xref: /openbmc/linux/fs/nfs/dir.c (revision 549c7297)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/nfs/dir.c
4  *
5  *  Copyright (C) 1992  Rick Sladkey
6  *
7  *  nfs directory handling functions
8  *
9  * 10 Apr 1996	Added silly rename for unlink	--okir
10  * 28 Sep 1996	Improved directory cache --okir
11  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
12  *              Re-implemented silly rename for unlink, newly implemented
13  *              silly rename for nfs_rename() following the suggestions
14  *              of Olaf Kirch (okir) found in this file.
15  *              Following Linus comments on my original hack, this version
16  *              depends only on the dcache stuff and doesn't touch the inode
17  *              layer (iput() and friends).
18  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
19  */
20 
21 #include <linux/module.h>
22 #include <linux/time.h>
23 #include <linux/errno.h>
24 #include <linux/stat.h>
25 #include <linux/fcntl.h>
26 #include <linux/string.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/mm.h>
30 #include <linux/sunrpc/clnt.h>
31 #include <linux/nfs_fs.h>
32 #include <linux/nfs_mount.h>
33 #include <linux/pagemap.h>
34 #include <linux/pagevec.h>
35 #include <linux/namei.h>
36 #include <linux/mount.h>
37 #include <linux/swap.h>
38 #include <linux/sched.h>
39 #include <linux/kmemleak.h>
40 #include <linux/xattr.h>
41 
42 #include "delegation.h"
43 #include "iostat.h"
44 #include "internal.h"
45 #include "fscache.h"
46 
47 #include "nfstrace.h"
48 
49 /* #define NFS_DEBUG_VERBOSE 1 */
50 
51 static int nfs_opendir(struct inode *, struct file *);
52 static int nfs_closedir(struct inode *, struct file *);
53 static int nfs_readdir(struct file *, struct dir_context *);
54 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
55 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
56 static void nfs_readdir_clear_array(struct page*);
57 
58 const struct file_operations nfs_dir_operations = {
59 	.llseek		= nfs_llseek_dir,
60 	.read		= generic_read_dir,
61 	.iterate_shared	= nfs_readdir,
62 	.open		= nfs_opendir,
63 	.release	= nfs_closedir,
64 	.fsync		= nfs_fsync_dir,
65 };
66 
67 const struct address_space_operations nfs_dir_aops = {
68 	.freepage = nfs_readdir_clear_array,
69 };
70 
71 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir)
72 {
73 	struct nfs_inode *nfsi = NFS_I(dir);
74 	struct nfs_open_dir_context *ctx;
75 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
76 	if (ctx != NULL) {
77 		ctx->duped = 0;
78 		ctx->attr_gencount = nfsi->attr_gencount;
79 		ctx->dir_cookie = 0;
80 		ctx->dup_cookie = 0;
81 		spin_lock(&dir->i_lock);
82 		if (list_empty(&nfsi->open_files) &&
83 		    (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
84 			nfsi->cache_validity |= NFS_INO_INVALID_DATA |
85 				NFS_INO_REVAL_FORCED;
86 		list_add(&ctx->list, &nfsi->open_files);
87 		spin_unlock(&dir->i_lock);
88 		return ctx;
89 	}
90 	return  ERR_PTR(-ENOMEM);
91 }
92 
93 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
94 {
95 	spin_lock(&dir->i_lock);
96 	list_del(&ctx->list);
97 	spin_unlock(&dir->i_lock);
98 	kfree(ctx);
99 }
100 
101 /*
102  * Open file
103  */
104 static int
105 nfs_opendir(struct inode *inode, struct file *filp)
106 {
107 	int res = 0;
108 	struct nfs_open_dir_context *ctx;
109 
110 	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
111 
112 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
113 
114 	ctx = alloc_nfs_open_dir_context(inode);
115 	if (IS_ERR(ctx)) {
116 		res = PTR_ERR(ctx);
117 		goto out;
118 	}
119 	filp->private_data = ctx;
120 out:
121 	return res;
122 }
123 
124 static int
125 nfs_closedir(struct inode *inode, struct file *filp)
126 {
127 	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
128 	return 0;
129 }
130 
131 struct nfs_cache_array_entry {
132 	u64 cookie;
133 	u64 ino;
134 	const char *name;
135 	unsigned int name_len;
136 	unsigned char d_type;
137 };
138 
139 struct nfs_cache_array {
140 	u64 last_cookie;
141 	unsigned int size;
142 	unsigned char page_full : 1,
143 		      page_is_eof : 1,
144 		      cookies_are_ordered : 1;
145 	struct nfs_cache_array_entry array[];
146 };
147 
148 struct nfs_readdir_descriptor {
149 	struct file	*file;
150 	struct page	*page;
151 	struct dir_context *ctx;
152 	pgoff_t		page_index;
153 	u64		dir_cookie;
154 	u64		last_cookie;
155 	u64		dup_cookie;
156 	loff_t		current_index;
157 	loff_t		prev_index;
158 
159 	__be32		verf[NFS_DIR_VERIFIER_SIZE];
160 	unsigned long	dir_verifier;
161 	unsigned long	timestamp;
162 	unsigned long	gencount;
163 	unsigned long	attr_gencount;
164 	unsigned int	cache_entry_index;
165 	signed char duped;
166 	bool plus;
167 	bool eof;
168 };
169 
170 static void nfs_readdir_array_init(struct nfs_cache_array *array)
171 {
172 	memset(array, 0, sizeof(struct nfs_cache_array));
173 }
174 
175 static void nfs_readdir_page_init_array(struct page *page, u64 last_cookie)
176 {
177 	struct nfs_cache_array *array;
178 
179 	array = kmap_atomic(page);
180 	nfs_readdir_array_init(array);
181 	array->last_cookie = last_cookie;
182 	array->cookies_are_ordered = 1;
183 	kunmap_atomic(array);
184 }
185 
186 /*
187  * we are freeing strings created by nfs_add_to_readdir_array()
188  */
189 static
190 void nfs_readdir_clear_array(struct page *page)
191 {
192 	struct nfs_cache_array *array;
193 	int i;
194 
195 	array = kmap_atomic(page);
196 	for (i = 0; i < array->size; i++)
197 		kfree(array->array[i].name);
198 	nfs_readdir_array_init(array);
199 	kunmap_atomic(array);
200 }
201 
202 static struct page *
203 nfs_readdir_page_array_alloc(u64 last_cookie, gfp_t gfp_flags)
204 {
205 	struct page *page = alloc_page(gfp_flags);
206 	if (page)
207 		nfs_readdir_page_init_array(page, last_cookie);
208 	return page;
209 }
210 
211 static void nfs_readdir_page_array_free(struct page *page)
212 {
213 	if (page) {
214 		nfs_readdir_clear_array(page);
215 		put_page(page);
216 	}
217 }
218 
219 static void nfs_readdir_array_set_eof(struct nfs_cache_array *array)
220 {
221 	array->page_is_eof = 1;
222 	array->page_full = 1;
223 }
224 
225 static bool nfs_readdir_array_is_full(struct nfs_cache_array *array)
226 {
227 	return array->page_full;
228 }
229 
230 /*
231  * the caller is responsible for freeing qstr.name
232  * when called by nfs_readdir_add_to_array, the strings will be freed in
233  * nfs_clear_readdir_array()
234  */
235 static const char *nfs_readdir_copy_name(const char *name, unsigned int len)
236 {
237 	const char *ret = kmemdup_nul(name, len, GFP_KERNEL);
238 
239 	/*
240 	 * Avoid a kmemleak false positive. The pointer to the name is stored
241 	 * in a page cache page which kmemleak does not scan.
242 	 */
243 	if (ret != NULL)
244 		kmemleak_not_leak(ret);
245 	return ret;
246 }
247 
248 /*
249  * Check that the next array entry lies entirely within the page bounds
250  */
251 static int nfs_readdir_array_can_expand(struct nfs_cache_array *array)
252 {
253 	struct nfs_cache_array_entry *cache_entry;
254 
255 	if (array->page_full)
256 		return -ENOSPC;
257 	cache_entry = &array->array[array->size + 1];
258 	if ((char *)cache_entry - (char *)array > PAGE_SIZE) {
259 		array->page_full = 1;
260 		return -ENOSPC;
261 	}
262 	return 0;
263 }
264 
265 static
266 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
267 {
268 	struct nfs_cache_array *array;
269 	struct nfs_cache_array_entry *cache_entry;
270 	const char *name;
271 	int ret;
272 
273 	name = nfs_readdir_copy_name(entry->name, entry->len);
274 	if (!name)
275 		return -ENOMEM;
276 
277 	array = kmap_atomic(page);
278 	ret = nfs_readdir_array_can_expand(array);
279 	if (ret) {
280 		kfree(name);
281 		goto out;
282 	}
283 
284 	cache_entry = &array->array[array->size];
285 	cache_entry->cookie = entry->prev_cookie;
286 	cache_entry->ino = entry->ino;
287 	cache_entry->d_type = entry->d_type;
288 	cache_entry->name_len = entry->len;
289 	cache_entry->name = name;
290 	array->last_cookie = entry->cookie;
291 	if (array->last_cookie <= cache_entry->cookie)
292 		array->cookies_are_ordered = 0;
293 	array->size++;
294 	if (entry->eof != 0)
295 		nfs_readdir_array_set_eof(array);
296 out:
297 	kunmap_atomic(array);
298 	return ret;
299 }
300 
301 static struct page *nfs_readdir_page_get_locked(struct address_space *mapping,
302 						pgoff_t index, u64 last_cookie)
303 {
304 	struct page *page;
305 
306 	page = grab_cache_page(mapping, index);
307 	if (page && !PageUptodate(page)) {
308 		nfs_readdir_page_init_array(page, last_cookie);
309 		if (invalidate_inode_pages2_range(mapping, index + 1, -1) < 0)
310 			nfs_zap_mapping(mapping->host, mapping);
311 		SetPageUptodate(page);
312 	}
313 
314 	return page;
315 }
316 
317 static u64 nfs_readdir_page_last_cookie(struct page *page)
318 {
319 	struct nfs_cache_array *array;
320 	u64 ret;
321 
322 	array = kmap_atomic(page);
323 	ret = array->last_cookie;
324 	kunmap_atomic(array);
325 	return ret;
326 }
327 
328 static bool nfs_readdir_page_needs_filling(struct page *page)
329 {
330 	struct nfs_cache_array *array;
331 	bool ret;
332 
333 	array = kmap_atomic(page);
334 	ret = !nfs_readdir_array_is_full(array);
335 	kunmap_atomic(array);
336 	return ret;
337 }
338 
339 static void nfs_readdir_page_set_eof(struct page *page)
340 {
341 	struct nfs_cache_array *array;
342 
343 	array = kmap_atomic(page);
344 	nfs_readdir_array_set_eof(array);
345 	kunmap_atomic(array);
346 }
347 
348 static void nfs_readdir_page_unlock_and_put(struct page *page)
349 {
350 	unlock_page(page);
351 	put_page(page);
352 }
353 
354 static struct page *nfs_readdir_page_get_next(struct address_space *mapping,
355 					      pgoff_t index, u64 cookie)
356 {
357 	struct page *page;
358 
359 	page = nfs_readdir_page_get_locked(mapping, index, cookie);
360 	if (page) {
361 		if (nfs_readdir_page_last_cookie(page) == cookie)
362 			return page;
363 		nfs_readdir_page_unlock_and_put(page);
364 	}
365 	return NULL;
366 }
367 
368 static inline
369 int is_32bit_api(void)
370 {
371 #ifdef CONFIG_COMPAT
372 	return in_compat_syscall();
373 #else
374 	return (BITS_PER_LONG == 32);
375 #endif
376 }
377 
378 static
379 bool nfs_readdir_use_cookie(const struct file *filp)
380 {
381 	if ((filp->f_mode & FMODE_32BITHASH) ||
382 	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
383 		return false;
384 	return true;
385 }
386 
387 static int nfs_readdir_search_for_pos(struct nfs_cache_array *array,
388 				      struct nfs_readdir_descriptor *desc)
389 {
390 	loff_t diff = desc->ctx->pos - desc->current_index;
391 	unsigned int index;
392 
393 	if (diff < 0)
394 		goto out_eof;
395 	if (diff >= array->size) {
396 		if (array->page_is_eof)
397 			goto out_eof;
398 		return -EAGAIN;
399 	}
400 
401 	index = (unsigned int)diff;
402 	desc->dir_cookie = array->array[index].cookie;
403 	desc->cache_entry_index = index;
404 	return 0;
405 out_eof:
406 	desc->eof = true;
407 	return -EBADCOOKIE;
408 }
409 
410 static bool
411 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
412 {
413 	if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
414 		return false;
415 	smp_rmb();
416 	return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
417 }
418 
419 static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array,
420 					      u64 cookie)
421 {
422 	if (!array->cookies_are_ordered)
423 		return true;
424 	/* Optimisation for monotonically increasing cookies */
425 	if (cookie >= array->last_cookie)
426 		return false;
427 	if (array->size && cookie < array->array[0].cookie)
428 		return false;
429 	return true;
430 }
431 
432 static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array,
433 					 struct nfs_readdir_descriptor *desc)
434 {
435 	int i;
436 	loff_t new_pos;
437 	int status = -EAGAIN;
438 
439 	if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie))
440 		goto check_eof;
441 
442 	for (i = 0; i < array->size; i++) {
443 		if (array->array[i].cookie == desc->dir_cookie) {
444 			struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
445 
446 			new_pos = desc->current_index + i;
447 			if (desc->attr_gencount != nfsi->attr_gencount ||
448 			    !nfs_readdir_inode_mapping_valid(nfsi)) {
449 				desc->duped = 0;
450 				desc->attr_gencount = nfsi->attr_gencount;
451 			} else if (new_pos < desc->prev_index) {
452 				if (desc->duped > 0
453 				    && desc->dup_cookie == desc->dir_cookie) {
454 					if (printk_ratelimit()) {
455 						pr_notice("NFS: directory %pD2 contains a readdir loop."
456 								"Please contact your server vendor.  "
457 								"The file: %s has duplicate cookie %llu\n",
458 								desc->file, array->array[i].name, desc->dir_cookie);
459 					}
460 					status = -ELOOP;
461 					goto out;
462 				}
463 				desc->dup_cookie = desc->dir_cookie;
464 				desc->duped = -1;
465 			}
466 			if (nfs_readdir_use_cookie(desc->file))
467 				desc->ctx->pos = desc->dir_cookie;
468 			else
469 				desc->ctx->pos = new_pos;
470 			desc->prev_index = new_pos;
471 			desc->cache_entry_index = i;
472 			return 0;
473 		}
474 	}
475 check_eof:
476 	if (array->page_is_eof) {
477 		status = -EBADCOOKIE;
478 		if (desc->dir_cookie == array->last_cookie)
479 			desc->eof = true;
480 	}
481 out:
482 	return status;
483 }
484 
485 static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc)
486 {
487 	struct nfs_cache_array *array;
488 	int status;
489 
490 	array = kmap_atomic(desc->page);
491 
492 	if (desc->dir_cookie == 0)
493 		status = nfs_readdir_search_for_pos(array, desc);
494 	else
495 		status = nfs_readdir_search_for_cookie(array, desc);
496 
497 	if (status == -EAGAIN) {
498 		desc->last_cookie = array->last_cookie;
499 		desc->current_index += array->size;
500 		desc->page_index++;
501 	}
502 	kunmap_atomic(array);
503 	return status;
504 }
505 
506 /* Fill a page with xdr information before transferring to the cache page */
507 static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc,
508 				  __be32 *verf, u64 cookie,
509 				  struct page **pages, size_t bufsize,
510 				  __be32 *verf_res)
511 {
512 	struct inode *inode = file_inode(desc->file);
513 	struct nfs_readdir_arg arg = {
514 		.dentry = file_dentry(desc->file),
515 		.cred = desc->file->f_cred,
516 		.verf = verf,
517 		.cookie = cookie,
518 		.pages = pages,
519 		.page_len = bufsize,
520 		.plus = desc->plus,
521 	};
522 	struct nfs_readdir_res res = {
523 		.verf = verf_res,
524 	};
525 	unsigned long	timestamp, gencount;
526 	int		error;
527 
528  again:
529 	timestamp = jiffies;
530 	gencount = nfs_inc_attr_generation_counter();
531 	desc->dir_verifier = nfs_save_change_attribute(inode);
532 	error = NFS_PROTO(inode)->readdir(&arg, &res);
533 	if (error < 0) {
534 		/* We requested READDIRPLUS, but the server doesn't grok it */
535 		if (error == -ENOTSUPP && desc->plus) {
536 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
537 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
538 			desc->plus = arg.plus = false;
539 			goto again;
540 		}
541 		goto error;
542 	}
543 	desc->timestamp = timestamp;
544 	desc->gencount = gencount;
545 error:
546 	return error;
547 }
548 
549 static int xdr_decode(struct nfs_readdir_descriptor *desc,
550 		      struct nfs_entry *entry, struct xdr_stream *xdr)
551 {
552 	struct inode *inode = file_inode(desc->file);
553 	int error;
554 
555 	error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
556 	if (error)
557 		return error;
558 	entry->fattr->time_start = desc->timestamp;
559 	entry->fattr->gencount = desc->gencount;
560 	return 0;
561 }
562 
563 /* Match file and dirent using either filehandle or fileid
564  * Note: caller is responsible for checking the fsid
565  */
566 static
567 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
568 {
569 	struct inode *inode;
570 	struct nfs_inode *nfsi;
571 
572 	if (d_really_is_negative(dentry))
573 		return 0;
574 
575 	inode = d_inode(dentry);
576 	if (is_bad_inode(inode) || NFS_STALE(inode))
577 		return 0;
578 
579 	nfsi = NFS_I(inode);
580 	if (entry->fattr->fileid != nfsi->fileid)
581 		return 0;
582 	if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
583 		return 0;
584 	return 1;
585 }
586 
587 static
588 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
589 {
590 	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
591 		return false;
592 	if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
593 		return true;
594 	if (ctx->pos == 0)
595 		return true;
596 	return false;
597 }
598 
599 /*
600  * This function is called by the lookup and getattr code to request the
601  * use of readdirplus to accelerate any future lookups in the same
602  * directory.
603  */
604 void nfs_advise_use_readdirplus(struct inode *dir)
605 {
606 	struct nfs_inode *nfsi = NFS_I(dir);
607 
608 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
609 	    !list_empty(&nfsi->open_files))
610 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
611 }
612 
613 /*
614  * This function is mainly for use by nfs_getattr().
615  *
616  * If this is an 'ls -l', we want to force use of readdirplus.
617  * Do this by checking if there is an active file descriptor
618  * and calling nfs_advise_use_readdirplus, then forcing a
619  * cache flush.
620  */
621 void nfs_force_use_readdirplus(struct inode *dir)
622 {
623 	struct nfs_inode *nfsi = NFS_I(dir);
624 
625 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
626 	    !list_empty(&nfsi->open_files)) {
627 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
628 		invalidate_mapping_pages(dir->i_mapping,
629 			nfsi->page_index + 1, -1);
630 	}
631 }
632 
633 static
634 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
635 		unsigned long dir_verifier)
636 {
637 	struct qstr filename = QSTR_INIT(entry->name, entry->len);
638 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
639 	struct dentry *dentry;
640 	struct dentry *alias;
641 	struct inode *inode;
642 	int status;
643 
644 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
645 		return;
646 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
647 		return;
648 	if (filename.len == 0)
649 		return;
650 	/* Validate that the name doesn't contain any illegal '\0' */
651 	if (strnlen(filename.name, filename.len) != filename.len)
652 		return;
653 	/* ...or '/' */
654 	if (strnchr(filename.name, filename.len, '/'))
655 		return;
656 	if (filename.name[0] == '.') {
657 		if (filename.len == 1)
658 			return;
659 		if (filename.len == 2 && filename.name[1] == '.')
660 			return;
661 	}
662 	filename.hash = full_name_hash(parent, filename.name, filename.len);
663 
664 	dentry = d_lookup(parent, &filename);
665 again:
666 	if (!dentry) {
667 		dentry = d_alloc_parallel(parent, &filename, &wq);
668 		if (IS_ERR(dentry))
669 			return;
670 	}
671 	if (!d_in_lookup(dentry)) {
672 		/* Is there a mountpoint here? If so, just exit */
673 		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
674 					&entry->fattr->fsid))
675 			goto out;
676 		if (nfs_same_file(dentry, entry)) {
677 			if (!entry->fh->size)
678 				goto out;
679 			nfs_set_verifier(dentry, dir_verifier);
680 			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
681 			if (!status)
682 				nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
683 			goto out;
684 		} else {
685 			d_invalidate(dentry);
686 			dput(dentry);
687 			dentry = NULL;
688 			goto again;
689 		}
690 	}
691 	if (!entry->fh->size) {
692 		d_lookup_done(dentry);
693 		goto out;
694 	}
695 
696 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
697 	alias = d_splice_alias(inode, dentry);
698 	d_lookup_done(dentry);
699 	if (alias) {
700 		if (IS_ERR(alias))
701 			goto out;
702 		dput(dentry);
703 		dentry = alias;
704 	}
705 	nfs_set_verifier(dentry, dir_verifier);
706 out:
707 	dput(dentry);
708 }
709 
710 /* Perform conversion from xdr to cache array */
711 static int nfs_readdir_page_filler(struct nfs_readdir_descriptor *desc,
712 				   struct nfs_entry *entry,
713 				   struct page **xdr_pages,
714 				   unsigned int buflen,
715 				   struct page **arrays,
716 				   size_t narrays)
717 {
718 	struct address_space *mapping = desc->file->f_mapping;
719 	struct xdr_stream stream;
720 	struct xdr_buf buf;
721 	struct page *scratch, *new, *page = *arrays;
722 	int status;
723 
724 	scratch = alloc_page(GFP_KERNEL);
725 	if (scratch == NULL)
726 		return -ENOMEM;
727 
728 	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
729 	xdr_set_scratch_page(&stream, scratch);
730 
731 	do {
732 		if (entry->label)
733 			entry->label->len = NFS4_MAXLABELLEN;
734 
735 		status = xdr_decode(desc, entry, &stream);
736 		if (status != 0)
737 			break;
738 
739 		if (desc->plus)
740 			nfs_prime_dcache(file_dentry(desc->file), entry,
741 					desc->dir_verifier);
742 
743 		status = nfs_readdir_add_to_array(entry, page);
744 		if (status != -ENOSPC)
745 			continue;
746 
747 		if (page->mapping != mapping) {
748 			if (!--narrays)
749 				break;
750 			new = nfs_readdir_page_array_alloc(entry->prev_cookie,
751 							   GFP_KERNEL);
752 			if (!new)
753 				break;
754 			arrays++;
755 			*arrays = page = new;
756 		} else {
757 			new = nfs_readdir_page_get_next(mapping,
758 							page->index + 1,
759 							entry->prev_cookie);
760 			if (!new)
761 				break;
762 			if (page != *arrays)
763 				nfs_readdir_page_unlock_and_put(page);
764 			page = new;
765 		}
766 		status = nfs_readdir_add_to_array(entry, page);
767 	} while (!status && !entry->eof);
768 
769 	switch (status) {
770 	case -EBADCOOKIE:
771 		if (entry->eof) {
772 			nfs_readdir_page_set_eof(page);
773 			status = 0;
774 		}
775 		break;
776 	case -ENOSPC:
777 	case -EAGAIN:
778 		status = 0;
779 		break;
780 	}
781 
782 	if (page != *arrays)
783 		nfs_readdir_page_unlock_and_put(page);
784 
785 	put_page(scratch);
786 	return status;
787 }
788 
789 static void nfs_readdir_free_pages(struct page **pages, size_t npages)
790 {
791 	while (npages--)
792 		put_page(pages[npages]);
793 	kfree(pages);
794 }
795 
796 /*
797  * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
798  * to nfs_readdir_free_pages()
799  */
800 static struct page **nfs_readdir_alloc_pages(size_t npages)
801 {
802 	struct page **pages;
803 	size_t i;
804 
805 	pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL);
806 	if (!pages)
807 		return NULL;
808 	for (i = 0; i < npages; i++) {
809 		struct page *page = alloc_page(GFP_KERNEL);
810 		if (page == NULL)
811 			goto out_freepages;
812 		pages[i] = page;
813 	}
814 	return pages;
815 
816 out_freepages:
817 	nfs_readdir_free_pages(pages, i);
818 	return NULL;
819 }
820 
821 static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc,
822 				    __be32 *verf_arg, __be32 *verf_res,
823 				    struct page **arrays, size_t narrays)
824 {
825 	struct page **pages;
826 	struct page *page = *arrays;
827 	struct nfs_entry *entry;
828 	size_t array_size;
829 	struct inode *inode = file_inode(desc->file);
830 	size_t dtsize = NFS_SERVER(inode)->dtsize;
831 	int status = -ENOMEM;
832 
833 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
834 	if (!entry)
835 		return -ENOMEM;
836 	entry->cookie = nfs_readdir_page_last_cookie(page);
837 	entry->fh = nfs_alloc_fhandle();
838 	entry->fattr = nfs_alloc_fattr();
839 	entry->server = NFS_SERVER(inode);
840 	if (entry->fh == NULL || entry->fattr == NULL)
841 		goto out;
842 
843 	entry->label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
844 	if (IS_ERR(entry->label)) {
845 		status = PTR_ERR(entry->label);
846 		goto out;
847 	}
848 
849 	array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT;
850 	pages = nfs_readdir_alloc_pages(array_size);
851 	if (!pages)
852 		goto out_release_label;
853 
854 	do {
855 		unsigned int pglen;
856 		status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie,
857 						pages, dtsize,
858 						verf_res);
859 		if (status < 0)
860 			break;
861 
862 		pglen = status;
863 		if (pglen == 0) {
864 			nfs_readdir_page_set_eof(page);
865 			break;
866 		}
867 
868 		status = nfs_readdir_page_filler(desc, entry, pages, pglen,
869 						 arrays, narrays);
870 	} while (!status && nfs_readdir_page_needs_filling(page));
871 
872 	nfs_readdir_free_pages(pages, array_size);
873 out_release_label:
874 	nfs4_label_free(entry->label);
875 out:
876 	nfs_free_fattr(entry->fattr);
877 	nfs_free_fhandle(entry->fh);
878 	kfree(entry);
879 	return status;
880 }
881 
882 static void nfs_readdir_page_put(struct nfs_readdir_descriptor *desc)
883 {
884 	put_page(desc->page);
885 	desc->page = NULL;
886 }
887 
888 static void
889 nfs_readdir_page_unlock_and_put_cached(struct nfs_readdir_descriptor *desc)
890 {
891 	unlock_page(desc->page);
892 	nfs_readdir_page_put(desc);
893 }
894 
895 static struct page *
896 nfs_readdir_page_get_cached(struct nfs_readdir_descriptor *desc)
897 {
898 	return nfs_readdir_page_get_locked(desc->file->f_mapping,
899 					   desc->page_index,
900 					   desc->last_cookie);
901 }
902 
903 /*
904  * Returns 0 if desc->dir_cookie was found on page desc->page_index
905  * and locks the page to prevent removal from the page cache.
906  */
907 static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc)
908 {
909 	struct inode *inode = file_inode(desc->file);
910 	struct nfs_inode *nfsi = NFS_I(inode);
911 	__be32 verf[NFS_DIR_VERIFIER_SIZE];
912 	int res;
913 
914 	desc->page = nfs_readdir_page_get_cached(desc);
915 	if (!desc->page)
916 		return -ENOMEM;
917 	if (nfs_readdir_page_needs_filling(desc->page)) {
918 		res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf,
919 					       &desc->page, 1);
920 		if (res < 0) {
921 			nfs_readdir_page_unlock_and_put_cached(desc);
922 			if (res == -EBADCOOKIE || res == -ENOTSYNC) {
923 				invalidate_inode_pages2(desc->file->f_mapping);
924 				desc->page_index = 0;
925 				return -EAGAIN;
926 			}
927 			return res;
928 		}
929 		memcpy(nfsi->cookieverf, verf, sizeof(nfsi->cookieverf));
930 	}
931 	res = nfs_readdir_search_array(desc);
932 	if (res == 0) {
933 		nfsi->page_index = desc->page_index;
934 		return 0;
935 	}
936 	nfs_readdir_page_unlock_and_put_cached(desc);
937 	return res;
938 }
939 
940 static bool nfs_readdir_dont_search_cache(struct nfs_readdir_descriptor *desc)
941 {
942 	struct address_space *mapping = desc->file->f_mapping;
943 	struct inode *dir = file_inode(desc->file);
944 	unsigned int dtsize = NFS_SERVER(dir)->dtsize;
945 	loff_t size = i_size_read(dir);
946 
947 	/*
948 	 * Default to uncached readdir if the page cache is empty, and
949 	 * we're looking for a non-zero cookie in a large directory.
950 	 */
951 	return desc->dir_cookie != 0 && mapping->nrpages == 0 && size > dtsize;
952 }
953 
954 /* Search for desc->dir_cookie from the beginning of the page cache */
955 static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc)
956 {
957 	int res;
958 
959 	if (nfs_readdir_dont_search_cache(desc))
960 		return -EBADCOOKIE;
961 
962 	do {
963 		if (desc->page_index == 0) {
964 			desc->current_index = 0;
965 			desc->prev_index = 0;
966 			desc->last_cookie = 0;
967 		}
968 		res = find_and_lock_cache_page(desc);
969 	} while (res == -EAGAIN);
970 	return res;
971 }
972 
973 /*
974  * Once we've found the start of the dirent within a page: fill 'er up...
975  */
976 static void nfs_do_filldir(struct nfs_readdir_descriptor *desc)
977 {
978 	struct file	*file = desc->file;
979 	struct nfs_inode *nfsi = NFS_I(file_inode(file));
980 	struct nfs_cache_array *array;
981 	unsigned int i = 0;
982 
983 	array = kmap(desc->page);
984 	for (i = desc->cache_entry_index; i < array->size; i++) {
985 		struct nfs_cache_array_entry *ent;
986 
987 		ent = &array->array[i];
988 		if (!dir_emit(desc->ctx, ent->name, ent->name_len,
989 		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
990 			desc->eof = true;
991 			break;
992 		}
993 		memcpy(desc->verf, nfsi->cookieverf, sizeof(desc->verf));
994 		if (i < (array->size-1))
995 			desc->dir_cookie = array->array[i+1].cookie;
996 		else
997 			desc->dir_cookie = array->last_cookie;
998 		if (nfs_readdir_use_cookie(file))
999 			desc->ctx->pos = desc->dir_cookie;
1000 		else
1001 			desc->ctx->pos++;
1002 		if (desc->duped != 0)
1003 			desc->duped = 1;
1004 	}
1005 	if (array->page_is_eof)
1006 		desc->eof = true;
1007 
1008 	kunmap(desc->page);
1009 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n",
1010 			(unsigned long long)desc->dir_cookie);
1011 }
1012 
1013 /*
1014  * If we cannot find a cookie in our cache, we suspect that this is
1015  * because it points to a deleted file, so we ask the server to return
1016  * whatever it thinks is the next entry. We then feed this to filldir.
1017  * If all goes well, we should then be able to find our way round the
1018  * cache on the next call to readdir_search_pagecache();
1019  *
1020  * NOTE: we cannot add the anonymous page to the pagecache because
1021  *	 the data it contains might not be page aligned. Besides,
1022  *	 we should already have a complete representation of the
1023  *	 directory in the page cache by the time we get here.
1024  */
1025 static int uncached_readdir(struct nfs_readdir_descriptor *desc)
1026 {
1027 	struct page	**arrays;
1028 	size_t		i, sz = 512;
1029 	__be32		verf[NFS_DIR_VERIFIER_SIZE];
1030 	int		status = -ENOMEM;
1031 
1032 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n",
1033 			(unsigned long long)desc->dir_cookie);
1034 
1035 	arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL);
1036 	if (!arrays)
1037 		goto out;
1038 	arrays[0] = nfs_readdir_page_array_alloc(desc->dir_cookie, GFP_KERNEL);
1039 	if (!arrays[0])
1040 		goto out;
1041 
1042 	desc->page_index = 0;
1043 	desc->last_cookie = desc->dir_cookie;
1044 	desc->duped = 0;
1045 
1046 	status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz);
1047 
1048 	for (i = 0; !desc->eof && i < sz && arrays[i]; i++) {
1049 		desc->page = arrays[i];
1050 		nfs_do_filldir(desc);
1051 	}
1052 	desc->page = NULL;
1053 
1054 
1055 	for (i = 0; i < sz && arrays[i]; i++)
1056 		nfs_readdir_page_array_free(arrays[i]);
1057 out:
1058 	kfree(arrays);
1059 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
1060 	return status;
1061 }
1062 
1063 /* The file offset position represents the dirent entry number.  A
1064    last cookie cache takes care of the common case of reading the
1065    whole directory.
1066  */
1067 static int nfs_readdir(struct file *file, struct dir_context *ctx)
1068 {
1069 	struct dentry	*dentry = file_dentry(file);
1070 	struct inode	*inode = d_inode(dentry);
1071 	struct nfs_open_dir_context *dir_ctx = file->private_data;
1072 	struct nfs_readdir_descriptor *desc;
1073 	int res;
1074 
1075 	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
1076 			file, (long long)ctx->pos);
1077 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
1078 
1079 	/*
1080 	 * ctx->pos points to the dirent entry number.
1081 	 * *desc->dir_cookie has the cookie for the next entry. We have
1082 	 * to either find the entry with the appropriate number or
1083 	 * revalidate the cookie.
1084 	 */
1085 	if (ctx->pos == 0 || nfs_attribute_cache_expired(inode)) {
1086 		res = nfs_revalidate_mapping(inode, file->f_mapping);
1087 		if (res < 0)
1088 			goto out;
1089 	}
1090 
1091 	res = -ENOMEM;
1092 	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
1093 	if (!desc)
1094 		goto out;
1095 	desc->file = file;
1096 	desc->ctx = ctx;
1097 	desc->plus = nfs_use_readdirplus(inode, ctx);
1098 
1099 	spin_lock(&file->f_lock);
1100 	desc->dir_cookie = dir_ctx->dir_cookie;
1101 	desc->dup_cookie = dir_ctx->dup_cookie;
1102 	desc->duped = dir_ctx->duped;
1103 	desc->attr_gencount = dir_ctx->attr_gencount;
1104 	memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf));
1105 	spin_unlock(&file->f_lock);
1106 
1107 	do {
1108 		res = readdir_search_pagecache(desc);
1109 
1110 		if (res == -EBADCOOKIE) {
1111 			res = 0;
1112 			/* This means either end of directory */
1113 			if (desc->dir_cookie && !desc->eof) {
1114 				/* Or that the server has 'lost' a cookie */
1115 				res = uncached_readdir(desc);
1116 				if (res == 0)
1117 					continue;
1118 				if (res == -EBADCOOKIE || res == -ENOTSYNC)
1119 					res = 0;
1120 			}
1121 			break;
1122 		}
1123 		if (res == -ETOOSMALL && desc->plus) {
1124 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
1125 			nfs_zap_caches(inode);
1126 			desc->page_index = 0;
1127 			desc->plus = false;
1128 			desc->eof = false;
1129 			continue;
1130 		}
1131 		if (res < 0)
1132 			break;
1133 
1134 		nfs_do_filldir(desc);
1135 		nfs_readdir_page_unlock_and_put_cached(desc);
1136 	} while (!desc->eof);
1137 
1138 	spin_lock(&file->f_lock);
1139 	dir_ctx->dir_cookie = desc->dir_cookie;
1140 	dir_ctx->dup_cookie = desc->dup_cookie;
1141 	dir_ctx->duped = desc->duped;
1142 	dir_ctx->attr_gencount = desc->attr_gencount;
1143 	memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf));
1144 	spin_unlock(&file->f_lock);
1145 
1146 	kfree(desc);
1147 
1148 out:
1149 	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
1150 	return res;
1151 }
1152 
1153 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
1154 {
1155 	struct nfs_open_dir_context *dir_ctx = filp->private_data;
1156 
1157 	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
1158 			filp, offset, whence);
1159 
1160 	switch (whence) {
1161 	default:
1162 		return -EINVAL;
1163 	case SEEK_SET:
1164 		if (offset < 0)
1165 			return -EINVAL;
1166 		spin_lock(&filp->f_lock);
1167 		break;
1168 	case SEEK_CUR:
1169 		if (offset == 0)
1170 			return filp->f_pos;
1171 		spin_lock(&filp->f_lock);
1172 		offset += filp->f_pos;
1173 		if (offset < 0) {
1174 			spin_unlock(&filp->f_lock);
1175 			return -EINVAL;
1176 		}
1177 	}
1178 	if (offset != filp->f_pos) {
1179 		filp->f_pos = offset;
1180 		if (nfs_readdir_use_cookie(filp))
1181 			dir_ctx->dir_cookie = offset;
1182 		else
1183 			dir_ctx->dir_cookie = 0;
1184 		if (offset == 0)
1185 			memset(dir_ctx->verf, 0, sizeof(dir_ctx->verf));
1186 		dir_ctx->duped = 0;
1187 	}
1188 	spin_unlock(&filp->f_lock);
1189 	return offset;
1190 }
1191 
1192 /*
1193  * All directory operations under NFS are synchronous, so fsync()
1194  * is a dummy operation.
1195  */
1196 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1197 			 int datasync)
1198 {
1199 	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1200 
1201 	nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC);
1202 	return 0;
1203 }
1204 
1205 /**
1206  * nfs_force_lookup_revalidate - Mark the directory as having changed
1207  * @dir: pointer to directory inode
1208  *
1209  * This forces the revalidation code in nfs_lookup_revalidate() to do a
1210  * full lookup on all child dentries of 'dir' whenever a change occurs
1211  * on the server that might have invalidated our dcache.
1212  *
1213  * Note that we reserve bit '0' as a tag to let us know when a dentry
1214  * was revalidated while holding a delegation on its inode.
1215  *
1216  * The caller should be holding dir->i_lock
1217  */
1218 void nfs_force_lookup_revalidate(struct inode *dir)
1219 {
1220 	NFS_I(dir)->cache_change_attribute += 2;
1221 }
1222 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1223 
1224 /**
1225  * nfs_verify_change_attribute - Detects NFS remote directory changes
1226  * @dir: pointer to parent directory inode
1227  * @verf: previously saved change attribute
1228  *
1229  * Return "false" if the verifiers doesn't match the change attribute.
1230  * This would usually indicate that the directory contents have changed on
1231  * the server, and that any dentries need revalidating.
1232  */
1233 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1234 {
1235 	return (verf & ~1UL) == nfs_save_change_attribute(dir);
1236 }
1237 
1238 static void nfs_set_verifier_delegated(unsigned long *verf)
1239 {
1240 	*verf |= 1UL;
1241 }
1242 
1243 #if IS_ENABLED(CONFIG_NFS_V4)
1244 static void nfs_unset_verifier_delegated(unsigned long *verf)
1245 {
1246 	*verf &= ~1UL;
1247 }
1248 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1249 
1250 static bool nfs_test_verifier_delegated(unsigned long verf)
1251 {
1252 	return verf & 1;
1253 }
1254 
1255 static bool nfs_verifier_is_delegated(struct dentry *dentry)
1256 {
1257 	return nfs_test_verifier_delegated(dentry->d_time);
1258 }
1259 
1260 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1261 {
1262 	struct inode *inode = d_inode(dentry);
1263 
1264 	if (!nfs_verifier_is_delegated(dentry) &&
1265 	    !nfs_verify_change_attribute(d_inode(dentry->d_parent), verf))
1266 		goto out;
1267 	if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
1268 		nfs_set_verifier_delegated(&verf);
1269 out:
1270 	dentry->d_time = verf;
1271 }
1272 
1273 /**
1274  * nfs_set_verifier - save a parent directory verifier in the dentry
1275  * @dentry: pointer to dentry
1276  * @verf: verifier to save
1277  *
1278  * Saves the parent directory verifier in @dentry. If the inode has
1279  * a delegation, we also tag the dentry as having been revalidated
1280  * while holding a delegation so that we know we don't have to
1281  * look it up again after a directory change.
1282  */
1283 void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1284 {
1285 
1286 	spin_lock(&dentry->d_lock);
1287 	nfs_set_verifier_locked(dentry, verf);
1288 	spin_unlock(&dentry->d_lock);
1289 }
1290 EXPORT_SYMBOL_GPL(nfs_set_verifier);
1291 
1292 #if IS_ENABLED(CONFIG_NFS_V4)
1293 /**
1294  * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1295  * @inode: pointer to inode
1296  *
1297  * Iterates through the dentries in the inode alias list and clears
1298  * the tag used to indicate that the dentry has been revalidated
1299  * while holding a delegation.
1300  * This function is intended for use when the delegation is being
1301  * returned or revoked.
1302  */
1303 void nfs_clear_verifier_delegated(struct inode *inode)
1304 {
1305 	struct dentry *alias;
1306 
1307 	if (!inode)
1308 		return;
1309 	spin_lock(&inode->i_lock);
1310 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1311 		spin_lock(&alias->d_lock);
1312 		nfs_unset_verifier_delegated(&alias->d_time);
1313 		spin_unlock(&alias->d_lock);
1314 	}
1315 	spin_unlock(&inode->i_lock);
1316 }
1317 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1318 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1319 
1320 /*
1321  * A check for whether or not the parent directory has changed.
1322  * In the case it has, we assume that the dentries are untrustworthy
1323  * and may need to be looked up again.
1324  * If rcu_walk prevents us from performing a full check, return 0.
1325  */
1326 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1327 			      int rcu_walk)
1328 {
1329 	if (IS_ROOT(dentry))
1330 		return 1;
1331 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1332 		return 0;
1333 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1334 		return 0;
1335 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1336 	if (nfs_mapping_need_revalidate_inode(dir)) {
1337 		if (rcu_walk)
1338 			return 0;
1339 		if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1340 			return 0;
1341 	}
1342 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1343 		return 0;
1344 	return 1;
1345 }
1346 
1347 /*
1348  * Use intent information to check whether or not we're going to do
1349  * an O_EXCL create using this path component.
1350  */
1351 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1352 {
1353 	if (NFS_PROTO(dir)->version == 2)
1354 		return 0;
1355 	return flags & LOOKUP_EXCL;
1356 }
1357 
1358 /*
1359  * Inode and filehandle revalidation for lookups.
1360  *
1361  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1362  * or if the intent information indicates that we're about to open this
1363  * particular file and the "nocto" mount flag is not set.
1364  *
1365  */
1366 static
1367 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1368 {
1369 	struct nfs_server *server = NFS_SERVER(inode);
1370 	int ret;
1371 
1372 	if (IS_AUTOMOUNT(inode))
1373 		return 0;
1374 
1375 	if (flags & LOOKUP_OPEN) {
1376 		switch (inode->i_mode & S_IFMT) {
1377 		case S_IFREG:
1378 			/* A NFSv4 OPEN will revalidate later */
1379 			if (server->caps & NFS_CAP_ATOMIC_OPEN)
1380 				goto out;
1381 			fallthrough;
1382 		case S_IFDIR:
1383 			if (server->flags & NFS_MOUNT_NOCTO)
1384 				break;
1385 			/* NFS close-to-open cache consistency validation */
1386 			goto out_force;
1387 		}
1388 	}
1389 
1390 	/* VFS wants an on-the-wire revalidation */
1391 	if (flags & LOOKUP_REVAL)
1392 		goto out_force;
1393 out:
1394 	return (inode->i_nlink == 0) ? -ESTALE : 0;
1395 out_force:
1396 	if (flags & LOOKUP_RCU)
1397 		return -ECHILD;
1398 	ret = __nfs_revalidate_inode(server, inode);
1399 	if (ret != 0)
1400 		return ret;
1401 	goto out;
1402 }
1403 
1404 /*
1405  * We judge how long we want to trust negative
1406  * dentries by looking at the parent inode mtime.
1407  *
1408  * If parent mtime has changed, we revalidate, else we wait for a
1409  * period corresponding to the parent's attribute cache timeout value.
1410  *
1411  * If LOOKUP_RCU prevents us from performing a full check, return 1
1412  * suggesting a reval is needed.
1413  *
1414  * Note that when creating a new file, or looking up a rename target,
1415  * then it shouldn't be necessary to revalidate a negative dentry.
1416  */
1417 static inline
1418 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1419 		       unsigned int flags)
1420 {
1421 	if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1422 		return 0;
1423 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1424 		return 1;
1425 	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1426 }
1427 
1428 static int
1429 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1430 			   struct inode *inode, int error)
1431 {
1432 	switch (error) {
1433 	case 1:
1434 		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1435 			__func__, dentry);
1436 		return 1;
1437 	case 0:
1438 		nfs_mark_for_revalidate(dir);
1439 		if (inode && S_ISDIR(inode->i_mode)) {
1440 			/* Purge readdir caches. */
1441 			nfs_zap_caches(inode);
1442 			/*
1443 			 * We can't d_drop the root of a disconnected tree:
1444 			 * its d_hash is on the s_anon list and d_drop() would hide
1445 			 * it from shrink_dcache_for_unmount(), leading to busy
1446 			 * inodes on unmount and further oopses.
1447 			 */
1448 			if (IS_ROOT(dentry))
1449 				return 1;
1450 		}
1451 		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1452 				__func__, dentry);
1453 		return 0;
1454 	}
1455 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1456 				__func__, dentry, error);
1457 	return error;
1458 }
1459 
1460 static int
1461 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1462 			       unsigned int flags)
1463 {
1464 	int ret = 1;
1465 	if (nfs_neg_need_reval(dir, dentry, flags)) {
1466 		if (flags & LOOKUP_RCU)
1467 			return -ECHILD;
1468 		ret = 0;
1469 	}
1470 	return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1471 }
1472 
1473 static int
1474 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1475 				struct inode *inode)
1476 {
1477 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1478 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1479 }
1480 
1481 static int
1482 nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry,
1483 			     struct inode *inode)
1484 {
1485 	struct nfs_fh *fhandle;
1486 	struct nfs_fattr *fattr;
1487 	struct nfs4_label *label;
1488 	unsigned long dir_verifier;
1489 	int ret;
1490 
1491 	ret = -ENOMEM;
1492 	fhandle = nfs_alloc_fhandle();
1493 	fattr = nfs_alloc_fattr();
1494 	label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL);
1495 	if (fhandle == NULL || fattr == NULL || IS_ERR(label))
1496 		goto out;
1497 
1498 	dir_verifier = nfs_save_change_attribute(dir);
1499 	ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1500 	if (ret < 0) {
1501 		switch (ret) {
1502 		case -ESTALE:
1503 		case -ENOENT:
1504 			ret = 0;
1505 			break;
1506 		case -ETIMEDOUT:
1507 			if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1508 				ret = 1;
1509 		}
1510 		goto out;
1511 	}
1512 	ret = 0;
1513 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1514 		goto out;
1515 	if (nfs_refresh_inode(inode, fattr) < 0)
1516 		goto out;
1517 
1518 	nfs_setsecurity(inode, fattr, label);
1519 	nfs_set_verifier(dentry, dir_verifier);
1520 
1521 	/* set a readdirplus hint that we had a cache miss */
1522 	nfs_force_use_readdirplus(dir);
1523 	ret = 1;
1524 out:
1525 	nfs_free_fattr(fattr);
1526 	nfs_free_fhandle(fhandle);
1527 	nfs4_label_free(label);
1528 	return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1529 }
1530 
1531 /*
1532  * This is called every time the dcache has a lookup hit,
1533  * and we should check whether we can really trust that
1534  * lookup.
1535  *
1536  * NOTE! The hit can be a negative hit too, don't assume
1537  * we have an inode!
1538  *
1539  * If the parent directory is seen to have changed, we throw out the
1540  * cached dentry and do a new lookup.
1541  */
1542 static int
1543 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1544 			 unsigned int flags)
1545 {
1546 	struct inode *inode;
1547 	int error;
1548 
1549 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1550 	inode = d_inode(dentry);
1551 
1552 	if (!inode)
1553 		return nfs_lookup_revalidate_negative(dir, dentry, flags);
1554 
1555 	if (is_bad_inode(inode)) {
1556 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1557 				__func__, dentry);
1558 		goto out_bad;
1559 	}
1560 
1561 	if (nfs_verifier_is_delegated(dentry))
1562 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1563 
1564 	/* Force a full look up iff the parent directory has changed */
1565 	if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1566 	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1567 		error = nfs_lookup_verify_inode(inode, flags);
1568 		if (error) {
1569 			if (error == -ESTALE)
1570 				nfs_zap_caches(dir);
1571 			goto out_bad;
1572 		}
1573 		nfs_advise_use_readdirplus(dir);
1574 		goto out_valid;
1575 	}
1576 
1577 	if (flags & LOOKUP_RCU)
1578 		return -ECHILD;
1579 
1580 	if (NFS_STALE(inode))
1581 		goto out_bad;
1582 
1583 	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1584 	error = nfs_lookup_revalidate_dentry(dir, dentry, inode);
1585 	trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1586 	return error;
1587 out_valid:
1588 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1589 out_bad:
1590 	if (flags & LOOKUP_RCU)
1591 		return -ECHILD;
1592 	return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1593 }
1594 
1595 static int
1596 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1597 			int (*reval)(struct inode *, struct dentry *, unsigned int))
1598 {
1599 	struct dentry *parent;
1600 	struct inode *dir;
1601 	int ret;
1602 
1603 	if (flags & LOOKUP_RCU) {
1604 		parent = READ_ONCE(dentry->d_parent);
1605 		dir = d_inode_rcu(parent);
1606 		if (!dir)
1607 			return -ECHILD;
1608 		ret = reval(dir, dentry, flags);
1609 		if (parent != READ_ONCE(dentry->d_parent))
1610 			return -ECHILD;
1611 	} else {
1612 		parent = dget_parent(dentry);
1613 		ret = reval(d_inode(parent), dentry, flags);
1614 		dput(parent);
1615 	}
1616 	return ret;
1617 }
1618 
1619 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1620 {
1621 	return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1622 }
1623 
1624 /*
1625  * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1626  * when we don't really care about the dentry name. This is called when a
1627  * pathwalk ends on a dentry that was not found via a normal lookup in the
1628  * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1629  *
1630  * In this situation, we just want to verify that the inode itself is OK
1631  * since the dentry might have changed on the server.
1632  */
1633 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1634 {
1635 	struct inode *inode = d_inode(dentry);
1636 	int error = 0;
1637 
1638 	/*
1639 	 * I believe we can only get a negative dentry here in the case of a
1640 	 * procfs-style symlink. Just assume it's correct for now, but we may
1641 	 * eventually need to do something more here.
1642 	 */
1643 	if (!inode) {
1644 		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1645 				__func__, dentry);
1646 		return 1;
1647 	}
1648 
1649 	if (is_bad_inode(inode)) {
1650 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1651 				__func__, dentry);
1652 		return 0;
1653 	}
1654 
1655 	error = nfs_lookup_verify_inode(inode, flags);
1656 	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1657 			__func__, inode->i_ino, error ? "invalid" : "valid");
1658 	return !error;
1659 }
1660 
1661 /*
1662  * This is called from dput() when d_count is going to 0.
1663  */
1664 static int nfs_dentry_delete(const struct dentry *dentry)
1665 {
1666 	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1667 		dentry, dentry->d_flags);
1668 
1669 	/* Unhash any dentry with a stale inode */
1670 	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1671 		return 1;
1672 
1673 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1674 		/* Unhash it, so that ->d_iput() would be called */
1675 		return 1;
1676 	}
1677 	if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1678 		/* Unhash it, so that ancestors of killed async unlink
1679 		 * files will be cleaned up during umount */
1680 		return 1;
1681 	}
1682 	return 0;
1683 
1684 }
1685 
1686 /* Ensure that we revalidate inode->i_nlink */
1687 static void nfs_drop_nlink(struct inode *inode)
1688 {
1689 	spin_lock(&inode->i_lock);
1690 	/* drop the inode if we're reasonably sure this is the last link */
1691 	if (inode->i_nlink > 0)
1692 		drop_nlink(inode);
1693 	NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1694 	NFS_I(inode)->cache_validity |= NFS_INO_INVALID_CHANGE
1695 		| NFS_INO_INVALID_CTIME
1696 		| NFS_INO_INVALID_OTHER
1697 		| NFS_INO_REVAL_FORCED;
1698 	spin_unlock(&inode->i_lock);
1699 }
1700 
1701 /*
1702  * Called when the dentry loses inode.
1703  * We use it to clean up silly-renamed files.
1704  */
1705 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1706 {
1707 	if (S_ISDIR(inode->i_mode))
1708 		/* drop any readdir cache as it could easily be old */
1709 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1710 
1711 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1712 		nfs_complete_unlink(dentry, inode);
1713 		nfs_drop_nlink(inode);
1714 	}
1715 	iput(inode);
1716 }
1717 
1718 static void nfs_d_release(struct dentry *dentry)
1719 {
1720 	/* free cached devname value, if it survived that far */
1721 	if (unlikely(dentry->d_fsdata)) {
1722 		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1723 			WARN_ON(1);
1724 		else
1725 			kfree(dentry->d_fsdata);
1726 	}
1727 }
1728 
1729 const struct dentry_operations nfs_dentry_operations = {
1730 	.d_revalidate	= nfs_lookup_revalidate,
1731 	.d_weak_revalidate	= nfs_weak_revalidate,
1732 	.d_delete	= nfs_dentry_delete,
1733 	.d_iput		= nfs_dentry_iput,
1734 	.d_automount	= nfs_d_automount,
1735 	.d_release	= nfs_d_release,
1736 };
1737 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1738 
1739 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1740 {
1741 	struct dentry *res;
1742 	struct inode *inode = NULL;
1743 	struct nfs_fh *fhandle = NULL;
1744 	struct nfs_fattr *fattr = NULL;
1745 	struct nfs4_label *label = NULL;
1746 	unsigned long dir_verifier;
1747 	int error;
1748 
1749 	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1750 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1751 
1752 	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1753 		return ERR_PTR(-ENAMETOOLONG);
1754 
1755 	/*
1756 	 * If we're doing an exclusive create, optimize away the lookup
1757 	 * but don't hash the dentry.
1758 	 */
1759 	if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1760 		return NULL;
1761 
1762 	res = ERR_PTR(-ENOMEM);
1763 	fhandle = nfs_alloc_fhandle();
1764 	fattr = nfs_alloc_fattr();
1765 	if (fhandle == NULL || fattr == NULL)
1766 		goto out;
1767 
1768 	label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1769 	if (IS_ERR(label))
1770 		goto out;
1771 
1772 	dir_verifier = nfs_save_change_attribute(dir);
1773 	trace_nfs_lookup_enter(dir, dentry, flags);
1774 	error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1775 	if (error == -ENOENT)
1776 		goto no_entry;
1777 	if (error < 0) {
1778 		res = ERR_PTR(error);
1779 		goto out_label;
1780 	}
1781 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1782 	res = ERR_CAST(inode);
1783 	if (IS_ERR(res))
1784 		goto out_label;
1785 
1786 	/* Notify readdir to use READDIRPLUS */
1787 	nfs_force_use_readdirplus(dir);
1788 
1789 no_entry:
1790 	res = d_splice_alias(inode, dentry);
1791 	if (res != NULL) {
1792 		if (IS_ERR(res))
1793 			goto out_label;
1794 		dentry = res;
1795 	}
1796 	nfs_set_verifier(dentry, dir_verifier);
1797 out_label:
1798 	trace_nfs_lookup_exit(dir, dentry, flags, error);
1799 	nfs4_label_free(label);
1800 out:
1801 	nfs_free_fattr(fattr);
1802 	nfs_free_fhandle(fhandle);
1803 	return res;
1804 }
1805 EXPORT_SYMBOL_GPL(nfs_lookup);
1806 
1807 #if IS_ENABLED(CONFIG_NFS_V4)
1808 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1809 
1810 const struct dentry_operations nfs4_dentry_operations = {
1811 	.d_revalidate	= nfs4_lookup_revalidate,
1812 	.d_weak_revalidate	= nfs_weak_revalidate,
1813 	.d_delete	= nfs_dentry_delete,
1814 	.d_iput		= nfs_dentry_iput,
1815 	.d_automount	= nfs_d_automount,
1816 	.d_release	= nfs_d_release,
1817 };
1818 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1819 
1820 static fmode_t flags_to_mode(int flags)
1821 {
1822 	fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1823 	if ((flags & O_ACCMODE) != O_WRONLY)
1824 		res |= FMODE_READ;
1825 	if ((flags & O_ACCMODE) != O_RDONLY)
1826 		res |= FMODE_WRITE;
1827 	return res;
1828 }
1829 
1830 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1831 {
1832 	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1833 }
1834 
1835 static int do_open(struct inode *inode, struct file *filp)
1836 {
1837 	nfs_fscache_open_file(inode, filp);
1838 	return 0;
1839 }
1840 
1841 static int nfs_finish_open(struct nfs_open_context *ctx,
1842 			   struct dentry *dentry,
1843 			   struct file *file, unsigned open_flags)
1844 {
1845 	int err;
1846 
1847 	err = finish_open(file, dentry, do_open);
1848 	if (err)
1849 		goto out;
1850 	if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1851 		nfs_file_set_open_context(file, ctx);
1852 	else
1853 		err = -EOPENSTALE;
1854 out:
1855 	return err;
1856 }
1857 
1858 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1859 		    struct file *file, unsigned open_flags,
1860 		    umode_t mode)
1861 {
1862 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1863 	struct nfs_open_context *ctx;
1864 	struct dentry *res;
1865 	struct iattr attr = { .ia_valid = ATTR_OPEN };
1866 	struct inode *inode;
1867 	unsigned int lookup_flags = 0;
1868 	bool switched = false;
1869 	int created = 0;
1870 	int err;
1871 
1872 	/* Expect a negative dentry */
1873 	BUG_ON(d_inode(dentry));
1874 
1875 	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1876 			dir->i_sb->s_id, dir->i_ino, dentry);
1877 
1878 	err = nfs_check_flags(open_flags);
1879 	if (err)
1880 		return err;
1881 
1882 	/* NFS only supports OPEN on regular files */
1883 	if ((open_flags & O_DIRECTORY)) {
1884 		if (!d_in_lookup(dentry)) {
1885 			/*
1886 			 * Hashed negative dentry with O_DIRECTORY: dentry was
1887 			 * revalidated and is fine, no need to perform lookup
1888 			 * again
1889 			 */
1890 			return -ENOENT;
1891 		}
1892 		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1893 		goto no_open;
1894 	}
1895 
1896 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1897 		return -ENAMETOOLONG;
1898 
1899 	if (open_flags & O_CREAT) {
1900 		struct nfs_server *server = NFS_SERVER(dir);
1901 
1902 		if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1903 			mode &= ~current_umask();
1904 
1905 		attr.ia_valid |= ATTR_MODE;
1906 		attr.ia_mode = mode;
1907 	}
1908 	if (open_flags & O_TRUNC) {
1909 		attr.ia_valid |= ATTR_SIZE;
1910 		attr.ia_size = 0;
1911 	}
1912 
1913 	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1914 		d_drop(dentry);
1915 		switched = true;
1916 		dentry = d_alloc_parallel(dentry->d_parent,
1917 					  &dentry->d_name, &wq);
1918 		if (IS_ERR(dentry))
1919 			return PTR_ERR(dentry);
1920 		if (unlikely(!d_in_lookup(dentry)))
1921 			return finish_no_open(file, dentry);
1922 	}
1923 
1924 	ctx = create_nfs_open_context(dentry, open_flags, file);
1925 	err = PTR_ERR(ctx);
1926 	if (IS_ERR(ctx))
1927 		goto out;
1928 
1929 	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1930 	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
1931 	if (created)
1932 		file->f_mode |= FMODE_CREATED;
1933 	if (IS_ERR(inode)) {
1934 		err = PTR_ERR(inode);
1935 		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1936 		put_nfs_open_context(ctx);
1937 		d_drop(dentry);
1938 		switch (err) {
1939 		case -ENOENT:
1940 			d_splice_alias(NULL, dentry);
1941 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1942 			break;
1943 		case -EISDIR:
1944 		case -ENOTDIR:
1945 			goto no_open;
1946 		case -ELOOP:
1947 			if (!(open_flags & O_NOFOLLOW))
1948 				goto no_open;
1949 			break;
1950 			/* case -EINVAL: */
1951 		default:
1952 			break;
1953 		}
1954 		goto out;
1955 	}
1956 
1957 	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
1958 	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1959 	put_nfs_open_context(ctx);
1960 out:
1961 	if (unlikely(switched)) {
1962 		d_lookup_done(dentry);
1963 		dput(dentry);
1964 	}
1965 	return err;
1966 
1967 no_open:
1968 	res = nfs_lookup(dir, dentry, lookup_flags);
1969 	if (switched) {
1970 		d_lookup_done(dentry);
1971 		if (!res)
1972 			res = dentry;
1973 		else
1974 			dput(dentry);
1975 	}
1976 	if (IS_ERR(res))
1977 		return PTR_ERR(res);
1978 	return finish_no_open(file, res);
1979 }
1980 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1981 
1982 static int
1983 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1984 			  unsigned int flags)
1985 {
1986 	struct inode *inode;
1987 
1988 	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1989 		goto full_reval;
1990 	if (d_mountpoint(dentry))
1991 		goto full_reval;
1992 
1993 	inode = d_inode(dentry);
1994 
1995 	/* We can't create new files in nfs_open_revalidate(), so we
1996 	 * optimize away revalidation of negative dentries.
1997 	 */
1998 	if (inode == NULL)
1999 		goto full_reval;
2000 
2001 	if (nfs_verifier_is_delegated(dentry))
2002 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
2003 
2004 	/* NFS only supports OPEN on regular files */
2005 	if (!S_ISREG(inode->i_mode))
2006 		goto full_reval;
2007 
2008 	/* We cannot do exclusive creation on a positive dentry */
2009 	if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
2010 		goto reval_dentry;
2011 
2012 	/* Check if the directory changed */
2013 	if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
2014 		goto reval_dentry;
2015 
2016 	/* Let f_op->open() actually open (and revalidate) the file */
2017 	return 1;
2018 reval_dentry:
2019 	if (flags & LOOKUP_RCU)
2020 		return -ECHILD;
2021 	return nfs_lookup_revalidate_dentry(dir, dentry, inode);
2022 
2023 full_reval:
2024 	return nfs_do_lookup_revalidate(dir, dentry, flags);
2025 }
2026 
2027 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
2028 {
2029 	return __nfs_lookup_revalidate(dentry, flags,
2030 			nfs4_do_lookup_revalidate);
2031 }
2032 
2033 #endif /* CONFIG_NFSV4 */
2034 
2035 struct dentry *
2036 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
2037 				struct nfs_fattr *fattr,
2038 				struct nfs4_label *label)
2039 {
2040 	struct dentry *parent = dget_parent(dentry);
2041 	struct inode *dir = d_inode(parent);
2042 	struct inode *inode;
2043 	struct dentry *d;
2044 	int error;
2045 
2046 	d_drop(dentry);
2047 
2048 	if (fhandle->size == 0) {
2049 		error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, NULL);
2050 		if (error)
2051 			goto out_error;
2052 	}
2053 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2054 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
2055 		struct nfs_server *server = NFS_SB(dentry->d_sb);
2056 		error = server->nfs_client->rpc_ops->getattr(server, fhandle,
2057 				fattr, NULL, NULL);
2058 		if (error < 0)
2059 			goto out_error;
2060 	}
2061 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
2062 	d = d_splice_alias(inode, dentry);
2063 out:
2064 	dput(parent);
2065 	return d;
2066 out_error:
2067 	nfs_mark_for_revalidate(dir);
2068 	d = ERR_PTR(error);
2069 	goto out;
2070 }
2071 EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
2072 
2073 /*
2074  * Code common to create, mkdir, and mknod.
2075  */
2076 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
2077 				struct nfs_fattr *fattr,
2078 				struct nfs4_label *label)
2079 {
2080 	struct dentry *d;
2081 
2082 	d = nfs_add_or_obtain(dentry, fhandle, fattr, label);
2083 	if (IS_ERR(d))
2084 		return PTR_ERR(d);
2085 
2086 	/* Callers don't care */
2087 	dput(d);
2088 	return 0;
2089 }
2090 EXPORT_SYMBOL_GPL(nfs_instantiate);
2091 
2092 /*
2093  * Following a failed create operation, we drop the dentry rather
2094  * than retain a negative dentry. This avoids a problem in the event
2095  * that the operation succeeded on the server, but an error in the
2096  * reply path made it appear to have failed.
2097  */
2098 int nfs_create(struct user_namespace *mnt_userns, struct inode *dir,
2099 	       struct dentry *dentry, umode_t mode, bool excl)
2100 {
2101 	struct iattr attr;
2102 	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
2103 	int error;
2104 
2105 	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
2106 			dir->i_sb->s_id, dir->i_ino, dentry);
2107 
2108 	attr.ia_mode = mode;
2109 	attr.ia_valid = ATTR_MODE;
2110 
2111 	trace_nfs_create_enter(dir, dentry, open_flags);
2112 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
2113 	trace_nfs_create_exit(dir, dentry, open_flags, error);
2114 	if (error != 0)
2115 		goto out_err;
2116 	return 0;
2117 out_err:
2118 	d_drop(dentry);
2119 	return error;
2120 }
2121 EXPORT_SYMBOL_GPL(nfs_create);
2122 
2123 /*
2124  * See comments for nfs_proc_create regarding failed operations.
2125  */
2126 int
2127 nfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2128 	  struct dentry *dentry, umode_t mode, dev_t rdev)
2129 {
2130 	struct iattr attr;
2131 	int status;
2132 
2133 	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
2134 			dir->i_sb->s_id, dir->i_ino, dentry);
2135 
2136 	attr.ia_mode = mode;
2137 	attr.ia_valid = ATTR_MODE;
2138 
2139 	trace_nfs_mknod_enter(dir, dentry);
2140 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
2141 	trace_nfs_mknod_exit(dir, dentry, status);
2142 	if (status != 0)
2143 		goto out_err;
2144 	return 0;
2145 out_err:
2146 	d_drop(dentry);
2147 	return status;
2148 }
2149 EXPORT_SYMBOL_GPL(nfs_mknod);
2150 
2151 /*
2152  * See comments for nfs_proc_create regarding failed operations.
2153  */
2154 int nfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2155 	      struct dentry *dentry, umode_t mode)
2156 {
2157 	struct iattr attr;
2158 	int error;
2159 
2160 	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
2161 			dir->i_sb->s_id, dir->i_ino, dentry);
2162 
2163 	attr.ia_valid = ATTR_MODE;
2164 	attr.ia_mode = mode | S_IFDIR;
2165 
2166 	trace_nfs_mkdir_enter(dir, dentry);
2167 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
2168 	trace_nfs_mkdir_exit(dir, dentry, error);
2169 	if (error != 0)
2170 		goto out_err;
2171 	return 0;
2172 out_err:
2173 	d_drop(dentry);
2174 	return error;
2175 }
2176 EXPORT_SYMBOL_GPL(nfs_mkdir);
2177 
2178 static void nfs_dentry_handle_enoent(struct dentry *dentry)
2179 {
2180 	if (simple_positive(dentry))
2181 		d_delete(dentry);
2182 }
2183 
2184 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
2185 {
2186 	int error;
2187 
2188 	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
2189 			dir->i_sb->s_id, dir->i_ino, dentry);
2190 
2191 	trace_nfs_rmdir_enter(dir, dentry);
2192 	if (d_really_is_positive(dentry)) {
2193 		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2194 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2195 		/* Ensure the VFS deletes this inode */
2196 		switch (error) {
2197 		case 0:
2198 			clear_nlink(d_inode(dentry));
2199 			break;
2200 		case -ENOENT:
2201 			nfs_dentry_handle_enoent(dentry);
2202 		}
2203 		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2204 	} else
2205 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2206 	trace_nfs_rmdir_exit(dir, dentry, error);
2207 
2208 	return error;
2209 }
2210 EXPORT_SYMBOL_GPL(nfs_rmdir);
2211 
2212 /*
2213  * Remove a file after making sure there are no pending writes,
2214  * and after checking that the file has only one user.
2215  *
2216  * We invalidate the attribute cache and free the inode prior to the operation
2217  * to avoid possible races if the server reuses the inode.
2218  */
2219 static int nfs_safe_remove(struct dentry *dentry)
2220 {
2221 	struct inode *dir = d_inode(dentry->d_parent);
2222 	struct inode *inode = d_inode(dentry);
2223 	int error = -EBUSY;
2224 
2225 	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2226 
2227 	/* If the dentry was sillyrenamed, we simply call d_delete() */
2228 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2229 		error = 0;
2230 		goto out;
2231 	}
2232 
2233 	trace_nfs_remove_enter(dir, dentry);
2234 	if (inode != NULL) {
2235 		error = NFS_PROTO(dir)->remove(dir, dentry);
2236 		if (error == 0)
2237 			nfs_drop_nlink(inode);
2238 	} else
2239 		error = NFS_PROTO(dir)->remove(dir, dentry);
2240 	if (error == -ENOENT)
2241 		nfs_dentry_handle_enoent(dentry);
2242 	trace_nfs_remove_exit(dir, dentry, error);
2243 out:
2244 	return error;
2245 }
2246 
2247 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
2248  *  belongs to an active ".nfs..." file and we return -EBUSY.
2249  *
2250  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
2251  */
2252 int nfs_unlink(struct inode *dir, struct dentry *dentry)
2253 {
2254 	int error;
2255 	int need_rehash = 0;
2256 
2257 	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2258 		dir->i_ino, dentry);
2259 
2260 	trace_nfs_unlink_enter(dir, dentry);
2261 	spin_lock(&dentry->d_lock);
2262 	if (d_count(dentry) > 1) {
2263 		spin_unlock(&dentry->d_lock);
2264 		/* Start asynchronous writeout of the inode */
2265 		write_inode_now(d_inode(dentry), 0);
2266 		error = nfs_sillyrename(dir, dentry);
2267 		goto out;
2268 	}
2269 	if (!d_unhashed(dentry)) {
2270 		__d_drop(dentry);
2271 		need_rehash = 1;
2272 	}
2273 	spin_unlock(&dentry->d_lock);
2274 	error = nfs_safe_remove(dentry);
2275 	if (!error || error == -ENOENT) {
2276 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2277 	} else if (need_rehash)
2278 		d_rehash(dentry);
2279 out:
2280 	trace_nfs_unlink_exit(dir, dentry, error);
2281 	return error;
2282 }
2283 EXPORT_SYMBOL_GPL(nfs_unlink);
2284 
2285 /*
2286  * To create a symbolic link, most file systems instantiate a new inode,
2287  * add a page to it containing the path, then write it out to the disk
2288  * using prepare_write/commit_write.
2289  *
2290  * Unfortunately the NFS client can't create the in-core inode first
2291  * because it needs a file handle to create an in-core inode (see
2292  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
2293  * symlink request has completed on the server.
2294  *
2295  * So instead we allocate a raw page, copy the symname into it, then do
2296  * the SYMLINK request with the page as the buffer.  If it succeeds, we
2297  * now have a new file handle and can instantiate an in-core NFS inode
2298  * and move the raw page into its mapping.
2299  */
2300 int nfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
2301 		struct dentry *dentry, const char *symname)
2302 {
2303 	struct page *page;
2304 	char *kaddr;
2305 	struct iattr attr;
2306 	unsigned int pathlen = strlen(symname);
2307 	int error;
2308 
2309 	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2310 		dir->i_ino, dentry, symname);
2311 
2312 	if (pathlen > PAGE_SIZE)
2313 		return -ENAMETOOLONG;
2314 
2315 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
2316 	attr.ia_valid = ATTR_MODE;
2317 
2318 	page = alloc_page(GFP_USER);
2319 	if (!page)
2320 		return -ENOMEM;
2321 
2322 	kaddr = page_address(page);
2323 	memcpy(kaddr, symname, pathlen);
2324 	if (pathlen < PAGE_SIZE)
2325 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2326 
2327 	trace_nfs_symlink_enter(dir, dentry);
2328 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
2329 	trace_nfs_symlink_exit(dir, dentry, error);
2330 	if (error != 0) {
2331 		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2332 			dir->i_sb->s_id, dir->i_ino,
2333 			dentry, symname, error);
2334 		d_drop(dentry);
2335 		__free_page(page);
2336 		return error;
2337 	}
2338 
2339 	/*
2340 	 * No big deal if we can't add this page to the page cache here.
2341 	 * READLINK will get the missing page from the server if needed.
2342 	 */
2343 	if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2344 							GFP_KERNEL)) {
2345 		SetPageUptodate(page);
2346 		unlock_page(page);
2347 		/*
2348 		 * add_to_page_cache_lru() grabs an extra page refcount.
2349 		 * Drop it here to avoid leaking this page later.
2350 		 */
2351 		put_page(page);
2352 	} else
2353 		__free_page(page);
2354 
2355 	return 0;
2356 }
2357 EXPORT_SYMBOL_GPL(nfs_symlink);
2358 
2359 int
2360 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2361 {
2362 	struct inode *inode = d_inode(old_dentry);
2363 	int error;
2364 
2365 	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2366 		old_dentry, dentry);
2367 
2368 	trace_nfs_link_enter(inode, dir, dentry);
2369 	d_drop(dentry);
2370 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2371 	if (error == 0) {
2372 		ihold(inode);
2373 		d_add(dentry, inode);
2374 	}
2375 	trace_nfs_link_exit(inode, dir, dentry, error);
2376 	return error;
2377 }
2378 EXPORT_SYMBOL_GPL(nfs_link);
2379 
2380 /*
2381  * RENAME
2382  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2383  * different file handle for the same inode after a rename (e.g. when
2384  * moving to a different directory). A fail-safe method to do so would
2385  * be to look up old_dir/old_name, create a link to new_dir/new_name and
2386  * rename the old file using the sillyrename stuff. This way, the original
2387  * file in old_dir will go away when the last process iput()s the inode.
2388  *
2389  * FIXED.
2390  *
2391  * It actually works quite well. One needs to have the possibility for
2392  * at least one ".nfs..." file in each directory the file ever gets
2393  * moved or linked to which happens automagically with the new
2394  * implementation that only depends on the dcache stuff instead of
2395  * using the inode layer
2396  *
2397  * Unfortunately, things are a little more complicated than indicated
2398  * above. For a cross-directory move, we want to make sure we can get
2399  * rid of the old inode after the operation.  This means there must be
2400  * no pending writes (if it's a file), and the use count must be 1.
2401  * If these conditions are met, we can drop the dentries before doing
2402  * the rename.
2403  */
2404 int nfs_rename(struct user_namespace *mnt_userns, struct inode *old_dir,
2405 	       struct dentry *old_dentry, struct inode *new_dir,
2406 	       struct dentry *new_dentry, unsigned int flags)
2407 {
2408 	struct inode *old_inode = d_inode(old_dentry);
2409 	struct inode *new_inode = d_inode(new_dentry);
2410 	struct dentry *dentry = NULL, *rehash = NULL;
2411 	struct rpc_task *task;
2412 	int error = -EBUSY;
2413 
2414 	if (flags)
2415 		return -EINVAL;
2416 
2417 	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2418 		 old_dentry, new_dentry,
2419 		 d_count(new_dentry));
2420 
2421 	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2422 	/*
2423 	 * For non-directories, check whether the target is busy and if so,
2424 	 * make a copy of the dentry and then do a silly-rename. If the
2425 	 * silly-rename succeeds, the copied dentry is hashed and becomes
2426 	 * the new target.
2427 	 */
2428 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2429 		/*
2430 		 * To prevent any new references to the target during the
2431 		 * rename, we unhash the dentry in advance.
2432 		 */
2433 		if (!d_unhashed(new_dentry)) {
2434 			d_drop(new_dentry);
2435 			rehash = new_dentry;
2436 		}
2437 
2438 		if (d_count(new_dentry) > 2) {
2439 			int err;
2440 
2441 			/* copy the target dentry's name */
2442 			dentry = d_alloc(new_dentry->d_parent,
2443 					 &new_dentry->d_name);
2444 			if (!dentry)
2445 				goto out;
2446 
2447 			/* silly-rename the existing target ... */
2448 			err = nfs_sillyrename(new_dir, new_dentry);
2449 			if (err)
2450 				goto out;
2451 
2452 			new_dentry = dentry;
2453 			rehash = NULL;
2454 			new_inode = NULL;
2455 		}
2456 	}
2457 
2458 	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2459 	if (IS_ERR(task)) {
2460 		error = PTR_ERR(task);
2461 		goto out;
2462 	}
2463 
2464 	error = rpc_wait_for_completion_task(task);
2465 	if (error != 0) {
2466 		((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2467 		/* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2468 		smp_wmb();
2469 	} else
2470 		error = task->tk_status;
2471 	rpc_put_task(task);
2472 	/* Ensure the inode attributes are revalidated */
2473 	if (error == 0) {
2474 		spin_lock(&old_inode->i_lock);
2475 		NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2476 		NFS_I(old_inode)->cache_validity |= NFS_INO_INVALID_CHANGE
2477 			| NFS_INO_INVALID_CTIME
2478 			| NFS_INO_REVAL_FORCED;
2479 		spin_unlock(&old_inode->i_lock);
2480 	}
2481 out:
2482 	if (rehash)
2483 		d_rehash(rehash);
2484 	trace_nfs_rename_exit(old_dir, old_dentry,
2485 			new_dir, new_dentry, error);
2486 	if (!error) {
2487 		if (new_inode != NULL)
2488 			nfs_drop_nlink(new_inode);
2489 		/*
2490 		 * The d_move() should be here instead of in an async RPC completion
2491 		 * handler because we need the proper locks to move the dentry.  If
2492 		 * we're interrupted by a signal, the async RPC completion handler
2493 		 * should mark the directories for revalidation.
2494 		 */
2495 		d_move(old_dentry, new_dentry);
2496 		nfs_set_verifier(old_dentry,
2497 					nfs_save_change_attribute(new_dir));
2498 	} else if (error == -ENOENT)
2499 		nfs_dentry_handle_enoent(old_dentry);
2500 
2501 	/* new dentry created? */
2502 	if (dentry)
2503 		dput(dentry);
2504 	return error;
2505 }
2506 EXPORT_SYMBOL_GPL(nfs_rename);
2507 
2508 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2509 static LIST_HEAD(nfs_access_lru_list);
2510 static atomic_long_t nfs_access_nr_entries;
2511 
2512 static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2513 module_param(nfs_access_max_cachesize, ulong, 0644);
2514 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2515 
2516 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2517 {
2518 	put_cred(entry->cred);
2519 	kfree_rcu(entry, rcu_head);
2520 	smp_mb__before_atomic();
2521 	atomic_long_dec(&nfs_access_nr_entries);
2522 	smp_mb__after_atomic();
2523 }
2524 
2525 static void nfs_access_free_list(struct list_head *head)
2526 {
2527 	struct nfs_access_entry *cache;
2528 
2529 	while (!list_empty(head)) {
2530 		cache = list_entry(head->next, struct nfs_access_entry, lru);
2531 		list_del(&cache->lru);
2532 		nfs_access_free_entry(cache);
2533 	}
2534 }
2535 
2536 static unsigned long
2537 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2538 {
2539 	LIST_HEAD(head);
2540 	struct nfs_inode *nfsi, *next;
2541 	struct nfs_access_entry *cache;
2542 	long freed = 0;
2543 
2544 	spin_lock(&nfs_access_lru_lock);
2545 	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2546 		struct inode *inode;
2547 
2548 		if (nr_to_scan-- == 0)
2549 			break;
2550 		inode = &nfsi->vfs_inode;
2551 		spin_lock(&inode->i_lock);
2552 		if (list_empty(&nfsi->access_cache_entry_lru))
2553 			goto remove_lru_entry;
2554 		cache = list_entry(nfsi->access_cache_entry_lru.next,
2555 				struct nfs_access_entry, lru);
2556 		list_move(&cache->lru, &head);
2557 		rb_erase(&cache->rb_node, &nfsi->access_cache);
2558 		freed++;
2559 		if (!list_empty(&nfsi->access_cache_entry_lru))
2560 			list_move_tail(&nfsi->access_cache_inode_lru,
2561 					&nfs_access_lru_list);
2562 		else {
2563 remove_lru_entry:
2564 			list_del_init(&nfsi->access_cache_inode_lru);
2565 			smp_mb__before_atomic();
2566 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2567 			smp_mb__after_atomic();
2568 		}
2569 		spin_unlock(&inode->i_lock);
2570 	}
2571 	spin_unlock(&nfs_access_lru_lock);
2572 	nfs_access_free_list(&head);
2573 	return freed;
2574 }
2575 
2576 unsigned long
2577 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2578 {
2579 	int nr_to_scan = sc->nr_to_scan;
2580 	gfp_t gfp_mask = sc->gfp_mask;
2581 
2582 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2583 		return SHRINK_STOP;
2584 	return nfs_do_access_cache_scan(nr_to_scan);
2585 }
2586 
2587 
2588 unsigned long
2589 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2590 {
2591 	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2592 }
2593 
2594 static void
2595 nfs_access_cache_enforce_limit(void)
2596 {
2597 	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2598 	unsigned long diff;
2599 	unsigned int nr_to_scan;
2600 
2601 	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2602 		return;
2603 	nr_to_scan = 100;
2604 	diff = nr_entries - nfs_access_max_cachesize;
2605 	if (diff < nr_to_scan)
2606 		nr_to_scan = diff;
2607 	nfs_do_access_cache_scan(nr_to_scan);
2608 }
2609 
2610 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2611 {
2612 	struct rb_root *root_node = &nfsi->access_cache;
2613 	struct rb_node *n;
2614 	struct nfs_access_entry *entry;
2615 
2616 	/* Unhook entries from the cache */
2617 	while ((n = rb_first(root_node)) != NULL) {
2618 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2619 		rb_erase(n, root_node);
2620 		list_move(&entry->lru, head);
2621 	}
2622 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2623 }
2624 
2625 void nfs_access_zap_cache(struct inode *inode)
2626 {
2627 	LIST_HEAD(head);
2628 
2629 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2630 		return;
2631 	/* Remove from global LRU init */
2632 	spin_lock(&nfs_access_lru_lock);
2633 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2634 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2635 
2636 	spin_lock(&inode->i_lock);
2637 	__nfs_access_zap_cache(NFS_I(inode), &head);
2638 	spin_unlock(&inode->i_lock);
2639 	spin_unlock(&nfs_access_lru_lock);
2640 	nfs_access_free_list(&head);
2641 }
2642 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2643 
2644 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2645 {
2646 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2647 
2648 	while (n != NULL) {
2649 		struct nfs_access_entry *entry =
2650 			rb_entry(n, struct nfs_access_entry, rb_node);
2651 		int cmp = cred_fscmp(cred, entry->cred);
2652 
2653 		if (cmp < 0)
2654 			n = n->rb_left;
2655 		else if (cmp > 0)
2656 			n = n->rb_right;
2657 		else
2658 			return entry;
2659 	}
2660 	return NULL;
2661 }
2662 
2663 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res, bool may_block)
2664 {
2665 	struct nfs_inode *nfsi = NFS_I(inode);
2666 	struct nfs_access_entry *cache;
2667 	bool retry = true;
2668 	int err;
2669 
2670 	spin_lock(&inode->i_lock);
2671 	for(;;) {
2672 		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2673 			goto out_zap;
2674 		cache = nfs_access_search_rbtree(inode, cred);
2675 		err = -ENOENT;
2676 		if (cache == NULL)
2677 			goto out;
2678 		/* Found an entry, is our attribute cache valid? */
2679 		if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2680 			break;
2681 		if (!retry)
2682 			break;
2683 		err = -ECHILD;
2684 		if (!may_block)
2685 			goto out;
2686 		spin_unlock(&inode->i_lock);
2687 		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2688 		if (err)
2689 			return err;
2690 		spin_lock(&inode->i_lock);
2691 		retry = false;
2692 	}
2693 	res->cred = cache->cred;
2694 	res->mask = cache->mask;
2695 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2696 	err = 0;
2697 out:
2698 	spin_unlock(&inode->i_lock);
2699 	return err;
2700 out_zap:
2701 	spin_unlock(&inode->i_lock);
2702 	nfs_access_zap_cache(inode);
2703 	return -ENOENT;
2704 }
2705 
2706 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res)
2707 {
2708 	/* Only check the most recently returned cache entry,
2709 	 * but do it without locking.
2710 	 */
2711 	struct nfs_inode *nfsi = NFS_I(inode);
2712 	struct nfs_access_entry *cache;
2713 	int err = -ECHILD;
2714 	struct list_head *lh;
2715 
2716 	rcu_read_lock();
2717 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2718 		goto out;
2719 	lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
2720 	cache = list_entry(lh, struct nfs_access_entry, lru);
2721 	if (lh == &nfsi->access_cache_entry_lru ||
2722 	    cred_fscmp(cred, cache->cred) != 0)
2723 		cache = NULL;
2724 	if (cache == NULL)
2725 		goto out;
2726 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2727 		goto out;
2728 	res->cred = cache->cred;
2729 	res->mask = cache->mask;
2730 	err = 0;
2731 out:
2732 	rcu_read_unlock();
2733 	return err;
2734 }
2735 
2736 int nfs_access_get_cached(struct inode *inode, const struct cred *cred, struct
2737 nfs_access_entry *res, bool may_block)
2738 {
2739 	int status;
2740 
2741 	status = nfs_access_get_cached_rcu(inode, cred, res);
2742 	if (status != 0)
2743 		status = nfs_access_get_cached_locked(inode, cred, res,
2744 		    may_block);
2745 
2746 	return status;
2747 }
2748 EXPORT_SYMBOL_GPL(nfs_access_get_cached);
2749 
2750 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2751 {
2752 	struct nfs_inode *nfsi = NFS_I(inode);
2753 	struct rb_root *root_node = &nfsi->access_cache;
2754 	struct rb_node **p = &root_node->rb_node;
2755 	struct rb_node *parent = NULL;
2756 	struct nfs_access_entry *entry;
2757 	int cmp;
2758 
2759 	spin_lock(&inode->i_lock);
2760 	while (*p != NULL) {
2761 		parent = *p;
2762 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2763 		cmp = cred_fscmp(set->cred, entry->cred);
2764 
2765 		if (cmp < 0)
2766 			p = &parent->rb_left;
2767 		else if (cmp > 0)
2768 			p = &parent->rb_right;
2769 		else
2770 			goto found;
2771 	}
2772 	rb_link_node(&set->rb_node, parent, p);
2773 	rb_insert_color(&set->rb_node, root_node);
2774 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2775 	spin_unlock(&inode->i_lock);
2776 	return;
2777 found:
2778 	rb_replace_node(parent, &set->rb_node, root_node);
2779 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2780 	list_del(&entry->lru);
2781 	spin_unlock(&inode->i_lock);
2782 	nfs_access_free_entry(entry);
2783 }
2784 
2785 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2786 {
2787 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2788 	if (cache == NULL)
2789 		return;
2790 	RB_CLEAR_NODE(&cache->rb_node);
2791 	cache->cred = get_cred(set->cred);
2792 	cache->mask = set->mask;
2793 
2794 	/* The above field assignments must be visible
2795 	 * before this item appears on the lru.  We cannot easily
2796 	 * use rcu_assign_pointer, so just force the memory barrier.
2797 	 */
2798 	smp_wmb();
2799 	nfs_access_add_rbtree(inode, cache);
2800 
2801 	/* Update accounting */
2802 	smp_mb__before_atomic();
2803 	atomic_long_inc(&nfs_access_nr_entries);
2804 	smp_mb__after_atomic();
2805 
2806 	/* Add inode to global LRU list */
2807 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2808 		spin_lock(&nfs_access_lru_lock);
2809 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2810 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2811 					&nfs_access_lru_list);
2812 		spin_unlock(&nfs_access_lru_lock);
2813 	}
2814 	nfs_access_cache_enforce_limit();
2815 }
2816 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2817 
2818 #define NFS_MAY_READ (NFS_ACCESS_READ)
2819 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2820 		NFS_ACCESS_EXTEND | \
2821 		NFS_ACCESS_DELETE)
2822 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2823 		NFS_ACCESS_EXTEND)
2824 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2825 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2826 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2827 static int
2828 nfs_access_calc_mask(u32 access_result, umode_t umode)
2829 {
2830 	int mask = 0;
2831 
2832 	if (access_result & NFS_MAY_READ)
2833 		mask |= MAY_READ;
2834 	if (S_ISDIR(umode)) {
2835 		if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2836 			mask |= MAY_WRITE;
2837 		if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2838 			mask |= MAY_EXEC;
2839 	} else if (S_ISREG(umode)) {
2840 		if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2841 			mask |= MAY_WRITE;
2842 		if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2843 			mask |= MAY_EXEC;
2844 	} else if (access_result & NFS_MAY_WRITE)
2845 			mask |= MAY_WRITE;
2846 	return mask;
2847 }
2848 
2849 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2850 {
2851 	entry->mask = access_result;
2852 }
2853 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2854 
2855 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
2856 {
2857 	struct nfs_access_entry cache;
2858 	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2859 	int cache_mask = -1;
2860 	int status;
2861 
2862 	trace_nfs_access_enter(inode);
2863 
2864 	status = nfs_access_get_cached(inode, cred, &cache, may_block);
2865 	if (status == 0)
2866 		goto out_cached;
2867 
2868 	status = -ECHILD;
2869 	if (!may_block)
2870 		goto out;
2871 
2872 	/*
2873 	 * Determine which access bits we want to ask for...
2874 	 */
2875 	cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND;
2876 	if (nfs_server_capable(inode, NFS_CAP_XATTR)) {
2877 		cache.mask |= NFS_ACCESS_XAREAD | NFS_ACCESS_XAWRITE |
2878 		    NFS_ACCESS_XALIST;
2879 	}
2880 	if (S_ISDIR(inode->i_mode))
2881 		cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
2882 	else
2883 		cache.mask |= NFS_ACCESS_EXECUTE;
2884 	cache.cred = cred;
2885 	status = NFS_PROTO(inode)->access(inode, &cache);
2886 	if (status != 0) {
2887 		if (status == -ESTALE) {
2888 			if (!S_ISDIR(inode->i_mode))
2889 				nfs_set_inode_stale(inode);
2890 			else
2891 				nfs_zap_caches(inode);
2892 		}
2893 		goto out;
2894 	}
2895 	nfs_access_add_cache(inode, &cache);
2896 out_cached:
2897 	cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
2898 	if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2899 		status = -EACCES;
2900 out:
2901 	trace_nfs_access_exit(inode, mask, cache_mask, status);
2902 	return status;
2903 }
2904 
2905 static int nfs_open_permission_mask(int openflags)
2906 {
2907 	int mask = 0;
2908 
2909 	if (openflags & __FMODE_EXEC) {
2910 		/* ONLY check exec rights */
2911 		mask = MAY_EXEC;
2912 	} else {
2913 		if ((openflags & O_ACCMODE) != O_WRONLY)
2914 			mask |= MAY_READ;
2915 		if ((openflags & O_ACCMODE) != O_RDONLY)
2916 			mask |= MAY_WRITE;
2917 	}
2918 
2919 	return mask;
2920 }
2921 
2922 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
2923 {
2924 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2925 }
2926 EXPORT_SYMBOL_GPL(nfs_may_open);
2927 
2928 static int nfs_execute_ok(struct inode *inode, int mask)
2929 {
2930 	struct nfs_server *server = NFS_SERVER(inode);
2931 	int ret = 0;
2932 
2933 	if (S_ISDIR(inode->i_mode))
2934 		return 0;
2935 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_OTHER)) {
2936 		if (mask & MAY_NOT_BLOCK)
2937 			return -ECHILD;
2938 		ret = __nfs_revalidate_inode(server, inode);
2939 	}
2940 	if (ret == 0 && !execute_ok(inode))
2941 		ret = -EACCES;
2942 	return ret;
2943 }
2944 
2945 int nfs_permission(struct user_namespace *mnt_userns,
2946 		   struct inode *inode,
2947 		   int mask)
2948 {
2949 	const struct cred *cred = current_cred();
2950 	int res = 0;
2951 
2952 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2953 
2954 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2955 		goto out;
2956 	/* Is this sys_access() ? */
2957 	if (mask & (MAY_ACCESS | MAY_CHDIR))
2958 		goto force_lookup;
2959 
2960 	switch (inode->i_mode & S_IFMT) {
2961 		case S_IFLNK:
2962 			goto out;
2963 		case S_IFREG:
2964 			if ((mask & MAY_OPEN) &&
2965 			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2966 				return 0;
2967 			break;
2968 		case S_IFDIR:
2969 			/*
2970 			 * Optimize away all write operations, since the server
2971 			 * will check permissions when we perform the op.
2972 			 */
2973 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2974 				goto out;
2975 	}
2976 
2977 force_lookup:
2978 	if (!NFS_PROTO(inode)->access)
2979 		goto out_notsup;
2980 
2981 	res = nfs_do_access(inode, cred, mask);
2982 out:
2983 	if (!res && (mask & MAY_EXEC))
2984 		res = nfs_execute_ok(inode, mask);
2985 
2986 	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2987 		inode->i_sb->s_id, inode->i_ino, mask, res);
2988 	return res;
2989 out_notsup:
2990 	if (mask & MAY_NOT_BLOCK)
2991 		return -ECHILD;
2992 
2993 	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2994 	if (res == 0)
2995 		res = generic_permission(&init_user_ns, inode, mask);
2996 	goto out;
2997 }
2998 EXPORT_SYMBOL_GPL(nfs_permission);
2999 
3000 /*
3001  * Local variables:
3002  *  version-control: t
3003  *  kept-new-versions: 5
3004  * End:
3005  */
3006