1 /* 2 * linux/fs/nfs/dir.c 3 * 4 * Copyright (C) 1992 Rick Sladkey 5 * 6 * nfs directory handling functions 7 * 8 * 10 Apr 1996 Added silly rename for unlink --okir 9 * 28 Sep 1996 Improved directory cache --okir 10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de 11 * Re-implemented silly rename for unlink, newly implemented 12 * silly rename for nfs_rename() following the suggestions 13 * of Olaf Kirch (okir) found in this file. 14 * Following Linus comments on my original hack, this version 15 * depends only on the dcache stuff and doesn't touch the inode 16 * layer (iput() and friends). 17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM 18 */ 19 20 #include <linux/module.h> 21 #include <linux/time.h> 22 #include <linux/errno.h> 23 #include <linux/stat.h> 24 #include <linux/fcntl.h> 25 #include <linux/string.h> 26 #include <linux/kernel.h> 27 #include <linux/slab.h> 28 #include <linux/mm.h> 29 #include <linux/sunrpc/clnt.h> 30 #include <linux/nfs_fs.h> 31 #include <linux/nfs_mount.h> 32 #include <linux/pagemap.h> 33 #include <linux/pagevec.h> 34 #include <linux/namei.h> 35 #include <linux/mount.h> 36 #include <linux/swap.h> 37 #include <linux/sched.h> 38 #include <linux/kmemleak.h> 39 #include <linux/xattr.h> 40 41 #include "delegation.h" 42 #include "iostat.h" 43 #include "internal.h" 44 #include "fscache.h" 45 46 #include "nfstrace.h" 47 48 /* #define NFS_DEBUG_VERBOSE 1 */ 49 50 static int nfs_opendir(struct inode *, struct file *); 51 static int nfs_closedir(struct inode *, struct file *); 52 static int nfs_readdir(struct file *, struct dir_context *); 53 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int); 54 static loff_t nfs_llseek_dir(struct file *, loff_t, int); 55 static void nfs_readdir_clear_array(struct page*); 56 57 const struct file_operations nfs_dir_operations = { 58 .llseek = nfs_llseek_dir, 59 .read = generic_read_dir, 60 .iterate = nfs_readdir, 61 .open = nfs_opendir, 62 .release = nfs_closedir, 63 .fsync = nfs_fsync_dir, 64 }; 65 66 const struct address_space_operations nfs_dir_aops = { 67 .freepage = nfs_readdir_clear_array, 68 }; 69 70 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred) 71 { 72 struct nfs_open_dir_context *ctx; 73 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); 74 if (ctx != NULL) { 75 ctx->duped = 0; 76 ctx->attr_gencount = NFS_I(dir)->attr_gencount; 77 ctx->dir_cookie = 0; 78 ctx->dup_cookie = 0; 79 ctx->cred = get_rpccred(cred); 80 return ctx; 81 } 82 return ERR_PTR(-ENOMEM); 83 } 84 85 static void put_nfs_open_dir_context(struct nfs_open_dir_context *ctx) 86 { 87 put_rpccred(ctx->cred); 88 kfree(ctx); 89 } 90 91 /* 92 * Open file 93 */ 94 static int 95 nfs_opendir(struct inode *inode, struct file *filp) 96 { 97 int res = 0; 98 struct nfs_open_dir_context *ctx; 99 struct rpc_cred *cred; 100 101 dfprintk(FILE, "NFS: open dir(%s/%s)\n", 102 filp->f_path.dentry->d_parent->d_name.name, 103 filp->f_path.dentry->d_name.name); 104 105 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 106 107 cred = rpc_lookup_cred(); 108 if (IS_ERR(cred)) 109 return PTR_ERR(cred); 110 ctx = alloc_nfs_open_dir_context(inode, cred); 111 if (IS_ERR(ctx)) { 112 res = PTR_ERR(ctx); 113 goto out; 114 } 115 filp->private_data = ctx; 116 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) { 117 /* This is a mountpoint, so d_revalidate will never 118 * have been called, so we need to refresh the 119 * inode (for close-open consistency) ourselves. 120 */ 121 __nfs_revalidate_inode(NFS_SERVER(inode), inode); 122 } 123 out: 124 put_rpccred(cred); 125 return res; 126 } 127 128 static int 129 nfs_closedir(struct inode *inode, struct file *filp) 130 { 131 put_nfs_open_dir_context(filp->private_data); 132 return 0; 133 } 134 135 struct nfs_cache_array_entry { 136 u64 cookie; 137 u64 ino; 138 struct qstr string; 139 unsigned char d_type; 140 }; 141 142 struct nfs_cache_array { 143 int size; 144 int eof_index; 145 u64 last_cookie; 146 struct nfs_cache_array_entry array[0]; 147 }; 148 149 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int); 150 typedef struct { 151 struct file *file; 152 struct page *page; 153 struct dir_context *ctx; 154 unsigned long page_index; 155 u64 *dir_cookie; 156 u64 last_cookie; 157 loff_t current_index; 158 decode_dirent_t decode; 159 160 unsigned long timestamp; 161 unsigned long gencount; 162 unsigned int cache_entry_index; 163 unsigned int plus:1; 164 unsigned int eof:1; 165 } nfs_readdir_descriptor_t; 166 167 /* 168 * The caller is responsible for calling nfs_readdir_release_array(page) 169 */ 170 static 171 struct nfs_cache_array *nfs_readdir_get_array(struct page *page) 172 { 173 void *ptr; 174 if (page == NULL) 175 return ERR_PTR(-EIO); 176 ptr = kmap(page); 177 if (ptr == NULL) 178 return ERR_PTR(-ENOMEM); 179 return ptr; 180 } 181 182 static 183 void nfs_readdir_release_array(struct page *page) 184 { 185 kunmap(page); 186 } 187 188 /* 189 * we are freeing strings created by nfs_add_to_readdir_array() 190 */ 191 static 192 void nfs_readdir_clear_array(struct page *page) 193 { 194 struct nfs_cache_array *array; 195 int i; 196 197 array = kmap_atomic(page); 198 for (i = 0; i < array->size; i++) 199 kfree(array->array[i].string.name); 200 kunmap_atomic(array); 201 } 202 203 /* 204 * the caller is responsible for freeing qstr.name 205 * when called by nfs_readdir_add_to_array, the strings will be freed in 206 * nfs_clear_readdir_array() 207 */ 208 static 209 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len) 210 { 211 string->len = len; 212 string->name = kmemdup(name, len, GFP_KERNEL); 213 if (string->name == NULL) 214 return -ENOMEM; 215 /* 216 * Avoid a kmemleak false positive. The pointer to the name is stored 217 * in a page cache page which kmemleak does not scan. 218 */ 219 kmemleak_not_leak(string->name); 220 string->hash = full_name_hash(name, len); 221 return 0; 222 } 223 224 static 225 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page) 226 { 227 struct nfs_cache_array *array = nfs_readdir_get_array(page); 228 struct nfs_cache_array_entry *cache_entry; 229 int ret; 230 231 if (IS_ERR(array)) 232 return PTR_ERR(array); 233 234 cache_entry = &array->array[array->size]; 235 236 /* Check that this entry lies within the page bounds */ 237 ret = -ENOSPC; 238 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE) 239 goto out; 240 241 cache_entry->cookie = entry->prev_cookie; 242 cache_entry->ino = entry->ino; 243 cache_entry->d_type = entry->d_type; 244 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len); 245 if (ret) 246 goto out; 247 array->last_cookie = entry->cookie; 248 array->size++; 249 if (entry->eof != 0) 250 array->eof_index = array->size; 251 out: 252 nfs_readdir_release_array(page); 253 return ret; 254 } 255 256 static 257 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 258 { 259 loff_t diff = desc->ctx->pos - desc->current_index; 260 unsigned int index; 261 262 if (diff < 0) 263 goto out_eof; 264 if (diff >= array->size) { 265 if (array->eof_index >= 0) 266 goto out_eof; 267 return -EAGAIN; 268 } 269 270 index = (unsigned int)diff; 271 *desc->dir_cookie = array->array[index].cookie; 272 desc->cache_entry_index = index; 273 return 0; 274 out_eof: 275 desc->eof = 1; 276 return -EBADCOOKIE; 277 } 278 279 static 280 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 281 { 282 int i; 283 loff_t new_pos; 284 int status = -EAGAIN; 285 286 for (i = 0; i < array->size; i++) { 287 if (array->array[i].cookie == *desc->dir_cookie) { 288 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file)); 289 struct nfs_open_dir_context *ctx = desc->file->private_data; 290 291 new_pos = desc->current_index + i; 292 if (ctx->attr_gencount != nfsi->attr_gencount 293 || (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))) { 294 ctx->duped = 0; 295 ctx->attr_gencount = nfsi->attr_gencount; 296 } else if (new_pos < desc->ctx->pos) { 297 if (ctx->duped > 0 298 && ctx->dup_cookie == *desc->dir_cookie) { 299 if (printk_ratelimit()) { 300 pr_notice("NFS: directory %s/%s contains a readdir loop." 301 "Please contact your server vendor. " 302 "The file: %s has duplicate cookie %llu\n", 303 desc->file->f_dentry->d_parent->d_name.name, 304 desc->file->f_dentry->d_name.name, 305 array->array[i].string.name, 306 *desc->dir_cookie); 307 } 308 status = -ELOOP; 309 goto out; 310 } 311 ctx->dup_cookie = *desc->dir_cookie; 312 ctx->duped = -1; 313 } 314 desc->ctx->pos = new_pos; 315 desc->cache_entry_index = i; 316 return 0; 317 } 318 } 319 if (array->eof_index >= 0) { 320 status = -EBADCOOKIE; 321 if (*desc->dir_cookie == array->last_cookie) 322 desc->eof = 1; 323 } 324 out: 325 return status; 326 } 327 328 static 329 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc) 330 { 331 struct nfs_cache_array *array; 332 int status; 333 334 array = nfs_readdir_get_array(desc->page); 335 if (IS_ERR(array)) { 336 status = PTR_ERR(array); 337 goto out; 338 } 339 340 if (*desc->dir_cookie == 0) 341 status = nfs_readdir_search_for_pos(array, desc); 342 else 343 status = nfs_readdir_search_for_cookie(array, desc); 344 345 if (status == -EAGAIN) { 346 desc->last_cookie = array->last_cookie; 347 desc->current_index += array->size; 348 desc->page_index++; 349 } 350 nfs_readdir_release_array(desc->page); 351 out: 352 return status; 353 } 354 355 /* Fill a page with xdr information before transferring to the cache page */ 356 static 357 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc, 358 struct nfs_entry *entry, struct file *file, struct inode *inode) 359 { 360 struct nfs_open_dir_context *ctx = file->private_data; 361 struct rpc_cred *cred = ctx->cred; 362 unsigned long timestamp, gencount; 363 int error; 364 365 again: 366 timestamp = jiffies; 367 gencount = nfs_inc_attr_generation_counter(); 368 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages, 369 NFS_SERVER(inode)->dtsize, desc->plus); 370 if (error < 0) { 371 /* We requested READDIRPLUS, but the server doesn't grok it */ 372 if (error == -ENOTSUPP && desc->plus) { 373 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS; 374 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 375 desc->plus = 0; 376 goto again; 377 } 378 goto error; 379 } 380 desc->timestamp = timestamp; 381 desc->gencount = gencount; 382 error: 383 return error; 384 } 385 386 static int xdr_decode(nfs_readdir_descriptor_t *desc, 387 struct nfs_entry *entry, struct xdr_stream *xdr) 388 { 389 int error; 390 391 error = desc->decode(xdr, entry, desc->plus); 392 if (error) 393 return error; 394 entry->fattr->time_start = desc->timestamp; 395 entry->fattr->gencount = desc->gencount; 396 return 0; 397 } 398 399 static 400 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry) 401 { 402 if (dentry->d_inode == NULL) 403 goto different; 404 if (nfs_compare_fh(entry->fh, NFS_FH(dentry->d_inode)) != 0) 405 goto different; 406 return 1; 407 different: 408 return 0; 409 } 410 411 static 412 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx) 413 { 414 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS)) 415 return false; 416 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags)) 417 return true; 418 if (ctx->pos == 0) 419 return true; 420 return false; 421 } 422 423 /* 424 * This function is called by the lookup code to request the use of 425 * readdirplus to accelerate any future lookups in the same 426 * directory. 427 */ 428 static 429 void nfs_advise_use_readdirplus(struct inode *dir) 430 { 431 set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags); 432 } 433 434 static 435 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry) 436 { 437 struct qstr filename = QSTR_INIT(entry->name, entry->len); 438 struct dentry *dentry; 439 struct dentry *alias; 440 struct inode *dir = parent->d_inode; 441 struct inode *inode; 442 int status; 443 444 if (filename.name[0] == '.') { 445 if (filename.len == 1) 446 return; 447 if (filename.len == 2 && filename.name[1] == '.') 448 return; 449 } 450 filename.hash = full_name_hash(filename.name, filename.len); 451 452 dentry = d_lookup(parent, &filename); 453 if (dentry != NULL) { 454 if (nfs_same_file(dentry, entry)) { 455 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 456 status = nfs_refresh_inode(dentry->d_inode, entry->fattr); 457 if (!status) 458 nfs_setsecurity(dentry->d_inode, entry->fattr, entry->label); 459 goto out; 460 } else { 461 if (d_invalidate(dentry) != 0) 462 goto out; 463 dput(dentry); 464 } 465 } 466 467 dentry = d_alloc(parent, &filename); 468 if (dentry == NULL) 469 return; 470 471 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label); 472 if (IS_ERR(inode)) 473 goto out; 474 475 alias = d_materialise_unique(dentry, inode); 476 if (IS_ERR(alias)) 477 goto out; 478 else if (alias) { 479 nfs_set_verifier(alias, nfs_save_change_attribute(dir)); 480 dput(alias); 481 } else 482 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 483 484 out: 485 dput(dentry); 486 } 487 488 /* Perform conversion from xdr to cache array */ 489 static 490 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry, 491 struct page **xdr_pages, struct page *page, unsigned int buflen) 492 { 493 struct xdr_stream stream; 494 struct xdr_buf buf; 495 struct page *scratch; 496 struct nfs_cache_array *array; 497 unsigned int count = 0; 498 int status; 499 500 scratch = alloc_page(GFP_KERNEL); 501 if (scratch == NULL) 502 return -ENOMEM; 503 504 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen); 505 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE); 506 507 do { 508 status = xdr_decode(desc, entry, &stream); 509 if (status != 0) { 510 if (status == -EAGAIN) 511 status = 0; 512 break; 513 } 514 515 count++; 516 517 if (desc->plus != 0) 518 nfs_prime_dcache(desc->file->f_path.dentry, entry); 519 520 status = nfs_readdir_add_to_array(entry, page); 521 if (status != 0) 522 break; 523 } while (!entry->eof); 524 525 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) { 526 array = nfs_readdir_get_array(page); 527 if (!IS_ERR(array)) { 528 array->eof_index = array->size; 529 status = 0; 530 nfs_readdir_release_array(page); 531 } else 532 status = PTR_ERR(array); 533 } 534 535 put_page(scratch); 536 return status; 537 } 538 539 static 540 void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages) 541 { 542 unsigned int i; 543 for (i = 0; i < npages; i++) 544 put_page(pages[i]); 545 } 546 547 static 548 void nfs_readdir_free_large_page(void *ptr, struct page **pages, 549 unsigned int npages) 550 { 551 nfs_readdir_free_pagearray(pages, npages); 552 } 553 554 /* 555 * nfs_readdir_large_page will allocate pages that must be freed with a call 556 * to nfs_readdir_free_large_page 557 */ 558 static 559 int nfs_readdir_large_page(struct page **pages, unsigned int npages) 560 { 561 unsigned int i; 562 563 for (i = 0; i < npages; i++) { 564 struct page *page = alloc_page(GFP_KERNEL); 565 if (page == NULL) 566 goto out_freepages; 567 pages[i] = page; 568 } 569 return 0; 570 571 out_freepages: 572 nfs_readdir_free_pagearray(pages, i); 573 return -ENOMEM; 574 } 575 576 static 577 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode) 578 { 579 struct page *pages[NFS_MAX_READDIR_PAGES]; 580 void *pages_ptr = NULL; 581 struct nfs_entry entry; 582 struct file *file = desc->file; 583 struct nfs_cache_array *array; 584 int status = -ENOMEM; 585 unsigned int array_size = ARRAY_SIZE(pages); 586 587 entry.prev_cookie = 0; 588 entry.cookie = desc->last_cookie; 589 entry.eof = 0; 590 entry.fh = nfs_alloc_fhandle(); 591 entry.fattr = nfs_alloc_fattr(); 592 entry.server = NFS_SERVER(inode); 593 if (entry.fh == NULL || entry.fattr == NULL) 594 goto out; 595 596 entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT); 597 if (IS_ERR(entry.label)) { 598 status = PTR_ERR(entry.label); 599 goto out; 600 } 601 602 array = nfs_readdir_get_array(page); 603 if (IS_ERR(array)) { 604 status = PTR_ERR(array); 605 goto out_label_free; 606 } 607 memset(array, 0, sizeof(struct nfs_cache_array)); 608 array->eof_index = -1; 609 610 status = nfs_readdir_large_page(pages, array_size); 611 if (status < 0) 612 goto out_release_array; 613 do { 614 unsigned int pglen; 615 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode); 616 617 if (status < 0) 618 break; 619 pglen = status; 620 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen); 621 if (status < 0) { 622 if (status == -ENOSPC) 623 status = 0; 624 break; 625 } 626 } while (array->eof_index < 0); 627 628 nfs_readdir_free_large_page(pages_ptr, pages, array_size); 629 out_release_array: 630 nfs_readdir_release_array(page); 631 out_label_free: 632 nfs4_label_free(entry.label); 633 out: 634 nfs_free_fattr(entry.fattr); 635 nfs_free_fhandle(entry.fh); 636 return status; 637 } 638 639 /* 640 * Now we cache directories properly, by converting xdr information 641 * to an array that can be used for lookups later. This results in 642 * fewer cache pages, since we can store more information on each page. 643 * We only need to convert from xdr once so future lookups are much simpler 644 */ 645 static 646 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page) 647 { 648 struct inode *inode = file_inode(desc->file); 649 int ret; 650 651 ret = nfs_readdir_xdr_to_array(desc, page, inode); 652 if (ret < 0) 653 goto error; 654 SetPageUptodate(page); 655 656 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) { 657 /* Should never happen */ 658 nfs_zap_mapping(inode, inode->i_mapping); 659 } 660 unlock_page(page); 661 return 0; 662 error: 663 unlock_page(page); 664 return ret; 665 } 666 667 static 668 void cache_page_release(nfs_readdir_descriptor_t *desc) 669 { 670 if (!desc->page->mapping) 671 nfs_readdir_clear_array(desc->page); 672 page_cache_release(desc->page); 673 desc->page = NULL; 674 } 675 676 static 677 struct page *get_cache_page(nfs_readdir_descriptor_t *desc) 678 { 679 return read_cache_page(file_inode(desc->file)->i_mapping, 680 desc->page_index, (filler_t *)nfs_readdir_filler, desc); 681 } 682 683 /* 684 * Returns 0 if desc->dir_cookie was found on page desc->page_index 685 */ 686 static 687 int find_cache_page(nfs_readdir_descriptor_t *desc) 688 { 689 int res; 690 691 desc->page = get_cache_page(desc); 692 if (IS_ERR(desc->page)) 693 return PTR_ERR(desc->page); 694 695 res = nfs_readdir_search_array(desc); 696 if (res != 0) 697 cache_page_release(desc); 698 return res; 699 } 700 701 /* Search for desc->dir_cookie from the beginning of the page cache */ 702 static inline 703 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc) 704 { 705 int res; 706 707 if (desc->page_index == 0) { 708 desc->current_index = 0; 709 desc->last_cookie = 0; 710 } 711 do { 712 res = find_cache_page(desc); 713 } while (res == -EAGAIN); 714 return res; 715 } 716 717 /* 718 * Once we've found the start of the dirent within a page: fill 'er up... 719 */ 720 static 721 int nfs_do_filldir(nfs_readdir_descriptor_t *desc) 722 { 723 struct file *file = desc->file; 724 int i = 0; 725 int res = 0; 726 struct nfs_cache_array *array = NULL; 727 struct nfs_open_dir_context *ctx = file->private_data; 728 729 array = nfs_readdir_get_array(desc->page); 730 if (IS_ERR(array)) { 731 res = PTR_ERR(array); 732 goto out; 733 } 734 735 for (i = desc->cache_entry_index; i < array->size; i++) { 736 struct nfs_cache_array_entry *ent; 737 738 ent = &array->array[i]; 739 if (!dir_emit(desc->ctx, ent->string.name, ent->string.len, 740 nfs_compat_user_ino64(ent->ino), ent->d_type)) { 741 desc->eof = 1; 742 break; 743 } 744 desc->ctx->pos++; 745 if (i < (array->size-1)) 746 *desc->dir_cookie = array->array[i+1].cookie; 747 else 748 *desc->dir_cookie = array->last_cookie; 749 if (ctx->duped != 0) 750 ctx->duped = 1; 751 } 752 if (array->eof_index >= 0) 753 desc->eof = 1; 754 755 nfs_readdir_release_array(desc->page); 756 out: 757 cache_page_release(desc); 758 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n", 759 (unsigned long long)*desc->dir_cookie, res); 760 return res; 761 } 762 763 /* 764 * If we cannot find a cookie in our cache, we suspect that this is 765 * because it points to a deleted file, so we ask the server to return 766 * whatever it thinks is the next entry. We then feed this to filldir. 767 * If all goes well, we should then be able to find our way round the 768 * cache on the next call to readdir_search_pagecache(); 769 * 770 * NOTE: we cannot add the anonymous page to the pagecache because 771 * the data it contains might not be page aligned. Besides, 772 * we should already have a complete representation of the 773 * directory in the page cache by the time we get here. 774 */ 775 static inline 776 int uncached_readdir(nfs_readdir_descriptor_t *desc) 777 { 778 struct page *page = NULL; 779 int status; 780 struct inode *inode = file_inode(desc->file); 781 struct nfs_open_dir_context *ctx = desc->file->private_data; 782 783 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n", 784 (unsigned long long)*desc->dir_cookie); 785 786 page = alloc_page(GFP_HIGHUSER); 787 if (!page) { 788 status = -ENOMEM; 789 goto out; 790 } 791 792 desc->page_index = 0; 793 desc->last_cookie = *desc->dir_cookie; 794 desc->page = page; 795 ctx->duped = 0; 796 797 status = nfs_readdir_xdr_to_array(desc, page, inode); 798 if (status < 0) 799 goto out_release; 800 801 status = nfs_do_filldir(desc); 802 803 out: 804 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", 805 __func__, status); 806 return status; 807 out_release: 808 cache_page_release(desc); 809 goto out; 810 } 811 812 /* The file offset position represents the dirent entry number. A 813 last cookie cache takes care of the common case of reading the 814 whole directory. 815 */ 816 static int nfs_readdir(struct file *file, struct dir_context *ctx) 817 { 818 struct dentry *dentry = file->f_path.dentry; 819 struct inode *inode = dentry->d_inode; 820 nfs_readdir_descriptor_t my_desc, 821 *desc = &my_desc; 822 struct nfs_open_dir_context *dir_ctx = file->private_data; 823 int res = 0; 824 825 dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n", 826 dentry->d_parent->d_name.name, dentry->d_name.name, 827 (long long)ctx->pos); 828 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS); 829 830 /* 831 * ctx->pos points to the dirent entry number. 832 * *desc->dir_cookie has the cookie for the next entry. We have 833 * to either find the entry with the appropriate number or 834 * revalidate the cookie. 835 */ 836 memset(desc, 0, sizeof(*desc)); 837 838 desc->file = file; 839 desc->ctx = ctx; 840 desc->dir_cookie = &dir_ctx->dir_cookie; 841 desc->decode = NFS_PROTO(inode)->decode_dirent; 842 desc->plus = nfs_use_readdirplus(inode, ctx) ? 1 : 0; 843 844 nfs_block_sillyrename(dentry); 845 if (ctx->pos == 0 || nfs_attribute_cache_expired(inode)) 846 res = nfs_revalidate_mapping(inode, file->f_mapping); 847 if (res < 0) 848 goto out; 849 850 do { 851 res = readdir_search_pagecache(desc); 852 853 if (res == -EBADCOOKIE) { 854 res = 0; 855 /* This means either end of directory */ 856 if (*desc->dir_cookie && desc->eof == 0) { 857 /* Or that the server has 'lost' a cookie */ 858 res = uncached_readdir(desc); 859 if (res == 0) 860 continue; 861 } 862 break; 863 } 864 if (res == -ETOOSMALL && desc->plus) { 865 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 866 nfs_zap_caches(inode); 867 desc->page_index = 0; 868 desc->plus = 0; 869 desc->eof = 0; 870 continue; 871 } 872 if (res < 0) 873 break; 874 875 res = nfs_do_filldir(desc); 876 if (res < 0) 877 break; 878 } while (!desc->eof); 879 out: 880 nfs_unblock_sillyrename(dentry); 881 if (res > 0) 882 res = 0; 883 dfprintk(FILE, "NFS: readdir(%s/%s) returns %d\n", 884 dentry->d_parent->d_name.name, dentry->d_name.name, 885 res); 886 return res; 887 } 888 889 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence) 890 { 891 struct dentry *dentry = filp->f_path.dentry; 892 struct inode *inode = dentry->d_inode; 893 struct nfs_open_dir_context *dir_ctx = filp->private_data; 894 895 dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n", 896 dentry->d_parent->d_name.name, 897 dentry->d_name.name, 898 offset, whence); 899 900 mutex_lock(&inode->i_mutex); 901 switch (whence) { 902 case 1: 903 offset += filp->f_pos; 904 case 0: 905 if (offset >= 0) 906 break; 907 default: 908 offset = -EINVAL; 909 goto out; 910 } 911 if (offset != filp->f_pos) { 912 filp->f_pos = offset; 913 dir_ctx->dir_cookie = 0; 914 dir_ctx->duped = 0; 915 } 916 out: 917 mutex_unlock(&inode->i_mutex); 918 return offset; 919 } 920 921 /* 922 * All directory operations under NFS are synchronous, so fsync() 923 * is a dummy operation. 924 */ 925 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end, 926 int datasync) 927 { 928 struct dentry *dentry = filp->f_path.dentry; 929 struct inode *inode = dentry->d_inode; 930 931 dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n", 932 dentry->d_parent->d_name.name, dentry->d_name.name, 933 datasync); 934 935 mutex_lock(&inode->i_mutex); 936 nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC); 937 mutex_unlock(&inode->i_mutex); 938 return 0; 939 } 940 941 /** 942 * nfs_force_lookup_revalidate - Mark the directory as having changed 943 * @dir - pointer to directory inode 944 * 945 * This forces the revalidation code in nfs_lookup_revalidate() to do a 946 * full lookup on all child dentries of 'dir' whenever a change occurs 947 * on the server that might have invalidated our dcache. 948 * 949 * The caller should be holding dir->i_lock 950 */ 951 void nfs_force_lookup_revalidate(struct inode *dir) 952 { 953 NFS_I(dir)->cache_change_attribute++; 954 } 955 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate); 956 957 /* 958 * A check for whether or not the parent directory has changed. 959 * In the case it has, we assume that the dentries are untrustworthy 960 * and may need to be looked up again. 961 */ 962 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry) 963 { 964 if (IS_ROOT(dentry)) 965 return 1; 966 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE) 967 return 0; 968 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 969 return 0; 970 /* Revalidate nfsi->cache_change_attribute before we declare a match */ 971 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0) 972 return 0; 973 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 974 return 0; 975 return 1; 976 } 977 978 /* 979 * Use intent information to check whether or not we're going to do 980 * an O_EXCL create using this path component. 981 */ 982 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags) 983 { 984 if (NFS_PROTO(dir)->version == 2) 985 return 0; 986 return flags & LOOKUP_EXCL; 987 } 988 989 /* 990 * Inode and filehandle revalidation for lookups. 991 * 992 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL, 993 * or if the intent information indicates that we're about to open this 994 * particular file and the "nocto" mount flag is not set. 995 * 996 */ 997 static 998 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags) 999 { 1000 struct nfs_server *server = NFS_SERVER(inode); 1001 int ret; 1002 1003 if (IS_AUTOMOUNT(inode)) 1004 return 0; 1005 /* VFS wants an on-the-wire revalidation */ 1006 if (flags & LOOKUP_REVAL) 1007 goto out_force; 1008 /* This is an open(2) */ 1009 if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) && 1010 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode))) 1011 goto out_force; 1012 out: 1013 return (inode->i_nlink == 0) ? -ENOENT : 0; 1014 out_force: 1015 ret = __nfs_revalidate_inode(server, inode); 1016 if (ret != 0) 1017 return ret; 1018 goto out; 1019 } 1020 1021 /* 1022 * We judge how long we want to trust negative 1023 * dentries by looking at the parent inode mtime. 1024 * 1025 * If parent mtime has changed, we revalidate, else we wait for a 1026 * period corresponding to the parent's attribute cache timeout value. 1027 */ 1028 static inline 1029 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry, 1030 unsigned int flags) 1031 { 1032 /* Don't revalidate a negative dentry if we're creating a new file */ 1033 if (flags & LOOKUP_CREATE) 1034 return 0; 1035 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG) 1036 return 1; 1037 return !nfs_check_verifier(dir, dentry); 1038 } 1039 1040 /* 1041 * This is called every time the dcache has a lookup hit, 1042 * and we should check whether we can really trust that 1043 * lookup. 1044 * 1045 * NOTE! The hit can be a negative hit too, don't assume 1046 * we have an inode! 1047 * 1048 * If the parent directory is seen to have changed, we throw out the 1049 * cached dentry and do a new lookup. 1050 */ 1051 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1052 { 1053 struct inode *dir; 1054 struct inode *inode; 1055 struct dentry *parent; 1056 struct nfs_fh *fhandle = NULL; 1057 struct nfs_fattr *fattr = NULL; 1058 struct nfs4_label *label = NULL; 1059 int error; 1060 1061 if (flags & LOOKUP_RCU) 1062 return -ECHILD; 1063 1064 parent = dget_parent(dentry); 1065 dir = parent->d_inode; 1066 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE); 1067 inode = dentry->d_inode; 1068 1069 if (!inode) { 1070 if (nfs_neg_need_reval(dir, dentry, flags)) 1071 goto out_bad; 1072 goto out_valid_noent; 1073 } 1074 1075 if (is_bad_inode(inode)) { 1076 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n", 1077 __func__, dentry->d_parent->d_name.name, 1078 dentry->d_name.name); 1079 goto out_bad; 1080 } 1081 1082 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ)) 1083 goto out_set_verifier; 1084 1085 /* Force a full look up iff the parent directory has changed */ 1086 if (!nfs_is_exclusive_create(dir, flags) && nfs_check_verifier(dir, dentry)) { 1087 if (nfs_lookup_verify_inode(inode, flags)) 1088 goto out_zap_parent; 1089 goto out_valid; 1090 } 1091 1092 if (NFS_STALE(inode)) 1093 goto out_bad; 1094 1095 error = -ENOMEM; 1096 fhandle = nfs_alloc_fhandle(); 1097 fattr = nfs_alloc_fattr(); 1098 if (fhandle == NULL || fattr == NULL) 1099 goto out_error; 1100 1101 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT); 1102 if (IS_ERR(label)) 1103 goto out_error; 1104 1105 trace_nfs_lookup_revalidate_enter(dir, dentry, flags); 1106 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label); 1107 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error); 1108 if (error) 1109 goto out_bad; 1110 if (nfs_compare_fh(NFS_FH(inode), fhandle)) 1111 goto out_bad; 1112 if ((error = nfs_refresh_inode(inode, fattr)) != 0) 1113 goto out_bad; 1114 1115 nfs_setsecurity(inode, fattr, label); 1116 1117 nfs_free_fattr(fattr); 1118 nfs_free_fhandle(fhandle); 1119 nfs4_label_free(label); 1120 1121 out_set_verifier: 1122 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1123 out_valid: 1124 /* Success: notify readdir to use READDIRPLUS */ 1125 nfs_advise_use_readdirplus(dir); 1126 out_valid_noent: 1127 dput(parent); 1128 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n", 1129 __func__, dentry->d_parent->d_name.name, 1130 dentry->d_name.name); 1131 return 1; 1132 out_zap_parent: 1133 nfs_zap_caches(dir); 1134 out_bad: 1135 nfs_free_fattr(fattr); 1136 nfs_free_fhandle(fhandle); 1137 nfs4_label_free(label); 1138 nfs_mark_for_revalidate(dir); 1139 if (inode && S_ISDIR(inode->i_mode)) { 1140 /* Purge readdir caches. */ 1141 nfs_zap_caches(inode); 1142 if (dentry->d_flags & DCACHE_DISCONNECTED) 1143 goto out_valid; 1144 } 1145 /* If we have submounts, don't unhash ! */ 1146 if (check_submounts_and_drop(dentry) != 0) 1147 goto out_valid; 1148 1149 dput(parent); 1150 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n", 1151 __func__, dentry->d_parent->d_name.name, 1152 dentry->d_name.name); 1153 return 0; 1154 out_error: 1155 nfs_free_fattr(fattr); 1156 nfs_free_fhandle(fhandle); 1157 nfs4_label_free(label); 1158 dput(parent); 1159 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n", 1160 __func__, dentry->d_parent->d_name.name, 1161 dentry->d_name.name, error); 1162 return error; 1163 } 1164 1165 /* 1166 * A weaker form of d_revalidate for revalidating just the dentry->d_inode 1167 * when we don't really care about the dentry name. This is called when a 1168 * pathwalk ends on a dentry that was not found via a normal lookup in the 1169 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals). 1170 * 1171 * In this situation, we just want to verify that the inode itself is OK 1172 * since the dentry might have changed on the server. 1173 */ 1174 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags) 1175 { 1176 int error; 1177 struct inode *inode = dentry->d_inode; 1178 1179 /* 1180 * I believe we can only get a negative dentry here in the case of a 1181 * procfs-style symlink. Just assume it's correct for now, but we may 1182 * eventually need to do something more here. 1183 */ 1184 if (!inode) { 1185 dfprintk(LOOKUPCACHE, "%s: %s/%s has negative inode\n", 1186 __func__, dentry->d_parent->d_name.name, 1187 dentry->d_name.name); 1188 return 1; 1189 } 1190 1191 if (is_bad_inode(inode)) { 1192 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n", 1193 __func__, dentry->d_parent->d_name.name, 1194 dentry->d_name.name); 1195 return 0; 1196 } 1197 1198 error = nfs_revalidate_inode(NFS_SERVER(inode), inode); 1199 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n", 1200 __func__, inode->i_ino, error ? "invalid" : "valid"); 1201 return !error; 1202 } 1203 1204 /* 1205 * This is called from dput() when d_count is going to 0. 1206 */ 1207 static int nfs_dentry_delete(const struct dentry *dentry) 1208 { 1209 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n", 1210 dentry->d_parent->d_name.name, dentry->d_name.name, 1211 dentry->d_flags); 1212 1213 /* Unhash any dentry with a stale inode */ 1214 if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode)) 1215 return 1; 1216 1217 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1218 /* Unhash it, so that ->d_iput() would be called */ 1219 return 1; 1220 } 1221 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) { 1222 /* Unhash it, so that ancestors of killed async unlink 1223 * files will be cleaned up during umount */ 1224 return 1; 1225 } 1226 return 0; 1227 1228 } 1229 1230 /* Ensure that we revalidate inode->i_nlink */ 1231 static void nfs_drop_nlink(struct inode *inode) 1232 { 1233 spin_lock(&inode->i_lock); 1234 /* drop the inode if we're reasonably sure this is the last link */ 1235 if (inode->i_nlink == 1) 1236 clear_nlink(inode); 1237 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR; 1238 spin_unlock(&inode->i_lock); 1239 } 1240 1241 /* 1242 * Called when the dentry loses inode. 1243 * We use it to clean up silly-renamed files. 1244 */ 1245 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode) 1246 { 1247 if (S_ISDIR(inode->i_mode)) 1248 /* drop any readdir cache as it could easily be old */ 1249 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA; 1250 1251 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1252 nfs_complete_unlink(dentry, inode); 1253 nfs_drop_nlink(inode); 1254 } 1255 iput(inode); 1256 } 1257 1258 static void nfs_d_release(struct dentry *dentry) 1259 { 1260 /* free cached devname value, if it survived that far */ 1261 if (unlikely(dentry->d_fsdata)) { 1262 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1263 WARN_ON(1); 1264 else 1265 kfree(dentry->d_fsdata); 1266 } 1267 } 1268 1269 const struct dentry_operations nfs_dentry_operations = { 1270 .d_revalidate = nfs_lookup_revalidate, 1271 .d_weak_revalidate = nfs_weak_revalidate, 1272 .d_delete = nfs_dentry_delete, 1273 .d_iput = nfs_dentry_iput, 1274 .d_automount = nfs_d_automount, 1275 .d_release = nfs_d_release, 1276 }; 1277 EXPORT_SYMBOL_GPL(nfs_dentry_operations); 1278 1279 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 1280 { 1281 struct dentry *res; 1282 struct dentry *parent; 1283 struct inode *inode = NULL; 1284 struct nfs_fh *fhandle = NULL; 1285 struct nfs_fattr *fattr = NULL; 1286 struct nfs4_label *label = NULL; 1287 int error; 1288 1289 dfprintk(VFS, "NFS: lookup(%s/%s)\n", 1290 dentry->d_parent->d_name.name, dentry->d_name.name); 1291 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP); 1292 1293 res = ERR_PTR(-ENAMETOOLONG); 1294 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 1295 goto out; 1296 1297 /* 1298 * If we're doing an exclusive create, optimize away the lookup 1299 * but don't hash the dentry. 1300 */ 1301 if (nfs_is_exclusive_create(dir, flags)) { 1302 d_instantiate(dentry, NULL); 1303 res = NULL; 1304 goto out; 1305 } 1306 1307 res = ERR_PTR(-ENOMEM); 1308 fhandle = nfs_alloc_fhandle(); 1309 fattr = nfs_alloc_fattr(); 1310 if (fhandle == NULL || fattr == NULL) 1311 goto out; 1312 1313 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT); 1314 if (IS_ERR(label)) 1315 goto out; 1316 1317 parent = dentry->d_parent; 1318 /* Protect against concurrent sillydeletes */ 1319 trace_nfs_lookup_enter(dir, dentry, flags); 1320 nfs_block_sillyrename(parent); 1321 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label); 1322 if (error == -ENOENT) 1323 goto no_entry; 1324 if (error < 0) { 1325 res = ERR_PTR(error); 1326 goto out_unblock_sillyrename; 1327 } 1328 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label); 1329 res = ERR_CAST(inode); 1330 if (IS_ERR(res)) 1331 goto out_unblock_sillyrename; 1332 1333 /* Success: notify readdir to use READDIRPLUS */ 1334 nfs_advise_use_readdirplus(dir); 1335 1336 no_entry: 1337 res = d_materialise_unique(dentry, inode); 1338 if (res != NULL) { 1339 if (IS_ERR(res)) 1340 goto out_unblock_sillyrename; 1341 dentry = res; 1342 } 1343 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1344 out_unblock_sillyrename: 1345 nfs_unblock_sillyrename(parent); 1346 trace_nfs_lookup_exit(dir, dentry, flags, error); 1347 nfs4_label_free(label); 1348 out: 1349 nfs_free_fattr(fattr); 1350 nfs_free_fhandle(fhandle); 1351 return res; 1352 } 1353 EXPORT_SYMBOL_GPL(nfs_lookup); 1354 1355 #if IS_ENABLED(CONFIG_NFS_V4) 1356 static int nfs4_lookup_revalidate(struct dentry *, unsigned int); 1357 1358 const struct dentry_operations nfs4_dentry_operations = { 1359 .d_revalidate = nfs4_lookup_revalidate, 1360 .d_delete = nfs_dentry_delete, 1361 .d_iput = nfs_dentry_iput, 1362 .d_automount = nfs_d_automount, 1363 .d_release = nfs_d_release, 1364 }; 1365 EXPORT_SYMBOL_GPL(nfs4_dentry_operations); 1366 1367 static fmode_t flags_to_mode(int flags) 1368 { 1369 fmode_t res = (__force fmode_t)flags & FMODE_EXEC; 1370 if ((flags & O_ACCMODE) != O_WRONLY) 1371 res |= FMODE_READ; 1372 if ((flags & O_ACCMODE) != O_RDONLY) 1373 res |= FMODE_WRITE; 1374 return res; 1375 } 1376 1377 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags) 1378 { 1379 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags)); 1380 } 1381 1382 static int do_open(struct inode *inode, struct file *filp) 1383 { 1384 nfs_fscache_set_inode_cookie(inode, filp); 1385 return 0; 1386 } 1387 1388 static int nfs_finish_open(struct nfs_open_context *ctx, 1389 struct dentry *dentry, 1390 struct file *file, unsigned open_flags, 1391 int *opened) 1392 { 1393 int err; 1394 1395 if ((open_flags & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL)) 1396 *opened |= FILE_CREATED; 1397 1398 err = finish_open(file, dentry, do_open, opened); 1399 if (err) 1400 goto out; 1401 nfs_file_set_open_context(file, ctx); 1402 1403 out: 1404 return err; 1405 } 1406 1407 int nfs_atomic_open(struct inode *dir, struct dentry *dentry, 1408 struct file *file, unsigned open_flags, 1409 umode_t mode, int *opened) 1410 { 1411 struct nfs_open_context *ctx; 1412 struct dentry *res; 1413 struct iattr attr = { .ia_valid = ATTR_OPEN }; 1414 struct inode *inode; 1415 unsigned int lookup_flags = 0; 1416 int err; 1417 1418 /* Expect a negative dentry */ 1419 BUG_ON(dentry->d_inode); 1420 1421 dfprintk(VFS, "NFS: atomic_open(%s/%ld), %s\n", 1422 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1423 1424 err = nfs_check_flags(open_flags); 1425 if (err) 1426 return err; 1427 1428 /* NFS only supports OPEN on regular files */ 1429 if ((open_flags & O_DIRECTORY)) { 1430 if (!d_unhashed(dentry)) { 1431 /* 1432 * Hashed negative dentry with O_DIRECTORY: dentry was 1433 * revalidated and is fine, no need to perform lookup 1434 * again 1435 */ 1436 return -ENOENT; 1437 } 1438 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY; 1439 goto no_open; 1440 } 1441 1442 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 1443 return -ENAMETOOLONG; 1444 1445 if (open_flags & O_CREAT) { 1446 attr.ia_valid |= ATTR_MODE; 1447 attr.ia_mode = mode & ~current_umask(); 1448 } 1449 if (open_flags & O_TRUNC) { 1450 attr.ia_valid |= ATTR_SIZE; 1451 attr.ia_size = 0; 1452 } 1453 1454 ctx = create_nfs_open_context(dentry, open_flags); 1455 err = PTR_ERR(ctx); 1456 if (IS_ERR(ctx)) 1457 goto out; 1458 1459 trace_nfs_atomic_open_enter(dir, ctx, open_flags); 1460 nfs_block_sillyrename(dentry->d_parent); 1461 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr); 1462 nfs_unblock_sillyrename(dentry->d_parent); 1463 if (IS_ERR(inode)) { 1464 err = PTR_ERR(inode); 1465 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 1466 put_nfs_open_context(ctx); 1467 switch (err) { 1468 case -ENOENT: 1469 d_drop(dentry); 1470 d_add(dentry, NULL); 1471 break; 1472 case -EISDIR: 1473 case -ENOTDIR: 1474 goto no_open; 1475 case -ELOOP: 1476 if (!(open_flags & O_NOFOLLOW)) 1477 goto no_open; 1478 break; 1479 /* case -EINVAL: */ 1480 default: 1481 break; 1482 } 1483 goto out; 1484 } 1485 1486 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags, opened); 1487 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 1488 put_nfs_open_context(ctx); 1489 out: 1490 return err; 1491 1492 no_open: 1493 res = nfs_lookup(dir, dentry, lookup_flags); 1494 err = PTR_ERR(res); 1495 if (IS_ERR(res)) 1496 goto out; 1497 1498 return finish_no_open(file, res); 1499 } 1500 EXPORT_SYMBOL_GPL(nfs_atomic_open); 1501 1502 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1503 { 1504 struct dentry *parent = NULL; 1505 struct inode *inode; 1506 struct inode *dir; 1507 int ret = 0; 1508 1509 if (flags & LOOKUP_RCU) 1510 return -ECHILD; 1511 1512 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY)) 1513 goto no_open; 1514 if (d_mountpoint(dentry)) 1515 goto no_open; 1516 if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1) 1517 goto no_open; 1518 1519 inode = dentry->d_inode; 1520 parent = dget_parent(dentry); 1521 dir = parent->d_inode; 1522 1523 /* We can't create new files in nfs_open_revalidate(), so we 1524 * optimize away revalidation of negative dentries. 1525 */ 1526 if (inode == NULL) { 1527 if (!nfs_neg_need_reval(dir, dentry, flags)) 1528 ret = 1; 1529 goto out; 1530 } 1531 1532 /* NFS only supports OPEN on regular files */ 1533 if (!S_ISREG(inode->i_mode)) 1534 goto no_open_dput; 1535 /* We cannot do exclusive creation on a positive dentry */ 1536 if (flags & LOOKUP_EXCL) 1537 goto no_open_dput; 1538 1539 /* Let f_op->open() actually open (and revalidate) the file */ 1540 ret = 1; 1541 1542 out: 1543 dput(parent); 1544 return ret; 1545 1546 no_open_dput: 1547 dput(parent); 1548 no_open: 1549 return nfs_lookup_revalidate(dentry, flags); 1550 } 1551 1552 #endif /* CONFIG_NFSV4 */ 1553 1554 /* 1555 * Code common to create, mkdir, and mknod. 1556 */ 1557 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle, 1558 struct nfs_fattr *fattr, 1559 struct nfs4_label *label) 1560 { 1561 struct dentry *parent = dget_parent(dentry); 1562 struct inode *dir = parent->d_inode; 1563 struct inode *inode; 1564 int error = -EACCES; 1565 1566 d_drop(dentry); 1567 1568 /* We may have been initialized further down */ 1569 if (dentry->d_inode) 1570 goto out; 1571 if (fhandle->size == 0) { 1572 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL); 1573 if (error) 1574 goto out_error; 1575 } 1576 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1577 if (!(fattr->valid & NFS_ATTR_FATTR)) { 1578 struct nfs_server *server = NFS_SB(dentry->d_sb); 1579 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL); 1580 if (error < 0) 1581 goto out_error; 1582 } 1583 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label); 1584 error = PTR_ERR(inode); 1585 if (IS_ERR(inode)) 1586 goto out_error; 1587 d_add(dentry, inode); 1588 out: 1589 dput(parent); 1590 return 0; 1591 out_error: 1592 nfs_mark_for_revalidate(dir); 1593 dput(parent); 1594 return error; 1595 } 1596 EXPORT_SYMBOL_GPL(nfs_instantiate); 1597 1598 /* 1599 * Following a failed create operation, we drop the dentry rather 1600 * than retain a negative dentry. This avoids a problem in the event 1601 * that the operation succeeded on the server, but an error in the 1602 * reply path made it appear to have failed. 1603 */ 1604 int nfs_create(struct inode *dir, struct dentry *dentry, 1605 umode_t mode, bool excl) 1606 { 1607 struct iattr attr; 1608 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT; 1609 int error; 1610 1611 dfprintk(VFS, "NFS: create(%s/%ld), %s\n", 1612 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1613 1614 attr.ia_mode = mode; 1615 attr.ia_valid = ATTR_MODE; 1616 1617 trace_nfs_create_enter(dir, dentry, open_flags); 1618 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags); 1619 trace_nfs_create_exit(dir, dentry, open_flags, error); 1620 if (error != 0) 1621 goto out_err; 1622 return 0; 1623 out_err: 1624 d_drop(dentry); 1625 return error; 1626 } 1627 EXPORT_SYMBOL_GPL(nfs_create); 1628 1629 /* 1630 * See comments for nfs_proc_create regarding failed operations. 1631 */ 1632 int 1633 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev) 1634 { 1635 struct iattr attr; 1636 int status; 1637 1638 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n", 1639 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1640 1641 if (!new_valid_dev(rdev)) 1642 return -EINVAL; 1643 1644 attr.ia_mode = mode; 1645 attr.ia_valid = ATTR_MODE; 1646 1647 trace_nfs_mknod_enter(dir, dentry); 1648 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev); 1649 trace_nfs_mknod_exit(dir, dentry, status); 1650 if (status != 0) 1651 goto out_err; 1652 return 0; 1653 out_err: 1654 d_drop(dentry); 1655 return status; 1656 } 1657 EXPORT_SYMBOL_GPL(nfs_mknod); 1658 1659 /* 1660 * See comments for nfs_proc_create regarding failed operations. 1661 */ 1662 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1663 { 1664 struct iattr attr; 1665 int error; 1666 1667 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n", 1668 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1669 1670 attr.ia_valid = ATTR_MODE; 1671 attr.ia_mode = mode | S_IFDIR; 1672 1673 trace_nfs_mkdir_enter(dir, dentry); 1674 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr); 1675 trace_nfs_mkdir_exit(dir, dentry, error); 1676 if (error != 0) 1677 goto out_err; 1678 return 0; 1679 out_err: 1680 d_drop(dentry); 1681 return error; 1682 } 1683 EXPORT_SYMBOL_GPL(nfs_mkdir); 1684 1685 static void nfs_dentry_handle_enoent(struct dentry *dentry) 1686 { 1687 if (dentry->d_inode != NULL && !d_unhashed(dentry)) 1688 d_delete(dentry); 1689 } 1690 1691 int nfs_rmdir(struct inode *dir, struct dentry *dentry) 1692 { 1693 int error; 1694 1695 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n", 1696 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name); 1697 1698 trace_nfs_rmdir_enter(dir, dentry); 1699 if (dentry->d_inode) { 1700 nfs_wait_on_sillyrename(dentry); 1701 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1702 /* Ensure the VFS deletes this inode */ 1703 switch (error) { 1704 case 0: 1705 clear_nlink(dentry->d_inode); 1706 break; 1707 case -ENOENT: 1708 nfs_dentry_handle_enoent(dentry); 1709 } 1710 } else 1711 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1712 trace_nfs_rmdir_exit(dir, dentry, error); 1713 1714 return error; 1715 } 1716 EXPORT_SYMBOL_GPL(nfs_rmdir); 1717 1718 /* 1719 * Remove a file after making sure there are no pending writes, 1720 * and after checking that the file has only one user. 1721 * 1722 * We invalidate the attribute cache and free the inode prior to the operation 1723 * to avoid possible races if the server reuses the inode. 1724 */ 1725 static int nfs_safe_remove(struct dentry *dentry) 1726 { 1727 struct inode *dir = dentry->d_parent->d_inode; 1728 struct inode *inode = dentry->d_inode; 1729 int error = -EBUSY; 1730 1731 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n", 1732 dentry->d_parent->d_name.name, dentry->d_name.name); 1733 1734 /* If the dentry was sillyrenamed, we simply call d_delete() */ 1735 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1736 error = 0; 1737 goto out; 1738 } 1739 1740 trace_nfs_remove_enter(dir, dentry); 1741 if (inode != NULL) { 1742 NFS_PROTO(inode)->return_delegation(inode); 1743 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name); 1744 if (error == 0) 1745 nfs_drop_nlink(inode); 1746 } else 1747 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name); 1748 if (error == -ENOENT) 1749 nfs_dentry_handle_enoent(dentry); 1750 trace_nfs_remove_exit(dir, dentry, error); 1751 out: 1752 return error; 1753 } 1754 1755 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode 1756 * belongs to an active ".nfs..." file and we return -EBUSY. 1757 * 1758 * If sillyrename() returns 0, we do nothing, otherwise we unlink. 1759 */ 1760 int nfs_unlink(struct inode *dir, struct dentry *dentry) 1761 { 1762 int error; 1763 int need_rehash = 0; 1764 1765 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id, 1766 dir->i_ino, dentry->d_name.name); 1767 1768 trace_nfs_unlink_enter(dir, dentry); 1769 spin_lock(&dentry->d_lock); 1770 if (d_count(dentry) > 1) { 1771 spin_unlock(&dentry->d_lock); 1772 /* Start asynchronous writeout of the inode */ 1773 write_inode_now(dentry->d_inode, 0); 1774 error = nfs_sillyrename(dir, dentry); 1775 goto out; 1776 } 1777 if (!d_unhashed(dentry)) { 1778 __d_drop(dentry); 1779 need_rehash = 1; 1780 } 1781 spin_unlock(&dentry->d_lock); 1782 error = nfs_safe_remove(dentry); 1783 if (!error || error == -ENOENT) { 1784 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1785 } else if (need_rehash) 1786 d_rehash(dentry); 1787 out: 1788 trace_nfs_unlink_exit(dir, dentry, error); 1789 return error; 1790 } 1791 EXPORT_SYMBOL_GPL(nfs_unlink); 1792 1793 /* 1794 * To create a symbolic link, most file systems instantiate a new inode, 1795 * add a page to it containing the path, then write it out to the disk 1796 * using prepare_write/commit_write. 1797 * 1798 * Unfortunately the NFS client can't create the in-core inode first 1799 * because it needs a file handle to create an in-core inode (see 1800 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the 1801 * symlink request has completed on the server. 1802 * 1803 * So instead we allocate a raw page, copy the symname into it, then do 1804 * the SYMLINK request with the page as the buffer. If it succeeds, we 1805 * now have a new file handle and can instantiate an in-core NFS inode 1806 * and move the raw page into its mapping. 1807 */ 1808 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 1809 { 1810 struct page *page; 1811 char *kaddr; 1812 struct iattr attr; 1813 unsigned int pathlen = strlen(symname); 1814 int error; 1815 1816 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id, 1817 dir->i_ino, dentry->d_name.name, symname); 1818 1819 if (pathlen > PAGE_SIZE) 1820 return -ENAMETOOLONG; 1821 1822 attr.ia_mode = S_IFLNK | S_IRWXUGO; 1823 attr.ia_valid = ATTR_MODE; 1824 1825 page = alloc_page(GFP_HIGHUSER); 1826 if (!page) 1827 return -ENOMEM; 1828 1829 kaddr = kmap_atomic(page); 1830 memcpy(kaddr, symname, pathlen); 1831 if (pathlen < PAGE_SIZE) 1832 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen); 1833 kunmap_atomic(kaddr); 1834 1835 trace_nfs_symlink_enter(dir, dentry); 1836 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr); 1837 trace_nfs_symlink_exit(dir, dentry, error); 1838 if (error != 0) { 1839 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n", 1840 dir->i_sb->s_id, dir->i_ino, 1841 dentry->d_name.name, symname, error); 1842 d_drop(dentry); 1843 __free_page(page); 1844 return error; 1845 } 1846 1847 /* 1848 * No big deal if we can't add this page to the page cache here. 1849 * READLINK will get the missing page from the server if needed. 1850 */ 1851 if (!add_to_page_cache_lru(page, dentry->d_inode->i_mapping, 0, 1852 GFP_KERNEL)) { 1853 SetPageUptodate(page); 1854 unlock_page(page); 1855 } else 1856 __free_page(page); 1857 1858 return 0; 1859 } 1860 EXPORT_SYMBOL_GPL(nfs_symlink); 1861 1862 int 1863 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 1864 { 1865 struct inode *inode = old_dentry->d_inode; 1866 int error; 1867 1868 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n", 1869 old_dentry->d_parent->d_name.name, old_dentry->d_name.name, 1870 dentry->d_parent->d_name.name, dentry->d_name.name); 1871 1872 trace_nfs_link_enter(inode, dir, dentry); 1873 NFS_PROTO(inode)->return_delegation(inode); 1874 1875 d_drop(dentry); 1876 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name); 1877 if (error == 0) { 1878 ihold(inode); 1879 d_add(dentry, inode); 1880 } 1881 trace_nfs_link_exit(inode, dir, dentry, error); 1882 return error; 1883 } 1884 EXPORT_SYMBOL_GPL(nfs_link); 1885 1886 /* 1887 * RENAME 1888 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a 1889 * different file handle for the same inode after a rename (e.g. when 1890 * moving to a different directory). A fail-safe method to do so would 1891 * be to look up old_dir/old_name, create a link to new_dir/new_name and 1892 * rename the old file using the sillyrename stuff. This way, the original 1893 * file in old_dir will go away when the last process iput()s the inode. 1894 * 1895 * FIXED. 1896 * 1897 * It actually works quite well. One needs to have the possibility for 1898 * at least one ".nfs..." file in each directory the file ever gets 1899 * moved or linked to which happens automagically with the new 1900 * implementation that only depends on the dcache stuff instead of 1901 * using the inode layer 1902 * 1903 * Unfortunately, things are a little more complicated than indicated 1904 * above. For a cross-directory move, we want to make sure we can get 1905 * rid of the old inode after the operation. This means there must be 1906 * no pending writes (if it's a file), and the use count must be 1. 1907 * If these conditions are met, we can drop the dentries before doing 1908 * the rename. 1909 */ 1910 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry, 1911 struct inode *new_dir, struct dentry *new_dentry) 1912 { 1913 struct inode *old_inode = old_dentry->d_inode; 1914 struct inode *new_inode = new_dentry->d_inode; 1915 struct dentry *dentry = NULL, *rehash = NULL; 1916 int error = -EBUSY; 1917 1918 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n", 1919 old_dentry->d_parent->d_name.name, old_dentry->d_name.name, 1920 new_dentry->d_parent->d_name.name, new_dentry->d_name.name, 1921 d_count(new_dentry)); 1922 1923 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry); 1924 /* 1925 * For non-directories, check whether the target is busy and if so, 1926 * make a copy of the dentry and then do a silly-rename. If the 1927 * silly-rename succeeds, the copied dentry is hashed and becomes 1928 * the new target. 1929 */ 1930 if (new_inode && !S_ISDIR(new_inode->i_mode)) { 1931 /* 1932 * To prevent any new references to the target during the 1933 * rename, we unhash the dentry in advance. 1934 */ 1935 if (!d_unhashed(new_dentry)) { 1936 d_drop(new_dentry); 1937 rehash = new_dentry; 1938 } 1939 1940 if (d_count(new_dentry) > 2) { 1941 int err; 1942 1943 /* copy the target dentry's name */ 1944 dentry = d_alloc(new_dentry->d_parent, 1945 &new_dentry->d_name); 1946 if (!dentry) 1947 goto out; 1948 1949 /* silly-rename the existing target ... */ 1950 err = nfs_sillyrename(new_dir, new_dentry); 1951 if (err) 1952 goto out; 1953 1954 new_dentry = dentry; 1955 rehash = NULL; 1956 new_inode = NULL; 1957 } 1958 } 1959 1960 NFS_PROTO(old_inode)->return_delegation(old_inode); 1961 if (new_inode != NULL) 1962 NFS_PROTO(new_inode)->return_delegation(new_inode); 1963 1964 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name, 1965 new_dir, &new_dentry->d_name); 1966 nfs_mark_for_revalidate(old_inode); 1967 out: 1968 if (rehash) 1969 d_rehash(rehash); 1970 trace_nfs_rename_exit(old_dir, old_dentry, 1971 new_dir, new_dentry, error); 1972 if (!error) { 1973 if (new_inode != NULL) 1974 nfs_drop_nlink(new_inode); 1975 d_move(old_dentry, new_dentry); 1976 nfs_set_verifier(new_dentry, 1977 nfs_save_change_attribute(new_dir)); 1978 } else if (error == -ENOENT) 1979 nfs_dentry_handle_enoent(old_dentry); 1980 1981 /* new dentry created? */ 1982 if (dentry) 1983 dput(dentry); 1984 return error; 1985 } 1986 EXPORT_SYMBOL_GPL(nfs_rename); 1987 1988 static DEFINE_SPINLOCK(nfs_access_lru_lock); 1989 static LIST_HEAD(nfs_access_lru_list); 1990 static atomic_long_t nfs_access_nr_entries; 1991 1992 static void nfs_access_free_entry(struct nfs_access_entry *entry) 1993 { 1994 put_rpccred(entry->cred); 1995 kfree(entry); 1996 smp_mb__before_atomic_dec(); 1997 atomic_long_dec(&nfs_access_nr_entries); 1998 smp_mb__after_atomic_dec(); 1999 } 2000 2001 static void nfs_access_free_list(struct list_head *head) 2002 { 2003 struct nfs_access_entry *cache; 2004 2005 while (!list_empty(head)) { 2006 cache = list_entry(head->next, struct nfs_access_entry, lru); 2007 list_del(&cache->lru); 2008 nfs_access_free_entry(cache); 2009 } 2010 } 2011 2012 unsigned long 2013 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc) 2014 { 2015 LIST_HEAD(head); 2016 struct nfs_inode *nfsi, *next; 2017 struct nfs_access_entry *cache; 2018 int nr_to_scan = sc->nr_to_scan; 2019 gfp_t gfp_mask = sc->gfp_mask; 2020 long freed = 0; 2021 2022 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL) 2023 return SHRINK_STOP; 2024 2025 spin_lock(&nfs_access_lru_lock); 2026 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) { 2027 struct inode *inode; 2028 2029 if (nr_to_scan-- == 0) 2030 break; 2031 inode = &nfsi->vfs_inode; 2032 spin_lock(&inode->i_lock); 2033 if (list_empty(&nfsi->access_cache_entry_lru)) 2034 goto remove_lru_entry; 2035 cache = list_entry(nfsi->access_cache_entry_lru.next, 2036 struct nfs_access_entry, lru); 2037 list_move(&cache->lru, &head); 2038 rb_erase(&cache->rb_node, &nfsi->access_cache); 2039 freed++; 2040 if (!list_empty(&nfsi->access_cache_entry_lru)) 2041 list_move_tail(&nfsi->access_cache_inode_lru, 2042 &nfs_access_lru_list); 2043 else { 2044 remove_lru_entry: 2045 list_del_init(&nfsi->access_cache_inode_lru); 2046 smp_mb__before_clear_bit(); 2047 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags); 2048 smp_mb__after_clear_bit(); 2049 } 2050 spin_unlock(&inode->i_lock); 2051 } 2052 spin_unlock(&nfs_access_lru_lock); 2053 nfs_access_free_list(&head); 2054 return freed; 2055 } 2056 2057 unsigned long 2058 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc) 2059 { 2060 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries)); 2061 } 2062 2063 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head) 2064 { 2065 struct rb_root *root_node = &nfsi->access_cache; 2066 struct rb_node *n; 2067 struct nfs_access_entry *entry; 2068 2069 /* Unhook entries from the cache */ 2070 while ((n = rb_first(root_node)) != NULL) { 2071 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2072 rb_erase(n, root_node); 2073 list_move(&entry->lru, head); 2074 } 2075 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS; 2076 } 2077 2078 void nfs_access_zap_cache(struct inode *inode) 2079 { 2080 LIST_HEAD(head); 2081 2082 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0) 2083 return; 2084 /* Remove from global LRU init */ 2085 spin_lock(&nfs_access_lru_lock); 2086 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2087 list_del_init(&NFS_I(inode)->access_cache_inode_lru); 2088 2089 spin_lock(&inode->i_lock); 2090 __nfs_access_zap_cache(NFS_I(inode), &head); 2091 spin_unlock(&inode->i_lock); 2092 spin_unlock(&nfs_access_lru_lock); 2093 nfs_access_free_list(&head); 2094 } 2095 EXPORT_SYMBOL_GPL(nfs_access_zap_cache); 2096 2097 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred) 2098 { 2099 struct rb_node *n = NFS_I(inode)->access_cache.rb_node; 2100 struct nfs_access_entry *entry; 2101 2102 while (n != NULL) { 2103 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2104 2105 if (cred < entry->cred) 2106 n = n->rb_left; 2107 else if (cred > entry->cred) 2108 n = n->rb_right; 2109 else 2110 return entry; 2111 } 2112 return NULL; 2113 } 2114 2115 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res) 2116 { 2117 struct nfs_inode *nfsi = NFS_I(inode); 2118 struct nfs_access_entry *cache; 2119 int err = -ENOENT; 2120 2121 spin_lock(&inode->i_lock); 2122 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2123 goto out_zap; 2124 cache = nfs_access_search_rbtree(inode, cred); 2125 if (cache == NULL) 2126 goto out; 2127 if (!nfs_have_delegated_attributes(inode) && 2128 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo)) 2129 goto out_stale; 2130 res->jiffies = cache->jiffies; 2131 res->cred = cache->cred; 2132 res->mask = cache->mask; 2133 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru); 2134 err = 0; 2135 out: 2136 spin_unlock(&inode->i_lock); 2137 return err; 2138 out_stale: 2139 rb_erase(&cache->rb_node, &nfsi->access_cache); 2140 list_del(&cache->lru); 2141 spin_unlock(&inode->i_lock); 2142 nfs_access_free_entry(cache); 2143 return -ENOENT; 2144 out_zap: 2145 spin_unlock(&inode->i_lock); 2146 nfs_access_zap_cache(inode); 2147 return -ENOENT; 2148 } 2149 2150 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set) 2151 { 2152 struct nfs_inode *nfsi = NFS_I(inode); 2153 struct rb_root *root_node = &nfsi->access_cache; 2154 struct rb_node **p = &root_node->rb_node; 2155 struct rb_node *parent = NULL; 2156 struct nfs_access_entry *entry; 2157 2158 spin_lock(&inode->i_lock); 2159 while (*p != NULL) { 2160 parent = *p; 2161 entry = rb_entry(parent, struct nfs_access_entry, rb_node); 2162 2163 if (set->cred < entry->cred) 2164 p = &parent->rb_left; 2165 else if (set->cred > entry->cred) 2166 p = &parent->rb_right; 2167 else 2168 goto found; 2169 } 2170 rb_link_node(&set->rb_node, parent, p); 2171 rb_insert_color(&set->rb_node, root_node); 2172 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2173 spin_unlock(&inode->i_lock); 2174 return; 2175 found: 2176 rb_replace_node(parent, &set->rb_node, root_node); 2177 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2178 list_del(&entry->lru); 2179 spin_unlock(&inode->i_lock); 2180 nfs_access_free_entry(entry); 2181 } 2182 2183 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set) 2184 { 2185 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL); 2186 if (cache == NULL) 2187 return; 2188 RB_CLEAR_NODE(&cache->rb_node); 2189 cache->jiffies = set->jiffies; 2190 cache->cred = get_rpccred(set->cred); 2191 cache->mask = set->mask; 2192 2193 nfs_access_add_rbtree(inode, cache); 2194 2195 /* Update accounting */ 2196 smp_mb__before_atomic_inc(); 2197 atomic_long_inc(&nfs_access_nr_entries); 2198 smp_mb__after_atomic_inc(); 2199 2200 /* Add inode to global LRU list */ 2201 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) { 2202 spin_lock(&nfs_access_lru_lock); 2203 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2204 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, 2205 &nfs_access_lru_list); 2206 spin_unlock(&nfs_access_lru_lock); 2207 } 2208 } 2209 EXPORT_SYMBOL_GPL(nfs_access_add_cache); 2210 2211 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result) 2212 { 2213 entry->mask = 0; 2214 if (access_result & NFS4_ACCESS_READ) 2215 entry->mask |= MAY_READ; 2216 if (access_result & 2217 (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE)) 2218 entry->mask |= MAY_WRITE; 2219 if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE)) 2220 entry->mask |= MAY_EXEC; 2221 } 2222 EXPORT_SYMBOL_GPL(nfs_access_set_mask); 2223 2224 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask) 2225 { 2226 struct nfs_access_entry cache; 2227 int status; 2228 2229 trace_nfs_access_enter(inode); 2230 2231 status = nfs_access_get_cached(inode, cred, &cache); 2232 if (status == 0) 2233 goto out_cached; 2234 2235 /* Be clever: ask server to check for all possible rights */ 2236 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ; 2237 cache.cred = cred; 2238 cache.jiffies = jiffies; 2239 status = NFS_PROTO(inode)->access(inode, &cache); 2240 if (status != 0) { 2241 if (status == -ESTALE) { 2242 nfs_zap_caches(inode); 2243 if (!S_ISDIR(inode->i_mode)) 2244 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags); 2245 } 2246 goto out; 2247 } 2248 nfs_access_add_cache(inode, &cache); 2249 out_cached: 2250 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0) 2251 status = -EACCES; 2252 out: 2253 trace_nfs_access_exit(inode, status); 2254 return status; 2255 } 2256 2257 static int nfs_open_permission_mask(int openflags) 2258 { 2259 int mask = 0; 2260 2261 if (openflags & __FMODE_EXEC) { 2262 /* ONLY check exec rights */ 2263 mask = MAY_EXEC; 2264 } else { 2265 if ((openflags & O_ACCMODE) != O_WRONLY) 2266 mask |= MAY_READ; 2267 if ((openflags & O_ACCMODE) != O_RDONLY) 2268 mask |= MAY_WRITE; 2269 } 2270 2271 return mask; 2272 } 2273 2274 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags) 2275 { 2276 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags)); 2277 } 2278 EXPORT_SYMBOL_GPL(nfs_may_open); 2279 2280 int nfs_permission(struct inode *inode, int mask) 2281 { 2282 struct rpc_cred *cred; 2283 int res = 0; 2284 2285 if (mask & MAY_NOT_BLOCK) 2286 return -ECHILD; 2287 2288 nfs_inc_stats(inode, NFSIOS_VFSACCESS); 2289 2290 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 2291 goto out; 2292 /* Is this sys_access() ? */ 2293 if (mask & (MAY_ACCESS | MAY_CHDIR)) 2294 goto force_lookup; 2295 2296 switch (inode->i_mode & S_IFMT) { 2297 case S_IFLNK: 2298 goto out; 2299 case S_IFREG: 2300 break; 2301 case S_IFDIR: 2302 /* 2303 * Optimize away all write operations, since the server 2304 * will check permissions when we perform the op. 2305 */ 2306 if ((mask & MAY_WRITE) && !(mask & MAY_READ)) 2307 goto out; 2308 } 2309 2310 force_lookup: 2311 if (!NFS_PROTO(inode)->access) 2312 goto out_notsup; 2313 2314 cred = rpc_lookup_cred(); 2315 if (!IS_ERR(cred)) { 2316 res = nfs_do_access(inode, cred, mask); 2317 put_rpccred(cred); 2318 } else 2319 res = PTR_ERR(cred); 2320 out: 2321 if (!res && (mask & MAY_EXEC) && !execute_ok(inode)) 2322 res = -EACCES; 2323 2324 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n", 2325 inode->i_sb->s_id, inode->i_ino, mask, res); 2326 return res; 2327 out_notsup: 2328 res = nfs_revalidate_inode(NFS_SERVER(inode), inode); 2329 if (res == 0) 2330 res = generic_permission(inode, mask); 2331 goto out; 2332 } 2333 EXPORT_SYMBOL_GPL(nfs_permission); 2334 2335 /* 2336 * Local variables: 2337 * version-control: t 2338 * kept-new-versions: 5 2339 * End: 2340 */ 2341