xref: /openbmc/linux/fs/nfs/dir.c (revision 4e99a1ff)
1 /*
2  *  linux/fs/nfs/dir.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  nfs directory handling functions
7  *
8  * 10 Apr 1996	Added silly rename for unlink	--okir
9  * 28 Sep 1996	Improved directory cache --okir
10  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
11  *              Re-implemented silly rename for unlink, newly implemented
12  *              silly rename for nfs_rename() following the suggestions
13  *              of Olaf Kirch (okir) found in this file.
14  *              Following Linus comments on my original hack, this version
15  *              depends only on the dcache stuff and doesn't touch the inode
16  *              layer (iput() and friends).
17  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
18  */
19 
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/smp_lock.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/sched.h>
37 
38 #include "nfs4_fs.h"
39 #include "delegation.h"
40 #include "iostat.h"
41 #include "internal.h"
42 
43 /* #define NFS_DEBUG_VERBOSE 1 */
44 
45 static int nfs_opendir(struct inode *, struct file *);
46 static int nfs_readdir(struct file *, void *, filldir_t);
47 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
48 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *);
49 static int nfs_mkdir(struct inode *, struct dentry *, int);
50 static int nfs_rmdir(struct inode *, struct dentry *);
51 static int nfs_unlink(struct inode *, struct dentry *);
52 static int nfs_symlink(struct inode *, struct dentry *, const char *);
53 static int nfs_link(struct dentry *, struct inode *, struct dentry *);
54 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t);
55 static int nfs_rename(struct inode *, struct dentry *,
56 		      struct inode *, struct dentry *);
57 static int nfs_fsync_dir(struct file *, struct dentry *, int);
58 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
59 
60 const struct file_operations nfs_dir_operations = {
61 	.llseek		= nfs_llseek_dir,
62 	.read		= generic_read_dir,
63 	.readdir	= nfs_readdir,
64 	.open		= nfs_opendir,
65 	.release	= nfs_release,
66 	.fsync		= nfs_fsync_dir,
67 };
68 
69 const struct inode_operations nfs_dir_inode_operations = {
70 	.create		= nfs_create,
71 	.lookup		= nfs_lookup,
72 	.link		= nfs_link,
73 	.unlink		= nfs_unlink,
74 	.symlink	= nfs_symlink,
75 	.mkdir		= nfs_mkdir,
76 	.rmdir		= nfs_rmdir,
77 	.mknod		= nfs_mknod,
78 	.rename		= nfs_rename,
79 	.permission	= nfs_permission,
80 	.getattr	= nfs_getattr,
81 	.setattr	= nfs_setattr,
82 };
83 
84 #ifdef CONFIG_NFS_V3
85 const struct inode_operations nfs3_dir_inode_operations = {
86 	.create		= nfs_create,
87 	.lookup		= nfs_lookup,
88 	.link		= nfs_link,
89 	.unlink		= nfs_unlink,
90 	.symlink	= nfs_symlink,
91 	.mkdir		= nfs_mkdir,
92 	.rmdir		= nfs_rmdir,
93 	.mknod		= nfs_mknod,
94 	.rename		= nfs_rename,
95 	.permission	= nfs_permission,
96 	.getattr	= nfs_getattr,
97 	.setattr	= nfs_setattr,
98 	.listxattr	= nfs3_listxattr,
99 	.getxattr	= nfs3_getxattr,
100 	.setxattr	= nfs3_setxattr,
101 	.removexattr	= nfs3_removexattr,
102 };
103 #endif  /* CONFIG_NFS_V3 */
104 
105 #ifdef CONFIG_NFS_V4
106 
107 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
108 const struct inode_operations nfs4_dir_inode_operations = {
109 	.create		= nfs_create,
110 	.lookup		= nfs_atomic_lookup,
111 	.link		= nfs_link,
112 	.unlink		= nfs_unlink,
113 	.symlink	= nfs_symlink,
114 	.mkdir		= nfs_mkdir,
115 	.rmdir		= nfs_rmdir,
116 	.mknod		= nfs_mknod,
117 	.rename		= nfs_rename,
118 	.permission	= nfs_permission,
119 	.getattr	= nfs_getattr,
120 	.setattr	= nfs_setattr,
121 	.getxattr       = nfs4_getxattr,
122 	.setxattr       = nfs4_setxattr,
123 	.listxattr      = nfs4_listxattr,
124 };
125 
126 #endif /* CONFIG_NFS_V4 */
127 
128 /*
129  * Open file
130  */
131 static int
132 nfs_opendir(struct inode *inode, struct file *filp)
133 {
134 	int res;
135 
136 	dfprintk(VFS, "NFS: opendir(%s/%ld)\n",
137 			inode->i_sb->s_id, inode->i_ino);
138 
139 	lock_kernel();
140 	/* Call generic open code in order to cache credentials */
141 	res = nfs_open(inode, filp);
142 	unlock_kernel();
143 	return res;
144 }
145 
146 typedef __be32 * (*decode_dirent_t)(__be32 *, struct nfs_entry *, int);
147 typedef struct {
148 	struct file	*file;
149 	struct page	*page;
150 	unsigned long	page_index;
151 	__be32		*ptr;
152 	u64		*dir_cookie;
153 	loff_t		current_index;
154 	struct nfs_entry *entry;
155 	decode_dirent_t	decode;
156 	int		plus;
157 	unsigned long	timestamp;
158 	int		timestamp_valid;
159 } nfs_readdir_descriptor_t;
160 
161 /* Now we cache directories properly, by stuffing the dirent
162  * data directly in the page cache.
163  *
164  * Inode invalidation due to refresh etc. takes care of
165  * _everything_, no sloppy entry flushing logic, no extraneous
166  * copying, network direct to page cache, the way it was meant
167  * to be.
168  *
169  * NOTE: Dirent information verification is done always by the
170  *	 page-in of the RPC reply, nowhere else, this simplies
171  *	 things substantially.
172  */
173 static
174 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page *page)
175 {
176 	struct file	*file = desc->file;
177 	struct inode	*inode = file->f_path.dentry->d_inode;
178 	struct rpc_cred	*cred = nfs_file_cred(file);
179 	unsigned long	timestamp;
180 	int		error;
181 
182 	dfprintk(DIRCACHE, "NFS: %s: reading cookie %Lu into page %lu\n",
183 			__FUNCTION__, (long long)desc->entry->cookie,
184 			page->index);
185 
186  again:
187 	timestamp = jiffies;
188 	error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, desc->entry->cookie, page,
189 					  NFS_SERVER(inode)->dtsize, desc->plus);
190 	if (error < 0) {
191 		/* We requested READDIRPLUS, but the server doesn't grok it */
192 		if (error == -ENOTSUPP && desc->plus) {
193 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
194 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
195 			desc->plus = 0;
196 			goto again;
197 		}
198 		goto error;
199 	}
200 	desc->timestamp = timestamp;
201 	desc->timestamp_valid = 1;
202 	SetPageUptodate(page);
203 	/* Ensure consistent page alignment of the data.
204 	 * Note: assumes we have exclusive access to this mapping either
205 	 *	 through inode->i_mutex or some other mechanism.
206 	 */
207 	if (page->index == 0 && invalidate_inode_pages2_range(inode->i_mapping, PAGE_CACHE_SIZE, -1) < 0) {
208 		/* Should never happen */
209 		nfs_zap_mapping(inode, inode->i_mapping);
210 	}
211 	unlock_page(page);
212 	return 0;
213  error:
214 	unlock_page(page);
215 	return -EIO;
216 }
217 
218 static inline
219 int dir_decode(nfs_readdir_descriptor_t *desc)
220 {
221 	__be32	*p = desc->ptr;
222 	p = desc->decode(p, desc->entry, desc->plus);
223 	if (IS_ERR(p))
224 		return PTR_ERR(p);
225 	desc->ptr = p;
226 	if (desc->timestamp_valid)
227 		desc->entry->fattr->time_start = desc->timestamp;
228 	else
229 		desc->entry->fattr->valid &= ~NFS_ATTR_FATTR;
230 	return 0;
231 }
232 
233 static inline
234 void dir_page_release(nfs_readdir_descriptor_t *desc)
235 {
236 	kunmap(desc->page);
237 	page_cache_release(desc->page);
238 	desc->page = NULL;
239 	desc->ptr = NULL;
240 }
241 
242 /*
243  * Given a pointer to a buffer that has already been filled by a call
244  * to readdir, find the next entry with cookie '*desc->dir_cookie'.
245  *
246  * If the end of the buffer has been reached, return -EAGAIN, if not,
247  * return the offset within the buffer of the next entry to be
248  * read.
249  */
250 static inline
251 int find_dirent(nfs_readdir_descriptor_t *desc)
252 {
253 	struct nfs_entry *entry = desc->entry;
254 	int		loop_count = 0,
255 			status;
256 
257 	while((status = dir_decode(desc)) == 0) {
258 		dfprintk(DIRCACHE, "NFS: %s: examining cookie %Lu\n",
259 				__FUNCTION__, (unsigned long long)entry->cookie);
260 		if (entry->prev_cookie == *desc->dir_cookie)
261 			break;
262 		if (loop_count++ > 200) {
263 			loop_count = 0;
264 			schedule();
265 		}
266 	}
267 	return status;
268 }
269 
270 /*
271  * Given a pointer to a buffer that has already been filled by a call
272  * to readdir, find the entry at offset 'desc->file->f_pos'.
273  *
274  * If the end of the buffer has been reached, return -EAGAIN, if not,
275  * return the offset within the buffer of the next entry to be
276  * read.
277  */
278 static inline
279 int find_dirent_index(nfs_readdir_descriptor_t *desc)
280 {
281 	struct nfs_entry *entry = desc->entry;
282 	int		loop_count = 0,
283 			status;
284 
285 	for(;;) {
286 		status = dir_decode(desc);
287 		if (status)
288 			break;
289 
290 		dfprintk(DIRCACHE, "NFS: found cookie %Lu at index %Ld\n",
291 				(unsigned long long)entry->cookie, desc->current_index);
292 
293 		if (desc->file->f_pos == desc->current_index) {
294 			*desc->dir_cookie = entry->cookie;
295 			break;
296 		}
297 		desc->current_index++;
298 		if (loop_count++ > 200) {
299 			loop_count = 0;
300 			schedule();
301 		}
302 	}
303 	return status;
304 }
305 
306 /*
307  * Find the given page, and call find_dirent() or find_dirent_index in
308  * order to try to return the next entry.
309  */
310 static inline
311 int find_dirent_page(nfs_readdir_descriptor_t *desc)
312 {
313 	struct inode	*inode = desc->file->f_path.dentry->d_inode;
314 	struct page	*page;
315 	int		status;
316 
317 	dfprintk(DIRCACHE, "NFS: %s: searching page %ld for target %Lu\n",
318 			__FUNCTION__, desc->page_index,
319 			(long long) *desc->dir_cookie);
320 
321 	/* If we find the page in the page_cache, we cannot be sure
322 	 * how fresh the data is, so we will ignore readdir_plus attributes.
323 	 */
324 	desc->timestamp_valid = 0;
325 	page = read_cache_page(inode->i_mapping, desc->page_index,
326 			       (filler_t *)nfs_readdir_filler, desc);
327 	if (IS_ERR(page)) {
328 		status = PTR_ERR(page);
329 		goto out;
330 	}
331 
332 	/* NOTE: Someone else may have changed the READDIRPLUS flag */
333 	desc->page = page;
334 	desc->ptr = kmap(page);		/* matching kunmap in nfs_do_filldir */
335 	if (*desc->dir_cookie != 0)
336 		status = find_dirent(desc);
337 	else
338 		status = find_dirent_index(desc);
339 	if (status < 0)
340 		dir_page_release(desc);
341  out:
342 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, status);
343 	return status;
344 }
345 
346 /*
347  * Recurse through the page cache pages, and return a
348  * filled nfs_entry structure of the next directory entry if possible.
349  *
350  * The target for the search is '*desc->dir_cookie' if non-0,
351  * 'desc->file->f_pos' otherwise
352  */
353 static inline
354 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
355 {
356 	int		loop_count = 0;
357 	int		res;
358 
359 	/* Always search-by-index from the beginning of the cache */
360 	if (*desc->dir_cookie == 0) {
361 		dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for offset %Ld\n",
362 				(long long)desc->file->f_pos);
363 		desc->page_index = 0;
364 		desc->entry->cookie = desc->entry->prev_cookie = 0;
365 		desc->entry->eof = 0;
366 		desc->current_index = 0;
367 	} else
368 		dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for cookie %Lu\n",
369 				(unsigned long long)*desc->dir_cookie);
370 
371 	for (;;) {
372 		res = find_dirent_page(desc);
373 		if (res != -EAGAIN)
374 			break;
375 		/* Align to beginning of next page */
376 		desc->page_index ++;
377 		if (loop_count++ > 200) {
378 			loop_count = 0;
379 			schedule();
380 		}
381 	}
382 
383 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, res);
384 	return res;
385 }
386 
387 static inline unsigned int dt_type(struct inode *inode)
388 {
389 	return (inode->i_mode >> 12) & 15;
390 }
391 
392 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc);
393 
394 /*
395  * Once we've found the start of the dirent within a page: fill 'er up...
396  */
397 static
398 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
399 		   filldir_t filldir)
400 {
401 	struct file	*file = desc->file;
402 	struct nfs_entry *entry = desc->entry;
403 	struct dentry	*dentry = NULL;
404 	u64		fileid;
405 	int		loop_count = 0,
406 			res;
407 
408 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling starting @ cookie %Lu\n",
409 			(unsigned long long)entry->cookie);
410 
411 	for(;;) {
412 		unsigned d_type = DT_UNKNOWN;
413 		/* Note: entry->prev_cookie contains the cookie for
414 		 *	 retrieving the current dirent on the server */
415 		fileid = entry->ino;
416 
417 		/* Get a dentry if we have one */
418 		if (dentry != NULL)
419 			dput(dentry);
420 		dentry = nfs_readdir_lookup(desc);
421 
422 		/* Use readdirplus info */
423 		if (dentry != NULL && dentry->d_inode != NULL) {
424 			d_type = dt_type(dentry->d_inode);
425 			fileid = NFS_FILEID(dentry->d_inode);
426 		}
427 
428 		res = filldir(dirent, entry->name, entry->len,
429 			      file->f_pos, nfs_compat_user_ino64(fileid),
430 			      d_type);
431 		if (res < 0)
432 			break;
433 		file->f_pos++;
434 		*desc->dir_cookie = entry->cookie;
435 		if (dir_decode(desc) != 0) {
436 			desc->page_index ++;
437 			break;
438 		}
439 		if (loop_count++ > 200) {
440 			loop_count = 0;
441 			schedule();
442 		}
443 	}
444 	dir_page_release(desc);
445 	if (dentry != NULL)
446 		dput(dentry);
447 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
448 			(unsigned long long)*desc->dir_cookie, res);
449 	return res;
450 }
451 
452 /*
453  * If we cannot find a cookie in our cache, we suspect that this is
454  * because it points to a deleted file, so we ask the server to return
455  * whatever it thinks is the next entry. We then feed this to filldir.
456  * If all goes well, we should then be able to find our way round the
457  * cache on the next call to readdir_search_pagecache();
458  *
459  * NOTE: we cannot add the anonymous page to the pagecache because
460  *	 the data it contains might not be page aligned. Besides,
461  *	 we should already have a complete representation of the
462  *	 directory in the page cache by the time we get here.
463  */
464 static inline
465 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
466 		     filldir_t filldir)
467 {
468 	struct file	*file = desc->file;
469 	struct inode	*inode = file->f_path.dentry->d_inode;
470 	struct rpc_cred	*cred = nfs_file_cred(file);
471 	struct page	*page = NULL;
472 	int		status;
473 	unsigned long	timestamp;
474 
475 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
476 			(unsigned long long)*desc->dir_cookie);
477 
478 	page = alloc_page(GFP_HIGHUSER);
479 	if (!page) {
480 		status = -ENOMEM;
481 		goto out;
482 	}
483 	timestamp = jiffies;
484 	status = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred,
485 						*desc->dir_cookie, page,
486 						NFS_SERVER(inode)->dtsize,
487 						desc->plus);
488 	desc->page = page;
489 	desc->ptr = kmap(page);		/* matching kunmap in nfs_do_filldir */
490 	if (status >= 0) {
491 		desc->timestamp = timestamp;
492 		desc->timestamp_valid = 1;
493 		if ((status = dir_decode(desc)) == 0)
494 			desc->entry->prev_cookie = *desc->dir_cookie;
495 	} else
496 		status = -EIO;
497 	if (status < 0)
498 		goto out_release;
499 
500 	status = nfs_do_filldir(desc, dirent, filldir);
501 
502 	/* Reset read descriptor so it searches the page cache from
503 	 * the start upon the next call to readdir_search_pagecache() */
504 	desc->page_index = 0;
505 	desc->entry->cookie = desc->entry->prev_cookie = 0;
506 	desc->entry->eof = 0;
507  out:
508 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
509 			__FUNCTION__, status);
510 	return status;
511  out_release:
512 	dir_page_release(desc);
513 	goto out;
514 }
515 
516 /* The file offset position represents the dirent entry number.  A
517    last cookie cache takes care of the common case of reading the
518    whole directory.
519  */
520 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
521 {
522 	struct dentry	*dentry = filp->f_path.dentry;
523 	struct inode	*inode = dentry->d_inode;
524 	nfs_readdir_descriptor_t my_desc,
525 			*desc = &my_desc;
526 	struct nfs_entry my_entry;
527 	struct nfs_fh	 fh;
528 	struct nfs_fattr fattr;
529 	long		res;
530 
531 	dfprintk(VFS, "NFS: readdir(%s/%s) starting at cookie %Lu\n",
532 			dentry->d_parent->d_name.name, dentry->d_name.name,
533 			(long long)filp->f_pos);
534 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
535 
536 	lock_kernel();
537 
538 	/*
539 	 * filp->f_pos points to the dirent entry number.
540 	 * *desc->dir_cookie has the cookie for the next entry. We have
541 	 * to either find the entry with the appropriate number or
542 	 * revalidate the cookie.
543 	 */
544 	memset(desc, 0, sizeof(*desc));
545 
546 	desc->file = filp;
547 	desc->dir_cookie = &nfs_file_open_context(filp)->dir_cookie;
548 	desc->decode = NFS_PROTO(inode)->decode_dirent;
549 	desc->plus = NFS_USE_READDIRPLUS(inode);
550 
551 	my_entry.cookie = my_entry.prev_cookie = 0;
552 	my_entry.eof = 0;
553 	my_entry.fh = &fh;
554 	my_entry.fattr = &fattr;
555 	nfs_fattr_init(&fattr);
556 	desc->entry = &my_entry;
557 
558 	nfs_block_sillyrename(dentry);
559 	res = nfs_revalidate_mapping_nolock(inode, filp->f_mapping);
560 	if (res < 0)
561 		goto out;
562 
563 	while(!desc->entry->eof) {
564 		res = readdir_search_pagecache(desc);
565 
566 		if (res == -EBADCOOKIE) {
567 			/* This means either end of directory */
568 			if (*desc->dir_cookie && desc->entry->cookie != *desc->dir_cookie) {
569 				/* Or that the server has 'lost' a cookie */
570 				res = uncached_readdir(desc, dirent, filldir);
571 				if (res >= 0)
572 					continue;
573 			}
574 			res = 0;
575 			break;
576 		}
577 		if (res == -ETOOSMALL && desc->plus) {
578 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
579 			nfs_zap_caches(inode);
580 			desc->plus = 0;
581 			desc->entry->eof = 0;
582 			continue;
583 		}
584 		if (res < 0)
585 			break;
586 
587 		res = nfs_do_filldir(desc, dirent, filldir);
588 		if (res < 0) {
589 			res = 0;
590 			break;
591 		}
592 	}
593 out:
594 	nfs_unblock_sillyrename(dentry);
595 	unlock_kernel();
596 	if (res > 0)
597 		res = 0;
598 	dfprintk(VFS, "NFS: readdir(%s/%s) returns %ld\n",
599 			dentry->d_parent->d_name.name, dentry->d_name.name,
600 			res);
601 	return res;
602 }
603 
604 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
605 {
606 	mutex_lock(&filp->f_path.dentry->d_inode->i_mutex);
607 	switch (origin) {
608 		case 1:
609 			offset += filp->f_pos;
610 		case 0:
611 			if (offset >= 0)
612 				break;
613 		default:
614 			offset = -EINVAL;
615 			goto out;
616 	}
617 	if (offset != filp->f_pos) {
618 		filp->f_pos = offset;
619 		nfs_file_open_context(filp)->dir_cookie = 0;
620 	}
621 out:
622 	mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex);
623 	return offset;
624 }
625 
626 /*
627  * All directory operations under NFS are synchronous, so fsync()
628  * is a dummy operation.
629  */
630 static int nfs_fsync_dir(struct file *filp, struct dentry *dentry, int datasync)
631 {
632 	dfprintk(VFS, "NFS: fsync_dir(%s/%s) datasync %d\n",
633 			dentry->d_parent->d_name.name, dentry->d_name.name,
634 			datasync);
635 
636 	return 0;
637 }
638 
639 /**
640  * nfs_force_lookup_revalidate - Mark the directory as having changed
641  * @dir - pointer to directory inode
642  *
643  * This forces the revalidation code in nfs_lookup_revalidate() to do a
644  * full lookup on all child dentries of 'dir' whenever a change occurs
645  * on the server that might have invalidated our dcache.
646  *
647  * The caller should be holding dir->i_lock
648  */
649 void nfs_force_lookup_revalidate(struct inode *dir)
650 {
651 	NFS_I(dir)->cache_change_attribute = jiffies;
652 }
653 
654 /*
655  * A check for whether or not the parent directory has changed.
656  * In the case it has, we assume that the dentries are untrustworthy
657  * and may need to be looked up again.
658  */
659 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
660 {
661 	if (IS_ROOT(dentry))
662 		return 1;
663 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
664 		return 0;
665 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
666 	if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
667 		return 0;
668 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
669 		return 0;
670 	return 1;
671 }
672 
673 /*
674  * Return the intent data that applies to this particular path component
675  *
676  * Note that the current set of intents only apply to the very last
677  * component of the path.
678  * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
679  */
680 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask)
681 {
682 	if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT))
683 		return 0;
684 	return nd->flags & mask;
685 }
686 
687 /*
688  * Use intent information to check whether or not we're going to do
689  * an O_EXCL create using this path component.
690  */
691 static int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
692 {
693 	if (NFS_PROTO(dir)->version == 2)
694 		return 0;
695 	if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_CREATE) == 0)
696 		return 0;
697 	return (nd->intent.open.flags & O_EXCL) != 0;
698 }
699 
700 /*
701  * Inode and filehandle revalidation for lookups.
702  *
703  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
704  * or if the intent information indicates that we're about to open this
705  * particular file and the "nocto" mount flag is not set.
706  *
707  */
708 static inline
709 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
710 {
711 	struct nfs_server *server = NFS_SERVER(inode);
712 
713 	if (test_bit(NFS_INO_MOUNTPOINT, &NFS_I(inode)->flags))
714 		return 0;
715 	if (nd != NULL) {
716 		/* VFS wants an on-the-wire revalidation */
717 		if (nd->flags & LOOKUP_REVAL)
718 			goto out_force;
719 		/* This is an open(2) */
720 		if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
721 				!(server->flags & NFS_MOUNT_NOCTO) &&
722 				(S_ISREG(inode->i_mode) ||
723 				 S_ISDIR(inode->i_mode)))
724 			goto out_force;
725 		return 0;
726 	}
727 	return nfs_revalidate_inode(server, inode);
728 out_force:
729 	return __nfs_revalidate_inode(server, inode);
730 }
731 
732 /*
733  * We judge how long we want to trust negative
734  * dentries by looking at the parent inode mtime.
735  *
736  * If parent mtime has changed, we revalidate, else we wait for a
737  * period corresponding to the parent's attribute cache timeout value.
738  */
739 static inline
740 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
741 		       struct nameidata *nd)
742 {
743 	/* Don't revalidate a negative dentry if we're creating a new file */
744 	if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
745 		return 0;
746 	return !nfs_check_verifier(dir, dentry);
747 }
748 
749 /*
750  * This is called every time the dcache has a lookup hit,
751  * and we should check whether we can really trust that
752  * lookup.
753  *
754  * NOTE! The hit can be a negative hit too, don't assume
755  * we have an inode!
756  *
757  * If the parent directory is seen to have changed, we throw out the
758  * cached dentry and do a new lookup.
759  */
760 static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd)
761 {
762 	struct inode *dir;
763 	struct inode *inode;
764 	struct dentry *parent;
765 	int error;
766 	struct nfs_fh fhandle;
767 	struct nfs_fattr fattr;
768 
769 	parent = dget_parent(dentry);
770 	lock_kernel();
771 	dir = parent->d_inode;
772 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
773 	inode = dentry->d_inode;
774 
775 	if (!inode) {
776 		if (nfs_neg_need_reval(dir, dentry, nd))
777 			goto out_bad;
778 		goto out_valid;
779 	}
780 
781 	if (is_bad_inode(inode)) {
782 		dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
783 				__FUNCTION__, dentry->d_parent->d_name.name,
784 				dentry->d_name.name);
785 		goto out_bad;
786 	}
787 
788 	/* Force a full look up iff the parent directory has changed */
789 	if (!nfs_is_exclusive_create(dir, nd) && nfs_check_verifier(dir, dentry)) {
790 		if (nfs_lookup_verify_inode(inode, nd))
791 			goto out_zap_parent;
792 		goto out_valid;
793 	}
794 
795 	if (NFS_STALE(inode))
796 		goto out_bad;
797 
798 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
799 	if (error)
800 		goto out_bad;
801 	if (nfs_compare_fh(NFS_FH(inode), &fhandle))
802 		goto out_bad;
803 	if ((error = nfs_refresh_inode(inode, &fattr)) != 0)
804 		goto out_bad;
805 
806 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
807  out_valid:
808 	unlock_kernel();
809 	dput(parent);
810 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
811 			__FUNCTION__, dentry->d_parent->d_name.name,
812 			dentry->d_name.name);
813 	return 1;
814 out_zap_parent:
815 	nfs_zap_caches(dir);
816  out_bad:
817 	nfs_mark_for_revalidate(dir);
818 	if (inode && S_ISDIR(inode->i_mode)) {
819 		/* Purge readdir caches. */
820 		nfs_zap_caches(inode);
821 		/* If we have submounts, don't unhash ! */
822 		if (have_submounts(dentry))
823 			goto out_valid;
824 		shrink_dcache_parent(dentry);
825 	}
826 	d_drop(dentry);
827 	unlock_kernel();
828 	dput(parent);
829 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
830 			__FUNCTION__, dentry->d_parent->d_name.name,
831 			dentry->d_name.name);
832 	return 0;
833 }
834 
835 /*
836  * This is called from dput() when d_count is going to 0.
837  */
838 static int nfs_dentry_delete(struct dentry *dentry)
839 {
840 	dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
841 		dentry->d_parent->d_name.name, dentry->d_name.name,
842 		dentry->d_flags);
843 
844 	/* Unhash any dentry with a stale inode */
845 	if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
846 		return 1;
847 
848 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
849 		/* Unhash it, so that ->d_iput() would be called */
850 		return 1;
851 	}
852 	if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
853 		/* Unhash it, so that ancestors of killed async unlink
854 		 * files will be cleaned up during umount */
855 		return 1;
856 	}
857 	return 0;
858 
859 }
860 
861 /*
862  * Called when the dentry loses inode.
863  * We use it to clean up silly-renamed files.
864  */
865 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
866 {
867 	if (S_ISDIR(inode->i_mode))
868 		/* drop any readdir cache as it could easily be old */
869 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
870 
871 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
872 		lock_kernel();
873 		drop_nlink(inode);
874 		nfs_complete_unlink(dentry, inode);
875 		unlock_kernel();
876 	}
877 	iput(inode);
878 }
879 
880 struct dentry_operations nfs_dentry_operations = {
881 	.d_revalidate	= nfs_lookup_revalidate,
882 	.d_delete	= nfs_dentry_delete,
883 	.d_iput		= nfs_dentry_iput,
884 };
885 
886 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
887 {
888 	struct dentry *res;
889 	struct dentry *parent;
890 	struct inode *inode = NULL;
891 	int error;
892 	struct nfs_fh fhandle;
893 	struct nfs_fattr fattr;
894 
895 	dfprintk(VFS, "NFS: lookup(%s/%s)\n",
896 		dentry->d_parent->d_name.name, dentry->d_name.name);
897 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
898 
899 	res = ERR_PTR(-ENAMETOOLONG);
900 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
901 		goto out;
902 
903 	res = ERR_PTR(-ENOMEM);
904 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
905 
906 	lock_kernel();
907 
908 	/*
909 	 * If we're doing an exclusive create, optimize away the lookup
910 	 * but don't hash the dentry.
911 	 */
912 	if (nfs_is_exclusive_create(dir, nd)) {
913 		d_instantiate(dentry, NULL);
914 		res = NULL;
915 		goto out_unlock;
916 	}
917 
918 	parent = dentry->d_parent;
919 	/* Protect against concurrent sillydeletes */
920 	nfs_block_sillyrename(parent);
921 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
922 	if (error == -ENOENT)
923 		goto no_entry;
924 	if (error < 0) {
925 		res = ERR_PTR(error);
926 		goto out_unblock_sillyrename;
927 	}
928 	inode = nfs_fhget(dentry->d_sb, &fhandle, &fattr);
929 	res = (struct dentry *)inode;
930 	if (IS_ERR(res))
931 		goto out_unblock_sillyrename;
932 
933 no_entry:
934 	res = d_materialise_unique(dentry, inode);
935 	if (res != NULL) {
936 		if (IS_ERR(res))
937 			goto out_unblock_sillyrename;
938 		dentry = res;
939 	}
940 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
941 out_unblock_sillyrename:
942 	nfs_unblock_sillyrename(parent);
943 out_unlock:
944 	unlock_kernel();
945 out:
946 	return res;
947 }
948 
949 #ifdef CONFIG_NFS_V4
950 static int nfs_open_revalidate(struct dentry *, struct nameidata *);
951 
952 struct dentry_operations nfs4_dentry_operations = {
953 	.d_revalidate	= nfs_open_revalidate,
954 	.d_delete	= nfs_dentry_delete,
955 	.d_iput		= nfs_dentry_iput,
956 };
957 
958 /*
959  * Use intent information to determine whether we need to substitute
960  * the NFSv4-style stateful OPEN for the LOOKUP call
961  */
962 static int is_atomic_open(struct inode *dir, struct nameidata *nd)
963 {
964 	if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
965 		return 0;
966 	/* NFS does not (yet) have a stateful open for directories */
967 	if (nd->flags & LOOKUP_DIRECTORY)
968 		return 0;
969 	/* Are we trying to write to a read only partition? */
970 	if (IS_RDONLY(dir) && (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE)))
971 		return 0;
972 	return 1;
973 }
974 
975 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
976 {
977 	struct dentry *res = NULL;
978 	int error;
979 
980 	dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
981 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
982 
983 	/* Check that we are indeed trying to open this file */
984 	if (!is_atomic_open(dir, nd))
985 		goto no_open;
986 
987 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
988 		res = ERR_PTR(-ENAMETOOLONG);
989 		goto out;
990 	}
991 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
992 
993 	/* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash
994 	 * the dentry. */
995 	if (nd->intent.open.flags & O_EXCL) {
996 		d_instantiate(dentry, NULL);
997 		goto out;
998 	}
999 
1000 	/* Open the file on the server */
1001 	lock_kernel();
1002 	res = nfs4_atomic_open(dir, dentry, nd);
1003 	unlock_kernel();
1004 	if (IS_ERR(res)) {
1005 		error = PTR_ERR(res);
1006 		switch (error) {
1007 			/* Make a negative dentry */
1008 			case -ENOENT:
1009 				res = NULL;
1010 				goto out;
1011 			/* This turned out not to be a regular file */
1012 			case -EISDIR:
1013 			case -ENOTDIR:
1014 				goto no_open;
1015 			case -ELOOP:
1016 				if (!(nd->intent.open.flags & O_NOFOLLOW))
1017 					goto no_open;
1018 			/* case -EINVAL: */
1019 			default:
1020 				goto out;
1021 		}
1022 	} else if (res != NULL)
1023 		dentry = res;
1024 out:
1025 	return res;
1026 no_open:
1027 	return nfs_lookup(dir, dentry, nd);
1028 }
1029 
1030 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1031 {
1032 	struct dentry *parent = NULL;
1033 	struct inode *inode = dentry->d_inode;
1034 	struct inode *dir;
1035 	int openflags, ret = 0;
1036 
1037 	parent = dget_parent(dentry);
1038 	dir = parent->d_inode;
1039 	if (!is_atomic_open(dir, nd))
1040 		goto no_open;
1041 	/* We can't create new files in nfs_open_revalidate(), so we
1042 	 * optimize away revalidation of negative dentries.
1043 	 */
1044 	if (inode == NULL) {
1045 		if (!nfs_neg_need_reval(dir, dentry, nd))
1046 			ret = 1;
1047 		goto out;
1048 	}
1049 
1050 	/* NFS only supports OPEN on regular files */
1051 	if (!S_ISREG(inode->i_mode))
1052 		goto no_open;
1053 	openflags = nd->intent.open.flags;
1054 	/* We cannot do exclusive creation on a positive dentry */
1055 	if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1056 		goto no_open;
1057 	/* We can't create new files, or truncate existing ones here */
1058 	openflags &= ~(O_CREAT|O_TRUNC);
1059 
1060 	/*
1061 	 * Note: we're not holding inode->i_mutex and so may be racing with
1062 	 * operations that change the directory. We therefore save the
1063 	 * change attribute *before* we do the RPC call.
1064 	 */
1065 	lock_kernel();
1066 	ret = nfs4_open_revalidate(dir, dentry, openflags, nd);
1067 	unlock_kernel();
1068 out:
1069 	dput(parent);
1070 	if (!ret)
1071 		d_drop(dentry);
1072 	return ret;
1073 no_open:
1074 	dput(parent);
1075 	if (inode != NULL && nfs_have_delegation(inode, FMODE_READ))
1076 		return 1;
1077 	return nfs_lookup_revalidate(dentry, nd);
1078 }
1079 #endif /* CONFIG_NFSV4 */
1080 
1081 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc)
1082 {
1083 	struct dentry *parent = desc->file->f_path.dentry;
1084 	struct inode *dir = parent->d_inode;
1085 	struct nfs_entry *entry = desc->entry;
1086 	struct dentry *dentry, *alias;
1087 	struct qstr name = {
1088 		.name = entry->name,
1089 		.len = entry->len,
1090 	};
1091 	struct inode *inode;
1092 	unsigned long verf = nfs_save_change_attribute(dir);
1093 
1094 	switch (name.len) {
1095 		case 2:
1096 			if (name.name[0] == '.' && name.name[1] == '.')
1097 				return dget_parent(parent);
1098 			break;
1099 		case 1:
1100 			if (name.name[0] == '.')
1101 				return dget(parent);
1102 	}
1103 
1104 	spin_lock(&dir->i_lock);
1105 	if (NFS_I(dir)->cache_validity & NFS_INO_INVALID_DATA) {
1106 		spin_unlock(&dir->i_lock);
1107 		return NULL;
1108 	}
1109 	spin_unlock(&dir->i_lock);
1110 
1111 	name.hash = full_name_hash(name.name, name.len);
1112 	dentry = d_lookup(parent, &name);
1113 	if (dentry != NULL) {
1114 		/* Is this a positive dentry that matches the readdir info? */
1115 		if (dentry->d_inode != NULL &&
1116 				(NFS_FILEID(dentry->d_inode) == entry->ino ||
1117 				d_mountpoint(dentry))) {
1118 			if (!desc->plus || entry->fh->size == 0)
1119 				return dentry;
1120 			if (nfs_compare_fh(NFS_FH(dentry->d_inode),
1121 						entry->fh) == 0)
1122 				goto out_renew;
1123 		}
1124 		/* No, so d_drop to allow one to be created */
1125 		d_drop(dentry);
1126 		dput(dentry);
1127 	}
1128 	if (!desc->plus || !(entry->fattr->valid & NFS_ATTR_FATTR))
1129 		return NULL;
1130 	if (name.len > NFS_SERVER(dir)->namelen)
1131 		return NULL;
1132 	/* Note: caller is already holding the dir->i_mutex! */
1133 	dentry = d_alloc(parent, &name);
1134 	if (dentry == NULL)
1135 		return NULL;
1136 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1137 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
1138 	if (IS_ERR(inode)) {
1139 		dput(dentry);
1140 		return NULL;
1141 	}
1142 
1143 	alias = d_materialise_unique(dentry, inode);
1144 	if (alias != NULL) {
1145 		dput(dentry);
1146 		if (IS_ERR(alias))
1147 			return NULL;
1148 		dentry = alias;
1149 	}
1150 
1151 out_renew:
1152 	nfs_set_verifier(dentry, verf);
1153 	return dentry;
1154 }
1155 
1156 /*
1157  * Code common to create, mkdir, and mknod.
1158  */
1159 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1160 				struct nfs_fattr *fattr)
1161 {
1162 	struct dentry *parent = dget_parent(dentry);
1163 	struct inode *dir = parent->d_inode;
1164 	struct inode *inode;
1165 	int error = -EACCES;
1166 
1167 	d_drop(dentry);
1168 
1169 	/* We may have been initialized further down */
1170 	if (dentry->d_inode)
1171 		goto out;
1172 	if (fhandle->size == 0) {
1173 		error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1174 		if (error)
1175 			goto out_error;
1176 	}
1177 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1178 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1179 		struct nfs_server *server = NFS_SB(dentry->d_sb);
1180 		error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1181 		if (error < 0)
1182 			goto out_error;
1183 	}
1184 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1185 	error = PTR_ERR(inode);
1186 	if (IS_ERR(inode))
1187 		goto out_error;
1188 	d_add(dentry, inode);
1189 out:
1190 	dput(parent);
1191 	return 0;
1192 out_error:
1193 	nfs_mark_for_revalidate(dir);
1194 	dput(parent);
1195 	return error;
1196 }
1197 
1198 /*
1199  * Following a failed create operation, we drop the dentry rather
1200  * than retain a negative dentry. This avoids a problem in the event
1201  * that the operation succeeded on the server, but an error in the
1202  * reply path made it appear to have failed.
1203  */
1204 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode,
1205 		struct nameidata *nd)
1206 {
1207 	struct iattr attr;
1208 	int error;
1209 	int open_flags = 0;
1210 
1211 	dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1212 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1213 
1214 	attr.ia_mode = mode;
1215 	attr.ia_valid = ATTR_MODE;
1216 
1217 	if ((nd->flags & LOOKUP_CREATE) != 0)
1218 		open_flags = nd->intent.open.flags;
1219 
1220 	lock_kernel();
1221 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, nd);
1222 	if (error != 0)
1223 		goto out_err;
1224 	unlock_kernel();
1225 	return 0;
1226 out_err:
1227 	unlock_kernel();
1228 	d_drop(dentry);
1229 	return error;
1230 }
1231 
1232 /*
1233  * See comments for nfs_proc_create regarding failed operations.
1234  */
1235 static int
1236 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev)
1237 {
1238 	struct iattr attr;
1239 	int status;
1240 
1241 	dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1242 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1243 
1244 	if (!new_valid_dev(rdev))
1245 		return -EINVAL;
1246 
1247 	attr.ia_mode = mode;
1248 	attr.ia_valid = ATTR_MODE;
1249 
1250 	lock_kernel();
1251 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1252 	if (status != 0)
1253 		goto out_err;
1254 	unlock_kernel();
1255 	return 0;
1256 out_err:
1257 	unlock_kernel();
1258 	d_drop(dentry);
1259 	return status;
1260 }
1261 
1262 /*
1263  * See comments for nfs_proc_create regarding failed operations.
1264  */
1265 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1266 {
1267 	struct iattr attr;
1268 	int error;
1269 
1270 	dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1271 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1272 
1273 	attr.ia_valid = ATTR_MODE;
1274 	attr.ia_mode = mode | S_IFDIR;
1275 
1276 	lock_kernel();
1277 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1278 	if (error != 0)
1279 		goto out_err;
1280 	unlock_kernel();
1281 	return 0;
1282 out_err:
1283 	d_drop(dentry);
1284 	unlock_kernel();
1285 	return error;
1286 }
1287 
1288 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1289 {
1290 	if (dentry->d_inode != NULL && !d_unhashed(dentry))
1291 		d_delete(dentry);
1292 }
1293 
1294 static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1295 {
1296 	int error;
1297 
1298 	dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1299 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1300 
1301 	lock_kernel();
1302 	error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1303 	/* Ensure the VFS deletes this inode */
1304 	if (error == 0 && dentry->d_inode != NULL)
1305 		clear_nlink(dentry->d_inode);
1306 	else if (error == -ENOENT)
1307 		nfs_dentry_handle_enoent(dentry);
1308 	unlock_kernel();
1309 
1310 	return error;
1311 }
1312 
1313 static int nfs_sillyrename(struct inode *dir, struct dentry *dentry)
1314 {
1315 	static unsigned int sillycounter;
1316 	const int      fileidsize  = sizeof(NFS_FILEID(dentry->d_inode))*2;
1317 	const int      countersize = sizeof(sillycounter)*2;
1318 	const int      slen        = sizeof(".nfs")+fileidsize+countersize-1;
1319 	char           silly[slen+1];
1320 	struct qstr    qsilly;
1321 	struct dentry *sdentry;
1322 	int            error = -EIO;
1323 
1324 	dfprintk(VFS, "NFS: silly-rename(%s/%s, ct=%d)\n",
1325 		dentry->d_parent->d_name.name, dentry->d_name.name,
1326 		atomic_read(&dentry->d_count));
1327 	nfs_inc_stats(dir, NFSIOS_SILLYRENAME);
1328 
1329 	/*
1330 	 * We don't allow a dentry to be silly-renamed twice.
1331 	 */
1332 	error = -EBUSY;
1333 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1334 		goto out;
1335 
1336 	sprintf(silly, ".nfs%*.*Lx",
1337 		fileidsize, fileidsize,
1338 		(unsigned long long)NFS_FILEID(dentry->d_inode));
1339 
1340 	/* Return delegation in anticipation of the rename */
1341 	nfs_inode_return_delegation(dentry->d_inode);
1342 
1343 	sdentry = NULL;
1344 	do {
1345 		char *suffix = silly + slen - countersize;
1346 
1347 		dput(sdentry);
1348 		sillycounter++;
1349 		sprintf(suffix, "%*.*x", countersize, countersize, sillycounter);
1350 
1351 		dfprintk(VFS, "NFS: trying to rename %s to %s\n",
1352 				dentry->d_name.name, silly);
1353 
1354 		sdentry = lookup_one_len(silly, dentry->d_parent, slen);
1355 		/*
1356 		 * N.B. Better to return EBUSY here ... it could be
1357 		 * dangerous to delete the file while it's in use.
1358 		 */
1359 		if (IS_ERR(sdentry))
1360 			goto out;
1361 	} while(sdentry->d_inode != NULL); /* need negative lookup */
1362 
1363 	qsilly.name = silly;
1364 	qsilly.len  = strlen(silly);
1365 	if (dentry->d_inode) {
1366 		error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1367 				dir, &qsilly);
1368 		nfs_mark_for_revalidate(dentry->d_inode);
1369 	} else
1370 		error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1371 				dir, &qsilly);
1372 	if (!error) {
1373 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1374 		d_move(dentry, sdentry);
1375 		error = nfs_async_unlink(dir, dentry);
1376  		/* If we return 0 we don't unlink */
1377 	}
1378 	dput(sdentry);
1379 out:
1380 	return error;
1381 }
1382 
1383 /*
1384  * Remove a file after making sure there are no pending writes,
1385  * and after checking that the file has only one user.
1386  *
1387  * We invalidate the attribute cache and free the inode prior to the operation
1388  * to avoid possible races if the server reuses the inode.
1389  */
1390 static int nfs_safe_remove(struct dentry *dentry)
1391 {
1392 	struct inode *dir = dentry->d_parent->d_inode;
1393 	struct inode *inode = dentry->d_inode;
1394 	int error = -EBUSY;
1395 
1396 	dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1397 		dentry->d_parent->d_name.name, dentry->d_name.name);
1398 
1399 	/* If the dentry was sillyrenamed, we simply call d_delete() */
1400 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1401 		error = 0;
1402 		goto out;
1403 	}
1404 
1405 	if (inode != NULL) {
1406 		nfs_inode_return_delegation(inode);
1407 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1408 		/* The VFS may want to delete this inode */
1409 		if (error == 0)
1410 			drop_nlink(inode);
1411 		nfs_mark_for_revalidate(inode);
1412 	} else
1413 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1414 	if (error == -ENOENT)
1415 		nfs_dentry_handle_enoent(dentry);
1416 out:
1417 	return error;
1418 }
1419 
1420 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1421  *  belongs to an active ".nfs..." file and we return -EBUSY.
1422  *
1423  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1424  */
1425 static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1426 {
1427 	int error;
1428 	int need_rehash = 0;
1429 
1430 	dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1431 		dir->i_ino, dentry->d_name.name);
1432 
1433 	lock_kernel();
1434 	spin_lock(&dcache_lock);
1435 	spin_lock(&dentry->d_lock);
1436 	if (atomic_read(&dentry->d_count) > 1) {
1437 		spin_unlock(&dentry->d_lock);
1438 		spin_unlock(&dcache_lock);
1439 		/* Start asynchronous writeout of the inode */
1440 		write_inode_now(dentry->d_inode, 0);
1441 		error = nfs_sillyrename(dir, dentry);
1442 		unlock_kernel();
1443 		return error;
1444 	}
1445 	if (!d_unhashed(dentry)) {
1446 		__d_drop(dentry);
1447 		need_rehash = 1;
1448 	}
1449 	spin_unlock(&dentry->d_lock);
1450 	spin_unlock(&dcache_lock);
1451 	error = nfs_safe_remove(dentry);
1452 	if (!error || error == -ENOENT) {
1453 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1454 	} else if (need_rehash)
1455 		d_rehash(dentry);
1456 	unlock_kernel();
1457 	return error;
1458 }
1459 
1460 /*
1461  * To create a symbolic link, most file systems instantiate a new inode,
1462  * add a page to it containing the path, then write it out to the disk
1463  * using prepare_write/commit_write.
1464  *
1465  * Unfortunately the NFS client can't create the in-core inode first
1466  * because it needs a file handle to create an in-core inode (see
1467  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1468  * symlink request has completed on the server.
1469  *
1470  * So instead we allocate a raw page, copy the symname into it, then do
1471  * the SYMLINK request with the page as the buffer.  If it succeeds, we
1472  * now have a new file handle and can instantiate an in-core NFS inode
1473  * and move the raw page into its mapping.
1474  */
1475 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1476 {
1477 	struct pagevec lru_pvec;
1478 	struct page *page;
1479 	char *kaddr;
1480 	struct iattr attr;
1481 	unsigned int pathlen = strlen(symname);
1482 	int error;
1483 
1484 	dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1485 		dir->i_ino, dentry->d_name.name, symname);
1486 
1487 	if (pathlen > PAGE_SIZE)
1488 		return -ENAMETOOLONG;
1489 
1490 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
1491 	attr.ia_valid = ATTR_MODE;
1492 
1493 	lock_kernel();
1494 
1495 	page = alloc_page(GFP_HIGHUSER);
1496 	if (!page) {
1497 		unlock_kernel();
1498 		return -ENOMEM;
1499 	}
1500 
1501 	kaddr = kmap_atomic(page, KM_USER0);
1502 	memcpy(kaddr, symname, pathlen);
1503 	if (pathlen < PAGE_SIZE)
1504 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1505 	kunmap_atomic(kaddr, KM_USER0);
1506 
1507 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1508 	if (error != 0) {
1509 		dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1510 			dir->i_sb->s_id, dir->i_ino,
1511 			dentry->d_name.name, symname, error);
1512 		d_drop(dentry);
1513 		__free_page(page);
1514 		unlock_kernel();
1515 		return error;
1516 	}
1517 
1518 	/*
1519 	 * No big deal if we can't add this page to the page cache here.
1520 	 * READLINK will get the missing page from the server if needed.
1521 	 */
1522 	pagevec_init(&lru_pvec, 0);
1523 	if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1524 							GFP_KERNEL)) {
1525 		pagevec_add(&lru_pvec, page);
1526 		pagevec_lru_add(&lru_pvec);
1527 		SetPageUptodate(page);
1528 		unlock_page(page);
1529 	} else
1530 		__free_page(page);
1531 
1532 	unlock_kernel();
1533 	return 0;
1534 }
1535 
1536 static int
1537 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1538 {
1539 	struct inode *inode = old_dentry->d_inode;
1540 	int error;
1541 
1542 	dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1543 		old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1544 		dentry->d_parent->d_name.name, dentry->d_name.name);
1545 
1546 	lock_kernel();
1547 	d_drop(dentry);
1548 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1549 	if (error == 0) {
1550 		atomic_inc(&inode->i_count);
1551 		d_add(dentry, inode);
1552 	}
1553 	unlock_kernel();
1554 	return error;
1555 }
1556 
1557 /*
1558  * RENAME
1559  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1560  * different file handle for the same inode after a rename (e.g. when
1561  * moving to a different directory). A fail-safe method to do so would
1562  * be to look up old_dir/old_name, create a link to new_dir/new_name and
1563  * rename the old file using the sillyrename stuff. This way, the original
1564  * file in old_dir will go away when the last process iput()s the inode.
1565  *
1566  * FIXED.
1567  *
1568  * It actually works quite well. One needs to have the possibility for
1569  * at least one ".nfs..." file in each directory the file ever gets
1570  * moved or linked to which happens automagically with the new
1571  * implementation that only depends on the dcache stuff instead of
1572  * using the inode layer
1573  *
1574  * Unfortunately, things are a little more complicated than indicated
1575  * above. For a cross-directory move, we want to make sure we can get
1576  * rid of the old inode after the operation.  This means there must be
1577  * no pending writes (if it's a file), and the use count must be 1.
1578  * If these conditions are met, we can drop the dentries before doing
1579  * the rename.
1580  */
1581 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1582 		      struct inode *new_dir, struct dentry *new_dentry)
1583 {
1584 	struct inode *old_inode = old_dentry->d_inode;
1585 	struct inode *new_inode = new_dentry->d_inode;
1586 	struct dentry *dentry = NULL, *rehash = NULL;
1587 	int error = -EBUSY;
1588 
1589 	/*
1590 	 * To prevent any new references to the target during the rename,
1591 	 * we unhash the dentry and free the inode in advance.
1592 	 */
1593 	lock_kernel();
1594 	if (!d_unhashed(new_dentry)) {
1595 		d_drop(new_dentry);
1596 		rehash = new_dentry;
1597 	}
1598 
1599 	dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1600 		 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1601 		 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1602 		 atomic_read(&new_dentry->d_count));
1603 
1604 	/*
1605 	 * First check whether the target is busy ... we can't
1606 	 * safely do _any_ rename if the target is in use.
1607 	 *
1608 	 * For files, make a copy of the dentry and then do a
1609 	 * silly-rename. If the silly-rename succeeds, the
1610 	 * copied dentry is hashed and becomes the new target.
1611 	 */
1612 	if (!new_inode)
1613 		goto go_ahead;
1614 	if (S_ISDIR(new_inode->i_mode)) {
1615 		error = -EISDIR;
1616 		if (!S_ISDIR(old_inode->i_mode))
1617 			goto out;
1618 	} else if (atomic_read(&new_dentry->d_count) > 2) {
1619 		int err;
1620 		/* copy the target dentry's name */
1621 		dentry = d_alloc(new_dentry->d_parent,
1622 				 &new_dentry->d_name);
1623 		if (!dentry)
1624 			goto out;
1625 
1626 		/* silly-rename the existing target ... */
1627 		err = nfs_sillyrename(new_dir, new_dentry);
1628 		if (!err) {
1629 			new_dentry = rehash = dentry;
1630 			new_inode = NULL;
1631 			/* instantiate the replacement target */
1632 			d_instantiate(new_dentry, NULL);
1633 		} else if (atomic_read(&new_dentry->d_count) > 1)
1634 			/* dentry still busy? */
1635 			goto out;
1636 	} else
1637 		drop_nlink(new_inode);
1638 
1639 go_ahead:
1640 	/*
1641 	 * ... prune child dentries and writebacks if needed.
1642 	 */
1643 	if (atomic_read(&old_dentry->d_count) > 1) {
1644 		if (S_ISREG(old_inode->i_mode))
1645 			nfs_wb_all(old_inode);
1646 		shrink_dcache_parent(old_dentry);
1647 	}
1648 	nfs_inode_return_delegation(old_inode);
1649 
1650 	if (new_inode != NULL) {
1651 		nfs_inode_return_delegation(new_inode);
1652 		d_delete(new_dentry);
1653 	}
1654 
1655 	error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1656 					   new_dir, &new_dentry->d_name);
1657 	nfs_mark_for_revalidate(old_inode);
1658 out:
1659 	if (rehash)
1660 		d_rehash(rehash);
1661 	if (!error) {
1662 		d_move(old_dentry, new_dentry);
1663 		nfs_set_verifier(new_dentry,
1664 					nfs_save_change_attribute(new_dir));
1665 	} else if (error == -ENOENT)
1666 		nfs_dentry_handle_enoent(old_dentry);
1667 
1668 	/* new dentry created? */
1669 	if (dentry)
1670 		dput(dentry);
1671 	unlock_kernel();
1672 	return error;
1673 }
1674 
1675 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1676 static LIST_HEAD(nfs_access_lru_list);
1677 static atomic_long_t nfs_access_nr_entries;
1678 
1679 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1680 {
1681 	put_rpccred(entry->cred);
1682 	kfree(entry);
1683 	smp_mb__before_atomic_dec();
1684 	atomic_long_dec(&nfs_access_nr_entries);
1685 	smp_mb__after_atomic_dec();
1686 }
1687 
1688 int nfs_access_cache_shrinker(int nr_to_scan, gfp_t gfp_mask)
1689 {
1690 	LIST_HEAD(head);
1691 	struct nfs_inode *nfsi;
1692 	struct nfs_access_entry *cache;
1693 
1694 restart:
1695 	spin_lock(&nfs_access_lru_lock);
1696 	list_for_each_entry(nfsi, &nfs_access_lru_list, access_cache_inode_lru) {
1697 		struct rw_semaphore *s_umount;
1698 		struct inode *inode;
1699 
1700 		if (nr_to_scan-- == 0)
1701 			break;
1702 		s_umount = &nfsi->vfs_inode.i_sb->s_umount;
1703 		if (!down_read_trylock(s_umount))
1704 			continue;
1705 		inode = igrab(&nfsi->vfs_inode);
1706 		if (inode == NULL) {
1707 			up_read(s_umount);
1708 			continue;
1709 		}
1710 		spin_lock(&inode->i_lock);
1711 		if (list_empty(&nfsi->access_cache_entry_lru))
1712 			goto remove_lru_entry;
1713 		cache = list_entry(nfsi->access_cache_entry_lru.next,
1714 				struct nfs_access_entry, lru);
1715 		list_move(&cache->lru, &head);
1716 		rb_erase(&cache->rb_node, &nfsi->access_cache);
1717 		if (!list_empty(&nfsi->access_cache_entry_lru))
1718 			list_move_tail(&nfsi->access_cache_inode_lru,
1719 					&nfs_access_lru_list);
1720 		else {
1721 remove_lru_entry:
1722 			list_del_init(&nfsi->access_cache_inode_lru);
1723 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1724 		}
1725 		spin_unlock(&inode->i_lock);
1726 		spin_unlock(&nfs_access_lru_lock);
1727 		iput(inode);
1728 		up_read(s_umount);
1729 		goto restart;
1730 	}
1731 	spin_unlock(&nfs_access_lru_lock);
1732 	while (!list_empty(&head)) {
1733 		cache = list_entry(head.next, struct nfs_access_entry, lru);
1734 		list_del(&cache->lru);
1735 		nfs_access_free_entry(cache);
1736 	}
1737 	return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
1738 }
1739 
1740 static void __nfs_access_zap_cache(struct inode *inode)
1741 {
1742 	struct nfs_inode *nfsi = NFS_I(inode);
1743 	struct rb_root *root_node = &nfsi->access_cache;
1744 	struct rb_node *n, *dispose = NULL;
1745 	struct nfs_access_entry *entry;
1746 
1747 	/* Unhook entries from the cache */
1748 	while ((n = rb_first(root_node)) != NULL) {
1749 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
1750 		rb_erase(n, root_node);
1751 		list_del(&entry->lru);
1752 		n->rb_left = dispose;
1753 		dispose = n;
1754 	}
1755 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
1756 	spin_unlock(&inode->i_lock);
1757 
1758 	/* Now kill them all! */
1759 	while (dispose != NULL) {
1760 		n = dispose;
1761 		dispose = n->rb_left;
1762 		nfs_access_free_entry(rb_entry(n, struct nfs_access_entry, rb_node));
1763 	}
1764 }
1765 
1766 void nfs_access_zap_cache(struct inode *inode)
1767 {
1768 	/* Remove from global LRU init */
1769 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
1770 		spin_lock(&nfs_access_lru_lock);
1771 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
1772 		spin_unlock(&nfs_access_lru_lock);
1773 	}
1774 
1775 	spin_lock(&inode->i_lock);
1776 	/* This will release the spinlock */
1777 	__nfs_access_zap_cache(inode);
1778 }
1779 
1780 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
1781 {
1782 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
1783 	struct nfs_access_entry *entry;
1784 
1785 	while (n != NULL) {
1786 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
1787 
1788 		if (cred < entry->cred)
1789 			n = n->rb_left;
1790 		else if (cred > entry->cred)
1791 			n = n->rb_right;
1792 		else
1793 			return entry;
1794 	}
1795 	return NULL;
1796 }
1797 
1798 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
1799 {
1800 	struct nfs_inode *nfsi = NFS_I(inode);
1801 	struct nfs_access_entry *cache;
1802 	int err = -ENOENT;
1803 
1804 	spin_lock(&inode->i_lock);
1805 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
1806 		goto out_zap;
1807 	cache = nfs_access_search_rbtree(inode, cred);
1808 	if (cache == NULL)
1809 		goto out;
1810 	if (!time_in_range(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
1811 		goto out_stale;
1812 	res->jiffies = cache->jiffies;
1813 	res->cred = cache->cred;
1814 	res->mask = cache->mask;
1815 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
1816 	err = 0;
1817 out:
1818 	spin_unlock(&inode->i_lock);
1819 	return err;
1820 out_stale:
1821 	rb_erase(&cache->rb_node, &nfsi->access_cache);
1822 	list_del(&cache->lru);
1823 	spin_unlock(&inode->i_lock);
1824 	nfs_access_free_entry(cache);
1825 	return -ENOENT;
1826 out_zap:
1827 	/* This will release the spinlock */
1828 	__nfs_access_zap_cache(inode);
1829 	return -ENOENT;
1830 }
1831 
1832 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
1833 {
1834 	struct nfs_inode *nfsi = NFS_I(inode);
1835 	struct rb_root *root_node = &nfsi->access_cache;
1836 	struct rb_node **p = &root_node->rb_node;
1837 	struct rb_node *parent = NULL;
1838 	struct nfs_access_entry *entry;
1839 
1840 	spin_lock(&inode->i_lock);
1841 	while (*p != NULL) {
1842 		parent = *p;
1843 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
1844 
1845 		if (set->cred < entry->cred)
1846 			p = &parent->rb_left;
1847 		else if (set->cred > entry->cred)
1848 			p = &parent->rb_right;
1849 		else
1850 			goto found;
1851 	}
1852 	rb_link_node(&set->rb_node, parent, p);
1853 	rb_insert_color(&set->rb_node, root_node);
1854 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1855 	spin_unlock(&inode->i_lock);
1856 	return;
1857 found:
1858 	rb_replace_node(parent, &set->rb_node, root_node);
1859 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1860 	list_del(&entry->lru);
1861 	spin_unlock(&inode->i_lock);
1862 	nfs_access_free_entry(entry);
1863 }
1864 
1865 static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
1866 {
1867 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
1868 	if (cache == NULL)
1869 		return;
1870 	RB_CLEAR_NODE(&cache->rb_node);
1871 	cache->jiffies = set->jiffies;
1872 	cache->cred = get_rpccred(set->cred);
1873 	cache->mask = set->mask;
1874 
1875 	nfs_access_add_rbtree(inode, cache);
1876 
1877 	/* Update accounting */
1878 	smp_mb__before_atomic_inc();
1879 	atomic_long_inc(&nfs_access_nr_entries);
1880 	smp_mb__after_atomic_inc();
1881 
1882 	/* Add inode to global LRU list */
1883 	if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
1884 		spin_lock(&nfs_access_lru_lock);
1885 		list_add_tail(&NFS_I(inode)->access_cache_inode_lru, &nfs_access_lru_list);
1886 		spin_unlock(&nfs_access_lru_lock);
1887 	}
1888 }
1889 
1890 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
1891 {
1892 	struct nfs_access_entry cache;
1893 	int status;
1894 
1895 	status = nfs_access_get_cached(inode, cred, &cache);
1896 	if (status == 0)
1897 		goto out;
1898 
1899 	/* Be clever: ask server to check for all possible rights */
1900 	cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
1901 	cache.cred = cred;
1902 	cache.jiffies = jiffies;
1903 	status = NFS_PROTO(inode)->access(inode, &cache);
1904 	if (status != 0)
1905 		return status;
1906 	nfs_access_add_cache(inode, &cache);
1907 out:
1908 	if ((cache.mask & mask) == mask)
1909 		return 0;
1910 	return -EACCES;
1911 }
1912 
1913 static int nfs_open_permission_mask(int openflags)
1914 {
1915 	int mask = 0;
1916 
1917 	if (openflags & FMODE_READ)
1918 		mask |= MAY_READ;
1919 	if (openflags & FMODE_WRITE)
1920 		mask |= MAY_WRITE;
1921 	if (openflags & FMODE_EXEC)
1922 		mask |= MAY_EXEC;
1923 	return mask;
1924 }
1925 
1926 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
1927 {
1928 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
1929 }
1930 
1931 int nfs_permission(struct inode *inode, int mask, struct nameidata *nd)
1932 {
1933 	struct rpc_cred *cred;
1934 	int res = 0;
1935 
1936 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
1937 
1938 	if (mask == 0)
1939 		goto out;
1940 	/* Is this sys_access() ? */
1941 	if (nd != NULL && (nd->flags & LOOKUP_ACCESS))
1942 		goto force_lookup;
1943 
1944 	switch (inode->i_mode & S_IFMT) {
1945 		case S_IFLNK:
1946 			goto out;
1947 		case S_IFREG:
1948 			/* NFSv4 has atomic_open... */
1949 			if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
1950 					&& nd != NULL
1951 					&& (nd->flags & LOOKUP_OPEN))
1952 				goto out;
1953 			break;
1954 		case S_IFDIR:
1955 			/*
1956 			 * Optimize away all write operations, since the server
1957 			 * will check permissions when we perform the op.
1958 			 */
1959 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
1960 				goto out;
1961 	}
1962 
1963 force_lookup:
1964 	lock_kernel();
1965 
1966 	if (!NFS_PROTO(inode)->access)
1967 		goto out_notsup;
1968 
1969 	cred = rpcauth_lookupcred(NFS_CLIENT(inode)->cl_auth, 0);
1970 	if (!IS_ERR(cred)) {
1971 		res = nfs_do_access(inode, cred, mask);
1972 		put_rpccred(cred);
1973 	} else
1974 		res = PTR_ERR(cred);
1975 	unlock_kernel();
1976 out:
1977 	dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
1978 		inode->i_sb->s_id, inode->i_ino, mask, res);
1979 	return res;
1980 out_notsup:
1981 	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1982 	if (res == 0)
1983 		res = generic_permission(inode, mask, NULL);
1984 	unlock_kernel();
1985 	goto out;
1986 }
1987 
1988 /*
1989  * Local variables:
1990  *  version-control: t
1991  *  kept-new-versions: 5
1992  * End:
1993  */
1994