx->pos == 0)
419 		return true;
420 	return false;
421 }
422 
423 /*
424  * This function is called by the lookup code to request the use of
425  * readdirplus to accelerate any future lookups in the same
426  * directory.
427  */
428 static
429 void nfs_advise_use_readdirplus(struct inode *dir)
430 {
431 	set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags);
432 }
433 
434 static
435 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
436 {
437 	struct qstr filename = QSTR_INIT(entry->name, entry->len);
438 	struct dentry *dentry;
439 	struct dentry *alias;
440 	struct inode *dir = parent->d_inode;
441 	struct inode *inode;
442 	int status;
443 
444 	if (filename.name[0] == '.') {
445 		if (filename.len == 1)
446 			return;
447 		if (filename.len == 2 && filename.name[1] == '.')
448 			return;
449 	}
450 	filename.hash = full_name_hash(filename.name, filename.len);
451 
452 	dentry = d_lookup(parent, &filename);
453 	if (dentry != NULL) {
454 		if (nfs_same_file(dentry, entry)) {
455 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
456 			status = nfs_refresh_inode(dentry->d_inode, entry->fattr);
457 			if (!status)
458 				nfs_setsecurity(dentry->d_inode, entry->fattr, entry->label);
459 			goto out;
460 		} else {
461 			if (d_invalidate(dentry) != 0)
462 				goto out;
463 			dput(dentry);
464 		}
465 	}
466 
467 	dentry = d_alloc(parent, &filename);
468 	if (dentry == NULL)
469 		return;
470 
471 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
472 	if (IS_ERR(inode))
473 		goto out;
474 
475 	alias = d_materialise_unique(dentry, inode);
476 	if (IS_ERR(alias))
477 		goto out;
478 	else if (alias) {
479 		nfs_set_verifier(alias, nfs_save_change_attribute(dir));
480 		dput(alias);
481 	} else
482 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
483 
484 out:
485 	dput(dentry);
486 }
487 
488 /* Perform conversion from xdr to cache array */
489 static
490 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
491 				struct page **xdr_pages, struct page *page, unsigned int buflen)
492 {
493 	struct xdr_stream stream;
494 	struct xdr_buf buf;
495 	struct page *scratch;
496 	struct nfs_cache_array *array;
497 	unsigned int count = 0;
498 	int status;
499 
500 	scratch = alloc_page(GFP_KERNEL);
501 	if (scratch == NULL)
502 		return -ENOMEM;
503 
504 	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
505 	xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
506 
507 	do {
508 		status = xdr_decode(desc, entry, &stream);
509 		if (status != 0) {
510 			if (status == -EAGAIN)
511 				status = 0;
512 			break;
513 		}
514 
515 		count++;
516 
517 		if (desc->plus != 0)
518 			nfs_prime_dcache(desc->file->f_path.dentry, entry);
519 
520 		status = nfs_readdir_add_to_array(entry, page);
521 		if (status != 0)
522 			break;
523 	} while (!entry->eof);
524 
525 	if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
526 		array = nfs_readdir_get_array(page);
527 		if (!IS_ERR(array)) {
528 			array->eof_index = array->size;
529 			status = 0;
530 			nfs_readdir_release_array(page);
531 		} else
532 			status = PTR_ERR(array);
533 	}
534 
535 	put_page(scratch);
536 	return status;
537 }
538 
539 static
540 void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages)
541 {
542 	unsigned int i;
543 	for (i = 0; i < npages; i++)
544 		put_page(pages[i]);
545 }
546 
547 static
548 void nfs_readdir_free_large_page(void *ptr, struct page **pages,
549 		unsigned int npages)
550 {
551 	nfs_readdir_free_pagearray(pages, npages);
552 }
553 
554 /*
555  * nfs_readdir_large_page will allocate pages that must be freed with a call
556  * to nfs_readdir_free_large_page
557  */
558 static
559 int nfs_readdir_large_page(struct page **pages, unsigned int npages)
560 {
561 	unsigned int i;
562 
563 	for (i = 0; i < npages; i++) {
564 		struct page *page = alloc_page(GFP_KERNEL);
565 		if (page == NULL)
566 			goto out_freepages;
567 		pages[i] = page;
568 	}
569 	return 0;
570 
571 out_freepages:
572 	nfs_readdir_free_pagearray(pages, i);
573 	return -ENOMEM;
574 }
575 
576 static
577 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
578 {
579 	struct page *pages[NFS_MAX_READDIR_PAGES];
580 	void *pages_ptr = NULL;
581 	struct nfs_entry entry;
582 	struct file	*file = desc->file;
583 	struct nfs_cache_array *array;
584 	int status = -ENOMEM;
585 	unsigned int array_size = ARRAY_SIZE(pages);
586 
587 	entry.prev_cookie = 0;
588 	entry.cookie = desc->last_cookie;
589 	entry.eof = 0;
590 	entry.fh = nfs_alloc_fhandle();
591 	entry.fattr = nfs_alloc_fattr();
592 	entry.server = NFS_SERVER(inode);
593 	if (entry.fh == NULL || entry.fattr == NULL)
594 		goto out;
595 
596 	entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
597 	if (IS_ERR(entry.label)) {
598 		status = PTR_ERR(entry.label);
599 		goto out;
600 	}
601 
602 	array = nfs_readdir_get_array(page);
603 	if (IS_ERR(array)) {
604 		status = PTR_ERR(array);
605 		goto out_label_free;
606 	}
607 	memset(array, 0, sizeof(struct nfs_cache_array));
608 	array->eof_index = -1;
609 
610 	status = nfs_readdir_large_page(pages, array_size);
611 	if (status < 0)
612 		goto out_release_array;
613 	do {
614 		unsigned int pglen;
615 		status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
616 
617 		if (status < 0)
618 			break;
619 		pglen = status;
620 		status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
621 		if (status < 0) {
622 			if (status == -ENOSPC)
623 				status = 0;
624 			break;
625 		}
626 	} while (array->eof_index < 0);
627 
628 	nfs_readdir_free_large_page(pages_ptr, pages, array_size);
629 out_release_array:
630 	nfs_readdir_release_array(page);
631 out_label_free:
632 	nfs4_label_free(entry.label);
633 out:
634 	nfs_free_fattr(entry.fattr);
635 	nfs_free_fhandle(entry.fh);
636 	return status;
637 }
638 
639 /*
640  * Now we cache directories properly, by converting xdr information
641  * to an array that can be used for lookups later.  This results in
642  * fewer cache pages, since we can store more information on each page.
643  * We only need to convert from xdr once so future lookups are much simpler
644  */
645 static
646 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
647 {
648 	struct inode	*inode = file_inode(desc->file);
649 	int ret;
650 
651 	ret = nfs_readdir_xdr_to_array(desc, page, inode);
652 	if (ret < 0)
653 		goto error;
654 	SetPageUptodate(page);
655 
656 	if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
657 		/* Should never happen */
658 		nfs_zap_mapping(inode, inode->i_mapping);
659 	}
660 	unlock_page(page);
661 	return 0;
662  error:
663 	unlock_page(page);
664 	return ret;
665 }
666 
667 static
668 void cache_page_release(nfs_readdir_descriptor_t *desc)
669 {
670 	if (!desc->page->mapping)
671 		nfs_readdir_clear_array(desc->page);
672 	page_cache_release(desc->page);
673 	desc->page = NULL;
674 }
675 
676 static
677 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
678 {
679 	return read_cache_page(file_inode(desc->file)->i_mapping,
680 			desc->page_index, (filler_t *)nfs_readdir_filler, desc);
681 }
682 
683 /*
684  * Returns 0 if desc->dir_cookie was found on page desc->page_index
685  */
686 static
687 int find_cache_page(nfs_readdir_descriptor_t *desc)
688 {
689 	int res;
690 
691 	desc->page = get_cache_page(desc);
692 	if (IS_ERR(desc->page))
693 		return PTR_ERR(desc->page);
694 
695 	res = nfs_readdir_search_array(desc);
696 	if (res != 0)
697 		cache_page_release(desc);
698 	return res;
699 }
700 
701 /* Search for desc->dir_cookie from the beginning of the page cache */
702 static inline
703 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
704 {
705 	int res;
706 
707 	if (desc->page_index == 0) {
708 		desc->current_index = 0;
709 		desc->last_cookie = 0;
710 	}
711 	do {
712 		res = find_cache_page(desc);
713 	} while (res == -EAGAIN);
714 	return res;
715 }
716 
717 /*
718  * Once we've found the start of the dirent within a page: fill 'er up...
719  */
720 static
721 int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
722 {
723 	struct file	*file = desc->file;
724 	int i = 0;
725 	int res = 0;
726 	struct nfs_cache_array *array = NULL;
727 	struct nfs_open_dir_context *ctx = file->private_data;
728 
729 	array = nfs_readdir_get_array(desc->page);
730 	if (IS_ERR(array)) {
731 		res = PTR_ERR(array);
732 		goto out;
733 	}
734 
735 	for (i = desc->cache_entry_index; i < array->size; i++) {
736 		struct nfs_cache_array_entry *ent;
737 
738 		ent = &array->array[i];
739 		if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
740 		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
741 			desc->eof = 1;
742 			break;
743 		}
744 		desc->ctx->pos++;
745 		if (i < (array->size-1))
746 			*desc->dir_cookie = array->array[i+1].cookie;
747 		else
748 			*desc->dir_cookie = array->last_cookie;
749 		if (ctx->duped != 0)
750 			ctx->duped = 1;
751 	}
752 	if (array->eof_index >= 0)
753 		desc->eof = 1;
754 
755 	nfs_readdir_release_array(desc->page);
756 out:
757 	cache_page_release(desc);
758 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
759 			(unsigned long long)*desc->dir_cookie, res);
760 	return res;
761 }
762 
763 /*
764  * If we cannot find a cookie in our cache, we suspect that this is
765  * because it points to a deleted file, so we ask the server to return
766  * whatever it thinks is the next entry. We then feed this to filldir.
767  * If all goes well, we should then be able to find our way round the
768  * cache on the next call to readdir_search_pagecache();
769  *
770  * NOTE: we cannot add the anonymous page to the pagecache because
771  *	 the data it contains might not be page aligned. Besides,
772  *	 we should already have a complete representation of the
773  *	 directory in the page cache by the time we get here.
774  */
775 static inline
776 int uncached_readdir(nfs_readdir_descriptor_t *desc)
777 {
778 	struct page	*page = NULL;
779 	int		status;
780 	struct inode *inode = file_inode(desc->file);
781 	struct nfs_open_dir_context *ctx = desc->file->private_data;
782 
783 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
784 			(unsigned long long)*desc->dir_cookie);
785 
786 	page = alloc_page(GFP_HIGHUSER);
787 	if (!page) {
788 		status = -ENOMEM;
789 		goto out;
790 	}
791 
792 	desc->page_index = 0;
793 	desc->last_cookie = *desc->dir_cookie;
794 	desc->page = page;
795 	ctx->duped = 0;
796 
797 	status = nfs_readdir_xdr_to_array(desc, page, inode);
798 	if (status < 0)
799 		goto out_release;
800 
801 	status = nfs_do_filldir(desc);
802 
803  out:
804 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
805 			__func__, status);
806 	return status;
807  out_release:
808 	cache_page_release(desc);
809 	goto out;
810 }
811 
812 /* The file offset position represents the dirent entry number.  A
813    last cookie cache takes care of the common case of reading the
814    whole directory.
815  */
816 static int nfs_readdir(struct file *file, struct dir_context *ctx)
817 {
818 	struct dentry	*dentry = file->f_path.dentry;
819 	struct inode	*inode = dentry->d_inode;
820 	nfs_readdir_descriptor_t my_desc,
821 			*desc = &my_desc;
822 	struct nfs_open_dir_context *dir_ctx = file->private_data;
823 	int res = 0;
824 
825 	dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n",
826 			dentry->d_parent->d_name.name, dentry->d_name.name,
827 			(long long)ctx->pos);
828 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
829 
830 	/*
831 	 * ctx->pos points to the dirent entry number.
832 	 * *desc->dir_cookie has the cookie for the next entry. We have
833 	 * to either find the entry with the appropriate number or
834 	 * revalidate the cookie.
835 	 */
836 	memset(desc, 0, sizeof(*desc));
837 
838 	desc->file = file;
839 	desc->ctx = ctx;
840 	desc->dir_cookie = &dir_ctx->dir_cookie;
841 	desc->decode = NFS_PROTO(inode)->decode_dirent;
842 	desc->plus = nfs_use_readdirplus(inode, ctx) ? 1 : 0;
843 
844 	nfs_block_sillyrename(dentry);
845 	if (ctx->pos == 0 || nfs_attribute_cache_expired(inode))
846 		res = nfs_revalidate_mapping(inode, file->f_mapping);
847 	if (res < 0)
848 		goto out;
849 
850 	do {
851 		res = readdir_search_pagecache(desc);
852 
853 		if (res == -EBADCOOKIE) {
854 			res = 0;
855 			/* This means either end of directory */
856 			if (*desc->dir_cookie && desc->eof == 0) {
857 				/* Or that the server has 'lost' a cookie */
858 				res = uncached_readdir(desc);
859 				if (res == 0)
860 					continue;
861 			}
862 			break;
863 		}
864 		if (res == -ETOOSMALL && desc->plus) {
865 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
866 			nfs_zap_caches(inode);
867 			desc->page_index = 0;
868 			desc->plus = 0;
869 			desc->eof = 0;
870 			continue;
871 		}
872 		if (res < 0)
873 			break;
874 
875 		res = nfs_do_filldir(desc);
876 		if (res < 0)
877 			break;
878 	} while (!desc->eof);
879 out:
880 	nfs_unblock_sillyrename(dentry);
881 	if (res > 0)
882 		res = 0;
883 	dfprintk(FILE, "NFS: readdir(%s/%s) returns %d\n",
884 			dentry->d_parent->d_name.name, dentry->d_name.name,
885 			res);
886 	return res;
887 }
888 
889 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
890 {
891 	struct dentry *dentry = filp->f_path.dentry;
892 	struct inode *inode = dentry->d_inode;
893 	struct nfs_open_dir_context *dir_ctx = filp->private_data;
894 
895 	dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n",
896 			dentry->d_parent->d_name.name,
897 			dentry->d_name.name,
898 			offset, whence);
899 
900 	mutex_lock(&inode->i_mutex);
901 	switch (whence) {
902 		case 1:
903 			offset += filp->f_pos;
904 		case 0:
905 			if (offset >= 0)
906 				break;
907 		default:
908 			offset = -EINVAL;
909 			goto out;
910 	}
911 	if (offset != filp->f_pos) {
912 		filp->f_pos = offset;
913 		dir_ctx->dir_cookie = 0;
914 		dir_ctx->duped = 0;
915 	}
916 out:
917 	mutex_unlock(&inode->i_mutex);
918 	return offset;
919 }
920 
921 /*
922  * All directory operations under NFS are synchronous, so fsync()
923  * is a dummy operation.
924  */
925 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
926 			 int datasync)
927 {
928 	struct dentry *dentry = filp->f_path.dentry;
929 	struct inode *inode = dentry->d_inode;
930 
931 	dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n",
932 			dentry->d_parent->d_name.name, dentry->d_name.name,
933 			datasync);
934 
935 	mutex_lock(&inode->i_mutex);
936 	nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC);
937 	mutex_unlock(&inode->i_mutex);
938 	return 0;
939 }
940 
941 /**
942  * nfs_force_lookup_revalidate - Mark the directory as having changed
943  * @dir - pointer to directory inode
944  *
945  * This forces the revalidation code in nfs_lookup_revalidate() to do a
946  * full lookup on all child dentries of 'dir' whenever a change occurs
947  * on the server that might have invalidated our dcache.
948  *
949  * The caller should be holding dir->i_lock
950  */
951 void nfs_force_lookup_revalidate(struct inode *dir)
952 {
953 	NFS_I(dir)->cache_change_attribute++;
954 }
955 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
956 
957 /*
958  * A check for whether or not the parent directory has changed.
959  * In the case it has, we assume that the dentries are untrustworthy
960  * and may need to be looked up again.
961  */
962 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
963 {
964 	if (IS_ROOT(dentry))
965 		return 1;
966 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
967 		return 0;
968 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
969 		return 0;
970 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
971 	if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
972 		return 0;
973 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
974 		return 0;
975 	return 1;
976 }
977 
978 /*
979  * Use intent information to check whether or not we're going to do
980  * an O_EXCL create using this path component.
981  */
982 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
983 {
984 	if (NFS_PROTO(dir)->version == 2)
985 		return 0;
986 	return flags & LOOKUP_EXCL;
987 }
988 
989 /*
990  * Inode and filehandle revalidation for lookups.
991  *
992  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
993  * or if the intent information indicates that we're about to open this
994  * particular file and the "nocto" mount flag is not set.
995  *
996  */
997 static
998 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
999 {
1000 	struct nfs_server *server = NFS_SERVER(inode);
1001 	int ret;
1002 
1003 	if (IS_AUTOMOUNT(inode))
1004 		return 0;
1005 	/* VFS wants an on-the-wire revalidation */
1006 	if (flags & LOOKUP_REVAL)
1007 		goto out_force;
1008 	/* This is an open(2) */
1009 	if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) &&
1010 	    (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
1011 		goto out_force;
1012 out:
1013 	return (inode->i_nlink == 0) ? -ENOENT : 0;
1014 out_force:
1015 	ret = __nfs_revalidate_inode(server, inode);
1016 	if (ret != 0)
1017 		return ret;
1018 	goto out;
1019 }
1020 
1021 /*
1022  * We judge how long we want to trust negative
1023  * dentries by looking at the parent inode mtime.
1024  *
1025  * If parent mtime has changed, we revalidate, else we wait for a
1026  * period corresponding to the parent's attribute cache timeout value.
1027  */
1028 static inline
1029 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1030 		       unsigned int flags)
1031 {
1032 	/* Don't revalidate a negative dentry if we're creating a new file */
1033 	if (flags & LOOKUP_CREATE)
1034 		return 0;
1035 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1036 		return 1;
1037 	return !nfs_check_verifier(dir, dentry);
1038 }
1039 
1040 /*
1041  * This is called every time the dcache has a lookup hit,
1042  * and we should check whether we can really trust that
1043  * lookup.
1044  *
1045  * NOTE! The hit can be a negative hit too, don't assume
1046  * we have an inode!
1047  *
1048  * If the parent directory is seen to have changed, we throw out the
1049  * cached dentry and do a new lookup.
1050  */
1051 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1052 {
1053 	struct inode *dir;
1054 	struct inode *inode;
1055 	struct dentry *parent;
1056 	struct nfs_fh *fhandle = NULL;
1057 	struct nfs_fattr *fattr = NULL;
1058 	struct nfs4_label *label = NULL;
1059 	int error;
1060 
1061 	if (flags & LOOKUP_RCU)
1062 		return -ECHILD;
1063 
1064 	parent = dget_parent(dentry);
1065 	dir = parent->d_inode;
1066 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1067 	inode = dentry->d_inode;
1068 
1069 	if (!inode) {
1070 		if (nfs_neg_need_reval(dir, dentry, flags))
1071 			goto out_bad;
1072 		goto out_valid_noent;
1073 	}
1074 
1075 	if (is_bad_inode(inode)) {
1076 		dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
1077 				__func__, dentry->d_parent->d_name.name,
1078 				dentry->d_name.name);
1079 		goto out_bad;
1080 	}
1081 
1082 	if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1083 		goto out_set_verifier;
1084 
1085 	/* Force a full look up iff the parent directory has changed */
1086 	if (!nfs_is_exclusive_create(dir, flags) && nfs_check_verifier(dir, dentry)) {
1087 		if (nfs_lookup_verify_inode(inode, flags))
1088 			goto out_zap_parent;
1089 		goto out_valid;
1090 	}
1091 
1092 	if (NFS_STALE(inode))
1093 		goto out_bad;
1094 
1095 	error = -ENOMEM;
1096 	fhandle = nfs_alloc_fhandle();
1097 	fattr = nfs_alloc_fattr();
1098 	if (fhandle == NULL || fattr == NULL)
1099 		goto out_error;
1100 
1101 	label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
1102 	if (IS_ERR(label))
1103 		goto out_error;
1104 
1105 	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1106 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1107 	trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1108 	if (error)
1109 		goto out_bad;
1110 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1111 		goto out_bad;
1112 	if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1113 		goto out_bad;
1114 
1115 	nfs_setsecurity(inode, fattr, label);
1116 
1117 	nfs_free_fattr(fattr);
1118 	nfs_free_fhandle(fhandle);
1119 	nfs4_label_free(label);
1120 
1121 out_set_verifier:
1122 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1123  out_valid:
1124 	/* Success: notify readdir to use READDIRPLUS */
1125 	nfs_advise_use_readdirplus(dir);
1126  out_valid_noent:
1127 	dput(parent);
1128 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
1129 			__func__, dentry->d_parent->d_name.name,
1130 			dentry->d_name.name);
1131 	return 1;
1132 out_zap_parent:
1133 	nfs_zap_caches(dir);
1134  out_bad:
1135 	nfs_free_fattr(fattr);
1136 	nfs_free_fhandle(fhandle);
1137 	nfs4_label_free(label);
1138 	nfs_mark_for_revalidate(dir);
1139 	if (inode && S_ISDIR(inode->i_mode)) {
1140 		/* Purge readdir caches. */
1141 		nfs_zap_caches(inode);
1142 		if (dentry->d_flags & DCACHE_DISCONNECTED)
1143 			goto out_valid;
1144 	}
1145 	/* If we have submounts, don't unhash ! */
1146 	if (check_submounts_and_drop(dentry) != 0)
1147 		goto out_valid;
1148 
1149 	dput(parent);
1150 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
1151 			__func__, dentry->d_parent->d_name.name,
1152 			dentry->d_name.name);
1153 	return 0;
1154 out_error:
1155 	nfs_free_fattr(fattr);
1156 	nfs_free_fhandle(fhandle);
1157 	nfs4_label_free(label);
1158 	dput(parent);
1159 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n",
1160 			__func__, dentry->d_parent->d_name.name,
1161 			dentry->d_name.name, error);
1162 	return error;
1163 }
1164 
1165 /*
1166  * A weaker form of d_revalidate for revalidating just the dentry->d_inode
1167  * when we don't really care about the dentry name. This is called when a
1168  * pathwalk ends on a dentry that was not found via a normal lookup in the
1169  * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1170  *
1171  * In this situation, we just want to verify that the inode itself is OK
1172  * since the dentry might have changed on the server.
1173  */
1174 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1175 {
1176 	int error;
1177 	struct inode *inode = dentry->d_inode;
1178 
1179 	/*
1180 	 * I believe we can only get a negative dentry here in the case of a
1181 	 * procfs-style symlink. Just assume it's correct for now, but we may
1182 	 * eventually need to do something more here.
1183 	 */
1184 	if (!inode) {
1185 		dfprintk(LOOKUPCACHE, "%s: %s/%s has negative inode\n",
1186 				__func__, dentry->d_parent->d_name.name,
1187 				dentry->d_name.name);
1188 		return 1;
1189 	}
1190 
1191 	if (is_bad_inode(inode)) {
1192 		dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
1193 				__func__, dentry->d_parent->d_name.name,
1194 				dentry->d_name.name);
1195 		return 0;
1196 	}
1197 
1198 	error = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1199 	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1200 			__func__, inode->i_ino, error ? "invalid" : "valid");
1201 	return !error;
1202 }
1203 
1204 /*
1205  * This is called from dput() when d_count is going to 0.
1206  */
1207 static int nfs_dentry_delete(const struct dentry *dentry)
1208 {
1209 	dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
1210 		dentry->d_parent->d_name.name, dentry->d_name.name,
1211 		dentry->d_flags);
1212 
1213 	/* Unhash any dentry with a stale inode */
1214 	if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
1215 		return 1;
1216 
1217 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1218 		/* Unhash it, so that ->d_iput() would be called */
1219 		return 1;
1220 	}
1221 	if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1222 		/* Unhash it, so that ancestors of killed async unlink
1223 		 * files will be cleaned up during umount */
1224 		return 1;
1225 	}
1226 	return 0;
1227 
1228 }
1229 
1230 /* Ensure that we revalidate inode->i_nlink */
1231 static void nfs_drop_nlink(struct inode *inode)
1232 {
1233 	spin_lock(&inode->i_lock);
1234 	/* drop the inode if we're reasonably sure this is the last link */
1235 	if (inode->i_nlink == 1)
1236 		clear_nlink(inode);
1237 	NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR;
1238 	spin_unlock(&inode->i_lock);
1239 }
1240 
1241 /*
1242  * Called when the dentry loses inode.
1243  * We use it to clean up silly-renamed files.
1244  */
1245 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1246 {
1247 	if (S_ISDIR(inode->i_mode))
1248 		/* drop any readdir cache as it could easily be old */
1249 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1250 
1251 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1252 		nfs_complete_unlink(dentry, inode);
1253 		nfs_drop_nlink(inode);
1254 	}
1255 	iput(inode);
1256 }
1257 
1258 static void nfs_d_release(struct dentry *dentry)
1259 {
1260 	/* free cached devname value, if it survived that far */
1261 	if (unlikely(dentry->d_fsdata)) {
1262 		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1263 			WARN_ON(1);
1264 		else
1265 			kfree(dentry->d_fsdata);
1266 	}
1267 }
1268 
1269 const struct dentry_operations nfs_dentry_operations = {
1270 	.d_revalidate	= nfs_lookup_revalidate,
1271 	.d_weak_revalidate	= nfs_weak_revalidate,
1272 	.d_delete	= nfs_dentry_delete,
1273 	.d_iput		= nfs_dentry_iput,
1274 	.d_automount	= nfs_d_automount,
1275 	.d_release	= nfs_d_release,
1276 };
1277 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1278 
1279 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1280 {
1281 	struct dentry *res;
1282 	struct dentry *parent;
1283 	struct inode *inode = NULL;
1284 	struct nfs_fh *fhandle = NULL;
1285 	struct nfs_fattr *fattr = NULL;
1286 	struct nfs4_label *label = NULL;
1287 	int error;
1288 
1289 	dfprintk(VFS, "NFS: lookup(%s/%s)\n",
1290 		dentry->d_parent->d_name.name, dentry->d_name.name);
1291 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1292 
1293 	res = ERR_PTR(-ENAMETOOLONG);
1294 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1295 		goto out;
1296 
1297 	/*
1298 	 * If we're doing an exclusive create, optimize away the lookup
1299 	 * but don't hash the dentry.
1300 	 */
1301 	if (nfs_is_exclusive_create(dir, flags)) {
1302 		d_instantiate(dentry, NULL);
1303 		res = NULL;
1304 		goto out;
1305 	}
1306 
1307 	res = ERR_PTR(-ENOMEM);
1308 	fhandle = nfs_alloc_fhandle();
1309 	fattr = nfs_alloc_fattr();
1310 	if (fhandle == NULL || fattr == NULL)
1311 		goto out;
1312 
1313 	label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1314 	if (IS_ERR(label))
1315 		goto out;
1316 
1317 	parent = dentry->d_parent;
1318 	/* Protect against concurrent sillydeletes */
1319 	trace_nfs_lookup_enter(dir, dentry, flags);
1320 	nfs_block_sillyrename(parent);
1321 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1322 	if (error == -ENOENT)
1323 		goto no_entry;
1324 	if (error < 0) {
1325 		res = ERR_PTR(error);
1326 		goto out_unblock_sillyrename;
1327 	}
1328 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1329 	res = ERR_CAST(inode);
1330 	if (IS_ERR(res))
1331 		goto out_unblock_sillyrename;
1332 
1333 	/* Success: notify readdir to use READDIRPLUS */
1334 	nfs_advise_use_readdirplus(dir);
1335 
1336 no_entry:
1337 	res = d_materialise_unique(dentry, inode);
1338 	if (res != NULL) {
1339 		if (IS_ERR(res))
1340 			goto out_unblock_sillyrename;
1341 		dentry = res;
1342 	}
1343 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1344 out_unblock_sillyrename:
1345 	nfs_unblock_sillyrename(parent);
1346 	trace_nfs_lookup_exit(dir, dentry, flags, error);
1347 	nfs4_label_free(label);
1348 out:
1349 	nfs_free_fattr(fattr);
1350 	nfs_free_fhandle(fhandle);
1351 	return res;
1352 }
1353 EXPORT_SYMBOL_GPL(nfs_lookup);
1354 
1355 #if IS_ENABLED(CONFIG_NFS_V4)
1356 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1357 
1358 const struct dentry_operations nfs4_dentry_operations = {
1359 	.d_revalidate	= nfs4_lookup_revalidate,
1360 	.d_delete	= nfs_dentry_delete,
1361 	.d_iput		= nfs_dentry_iput,
1362 	.d_automount	= nfs_d_automount,
1363 	.d_release	= nfs_d_release,
1364 };
1365 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1366 
1367 static fmode_t flags_to_mode(int flags)
1368 {
1369 	fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1370 	if ((flags & O_ACCMODE) != O_WRONLY)
1371 		res |= FMODE_READ;
1372 	if ((flags & O_ACCMODE) != O_RDONLY)
1373 		res |= FMODE_WRITE;
1374 	return res;
1375 }
1376 
1377 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags)
1378 {
1379 	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags));
1380 }
1381 
1382 static int do_open(struct inode *inode, struct file *filp)
1383 {
1384 	nfs_fscache_set_inode_cookie(inode, filp);
1385 	return 0;
1386 }
1387 
1388 static int nfs_finish_open(struct nfs_open_context *ctx,
1389 			   struct dentry *dentry,
1390 			   struct file *file, unsigned open_flags,
1391 			   int *opened)
1392 {
1393 	int err;
1394 
1395 	if ((open_flags & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL))
1396 		*opened |= FILE_CREATED;
1397 
1398 	err = finish_open(file, dentry, do_open, opened);
1399 	if (err)
1400 		goto out;
1401 	nfs_file_set_open_context(file, ctx);
1402 
1403 out:
1404 	return err;
1405 }
1406 
1407 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1408 		    struct file *file, unsigned open_flags,
1409 		    umode_t mode, int *opened)
1410 {
1411 	struct nfs_open_context *ctx;
1412 	struct dentry *res;
1413 	struct iattr attr = { .ia_valid = ATTR_OPEN };
1414 	struct inode *inode;
1415 	unsigned int lookup_flags = 0;
1416 	int err;
1417 
1418 	/* Expect a negative dentry */
1419 	BUG_ON(dentry->d_inode);
1420 
1421 	dfprintk(VFS, "NFS: atomic_open(%s/%ld), %s\n",
1422 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1423 
1424 	err = nfs_check_flags(open_flags);
1425 	if (err)
1426 		return err;
1427 
1428 	/* NFS only supports OPEN on regular files */
1429 	if ((open_flags & O_DIRECTORY)) {
1430 		if (!d_unhashed(dentry)) {
1431 			/*
1432 			 * Hashed negative dentry with O_DIRECTORY: dentry was
1433 			 * revalidated and is fine, no need to perform lookup
1434 			 * again
1435 			 */
1436 			return -ENOENT;
1437 		}
1438 		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1439 		goto no_open;
1440 	}
1441 
1442 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1443 		return -ENAMETOOLONG;
1444 
1445 	if (open_flags & O_CREAT) {
1446 		attr.ia_valid |= ATTR_MODE;
1447 		attr.ia_mode = mode & ~current_umask();
1448 	}
1449 	if (open_flags & O_TRUNC) {
1450 		attr.ia_valid |= ATTR_SIZE;
1451 		attr.ia_size = 0;
1452 	}
1453 
1454 	ctx = create_nfs_open_context(dentry, open_flags);
1455 	err = PTR_ERR(ctx);
1456 	if (IS_ERR(ctx))
1457 		goto out;
1458 
1459 	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1460 	nfs_block_sillyrename(dentry->d_parent);
1461 	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr);
1462 	nfs_unblock_sillyrename(dentry->d_parent);
1463 	if (IS_ERR(inode)) {
1464 		err = PTR_ERR(inode);
1465 		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1466 		put_nfs_open_context(ctx);
1467 		switch (err) {
1468 		case -ENOENT:
1469 			d_drop(dentry);
1470 			d_add(dentry, NULL);
1471 			break;
1472 		case -EISDIR:
1473 		case -ENOTDIR:
1474 			goto no_open;
1475 		case -ELOOP:
1476 			if (!(open_flags & O_NOFOLLOW))
1477 				goto no_open;
1478 			break;
1479 			/* case -EINVAL: */
1480 		default:
1481 			break;
1482 		}
1483 		goto out;
1484 	}
1485 
1486 	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags, opened);
1487 	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1488 	put_nfs_open_context(ctx);
1489 out:
1490 	return err;
1491 
1492 no_open:
1493 	res = nfs_lookup(dir, dentry, lookup_flags);
1494 	err = PTR_ERR(res);
1495 	if (IS_ERR(res))
1496 		goto out;
1497 
1498 	return finish_no_open(file, res);
1499 }
1500 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1501 
1502 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1503 {
1504 	struct dentry *parent = NULL;
1505 	struct inode *inode;
1506 	struct inode *dir;
1507 	int ret = 0;
1508 
1509 	if (flags & LOOKUP_RCU)
1510 		return -ECHILD;
1511 
1512 	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1513 		goto no_open;
1514 	if (d_mountpoint(dentry))
1515 		goto no_open;
1516 	if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1)
1517 		goto no_open;
1518 
1519 	inode = dentry->d_inode;
1520 	parent = dget_parent(dentry);
1521 	dir = parent->d_inode;
1522 
1523 	/* We can't create new files in nfs_open_revalidate(), so we
1524 	 * optimize away revalidation of negative dentries.
1525 	 */
1526 	if (inode == NULL) {
1527 		if (!nfs_neg_need_reval(dir, dentry, flags))
1528 			ret = 1;
1529 		goto out;
1530 	}
1531 
1532 	/* NFS only supports OPEN on regular files */
1533 	if (!S_ISREG(inode->i_mode))
1534 		goto no_open_dput;
1535 	/* We cannot do exclusive creation on a positive dentry */
1536 	if (flags & LOOKUP_EXCL)
1537 		goto no_open_dput;
1538 
1539 	/* Let f_op->open() actually open (and revalidate) the file */
1540 	ret = 1;
1541 
1542 out:
1543 	dput(parent);
1544 	return ret;
1545 
1546 no_open_dput:
1547 	dput(parent);
1548 no_open:
1549 	return nfs_lookup_revalidate(dentry, flags);
1550 }
1551 
1552 #endif /* CONFIG_NFSV4 */
1553 
1554 /*
1555  * Code common to create, mkdir, and mknod.
1556  */
1557 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1558 				struct nfs_fattr *fattr,
1559 				struct nfs4_label *label)
1560 {
1561 	struct dentry *parent = dget_parent(dentry);
1562 	struct inode *dir = parent->d_inode;
1563 	struct inode *inode;
1564 	int error = -EACCES;
1565 
1566 	d_drop(dentry);
1567 
1568 	/* We may have been initialized further down */
1569 	if (dentry->d_inode)
1570 		goto out;
1571 	if (fhandle->size == 0) {
1572 		error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1573 		if (error)
1574 			goto out_error;
1575 	}
1576 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1577 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1578 		struct nfs_server *server = NFS_SB(dentry->d_sb);
1579 		error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL);
1580 		if (error < 0)
1581 			goto out_error;
1582 	}
1583 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1584 	error = PTR_ERR(inode);
1585 	if (IS_ERR(inode))
1586 		goto out_error;
1587 	d_add(dentry, inode);
1588 out:
1589 	dput(parent);
1590 	return 0;
1591 out_error:
1592 	nfs_mark_for_revalidate(dir);
1593 	dput(parent);
1594 	return error;
1595 }
1596 EXPORT_SYMBOL_GPL(nfs_instantiate);
1597 
1598 /*
1599  * Following a failed create operation, we drop the dentry rather
1600  * than retain a negative dentry. This avoids a problem in the event
1601  * that the operation succeeded on the server, but an error in the
1602  * reply path made it appear to have failed.
1603  */
1604 int nfs_create(struct inode *dir, struct dentry *dentry,
1605 		umode_t mode, bool excl)
1606 {
1607 	struct iattr attr;
1608 	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1609 	int error;
1610 
1611 	dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1612 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1613 
1614 	attr.ia_mode = mode;
1615 	attr.ia_valid = ATTR_MODE;
1616 
1617 	trace_nfs_create_enter(dir, dentry, open_flags);
1618 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1619 	trace_nfs_create_exit(dir, dentry, open_flags, error);
1620 	if (error != 0)
1621 		goto out_err;
1622 	return 0;
1623 out_err:
1624 	d_drop(dentry);
1625 	return error;
1626 }
1627 EXPORT_SYMBOL_GPL(nfs_create);
1628 
1629 /*
1630  * See comments for nfs_proc_create regarding failed operations.
1631  */
1632 int
1633 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1634 {
1635 	struct iattr attr;
1636 	int status;
1637 
1638 	dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1639 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1640 
1641 	if (!new_valid_dev(rdev))
1642 		return -EINVAL;
1643 
1644 	attr.ia_mode = mode;
1645 	attr.ia_valid = ATTR_MODE;
1646 
1647 	trace_nfs_mknod_enter(dir, dentry);
1648 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1649 	trace_nfs_mknod_exit(dir, dentry, status);
1650 	if (status != 0)
1651 		goto out_err;
1652 	return 0;
1653 out_err:
1654 	d_drop(dentry);
1655 	return status;
1656 }
1657 EXPORT_SYMBOL_GPL(nfs_mknod);
1658 
1659 /*
1660  * See comments for nfs_proc_create regarding failed operations.
1661  */
1662 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1663 {
1664 	struct iattr attr;
1665 	int error;
1666 
1667 	dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1668 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1669 
1670 	attr.ia_valid = ATTR_MODE;
1671 	attr.ia_mode = mode | S_IFDIR;
1672 
1673 	trace_nfs_mkdir_enter(dir, dentry);
1674 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1675 	trace_nfs_mkdir_exit(dir, dentry, error);
1676 	if (error != 0)
1677 		goto out_err;
1678 	return 0;
1679 out_err:
1680 	d_drop(dentry);
1681 	return error;
1682 }
1683 EXPORT_SYMBOL_GPL(nfs_mkdir);
1684 
1685 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1686 {
1687 	if (dentry->d_inode != NULL && !d_unhashed(dentry))
1688 		d_delete(dentry);
1689 }
1690 
1691 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1692 {
1693 	int error;
1694 
1695 	dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1696 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1697 
1698 	trace_nfs_rmdir_enter(dir, dentry);
1699 	if (dentry->d_inode) {
1700 		nfs_wait_on_sillyrename(dentry);
1701 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1702 		/* Ensure the VFS deletes this inode */
1703 		switch (error) {
1704 		case 0:
1705 			clear_nlink(dentry->d_inode);
1706 			break;
1707 		case -ENOENT:
1708 			nfs_dentry_handle_enoent(dentry);
1709 		}
1710 	} else
1711 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1712 	trace_nfs_rmdir_exit(dir, dentry, error);
1713 
1714 	return error;
1715 }
1716 EXPORT_SYMBOL_GPL(nfs_rmdir);
1717 
1718 /*
1719  * Remove a file after making sure there are no pending writes,
1720  * and after checking that the file has only one user.
1721  *
1722  * We invalidate the attribute cache and free the inode prior to the operation
1723  * to avoid possible races if the server reuses the inode.
1724  */
1725 static int nfs_safe_remove(struct dentry *dentry)
1726 {
1727 	struct inode *dir = dentry->d_parent->d_inode;
1728 	struct inode *inode = dentry->d_inode;
1729 	int error = -EBUSY;
1730 
1731 	dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1732 		dentry->d_parent->d_name.name, dentry->d_name.name);
1733 
1734 	/* If the dentry was sillyrenamed, we simply call d_delete() */
1735 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1736 		error = 0;
1737 		goto out;
1738 	}
1739 
1740 	trace_nfs_remove_enter(dir, dentry);
1741 	if (inode != NULL) {
1742 		NFS_PROTO(inode)->return_delegation(inode);
1743 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1744 		if (error == 0)
1745 			nfs_drop_nlink(inode);
1746 	} else
1747 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1748 	if (error == -ENOENT)
1749 		nfs_dentry_handle_enoent(dentry);
1750 	trace_nfs_remove_exit(dir, dentry, error);
1751 out:
1752 	return error;
1753 }
1754 
1755 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1756  *  belongs to an active ".nfs..." file and we return -EBUSY.
1757  *
1758  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1759  */
1760 int nfs_unlink(struct inode *dir, struct dentry *dentry)
1761 {
1762 	int error;
1763 	int need_rehash = 0;
1764 
1765 	dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1766 		dir->i_ino, dentry->d_name.name);
1767 
1768 	trace_nfs_unlink_enter(dir, dentry);
1769 	spin_lock(&dentry->d_lock);
1770 	if (d_count(dentry) > 1) {
1771 		spin_unlock(&dentry->d_lock);
1772 		/* Start asynchronous writeout of the inode */
1773 		write_inode_now(dentry->d_inode, 0);
1774 		error = nfs_sillyrename(dir, dentry);
1775 		goto out;
1776 	}
1777 	if (!d_unhashed(dentry)) {
1778 		__d_drop(dentry);
1779 		need_rehash = 1;
1780 	}
1781 	spin_unlock(&dentry->d_lock);
1782 	error = nfs_safe_remove(dentry);
1783 	if (!error || error == -ENOENT) {
1784 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1785 	} else if (need_rehash)
1786 		d_rehash(dentry);
1787 out:
1788 	trace_nfs_unlink_exit(dir, dentry, error);
1789 	return error;
1790 }
1791 EXPORT_SYMBOL_GPL(nfs_unlink);
1792 
1793 /*
1794  * To create a symbolic link, most file systems instantiate a new inode,
1795  * add a page to it containing the path, then write it out to the disk
1796  * using prepare_write/commit_write.
1797  *
1798  * Unfortunately the NFS client can't create the in-core inode first
1799  * because it needs a file handle to create an in-core inode (see
1800  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1801  * symlink request has completed on the server.
1802  *
1803  * So instead we allocate a raw page, copy the symname into it, then do
1804  * the SYMLINK request with the page as the buffer.  If it succeeds, we
1805  * now have a new file handle and can instantiate an in-core NFS inode
1806  * and move the raw page into its mapping.
1807  */
1808 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1809 {
1810 	struct page *page;
1811 	char *kaddr;
1812 	struct iattr attr;
1813 	unsigned int pathlen = strlen(symname);
1814 	int error;
1815 
1816 	dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1817 		dir->i_ino, dentry->d_name.name, symname);
1818 
1819 	if (pathlen > PAGE_SIZE)
1820 		return -ENAMETOOLONG;
1821 
1822 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
1823 	attr.ia_valid = ATTR_MODE;
1824 
1825 	page = alloc_page(GFP_HIGHUSER);
1826 	if (!page)
1827 		return -ENOMEM;
1828 
1829 	kaddr = kmap_atomic(page);
1830 	memcpy(kaddr, symname, pathlen);
1831 	if (pathlen < PAGE_SIZE)
1832 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1833 	kunmap_atomic(kaddr);
1834 
1835 	trace_nfs_symlink_enter(dir, dentry);
1836 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1837 	trace_nfs_symlink_exit(dir, dentry, error);
1838 	if (error != 0) {
1839 		dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1840 			dir->i_sb->s_id, dir->i_ino,
1841 			dentry->d_name.name, symname, error);
1842 		d_drop(dentry);
1843 		__free_page(page);
1844 		return error;
1845 	}
1846 
1847 	/*
1848 	 * No big deal if we can't add this page to the page cache here.
1849 	 * READLINK will get the missing page from the server if needed.
1850 	 */
1851 	if (!add_to_page_cache_lru(page, dentry->d_inode->i_mapping, 0,
1852 							GFP_KERNEL)) {
1853 		SetPageUptodate(page);
1854 		unlock_page(page);
1855 	} else
1856 		__free_page(page);
1857 
1858 	return 0;
1859 }
1860 EXPORT_SYMBOL_GPL(nfs_symlink);
1861 
1862 int
1863 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1864 {
1865 	struct inode *inode = old_dentry->d_inode;
1866 	int error;
1867 
1868 	dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1869 		old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1870 		dentry->d_parent->d_name.name, dentry->d_name.name);
1871 
1872 	trace_nfs_link_enter(inode, dir, dentry);
1873 	NFS_PROTO(inode)->return_delegation(inode);
1874 
1875 	d_drop(dentry);
1876 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1877 	if (error == 0) {
1878 		ihold(inode);
1879 		d_add(dentry, inode);
1880 	}
1881 	trace_nfs_link_exit(inode, dir, dentry, error);
1882 	return error;
1883 }
1884 EXPORT_SYMBOL_GPL(nfs_link);
1885 
1886 /*
1887  * RENAME
1888  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1889  * different file handle for the same inode after a rename (e.g. when
1890  * moving to a different directory). A fail-safe method to do so would
1891  * be to look up old_dir/old_name, create a link to new_dir/new_name and
1892  * rename the old file using the sillyrename stuff. This way, the original
1893  * file in old_dir will go away when the last process iput()s the inode.
1894  *
1895  * FIXED.
1896  *
1897  * It actually works quite well. One needs to have the possibility for
1898  * at least one ".nfs..." file in each directory the file ever gets
1899  * moved or linked to which happens automagically with the new
1900  * implementation that only depends on the dcache stuff instead of
1901  * using the inode layer
1902  *
1903  * Unfortunately, things are a little more complicated than indicated
1904  * above. For a cross-directory move, we want to make sure we can get
1905  * rid of the old inode after the operation.  This means there must be
1906  * no pending writes (if it's a file), and the use count must be 1.
1907  * If these conditions are met, we can drop the dentries before doing
1908  * the rename.
1909  */
1910 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1911 		      struct inode *new_dir, struct dentry *new_dentry)
1912 {
1913 	struct inode *old_inode = old_dentry->d_inode;
1914 	struct inode *new_inode = new_dentry->d_inode;
1915 	struct dentry *dentry = NULL, *rehash = NULL;
1916 	int error = -EBUSY;
1917 
1918 	dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1919 		 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1920 		 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1921 		 d_count(new_dentry));
1922 
1923 	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
1924 	/*
1925 	 * For non-directories, check whether the target is busy and if so,
1926 	 * make a copy of the dentry and then do a silly-rename. If the
1927 	 * silly-rename succeeds, the copied dentry is hashed and becomes
1928 	 * the new target.
1929 	 */
1930 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
1931 		/*
1932 		 * To prevent any new references to the target during the
1933 		 * rename, we unhash the dentry in advance.
1934 		 */
1935 		if (!d_unhashed(new_dentry)) {
1936 			d_drop(new_dentry);
1937 			rehash = new_dentry;
1938 		}
1939 
1940 		if (d_count(new_dentry) > 2) {
1941 			int err;
1942 
1943 			/* copy the target dentry's name */
1944 			dentry = d_alloc(new_dentry->d_parent,
1945 					 &new_dentry->d_name);
1946 			if (!dentry)
1947 				goto out;
1948 
1949 			/* silly-rename the existing target ... */
1950 			err = nfs_sillyrename(new_dir, new_dentry);
1951 			if (err)
1952 				goto out;
1953 
1954 			new_dentry = dentry;
1955 			rehash = NULL;
1956 			new_inode = NULL;
1957 		}
1958 	}
1959 
1960 	NFS_PROTO(old_inode)->return_delegation(old_inode);
1961 	if (new_inode != NULL)
1962 		NFS_PROTO(new_inode)->return_delegation(new_inode);
1963 
1964 	error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1965 					   new_dir, &new_dentry->d_name);
1966 	nfs_mark_for_revalidate(old_inode);
1967 out:
1968 	if (rehash)
1969 		d_rehash(rehash);
1970 	trace_nfs_rename_exit(old_dir, old_dentry,
1971 			new_dir, new_dentry, error);
1972 	if (!error) {
1973 		if (new_inode != NULL)
1974 			nfs_drop_nlink(new_inode);
1975 		d_move(old_dentry, new_dentry);
1976 		nfs_set_verifier(new_dentry,
1977 					nfs_save_change_attribute(new_dir));
1978 	} else if (error == -ENOENT)
1979 		nfs_dentry_handle_enoent(old_dentry);
1980 
1981 	/* new dentry created? */
1982 	if (dentry)
1983 		dput(dentry);
1984 	return error;
1985 }
1986 EXPORT_SYMBOL_GPL(nfs_rename);
1987 
1988 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1989 static LIST_HEAD(nfs_access_lru_list);
1990 static atomic_long_t nfs_access_nr_entries;
1991 
1992 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1993 {
1994 	put_rpccred(entry->cred);
1995 	kfree(entry);
1996 	smp_mb__before_atomic_dec();
1997 	atomic_long_dec(&nfs_access_nr_entries);
1998 	smp_mb__after_atomic_dec();
1999 }
2000 
2001 static void nfs_access_free_list(struct list_head *head)
2002 {
2003 	struct nfs_access_entry *cache;
2004 
2005 	while (!list_empty(head)) {
2006 		cache = list_entry(head->next, struct nfs_access_entry, lru);
2007 		list_del(&cache->lru);
2008 		nfs_access_free_entry(cache);
2009 	}
2010 }
2011 
2012 unsigned long
2013 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2014 {
2015 	LIST_HEAD(head);
2016 	struct nfs_inode *nfsi, *next;
2017 	struct nfs_access_entry *cache;
2018 	int nr_to_scan = sc->nr_to_scan;
2019 	gfp_t gfp_mask = sc->gfp_mask;
2020 	long freed = 0;
2021 
2022 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2023 		return SHRINK_STOP;
2024 
2025 	spin_lock(&nfs_access_lru_lock);
2026 	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2027 		struct inode *inode;
2028 
2029 		if (nr_to_scan-- == 0)
2030 			break;
2031 		inode = &nfsi->vfs_inode;
2032 		spin_lock(&inode->i_lock);
2033 		if (list_empty(&nfsi->access_cache_entry_lru))
2034 			goto remove_lru_entry;
2035 		cache = list_entry(nfsi->access_cache_entry_lru.next,
2036 				struct nfs_access_entry, lru);
2037 		list_move(&cache->lru, &head);
2038 		rb_erase(&cache->rb_node, &nfsi->access_cache);
2039 		freed++;
2040 		if (!list_empty(&nfsi->access_cache_entry_lru))
2041 			list_move_tail(&nfsi->access_cache_inode_lru,
2042 					&nfs_access_lru_list);
2043 		else {
2044 remove_lru_entry:
2045 			list_del_init(&nfsi->access_cache_inode_lru);
2046 			smp_mb__before_clear_bit();
2047 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2048 			smp_mb__after_clear_bit();
2049 		}
2050 		spin_unlock(&inode->i_lock);
2051 	}
2052 	spin_unlock(&nfs_access_lru_lock);
2053 	nfs_access_free_list(&head);
2054 	return freed;
2055 }
2056 
2057 unsigned long
2058 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2059 {
2060 	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2061 }
2062 
2063 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2064 {
2065 	struct rb_root *root_node = &nfsi->access_cache;
2066 	struct rb_node *n;
2067 	struct nfs_access_entry *entry;
2068 
2069 	/* Unhook entries from the cache */
2070 	while ((n = rb_first(root_node)) != NULL) {
2071 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2072 		rb_erase(n, root_node);
2073 		list_move(&entry->lru, head);
2074 	}
2075 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2076 }
2077 
2078 void nfs_access_zap_cache(struct inode *inode)
2079 {
2080 	LIST_HEAD(head);
2081 
2082 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2083 		return;
2084 	/* Remove from global LRU init */
2085 	spin_lock(&nfs_access_lru_lock);
2086 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2087 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2088 
2089 	spin_lock(&inode->i_lock);
2090 	__nfs_access_zap_cache(NFS_I(inode), &head);
2091 	spin_unlock(&inode->i_lock);
2092 	spin_unlock(&nfs_access_lru_lock);
2093 	nfs_access_free_list(&head);
2094 }
2095 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2096 
2097 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2098 {
2099 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2100 	struct nfs_access_entry *entry;
2101 
2102 	while (n != NULL) {
2103 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2104 
2105 		if (cred < entry->cred)
2106 			n = n->rb_left;
2107 		else if (cred > entry->cred)
2108 			n = n->rb_right;
2109 		else
2110 			return entry;
2111 	}
2112 	return NULL;
2113 }
2114 
2115 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2116 {
2117 	struct nfs_inode *nfsi = NFS_I(inode);
2118 	struct nfs_access_entry *cache;
2119 	int err = -ENOENT;
2120 
2121 	spin_lock(&inode->i_lock);
2122 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2123 		goto out_zap;
2124 	cache = nfs_access_search_rbtree(inode, cred);
2125 	if (cache == NULL)
2126 		goto out;
2127 	if (!nfs_have_delegated_attributes(inode) &&
2128 	    !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2129 		goto out_stale;
2130 	res->jiffies = cache->jiffies;
2131 	res->cred = cache->cred;
2132 	res->mask = cache->mask;
2133 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2134 	err = 0;
2135 out:
2136 	spin_unlock(&inode->i_lock);
2137 	return err;
2138 out_stale:
2139 	rb_erase(&cache->rb_node, &nfsi->access_cache);
2140 	list_del(&cache->lru);
2141 	spin_unlock(&inode->i_lock);
2142 	nfs_access_free_entry(cache);
2143 	return -ENOENT;
2144 out_zap:
2145 	spin_unlock(&inode->i_lock);
2146 	nfs_access_zap_cache(inode);
2147 	return -ENOENT;
2148 }
2149 
2150 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2151 {
2152 	struct nfs_inode *nfsi = NFS_I(inode);
2153 	struct rb_root *root_node = &nfsi->access_cache;
2154 	struct rb_node **p = &root_node->rb_node;
2155 	struct rb_node *parent = NULL;
2156 	struct nfs_access_entry *entry;
2157 
2158 	spin_lock(&inode->i_lock);
2159 	while (*p != NULL) {
2160 		parent = *p;
2161 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2162 
2163 		if (set->cred < entry->cred)
2164 			p = &parent->rb_left;
2165 		else if (set->cred > entry->cred)
2166 			p = &parent->rb_right;
2167 		else
2168 			goto found;
2169 	}
2170 	rb_link_node(&set->rb_node, parent, p);
2171 	rb_insert_color(&set->rb_node, root_node);
2172 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2173 	spin_unlock(&inode->i_lock);
2174 	return;
2175 found:
2176 	rb_replace_node(parent, &set->rb_node, root_node);
2177 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2178 	list_del(&entry->lru);
2179 	spin_unlock(&inode->i_lock);
2180 	nfs_access_free_entry(entry);
2181 }
2182 
2183 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2184 {
2185 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2186 	if (cache == NULL)
2187 		return;
2188 	RB_CLEAR_NODE(&cache->rb_node);
2189 	cache->jiffies = set->jiffies;
2190 	cache->cred = get_rpccred(set->cred);
2191 	cache->mask = set->mask;
2192 
2193 	nfs_access_add_rbtree(inode, cache);
2194 
2195 	/* Update accounting */
2196 	smp_mb__before_atomic_inc();
2197 	atomic_long_inc(&nfs_access_nr_entries);
2198 	smp_mb__after_atomic_inc();
2199 
2200 	/* Add inode to global LRU list */
2201 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2202 		spin_lock(&nfs_access_lru_lock);
2203 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2204 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2205 					&nfs_access_lru_list);
2206 		spin_unlock(&nfs_access_lru_lock);
2207 	}
2208 }
2209 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2210 
2211 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2212 {
2213 	entry->mask = 0;
2214 	if (access_result & NFS4_ACCESS_READ)
2215 		entry->mask |= MAY_READ;
2216 	if (access_result &
2217 	    (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
2218 		entry->mask |= MAY_WRITE;
2219 	if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
2220 		entry->mask |= MAY_EXEC;
2221 }
2222 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2223 
2224 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2225 {
2226 	struct nfs_access_entry cache;
2227 	int status;
2228 
2229 	trace_nfs_access_enter(inode);
2230 
2231 	status = nfs_access_get_cached(inode, cred, &cache);
2232 	if (status == 0)
2233 		goto out_cached;
2234 
2235 	/* Be clever: ask server to check for all possible rights */
2236 	cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2237 	cache.cred = cred;
2238 	cache.jiffies = jiffies;
2239 	status = NFS_PROTO(inode)->access(inode, &cache);
2240 	if (status != 0) {
2241 		if (status == -ESTALE) {
2242 			nfs_zap_caches(inode);
2243 			if (!S_ISDIR(inode->i_mode))
2244 				set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2245 		}
2246 		goto out;
2247 	}
2248 	nfs_access_add_cache(inode, &cache);
2249 out_cached:
2250 	if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2251 		status = -EACCES;
2252 out:
2253 	trace_nfs_access_exit(inode, status);
2254 	return status;
2255 }
2256 
2257 static int nfs_open_permission_mask(int openflags)
2258 {
2259 	int mask = 0;
2260 
2261 	if (openflags & __FMODE_EXEC) {
2262 		/* ONLY check exec rights */
2263 		mask = MAY_EXEC;
2264 	} else {
2265 		if ((openflags & O_ACCMODE) != O_WRONLY)
2266 			mask |= MAY_READ;
2267 		if ((openflags & O_ACCMODE) != O_RDONLY)
2268 			mask |= MAY_WRITE;
2269 	}
2270 
2271 	return mask;
2272 }
2273 
2274 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2275 {
2276 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2277 }
2278 EXPORT_SYMBOL_GPL(nfs_may_open);
2279 
2280 int nfs_permission(struct inode *inode, int mask)
2281 {
2282 	struct rpc_cred *cred;
2283 	int res = 0;
2284 
2285 	if (mask & MAY_NOT_BLOCK)
2286 		return -ECHILD;
2287 
2288 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2289 
2290 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2291 		goto out;
2292 	/* Is this sys_access() ? */
2293 	if (mask & (MAY_ACCESS | MAY_CHDIR))
2294 		goto force_lookup;
2295 
2296 	switch (inode->i_mode & S_IFMT) {
2297 		case S_IFLNK:
2298 			goto out;
2299 		case S_IFREG:
2300 			break;
2301 		case S_IFDIR:
2302 			/*
2303 			 * Optimize away all write operations, since the server
2304 			 * will check permissions when we perform the op.
2305 			 */
2306 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2307 				goto out;
2308 	}
2309 
2310 force_lookup:
2311 	if (!NFS_PROTO(inode)->access)
2312 		goto out_notsup;
2313 
2314 	cred = rpc_lookup_cred();
2315 	if (!IS_ERR(cred)) {
2316 		res = nfs_do_access(inode, cred, mask);
2317 		put_rpccred(cred);
2318 	} else
2319 		res = PTR_ERR(cred);
2320 out:
2321 	if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
2322 		res = -EACCES;
2323 
2324 	dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
2325 		inode->i_sb->s_id, inode->i_ino, mask, res);
2326 	return res;
2327 out_notsup:
2328 	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2329 	if (res == 0)
2330 		res = generic_permission(inode, mask);
2331 	goto out;
2332 }
2333 EXPORT_SYMBOL_GPL(nfs_permission);
2334 
2335 /*
2336  * Local variables:
2337  *  version-control: t
2338  *  kept-new-versions: 5
2339  * End:
2340  */
2341