xref: /openbmc/linux/fs/nfs/dir.c (revision 4f48af45)
1 /*
2  *  linux/fs/nfs/dir.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  nfs directory handling functions
7  *
8  * 10 Apr 1996	Added silly rename for unlink	--okir
9  * 28 Sep 1996	Improved directory cache --okir
10  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
11  *              Re-implemented silly rename for unlink, newly implemented
12  *              silly rename for nfs_rename() following the suggestions
13  *              of Olaf Kirch (okir) found in this file.
14  *              Following Linus comments on my original hack, this version
15  *              depends only on the dcache stuff and doesn't touch the inode
16  *              layer (iput() and friends).
17  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
18  */
19 
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/smp_lock.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/sched.h>
37 
38 #include "nfs4_fs.h"
39 #include "delegation.h"
40 #include "iostat.h"
41 
42 /* #define NFS_DEBUG_VERBOSE 1 */
43 
44 static int nfs_opendir(struct inode *, struct file *);
45 static int nfs_readdir(struct file *, void *, filldir_t);
46 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
47 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *);
48 static int nfs_mkdir(struct inode *, struct dentry *, int);
49 static int nfs_rmdir(struct inode *, struct dentry *);
50 static int nfs_unlink(struct inode *, struct dentry *);
51 static int nfs_symlink(struct inode *, struct dentry *, const char *);
52 static int nfs_link(struct dentry *, struct inode *, struct dentry *);
53 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t);
54 static int nfs_rename(struct inode *, struct dentry *,
55 		      struct inode *, struct dentry *);
56 static int nfs_fsync_dir(struct file *, struct dentry *, int);
57 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
58 
59 const struct file_operations nfs_dir_operations = {
60 	.llseek		= nfs_llseek_dir,
61 	.read		= generic_read_dir,
62 	.readdir	= nfs_readdir,
63 	.open		= nfs_opendir,
64 	.release	= nfs_release,
65 	.fsync		= nfs_fsync_dir,
66 };
67 
68 const struct inode_operations nfs_dir_inode_operations = {
69 	.create		= nfs_create,
70 	.lookup		= nfs_lookup,
71 	.link		= nfs_link,
72 	.unlink		= nfs_unlink,
73 	.symlink	= nfs_symlink,
74 	.mkdir		= nfs_mkdir,
75 	.rmdir		= nfs_rmdir,
76 	.mknod		= nfs_mknod,
77 	.rename		= nfs_rename,
78 	.permission	= nfs_permission,
79 	.getattr	= nfs_getattr,
80 	.setattr	= nfs_setattr,
81 };
82 
83 #ifdef CONFIG_NFS_V3
84 const struct inode_operations nfs3_dir_inode_operations = {
85 	.create		= nfs_create,
86 	.lookup		= nfs_lookup,
87 	.link		= nfs_link,
88 	.unlink		= nfs_unlink,
89 	.symlink	= nfs_symlink,
90 	.mkdir		= nfs_mkdir,
91 	.rmdir		= nfs_rmdir,
92 	.mknod		= nfs_mknod,
93 	.rename		= nfs_rename,
94 	.permission	= nfs_permission,
95 	.getattr	= nfs_getattr,
96 	.setattr	= nfs_setattr,
97 	.listxattr	= nfs3_listxattr,
98 	.getxattr	= nfs3_getxattr,
99 	.setxattr	= nfs3_setxattr,
100 	.removexattr	= nfs3_removexattr,
101 };
102 #endif  /* CONFIG_NFS_V3 */
103 
104 #ifdef CONFIG_NFS_V4
105 
106 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
107 const struct inode_operations nfs4_dir_inode_operations = {
108 	.create		= nfs_create,
109 	.lookup		= nfs_atomic_lookup,
110 	.link		= nfs_link,
111 	.unlink		= nfs_unlink,
112 	.symlink	= nfs_symlink,
113 	.mkdir		= nfs_mkdir,
114 	.rmdir		= nfs_rmdir,
115 	.mknod		= nfs_mknod,
116 	.rename		= nfs_rename,
117 	.permission	= nfs_permission,
118 	.getattr	= nfs_getattr,
119 	.setattr	= nfs_setattr,
120 	.getxattr       = nfs4_getxattr,
121 	.setxattr       = nfs4_setxattr,
122 	.listxattr      = nfs4_listxattr,
123 };
124 
125 #endif /* CONFIG_NFS_V4 */
126 
127 /*
128  * Open file
129  */
130 static int
131 nfs_opendir(struct inode *inode, struct file *filp)
132 {
133 	int res;
134 
135 	dfprintk(VFS, "NFS: opendir(%s/%ld)\n",
136 			inode->i_sb->s_id, inode->i_ino);
137 
138 	lock_kernel();
139 	/* Call generic open code in order to cache credentials */
140 	res = nfs_open(inode, filp);
141 	unlock_kernel();
142 	return res;
143 }
144 
145 typedef __be32 * (*decode_dirent_t)(__be32 *, struct nfs_entry *, int);
146 typedef struct {
147 	struct file	*file;
148 	struct page	*page;
149 	unsigned long	page_index;
150 	__be32		*ptr;
151 	u64		*dir_cookie;
152 	loff_t		current_index;
153 	struct nfs_entry *entry;
154 	decode_dirent_t	decode;
155 	int		plus;
156 	int		error;
157 	unsigned long	timestamp;
158 	int		timestamp_valid;
159 } nfs_readdir_descriptor_t;
160 
161 /* Now we cache directories properly, by stuffing the dirent
162  * data directly in the page cache.
163  *
164  * Inode invalidation due to refresh etc. takes care of
165  * _everything_, no sloppy entry flushing logic, no extraneous
166  * copying, network direct to page cache, the way it was meant
167  * to be.
168  *
169  * NOTE: Dirent information verification is done always by the
170  *	 page-in of the RPC reply, nowhere else, this simplies
171  *	 things substantially.
172  */
173 static
174 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page *page)
175 {
176 	struct file	*file = desc->file;
177 	struct inode	*inode = file->f_path.dentry->d_inode;
178 	struct rpc_cred	*cred = nfs_file_cred(file);
179 	unsigned long	timestamp;
180 	int		error;
181 
182 	dfprintk(DIRCACHE, "NFS: %s: reading cookie %Lu into page %lu\n",
183 			__FUNCTION__, (long long)desc->entry->cookie,
184 			page->index);
185 
186  again:
187 	timestamp = jiffies;
188 	error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, desc->entry->cookie, page,
189 					  NFS_SERVER(inode)->dtsize, desc->plus);
190 	if (error < 0) {
191 		/* We requested READDIRPLUS, but the server doesn't grok it */
192 		if (error == -ENOTSUPP && desc->plus) {
193 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
194 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_FLAGS(inode));
195 			desc->plus = 0;
196 			goto again;
197 		}
198 		goto error;
199 	}
200 	desc->timestamp = timestamp;
201 	desc->timestamp_valid = 1;
202 	SetPageUptodate(page);
203 	/* Ensure consistent page alignment of the data.
204 	 * Note: assumes we have exclusive access to this mapping either
205 	 *	 through inode->i_mutex or some other mechanism.
206 	 */
207 	if (page->index == 0 && invalidate_inode_pages2_range(inode->i_mapping, PAGE_CACHE_SIZE, -1) < 0) {
208 		/* Should never happen */
209 		nfs_zap_mapping(inode, inode->i_mapping);
210 	}
211 	unlock_page(page);
212 	return 0;
213  error:
214 	unlock_page(page);
215 	desc->error = error;
216 	return -EIO;
217 }
218 
219 static inline
220 int dir_decode(nfs_readdir_descriptor_t *desc)
221 {
222 	__be32	*p = desc->ptr;
223 	p = desc->decode(p, desc->entry, desc->plus);
224 	if (IS_ERR(p))
225 		return PTR_ERR(p);
226 	desc->ptr = p;
227 	if (desc->timestamp_valid)
228 		desc->entry->fattr->time_start = desc->timestamp;
229 	else
230 		desc->entry->fattr->valid &= ~NFS_ATTR_FATTR;
231 	return 0;
232 }
233 
234 static inline
235 void dir_page_release(nfs_readdir_descriptor_t *desc)
236 {
237 	kunmap(desc->page);
238 	page_cache_release(desc->page);
239 	desc->page = NULL;
240 	desc->ptr = NULL;
241 }
242 
243 /*
244  * Given a pointer to a buffer that has already been filled by a call
245  * to readdir, find the next entry with cookie '*desc->dir_cookie'.
246  *
247  * If the end of the buffer has been reached, return -EAGAIN, if not,
248  * return the offset within the buffer of the next entry to be
249  * read.
250  */
251 static inline
252 int find_dirent(nfs_readdir_descriptor_t *desc)
253 {
254 	struct nfs_entry *entry = desc->entry;
255 	int		loop_count = 0,
256 			status;
257 
258 	while((status = dir_decode(desc)) == 0) {
259 		dfprintk(DIRCACHE, "NFS: %s: examining cookie %Lu\n",
260 				__FUNCTION__, (unsigned long long)entry->cookie);
261 		if (entry->prev_cookie == *desc->dir_cookie)
262 			break;
263 		if (loop_count++ > 200) {
264 			loop_count = 0;
265 			schedule();
266 		}
267 	}
268 	return status;
269 }
270 
271 /*
272  * Given a pointer to a buffer that has already been filled by a call
273  * to readdir, find the entry at offset 'desc->file->f_pos'.
274  *
275  * If the end of the buffer has been reached, return -EAGAIN, if not,
276  * return the offset within the buffer of the next entry to be
277  * read.
278  */
279 static inline
280 int find_dirent_index(nfs_readdir_descriptor_t *desc)
281 {
282 	struct nfs_entry *entry = desc->entry;
283 	int		loop_count = 0,
284 			status;
285 
286 	for(;;) {
287 		status = dir_decode(desc);
288 		if (status)
289 			break;
290 
291 		dfprintk(DIRCACHE, "NFS: found cookie %Lu at index %Ld\n",
292 				(unsigned long long)entry->cookie, desc->current_index);
293 
294 		if (desc->file->f_pos == desc->current_index) {
295 			*desc->dir_cookie = entry->cookie;
296 			break;
297 		}
298 		desc->current_index++;
299 		if (loop_count++ > 200) {
300 			loop_count = 0;
301 			schedule();
302 		}
303 	}
304 	return status;
305 }
306 
307 /*
308  * Find the given page, and call find_dirent() or find_dirent_index in
309  * order to try to return the next entry.
310  */
311 static inline
312 int find_dirent_page(nfs_readdir_descriptor_t *desc)
313 {
314 	struct inode	*inode = desc->file->f_path.dentry->d_inode;
315 	struct page	*page;
316 	int		status;
317 
318 	dfprintk(DIRCACHE, "NFS: %s: searching page %ld for target %Lu\n",
319 			__FUNCTION__, desc->page_index,
320 			(long long) *desc->dir_cookie);
321 
322 	/* If we find the page in the page_cache, we cannot be sure
323 	 * how fresh the data is, so we will ignore readdir_plus attributes.
324 	 */
325 	desc->timestamp_valid = 0;
326 	page = read_cache_page(inode->i_mapping, desc->page_index,
327 			       (filler_t *)nfs_readdir_filler, desc);
328 	if (IS_ERR(page)) {
329 		status = PTR_ERR(page);
330 		goto out;
331 	}
332 
333 	/* NOTE: Someone else may have changed the READDIRPLUS flag */
334 	desc->page = page;
335 	desc->ptr = kmap(page);		/* matching kunmap in nfs_do_filldir */
336 	if (*desc->dir_cookie != 0)
337 		status = find_dirent(desc);
338 	else
339 		status = find_dirent_index(desc);
340 	if (status < 0)
341 		dir_page_release(desc);
342  out:
343 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, status);
344 	return status;
345 }
346 
347 /*
348  * Recurse through the page cache pages, and return a
349  * filled nfs_entry structure of the next directory entry if possible.
350  *
351  * The target for the search is '*desc->dir_cookie' if non-0,
352  * 'desc->file->f_pos' otherwise
353  */
354 static inline
355 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
356 {
357 	int		loop_count = 0;
358 	int		res;
359 
360 	/* Always search-by-index from the beginning of the cache */
361 	if (*desc->dir_cookie == 0) {
362 		dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for offset %Ld\n",
363 				(long long)desc->file->f_pos);
364 		desc->page_index = 0;
365 		desc->entry->cookie = desc->entry->prev_cookie = 0;
366 		desc->entry->eof = 0;
367 		desc->current_index = 0;
368 	} else
369 		dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for cookie %Lu\n",
370 				(unsigned long long)*desc->dir_cookie);
371 
372 	for (;;) {
373 		res = find_dirent_page(desc);
374 		if (res != -EAGAIN)
375 			break;
376 		/* Align to beginning of next page */
377 		desc->page_index ++;
378 		if (loop_count++ > 200) {
379 			loop_count = 0;
380 			schedule();
381 		}
382 	}
383 
384 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, res);
385 	return res;
386 }
387 
388 static inline unsigned int dt_type(struct inode *inode)
389 {
390 	return (inode->i_mode >> 12) & 15;
391 }
392 
393 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc);
394 
395 /*
396  * Once we've found the start of the dirent within a page: fill 'er up...
397  */
398 static
399 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
400 		   filldir_t filldir)
401 {
402 	struct file	*file = desc->file;
403 	struct nfs_entry *entry = desc->entry;
404 	struct dentry	*dentry = NULL;
405 	u64		fileid;
406 	int		loop_count = 0,
407 			res;
408 
409 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling starting @ cookie %Lu\n",
410 			(unsigned long long)entry->cookie);
411 
412 	for(;;) {
413 		unsigned d_type = DT_UNKNOWN;
414 		/* Note: entry->prev_cookie contains the cookie for
415 		 *	 retrieving the current dirent on the server */
416 		fileid = entry->ino;
417 
418 		/* Get a dentry if we have one */
419 		if (dentry != NULL)
420 			dput(dentry);
421 		dentry = nfs_readdir_lookup(desc);
422 
423 		/* Use readdirplus info */
424 		if (dentry != NULL && dentry->d_inode != NULL) {
425 			d_type = dt_type(dentry->d_inode);
426 			fileid = NFS_FILEID(dentry->d_inode);
427 		}
428 
429 		res = filldir(dirent, entry->name, entry->len,
430 			      file->f_pos, fileid, d_type);
431 		if (res < 0)
432 			break;
433 		file->f_pos++;
434 		*desc->dir_cookie = entry->cookie;
435 		if (dir_decode(desc) != 0) {
436 			desc->page_index ++;
437 			break;
438 		}
439 		if (loop_count++ > 200) {
440 			loop_count = 0;
441 			schedule();
442 		}
443 	}
444 	dir_page_release(desc);
445 	if (dentry != NULL)
446 		dput(dentry);
447 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
448 			(unsigned long long)*desc->dir_cookie, res);
449 	return res;
450 }
451 
452 /*
453  * If we cannot find a cookie in our cache, we suspect that this is
454  * because it points to a deleted file, so we ask the server to return
455  * whatever it thinks is the next entry. We then feed this to filldir.
456  * If all goes well, we should then be able to find our way round the
457  * cache on the next call to readdir_search_pagecache();
458  *
459  * NOTE: we cannot add the anonymous page to the pagecache because
460  *	 the data it contains might not be page aligned. Besides,
461  *	 we should already have a complete representation of the
462  *	 directory in the page cache by the time we get here.
463  */
464 static inline
465 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
466 		     filldir_t filldir)
467 {
468 	struct file	*file = desc->file;
469 	struct inode	*inode = file->f_path.dentry->d_inode;
470 	struct rpc_cred	*cred = nfs_file_cred(file);
471 	struct page	*page = NULL;
472 	int		status;
473 	unsigned long	timestamp;
474 
475 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
476 			(unsigned long long)*desc->dir_cookie);
477 
478 	page = alloc_page(GFP_HIGHUSER);
479 	if (!page) {
480 		status = -ENOMEM;
481 		goto out;
482 	}
483 	timestamp = jiffies;
484 	desc->error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, *desc->dir_cookie,
485 						page,
486 						NFS_SERVER(inode)->dtsize,
487 						desc->plus);
488 	desc->page = page;
489 	desc->ptr = kmap(page);		/* matching kunmap in nfs_do_filldir */
490 	if (desc->error >= 0) {
491 		desc->timestamp = timestamp;
492 		desc->timestamp_valid = 1;
493 		if ((status = dir_decode(desc)) == 0)
494 			desc->entry->prev_cookie = *desc->dir_cookie;
495 	} else
496 		status = -EIO;
497 	if (status < 0)
498 		goto out_release;
499 
500 	status = nfs_do_filldir(desc, dirent, filldir);
501 
502 	/* Reset read descriptor so it searches the page cache from
503 	 * the start upon the next call to readdir_search_pagecache() */
504 	desc->page_index = 0;
505 	desc->entry->cookie = desc->entry->prev_cookie = 0;
506 	desc->entry->eof = 0;
507  out:
508 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
509 			__FUNCTION__, status);
510 	return status;
511  out_release:
512 	dir_page_release(desc);
513 	goto out;
514 }
515 
516 /* The file offset position represents the dirent entry number.  A
517    last cookie cache takes care of the common case of reading the
518    whole directory.
519  */
520 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
521 {
522 	struct dentry	*dentry = filp->f_path.dentry;
523 	struct inode	*inode = dentry->d_inode;
524 	nfs_readdir_descriptor_t my_desc,
525 			*desc = &my_desc;
526 	struct nfs_entry my_entry;
527 	struct nfs_fh	 fh;
528 	struct nfs_fattr fattr;
529 	long		res;
530 
531 	dfprintk(VFS, "NFS: readdir(%s/%s) starting at cookie %Lu\n",
532 			dentry->d_parent->d_name.name, dentry->d_name.name,
533 			(long long)filp->f_pos);
534 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
535 
536 	lock_kernel();
537 
538 	res = nfs_revalidate_mapping_nolock(inode, filp->f_mapping);
539 	if (res < 0) {
540 		unlock_kernel();
541 		return res;
542 	}
543 
544 	/*
545 	 * filp->f_pos points to the dirent entry number.
546 	 * *desc->dir_cookie has the cookie for the next entry. We have
547 	 * to either find the entry with the appropriate number or
548 	 * revalidate the cookie.
549 	 */
550 	memset(desc, 0, sizeof(*desc));
551 
552 	desc->file = filp;
553 	desc->dir_cookie = &nfs_file_open_context(filp)->dir_cookie;
554 	desc->decode = NFS_PROTO(inode)->decode_dirent;
555 	desc->plus = NFS_USE_READDIRPLUS(inode);
556 
557 	my_entry.cookie = my_entry.prev_cookie = 0;
558 	my_entry.eof = 0;
559 	my_entry.fh = &fh;
560 	my_entry.fattr = &fattr;
561 	nfs_fattr_init(&fattr);
562 	desc->entry = &my_entry;
563 
564 	while(!desc->entry->eof) {
565 		res = readdir_search_pagecache(desc);
566 
567 		if (res == -EBADCOOKIE) {
568 			/* This means either end of directory */
569 			if (*desc->dir_cookie && desc->entry->cookie != *desc->dir_cookie) {
570 				/* Or that the server has 'lost' a cookie */
571 				res = uncached_readdir(desc, dirent, filldir);
572 				if (res >= 0)
573 					continue;
574 			}
575 			res = 0;
576 			break;
577 		}
578 		if (res == -ETOOSMALL && desc->plus) {
579 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_FLAGS(inode));
580 			nfs_zap_caches(inode);
581 			desc->plus = 0;
582 			desc->entry->eof = 0;
583 			continue;
584 		}
585 		if (res < 0)
586 			break;
587 
588 		res = nfs_do_filldir(desc, dirent, filldir);
589 		if (res < 0) {
590 			res = 0;
591 			break;
592 		}
593 	}
594 	unlock_kernel();
595 	if (res > 0)
596 		res = 0;
597 	dfprintk(VFS, "NFS: readdir(%s/%s) returns %ld\n",
598 			dentry->d_parent->d_name.name, dentry->d_name.name,
599 			res);
600 	return res;
601 }
602 
603 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
604 {
605 	mutex_lock(&filp->f_path.dentry->d_inode->i_mutex);
606 	switch (origin) {
607 		case 1:
608 			offset += filp->f_pos;
609 		case 0:
610 			if (offset >= 0)
611 				break;
612 		default:
613 			offset = -EINVAL;
614 			goto out;
615 	}
616 	if (offset != filp->f_pos) {
617 		filp->f_pos = offset;
618 		nfs_file_open_context(filp)->dir_cookie = 0;
619 	}
620 out:
621 	mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex);
622 	return offset;
623 }
624 
625 /*
626  * All directory operations under NFS are synchronous, so fsync()
627  * is a dummy operation.
628  */
629 static int nfs_fsync_dir(struct file *filp, struct dentry *dentry, int datasync)
630 {
631 	dfprintk(VFS, "NFS: fsync_dir(%s/%s) datasync %d\n",
632 			dentry->d_parent->d_name.name, dentry->d_name.name,
633 			datasync);
634 
635 	return 0;
636 }
637 
638 /*
639  * A check for whether or not the parent directory has changed.
640  * In the case it has, we assume that the dentries are untrustworthy
641  * and may need to be looked up again.
642  */
643 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
644 {
645 	if (IS_ROOT(dentry))
646 		return 1;
647 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
648 		return 0;
649 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
650 	if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
651 		return 0;
652 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
653 		return 0;
654 	return 1;
655 }
656 
657 /*
658  * Return the intent data that applies to this particular path component
659  *
660  * Note that the current set of intents only apply to the very last
661  * component of the path.
662  * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
663  */
664 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask)
665 {
666 	if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT))
667 		return 0;
668 	return nd->flags & mask;
669 }
670 
671 /*
672  * Use intent information to check whether or not we're going to do
673  * an O_EXCL create using this path component.
674  */
675 static int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
676 {
677 	if (NFS_PROTO(dir)->version == 2)
678 		return 0;
679 	if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_CREATE) == 0)
680 		return 0;
681 	return (nd->intent.open.flags & O_EXCL) != 0;
682 }
683 
684 /*
685  * Inode and filehandle revalidation for lookups.
686  *
687  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
688  * or if the intent information indicates that we're about to open this
689  * particular file and the "nocto" mount flag is not set.
690  *
691  */
692 static inline
693 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
694 {
695 	struct nfs_server *server = NFS_SERVER(inode);
696 
697 	if (nd != NULL) {
698 		/* VFS wants an on-the-wire revalidation */
699 		if (nd->flags & LOOKUP_REVAL)
700 			goto out_force;
701 		/* This is an open(2) */
702 		if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
703 				!(server->flags & NFS_MOUNT_NOCTO) &&
704 				(S_ISREG(inode->i_mode) ||
705 				 S_ISDIR(inode->i_mode)))
706 			goto out_force;
707 		return 0;
708 	}
709 	return nfs_revalidate_inode(server, inode);
710 out_force:
711 	return __nfs_revalidate_inode(server, inode);
712 }
713 
714 /*
715  * We judge how long we want to trust negative
716  * dentries by looking at the parent inode mtime.
717  *
718  * If parent mtime has changed, we revalidate, else we wait for a
719  * period corresponding to the parent's attribute cache timeout value.
720  */
721 static inline
722 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
723 		       struct nameidata *nd)
724 {
725 	/* Don't revalidate a negative dentry if we're creating a new file */
726 	if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
727 		return 0;
728 	return !nfs_check_verifier(dir, dentry);
729 }
730 
731 /*
732  * This is called every time the dcache has a lookup hit,
733  * and we should check whether we can really trust that
734  * lookup.
735  *
736  * NOTE! The hit can be a negative hit too, don't assume
737  * we have an inode!
738  *
739  * If the parent directory is seen to have changed, we throw out the
740  * cached dentry and do a new lookup.
741  */
742 static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd)
743 {
744 	struct inode *dir;
745 	struct inode *inode;
746 	struct dentry *parent;
747 	int error;
748 	struct nfs_fh fhandle;
749 	struct nfs_fattr fattr;
750 
751 	parent = dget_parent(dentry);
752 	lock_kernel();
753 	dir = parent->d_inode;
754 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
755 	inode = dentry->d_inode;
756 
757 	if (!inode) {
758 		if (nfs_neg_need_reval(dir, dentry, nd))
759 			goto out_bad;
760 		goto out_valid;
761 	}
762 
763 	if (is_bad_inode(inode)) {
764 		dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
765 				__FUNCTION__, dentry->d_parent->d_name.name,
766 				dentry->d_name.name);
767 		goto out_bad;
768 	}
769 
770 	/* Force a full look up iff the parent directory has changed */
771 	if (!nfs_is_exclusive_create(dir, nd) && nfs_check_verifier(dir, dentry)) {
772 		if (nfs_lookup_verify_inode(inode, nd))
773 			goto out_zap_parent;
774 		goto out_valid;
775 	}
776 
777 	if (NFS_STALE(inode))
778 		goto out_bad;
779 
780 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
781 	if (error)
782 		goto out_bad;
783 	if (nfs_compare_fh(NFS_FH(inode), &fhandle))
784 		goto out_bad;
785 	if ((error = nfs_refresh_inode(inode, &fattr)) != 0)
786 		goto out_bad;
787 
788 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
789  out_valid:
790 	unlock_kernel();
791 	dput(parent);
792 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
793 			__FUNCTION__, dentry->d_parent->d_name.name,
794 			dentry->d_name.name);
795 	return 1;
796 out_zap_parent:
797 	nfs_zap_caches(dir);
798  out_bad:
799 	nfs_mark_for_revalidate(dir);
800 	if (inode && S_ISDIR(inode->i_mode)) {
801 		/* Purge readdir caches. */
802 		nfs_zap_caches(inode);
803 		/* If we have submounts, don't unhash ! */
804 		if (have_submounts(dentry))
805 			goto out_valid;
806 		shrink_dcache_parent(dentry);
807 	}
808 	d_drop(dentry);
809 	unlock_kernel();
810 	dput(parent);
811 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
812 			__FUNCTION__, dentry->d_parent->d_name.name,
813 			dentry->d_name.name);
814 	return 0;
815 }
816 
817 /*
818  * This is called from dput() when d_count is going to 0.
819  */
820 static int nfs_dentry_delete(struct dentry *dentry)
821 {
822 	dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
823 		dentry->d_parent->d_name.name, dentry->d_name.name,
824 		dentry->d_flags);
825 
826 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
827 		/* Unhash it, so that ->d_iput() would be called */
828 		return 1;
829 	}
830 	if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
831 		/* Unhash it, so that ancestors of killed async unlink
832 		 * files will be cleaned up during umount */
833 		return 1;
834 	}
835 	return 0;
836 
837 }
838 
839 /*
840  * Called when the dentry loses inode.
841  * We use it to clean up silly-renamed files.
842  */
843 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
844 {
845 	nfs_inode_return_delegation(inode);
846 	if (S_ISDIR(inode->i_mode))
847 		/* drop any readdir cache as it could easily be old */
848 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
849 
850 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
851 		lock_kernel();
852 		drop_nlink(inode);
853 		nfs_complete_unlink(dentry, inode);
854 		unlock_kernel();
855 	}
856 	iput(inode);
857 }
858 
859 struct dentry_operations nfs_dentry_operations = {
860 	.d_revalidate	= nfs_lookup_revalidate,
861 	.d_delete	= nfs_dentry_delete,
862 	.d_iput		= nfs_dentry_iput,
863 };
864 
865 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
866 {
867 	struct dentry *res;
868 	struct inode *inode = NULL;
869 	int error;
870 	struct nfs_fh fhandle;
871 	struct nfs_fattr fattr;
872 
873 	dfprintk(VFS, "NFS: lookup(%s/%s)\n",
874 		dentry->d_parent->d_name.name, dentry->d_name.name);
875 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
876 
877 	res = ERR_PTR(-ENAMETOOLONG);
878 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
879 		goto out;
880 
881 	res = ERR_PTR(-ENOMEM);
882 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
883 
884 	lock_kernel();
885 
886 	/*
887 	 * If we're doing an exclusive create, optimize away the lookup
888 	 * but don't hash the dentry.
889 	 */
890 	if (nfs_is_exclusive_create(dir, nd)) {
891 		d_instantiate(dentry, NULL);
892 		res = NULL;
893 		goto out_unlock;
894 	}
895 
896 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
897 	if (error == -ENOENT)
898 		goto no_entry;
899 	if (error < 0) {
900 		res = ERR_PTR(error);
901 		goto out_unlock;
902 	}
903 	inode = nfs_fhget(dentry->d_sb, &fhandle, &fattr);
904 	res = (struct dentry *)inode;
905 	if (IS_ERR(res))
906 		goto out_unlock;
907 
908 no_entry:
909 	res = d_materialise_unique(dentry, inode);
910 	if (res != NULL) {
911 		if (IS_ERR(res))
912 			goto out_unlock;
913 		dentry = res;
914 	}
915 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
916 out_unlock:
917 	unlock_kernel();
918 out:
919 	return res;
920 }
921 
922 #ifdef CONFIG_NFS_V4
923 static int nfs_open_revalidate(struct dentry *, struct nameidata *);
924 
925 struct dentry_operations nfs4_dentry_operations = {
926 	.d_revalidate	= nfs_open_revalidate,
927 	.d_delete	= nfs_dentry_delete,
928 	.d_iput		= nfs_dentry_iput,
929 };
930 
931 /*
932  * Use intent information to determine whether we need to substitute
933  * the NFSv4-style stateful OPEN for the LOOKUP call
934  */
935 static int is_atomic_open(struct inode *dir, struct nameidata *nd)
936 {
937 	if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
938 		return 0;
939 	/* NFS does not (yet) have a stateful open for directories */
940 	if (nd->flags & LOOKUP_DIRECTORY)
941 		return 0;
942 	/* Are we trying to write to a read only partition? */
943 	if (IS_RDONLY(dir) && (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE)))
944 		return 0;
945 	return 1;
946 }
947 
948 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
949 {
950 	struct dentry *res = NULL;
951 	int error;
952 
953 	dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
954 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
955 
956 	/* Check that we are indeed trying to open this file */
957 	if (!is_atomic_open(dir, nd))
958 		goto no_open;
959 
960 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
961 		res = ERR_PTR(-ENAMETOOLONG);
962 		goto out;
963 	}
964 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
965 
966 	/* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash
967 	 * the dentry. */
968 	if (nd->intent.open.flags & O_EXCL) {
969 		d_instantiate(dentry, NULL);
970 		goto out;
971 	}
972 
973 	/* Open the file on the server */
974 	lock_kernel();
975 	res = nfs4_atomic_open(dir, dentry, nd);
976 	unlock_kernel();
977 	if (IS_ERR(res)) {
978 		error = PTR_ERR(res);
979 		switch (error) {
980 			/* Make a negative dentry */
981 			case -ENOENT:
982 				res = NULL;
983 				goto out;
984 			/* This turned out not to be a regular file */
985 			case -EISDIR:
986 			case -ENOTDIR:
987 				goto no_open;
988 			case -ELOOP:
989 				if (!(nd->intent.open.flags & O_NOFOLLOW))
990 					goto no_open;
991 			/* case -EINVAL: */
992 			default:
993 				goto out;
994 		}
995 	} else if (res != NULL)
996 		dentry = res;
997 out:
998 	return res;
999 no_open:
1000 	return nfs_lookup(dir, dentry, nd);
1001 }
1002 
1003 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1004 {
1005 	struct dentry *parent = NULL;
1006 	struct inode *inode = dentry->d_inode;
1007 	struct inode *dir;
1008 	int openflags, ret = 0;
1009 
1010 	parent = dget_parent(dentry);
1011 	dir = parent->d_inode;
1012 	if (!is_atomic_open(dir, nd))
1013 		goto no_open;
1014 	/* We can't create new files in nfs_open_revalidate(), so we
1015 	 * optimize away revalidation of negative dentries.
1016 	 */
1017 	if (inode == NULL) {
1018 		if (!nfs_neg_need_reval(dir, dentry, nd))
1019 			ret = 1;
1020 		goto out;
1021 	}
1022 
1023 	/* NFS only supports OPEN on regular files */
1024 	if (!S_ISREG(inode->i_mode))
1025 		goto no_open;
1026 	openflags = nd->intent.open.flags;
1027 	/* We cannot do exclusive creation on a positive dentry */
1028 	if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1029 		goto no_open;
1030 	/* We can't create new files, or truncate existing ones here */
1031 	openflags &= ~(O_CREAT|O_TRUNC);
1032 
1033 	/*
1034 	 * Note: we're not holding inode->i_mutex and so may be racing with
1035 	 * operations that change the directory. We therefore save the
1036 	 * change attribute *before* we do the RPC call.
1037 	 */
1038 	lock_kernel();
1039 	ret = nfs4_open_revalidate(dir, dentry, openflags, nd);
1040 	unlock_kernel();
1041 out:
1042 	dput(parent);
1043 	if (!ret)
1044 		d_drop(dentry);
1045 	return ret;
1046 no_open:
1047 	dput(parent);
1048 	if (inode != NULL && nfs_have_delegation(inode, FMODE_READ))
1049 		return 1;
1050 	return nfs_lookup_revalidate(dentry, nd);
1051 }
1052 #endif /* CONFIG_NFSV4 */
1053 
1054 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc)
1055 {
1056 	struct dentry *parent = desc->file->f_path.dentry;
1057 	struct inode *dir = parent->d_inode;
1058 	struct nfs_entry *entry = desc->entry;
1059 	struct dentry *dentry, *alias;
1060 	struct qstr name = {
1061 		.name = entry->name,
1062 		.len = entry->len,
1063 	};
1064 	struct inode *inode;
1065 	unsigned long verf = nfs_save_change_attribute(dir);
1066 
1067 	switch (name.len) {
1068 		case 2:
1069 			if (name.name[0] == '.' && name.name[1] == '.')
1070 				return dget_parent(parent);
1071 			break;
1072 		case 1:
1073 			if (name.name[0] == '.')
1074 				return dget(parent);
1075 	}
1076 
1077 	spin_lock(&dir->i_lock);
1078 	if (NFS_I(dir)->cache_validity & NFS_INO_INVALID_DATA) {
1079 		spin_unlock(&dir->i_lock);
1080 		return NULL;
1081 	}
1082 	spin_unlock(&dir->i_lock);
1083 
1084 	name.hash = full_name_hash(name.name, name.len);
1085 	dentry = d_lookup(parent, &name);
1086 	if (dentry != NULL) {
1087 		/* Is this a positive dentry that matches the readdir info? */
1088 		if (dentry->d_inode != NULL &&
1089 				(NFS_FILEID(dentry->d_inode) == entry->ino ||
1090 				d_mountpoint(dentry))) {
1091 			if (!desc->plus || entry->fh->size == 0)
1092 				return dentry;
1093 			if (nfs_compare_fh(NFS_FH(dentry->d_inode),
1094 						entry->fh) == 0)
1095 				goto out_renew;
1096 		}
1097 		/* No, so d_drop to allow one to be created */
1098 		d_drop(dentry);
1099 		dput(dentry);
1100 	}
1101 	if (!desc->plus || !(entry->fattr->valid & NFS_ATTR_FATTR))
1102 		return NULL;
1103 	if (name.len > NFS_SERVER(dir)->namelen)
1104 		return NULL;
1105 	/* Note: caller is already holding the dir->i_mutex! */
1106 	dentry = d_alloc(parent, &name);
1107 	if (dentry == NULL)
1108 		return NULL;
1109 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1110 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
1111 	if (IS_ERR(inode)) {
1112 		dput(dentry);
1113 		return NULL;
1114 	}
1115 
1116 	alias = d_materialise_unique(dentry, inode);
1117 	if (alias != NULL) {
1118 		dput(dentry);
1119 		if (IS_ERR(alias))
1120 			return NULL;
1121 		dentry = alias;
1122 	}
1123 
1124 out_renew:
1125 	nfs_set_verifier(dentry, verf);
1126 	return dentry;
1127 }
1128 
1129 /*
1130  * Code common to create, mkdir, and mknod.
1131  */
1132 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1133 				struct nfs_fattr *fattr)
1134 {
1135 	struct dentry *parent = dget_parent(dentry);
1136 	struct inode *dir = parent->d_inode;
1137 	struct inode *inode;
1138 	int error = -EACCES;
1139 
1140 	d_drop(dentry);
1141 
1142 	/* We may have been initialized further down */
1143 	if (dentry->d_inode)
1144 		goto out;
1145 	if (fhandle->size == 0) {
1146 		error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1147 		if (error)
1148 			goto out_error;
1149 	}
1150 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1151 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1152 		struct nfs_server *server = NFS_SB(dentry->d_sb);
1153 		error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1154 		if (error < 0)
1155 			goto out_error;
1156 	}
1157 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1158 	error = PTR_ERR(inode);
1159 	if (IS_ERR(inode))
1160 		goto out_error;
1161 	d_add(dentry, inode);
1162 out:
1163 	dput(parent);
1164 	return 0;
1165 out_error:
1166 	nfs_mark_for_revalidate(dir);
1167 	dput(parent);
1168 	return error;
1169 }
1170 
1171 /*
1172  * Following a failed create operation, we drop the dentry rather
1173  * than retain a negative dentry. This avoids a problem in the event
1174  * that the operation succeeded on the server, but an error in the
1175  * reply path made it appear to have failed.
1176  */
1177 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode,
1178 		struct nameidata *nd)
1179 {
1180 	struct iattr attr;
1181 	int error;
1182 	int open_flags = 0;
1183 
1184 	dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1185 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1186 
1187 	attr.ia_mode = mode;
1188 	attr.ia_valid = ATTR_MODE;
1189 
1190 	if ((nd->flags & LOOKUP_CREATE) != 0)
1191 		open_flags = nd->intent.open.flags;
1192 
1193 	lock_kernel();
1194 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, nd);
1195 	if (error != 0)
1196 		goto out_err;
1197 	unlock_kernel();
1198 	return 0;
1199 out_err:
1200 	unlock_kernel();
1201 	d_drop(dentry);
1202 	return error;
1203 }
1204 
1205 /*
1206  * See comments for nfs_proc_create regarding failed operations.
1207  */
1208 static int
1209 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev)
1210 {
1211 	struct iattr attr;
1212 	int status;
1213 
1214 	dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1215 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1216 
1217 	if (!new_valid_dev(rdev))
1218 		return -EINVAL;
1219 
1220 	attr.ia_mode = mode;
1221 	attr.ia_valid = ATTR_MODE;
1222 
1223 	lock_kernel();
1224 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1225 	if (status != 0)
1226 		goto out_err;
1227 	unlock_kernel();
1228 	return 0;
1229 out_err:
1230 	unlock_kernel();
1231 	d_drop(dentry);
1232 	return status;
1233 }
1234 
1235 /*
1236  * See comments for nfs_proc_create regarding failed operations.
1237  */
1238 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1239 {
1240 	struct iattr attr;
1241 	int error;
1242 
1243 	dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1244 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1245 
1246 	attr.ia_valid = ATTR_MODE;
1247 	attr.ia_mode = mode | S_IFDIR;
1248 
1249 	lock_kernel();
1250 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1251 	if (error != 0)
1252 		goto out_err;
1253 	unlock_kernel();
1254 	return 0;
1255 out_err:
1256 	d_drop(dentry);
1257 	unlock_kernel();
1258 	return error;
1259 }
1260 
1261 static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1262 {
1263 	int error;
1264 
1265 	dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1266 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1267 
1268 	lock_kernel();
1269 	error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1270 	/* Ensure the VFS deletes this inode */
1271 	if (error == 0 && dentry->d_inode != NULL)
1272 		clear_nlink(dentry->d_inode);
1273 	unlock_kernel();
1274 
1275 	return error;
1276 }
1277 
1278 static int nfs_sillyrename(struct inode *dir, struct dentry *dentry)
1279 {
1280 	static unsigned int sillycounter;
1281 	const int      fileidsize  = sizeof(NFS_FILEID(dentry->d_inode))*2;
1282 	const int      countersize = sizeof(sillycounter)*2;
1283 	const int      slen        = sizeof(".nfs")+fileidsize+countersize-1;
1284 	char           silly[slen+1];
1285 	struct qstr    qsilly;
1286 	struct dentry *sdentry;
1287 	int            error = -EIO;
1288 
1289 	dfprintk(VFS, "NFS: silly-rename(%s/%s, ct=%d)\n",
1290 		dentry->d_parent->d_name.name, dentry->d_name.name,
1291 		atomic_read(&dentry->d_count));
1292 	nfs_inc_stats(dir, NFSIOS_SILLYRENAME);
1293 
1294 	/*
1295 	 * We don't allow a dentry to be silly-renamed twice.
1296 	 */
1297 	error = -EBUSY;
1298 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1299 		goto out;
1300 
1301 	sprintf(silly, ".nfs%*.*Lx",
1302 		fileidsize, fileidsize,
1303 		(unsigned long long)NFS_FILEID(dentry->d_inode));
1304 
1305 	/* Return delegation in anticipation of the rename */
1306 	nfs_inode_return_delegation(dentry->d_inode);
1307 
1308 	sdentry = NULL;
1309 	do {
1310 		char *suffix = silly + slen - countersize;
1311 
1312 		dput(sdentry);
1313 		sillycounter++;
1314 		sprintf(suffix, "%*.*x", countersize, countersize, sillycounter);
1315 
1316 		dfprintk(VFS, "NFS: trying to rename %s to %s\n",
1317 				dentry->d_name.name, silly);
1318 
1319 		sdentry = lookup_one_len(silly, dentry->d_parent, slen);
1320 		/*
1321 		 * N.B. Better to return EBUSY here ... it could be
1322 		 * dangerous to delete the file while it's in use.
1323 		 */
1324 		if (IS_ERR(sdentry))
1325 			goto out;
1326 	} while(sdentry->d_inode != NULL); /* need negative lookup */
1327 
1328 	qsilly.name = silly;
1329 	qsilly.len  = strlen(silly);
1330 	if (dentry->d_inode) {
1331 		error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1332 				dir, &qsilly);
1333 		nfs_mark_for_revalidate(dentry->d_inode);
1334 	} else
1335 		error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1336 				dir, &qsilly);
1337 	if (!error) {
1338 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1339 		d_move(dentry, sdentry);
1340 		error = nfs_async_unlink(dir, dentry);
1341  		/* If we return 0 we don't unlink */
1342 	}
1343 	dput(sdentry);
1344 out:
1345 	return error;
1346 }
1347 
1348 /*
1349  * Remove a file after making sure there are no pending writes,
1350  * and after checking that the file has only one user.
1351  *
1352  * We invalidate the attribute cache and free the inode prior to the operation
1353  * to avoid possible races if the server reuses the inode.
1354  */
1355 static int nfs_safe_remove(struct dentry *dentry)
1356 {
1357 	struct inode *dir = dentry->d_parent->d_inode;
1358 	struct inode *inode = dentry->d_inode;
1359 	int error = -EBUSY;
1360 
1361 	dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1362 		dentry->d_parent->d_name.name, dentry->d_name.name);
1363 
1364 	/* If the dentry was sillyrenamed, we simply call d_delete() */
1365 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1366 		error = 0;
1367 		goto out;
1368 	}
1369 
1370 	if (inode != NULL) {
1371 		nfs_inode_return_delegation(inode);
1372 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1373 		/* The VFS may want to delete this inode */
1374 		if (error == 0)
1375 			drop_nlink(inode);
1376 		nfs_mark_for_revalidate(inode);
1377 	} else
1378 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1379 out:
1380 	return error;
1381 }
1382 
1383 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1384  *  belongs to an active ".nfs..." file and we return -EBUSY.
1385  *
1386  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1387  */
1388 static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1389 {
1390 	int error;
1391 	int need_rehash = 0;
1392 
1393 	dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1394 		dir->i_ino, dentry->d_name.name);
1395 
1396 	lock_kernel();
1397 	spin_lock(&dcache_lock);
1398 	spin_lock(&dentry->d_lock);
1399 	if (atomic_read(&dentry->d_count) > 1) {
1400 		spin_unlock(&dentry->d_lock);
1401 		spin_unlock(&dcache_lock);
1402 		/* Start asynchronous writeout of the inode */
1403 		write_inode_now(dentry->d_inode, 0);
1404 		error = nfs_sillyrename(dir, dentry);
1405 		unlock_kernel();
1406 		return error;
1407 	}
1408 	if (!d_unhashed(dentry)) {
1409 		__d_drop(dentry);
1410 		need_rehash = 1;
1411 	}
1412 	spin_unlock(&dentry->d_lock);
1413 	spin_unlock(&dcache_lock);
1414 	error = nfs_safe_remove(dentry);
1415 	if (!error) {
1416 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1417 	} else if (need_rehash)
1418 		d_rehash(dentry);
1419 	unlock_kernel();
1420 	return error;
1421 }
1422 
1423 /*
1424  * To create a symbolic link, most file systems instantiate a new inode,
1425  * add a page to it containing the path, then write it out to the disk
1426  * using prepare_write/commit_write.
1427  *
1428  * Unfortunately the NFS client can't create the in-core inode first
1429  * because it needs a file handle to create an in-core inode (see
1430  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1431  * symlink request has completed on the server.
1432  *
1433  * So instead we allocate a raw page, copy the symname into it, then do
1434  * the SYMLINK request with the page as the buffer.  If it succeeds, we
1435  * now have a new file handle and can instantiate an in-core NFS inode
1436  * and move the raw page into its mapping.
1437  */
1438 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1439 {
1440 	struct pagevec lru_pvec;
1441 	struct page *page;
1442 	char *kaddr;
1443 	struct iattr attr;
1444 	unsigned int pathlen = strlen(symname);
1445 	int error;
1446 
1447 	dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1448 		dir->i_ino, dentry->d_name.name, symname);
1449 
1450 	if (pathlen > PAGE_SIZE)
1451 		return -ENAMETOOLONG;
1452 
1453 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
1454 	attr.ia_valid = ATTR_MODE;
1455 
1456 	lock_kernel();
1457 
1458 	page = alloc_page(GFP_HIGHUSER);
1459 	if (!page) {
1460 		unlock_kernel();
1461 		return -ENOMEM;
1462 	}
1463 
1464 	kaddr = kmap_atomic(page, KM_USER0);
1465 	memcpy(kaddr, symname, pathlen);
1466 	if (pathlen < PAGE_SIZE)
1467 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1468 	kunmap_atomic(kaddr, KM_USER0);
1469 
1470 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1471 	if (error != 0) {
1472 		dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1473 			dir->i_sb->s_id, dir->i_ino,
1474 			dentry->d_name.name, symname, error);
1475 		d_drop(dentry);
1476 		__free_page(page);
1477 		unlock_kernel();
1478 		return error;
1479 	}
1480 
1481 	/*
1482 	 * No big deal if we can't add this page to the page cache here.
1483 	 * READLINK will get the missing page from the server if needed.
1484 	 */
1485 	pagevec_init(&lru_pvec, 0);
1486 	if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1487 							GFP_KERNEL)) {
1488 		pagevec_add(&lru_pvec, page);
1489 		pagevec_lru_add(&lru_pvec);
1490 		SetPageUptodate(page);
1491 		unlock_page(page);
1492 	} else
1493 		__free_page(page);
1494 
1495 	unlock_kernel();
1496 	return 0;
1497 }
1498 
1499 static int
1500 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1501 {
1502 	struct inode *inode = old_dentry->d_inode;
1503 	int error;
1504 
1505 	dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1506 		old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1507 		dentry->d_parent->d_name.name, dentry->d_name.name);
1508 
1509 	lock_kernel();
1510 	d_drop(dentry);
1511 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1512 	if (error == 0) {
1513 		atomic_inc(&inode->i_count);
1514 		d_add(dentry, inode);
1515 	}
1516 	unlock_kernel();
1517 	return error;
1518 }
1519 
1520 /*
1521  * RENAME
1522  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1523  * different file handle for the same inode after a rename (e.g. when
1524  * moving to a different directory). A fail-safe method to do so would
1525  * be to look up old_dir/old_name, create a link to new_dir/new_name and
1526  * rename the old file using the sillyrename stuff. This way, the original
1527  * file in old_dir will go away when the last process iput()s the inode.
1528  *
1529  * FIXED.
1530  *
1531  * It actually works quite well. One needs to have the possibility for
1532  * at least one ".nfs..." file in each directory the file ever gets
1533  * moved or linked to which happens automagically with the new
1534  * implementation that only depends on the dcache stuff instead of
1535  * using the inode layer
1536  *
1537  * Unfortunately, things are a little more complicated than indicated
1538  * above. For a cross-directory move, we want to make sure we can get
1539  * rid of the old inode after the operation.  This means there must be
1540  * no pending writes (if it's a file), and the use count must be 1.
1541  * If these conditions are met, we can drop the dentries before doing
1542  * the rename.
1543  */
1544 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1545 		      struct inode *new_dir, struct dentry *new_dentry)
1546 {
1547 	struct inode *old_inode = old_dentry->d_inode;
1548 	struct inode *new_inode = new_dentry->d_inode;
1549 	struct dentry *dentry = NULL, *rehash = NULL;
1550 	int error = -EBUSY;
1551 
1552 	/*
1553 	 * To prevent any new references to the target during the rename,
1554 	 * we unhash the dentry and free the inode in advance.
1555 	 */
1556 	lock_kernel();
1557 	if (!d_unhashed(new_dentry)) {
1558 		d_drop(new_dentry);
1559 		rehash = new_dentry;
1560 	}
1561 
1562 	dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1563 		 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1564 		 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1565 		 atomic_read(&new_dentry->d_count));
1566 
1567 	/*
1568 	 * First check whether the target is busy ... we can't
1569 	 * safely do _any_ rename if the target is in use.
1570 	 *
1571 	 * For files, make a copy of the dentry and then do a
1572 	 * silly-rename. If the silly-rename succeeds, the
1573 	 * copied dentry is hashed and becomes the new target.
1574 	 */
1575 	if (!new_inode)
1576 		goto go_ahead;
1577 	if (S_ISDIR(new_inode->i_mode)) {
1578 		error = -EISDIR;
1579 		if (!S_ISDIR(old_inode->i_mode))
1580 			goto out;
1581 	} else if (atomic_read(&new_dentry->d_count) > 2) {
1582 		int err;
1583 		/* copy the target dentry's name */
1584 		dentry = d_alloc(new_dentry->d_parent,
1585 				 &new_dentry->d_name);
1586 		if (!dentry)
1587 			goto out;
1588 
1589 		/* silly-rename the existing target ... */
1590 		err = nfs_sillyrename(new_dir, new_dentry);
1591 		if (!err) {
1592 			new_dentry = rehash = dentry;
1593 			new_inode = NULL;
1594 			/* instantiate the replacement target */
1595 			d_instantiate(new_dentry, NULL);
1596 		} else if (atomic_read(&new_dentry->d_count) > 1)
1597 			/* dentry still busy? */
1598 			goto out;
1599 	} else
1600 		drop_nlink(new_inode);
1601 
1602 go_ahead:
1603 	/*
1604 	 * ... prune child dentries and writebacks if needed.
1605 	 */
1606 	if (atomic_read(&old_dentry->d_count) > 1) {
1607 		if (S_ISREG(old_inode->i_mode))
1608 			nfs_wb_all(old_inode);
1609 		shrink_dcache_parent(old_dentry);
1610 	}
1611 	nfs_inode_return_delegation(old_inode);
1612 
1613 	if (new_inode != NULL) {
1614 		nfs_inode_return_delegation(new_inode);
1615 		d_delete(new_dentry);
1616 	}
1617 
1618 	error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1619 					   new_dir, &new_dentry->d_name);
1620 	nfs_mark_for_revalidate(old_inode);
1621 out:
1622 	if (rehash)
1623 		d_rehash(rehash);
1624 	if (!error) {
1625 		d_move(old_dentry, new_dentry);
1626 		nfs_set_verifier(new_dentry,
1627 					nfs_save_change_attribute(new_dir));
1628 	}
1629 
1630 	/* new dentry created? */
1631 	if (dentry)
1632 		dput(dentry);
1633 	unlock_kernel();
1634 	return error;
1635 }
1636 
1637 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1638 static LIST_HEAD(nfs_access_lru_list);
1639 static atomic_long_t nfs_access_nr_entries;
1640 
1641 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1642 {
1643 	put_rpccred(entry->cred);
1644 	kfree(entry);
1645 	smp_mb__before_atomic_dec();
1646 	atomic_long_dec(&nfs_access_nr_entries);
1647 	smp_mb__after_atomic_dec();
1648 }
1649 
1650 int nfs_access_cache_shrinker(int nr_to_scan, gfp_t gfp_mask)
1651 {
1652 	LIST_HEAD(head);
1653 	struct nfs_inode *nfsi;
1654 	struct nfs_access_entry *cache;
1655 
1656 restart:
1657 	spin_lock(&nfs_access_lru_lock);
1658 	list_for_each_entry(nfsi, &nfs_access_lru_list, access_cache_inode_lru) {
1659 		struct inode *inode;
1660 
1661 		if (nr_to_scan-- == 0)
1662 			break;
1663 		inode = igrab(&nfsi->vfs_inode);
1664 		if (inode == NULL)
1665 			continue;
1666 		spin_lock(&inode->i_lock);
1667 		if (list_empty(&nfsi->access_cache_entry_lru))
1668 			goto remove_lru_entry;
1669 		cache = list_entry(nfsi->access_cache_entry_lru.next,
1670 				struct nfs_access_entry, lru);
1671 		list_move(&cache->lru, &head);
1672 		rb_erase(&cache->rb_node, &nfsi->access_cache);
1673 		if (!list_empty(&nfsi->access_cache_entry_lru))
1674 			list_move_tail(&nfsi->access_cache_inode_lru,
1675 					&nfs_access_lru_list);
1676 		else {
1677 remove_lru_entry:
1678 			list_del_init(&nfsi->access_cache_inode_lru);
1679 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1680 		}
1681 		spin_unlock(&inode->i_lock);
1682 		spin_unlock(&nfs_access_lru_lock);
1683 		iput(inode);
1684 		goto restart;
1685 	}
1686 	spin_unlock(&nfs_access_lru_lock);
1687 	while (!list_empty(&head)) {
1688 		cache = list_entry(head.next, struct nfs_access_entry, lru);
1689 		list_del(&cache->lru);
1690 		nfs_access_free_entry(cache);
1691 	}
1692 	return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
1693 }
1694 
1695 static void __nfs_access_zap_cache(struct inode *inode)
1696 {
1697 	struct nfs_inode *nfsi = NFS_I(inode);
1698 	struct rb_root *root_node = &nfsi->access_cache;
1699 	struct rb_node *n, *dispose = NULL;
1700 	struct nfs_access_entry *entry;
1701 
1702 	/* Unhook entries from the cache */
1703 	while ((n = rb_first(root_node)) != NULL) {
1704 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
1705 		rb_erase(n, root_node);
1706 		list_del(&entry->lru);
1707 		n->rb_left = dispose;
1708 		dispose = n;
1709 	}
1710 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
1711 	spin_unlock(&inode->i_lock);
1712 
1713 	/* Now kill them all! */
1714 	while (dispose != NULL) {
1715 		n = dispose;
1716 		dispose = n->rb_left;
1717 		nfs_access_free_entry(rb_entry(n, struct nfs_access_entry, rb_node));
1718 	}
1719 }
1720 
1721 void nfs_access_zap_cache(struct inode *inode)
1722 {
1723 	/* Remove from global LRU init */
1724 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_FLAGS(inode))) {
1725 		spin_lock(&nfs_access_lru_lock);
1726 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
1727 		spin_unlock(&nfs_access_lru_lock);
1728 	}
1729 
1730 	spin_lock(&inode->i_lock);
1731 	/* This will release the spinlock */
1732 	__nfs_access_zap_cache(inode);
1733 }
1734 
1735 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
1736 {
1737 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
1738 	struct nfs_access_entry *entry;
1739 
1740 	while (n != NULL) {
1741 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
1742 
1743 		if (cred < entry->cred)
1744 			n = n->rb_left;
1745 		else if (cred > entry->cred)
1746 			n = n->rb_right;
1747 		else
1748 			return entry;
1749 	}
1750 	return NULL;
1751 }
1752 
1753 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
1754 {
1755 	struct nfs_inode *nfsi = NFS_I(inode);
1756 	struct nfs_access_entry *cache;
1757 	int err = -ENOENT;
1758 
1759 	spin_lock(&inode->i_lock);
1760 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
1761 		goto out_zap;
1762 	cache = nfs_access_search_rbtree(inode, cred);
1763 	if (cache == NULL)
1764 		goto out;
1765 	if (!time_in_range(jiffies, cache->jiffies, cache->jiffies + NFS_ATTRTIMEO(inode)))
1766 		goto out_stale;
1767 	res->jiffies = cache->jiffies;
1768 	res->cred = cache->cred;
1769 	res->mask = cache->mask;
1770 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
1771 	err = 0;
1772 out:
1773 	spin_unlock(&inode->i_lock);
1774 	return err;
1775 out_stale:
1776 	rb_erase(&cache->rb_node, &nfsi->access_cache);
1777 	list_del(&cache->lru);
1778 	spin_unlock(&inode->i_lock);
1779 	nfs_access_free_entry(cache);
1780 	return -ENOENT;
1781 out_zap:
1782 	/* This will release the spinlock */
1783 	__nfs_access_zap_cache(inode);
1784 	return -ENOENT;
1785 }
1786 
1787 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
1788 {
1789 	struct nfs_inode *nfsi = NFS_I(inode);
1790 	struct rb_root *root_node = &nfsi->access_cache;
1791 	struct rb_node **p = &root_node->rb_node;
1792 	struct rb_node *parent = NULL;
1793 	struct nfs_access_entry *entry;
1794 
1795 	spin_lock(&inode->i_lock);
1796 	while (*p != NULL) {
1797 		parent = *p;
1798 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
1799 
1800 		if (set->cred < entry->cred)
1801 			p = &parent->rb_left;
1802 		else if (set->cred > entry->cred)
1803 			p = &parent->rb_right;
1804 		else
1805 			goto found;
1806 	}
1807 	rb_link_node(&set->rb_node, parent, p);
1808 	rb_insert_color(&set->rb_node, root_node);
1809 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1810 	spin_unlock(&inode->i_lock);
1811 	return;
1812 found:
1813 	rb_replace_node(parent, &set->rb_node, root_node);
1814 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1815 	list_del(&entry->lru);
1816 	spin_unlock(&inode->i_lock);
1817 	nfs_access_free_entry(entry);
1818 }
1819 
1820 static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
1821 {
1822 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
1823 	if (cache == NULL)
1824 		return;
1825 	RB_CLEAR_NODE(&cache->rb_node);
1826 	cache->jiffies = set->jiffies;
1827 	cache->cred = get_rpccred(set->cred);
1828 	cache->mask = set->mask;
1829 
1830 	nfs_access_add_rbtree(inode, cache);
1831 
1832 	/* Update accounting */
1833 	smp_mb__before_atomic_inc();
1834 	atomic_long_inc(&nfs_access_nr_entries);
1835 	smp_mb__after_atomic_inc();
1836 
1837 	/* Add inode to global LRU list */
1838 	if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_FLAGS(inode))) {
1839 		spin_lock(&nfs_access_lru_lock);
1840 		list_add_tail(&NFS_I(inode)->access_cache_inode_lru, &nfs_access_lru_list);
1841 		spin_unlock(&nfs_access_lru_lock);
1842 	}
1843 }
1844 
1845 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
1846 {
1847 	struct nfs_access_entry cache;
1848 	int status;
1849 
1850 	status = nfs_access_get_cached(inode, cred, &cache);
1851 	if (status == 0)
1852 		goto out;
1853 
1854 	/* Be clever: ask server to check for all possible rights */
1855 	cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
1856 	cache.cred = cred;
1857 	cache.jiffies = jiffies;
1858 	status = NFS_PROTO(inode)->access(inode, &cache);
1859 	if (status != 0)
1860 		return status;
1861 	nfs_access_add_cache(inode, &cache);
1862 out:
1863 	if ((cache.mask & mask) == mask)
1864 		return 0;
1865 	return -EACCES;
1866 }
1867 
1868 static int nfs_open_permission_mask(int openflags)
1869 {
1870 	int mask = 0;
1871 
1872 	if (openflags & FMODE_READ)
1873 		mask |= MAY_READ;
1874 	if (openflags & FMODE_WRITE)
1875 		mask |= MAY_WRITE;
1876 	if (openflags & FMODE_EXEC)
1877 		mask |= MAY_EXEC;
1878 	return mask;
1879 }
1880 
1881 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
1882 {
1883 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
1884 }
1885 
1886 int nfs_permission(struct inode *inode, int mask, struct nameidata *nd)
1887 {
1888 	struct rpc_cred *cred;
1889 	int res = 0;
1890 
1891 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
1892 
1893 	if (mask == 0)
1894 		goto out;
1895 	/* Is this sys_access() ? */
1896 	if (nd != NULL && (nd->flags & LOOKUP_ACCESS))
1897 		goto force_lookup;
1898 
1899 	switch (inode->i_mode & S_IFMT) {
1900 		case S_IFLNK:
1901 			goto out;
1902 		case S_IFREG:
1903 			/* NFSv4 has atomic_open... */
1904 			if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
1905 					&& nd != NULL
1906 					&& (nd->flags & LOOKUP_OPEN))
1907 				goto out;
1908 			break;
1909 		case S_IFDIR:
1910 			/*
1911 			 * Optimize away all write operations, since the server
1912 			 * will check permissions when we perform the op.
1913 			 */
1914 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
1915 				goto out;
1916 	}
1917 
1918 force_lookup:
1919 	lock_kernel();
1920 
1921 	if (!NFS_PROTO(inode)->access)
1922 		goto out_notsup;
1923 
1924 	cred = rpcauth_lookupcred(NFS_CLIENT(inode)->cl_auth, 0);
1925 	if (!IS_ERR(cred)) {
1926 		res = nfs_do_access(inode, cred, mask);
1927 		put_rpccred(cred);
1928 	} else
1929 		res = PTR_ERR(cred);
1930 	unlock_kernel();
1931 out:
1932 	dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
1933 		inode->i_sb->s_id, inode->i_ino, mask, res);
1934 	return res;
1935 out_notsup:
1936 	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1937 	if (res == 0)
1938 		res = generic_permission(inode, mask, NULL);
1939 	unlock_kernel();
1940 	goto out;
1941 }
1942 
1943 /*
1944  * Local variables:
1945  *  version-control: t
1946  *  kept-new-versions: 5
1947  * End:
1948  */
1949