xref: /openbmc/linux/fs/nfs/dir.c (revision 5104d265)
1 /*
2  *  linux/fs/nfs/dir.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  nfs directory handling functions
7  *
8  * 10 Apr 1996	Added silly rename for unlink	--okir
9  * 28 Sep 1996	Improved directory cache --okir
10  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
11  *              Re-implemented silly rename for unlink, newly implemented
12  *              silly rename for nfs_rename() following the suggestions
13  *              of Olaf Kirch (okir) found in this file.
14  *              Following Linus comments on my original hack, this version
15  *              depends only on the dcache stuff and doesn't touch the inode
16  *              layer (iput() and friends).
17  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
18  */
19 
20 #include <linux/module.h>
21 #include <linux/time.h>
22 #include <linux/errno.h>
23 #include <linux/stat.h>
24 #include <linux/fcntl.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/mm.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/nfs_fs.h>
31 #include <linux/nfs_mount.h>
32 #include <linux/pagemap.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/swap.h>
37 #include <linux/sched.h>
38 #include <linux/kmemleak.h>
39 #include <linux/xattr.h>
40 
41 #include "delegation.h"
42 #include "iostat.h"
43 #include "internal.h"
44 #include "fscache.h"
45 
46 /* #define NFS_DEBUG_VERBOSE 1 */
47 
48 static int nfs_opendir(struct inode *, struct file *);
49 static int nfs_closedir(struct inode *, struct file *);
50 static int nfs_readdir(struct file *, struct dir_context *);
51 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
52 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
53 static void nfs_readdir_clear_array(struct page*);
54 
55 const struct file_operations nfs_dir_operations = {
56 	.llseek		= nfs_llseek_dir,
57 	.read		= generic_read_dir,
58 	.iterate	= nfs_readdir,
59 	.open		= nfs_opendir,
60 	.release	= nfs_closedir,
61 	.fsync		= nfs_fsync_dir,
62 };
63 
64 const struct address_space_operations nfs_dir_aops = {
65 	.freepage = nfs_readdir_clear_array,
66 };
67 
68 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
69 {
70 	struct nfs_open_dir_context *ctx;
71 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
72 	if (ctx != NULL) {
73 		ctx->duped = 0;
74 		ctx->attr_gencount = NFS_I(dir)->attr_gencount;
75 		ctx->dir_cookie = 0;
76 		ctx->dup_cookie = 0;
77 		ctx->cred = get_rpccred(cred);
78 		return ctx;
79 	}
80 	return  ERR_PTR(-ENOMEM);
81 }
82 
83 static void put_nfs_open_dir_context(struct nfs_open_dir_context *ctx)
84 {
85 	put_rpccred(ctx->cred);
86 	kfree(ctx);
87 }
88 
89 /*
90  * Open file
91  */
92 static int
93 nfs_opendir(struct inode *inode, struct file *filp)
94 {
95 	int res = 0;
96 	struct nfs_open_dir_context *ctx;
97 	struct rpc_cred *cred;
98 
99 	dfprintk(FILE, "NFS: open dir(%s/%s)\n",
100 			filp->f_path.dentry->d_parent->d_name.name,
101 			filp->f_path.dentry->d_name.name);
102 
103 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
104 
105 	cred = rpc_lookup_cred();
106 	if (IS_ERR(cred))
107 		return PTR_ERR(cred);
108 	ctx = alloc_nfs_open_dir_context(inode, cred);
109 	if (IS_ERR(ctx)) {
110 		res = PTR_ERR(ctx);
111 		goto out;
112 	}
113 	filp->private_data = ctx;
114 	if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
115 		/* This is a mountpoint, so d_revalidate will never
116 		 * have been called, so we need to refresh the
117 		 * inode (for close-open consistency) ourselves.
118 		 */
119 		__nfs_revalidate_inode(NFS_SERVER(inode), inode);
120 	}
121 out:
122 	put_rpccred(cred);
123 	return res;
124 }
125 
126 static int
127 nfs_closedir(struct inode *inode, struct file *filp)
128 {
129 	put_nfs_open_dir_context(filp->private_data);
130 	return 0;
131 }
132 
133 struct nfs_cache_array_entry {
134 	u64 cookie;
135 	u64 ino;
136 	struct qstr string;
137 	unsigned char d_type;
138 };
139 
140 struct nfs_cache_array {
141 	int size;
142 	int eof_index;
143 	u64 last_cookie;
144 	struct nfs_cache_array_entry array[0];
145 };
146 
147 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
148 typedef struct {
149 	struct file	*file;
150 	struct page	*page;
151 	struct dir_context *ctx;
152 	unsigned long	page_index;
153 	u64		*dir_cookie;
154 	u64		last_cookie;
155 	loff_t		current_index;
156 	decode_dirent_t	decode;
157 
158 	unsigned long	timestamp;
159 	unsigned long	gencount;
160 	unsigned int	cache_entry_index;
161 	unsigned int	plus:1;
162 	unsigned int	eof:1;
163 } nfs_readdir_descriptor_t;
164 
165 /*
166  * The caller is responsible for calling nfs_readdir_release_array(page)
167  */
168 static
169 struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
170 {
171 	void *ptr;
172 	if (page == NULL)
173 		return ERR_PTR(-EIO);
174 	ptr = kmap(page);
175 	if (ptr == NULL)
176 		return ERR_PTR(-ENOMEM);
177 	return ptr;
178 }
179 
180 static
181 void nfs_readdir_release_array(struct page *page)
182 {
183 	kunmap(page);
184 }
185 
186 /*
187  * we are freeing strings created by nfs_add_to_readdir_array()
188  */
189 static
190 void nfs_readdir_clear_array(struct page *page)
191 {
192 	struct nfs_cache_array *array;
193 	int i;
194 
195 	array = kmap_atomic(page);
196 	for (i = 0; i < array->size; i++)
197 		kfree(array->array[i].string.name);
198 	kunmap_atomic(array);
199 }
200 
201 /*
202  * the caller is responsible for freeing qstr.name
203  * when called by nfs_readdir_add_to_array, the strings will be freed in
204  * nfs_clear_readdir_array()
205  */
206 static
207 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
208 {
209 	string->len = len;
210 	string->name = kmemdup(name, len, GFP_KERNEL);
211 	if (string->name == NULL)
212 		return -ENOMEM;
213 	/*
214 	 * Avoid a kmemleak false positive. The pointer to the name is stored
215 	 * in a page cache page which kmemleak does not scan.
216 	 */
217 	kmemleak_not_leak(string->name);
218 	string->hash = full_name_hash(name, len);
219 	return 0;
220 }
221 
222 static
223 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
224 {
225 	struct nfs_cache_array *array = nfs_readdir_get_array(page);
226 	struct nfs_cache_array_entry *cache_entry;
227 	int ret;
228 
229 	if (IS_ERR(array))
230 		return PTR_ERR(array);
231 
232 	cache_entry = &array->array[array->size];
233 
234 	/* Check that this entry lies within the page bounds */
235 	ret = -ENOSPC;
236 	if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
237 		goto out;
238 
239 	cache_entry->cookie = entry->prev_cookie;
240 	cache_entry->ino = entry->ino;
241 	cache_entry->d_type = entry->d_type;
242 	ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
243 	if (ret)
244 		goto out;
245 	array->last_cookie = entry->cookie;
246 	array->size++;
247 	if (entry->eof != 0)
248 		array->eof_index = array->size;
249 out:
250 	nfs_readdir_release_array(page);
251 	return ret;
252 }
253 
254 static
255 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
256 {
257 	loff_t diff = desc->ctx->pos - desc->current_index;
258 	unsigned int index;
259 
260 	if (diff < 0)
261 		goto out_eof;
262 	if (diff >= array->size) {
263 		if (array->eof_index >= 0)
264 			goto out_eof;
265 		return -EAGAIN;
266 	}
267 
268 	index = (unsigned int)diff;
269 	*desc->dir_cookie = array->array[index].cookie;
270 	desc->cache_entry_index = index;
271 	return 0;
272 out_eof:
273 	desc->eof = 1;
274 	return -EBADCOOKIE;
275 }
276 
277 static
278 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
279 {
280 	int i;
281 	loff_t new_pos;
282 	int status = -EAGAIN;
283 
284 	for (i = 0; i < array->size; i++) {
285 		if (array->array[i].cookie == *desc->dir_cookie) {
286 			struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
287 			struct nfs_open_dir_context *ctx = desc->file->private_data;
288 
289 			new_pos = desc->current_index + i;
290 			if (ctx->attr_gencount != nfsi->attr_gencount
291 			    || (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))) {
292 				ctx->duped = 0;
293 				ctx->attr_gencount = nfsi->attr_gencount;
294 			} else if (new_pos < desc->ctx->pos) {
295 				if (ctx->duped > 0
296 				    && ctx->dup_cookie == *desc->dir_cookie) {
297 					if (printk_ratelimit()) {
298 						pr_notice("NFS: directory %s/%s contains a readdir loop."
299 								"Please contact your server vendor.  "
300 								"The file: %s has duplicate cookie %llu\n",
301 								desc->file->f_dentry->d_parent->d_name.name,
302 								desc->file->f_dentry->d_name.name,
303 								array->array[i].string.name,
304 								*desc->dir_cookie);
305 					}
306 					status = -ELOOP;
307 					goto out;
308 				}
309 				ctx->dup_cookie = *desc->dir_cookie;
310 				ctx->duped = -1;
311 			}
312 			desc->ctx->pos = new_pos;
313 			desc->cache_entry_index = i;
314 			return 0;
315 		}
316 	}
317 	if (array->eof_index >= 0) {
318 		status = -EBADCOOKIE;
319 		if (*desc->dir_cookie == array->last_cookie)
320 			desc->eof = 1;
321 	}
322 out:
323 	return status;
324 }
325 
326 static
327 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
328 {
329 	struct nfs_cache_array *array;
330 	int status;
331 
332 	array = nfs_readdir_get_array(desc->page);
333 	if (IS_ERR(array)) {
334 		status = PTR_ERR(array);
335 		goto out;
336 	}
337 
338 	if (*desc->dir_cookie == 0)
339 		status = nfs_readdir_search_for_pos(array, desc);
340 	else
341 		status = nfs_readdir_search_for_cookie(array, desc);
342 
343 	if (status == -EAGAIN) {
344 		desc->last_cookie = array->last_cookie;
345 		desc->current_index += array->size;
346 		desc->page_index++;
347 	}
348 	nfs_readdir_release_array(desc->page);
349 out:
350 	return status;
351 }
352 
353 /* Fill a page with xdr information before transferring to the cache page */
354 static
355 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
356 			struct nfs_entry *entry, struct file *file, struct inode *inode)
357 {
358 	struct nfs_open_dir_context *ctx = file->private_data;
359 	struct rpc_cred	*cred = ctx->cred;
360 	unsigned long	timestamp, gencount;
361 	int		error;
362 
363  again:
364 	timestamp = jiffies;
365 	gencount = nfs_inc_attr_generation_counter();
366 	error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages,
367 					  NFS_SERVER(inode)->dtsize, desc->plus);
368 	if (error < 0) {
369 		/* We requested READDIRPLUS, but the server doesn't grok it */
370 		if (error == -ENOTSUPP && desc->plus) {
371 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
372 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
373 			desc->plus = 0;
374 			goto again;
375 		}
376 		goto error;
377 	}
378 	desc->timestamp = timestamp;
379 	desc->gencount = gencount;
380 error:
381 	return error;
382 }
383 
384 static int xdr_decode(nfs_readdir_descriptor_t *desc,
385 		      struct nfs_entry *entry, struct xdr_stream *xdr)
386 {
387 	int error;
388 
389 	error = desc->decode(xdr, entry, desc->plus);
390 	if (error)
391 		return error;
392 	entry->fattr->time_start = desc->timestamp;
393 	entry->fattr->gencount = desc->gencount;
394 	return 0;
395 }
396 
397 static
398 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
399 {
400 	if (dentry->d_inode == NULL)
401 		goto different;
402 	if (nfs_compare_fh(entry->fh, NFS_FH(dentry->d_inode)) != 0)
403 		goto different;
404 	return 1;
405 different:
406 	return 0;
407 }
408 
409 static
410 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
411 {
412 	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
413 		return false;
414 	if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
415 		return true;
416 	if (ctx->pos == 0)
417 		return true;
418 	return false;
419 }
420 
421 /*
422  * This function is called by the lookup code to request the use of
423  * readdirplus to accelerate any future lookups in the same
424  * directory.
425  */
426 static
427 void nfs_advise_use_readdirplus(struct inode *dir)
428 {
429 	set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags);
430 }
431 
432 static
433 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
434 {
435 	struct qstr filename = QSTR_INIT(entry->name, entry->len);
436 	struct dentry *dentry;
437 	struct dentry *alias;
438 	struct inode *dir = parent->d_inode;
439 	struct inode *inode;
440 	int status;
441 
442 	if (filename.name[0] == '.') {
443 		if (filename.len == 1)
444 			return;
445 		if (filename.len == 2 && filename.name[1] == '.')
446 			return;
447 	}
448 	filename.hash = full_name_hash(filename.name, filename.len);
449 
450 	dentry = d_lookup(parent, &filename);
451 	if (dentry != NULL) {
452 		if (nfs_same_file(dentry, entry)) {
453 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
454 			status = nfs_refresh_inode(dentry->d_inode, entry->fattr);
455 			if (!status)
456 				nfs_setsecurity(dentry->d_inode, entry->fattr, entry->label);
457 			goto out;
458 		} else {
459 			if (d_invalidate(dentry) != 0)
460 				goto out;
461 			dput(dentry);
462 		}
463 	}
464 
465 	dentry = d_alloc(parent, &filename);
466 	if (dentry == NULL)
467 		return;
468 
469 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
470 	if (IS_ERR(inode))
471 		goto out;
472 
473 	alias = d_materialise_unique(dentry, inode);
474 	if (IS_ERR(alias))
475 		goto out;
476 	else if (alias) {
477 		nfs_set_verifier(alias, nfs_save_change_attribute(dir));
478 		dput(alias);
479 	} else
480 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
481 
482 out:
483 	dput(dentry);
484 }
485 
486 /* Perform conversion from xdr to cache array */
487 static
488 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
489 				struct page **xdr_pages, struct page *page, unsigned int buflen)
490 {
491 	struct xdr_stream stream;
492 	struct xdr_buf buf;
493 	struct page *scratch;
494 	struct nfs_cache_array *array;
495 	unsigned int count = 0;
496 	int status;
497 
498 	scratch = alloc_page(GFP_KERNEL);
499 	if (scratch == NULL)
500 		return -ENOMEM;
501 
502 	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
503 	xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
504 
505 	do {
506 		status = xdr_decode(desc, entry, &stream);
507 		if (status != 0) {
508 			if (status == -EAGAIN)
509 				status = 0;
510 			break;
511 		}
512 
513 		count++;
514 
515 		if (desc->plus != 0)
516 			nfs_prime_dcache(desc->file->f_path.dentry, entry);
517 
518 		status = nfs_readdir_add_to_array(entry, page);
519 		if (status != 0)
520 			break;
521 	} while (!entry->eof);
522 
523 	if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
524 		array = nfs_readdir_get_array(page);
525 		if (!IS_ERR(array)) {
526 			array->eof_index = array->size;
527 			status = 0;
528 			nfs_readdir_release_array(page);
529 		} else
530 			status = PTR_ERR(array);
531 	}
532 
533 	put_page(scratch);
534 	return status;
535 }
536 
537 static
538 void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages)
539 {
540 	unsigned int i;
541 	for (i = 0; i < npages; i++)
542 		put_page(pages[i]);
543 }
544 
545 static
546 void nfs_readdir_free_large_page(void *ptr, struct page **pages,
547 		unsigned int npages)
548 {
549 	nfs_readdir_free_pagearray(pages, npages);
550 }
551 
552 /*
553  * nfs_readdir_large_page will allocate pages that must be freed with a call
554  * to nfs_readdir_free_large_page
555  */
556 static
557 int nfs_readdir_large_page(struct page **pages, unsigned int npages)
558 {
559 	unsigned int i;
560 
561 	for (i = 0; i < npages; i++) {
562 		struct page *page = alloc_page(GFP_KERNEL);
563 		if (page == NULL)
564 			goto out_freepages;
565 		pages[i] = page;
566 	}
567 	return 0;
568 
569 out_freepages:
570 	nfs_readdir_free_pagearray(pages, i);
571 	return -ENOMEM;
572 }
573 
574 static
575 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
576 {
577 	struct page *pages[NFS_MAX_READDIR_PAGES];
578 	void *pages_ptr = NULL;
579 	struct nfs_entry entry;
580 	struct file	*file = desc->file;
581 	struct nfs_cache_array *array;
582 	int status = -ENOMEM;
583 	unsigned int array_size = ARRAY_SIZE(pages);
584 
585 	entry.prev_cookie = 0;
586 	entry.cookie = desc->last_cookie;
587 	entry.eof = 0;
588 	entry.fh = nfs_alloc_fhandle();
589 	entry.fattr = nfs_alloc_fattr();
590 	entry.server = NFS_SERVER(inode);
591 	if (entry.fh == NULL || entry.fattr == NULL)
592 		goto out;
593 
594 	entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
595 	if (IS_ERR(entry.label)) {
596 		status = PTR_ERR(entry.label);
597 		goto out;
598 	}
599 
600 	array = nfs_readdir_get_array(page);
601 	if (IS_ERR(array)) {
602 		status = PTR_ERR(array);
603 		goto out_label_free;
604 	}
605 	memset(array, 0, sizeof(struct nfs_cache_array));
606 	array->eof_index = -1;
607 
608 	status = nfs_readdir_large_page(pages, array_size);
609 	if (status < 0)
610 		goto out_release_array;
611 	do {
612 		unsigned int pglen;
613 		status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
614 
615 		if (status < 0)
616 			break;
617 		pglen = status;
618 		status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
619 		if (status < 0) {
620 			if (status == -ENOSPC)
621 				status = 0;
622 			break;
623 		}
624 	} while (array->eof_index < 0);
625 
626 	nfs_readdir_free_large_page(pages_ptr, pages, array_size);
627 out_release_array:
628 	nfs_readdir_release_array(page);
629 out_label_free:
630 	nfs4_label_free(entry.label);
631 out:
632 	nfs_free_fattr(entry.fattr);
633 	nfs_free_fhandle(entry.fh);
634 	return status;
635 }
636 
637 /*
638  * Now we cache directories properly, by converting xdr information
639  * to an array that can be used for lookups later.  This results in
640  * fewer cache pages, since we can store more information on each page.
641  * We only need to convert from xdr once so future lookups are much simpler
642  */
643 static
644 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
645 {
646 	struct inode	*inode = file_inode(desc->file);
647 	int ret;
648 
649 	ret = nfs_readdir_xdr_to_array(desc, page, inode);
650 	if (ret < 0)
651 		goto error;
652 	SetPageUptodate(page);
653 
654 	if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
655 		/* Should never happen */
656 		nfs_zap_mapping(inode, inode->i_mapping);
657 	}
658 	unlock_page(page);
659 	return 0;
660  error:
661 	unlock_page(page);
662 	return ret;
663 }
664 
665 static
666 void cache_page_release(nfs_readdir_descriptor_t *desc)
667 {
668 	if (!desc->page->mapping)
669 		nfs_readdir_clear_array(desc->page);
670 	page_cache_release(desc->page);
671 	desc->page = NULL;
672 }
673 
674 static
675 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
676 {
677 	return read_cache_page(file_inode(desc->file)->i_mapping,
678 			desc->page_index, (filler_t *)nfs_readdir_filler, desc);
679 }
680 
681 /*
682  * Returns 0 if desc->dir_cookie was found on page desc->page_index
683  */
684 static
685 int find_cache_page(nfs_readdir_descriptor_t *desc)
686 {
687 	int res;
688 
689 	desc->page = get_cache_page(desc);
690 	if (IS_ERR(desc->page))
691 		return PTR_ERR(desc->page);
692 
693 	res = nfs_readdir_search_array(desc);
694 	if (res != 0)
695 		cache_page_release(desc);
696 	return res;
697 }
698 
699 /* Search for desc->dir_cookie from the beginning of the page cache */
700 static inline
701 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
702 {
703 	int res;
704 
705 	if (desc->page_index == 0) {
706 		desc->current_index = 0;
707 		desc->last_cookie = 0;
708 	}
709 	do {
710 		res = find_cache_page(desc);
711 	} while (res == -EAGAIN);
712 	return res;
713 }
714 
715 /*
716  * Once we've found the start of the dirent within a page: fill 'er up...
717  */
718 static
719 int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
720 {
721 	struct file	*file = desc->file;
722 	int i = 0;
723 	int res = 0;
724 	struct nfs_cache_array *array = NULL;
725 	struct nfs_open_dir_context *ctx = file->private_data;
726 
727 	array = nfs_readdir_get_array(desc->page);
728 	if (IS_ERR(array)) {
729 		res = PTR_ERR(array);
730 		goto out;
731 	}
732 
733 	for (i = desc->cache_entry_index; i < array->size; i++) {
734 		struct nfs_cache_array_entry *ent;
735 
736 		ent = &array->array[i];
737 		if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
738 		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
739 			desc->eof = 1;
740 			break;
741 		}
742 		desc->ctx->pos++;
743 		if (i < (array->size-1))
744 			*desc->dir_cookie = array->array[i+1].cookie;
745 		else
746 			*desc->dir_cookie = array->last_cookie;
747 		if (ctx->duped != 0)
748 			ctx->duped = 1;
749 	}
750 	if (array->eof_index >= 0)
751 		desc->eof = 1;
752 
753 	nfs_readdir_release_array(desc->page);
754 out:
755 	cache_page_release(desc);
756 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
757 			(unsigned long long)*desc->dir_cookie, res);
758 	return res;
759 }
760 
761 /*
762  * If we cannot find a cookie in our cache, we suspect that this is
763  * because it points to a deleted file, so we ask the server to return
764  * whatever it thinks is the next entry. We then feed this to filldir.
765  * If all goes well, we should then be able to find our way round the
766  * cache on the next call to readdir_search_pagecache();
767  *
768  * NOTE: we cannot add the anonymous page to the pagecache because
769  *	 the data it contains might not be page aligned. Besides,
770  *	 we should already have a complete representation of the
771  *	 directory in the page cache by the time we get here.
772  */
773 static inline
774 int uncached_readdir(nfs_readdir_descriptor_t *desc)
775 {
776 	struct page	*page = NULL;
777 	int		status;
778 	struct inode *inode = file_inode(desc->file);
779 	struct nfs_open_dir_context *ctx = desc->file->private_data;
780 
781 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
782 			(unsigned long long)*desc->dir_cookie);
783 
784 	page = alloc_page(GFP_HIGHUSER);
785 	if (!page) {
786 		status = -ENOMEM;
787 		goto out;
788 	}
789 
790 	desc->page_index = 0;
791 	desc->last_cookie = *desc->dir_cookie;
792 	desc->page = page;
793 	ctx->duped = 0;
794 
795 	status = nfs_readdir_xdr_to_array(desc, page, inode);
796 	if (status < 0)
797 		goto out_release;
798 
799 	status = nfs_do_filldir(desc);
800 
801  out:
802 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
803 			__func__, status);
804 	return status;
805  out_release:
806 	cache_page_release(desc);
807 	goto out;
808 }
809 
810 /* The file offset position represents the dirent entry number.  A
811    last cookie cache takes care of the common case of reading the
812    whole directory.
813  */
814 static int nfs_readdir(struct file *file, struct dir_context *ctx)
815 {
816 	struct dentry	*dentry = file->f_path.dentry;
817 	struct inode	*inode = dentry->d_inode;
818 	nfs_readdir_descriptor_t my_desc,
819 			*desc = &my_desc;
820 	struct nfs_open_dir_context *dir_ctx = file->private_data;
821 	int res = 0;
822 
823 	dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n",
824 			dentry->d_parent->d_name.name, dentry->d_name.name,
825 			(long long)ctx->pos);
826 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
827 
828 	/*
829 	 * ctx->pos points to the dirent entry number.
830 	 * *desc->dir_cookie has the cookie for the next entry. We have
831 	 * to either find the entry with the appropriate number or
832 	 * revalidate the cookie.
833 	 */
834 	memset(desc, 0, sizeof(*desc));
835 
836 	desc->file = file;
837 	desc->ctx = ctx;
838 	desc->dir_cookie = &dir_ctx->dir_cookie;
839 	desc->decode = NFS_PROTO(inode)->decode_dirent;
840 	desc->plus = nfs_use_readdirplus(inode, ctx) ? 1 : 0;
841 
842 	nfs_block_sillyrename(dentry);
843 	if (ctx->pos == 0 || nfs_attribute_cache_expired(inode))
844 		res = nfs_revalidate_mapping(inode, file->f_mapping);
845 	if (res < 0)
846 		goto out;
847 
848 	do {
849 		res = readdir_search_pagecache(desc);
850 
851 		if (res == -EBADCOOKIE) {
852 			res = 0;
853 			/* This means either end of directory */
854 			if (*desc->dir_cookie && desc->eof == 0) {
855 				/* Or that the server has 'lost' a cookie */
856 				res = uncached_readdir(desc);
857 				if (res == 0)
858 					continue;
859 			}
860 			break;
861 		}
862 		if (res == -ETOOSMALL && desc->plus) {
863 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
864 			nfs_zap_caches(inode);
865 			desc->page_index = 0;
866 			desc->plus = 0;
867 			desc->eof = 0;
868 			continue;
869 		}
870 		if (res < 0)
871 			break;
872 
873 		res = nfs_do_filldir(desc);
874 		if (res < 0)
875 			break;
876 	} while (!desc->eof);
877 out:
878 	nfs_unblock_sillyrename(dentry);
879 	if (res > 0)
880 		res = 0;
881 	dfprintk(FILE, "NFS: readdir(%s/%s) returns %d\n",
882 			dentry->d_parent->d_name.name, dentry->d_name.name,
883 			res);
884 	return res;
885 }
886 
887 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
888 {
889 	struct dentry *dentry = filp->f_path.dentry;
890 	struct inode *inode = dentry->d_inode;
891 	struct nfs_open_dir_context *dir_ctx = filp->private_data;
892 
893 	dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n",
894 			dentry->d_parent->d_name.name,
895 			dentry->d_name.name,
896 			offset, whence);
897 
898 	mutex_lock(&inode->i_mutex);
899 	switch (whence) {
900 		case 1:
901 			offset += filp->f_pos;
902 		case 0:
903 			if (offset >= 0)
904 				break;
905 		default:
906 			offset = -EINVAL;
907 			goto out;
908 	}
909 	if (offset != filp->f_pos) {
910 		filp->f_pos = offset;
911 		dir_ctx->dir_cookie = 0;
912 		dir_ctx->duped = 0;
913 	}
914 out:
915 	mutex_unlock(&inode->i_mutex);
916 	return offset;
917 }
918 
919 /*
920  * All directory operations under NFS are synchronous, so fsync()
921  * is a dummy operation.
922  */
923 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
924 			 int datasync)
925 {
926 	struct dentry *dentry = filp->f_path.dentry;
927 	struct inode *inode = dentry->d_inode;
928 
929 	dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n",
930 			dentry->d_parent->d_name.name, dentry->d_name.name,
931 			datasync);
932 
933 	mutex_lock(&inode->i_mutex);
934 	nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC);
935 	mutex_unlock(&inode->i_mutex);
936 	return 0;
937 }
938 
939 /**
940  * nfs_force_lookup_revalidate - Mark the directory as having changed
941  * @dir - pointer to directory inode
942  *
943  * This forces the revalidation code in nfs_lookup_revalidate() to do a
944  * full lookup on all child dentries of 'dir' whenever a change occurs
945  * on the server that might have invalidated our dcache.
946  *
947  * The caller should be holding dir->i_lock
948  */
949 void nfs_force_lookup_revalidate(struct inode *dir)
950 {
951 	NFS_I(dir)->cache_change_attribute++;
952 }
953 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
954 
955 /*
956  * A check for whether or not the parent directory has changed.
957  * In the case it has, we assume that the dentries are untrustworthy
958  * and may need to be looked up again.
959  */
960 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
961 {
962 	if (IS_ROOT(dentry))
963 		return 1;
964 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
965 		return 0;
966 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
967 		return 0;
968 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
969 	if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
970 		return 0;
971 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
972 		return 0;
973 	return 1;
974 }
975 
976 /*
977  * Use intent information to check whether or not we're going to do
978  * an O_EXCL create using this path component.
979  */
980 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
981 {
982 	if (NFS_PROTO(dir)->version == 2)
983 		return 0;
984 	return flags & LOOKUP_EXCL;
985 }
986 
987 /*
988  * Inode and filehandle revalidation for lookups.
989  *
990  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
991  * or if the intent information indicates that we're about to open this
992  * particular file and the "nocto" mount flag is not set.
993  *
994  */
995 static
996 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
997 {
998 	struct nfs_server *server = NFS_SERVER(inode);
999 	int ret;
1000 
1001 	if (IS_AUTOMOUNT(inode))
1002 		return 0;
1003 	/* VFS wants an on-the-wire revalidation */
1004 	if (flags & LOOKUP_REVAL)
1005 		goto out_force;
1006 	/* This is an open(2) */
1007 	if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) &&
1008 	    (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
1009 		goto out_force;
1010 out:
1011 	return (inode->i_nlink == 0) ? -ENOENT : 0;
1012 out_force:
1013 	ret = __nfs_revalidate_inode(server, inode);
1014 	if (ret != 0)
1015 		return ret;
1016 	goto out;
1017 }
1018 
1019 /*
1020  * We judge how long we want to trust negative
1021  * dentries by looking at the parent inode mtime.
1022  *
1023  * If parent mtime has changed, we revalidate, else we wait for a
1024  * period corresponding to the parent's attribute cache timeout value.
1025  */
1026 static inline
1027 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1028 		       unsigned int flags)
1029 {
1030 	/* Don't revalidate a negative dentry if we're creating a new file */
1031 	if (flags & LOOKUP_CREATE)
1032 		return 0;
1033 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1034 		return 1;
1035 	return !nfs_check_verifier(dir, dentry);
1036 }
1037 
1038 /*
1039  * This is called every time the dcache has a lookup hit,
1040  * and we should check whether we can really trust that
1041  * lookup.
1042  *
1043  * NOTE! The hit can be a negative hit too, don't assume
1044  * we have an inode!
1045  *
1046  * If the parent directory is seen to have changed, we throw out the
1047  * cached dentry and do a new lookup.
1048  */
1049 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1050 {
1051 	struct inode *dir;
1052 	struct inode *inode;
1053 	struct dentry *parent;
1054 	struct nfs_fh *fhandle = NULL;
1055 	struct nfs_fattr *fattr = NULL;
1056 	struct nfs4_label *label = NULL;
1057 	int error;
1058 
1059 	if (flags & LOOKUP_RCU)
1060 		return -ECHILD;
1061 
1062 	parent = dget_parent(dentry);
1063 	dir = parent->d_inode;
1064 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1065 	inode = dentry->d_inode;
1066 
1067 	if (!inode) {
1068 		if (nfs_neg_need_reval(dir, dentry, flags))
1069 			goto out_bad;
1070 		goto out_valid_noent;
1071 	}
1072 
1073 	if (is_bad_inode(inode)) {
1074 		dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
1075 				__func__, dentry->d_parent->d_name.name,
1076 				dentry->d_name.name);
1077 		goto out_bad;
1078 	}
1079 
1080 	if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1081 		goto out_set_verifier;
1082 
1083 	/* Force a full look up iff the parent directory has changed */
1084 	if (!nfs_is_exclusive_create(dir, flags) && nfs_check_verifier(dir, dentry)) {
1085 		if (nfs_lookup_verify_inode(inode, flags))
1086 			goto out_zap_parent;
1087 		goto out_valid;
1088 	}
1089 
1090 	if (NFS_STALE(inode))
1091 		goto out_bad;
1092 
1093 	error = -ENOMEM;
1094 	fhandle = nfs_alloc_fhandle();
1095 	fattr = nfs_alloc_fattr();
1096 	if (fhandle == NULL || fattr == NULL)
1097 		goto out_error;
1098 
1099 	label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
1100 	if (IS_ERR(label))
1101 		goto out_error;
1102 
1103 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1104 	if (error)
1105 		goto out_bad;
1106 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1107 		goto out_bad;
1108 	if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1109 		goto out_bad;
1110 
1111 	nfs_setsecurity(inode, fattr, label);
1112 
1113 	nfs_free_fattr(fattr);
1114 	nfs_free_fhandle(fhandle);
1115 	nfs4_label_free(label);
1116 
1117 out_set_verifier:
1118 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1119  out_valid:
1120 	/* Success: notify readdir to use READDIRPLUS */
1121 	nfs_advise_use_readdirplus(dir);
1122  out_valid_noent:
1123 	dput(parent);
1124 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
1125 			__func__, dentry->d_parent->d_name.name,
1126 			dentry->d_name.name);
1127 	return 1;
1128 out_zap_parent:
1129 	nfs_zap_caches(dir);
1130  out_bad:
1131 	nfs_free_fattr(fattr);
1132 	nfs_free_fhandle(fhandle);
1133 	nfs4_label_free(label);
1134 	nfs_mark_for_revalidate(dir);
1135 	if (inode && S_ISDIR(inode->i_mode)) {
1136 		/* Purge readdir caches. */
1137 		nfs_zap_caches(inode);
1138 		/* If we have submounts, don't unhash ! */
1139 		if (have_submounts(dentry))
1140 			goto out_valid;
1141 		if (dentry->d_flags & DCACHE_DISCONNECTED)
1142 			goto out_valid;
1143 		shrink_dcache_parent(dentry);
1144 	}
1145 	d_drop(dentry);
1146 	dput(parent);
1147 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
1148 			__func__, dentry->d_parent->d_name.name,
1149 			dentry->d_name.name);
1150 	return 0;
1151 out_error:
1152 	nfs_free_fattr(fattr);
1153 	nfs_free_fhandle(fhandle);
1154 	nfs4_label_free(label);
1155 	dput(parent);
1156 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n",
1157 			__func__, dentry->d_parent->d_name.name,
1158 			dentry->d_name.name, error);
1159 	return error;
1160 }
1161 
1162 /*
1163  * A weaker form of d_revalidate for revalidating just the dentry->d_inode
1164  * when we don't really care about the dentry name. This is called when a
1165  * pathwalk ends on a dentry that was not found via a normal lookup in the
1166  * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1167  *
1168  * In this situation, we just want to verify that the inode itself is OK
1169  * since the dentry might have changed on the server.
1170  */
1171 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1172 {
1173 	int error;
1174 	struct inode *inode = dentry->d_inode;
1175 
1176 	/*
1177 	 * I believe we can only get a negative dentry here in the case of a
1178 	 * procfs-style symlink. Just assume it's correct for now, but we may
1179 	 * eventually need to do something more here.
1180 	 */
1181 	if (!inode) {
1182 		dfprintk(LOOKUPCACHE, "%s: %s/%s has negative inode\n",
1183 				__func__, dentry->d_parent->d_name.name,
1184 				dentry->d_name.name);
1185 		return 1;
1186 	}
1187 
1188 	if (is_bad_inode(inode)) {
1189 		dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
1190 				__func__, dentry->d_parent->d_name.name,
1191 				dentry->d_name.name);
1192 		return 0;
1193 	}
1194 
1195 	error = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1196 	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1197 			__func__, inode->i_ino, error ? "invalid" : "valid");
1198 	return !error;
1199 }
1200 
1201 /*
1202  * This is called from dput() when d_count is going to 0.
1203  */
1204 static int nfs_dentry_delete(const struct dentry *dentry)
1205 {
1206 	dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
1207 		dentry->d_parent->d_name.name, dentry->d_name.name,
1208 		dentry->d_flags);
1209 
1210 	/* Unhash any dentry with a stale inode */
1211 	if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
1212 		return 1;
1213 
1214 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1215 		/* Unhash it, so that ->d_iput() would be called */
1216 		return 1;
1217 	}
1218 	if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1219 		/* Unhash it, so that ancestors of killed async unlink
1220 		 * files will be cleaned up during umount */
1221 		return 1;
1222 	}
1223 	return 0;
1224 
1225 }
1226 
1227 /* Ensure that we revalidate inode->i_nlink */
1228 static void nfs_drop_nlink(struct inode *inode)
1229 {
1230 	spin_lock(&inode->i_lock);
1231 	/* drop the inode if we're reasonably sure this is the last link */
1232 	if (inode->i_nlink == 1)
1233 		clear_nlink(inode);
1234 	NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR;
1235 	spin_unlock(&inode->i_lock);
1236 }
1237 
1238 /*
1239  * Called when the dentry loses inode.
1240  * We use it to clean up silly-renamed files.
1241  */
1242 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1243 {
1244 	if (S_ISDIR(inode->i_mode))
1245 		/* drop any readdir cache as it could easily be old */
1246 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1247 
1248 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1249 		nfs_complete_unlink(dentry, inode);
1250 		nfs_drop_nlink(inode);
1251 	}
1252 	iput(inode);
1253 }
1254 
1255 static void nfs_d_release(struct dentry *dentry)
1256 {
1257 	/* free cached devname value, if it survived that far */
1258 	if (unlikely(dentry->d_fsdata)) {
1259 		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1260 			WARN_ON(1);
1261 		else
1262 			kfree(dentry->d_fsdata);
1263 	}
1264 }
1265 
1266 const struct dentry_operations nfs_dentry_operations = {
1267 	.d_revalidate	= nfs_lookup_revalidate,
1268 	.d_weak_revalidate	= nfs_weak_revalidate,
1269 	.d_delete	= nfs_dentry_delete,
1270 	.d_iput		= nfs_dentry_iput,
1271 	.d_automount	= nfs_d_automount,
1272 	.d_release	= nfs_d_release,
1273 };
1274 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1275 
1276 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1277 {
1278 	struct dentry *res;
1279 	struct dentry *parent;
1280 	struct inode *inode = NULL;
1281 	struct nfs_fh *fhandle = NULL;
1282 	struct nfs_fattr *fattr = NULL;
1283 	struct nfs4_label *label = NULL;
1284 	int error;
1285 
1286 	dfprintk(VFS, "NFS: lookup(%s/%s)\n",
1287 		dentry->d_parent->d_name.name, dentry->d_name.name);
1288 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1289 
1290 	res = ERR_PTR(-ENAMETOOLONG);
1291 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1292 		goto out;
1293 
1294 	/*
1295 	 * If we're doing an exclusive create, optimize away the lookup
1296 	 * but don't hash the dentry.
1297 	 */
1298 	if (nfs_is_exclusive_create(dir, flags)) {
1299 		d_instantiate(dentry, NULL);
1300 		res = NULL;
1301 		goto out;
1302 	}
1303 
1304 	res = ERR_PTR(-ENOMEM);
1305 	fhandle = nfs_alloc_fhandle();
1306 	fattr = nfs_alloc_fattr();
1307 	if (fhandle == NULL || fattr == NULL)
1308 		goto out;
1309 
1310 	label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1311 	if (IS_ERR(label))
1312 		goto out;
1313 
1314 	parent = dentry->d_parent;
1315 	/* Protect against concurrent sillydeletes */
1316 	nfs_block_sillyrename(parent);
1317 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1318 	if (error == -ENOENT)
1319 		goto no_entry;
1320 	if (error < 0) {
1321 		res = ERR_PTR(error);
1322 		goto out_unblock_sillyrename;
1323 	}
1324 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1325 	res = ERR_CAST(inode);
1326 	if (IS_ERR(res))
1327 		goto out_unblock_sillyrename;
1328 
1329 	/* Success: notify readdir to use READDIRPLUS */
1330 	nfs_advise_use_readdirplus(dir);
1331 
1332 no_entry:
1333 	res = d_materialise_unique(dentry, inode);
1334 	if (res != NULL) {
1335 		if (IS_ERR(res))
1336 			goto out_unblock_sillyrename;
1337 		dentry = res;
1338 	}
1339 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1340 out_unblock_sillyrename:
1341 	nfs_unblock_sillyrename(parent);
1342 	nfs4_label_free(label);
1343 out:
1344 	nfs_free_fattr(fattr);
1345 	nfs_free_fhandle(fhandle);
1346 	return res;
1347 }
1348 EXPORT_SYMBOL_GPL(nfs_lookup);
1349 
1350 #if IS_ENABLED(CONFIG_NFS_V4)
1351 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1352 
1353 const struct dentry_operations nfs4_dentry_operations = {
1354 	.d_revalidate	= nfs4_lookup_revalidate,
1355 	.d_delete	= nfs_dentry_delete,
1356 	.d_iput		= nfs_dentry_iput,
1357 	.d_automount	= nfs_d_automount,
1358 	.d_release	= nfs_d_release,
1359 };
1360 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1361 
1362 static fmode_t flags_to_mode(int flags)
1363 {
1364 	fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1365 	if ((flags & O_ACCMODE) != O_WRONLY)
1366 		res |= FMODE_READ;
1367 	if ((flags & O_ACCMODE) != O_RDONLY)
1368 		res |= FMODE_WRITE;
1369 	return res;
1370 }
1371 
1372 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags)
1373 {
1374 	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags));
1375 }
1376 
1377 static int do_open(struct inode *inode, struct file *filp)
1378 {
1379 	nfs_fscache_set_inode_cookie(inode, filp);
1380 	return 0;
1381 }
1382 
1383 static int nfs_finish_open(struct nfs_open_context *ctx,
1384 			   struct dentry *dentry,
1385 			   struct file *file, unsigned open_flags,
1386 			   int *opened)
1387 {
1388 	int err;
1389 
1390 	err = finish_open(file, dentry, do_open, opened);
1391 	if (err)
1392 		goto out;
1393 	nfs_file_set_open_context(file, ctx);
1394 
1395 out:
1396 	put_nfs_open_context(ctx);
1397 	return err;
1398 }
1399 
1400 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1401 		    struct file *file, unsigned open_flags,
1402 		    umode_t mode, int *opened)
1403 {
1404 	struct nfs_open_context *ctx;
1405 	struct dentry *res;
1406 	struct iattr attr = { .ia_valid = ATTR_OPEN };
1407 	struct inode *inode;
1408 	int err;
1409 
1410 	/* Expect a negative dentry */
1411 	BUG_ON(dentry->d_inode);
1412 
1413 	dfprintk(VFS, "NFS: atomic_open(%s/%ld), %s\n",
1414 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1415 
1416 	/* NFS only supports OPEN on regular files */
1417 	if ((open_flags & O_DIRECTORY)) {
1418 		if (!d_unhashed(dentry)) {
1419 			/*
1420 			 * Hashed negative dentry with O_DIRECTORY: dentry was
1421 			 * revalidated and is fine, no need to perform lookup
1422 			 * again
1423 			 */
1424 			return -ENOENT;
1425 		}
1426 		goto no_open;
1427 	}
1428 
1429 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1430 		return -ENAMETOOLONG;
1431 
1432 	if (open_flags & O_CREAT) {
1433 		attr.ia_valid |= ATTR_MODE;
1434 		attr.ia_mode = mode & ~current_umask();
1435 	}
1436 	if (open_flags & O_TRUNC) {
1437 		attr.ia_valid |= ATTR_SIZE;
1438 		attr.ia_size = 0;
1439 	}
1440 
1441 	ctx = create_nfs_open_context(dentry, open_flags);
1442 	err = PTR_ERR(ctx);
1443 	if (IS_ERR(ctx))
1444 		goto out;
1445 
1446 	nfs_block_sillyrename(dentry->d_parent);
1447 	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr);
1448 	nfs_unblock_sillyrename(dentry->d_parent);
1449 	if (IS_ERR(inode)) {
1450 		put_nfs_open_context(ctx);
1451 		err = PTR_ERR(inode);
1452 		switch (err) {
1453 		case -ENOENT:
1454 			d_drop(dentry);
1455 			d_add(dentry, NULL);
1456 			break;
1457 		case -EISDIR:
1458 		case -ENOTDIR:
1459 			goto no_open;
1460 		case -ELOOP:
1461 			if (!(open_flags & O_NOFOLLOW))
1462 				goto no_open;
1463 			break;
1464 			/* case -EINVAL: */
1465 		default:
1466 			break;
1467 		}
1468 		goto out;
1469 	}
1470 
1471 	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags, opened);
1472 out:
1473 	return err;
1474 
1475 no_open:
1476 	res = nfs_lookup(dir, dentry, 0);
1477 	err = PTR_ERR(res);
1478 	if (IS_ERR(res))
1479 		goto out;
1480 
1481 	return finish_no_open(file, res);
1482 }
1483 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1484 
1485 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1486 {
1487 	struct dentry *parent = NULL;
1488 	struct inode *inode;
1489 	struct inode *dir;
1490 	int ret = 0;
1491 
1492 	if (flags & LOOKUP_RCU)
1493 		return -ECHILD;
1494 
1495 	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1496 		goto no_open;
1497 	if (d_mountpoint(dentry))
1498 		goto no_open;
1499 	if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1)
1500 		goto no_open;
1501 
1502 	inode = dentry->d_inode;
1503 	parent = dget_parent(dentry);
1504 	dir = parent->d_inode;
1505 
1506 	/* We can't create new files in nfs_open_revalidate(), so we
1507 	 * optimize away revalidation of negative dentries.
1508 	 */
1509 	if (inode == NULL) {
1510 		if (!nfs_neg_need_reval(dir, dentry, flags))
1511 			ret = 1;
1512 		goto out;
1513 	}
1514 
1515 	/* NFS only supports OPEN on regular files */
1516 	if (!S_ISREG(inode->i_mode))
1517 		goto no_open_dput;
1518 	/* We cannot do exclusive creation on a positive dentry */
1519 	if (flags & LOOKUP_EXCL)
1520 		goto no_open_dput;
1521 
1522 	/* Let f_op->open() actually open (and revalidate) the file */
1523 	ret = 1;
1524 
1525 out:
1526 	dput(parent);
1527 	return ret;
1528 
1529 no_open_dput:
1530 	dput(parent);
1531 no_open:
1532 	return nfs_lookup_revalidate(dentry, flags);
1533 }
1534 
1535 #endif /* CONFIG_NFSV4 */
1536 
1537 /*
1538  * Code common to create, mkdir, and mknod.
1539  */
1540 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1541 				struct nfs_fattr *fattr,
1542 				struct nfs4_label *label)
1543 {
1544 	struct dentry *parent = dget_parent(dentry);
1545 	struct inode *dir = parent->d_inode;
1546 	struct inode *inode;
1547 	int error = -EACCES;
1548 
1549 	d_drop(dentry);
1550 
1551 	/* We may have been initialized further down */
1552 	if (dentry->d_inode)
1553 		goto out;
1554 	if (fhandle->size == 0) {
1555 		error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1556 		if (error)
1557 			goto out_error;
1558 	}
1559 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1560 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1561 		struct nfs_server *server = NFS_SB(dentry->d_sb);
1562 		error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL);
1563 		if (error < 0)
1564 			goto out_error;
1565 	}
1566 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1567 	error = PTR_ERR(inode);
1568 	if (IS_ERR(inode))
1569 		goto out_error;
1570 	d_add(dentry, inode);
1571 out:
1572 	dput(parent);
1573 	return 0;
1574 out_error:
1575 	nfs_mark_for_revalidate(dir);
1576 	dput(parent);
1577 	return error;
1578 }
1579 EXPORT_SYMBOL_GPL(nfs_instantiate);
1580 
1581 /*
1582  * Following a failed create operation, we drop the dentry rather
1583  * than retain a negative dentry. This avoids a problem in the event
1584  * that the operation succeeded on the server, but an error in the
1585  * reply path made it appear to have failed.
1586  */
1587 int nfs_create(struct inode *dir, struct dentry *dentry,
1588 		umode_t mode, bool excl)
1589 {
1590 	struct iattr attr;
1591 	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1592 	int error;
1593 
1594 	dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1595 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1596 
1597 	attr.ia_mode = mode;
1598 	attr.ia_valid = ATTR_MODE;
1599 
1600 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1601 	if (error != 0)
1602 		goto out_err;
1603 	return 0;
1604 out_err:
1605 	d_drop(dentry);
1606 	return error;
1607 }
1608 EXPORT_SYMBOL_GPL(nfs_create);
1609 
1610 /*
1611  * See comments for nfs_proc_create regarding failed operations.
1612  */
1613 int
1614 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1615 {
1616 	struct iattr attr;
1617 	int status;
1618 
1619 	dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1620 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1621 
1622 	if (!new_valid_dev(rdev))
1623 		return -EINVAL;
1624 
1625 	attr.ia_mode = mode;
1626 	attr.ia_valid = ATTR_MODE;
1627 
1628 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1629 	if (status != 0)
1630 		goto out_err;
1631 	return 0;
1632 out_err:
1633 	d_drop(dentry);
1634 	return status;
1635 }
1636 EXPORT_SYMBOL_GPL(nfs_mknod);
1637 
1638 /*
1639  * See comments for nfs_proc_create regarding failed operations.
1640  */
1641 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1642 {
1643 	struct iattr attr;
1644 	int error;
1645 
1646 	dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1647 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1648 
1649 	attr.ia_valid = ATTR_MODE;
1650 	attr.ia_mode = mode | S_IFDIR;
1651 
1652 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1653 	if (error != 0)
1654 		goto out_err;
1655 	return 0;
1656 out_err:
1657 	d_drop(dentry);
1658 	return error;
1659 }
1660 EXPORT_SYMBOL_GPL(nfs_mkdir);
1661 
1662 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1663 {
1664 	if (dentry->d_inode != NULL && !d_unhashed(dentry))
1665 		d_delete(dentry);
1666 }
1667 
1668 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1669 {
1670 	int error;
1671 
1672 	dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1673 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1674 
1675 	error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1676 	/* Ensure the VFS deletes this inode */
1677 	if (error == 0 && dentry->d_inode != NULL)
1678 		clear_nlink(dentry->d_inode);
1679 	else if (error == -ENOENT)
1680 		nfs_dentry_handle_enoent(dentry);
1681 
1682 	return error;
1683 }
1684 EXPORT_SYMBOL_GPL(nfs_rmdir);
1685 
1686 /*
1687  * Remove a file after making sure there are no pending writes,
1688  * and after checking that the file has only one user.
1689  *
1690  * We invalidate the attribute cache and free the inode prior to the operation
1691  * to avoid possible races if the server reuses the inode.
1692  */
1693 static int nfs_safe_remove(struct dentry *dentry)
1694 {
1695 	struct inode *dir = dentry->d_parent->d_inode;
1696 	struct inode *inode = dentry->d_inode;
1697 	int error = -EBUSY;
1698 
1699 	dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1700 		dentry->d_parent->d_name.name, dentry->d_name.name);
1701 
1702 	/* If the dentry was sillyrenamed, we simply call d_delete() */
1703 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1704 		error = 0;
1705 		goto out;
1706 	}
1707 
1708 	if (inode != NULL) {
1709 		NFS_PROTO(inode)->return_delegation(inode);
1710 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1711 		if (error == 0)
1712 			nfs_drop_nlink(inode);
1713 	} else
1714 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1715 	if (error == -ENOENT)
1716 		nfs_dentry_handle_enoent(dentry);
1717 out:
1718 	return error;
1719 }
1720 
1721 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1722  *  belongs to an active ".nfs..." file and we return -EBUSY.
1723  *
1724  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1725  */
1726 int nfs_unlink(struct inode *dir, struct dentry *dentry)
1727 {
1728 	int error;
1729 	int need_rehash = 0;
1730 
1731 	dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1732 		dir->i_ino, dentry->d_name.name);
1733 
1734 	spin_lock(&dentry->d_lock);
1735 	if (d_count(dentry) > 1) {
1736 		spin_unlock(&dentry->d_lock);
1737 		/* Start asynchronous writeout of the inode */
1738 		write_inode_now(dentry->d_inode, 0);
1739 		error = nfs_sillyrename(dir, dentry);
1740 		return error;
1741 	}
1742 	if (!d_unhashed(dentry)) {
1743 		__d_drop(dentry);
1744 		need_rehash = 1;
1745 	}
1746 	spin_unlock(&dentry->d_lock);
1747 	error = nfs_safe_remove(dentry);
1748 	if (!error || error == -ENOENT) {
1749 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1750 	} else if (need_rehash)
1751 		d_rehash(dentry);
1752 	return error;
1753 }
1754 EXPORT_SYMBOL_GPL(nfs_unlink);
1755 
1756 /*
1757  * To create a symbolic link, most file systems instantiate a new inode,
1758  * add a page to it containing the path, then write it out to the disk
1759  * using prepare_write/commit_write.
1760  *
1761  * Unfortunately the NFS client can't create the in-core inode first
1762  * because it needs a file handle to create an in-core inode (see
1763  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1764  * symlink request has completed on the server.
1765  *
1766  * So instead we allocate a raw page, copy the symname into it, then do
1767  * the SYMLINK request with the page as the buffer.  If it succeeds, we
1768  * now have a new file handle and can instantiate an in-core NFS inode
1769  * and move the raw page into its mapping.
1770  */
1771 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1772 {
1773 	struct page *page;
1774 	char *kaddr;
1775 	struct iattr attr;
1776 	unsigned int pathlen = strlen(symname);
1777 	int error;
1778 
1779 	dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1780 		dir->i_ino, dentry->d_name.name, symname);
1781 
1782 	if (pathlen > PAGE_SIZE)
1783 		return -ENAMETOOLONG;
1784 
1785 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
1786 	attr.ia_valid = ATTR_MODE;
1787 
1788 	page = alloc_page(GFP_HIGHUSER);
1789 	if (!page)
1790 		return -ENOMEM;
1791 
1792 	kaddr = kmap_atomic(page);
1793 	memcpy(kaddr, symname, pathlen);
1794 	if (pathlen < PAGE_SIZE)
1795 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1796 	kunmap_atomic(kaddr);
1797 
1798 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1799 	if (error != 0) {
1800 		dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1801 			dir->i_sb->s_id, dir->i_ino,
1802 			dentry->d_name.name, symname, error);
1803 		d_drop(dentry);
1804 		__free_page(page);
1805 		return error;
1806 	}
1807 
1808 	/*
1809 	 * No big deal if we can't add this page to the page cache here.
1810 	 * READLINK will get the missing page from the server if needed.
1811 	 */
1812 	if (!add_to_page_cache_lru(page, dentry->d_inode->i_mapping, 0,
1813 							GFP_KERNEL)) {
1814 		SetPageUptodate(page);
1815 		unlock_page(page);
1816 	} else
1817 		__free_page(page);
1818 
1819 	return 0;
1820 }
1821 EXPORT_SYMBOL_GPL(nfs_symlink);
1822 
1823 int
1824 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1825 {
1826 	struct inode *inode = old_dentry->d_inode;
1827 	int error;
1828 
1829 	dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1830 		old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1831 		dentry->d_parent->d_name.name, dentry->d_name.name);
1832 
1833 	NFS_PROTO(inode)->return_delegation(inode);
1834 
1835 	d_drop(dentry);
1836 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1837 	if (error == 0) {
1838 		ihold(inode);
1839 		d_add(dentry, inode);
1840 	}
1841 	return error;
1842 }
1843 EXPORT_SYMBOL_GPL(nfs_link);
1844 
1845 /*
1846  * RENAME
1847  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1848  * different file handle for the same inode after a rename (e.g. when
1849  * moving to a different directory). A fail-safe method to do so would
1850  * be to look up old_dir/old_name, create a link to new_dir/new_name and
1851  * rename the old file using the sillyrename stuff. This way, the original
1852  * file in old_dir will go away when the last process iput()s the inode.
1853  *
1854  * FIXED.
1855  *
1856  * It actually works quite well. One needs to have the possibility for
1857  * at least one ".nfs..." file in each directory the file ever gets
1858  * moved or linked to which happens automagically with the new
1859  * implementation that only depends on the dcache stuff instead of
1860  * using the inode layer
1861  *
1862  * Unfortunately, things are a little more complicated than indicated
1863  * above. For a cross-directory move, we want to make sure we can get
1864  * rid of the old inode after the operation.  This means there must be
1865  * no pending writes (if it's a file), and the use count must be 1.
1866  * If these conditions are met, we can drop the dentries before doing
1867  * the rename.
1868  */
1869 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1870 		      struct inode *new_dir, struct dentry *new_dentry)
1871 {
1872 	struct inode *old_inode = old_dentry->d_inode;
1873 	struct inode *new_inode = new_dentry->d_inode;
1874 	struct dentry *dentry = NULL, *rehash = NULL;
1875 	int error = -EBUSY;
1876 
1877 	dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1878 		 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1879 		 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1880 		 d_count(new_dentry));
1881 
1882 	/*
1883 	 * For non-directories, check whether the target is busy and if so,
1884 	 * make a copy of the dentry and then do a silly-rename. If the
1885 	 * silly-rename succeeds, the copied dentry is hashed and becomes
1886 	 * the new target.
1887 	 */
1888 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
1889 		/*
1890 		 * To prevent any new references to the target during the
1891 		 * rename, we unhash the dentry in advance.
1892 		 */
1893 		if (!d_unhashed(new_dentry)) {
1894 			d_drop(new_dentry);
1895 			rehash = new_dentry;
1896 		}
1897 
1898 		if (d_count(new_dentry) > 2) {
1899 			int err;
1900 
1901 			/* copy the target dentry's name */
1902 			dentry = d_alloc(new_dentry->d_parent,
1903 					 &new_dentry->d_name);
1904 			if (!dentry)
1905 				goto out;
1906 
1907 			/* silly-rename the existing target ... */
1908 			err = nfs_sillyrename(new_dir, new_dentry);
1909 			if (err)
1910 				goto out;
1911 
1912 			new_dentry = dentry;
1913 			rehash = NULL;
1914 			new_inode = NULL;
1915 		}
1916 	}
1917 
1918 	NFS_PROTO(old_inode)->return_delegation(old_inode);
1919 	if (new_inode != NULL)
1920 		NFS_PROTO(new_inode)->return_delegation(new_inode);
1921 
1922 	error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1923 					   new_dir, &new_dentry->d_name);
1924 	nfs_mark_for_revalidate(old_inode);
1925 out:
1926 	if (rehash)
1927 		d_rehash(rehash);
1928 	if (!error) {
1929 		if (new_inode != NULL)
1930 			nfs_drop_nlink(new_inode);
1931 		d_move(old_dentry, new_dentry);
1932 		nfs_set_verifier(new_dentry,
1933 					nfs_save_change_attribute(new_dir));
1934 	} else if (error == -ENOENT)
1935 		nfs_dentry_handle_enoent(old_dentry);
1936 
1937 	/* new dentry created? */
1938 	if (dentry)
1939 		dput(dentry);
1940 	return error;
1941 }
1942 EXPORT_SYMBOL_GPL(nfs_rename);
1943 
1944 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1945 static LIST_HEAD(nfs_access_lru_list);
1946 static atomic_long_t nfs_access_nr_entries;
1947 
1948 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1949 {
1950 	put_rpccred(entry->cred);
1951 	kfree(entry);
1952 	smp_mb__before_atomic_dec();
1953 	atomic_long_dec(&nfs_access_nr_entries);
1954 	smp_mb__after_atomic_dec();
1955 }
1956 
1957 static void nfs_access_free_list(struct list_head *head)
1958 {
1959 	struct nfs_access_entry *cache;
1960 
1961 	while (!list_empty(head)) {
1962 		cache = list_entry(head->next, struct nfs_access_entry, lru);
1963 		list_del(&cache->lru);
1964 		nfs_access_free_entry(cache);
1965 	}
1966 }
1967 
1968 int nfs_access_cache_shrinker(struct shrinker *shrink,
1969 			      struct shrink_control *sc)
1970 {
1971 	LIST_HEAD(head);
1972 	struct nfs_inode *nfsi, *next;
1973 	struct nfs_access_entry *cache;
1974 	int nr_to_scan = sc->nr_to_scan;
1975 	gfp_t gfp_mask = sc->gfp_mask;
1976 
1977 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
1978 		return (nr_to_scan == 0) ? 0 : -1;
1979 
1980 	spin_lock(&nfs_access_lru_lock);
1981 	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
1982 		struct inode *inode;
1983 
1984 		if (nr_to_scan-- == 0)
1985 			break;
1986 		inode = &nfsi->vfs_inode;
1987 		spin_lock(&inode->i_lock);
1988 		if (list_empty(&nfsi->access_cache_entry_lru))
1989 			goto remove_lru_entry;
1990 		cache = list_entry(nfsi->access_cache_entry_lru.next,
1991 				struct nfs_access_entry, lru);
1992 		list_move(&cache->lru, &head);
1993 		rb_erase(&cache->rb_node, &nfsi->access_cache);
1994 		if (!list_empty(&nfsi->access_cache_entry_lru))
1995 			list_move_tail(&nfsi->access_cache_inode_lru,
1996 					&nfs_access_lru_list);
1997 		else {
1998 remove_lru_entry:
1999 			list_del_init(&nfsi->access_cache_inode_lru);
2000 			smp_mb__before_clear_bit();
2001 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2002 			smp_mb__after_clear_bit();
2003 		}
2004 		spin_unlock(&inode->i_lock);
2005 	}
2006 	spin_unlock(&nfs_access_lru_lock);
2007 	nfs_access_free_list(&head);
2008 	return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
2009 }
2010 
2011 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2012 {
2013 	struct rb_root *root_node = &nfsi->access_cache;
2014 	struct rb_node *n;
2015 	struct nfs_access_entry *entry;
2016 
2017 	/* Unhook entries from the cache */
2018 	while ((n = rb_first(root_node)) != NULL) {
2019 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2020 		rb_erase(n, root_node);
2021 		list_move(&entry->lru, head);
2022 	}
2023 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2024 }
2025 
2026 void nfs_access_zap_cache(struct inode *inode)
2027 {
2028 	LIST_HEAD(head);
2029 
2030 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2031 		return;
2032 	/* Remove from global LRU init */
2033 	spin_lock(&nfs_access_lru_lock);
2034 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2035 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2036 
2037 	spin_lock(&inode->i_lock);
2038 	__nfs_access_zap_cache(NFS_I(inode), &head);
2039 	spin_unlock(&inode->i_lock);
2040 	spin_unlock(&nfs_access_lru_lock);
2041 	nfs_access_free_list(&head);
2042 }
2043 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2044 
2045 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2046 {
2047 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2048 	struct nfs_access_entry *entry;
2049 
2050 	while (n != NULL) {
2051 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2052 
2053 		if (cred < entry->cred)
2054 			n = n->rb_left;
2055 		else if (cred > entry->cred)
2056 			n = n->rb_right;
2057 		else
2058 			return entry;
2059 	}
2060 	return NULL;
2061 }
2062 
2063 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2064 {
2065 	struct nfs_inode *nfsi = NFS_I(inode);
2066 	struct nfs_access_entry *cache;
2067 	int err = -ENOENT;
2068 
2069 	spin_lock(&inode->i_lock);
2070 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2071 		goto out_zap;
2072 	cache = nfs_access_search_rbtree(inode, cred);
2073 	if (cache == NULL)
2074 		goto out;
2075 	if (!nfs_have_delegated_attributes(inode) &&
2076 	    !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2077 		goto out_stale;
2078 	res->jiffies = cache->jiffies;
2079 	res->cred = cache->cred;
2080 	res->mask = cache->mask;
2081 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2082 	err = 0;
2083 out:
2084 	spin_unlock(&inode->i_lock);
2085 	return err;
2086 out_stale:
2087 	rb_erase(&cache->rb_node, &nfsi->access_cache);
2088 	list_del(&cache->lru);
2089 	spin_unlock(&inode->i_lock);
2090 	nfs_access_free_entry(cache);
2091 	return -ENOENT;
2092 out_zap:
2093 	spin_unlock(&inode->i_lock);
2094 	nfs_access_zap_cache(inode);
2095 	return -ENOENT;
2096 }
2097 
2098 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2099 {
2100 	struct nfs_inode *nfsi = NFS_I(inode);
2101 	struct rb_root *root_node = &nfsi->access_cache;
2102 	struct rb_node **p = &root_node->rb_node;
2103 	struct rb_node *parent = NULL;
2104 	struct nfs_access_entry *entry;
2105 
2106 	spin_lock(&inode->i_lock);
2107 	while (*p != NULL) {
2108 		parent = *p;
2109 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2110 
2111 		if (set->cred < entry->cred)
2112 			p = &parent->rb_left;
2113 		else if (set->cred > entry->cred)
2114 			p = &parent->rb_right;
2115 		else
2116 			goto found;
2117 	}
2118 	rb_link_node(&set->rb_node, parent, p);
2119 	rb_insert_color(&set->rb_node, root_node);
2120 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2121 	spin_unlock(&inode->i_lock);
2122 	return;
2123 found:
2124 	rb_replace_node(parent, &set->rb_node, root_node);
2125 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2126 	list_del(&entry->lru);
2127 	spin_unlock(&inode->i_lock);
2128 	nfs_access_free_entry(entry);
2129 }
2130 
2131 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2132 {
2133 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2134 	if (cache == NULL)
2135 		return;
2136 	RB_CLEAR_NODE(&cache->rb_node);
2137 	cache->jiffies = set->jiffies;
2138 	cache->cred = get_rpccred(set->cred);
2139 	cache->mask = set->mask;
2140 
2141 	nfs_access_add_rbtree(inode, cache);
2142 
2143 	/* Update accounting */
2144 	smp_mb__before_atomic_inc();
2145 	atomic_long_inc(&nfs_access_nr_entries);
2146 	smp_mb__after_atomic_inc();
2147 
2148 	/* Add inode to global LRU list */
2149 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2150 		spin_lock(&nfs_access_lru_lock);
2151 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2152 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2153 					&nfs_access_lru_list);
2154 		spin_unlock(&nfs_access_lru_lock);
2155 	}
2156 }
2157 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2158 
2159 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2160 {
2161 	entry->mask = 0;
2162 	if (access_result & NFS4_ACCESS_READ)
2163 		entry->mask |= MAY_READ;
2164 	if (access_result &
2165 	    (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
2166 		entry->mask |= MAY_WRITE;
2167 	if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
2168 		entry->mask |= MAY_EXEC;
2169 }
2170 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2171 
2172 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2173 {
2174 	struct nfs_access_entry cache;
2175 	int status;
2176 
2177 	status = nfs_access_get_cached(inode, cred, &cache);
2178 	if (status == 0)
2179 		goto out;
2180 
2181 	/* Be clever: ask server to check for all possible rights */
2182 	cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2183 	cache.cred = cred;
2184 	cache.jiffies = jiffies;
2185 	status = NFS_PROTO(inode)->access(inode, &cache);
2186 	if (status != 0) {
2187 		if (status == -ESTALE) {
2188 			nfs_zap_caches(inode);
2189 			if (!S_ISDIR(inode->i_mode))
2190 				set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2191 		}
2192 		return status;
2193 	}
2194 	nfs_access_add_cache(inode, &cache);
2195 out:
2196 	if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2197 		return 0;
2198 	return -EACCES;
2199 }
2200 
2201 static int nfs_open_permission_mask(int openflags)
2202 {
2203 	int mask = 0;
2204 
2205 	if (openflags & __FMODE_EXEC) {
2206 		/* ONLY check exec rights */
2207 		mask = MAY_EXEC;
2208 	} else {
2209 		if ((openflags & O_ACCMODE) != O_WRONLY)
2210 			mask |= MAY_READ;
2211 		if ((openflags & O_ACCMODE) != O_RDONLY)
2212 			mask |= MAY_WRITE;
2213 	}
2214 
2215 	return mask;
2216 }
2217 
2218 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2219 {
2220 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2221 }
2222 EXPORT_SYMBOL_GPL(nfs_may_open);
2223 
2224 int nfs_permission(struct inode *inode, int mask)
2225 {
2226 	struct rpc_cred *cred;
2227 	int res = 0;
2228 
2229 	if (mask & MAY_NOT_BLOCK)
2230 		return -ECHILD;
2231 
2232 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2233 
2234 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2235 		goto out;
2236 	/* Is this sys_access() ? */
2237 	if (mask & (MAY_ACCESS | MAY_CHDIR))
2238 		goto force_lookup;
2239 
2240 	switch (inode->i_mode & S_IFMT) {
2241 		case S_IFLNK:
2242 			goto out;
2243 		case S_IFREG:
2244 			/* NFSv4 has atomic_open... */
2245 			if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
2246 					&& (mask & MAY_OPEN)
2247 					&& !(mask & MAY_EXEC))
2248 				goto out;
2249 			break;
2250 		case S_IFDIR:
2251 			/*
2252 			 * Optimize away all write operations, since the server
2253 			 * will check permissions when we perform the op.
2254 			 */
2255 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2256 				goto out;
2257 	}
2258 
2259 force_lookup:
2260 	if (!NFS_PROTO(inode)->access)
2261 		goto out_notsup;
2262 
2263 	cred = rpc_lookup_cred();
2264 	if (!IS_ERR(cred)) {
2265 		res = nfs_do_access(inode, cred, mask);
2266 		put_rpccred(cred);
2267 	} else
2268 		res = PTR_ERR(cred);
2269 out:
2270 	if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
2271 		res = -EACCES;
2272 
2273 	dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
2274 		inode->i_sb->s_id, inode->i_ino, mask, res);
2275 	return res;
2276 out_notsup:
2277 	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2278 	if (res == 0)
2279 		res = generic_permission(inode, mask);
2280 	goto out;
2281 }
2282 EXPORT_SYMBOL_GPL(nfs_permission);
2283 
2284 /*
2285  * Local variables:
2286  *  version-control: t
2287  *  kept-new-versions: 5
2288  * End:
2289  */
2290