xref: /openbmc/linux/fs/nfs/dir.c (revision 565277f6)
1 /*
2  *  linux/fs/nfs/dir.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  nfs directory handling functions
7  *
8  * 10 Apr 1996	Added silly rename for unlink	--okir
9  * 28 Sep 1996	Improved directory cache --okir
10  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
11  *              Re-implemented silly rename for unlink, newly implemented
12  *              silly rename for nfs_rename() following the suggestions
13  *              of Olaf Kirch (okir) found in this file.
14  *              Following Linus comments on my original hack, this version
15  *              depends only on the dcache stuff and doesn't touch the inode
16  *              layer (iput() and friends).
17  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
18  */
19 
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/smp_lock.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/sched.h>
37 
38 #include "nfs4_fs.h"
39 #include "delegation.h"
40 #include "iostat.h"
41 
42 /* #define NFS_DEBUG_VERBOSE 1 */
43 
44 static int nfs_opendir(struct inode *, struct file *);
45 static int nfs_readdir(struct file *, void *, filldir_t);
46 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
47 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *);
48 static int nfs_mkdir(struct inode *, struct dentry *, int);
49 static int nfs_rmdir(struct inode *, struct dentry *);
50 static int nfs_unlink(struct inode *, struct dentry *);
51 static int nfs_symlink(struct inode *, struct dentry *, const char *);
52 static int nfs_link(struct dentry *, struct inode *, struct dentry *);
53 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t);
54 static int nfs_rename(struct inode *, struct dentry *,
55 		      struct inode *, struct dentry *);
56 static int nfs_fsync_dir(struct file *, struct dentry *, int);
57 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
58 
59 const struct file_operations nfs_dir_operations = {
60 	.llseek		= nfs_llseek_dir,
61 	.read		= generic_read_dir,
62 	.readdir	= nfs_readdir,
63 	.open		= nfs_opendir,
64 	.release	= nfs_release,
65 	.fsync		= nfs_fsync_dir,
66 };
67 
68 const struct inode_operations nfs_dir_inode_operations = {
69 	.create		= nfs_create,
70 	.lookup		= nfs_lookup,
71 	.link		= nfs_link,
72 	.unlink		= nfs_unlink,
73 	.symlink	= nfs_symlink,
74 	.mkdir		= nfs_mkdir,
75 	.rmdir		= nfs_rmdir,
76 	.mknod		= nfs_mknod,
77 	.rename		= nfs_rename,
78 	.permission	= nfs_permission,
79 	.getattr	= nfs_getattr,
80 	.setattr	= nfs_setattr,
81 };
82 
83 #ifdef CONFIG_NFS_V3
84 const struct inode_operations nfs3_dir_inode_operations = {
85 	.create		= nfs_create,
86 	.lookup		= nfs_lookup,
87 	.link		= nfs_link,
88 	.unlink		= nfs_unlink,
89 	.symlink	= nfs_symlink,
90 	.mkdir		= nfs_mkdir,
91 	.rmdir		= nfs_rmdir,
92 	.mknod		= nfs_mknod,
93 	.rename		= nfs_rename,
94 	.permission	= nfs_permission,
95 	.getattr	= nfs_getattr,
96 	.setattr	= nfs_setattr,
97 	.listxattr	= nfs3_listxattr,
98 	.getxattr	= nfs3_getxattr,
99 	.setxattr	= nfs3_setxattr,
100 	.removexattr	= nfs3_removexattr,
101 };
102 #endif  /* CONFIG_NFS_V3 */
103 
104 #ifdef CONFIG_NFS_V4
105 
106 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
107 const struct inode_operations nfs4_dir_inode_operations = {
108 	.create		= nfs_create,
109 	.lookup		= nfs_atomic_lookup,
110 	.link		= nfs_link,
111 	.unlink		= nfs_unlink,
112 	.symlink	= nfs_symlink,
113 	.mkdir		= nfs_mkdir,
114 	.rmdir		= nfs_rmdir,
115 	.mknod		= nfs_mknod,
116 	.rename		= nfs_rename,
117 	.permission	= nfs_permission,
118 	.getattr	= nfs_getattr,
119 	.setattr	= nfs_setattr,
120 	.getxattr       = nfs4_getxattr,
121 	.setxattr       = nfs4_setxattr,
122 	.listxattr      = nfs4_listxattr,
123 };
124 
125 #endif /* CONFIG_NFS_V4 */
126 
127 /*
128  * Open file
129  */
130 static int
131 nfs_opendir(struct inode *inode, struct file *filp)
132 {
133 	int res;
134 
135 	dfprintk(VFS, "NFS: opendir(%s/%ld)\n",
136 			inode->i_sb->s_id, inode->i_ino);
137 
138 	lock_kernel();
139 	/* Call generic open code in order to cache credentials */
140 	res = nfs_open(inode, filp);
141 	unlock_kernel();
142 	return res;
143 }
144 
145 typedef __be32 * (*decode_dirent_t)(__be32 *, struct nfs_entry *, int);
146 typedef struct {
147 	struct file	*file;
148 	struct page	*page;
149 	unsigned long	page_index;
150 	__be32		*ptr;
151 	u64		*dir_cookie;
152 	loff_t		current_index;
153 	struct nfs_entry *entry;
154 	decode_dirent_t	decode;
155 	int		plus;
156 	int		error;
157 	unsigned long	timestamp;
158 	int		timestamp_valid;
159 } nfs_readdir_descriptor_t;
160 
161 /* Now we cache directories properly, by stuffing the dirent
162  * data directly in the page cache.
163  *
164  * Inode invalidation due to refresh etc. takes care of
165  * _everything_, no sloppy entry flushing logic, no extraneous
166  * copying, network direct to page cache, the way it was meant
167  * to be.
168  *
169  * NOTE: Dirent information verification is done always by the
170  *	 page-in of the RPC reply, nowhere else, this simplies
171  *	 things substantially.
172  */
173 static
174 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page *page)
175 {
176 	struct file	*file = desc->file;
177 	struct inode	*inode = file->f_path.dentry->d_inode;
178 	struct rpc_cred	*cred = nfs_file_cred(file);
179 	unsigned long	timestamp;
180 	int		error;
181 
182 	dfprintk(DIRCACHE, "NFS: %s: reading cookie %Lu into page %lu\n",
183 			__FUNCTION__, (long long)desc->entry->cookie,
184 			page->index);
185 
186  again:
187 	timestamp = jiffies;
188 	error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, desc->entry->cookie, page,
189 					  NFS_SERVER(inode)->dtsize, desc->plus);
190 	if (error < 0) {
191 		/* We requested READDIRPLUS, but the server doesn't grok it */
192 		if (error == -ENOTSUPP && desc->plus) {
193 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
194 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_FLAGS(inode));
195 			desc->plus = 0;
196 			goto again;
197 		}
198 		goto error;
199 	}
200 	desc->timestamp = timestamp;
201 	desc->timestamp_valid = 1;
202 	SetPageUptodate(page);
203 	/* Ensure consistent page alignment of the data.
204 	 * Note: assumes we have exclusive access to this mapping either
205 	 *	 through inode->i_mutex or some other mechanism.
206 	 */
207 	if (page->index == 0 && invalidate_inode_pages2_range(inode->i_mapping, PAGE_CACHE_SIZE, -1) < 0) {
208 		/* Should never happen */
209 		nfs_zap_mapping(inode, inode->i_mapping);
210 	}
211 	unlock_page(page);
212 	return 0;
213  error:
214 	unlock_page(page);
215 	desc->error = error;
216 	return -EIO;
217 }
218 
219 static inline
220 int dir_decode(nfs_readdir_descriptor_t *desc)
221 {
222 	__be32	*p = desc->ptr;
223 	p = desc->decode(p, desc->entry, desc->plus);
224 	if (IS_ERR(p))
225 		return PTR_ERR(p);
226 	desc->ptr = p;
227 	if (desc->timestamp_valid)
228 		desc->entry->fattr->time_start = desc->timestamp;
229 	else
230 		desc->entry->fattr->valid &= ~NFS_ATTR_FATTR;
231 	return 0;
232 }
233 
234 static inline
235 void dir_page_release(nfs_readdir_descriptor_t *desc)
236 {
237 	kunmap(desc->page);
238 	page_cache_release(desc->page);
239 	desc->page = NULL;
240 	desc->ptr = NULL;
241 }
242 
243 /*
244  * Given a pointer to a buffer that has already been filled by a call
245  * to readdir, find the next entry with cookie '*desc->dir_cookie'.
246  *
247  * If the end of the buffer has been reached, return -EAGAIN, if not,
248  * return the offset within the buffer of the next entry to be
249  * read.
250  */
251 static inline
252 int find_dirent(nfs_readdir_descriptor_t *desc)
253 {
254 	struct nfs_entry *entry = desc->entry;
255 	int		loop_count = 0,
256 			status;
257 
258 	while((status = dir_decode(desc)) == 0) {
259 		dfprintk(DIRCACHE, "NFS: %s: examining cookie %Lu\n",
260 				__FUNCTION__, (unsigned long long)entry->cookie);
261 		if (entry->prev_cookie == *desc->dir_cookie)
262 			break;
263 		if (loop_count++ > 200) {
264 			loop_count = 0;
265 			schedule();
266 		}
267 	}
268 	return status;
269 }
270 
271 /*
272  * Given a pointer to a buffer that has already been filled by a call
273  * to readdir, find the entry at offset 'desc->file->f_pos'.
274  *
275  * If the end of the buffer has been reached, return -EAGAIN, if not,
276  * return the offset within the buffer of the next entry to be
277  * read.
278  */
279 static inline
280 int find_dirent_index(nfs_readdir_descriptor_t *desc)
281 {
282 	struct nfs_entry *entry = desc->entry;
283 	int		loop_count = 0,
284 			status;
285 
286 	for(;;) {
287 		status = dir_decode(desc);
288 		if (status)
289 			break;
290 
291 		dfprintk(DIRCACHE, "NFS: found cookie %Lu at index %Ld\n",
292 				(unsigned long long)entry->cookie, desc->current_index);
293 
294 		if (desc->file->f_pos == desc->current_index) {
295 			*desc->dir_cookie = entry->cookie;
296 			break;
297 		}
298 		desc->current_index++;
299 		if (loop_count++ > 200) {
300 			loop_count = 0;
301 			schedule();
302 		}
303 	}
304 	return status;
305 }
306 
307 /*
308  * Find the given page, and call find_dirent() or find_dirent_index in
309  * order to try to return the next entry.
310  */
311 static inline
312 int find_dirent_page(nfs_readdir_descriptor_t *desc)
313 {
314 	struct inode	*inode = desc->file->f_path.dentry->d_inode;
315 	struct page	*page;
316 	int		status;
317 
318 	dfprintk(DIRCACHE, "NFS: %s: searching page %ld for target %Lu\n",
319 			__FUNCTION__, desc->page_index,
320 			(long long) *desc->dir_cookie);
321 
322 	/* If we find the page in the page_cache, we cannot be sure
323 	 * how fresh the data is, so we will ignore readdir_plus attributes.
324 	 */
325 	desc->timestamp_valid = 0;
326 	page = read_cache_page(inode->i_mapping, desc->page_index,
327 			       (filler_t *)nfs_readdir_filler, desc);
328 	if (IS_ERR(page)) {
329 		status = PTR_ERR(page);
330 		goto out;
331 	}
332 
333 	/* NOTE: Someone else may have changed the READDIRPLUS flag */
334 	desc->page = page;
335 	desc->ptr = kmap(page);		/* matching kunmap in nfs_do_filldir */
336 	if (*desc->dir_cookie != 0)
337 		status = find_dirent(desc);
338 	else
339 		status = find_dirent_index(desc);
340 	if (status < 0)
341 		dir_page_release(desc);
342  out:
343 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, status);
344 	return status;
345 }
346 
347 /*
348  * Recurse through the page cache pages, and return a
349  * filled nfs_entry structure of the next directory entry if possible.
350  *
351  * The target for the search is '*desc->dir_cookie' if non-0,
352  * 'desc->file->f_pos' otherwise
353  */
354 static inline
355 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
356 {
357 	int		loop_count = 0;
358 	int		res;
359 
360 	/* Always search-by-index from the beginning of the cache */
361 	if (*desc->dir_cookie == 0) {
362 		dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for offset %Ld\n",
363 				(long long)desc->file->f_pos);
364 		desc->page_index = 0;
365 		desc->entry->cookie = desc->entry->prev_cookie = 0;
366 		desc->entry->eof = 0;
367 		desc->current_index = 0;
368 	} else
369 		dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for cookie %Lu\n",
370 				(unsigned long long)*desc->dir_cookie);
371 
372 	for (;;) {
373 		res = find_dirent_page(desc);
374 		if (res != -EAGAIN)
375 			break;
376 		/* Align to beginning of next page */
377 		desc->page_index ++;
378 		if (loop_count++ > 200) {
379 			loop_count = 0;
380 			schedule();
381 		}
382 	}
383 
384 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, res);
385 	return res;
386 }
387 
388 static inline unsigned int dt_type(struct inode *inode)
389 {
390 	return (inode->i_mode >> 12) & 15;
391 }
392 
393 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc);
394 
395 /*
396  * Once we've found the start of the dirent within a page: fill 'er up...
397  */
398 static
399 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
400 		   filldir_t filldir)
401 {
402 	struct file	*file = desc->file;
403 	struct nfs_entry *entry = desc->entry;
404 	struct dentry	*dentry = NULL;
405 	u64		fileid;
406 	int		loop_count = 0,
407 			res;
408 
409 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling starting @ cookie %Lu\n",
410 			(unsigned long long)entry->cookie);
411 
412 	for(;;) {
413 		unsigned d_type = DT_UNKNOWN;
414 		/* Note: entry->prev_cookie contains the cookie for
415 		 *	 retrieving the current dirent on the server */
416 		fileid = entry->ino;
417 
418 		/* Get a dentry if we have one */
419 		if (dentry != NULL)
420 			dput(dentry);
421 		dentry = nfs_readdir_lookup(desc);
422 
423 		/* Use readdirplus info */
424 		if (dentry != NULL && dentry->d_inode != NULL) {
425 			d_type = dt_type(dentry->d_inode);
426 			fileid = NFS_FILEID(dentry->d_inode);
427 		}
428 
429 		res = filldir(dirent, entry->name, entry->len,
430 			      file->f_pos, nfs_compat_user_ino64(fileid),
431 			      d_type);
432 		if (res < 0)
433 			break;
434 		file->f_pos++;
435 		*desc->dir_cookie = entry->cookie;
436 		if (dir_decode(desc) != 0) {
437 			desc->page_index ++;
438 			break;
439 		}
440 		if (loop_count++ > 200) {
441 			loop_count = 0;
442 			schedule();
443 		}
444 	}
445 	dir_page_release(desc);
446 	if (dentry != NULL)
447 		dput(dentry);
448 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
449 			(unsigned long long)*desc->dir_cookie, res);
450 	return res;
451 }
452 
453 /*
454  * If we cannot find a cookie in our cache, we suspect that this is
455  * because it points to a deleted file, so we ask the server to return
456  * whatever it thinks is the next entry. We then feed this to filldir.
457  * If all goes well, we should then be able to find our way round the
458  * cache on the next call to readdir_search_pagecache();
459  *
460  * NOTE: we cannot add the anonymous page to the pagecache because
461  *	 the data it contains might not be page aligned. Besides,
462  *	 we should already have a complete representation of the
463  *	 directory in the page cache by the time we get here.
464  */
465 static inline
466 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
467 		     filldir_t filldir)
468 {
469 	struct file	*file = desc->file;
470 	struct inode	*inode = file->f_path.dentry->d_inode;
471 	struct rpc_cred	*cred = nfs_file_cred(file);
472 	struct page	*page = NULL;
473 	int		status;
474 	unsigned long	timestamp;
475 
476 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
477 			(unsigned long long)*desc->dir_cookie);
478 
479 	page = alloc_page(GFP_HIGHUSER);
480 	if (!page) {
481 		status = -ENOMEM;
482 		goto out;
483 	}
484 	timestamp = jiffies;
485 	desc->error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, *desc->dir_cookie,
486 						page,
487 						NFS_SERVER(inode)->dtsize,
488 						desc->plus);
489 	desc->page = page;
490 	desc->ptr = kmap(page);		/* matching kunmap in nfs_do_filldir */
491 	if (desc->error >= 0) {
492 		desc->timestamp = timestamp;
493 		desc->timestamp_valid = 1;
494 		if ((status = dir_decode(desc)) == 0)
495 			desc->entry->prev_cookie = *desc->dir_cookie;
496 	} else
497 		status = -EIO;
498 	if (status < 0)
499 		goto out_release;
500 
501 	status = nfs_do_filldir(desc, dirent, filldir);
502 
503 	/* Reset read descriptor so it searches the page cache from
504 	 * the start upon the next call to readdir_search_pagecache() */
505 	desc->page_index = 0;
506 	desc->entry->cookie = desc->entry->prev_cookie = 0;
507 	desc->entry->eof = 0;
508  out:
509 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
510 			__FUNCTION__, status);
511 	return status;
512  out_release:
513 	dir_page_release(desc);
514 	goto out;
515 }
516 
517 /* The file offset position represents the dirent entry number.  A
518    last cookie cache takes care of the common case of reading the
519    whole directory.
520  */
521 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
522 {
523 	struct dentry	*dentry = filp->f_path.dentry;
524 	struct inode	*inode = dentry->d_inode;
525 	nfs_readdir_descriptor_t my_desc,
526 			*desc = &my_desc;
527 	struct nfs_entry my_entry;
528 	struct nfs_fh	 fh;
529 	struct nfs_fattr fattr;
530 	long		res;
531 
532 	dfprintk(VFS, "NFS: readdir(%s/%s) starting at cookie %Lu\n",
533 			dentry->d_parent->d_name.name, dentry->d_name.name,
534 			(long long)filp->f_pos);
535 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
536 
537 	lock_kernel();
538 
539 	res = nfs_revalidate_mapping_nolock(inode, filp->f_mapping);
540 	if (res < 0) {
541 		unlock_kernel();
542 		return res;
543 	}
544 
545 	/*
546 	 * filp->f_pos points to the dirent entry number.
547 	 * *desc->dir_cookie has the cookie for the next entry. We have
548 	 * to either find the entry with the appropriate number or
549 	 * revalidate the cookie.
550 	 */
551 	memset(desc, 0, sizeof(*desc));
552 
553 	desc->file = filp;
554 	desc->dir_cookie = &nfs_file_open_context(filp)->dir_cookie;
555 	desc->decode = NFS_PROTO(inode)->decode_dirent;
556 	desc->plus = NFS_USE_READDIRPLUS(inode);
557 
558 	my_entry.cookie = my_entry.prev_cookie = 0;
559 	my_entry.eof = 0;
560 	my_entry.fh = &fh;
561 	my_entry.fattr = &fattr;
562 	nfs_fattr_init(&fattr);
563 	desc->entry = &my_entry;
564 
565 	nfs_block_sillyrename(dentry);
566 	while(!desc->entry->eof) {
567 		res = readdir_search_pagecache(desc);
568 
569 		if (res == -EBADCOOKIE) {
570 			/* This means either end of directory */
571 			if (*desc->dir_cookie && desc->entry->cookie != *desc->dir_cookie) {
572 				/* Or that the server has 'lost' a cookie */
573 				res = uncached_readdir(desc, dirent, filldir);
574 				if (res >= 0)
575 					continue;
576 			}
577 			res = 0;
578 			break;
579 		}
580 		if (res == -ETOOSMALL && desc->plus) {
581 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_FLAGS(inode));
582 			nfs_zap_caches(inode);
583 			desc->plus = 0;
584 			desc->entry->eof = 0;
585 			continue;
586 		}
587 		if (res < 0)
588 			break;
589 
590 		res = nfs_do_filldir(desc, dirent, filldir);
591 		if (res < 0) {
592 			res = 0;
593 			break;
594 		}
595 	}
596 	nfs_unblock_sillyrename(dentry);
597 	unlock_kernel();
598 	if (res > 0)
599 		res = 0;
600 	dfprintk(VFS, "NFS: readdir(%s/%s) returns %ld\n",
601 			dentry->d_parent->d_name.name, dentry->d_name.name,
602 			res);
603 	return res;
604 }
605 
606 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
607 {
608 	mutex_lock(&filp->f_path.dentry->d_inode->i_mutex);
609 	switch (origin) {
610 		case 1:
611 			offset += filp->f_pos;
612 		case 0:
613 			if (offset >= 0)
614 				break;
615 		default:
616 			offset = -EINVAL;
617 			goto out;
618 	}
619 	if (offset != filp->f_pos) {
620 		filp->f_pos = offset;
621 		nfs_file_open_context(filp)->dir_cookie = 0;
622 	}
623 out:
624 	mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex);
625 	return offset;
626 }
627 
628 /*
629  * All directory operations under NFS are synchronous, so fsync()
630  * is a dummy operation.
631  */
632 static int nfs_fsync_dir(struct file *filp, struct dentry *dentry, int datasync)
633 {
634 	dfprintk(VFS, "NFS: fsync_dir(%s/%s) datasync %d\n",
635 			dentry->d_parent->d_name.name, dentry->d_name.name,
636 			datasync);
637 
638 	return 0;
639 }
640 
641 /*
642  * A check for whether or not the parent directory has changed.
643  * In the case it has, we assume that the dentries are untrustworthy
644  * and may need to be looked up again.
645  */
646 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
647 {
648 	if (IS_ROOT(dentry))
649 		return 1;
650 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
651 		return 0;
652 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
653 	if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
654 		return 0;
655 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
656 		return 0;
657 	return 1;
658 }
659 
660 /*
661  * Return the intent data that applies to this particular path component
662  *
663  * Note that the current set of intents only apply to the very last
664  * component of the path.
665  * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
666  */
667 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask)
668 {
669 	if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT))
670 		return 0;
671 	return nd->flags & mask;
672 }
673 
674 /*
675  * Use intent information to check whether or not we're going to do
676  * an O_EXCL create using this path component.
677  */
678 static int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
679 {
680 	if (NFS_PROTO(dir)->version == 2)
681 		return 0;
682 	if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_CREATE) == 0)
683 		return 0;
684 	return (nd->intent.open.flags & O_EXCL) != 0;
685 }
686 
687 /*
688  * Inode and filehandle revalidation for lookups.
689  *
690  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
691  * or if the intent information indicates that we're about to open this
692  * particular file and the "nocto" mount flag is not set.
693  *
694  */
695 static inline
696 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
697 {
698 	struct nfs_server *server = NFS_SERVER(inode);
699 
700 	if (nd != NULL) {
701 		/* VFS wants an on-the-wire revalidation */
702 		if (nd->flags & LOOKUP_REVAL)
703 			goto out_force;
704 		/* This is an open(2) */
705 		if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
706 				!(server->flags & NFS_MOUNT_NOCTO) &&
707 				(S_ISREG(inode->i_mode) ||
708 				 S_ISDIR(inode->i_mode)))
709 			goto out_force;
710 		return 0;
711 	}
712 	return nfs_revalidate_inode(server, inode);
713 out_force:
714 	return __nfs_revalidate_inode(server, inode);
715 }
716 
717 /*
718  * We judge how long we want to trust negative
719  * dentries by looking at the parent inode mtime.
720  *
721  * If parent mtime has changed, we revalidate, else we wait for a
722  * period corresponding to the parent's attribute cache timeout value.
723  */
724 static inline
725 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
726 		       struct nameidata *nd)
727 {
728 	/* Don't revalidate a negative dentry if we're creating a new file */
729 	if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
730 		return 0;
731 	return !nfs_check_verifier(dir, dentry);
732 }
733 
734 /*
735  * This is called every time the dcache has a lookup hit,
736  * and we should check whether we can really trust that
737  * lookup.
738  *
739  * NOTE! The hit can be a negative hit too, don't assume
740  * we have an inode!
741  *
742  * If the parent directory is seen to have changed, we throw out the
743  * cached dentry and do a new lookup.
744  */
745 static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd)
746 {
747 	struct inode *dir;
748 	struct inode *inode;
749 	struct dentry *parent;
750 	int error;
751 	struct nfs_fh fhandle;
752 	struct nfs_fattr fattr;
753 
754 	parent = dget_parent(dentry);
755 	lock_kernel();
756 	dir = parent->d_inode;
757 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
758 	inode = dentry->d_inode;
759 
760 	if (!inode) {
761 		if (nfs_neg_need_reval(dir, dentry, nd))
762 			goto out_bad;
763 		goto out_valid;
764 	}
765 
766 	if (is_bad_inode(inode)) {
767 		dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
768 				__FUNCTION__, dentry->d_parent->d_name.name,
769 				dentry->d_name.name);
770 		goto out_bad;
771 	}
772 
773 	/* Force a full look up iff the parent directory has changed */
774 	if (!nfs_is_exclusive_create(dir, nd) && nfs_check_verifier(dir, dentry)) {
775 		if (nfs_lookup_verify_inode(inode, nd))
776 			goto out_zap_parent;
777 		goto out_valid;
778 	}
779 
780 	if (NFS_STALE(inode))
781 		goto out_bad;
782 
783 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
784 	if (error)
785 		goto out_bad;
786 	if (nfs_compare_fh(NFS_FH(inode), &fhandle))
787 		goto out_bad;
788 	if ((error = nfs_refresh_inode(inode, &fattr)) != 0)
789 		goto out_bad;
790 
791 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
792  out_valid:
793 	unlock_kernel();
794 	dput(parent);
795 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
796 			__FUNCTION__, dentry->d_parent->d_name.name,
797 			dentry->d_name.name);
798 	return 1;
799 out_zap_parent:
800 	nfs_zap_caches(dir);
801  out_bad:
802 	nfs_mark_for_revalidate(dir);
803 	if (inode && S_ISDIR(inode->i_mode)) {
804 		/* Purge readdir caches. */
805 		nfs_zap_caches(inode);
806 		/* If we have submounts, don't unhash ! */
807 		if (have_submounts(dentry))
808 			goto out_valid;
809 		shrink_dcache_parent(dentry);
810 	}
811 	d_drop(dentry);
812 	unlock_kernel();
813 	dput(parent);
814 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
815 			__FUNCTION__, dentry->d_parent->d_name.name,
816 			dentry->d_name.name);
817 	return 0;
818 }
819 
820 /*
821  * This is called from dput() when d_count is going to 0.
822  */
823 static int nfs_dentry_delete(struct dentry *dentry)
824 {
825 	dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
826 		dentry->d_parent->d_name.name, dentry->d_name.name,
827 		dentry->d_flags);
828 
829 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
830 		/* Unhash it, so that ->d_iput() would be called */
831 		return 1;
832 	}
833 	if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
834 		/* Unhash it, so that ancestors of killed async unlink
835 		 * files will be cleaned up during umount */
836 		return 1;
837 	}
838 	return 0;
839 
840 }
841 
842 /*
843  * Called when the dentry loses inode.
844  * We use it to clean up silly-renamed files.
845  */
846 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
847 {
848 	nfs_inode_return_delegation(inode);
849 	if (S_ISDIR(inode->i_mode))
850 		/* drop any readdir cache as it could easily be old */
851 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
852 
853 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
854 		lock_kernel();
855 		drop_nlink(inode);
856 		nfs_complete_unlink(dentry, inode);
857 		unlock_kernel();
858 	}
859 	iput(inode);
860 }
861 
862 struct dentry_operations nfs_dentry_operations = {
863 	.d_revalidate	= nfs_lookup_revalidate,
864 	.d_delete	= nfs_dentry_delete,
865 	.d_iput		= nfs_dentry_iput,
866 };
867 
868 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
869 {
870 	struct dentry *res;
871 	struct dentry *parent;
872 	struct inode *inode = NULL;
873 	int error;
874 	struct nfs_fh fhandle;
875 	struct nfs_fattr fattr;
876 
877 	dfprintk(VFS, "NFS: lookup(%s/%s)\n",
878 		dentry->d_parent->d_name.name, dentry->d_name.name);
879 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
880 
881 	res = ERR_PTR(-ENAMETOOLONG);
882 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
883 		goto out;
884 
885 	res = ERR_PTR(-ENOMEM);
886 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
887 
888 	lock_kernel();
889 
890 	/*
891 	 * If we're doing an exclusive create, optimize away the lookup
892 	 * but don't hash the dentry.
893 	 */
894 	if (nfs_is_exclusive_create(dir, nd)) {
895 		d_instantiate(dentry, NULL);
896 		res = NULL;
897 		goto out_unlock;
898 	}
899 
900 	parent = dentry->d_parent;
901 	/* Protect against concurrent sillydeletes */
902 	nfs_block_sillyrename(parent);
903 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
904 	if (error == -ENOENT)
905 		goto no_entry;
906 	if (error < 0) {
907 		res = ERR_PTR(error);
908 		goto out_unblock_sillyrename;
909 	}
910 	inode = nfs_fhget(dentry->d_sb, &fhandle, &fattr);
911 	res = (struct dentry *)inode;
912 	if (IS_ERR(res))
913 		goto out_unblock_sillyrename;
914 
915 no_entry:
916 	res = d_materialise_unique(dentry, inode);
917 	if (res != NULL) {
918 		if (IS_ERR(res))
919 			goto out_unblock_sillyrename;
920 		dentry = res;
921 	}
922 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
923 out_unblock_sillyrename:
924 	nfs_unblock_sillyrename(parent);
925 out_unlock:
926 	unlock_kernel();
927 out:
928 	return res;
929 }
930 
931 #ifdef CONFIG_NFS_V4
932 static int nfs_open_revalidate(struct dentry *, struct nameidata *);
933 
934 struct dentry_operations nfs4_dentry_operations = {
935 	.d_revalidate	= nfs_open_revalidate,
936 	.d_delete	= nfs_dentry_delete,
937 	.d_iput		= nfs_dentry_iput,
938 };
939 
940 /*
941  * Use intent information to determine whether we need to substitute
942  * the NFSv4-style stateful OPEN for the LOOKUP call
943  */
944 static int is_atomic_open(struct inode *dir, struct nameidata *nd)
945 {
946 	if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
947 		return 0;
948 	/* NFS does not (yet) have a stateful open for directories */
949 	if (nd->flags & LOOKUP_DIRECTORY)
950 		return 0;
951 	/* Are we trying to write to a read only partition? */
952 	if (IS_RDONLY(dir) && (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE)))
953 		return 0;
954 	return 1;
955 }
956 
957 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
958 {
959 	struct dentry *res = NULL;
960 	int error;
961 
962 	dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
963 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
964 
965 	/* Check that we are indeed trying to open this file */
966 	if (!is_atomic_open(dir, nd))
967 		goto no_open;
968 
969 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
970 		res = ERR_PTR(-ENAMETOOLONG);
971 		goto out;
972 	}
973 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
974 
975 	/* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash
976 	 * the dentry. */
977 	if (nd->intent.open.flags & O_EXCL) {
978 		d_instantiate(dentry, NULL);
979 		goto out;
980 	}
981 
982 	/* Open the file on the server */
983 	lock_kernel();
984 	res = nfs4_atomic_open(dir, dentry, nd);
985 	unlock_kernel();
986 	if (IS_ERR(res)) {
987 		error = PTR_ERR(res);
988 		switch (error) {
989 			/* Make a negative dentry */
990 			case -ENOENT:
991 				res = NULL;
992 				goto out;
993 			/* This turned out not to be a regular file */
994 			case -EISDIR:
995 			case -ENOTDIR:
996 				goto no_open;
997 			case -ELOOP:
998 				if (!(nd->intent.open.flags & O_NOFOLLOW))
999 					goto no_open;
1000 			/* case -EINVAL: */
1001 			default:
1002 				goto out;
1003 		}
1004 	} else if (res != NULL)
1005 		dentry = res;
1006 out:
1007 	return res;
1008 no_open:
1009 	return nfs_lookup(dir, dentry, nd);
1010 }
1011 
1012 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1013 {
1014 	struct dentry *parent = NULL;
1015 	struct inode *inode = dentry->d_inode;
1016 	struct inode *dir;
1017 	int openflags, ret = 0;
1018 
1019 	parent = dget_parent(dentry);
1020 	dir = parent->d_inode;
1021 	if (!is_atomic_open(dir, nd))
1022 		goto no_open;
1023 	/* We can't create new files in nfs_open_revalidate(), so we
1024 	 * optimize away revalidation of negative dentries.
1025 	 */
1026 	if (inode == NULL) {
1027 		if (!nfs_neg_need_reval(dir, dentry, nd))
1028 			ret = 1;
1029 		goto out;
1030 	}
1031 
1032 	/* NFS only supports OPEN on regular files */
1033 	if (!S_ISREG(inode->i_mode))
1034 		goto no_open;
1035 	openflags = nd->intent.open.flags;
1036 	/* We cannot do exclusive creation on a positive dentry */
1037 	if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1038 		goto no_open;
1039 	/* We can't create new files, or truncate existing ones here */
1040 	openflags &= ~(O_CREAT|O_TRUNC);
1041 
1042 	/*
1043 	 * Note: we're not holding inode->i_mutex and so may be racing with
1044 	 * operations that change the directory. We therefore save the
1045 	 * change attribute *before* we do the RPC call.
1046 	 */
1047 	lock_kernel();
1048 	ret = nfs4_open_revalidate(dir, dentry, openflags, nd);
1049 	unlock_kernel();
1050 out:
1051 	dput(parent);
1052 	if (!ret)
1053 		d_drop(dentry);
1054 	return ret;
1055 no_open:
1056 	dput(parent);
1057 	if (inode != NULL && nfs_have_delegation(inode, FMODE_READ))
1058 		return 1;
1059 	return nfs_lookup_revalidate(dentry, nd);
1060 }
1061 #endif /* CONFIG_NFSV4 */
1062 
1063 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc)
1064 {
1065 	struct dentry *parent = desc->file->f_path.dentry;
1066 	struct inode *dir = parent->d_inode;
1067 	struct nfs_entry *entry = desc->entry;
1068 	struct dentry *dentry, *alias;
1069 	struct qstr name = {
1070 		.name = entry->name,
1071 		.len = entry->len,
1072 	};
1073 	struct inode *inode;
1074 	unsigned long verf = nfs_save_change_attribute(dir);
1075 
1076 	switch (name.len) {
1077 		case 2:
1078 			if (name.name[0] == '.' && name.name[1] == '.')
1079 				return dget_parent(parent);
1080 			break;
1081 		case 1:
1082 			if (name.name[0] == '.')
1083 				return dget(parent);
1084 	}
1085 
1086 	spin_lock(&dir->i_lock);
1087 	if (NFS_I(dir)->cache_validity & NFS_INO_INVALID_DATA) {
1088 		spin_unlock(&dir->i_lock);
1089 		return NULL;
1090 	}
1091 	spin_unlock(&dir->i_lock);
1092 
1093 	name.hash = full_name_hash(name.name, name.len);
1094 	dentry = d_lookup(parent, &name);
1095 	if (dentry != NULL) {
1096 		/* Is this a positive dentry that matches the readdir info? */
1097 		if (dentry->d_inode != NULL &&
1098 				(NFS_FILEID(dentry->d_inode) == entry->ino ||
1099 				d_mountpoint(dentry))) {
1100 			if (!desc->plus || entry->fh->size == 0)
1101 				return dentry;
1102 			if (nfs_compare_fh(NFS_FH(dentry->d_inode),
1103 						entry->fh) == 0)
1104 				goto out_renew;
1105 		}
1106 		/* No, so d_drop to allow one to be created */
1107 		d_drop(dentry);
1108 		dput(dentry);
1109 	}
1110 	if (!desc->plus || !(entry->fattr->valid & NFS_ATTR_FATTR))
1111 		return NULL;
1112 	if (name.len > NFS_SERVER(dir)->namelen)
1113 		return NULL;
1114 	/* Note: caller is already holding the dir->i_mutex! */
1115 	dentry = d_alloc(parent, &name);
1116 	if (dentry == NULL)
1117 		return NULL;
1118 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1119 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
1120 	if (IS_ERR(inode)) {
1121 		dput(dentry);
1122 		return NULL;
1123 	}
1124 
1125 	alias = d_materialise_unique(dentry, inode);
1126 	if (alias != NULL) {
1127 		dput(dentry);
1128 		if (IS_ERR(alias))
1129 			return NULL;
1130 		dentry = alias;
1131 	}
1132 
1133 out_renew:
1134 	nfs_set_verifier(dentry, verf);
1135 	return dentry;
1136 }
1137 
1138 /*
1139  * Code common to create, mkdir, and mknod.
1140  */
1141 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1142 				struct nfs_fattr *fattr)
1143 {
1144 	struct dentry *parent = dget_parent(dentry);
1145 	struct inode *dir = parent->d_inode;
1146 	struct inode *inode;
1147 	int error = -EACCES;
1148 
1149 	d_drop(dentry);
1150 
1151 	/* We may have been initialized further down */
1152 	if (dentry->d_inode)
1153 		goto out;
1154 	if (fhandle->size == 0) {
1155 		error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1156 		if (error)
1157 			goto out_error;
1158 	}
1159 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1160 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1161 		struct nfs_server *server = NFS_SB(dentry->d_sb);
1162 		error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1163 		if (error < 0)
1164 			goto out_error;
1165 	}
1166 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1167 	error = PTR_ERR(inode);
1168 	if (IS_ERR(inode))
1169 		goto out_error;
1170 	d_add(dentry, inode);
1171 out:
1172 	dput(parent);
1173 	return 0;
1174 out_error:
1175 	nfs_mark_for_revalidate(dir);
1176 	dput(parent);
1177 	return error;
1178 }
1179 
1180 /*
1181  * Following a failed create operation, we drop the dentry rather
1182  * than retain a negative dentry. This avoids a problem in the event
1183  * that the operation succeeded on the server, but an error in the
1184  * reply path made it appear to have failed.
1185  */
1186 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode,
1187 		struct nameidata *nd)
1188 {
1189 	struct iattr attr;
1190 	int error;
1191 	int open_flags = 0;
1192 
1193 	dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1194 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1195 
1196 	attr.ia_mode = mode;
1197 	attr.ia_valid = ATTR_MODE;
1198 
1199 	if ((nd->flags & LOOKUP_CREATE) != 0)
1200 		open_flags = nd->intent.open.flags;
1201 
1202 	lock_kernel();
1203 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, nd);
1204 	if (error != 0)
1205 		goto out_err;
1206 	unlock_kernel();
1207 	return 0;
1208 out_err:
1209 	unlock_kernel();
1210 	d_drop(dentry);
1211 	return error;
1212 }
1213 
1214 /*
1215  * See comments for nfs_proc_create regarding failed operations.
1216  */
1217 static int
1218 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev)
1219 {
1220 	struct iattr attr;
1221 	int status;
1222 
1223 	dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1224 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1225 
1226 	if (!new_valid_dev(rdev))
1227 		return -EINVAL;
1228 
1229 	attr.ia_mode = mode;
1230 	attr.ia_valid = ATTR_MODE;
1231 
1232 	lock_kernel();
1233 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1234 	if (status != 0)
1235 		goto out_err;
1236 	unlock_kernel();
1237 	return 0;
1238 out_err:
1239 	unlock_kernel();
1240 	d_drop(dentry);
1241 	return status;
1242 }
1243 
1244 /*
1245  * See comments for nfs_proc_create regarding failed operations.
1246  */
1247 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1248 {
1249 	struct iattr attr;
1250 	int error;
1251 
1252 	dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1253 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1254 
1255 	attr.ia_valid = ATTR_MODE;
1256 	attr.ia_mode = mode | S_IFDIR;
1257 
1258 	lock_kernel();
1259 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1260 	if (error != 0)
1261 		goto out_err;
1262 	unlock_kernel();
1263 	return 0;
1264 out_err:
1265 	d_drop(dentry);
1266 	unlock_kernel();
1267 	return error;
1268 }
1269 
1270 static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1271 {
1272 	int error;
1273 
1274 	dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1275 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1276 
1277 	lock_kernel();
1278 	error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1279 	/* Ensure the VFS deletes this inode */
1280 	if (error == 0 && dentry->d_inode != NULL)
1281 		clear_nlink(dentry->d_inode);
1282 	unlock_kernel();
1283 
1284 	return error;
1285 }
1286 
1287 static int nfs_sillyrename(struct inode *dir, struct dentry *dentry)
1288 {
1289 	static unsigned int sillycounter;
1290 	const int      fileidsize  = sizeof(NFS_FILEID(dentry->d_inode))*2;
1291 	const int      countersize = sizeof(sillycounter)*2;
1292 	const int      slen        = sizeof(".nfs")+fileidsize+countersize-1;
1293 	char           silly[slen+1];
1294 	struct qstr    qsilly;
1295 	struct dentry *sdentry;
1296 	int            error = -EIO;
1297 
1298 	dfprintk(VFS, "NFS: silly-rename(%s/%s, ct=%d)\n",
1299 		dentry->d_parent->d_name.name, dentry->d_name.name,
1300 		atomic_read(&dentry->d_count));
1301 	nfs_inc_stats(dir, NFSIOS_SILLYRENAME);
1302 
1303 	/*
1304 	 * We don't allow a dentry to be silly-renamed twice.
1305 	 */
1306 	error = -EBUSY;
1307 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1308 		goto out;
1309 
1310 	sprintf(silly, ".nfs%*.*Lx",
1311 		fileidsize, fileidsize,
1312 		(unsigned long long)NFS_FILEID(dentry->d_inode));
1313 
1314 	/* Return delegation in anticipation of the rename */
1315 	nfs_inode_return_delegation(dentry->d_inode);
1316 
1317 	sdentry = NULL;
1318 	do {
1319 		char *suffix = silly + slen - countersize;
1320 
1321 		dput(sdentry);
1322 		sillycounter++;
1323 		sprintf(suffix, "%*.*x", countersize, countersize, sillycounter);
1324 
1325 		dfprintk(VFS, "NFS: trying to rename %s to %s\n",
1326 				dentry->d_name.name, silly);
1327 
1328 		sdentry = lookup_one_len(silly, dentry->d_parent, slen);
1329 		/*
1330 		 * N.B. Better to return EBUSY here ... it could be
1331 		 * dangerous to delete the file while it's in use.
1332 		 */
1333 		if (IS_ERR(sdentry))
1334 			goto out;
1335 	} while(sdentry->d_inode != NULL); /* need negative lookup */
1336 
1337 	qsilly.name = silly;
1338 	qsilly.len  = strlen(silly);
1339 	if (dentry->d_inode) {
1340 		error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1341 				dir, &qsilly);
1342 		nfs_mark_for_revalidate(dentry->d_inode);
1343 	} else
1344 		error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1345 				dir, &qsilly);
1346 	if (!error) {
1347 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1348 		d_move(dentry, sdentry);
1349 		error = nfs_async_unlink(dir, dentry);
1350  		/* If we return 0 we don't unlink */
1351 	}
1352 	dput(sdentry);
1353 out:
1354 	return error;
1355 }
1356 
1357 /*
1358  * Remove a file after making sure there are no pending writes,
1359  * and after checking that the file has only one user.
1360  *
1361  * We invalidate the attribute cache and free the inode prior to the operation
1362  * to avoid possible races if the server reuses the inode.
1363  */
1364 static int nfs_safe_remove(struct dentry *dentry)
1365 {
1366 	struct inode *dir = dentry->d_parent->d_inode;
1367 	struct inode *inode = dentry->d_inode;
1368 	int error = -EBUSY;
1369 
1370 	dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1371 		dentry->d_parent->d_name.name, dentry->d_name.name);
1372 
1373 	/* If the dentry was sillyrenamed, we simply call d_delete() */
1374 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1375 		error = 0;
1376 		goto out;
1377 	}
1378 
1379 	if (inode != NULL) {
1380 		nfs_inode_return_delegation(inode);
1381 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1382 		/* The VFS may want to delete this inode */
1383 		if (error == 0)
1384 			drop_nlink(inode);
1385 		nfs_mark_for_revalidate(inode);
1386 	} else
1387 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1388 out:
1389 	return error;
1390 }
1391 
1392 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1393  *  belongs to an active ".nfs..." file and we return -EBUSY.
1394  *
1395  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1396  */
1397 static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1398 {
1399 	int error;
1400 	int need_rehash = 0;
1401 
1402 	dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1403 		dir->i_ino, dentry->d_name.name);
1404 
1405 	lock_kernel();
1406 	spin_lock(&dcache_lock);
1407 	spin_lock(&dentry->d_lock);
1408 	if (atomic_read(&dentry->d_count) > 1) {
1409 		spin_unlock(&dentry->d_lock);
1410 		spin_unlock(&dcache_lock);
1411 		/* Start asynchronous writeout of the inode */
1412 		write_inode_now(dentry->d_inode, 0);
1413 		error = nfs_sillyrename(dir, dentry);
1414 		unlock_kernel();
1415 		return error;
1416 	}
1417 	if (!d_unhashed(dentry)) {
1418 		__d_drop(dentry);
1419 		need_rehash = 1;
1420 	}
1421 	spin_unlock(&dentry->d_lock);
1422 	spin_unlock(&dcache_lock);
1423 	error = nfs_safe_remove(dentry);
1424 	if (!error) {
1425 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1426 	} else if (need_rehash)
1427 		d_rehash(dentry);
1428 	unlock_kernel();
1429 	return error;
1430 }
1431 
1432 /*
1433  * To create a symbolic link, most file systems instantiate a new inode,
1434  * add a page to it containing the path, then write it out to the disk
1435  * using prepare_write/commit_write.
1436  *
1437  * Unfortunately the NFS client can't create the in-core inode first
1438  * because it needs a file handle to create an in-core inode (see
1439  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1440  * symlink request has completed on the server.
1441  *
1442  * So instead we allocate a raw page, copy the symname into it, then do
1443  * the SYMLINK request with the page as the buffer.  If it succeeds, we
1444  * now have a new file handle and can instantiate an in-core NFS inode
1445  * and move the raw page into its mapping.
1446  */
1447 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1448 {
1449 	struct pagevec lru_pvec;
1450 	struct page *page;
1451 	char *kaddr;
1452 	struct iattr attr;
1453 	unsigned int pathlen = strlen(symname);
1454 	int error;
1455 
1456 	dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1457 		dir->i_ino, dentry->d_name.name, symname);
1458 
1459 	if (pathlen > PAGE_SIZE)
1460 		return -ENAMETOOLONG;
1461 
1462 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
1463 	attr.ia_valid = ATTR_MODE;
1464 
1465 	lock_kernel();
1466 
1467 	page = alloc_page(GFP_HIGHUSER);
1468 	if (!page) {
1469 		unlock_kernel();
1470 		return -ENOMEM;
1471 	}
1472 
1473 	kaddr = kmap_atomic(page, KM_USER0);
1474 	memcpy(kaddr, symname, pathlen);
1475 	if (pathlen < PAGE_SIZE)
1476 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1477 	kunmap_atomic(kaddr, KM_USER0);
1478 
1479 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1480 	if (error != 0) {
1481 		dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1482 			dir->i_sb->s_id, dir->i_ino,
1483 			dentry->d_name.name, symname, error);
1484 		d_drop(dentry);
1485 		__free_page(page);
1486 		unlock_kernel();
1487 		return error;
1488 	}
1489 
1490 	/*
1491 	 * No big deal if we can't add this page to the page cache here.
1492 	 * READLINK will get the missing page from the server if needed.
1493 	 */
1494 	pagevec_init(&lru_pvec, 0);
1495 	if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1496 							GFP_KERNEL)) {
1497 		pagevec_add(&lru_pvec, page);
1498 		pagevec_lru_add(&lru_pvec);
1499 		SetPageUptodate(page);
1500 		unlock_page(page);
1501 	} else
1502 		__free_page(page);
1503 
1504 	unlock_kernel();
1505 	return 0;
1506 }
1507 
1508 static int
1509 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1510 {
1511 	struct inode *inode = old_dentry->d_inode;
1512 	int error;
1513 
1514 	dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1515 		old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1516 		dentry->d_parent->d_name.name, dentry->d_name.name);
1517 
1518 	lock_kernel();
1519 	d_drop(dentry);
1520 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1521 	if (error == 0) {
1522 		atomic_inc(&inode->i_count);
1523 		d_add(dentry, inode);
1524 	}
1525 	unlock_kernel();
1526 	return error;
1527 }
1528 
1529 /*
1530  * RENAME
1531  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1532  * different file handle for the same inode after a rename (e.g. when
1533  * moving to a different directory). A fail-safe method to do so would
1534  * be to look up old_dir/old_name, create a link to new_dir/new_name and
1535  * rename the old file using the sillyrename stuff. This way, the original
1536  * file in old_dir will go away when the last process iput()s the inode.
1537  *
1538  * FIXED.
1539  *
1540  * It actually works quite well. One needs to have the possibility for
1541  * at least one ".nfs..." file in each directory the file ever gets
1542  * moved or linked to which happens automagically with the new
1543  * implementation that only depends on the dcache stuff instead of
1544  * using the inode layer
1545  *
1546  * Unfortunately, things are a little more complicated than indicated
1547  * above. For a cross-directory move, we want to make sure we can get
1548  * rid of the old inode after the operation.  This means there must be
1549  * no pending writes (if it's a file), and the use count must be 1.
1550  * If these conditions are met, we can drop the dentries before doing
1551  * the rename.
1552  */
1553 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1554 		      struct inode *new_dir, struct dentry *new_dentry)
1555 {
1556 	struct inode *old_inode = old_dentry->d_inode;
1557 	struct inode *new_inode = new_dentry->d_inode;
1558 	struct dentry *dentry = NULL, *rehash = NULL;
1559 	int error = -EBUSY;
1560 
1561 	/*
1562 	 * To prevent any new references to the target during the rename,
1563 	 * we unhash the dentry and free the inode in advance.
1564 	 */
1565 	lock_kernel();
1566 	if (!d_unhashed(new_dentry)) {
1567 		d_drop(new_dentry);
1568 		rehash = new_dentry;
1569 	}
1570 
1571 	dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1572 		 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1573 		 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1574 		 atomic_read(&new_dentry->d_count));
1575 
1576 	/*
1577 	 * First check whether the target is busy ... we can't
1578 	 * safely do _any_ rename if the target is in use.
1579 	 *
1580 	 * For files, make a copy of the dentry and then do a
1581 	 * silly-rename. If the silly-rename succeeds, the
1582 	 * copied dentry is hashed and becomes the new target.
1583 	 */
1584 	if (!new_inode)
1585 		goto go_ahead;
1586 	if (S_ISDIR(new_inode->i_mode)) {
1587 		error = -EISDIR;
1588 		if (!S_ISDIR(old_inode->i_mode))
1589 			goto out;
1590 	} else if (atomic_read(&new_dentry->d_count) > 2) {
1591 		int err;
1592 		/* copy the target dentry's name */
1593 		dentry = d_alloc(new_dentry->d_parent,
1594 				 &new_dentry->d_name);
1595 		if (!dentry)
1596 			goto out;
1597 
1598 		/* silly-rename the existing target ... */
1599 		err = nfs_sillyrename(new_dir, new_dentry);
1600 		if (!err) {
1601 			new_dentry = rehash = dentry;
1602 			new_inode = NULL;
1603 			/* instantiate the replacement target */
1604 			d_instantiate(new_dentry, NULL);
1605 		} else if (atomic_read(&new_dentry->d_count) > 1)
1606 			/* dentry still busy? */
1607 			goto out;
1608 	} else
1609 		drop_nlink(new_inode);
1610 
1611 go_ahead:
1612 	/*
1613 	 * ... prune child dentries and writebacks if needed.
1614 	 */
1615 	if (atomic_read(&old_dentry->d_count) > 1) {
1616 		if (S_ISREG(old_inode->i_mode))
1617 			nfs_wb_all(old_inode);
1618 		shrink_dcache_parent(old_dentry);
1619 	}
1620 	nfs_inode_return_delegation(old_inode);
1621 
1622 	if (new_inode != NULL) {
1623 		nfs_inode_return_delegation(new_inode);
1624 		d_delete(new_dentry);
1625 	}
1626 
1627 	error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1628 					   new_dir, &new_dentry->d_name);
1629 	nfs_mark_for_revalidate(old_inode);
1630 out:
1631 	if (rehash)
1632 		d_rehash(rehash);
1633 	if (!error) {
1634 		d_move(old_dentry, new_dentry);
1635 		nfs_set_verifier(new_dentry,
1636 					nfs_save_change_attribute(new_dir));
1637 	}
1638 
1639 	/* new dentry created? */
1640 	if (dentry)
1641 		dput(dentry);
1642 	unlock_kernel();
1643 	return error;
1644 }
1645 
1646 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1647 static LIST_HEAD(nfs_access_lru_list);
1648 static atomic_long_t nfs_access_nr_entries;
1649 
1650 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1651 {
1652 	put_rpccred(entry->cred);
1653 	kfree(entry);
1654 	smp_mb__before_atomic_dec();
1655 	atomic_long_dec(&nfs_access_nr_entries);
1656 	smp_mb__after_atomic_dec();
1657 }
1658 
1659 int nfs_access_cache_shrinker(int nr_to_scan, gfp_t gfp_mask)
1660 {
1661 	LIST_HEAD(head);
1662 	struct nfs_inode *nfsi;
1663 	struct nfs_access_entry *cache;
1664 
1665 restart:
1666 	spin_lock(&nfs_access_lru_lock);
1667 	list_for_each_entry(nfsi, &nfs_access_lru_list, access_cache_inode_lru) {
1668 		struct inode *inode;
1669 
1670 		if (nr_to_scan-- == 0)
1671 			break;
1672 		inode = igrab(&nfsi->vfs_inode);
1673 		if (inode == NULL)
1674 			continue;
1675 		spin_lock(&inode->i_lock);
1676 		if (list_empty(&nfsi->access_cache_entry_lru))
1677 			goto remove_lru_entry;
1678 		cache = list_entry(nfsi->access_cache_entry_lru.next,
1679 				struct nfs_access_entry, lru);
1680 		list_move(&cache->lru, &head);
1681 		rb_erase(&cache->rb_node, &nfsi->access_cache);
1682 		if (!list_empty(&nfsi->access_cache_entry_lru))
1683 			list_move_tail(&nfsi->access_cache_inode_lru,
1684 					&nfs_access_lru_list);
1685 		else {
1686 remove_lru_entry:
1687 			list_del_init(&nfsi->access_cache_inode_lru);
1688 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1689 		}
1690 		spin_unlock(&inode->i_lock);
1691 		spin_unlock(&nfs_access_lru_lock);
1692 		iput(inode);
1693 		goto restart;
1694 	}
1695 	spin_unlock(&nfs_access_lru_lock);
1696 	while (!list_empty(&head)) {
1697 		cache = list_entry(head.next, struct nfs_access_entry, lru);
1698 		list_del(&cache->lru);
1699 		nfs_access_free_entry(cache);
1700 	}
1701 	return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
1702 }
1703 
1704 static void __nfs_access_zap_cache(struct inode *inode)
1705 {
1706 	struct nfs_inode *nfsi = NFS_I(inode);
1707 	struct rb_root *root_node = &nfsi->access_cache;
1708 	struct rb_node *n, *dispose = NULL;
1709 	struct nfs_access_entry *entry;
1710 
1711 	/* Unhook entries from the cache */
1712 	while ((n = rb_first(root_node)) != NULL) {
1713 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
1714 		rb_erase(n, root_node);
1715 		list_del(&entry->lru);
1716 		n->rb_left = dispose;
1717 		dispose = n;
1718 	}
1719 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
1720 	spin_unlock(&inode->i_lock);
1721 
1722 	/* Now kill them all! */
1723 	while (dispose != NULL) {
1724 		n = dispose;
1725 		dispose = n->rb_left;
1726 		nfs_access_free_entry(rb_entry(n, struct nfs_access_entry, rb_node));
1727 	}
1728 }
1729 
1730 void nfs_access_zap_cache(struct inode *inode)
1731 {
1732 	/* Remove from global LRU init */
1733 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_FLAGS(inode))) {
1734 		spin_lock(&nfs_access_lru_lock);
1735 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
1736 		spin_unlock(&nfs_access_lru_lock);
1737 	}
1738 
1739 	spin_lock(&inode->i_lock);
1740 	/* This will release the spinlock */
1741 	__nfs_access_zap_cache(inode);
1742 }
1743 
1744 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
1745 {
1746 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
1747 	struct nfs_access_entry *entry;
1748 
1749 	while (n != NULL) {
1750 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
1751 
1752 		if (cred < entry->cred)
1753 			n = n->rb_left;
1754 		else if (cred > entry->cred)
1755 			n = n->rb_right;
1756 		else
1757 			return entry;
1758 	}
1759 	return NULL;
1760 }
1761 
1762 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
1763 {
1764 	struct nfs_inode *nfsi = NFS_I(inode);
1765 	struct nfs_access_entry *cache;
1766 	int err = -ENOENT;
1767 
1768 	spin_lock(&inode->i_lock);
1769 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
1770 		goto out_zap;
1771 	cache = nfs_access_search_rbtree(inode, cred);
1772 	if (cache == NULL)
1773 		goto out;
1774 	if (!time_in_range(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
1775 		goto out_stale;
1776 	res->jiffies = cache->jiffies;
1777 	res->cred = cache->cred;
1778 	res->mask = cache->mask;
1779 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
1780 	err = 0;
1781 out:
1782 	spin_unlock(&inode->i_lock);
1783 	return err;
1784 out_stale:
1785 	rb_erase(&cache->rb_node, &nfsi->access_cache);
1786 	list_del(&cache->lru);
1787 	spin_unlock(&inode->i_lock);
1788 	nfs_access_free_entry(cache);
1789 	return -ENOENT;
1790 out_zap:
1791 	/* This will release the spinlock */
1792 	__nfs_access_zap_cache(inode);
1793 	return -ENOENT;
1794 }
1795 
1796 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
1797 {
1798 	struct nfs_inode *nfsi = NFS_I(inode);
1799 	struct rb_root *root_node = &nfsi->access_cache;
1800 	struct rb_node **p = &root_node->rb_node;
1801 	struct rb_node *parent = NULL;
1802 	struct nfs_access_entry *entry;
1803 
1804 	spin_lock(&inode->i_lock);
1805 	while (*p != NULL) {
1806 		parent = *p;
1807 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
1808 
1809 		if (set->cred < entry->cred)
1810 			p = &parent->rb_left;
1811 		else if (set->cred > entry->cred)
1812 			p = &parent->rb_right;
1813 		else
1814 			goto found;
1815 	}
1816 	rb_link_node(&set->rb_node, parent, p);
1817 	rb_insert_color(&set->rb_node, root_node);
1818 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1819 	spin_unlock(&inode->i_lock);
1820 	return;
1821 found:
1822 	rb_replace_node(parent, &set->rb_node, root_node);
1823 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1824 	list_del(&entry->lru);
1825 	spin_unlock(&inode->i_lock);
1826 	nfs_access_free_entry(entry);
1827 }
1828 
1829 static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
1830 {
1831 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
1832 	if (cache == NULL)
1833 		return;
1834 	RB_CLEAR_NODE(&cache->rb_node);
1835 	cache->jiffies = set->jiffies;
1836 	cache->cred = get_rpccred(set->cred);
1837 	cache->mask = set->mask;
1838 
1839 	nfs_access_add_rbtree(inode, cache);
1840 
1841 	/* Update accounting */
1842 	smp_mb__before_atomic_inc();
1843 	atomic_long_inc(&nfs_access_nr_entries);
1844 	smp_mb__after_atomic_inc();
1845 
1846 	/* Add inode to global LRU list */
1847 	if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_FLAGS(inode))) {
1848 		spin_lock(&nfs_access_lru_lock);
1849 		list_add_tail(&NFS_I(inode)->access_cache_inode_lru, &nfs_access_lru_list);
1850 		spin_unlock(&nfs_access_lru_lock);
1851 	}
1852 }
1853 
1854 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
1855 {
1856 	struct nfs_access_entry cache;
1857 	int status;
1858 
1859 	status = nfs_access_get_cached(inode, cred, &cache);
1860 	if (status == 0)
1861 		goto out;
1862 
1863 	/* Be clever: ask server to check for all possible rights */
1864 	cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
1865 	cache.cred = cred;
1866 	cache.jiffies = jiffies;
1867 	status = NFS_PROTO(inode)->access(inode, &cache);
1868 	if (status != 0)
1869 		return status;
1870 	nfs_access_add_cache(inode, &cache);
1871 out:
1872 	if ((cache.mask & mask) == mask)
1873 		return 0;
1874 	return -EACCES;
1875 }
1876 
1877 static int nfs_open_permission_mask(int openflags)
1878 {
1879 	int mask = 0;
1880 
1881 	if (openflags & FMODE_READ)
1882 		mask |= MAY_READ;
1883 	if (openflags & FMODE_WRITE)
1884 		mask |= MAY_WRITE;
1885 	if (openflags & FMODE_EXEC)
1886 		mask |= MAY_EXEC;
1887 	return mask;
1888 }
1889 
1890 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
1891 {
1892 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
1893 }
1894 
1895 int nfs_permission(struct inode *inode, int mask, struct nameidata *nd)
1896 {
1897 	struct rpc_cred *cred;
1898 	int res = 0;
1899 
1900 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
1901 
1902 	if (mask == 0)
1903 		goto out;
1904 	/* Is this sys_access() ? */
1905 	if (nd != NULL && (nd->flags & LOOKUP_ACCESS))
1906 		goto force_lookup;
1907 
1908 	switch (inode->i_mode & S_IFMT) {
1909 		case S_IFLNK:
1910 			goto out;
1911 		case S_IFREG:
1912 			/* NFSv4 has atomic_open... */
1913 			if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
1914 					&& nd != NULL
1915 					&& (nd->flags & LOOKUP_OPEN))
1916 				goto out;
1917 			break;
1918 		case S_IFDIR:
1919 			/*
1920 			 * Optimize away all write operations, since the server
1921 			 * will check permissions when we perform the op.
1922 			 */
1923 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
1924 				goto out;
1925 	}
1926 
1927 force_lookup:
1928 	lock_kernel();
1929 
1930 	if (!NFS_PROTO(inode)->access)
1931 		goto out_notsup;
1932 
1933 	cred = rpcauth_lookupcred(NFS_CLIENT(inode)->cl_auth, 0);
1934 	if (!IS_ERR(cred)) {
1935 		res = nfs_do_access(inode, cred, mask);
1936 		put_rpccred(cred);
1937 	} else
1938 		res = PTR_ERR(cred);
1939 	unlock_kernel();
1940 out:
1941 	dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
1942 		inode->i_sb->s_id, inode->i_ino, mask, res);
1943 	return res;
1944 out_notsup:
1945 	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1946 	if (res == 0)
1947 		res = generic_permission(inode, mask, NULL);
1948 	unlock_kernel();
1949 	goto out;
1950 }
1951 
1952 /*
1953  * Local variables:
1954  *  version-control: t
1955  *  kept-new-versions: 5
1956  * End:
1957  */
1958