xref: /openbmc/linux/fs/nfs/dir.c (revision 4c30d56e)
1 /*
2  *  linux/fs/nfs/dir.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  nfs directory handling functions
7  *
8  * 10 Apr 1996	Added silly rename for unlink	--okir
9  * 28 Sep 1996	Improved directory cache --okir
10  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
11  *              Re-implemented silly rename for unlink, newly implemented
12  *              silly rename for nfs_rename() following the suggestions
13  *              of Olaf Kirch (okir) found in this file.
14  *              Following Linus comments on my original hack, this version
15  *              depends only on the dcache stuff and doesn't touch the inode
16  *              layer (iput() and friends).
17  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
18  */
19 
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/smp_lock.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/sched.h>
37 
38 #include "nfs4_fs.h"
39 #include "delegation.h"
40 #include "iostat.h"
41 #include "internal.h"
42 
43 /* #define NFS_DEBUG_VERBOSE 1 */
44 
45 static int nfs_opendir(struct inode *, struct file *);
46 static int nfs_readdir(struct file *, void *, filldir_t);
47 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
48 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *);
49 static int nfs_mkdir(struct inode *, struct dentry *, int);
50 static int nfs_rmdir(struct inode *, struct dentry *);
51 static int nfs_unlink(struct inode *, struct dentry *);
52 static int nfs_symlink(struct inode *, struct dentry *, const char *);
53 static int nfs_link(struct dentry *, struct inode *, struct dentry *);
54 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t);
55 static int nfs_rename(struct inode *, struct dentry *,
56 		      struct inode *, struct dentry *);
57 static int nfs_fsync_dir(struct file *, struct dentry *, int);
58 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
59 
60 const struct file_operations nfs_dir_operations = {
61 	.llseek		= nfs_llseek_dir,
62 	.read		= generic_read_dir,
63 	.readdir	= nfs_readdir,
64 	.open		= nfs_opendir,
65 	.release	= nfs_release,
66 	.fsync		= nfs_fsync_dir,
67 };
68 
69 const struct inode_operations nfs_dir_inode_operations = {
70 	.create		= nfs_create,
71 	.lookup		= nfs_lookup,
72 	.link		= nfs_link,
73 	.unlink		= nfs_unlink,
74 	.symlink	= nfs_symlink,
75 	.mkdir		= nfs_mkdir,
76 	.rmdir		= nfs_rmdir,
77 	.mknod		= nfs_mknod,
78 	.rename		= nfs_rename,
79 	.permission	= nfs_permission,
80 	.getattr	= nfs_getattr,
81 	.setattr	= nfs_setattr,
82 };
83 
84 #ifdef CONFIG_NFS_V3
85 const struct inode_operations nfs3_dir_inode_operations = {
86 	.create		= nfs_create,
87 	.lookup		= nfs_lookup,
88 	.link		= nfs_link,
89 	.unlink		= nfs_unlink,
90 	.symlink	= nfs_symlink,
91 	.mkdir		= nfs_mkdir,
92 	.rmdir		= nfs_rmdir,
93 	.mknod		= nfs_mknod,
94 	.rename		= nfs_rename,
95 	.permission	= nfs_permission,
96 	.getattr	= nfs_getattr,
97 	.setattr	= nfs_setattr,
98 	.listxattr	= nfs3_listxattr,
99 	.getxattr	= nfs3_getxattr,
100 	.setxattr	= nfs3_setxattr,
101 	.removexattr	= nfs3_removexattr,
102 };
103 #endif  /* CONFIG_NFS_V3 */
104 
105 #ifdef CONFIG_NFS_V4
106 
107 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
108 const struct inode_operations nfs4_dir_inode_operations = {
109 	.create		= nfs_create,
110 	.lookup		= nfs_atomic_lookup,
111 	.link		= nfs_link,
112 	.unlink		= nfs_unlink,
113 	.symlink	= nfs_symlink,
114 	.mkdir		= nfs_mkdir,
115 	.rmdir		= nfs_rmdir,
116 	.mknod		= nfs_mknod,
117 	.rename		= nfs_rename,
118 	.permission	= nfs_permission,
119 	.getattr	= nfs_getattr,
120 	.setattr	= nfs_setattr,
121 	.getxattr       = nfs4_getxattr,
122 	.setxattr       = nfs4_setxattr,
123 	.listxattr      = nfs4_listxattr,
124 };
125 
126 #endif /* CONFIG_NFS_V4 */
127 
128 /*
129  * Open file
130  */
131 static int
132 nfs_opendir(struct inode *inode, struct file *filp)
133 {
134 	int res;
135 
136 	dfprintk(VFS, "NFS: opendir(%s/%ld)\n",
137 			inode->i_sb->s_id, inode->i_ino);
138 
139 	lock_kernel();
140 	/* Call generic open code in order to cache credentials */
141 	res = nfs_open(inode, filp);
142 	unlock_kernel();
143 	return res;
144 }
145 
146 typedef __be32 * (*decode_dirent_t)(__be32 *, struct nfs_entry *, int);
147 typedef struct {
148 	struct file	*file;
149 	struct page	*page;
150 	unsigned long	page_index;
151 	__be32		*ptr;
152 	u64		*dir_cookie;
153 	loff_t		current_index;
154 	struct nfs_entry *entry;
155 	decode_dirent_t	decode;
156 	int		plus;
157 	int		error;
158 	unsigned long	timestamp;
159 	int		timestamp_valid;
160 } nfs_readdir_descriptor_t;
161 
162 /* Now we cache directories properly, by stuffing the dirent
163  * data directly in the page cache.
164  *
165  * Inode invalidation due to refresh etc. takes care of
166  * _everything_, no sloppy entry flushing logic, no extraneous
167  * copying, network direct to page cache, the way it was meant
168  * to be.
169  *
170  * NOTE: Dirent information verification is done always by the
171  *	 page-in of the RPC reply, nowhere else, this simplies
172  *	 things substantially.
173  */
174 static
175 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page *page)
176 {
177 	struct file	*file = desc->file;
178 	struct inode	*inode = file->f_path.dentry->d_inode;
179 	struct rpc_cred	*cred = nfs_file_cred(file);
180 	unsigned long	timestamp;
181 	int		error;
182 
183 	dfprintk(DIRCACHE, "NFS: %s: reading cookie %Lu into page %lu\n",
184 			__FUNCTION__, (long long)desc->entry->cookie,
185 			page->index);
186 
187  again:
188 	timestamp = jiffies;
189 	error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, desc->entry->cookie, page,
190 					  NFS_SERVER(inode)->dtsize, desc->plus);
191 	if (error < 0) {
192 		/* We requested READDIRPLUS, but the server doesn't grok it */
193 		if (error == -ENOTSUPP && desc->plus) {
194 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
195 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_FLAGS(inode));
196 			desc->plus = 0;
197 			goto again;
198 		}
199 		goto error;
200 	}
201 	desc->timestamp = timestamp;
202 	desc->timestamp_valid = 1;
203 	SetPageUptodate(page);
204 	/* Ensure consistent page alignment of the data.
205 	 * Note: assumes we have exclusive access to this mapping either
206 	 *	 through inode->i_mutex or some other mechanism.
207 	 */
208 	if (page->index == 0 && invalidate_inode_pages2_range(inode->i_mapping, PAGE_CACHE_SIZE, -1) < 0) {
209 		/* Should never happen */
210 		nfs_zap_mapping(inode, inode->i_mapping);
211 	}
212 	unlock_page(page);
213 	return 0;
214  error:
215 	unlock_page(page);
216 	desc->error = error;
217 	return -EIO;
218 }
219 
220 static inline
221 int dir_decode(nfs_readdir_descriptor_t *desc)
222 {
223 	__be32	*p = desc->ptr;
224 	p = desc->decode(p, desc->entry, desc->plus);
225 	if (IS_ERR(p))
226 		return PTR_ERR(p);
227 	desc->ptr = p;
228 	if (desc->timestamp_valid)
229 		desc->entry->fattr->time_start = desc->timestamp;
230 	else
231 		desc->entry->fattr->valid &= ~NFS_ATTR_FATTR;
232 	return 0;
233 }
234 
235 static inline
236 void dir_page_release(nfs_readdir_descriptor_t *desc)
237 {
238 	kunmap(desc->page);
239 	page_cache_release(desc->page);
240 	desc->page = NULL;
241 	desc->ptr = NULL;
242 }
243 
244 /*
245  * Given a pointer to a buffer that has already been filled by a call
246  * to readdir, find the next entry with cookie '*desc->dir_cookie'.
247  *
248  * If the end of the buffer has been reached, return -EAGAIN, if not,
249  * return the offset within the buffer of the next entry to be
250  * read.
251  */
252 static inline
253 int find_dirent(nfs_readdir_descriptor_t *desc)
254 {
255 	struct nfs_entry *entry = desc->entry;
256 	int		loop_count = 0,
257 			status;
258 
259 	while((status = dir_decode(desc)) == 0) {
260 		dfprintk(DIRCACHE, "NFS: %s: examining cookie %Lu\n",
261 				__FUNCTION__, (unsigned long long)entry->cookie);
262 		if (entry->prev_cookie == *desc->dir_cookie)
263 			break;
264 		if (loop_count++ > 200) {
265 			loop_count = 0;
266 			schedule();
267 		}
268 	}
269 	return status;
270 }
271 
272 /*
273  * Given a pointer to a buffer that has already been filled by a call
274  * to readdir, find the entry at offset 'desc->file->f_pos'.
275  *
276  * If the end of the buffer has been reached, return -EAGAIN, if not,
277  * return the offset within the buffer of the next entry to be
278  * read.
279  */
280 static inline
281 int find_dirent_index(nfs_readdir_descriptor_t *desc)
282 {
283 	struct nfs_entry *entry = desc->entry;
284 	int		loop_count = 0,
285 			status;
286 
287 	for(;;) {
288 		status = dir_decode(desc);
289 		if (status)
290 			break;
291 
292 		dfprintk(DIRCACHE, "NFS: found cookie %Lu at index %Ld\n",
293 				(unsigned long long)entry->cookie, desc->current_index);
294 
295 		if (desc->file->f_pos == desc->current_index) {
296 			*desc->dir_cookie = entry->cookie;
297 			break;
298 		}
299 		desc->current_index++;
300 		if (loop_count++ > 200) {
301 			loop_count = 0;
302 			schedule();
303 		}
304 	}
305 	return status;
306 }
307 
308 /*
309  * Find the given page, and call find_dirent() or find_dirent_index in
310  * order to try to return the next entry.
311  */
312 static inline
313 int find_dirent_page(nfs_readdir_descriptor_t *desc)
314 {
315 	struct inode	*inode = desc->file->f_path.dentry->d_inode;
316 	struct page	*page;
317 	int		status;
318 
319 	dfprintk(DIRCACHE, "NFS: %s: searching page %ld for target %Lu\n",
320 			__FUNCTION__, desc->page_index,
321 			(long long) *desc->dir_cookie);
322 
323 	/* If we find the page in the page_cache, we cannot be sure
324 	 * how fresh the data is, so we will ignore readdir_plus attributes.
325 	 */
326 	desc->timestamp_valid = 0;
327 	page = read_cache_page(inode->i_mapping, desc->page_index,
328 			       (filler_t *)nfs_readdir_filler, desc);
329 	if (IS_ERR(page)) {
330 		status = PTR_ERR(page);
331 		goto out;
332 	}
333 
334 	/* NOTE: Someone else may have changed the READDIRPLUS flag */
335 	desc->page = page;
336 	desc->ptr = kmap(page);		/* matching kunmap in nfs_do_filldir */
337 	if (*desc->dir_cookie != 0)
338 		status = find_dirent(desc);
339 	else
340 		status = find_dirent_index(desc);
341 	if (status < 0)
342 		dir_page_release(desc);
343  out:
344 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, status);
345 	return status;
346 }
347 
348 /*
349  * Recurse through the page cache pages, and return a
350  * filled nfs_entry structure of the next directory entry if possible.
351  *
352  * The target for the search is '*desc->dir_cookie' if non-0,
353  * 'desc->file->f_pos' otherwise
354  */
355 static inline
356 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
357 {
358 	int		loop_count = 0;
359 	int		res;
360 
361 	/* Always search-by-index from the beginning of the cache */
362 	if (*desc->dir_cookie == 0) {
363 		dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for offset %Ld\n",
364 				(long long)desc->file->f_pos);
365 		desc->page_index = 0;
366 		desc->entry->cookie = desc->entry->prev_cookie = 0;
367 		desc->entry->eof = 0;
368 		desc->current_index = 0;
369 	} else
370 		dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for cookie %Lu\n",
371 				(unsigned long long)*desc->dir_cookie);
372 
373 	for (;;) {
374 		res = find_dirent_page(desc);
375 		if (res != -EAGAIN)
376 			break;
377 		/* Align to beginning of next page */
378 		desc->page_index ++;
379 		if (loop_count++ > 200) {
380 			loop_count = 0;
381 			schedule();
382 		}
383 	}
384 
385 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, res);
386 	return res;
387 }
388 
389 static inline unsigned int dt_type(struct inode *inode)
390 {
391 	return (inode->i_mode >> 12) & 15;
392 }
393 
394 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc);
395 
396 /*
397  * Once we've found the start of the dirent within a page: fill 'er up...
398  */
399 static
400 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
401 		   filldir_t filldir)
402 {
403 	struct file	*file = desc->file;
404 	struct nfs_entry *entry = desc->entry;
405 	struct dentry	*dentry = NULL;
406 	u64		fileid;
407 	int		loop_count = 0,
408 			res;
409 
410 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling starting @ cookie %Lu\n",
411 			(unsigned long long)entry->cookie);
412 
413 	for(;;) {
414 		unsigned d_type = DT_UNKNOWN;
415 		/* Note: entry->prev_cookie contains the cookie for
416 		 *	 retrieving the current dirent on the server */
417 		fileid = entry->ino;
418 
419 		/* Get a dentry if we have one */
420 		if (dentry != NULL)
421 			dput(dentry);
422 		dentry = nfs_readdir_lookup(desc);
423 
424 		/* Use readdirplus info */
425 		if (dentry != NULL && dentry->d_inode != NULL) {
426 			d_type = dt_type(dentry->d_inode);
427 			fileid = NFS_FILEID(dentry->d_inode);
428 		}
429 
430 		res = filldir(dirent, entry->name, entry->len,
431 			      file->f_pos, nfs_compat_user_ino64(fileid),
432 			      d_type);
433 		if (res < 0)
434 			break;
435 		file->f_pos++;
436 		*desc->dir_cookie = entry->cookie;
437 		if (dir_decode(desc) != 0) {
438 			desc->page_index ++;
439 			break;
440 		}
441 		if (loop_count++ > 200) {
442 			loop_count = 0;
443 			schedule();
444 		}
445 	}
446 	dir_page_release(desc);
447 	if (dentry != NULL)
448 		dput(dentry);
449 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
450 			(unsigned long long)*desc->dir_cookie, res);
451 	return res;
452 }
453 
454 /*
455  * If we cannot find a cookie in our cache, we suspect that this is
456  * because it points to a deleted file, so we ask the server to return
457  * whatever it thinks is the next entry. We then feed this to filldir.
458  * If all goes well, we should then be able to find our way round the
459  * cache on the next call to readdir_search_pagecache();
460  *
461  * NOTE: we cannot add the anonymous page to the pagecache because
462  *	 the data it contains might not be page aligned. Besides,
463  *	 we should already have a complete representation of the
464  *	 directory in the page cache by the time we get here.
465  */
466 static inline
467 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
468 		     filldir_t filldir)
469 {
470 	struct file	*file = desc->file;
471 	struct inode	*inode = file->f_path.dentry->d_inode;
472 	struct rpc_cred	*cred = nfs_file_cred(file);
473 	struct page	*page = NULL;
474 	int		status;
475 	unsigned long	timestamp;
476 
477 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
478 			(unsigned long long)*desc->dir_cookie);
479 
480 	page = alloc_page(GFP_HIGHUSER);
481 	if (!page) {
482 		status = -ENOMEM;
483 		goto out;
484 	}
485 	timestamp = jiffies;
486 	desc->error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, *desc->dir_cookie,
487 						page,
488 						NFS_SERVER(inode)->dtsize,
489 						desc->plus);
490 	desc->page = page;
491 	desc->ptr = kmap(page);		/* matching kunmap in nfs_do_filldir */
492 	if (desc->error >= 0) {
493 		desc->timestamp = timestamp;
494 		desc->timestamp_valid = 1;
495 		if ((status = dir_decode(desc)) == 0)
496 			desc->entry->prev_cookie = *desc->dir_cookie;
497 	} else
498 		status = -EIO;
499 	if (status < 0)
500 		goto out_release;
501 
502 	status = nfs_do_filldir(desc, dirent, filldir);
503 
504 	/* Reset read descriptor so it searches the page cache from
505 	 * the start upon the next call to readdir_search_pagecache() */
506 	desc->page_index = 0;
507 	desc->entry->cookie = desc->entry->prev_cookie = 0;
508 	desc->entry->eof = 0;
509  out:
510 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
511 			__FUNCTION__, status);
512 	return status;
513  out_release:
514 	dir_page_release(desc);
515 	goto out;
516 }
517 
518 /* The file offset position represents the dirent entry number.  A
519    last cookie cache takes care of the common case of reading the
520    whole directory.
521  */
522 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
523 {
524 	struct dentry	*dentry = filp->f_path.dentry;
525 	struct inode	*inode = dentry->d_inode;
526 	nfs_readdir_descriptor_t my_desc,
527 			*desc = &my_desc;
528 	struct nfs_entry my_entry;
529 	struct nfs_fh	 fh;
530 	struct nfs_fattr fattr;
531 	long		res;
532 
533 	dfprintk(VFS, "NFS: readdir(%s/%s) starting at cookie %Lu\n",
534 			dentry->d_parent->d_name.name, dentry->d_name.name,
535 			(long long)filp->f_pos);
536 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
537 
538 	lock_kernel();
539 
540 	res = nfs_revalidate_mapping_nolock(inode, filp->f_mapping);
541 	if (res < 0) {
542 		unlock_kernel();
543 		return res;
544 	}
545 
546 	/*
547 	 * filp->f_pos points to the dirent entry number.
548 	 * *desc->dir_cookie has the cookie for the next entry. We have
549 	 * to either find the entry with the appropriate number or
550 	 * revalidate the cookie.
551 	 */
552 	memset(desc, 0, sizeof(*desc));
553 
554 	desc->file = filp;
555 	desc->dir_cookie = &nfs_file_open_context(filp)->dir_cookie;
556 	desc->decode = NFS_PROTO(inode)->decode_dirent;
557 	desc->plus = NFS_USE_READDIRPLUS(inode);
558 
559 	my_entry.cookie = my_entry.prev_cookie = 0;
560 	my_entry.eof = 0;
561 	my_entry.fh = &fh;
562 	my_entry.fattr = &fattr;
563 	nfs_fattr_init(&fattr);
564 	desc->entry = &my_entry;
565 
566 	nfs_block_sillyrename(dentry);
567 	while(!desc->entry->eof) {
568 		res = readdir_search_pagecache(desc);
569 
570 		if (res == -EBADCOOKIE) {
571 			/* This means either end of directory */
572 			if (*desc->dir_cookie && desc->entry->cookie != *desc->dir_cookie) {
573 				/* Or that the server has 'lost' a cookie */
574 				res = uncached_readdir(desc, dirent, filldir);
575 				if (res >= 0)
576 					continue;
577 			}
578 			res = 0;
579 			break;
580 		}
581 		if (res == -ETOOSMALL && desc->plus) {
582 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_FLAGS(inode));
583 			nfs_zap_caches(inode);
584 			desc->plus = 0;
585 			desc->entry->eof = 0;
586 			continue;
587 		}
588 		if (res < 0)
589 			break;
590 
591 		res = nfs_do_filldir(desc, dirent, filldir);
592 		if (res < 0) {
593 			res = 0;
594 			break;
595 		}
596 	}
597 	nfs_unblock_sillyrename(dentry);
598 	unlock_kernel();
599 	if (res > 0)
600 		res = 0;
601 	dfprintk(VFS, "NFS: readdir(%s/%s) returns %ld\n",
602 			dentry->d_parent->d_name.name, dentry->d_name.name,
603 			res);
604 	return res;
605 }
606 
607 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
608 {
609 	mutex_lock(&filp->f_path.dentry->d_inode->i_mutex);
610 	switch (origin) {
611 		case 1:
612 			offset += filp->f_pos;
613 		case 0:
614 			if (offset >= 0)
615 				break;
616 		default:
617 			offset = -EINVAL;
618 			goto out;
619 	}
620 	if (offset != filp->f_pos) {
621 		filp->f_pos = offset;
622 		nfs_file_open_context(filp)->dir_cookie = 0;
623 	}
624 out:
625 	mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex);
626 	return offset;
627 }
628 
629 /*
630  * All directory operations under NFS are synchronous, so fsync()
631  * is a dummy operation.
632  */
633 static int nfs_fsync_dir(struct file *filp, struct dentry *dentry, int datasync)
634 {
635 	dfprintk(VFS, "NFS: fsync_dir(%s/%s) datasync %d\n",
636 			dentry->d_parent->d_name.name, dentry->d_name.name,
637 			datasync);
638 
639 	return 0;
640 }
641 
642 /*
643  * A check for whether or not the parent directory has changed.
644  * In the case it has, we assume that the dentries are untrustworthy
645  * and may need to be looked up again.
646  */
647 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
648 {
649 	if (IS_ROOT(dentry))
650 		return 1;
651 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
652 		return 0;
653 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
654 	if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
655 		return 0;
656 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
657 		return 0;
658 	return 1;
659 }
660 
661 /*
662  * Return the intent data that applies to this particular path component
663  *
664  * Note that the current set of intents only apply to the very last
665  * component of the path.
666  * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
667  */
668 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask)
669 {
670 	if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT))
671 		return 0;
672 	return nd->flags & mask;
673 }
674 
675 /*
676  * Use intent information to check whether or not we're going to do
677  * an O_EXCL create using this path component.
678  */
679 static int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
680 {
681 	if (NFS_PROTO(dir)->version == 2)
682 		return 0;
683 	if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_CREATE) == 0)
684 		return 0;
685 	return (nd->intent.open.flags & O_EXCL) != 0;
686 }
687 
688 /*
689  * Inode and filehandle revalidation for lookups.
690  *
691  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
692  * or if the intent information indicates that we're about to open this
693  * particular file and the "nocto" mount flag is not set.
694  *
695  */
696 static inline
697 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
698 {
699 	struct nfs_server *server = NFS_SERVER(inode);
700 
701 	if (nd != NULL) {
702 		/* VFS wants an on-the-wire revalidation */
703 		if (nd->flags & LOOKUP_REVAL)
704 			goto out_force;
705 		/* This is an open(2) */
706 		if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
707 				!(server->flags & NFS_MOUNT_NOCTO) &&
708 				(S_ISREG(inode->i_mode) ||
709 				 S_ISDIR(inode->i_mode)))
710 			goto out_force;
711 		return 0;
712 	}
713 	return nfs_revalidate_inode(server, inode);
714 out_force:
715 	return __nfs_revalidate_inode(server, inode);
716 }
717 
718 /*
719  * We judge how long we want to trust negative
720  * dentries by looking at the parent inode mtime.
721  *
722  * If parent mtime has changed, we revalidate, else we wait for a
723  * period corresponding to the parent's attribute cache timeout value.
724  */
725 static inline
726 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
727 		       struct nameidata *nd)
728 {
729 	/* Don't revalidate a negative dentry if we're creating a new file */
730 	if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
731 		return 0;
732 	return !nfs_check_verifier(dir, dentry);
733 }
734 
735 /*
736  * This is called every time the dcache has a lookup hit,
737  * and we should check whether we can really trust that
738  * lookup.
739  *
740  * NOTE! The hit can be a negative hit too, don't assume
741  * we have an inode!
742  *
743  * If the parent directory is seen to have changed, we throw out the
744  * cached dentry and do a new lookup.
745  */
746 static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd)
747 {
748 	struct inode *dir;
749 	struct inode *inode;
750 	struct dentry *parent;
751 	int error;
752 	struct nfs_fh fhandle;
753 	struct nfs_fattr fattr;
754 
755 	parent = dget_parent(dentry);
756 	lock_kernel();
757 	dir = parent->d_inode;
758 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
759 	inode = dentry->d_inode;
760 
761 	if (!inode) {
762 		if (nfs_neg_need_reval(dir, dentry, nd))
763 			goto out_bad;
764 		goto out_valid;
765 	}
766 
767 	if (is_bad_inode(inode)) {
768 		dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
769 				__FUNCTION__, dentry->d_parent->d_name.name,
770 				dentry->d_name.name);
771 		goto out_bad;
772 	}
773 
774 	/* Force a full look up iff the parent directory has changed */
775 	if (!nfs_is_exclusive_create(dir, nd) && nfs_check_verifier(dir, dentry)) {
776 		if (nfs_lookup_verify_inode(inode, nd))
777 			goto out_zap_parent;
778 		goto out_valid;
779 	}
780 
781 	if (NFS_STALE(inode))
782 		goto out_bad;
783 
784 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
785 	if (error)
786 		goto out_bad;
787 	if (nfs_compare_fh(NFS_FH(inode), &fhandle))
788 		goto out_bad;
789 	if ((error = nfs_refresh_inode(inode, &fattr)) != 0)
790 		goto out_bad;
791 
792 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
793  out_valid:
794 	unlock_kernel();
795 	dput(parent);
796 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
797 			__FUNCTION__, dentry->d_parent->d_name.name,
798 			dentry->d_name.name);
799 	return 1;
800 out_zap_parent:
801 	nfs_zap_caches(dir);
802  out_bad:
803 	nfs_mark_for_revalidate(dir);
804 	if (inode && S_ISDIR(inode->i_mode)) {
805 		/* Purge readdir caches. */
806 		nfs_zap_caches(inode);
807 		/* If we have submounts, don't unhash ! */
808 		if (have_submounts(dentry))
809 			goto out_valid;
810 		shrink_dcache_parent(dentry);
811 	}
812 	d_drop(dentry);
813 	unlock_kernel();
814 	dput(parent);
815 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
816 			__FUNCTION__, dentry->d_parent->d_name.name,
817 			dentry->d_name.name);
818 	return 0;
819 }
820 
821 /*
822  * This is called from dput() when d_count is going to 0.
823  */
824 static int nfs_dentry_delete(struct dentry *dentry)
825 {
826 	dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
827 		dentry->d_parent->d_name.name, dentry->d_name.name,
828 		dentry->d_flags);
829 
830 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
831 		/* Unhash it, so that ->d_iput() would be called */
832 		return 1;
833 	}
834 	if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
835 		/* Unhash it, so that ancestors of killed async unlink
836 		 * files will be cleaned up during umount */
837 		return 1;
838 	}
839 	return 0;
840 
841 }
842 
843 /*
844  * Called when the dentry loses inode.
845  * We use it to clean up silly-renamed files.
846  */
847 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
848 {
849 	nfs_inode_return_delegation(inode);
850 	if (S_ISDIR(inode->i_mode))
851 		/* drop any readdir cache as it could easily be old */
852 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
853 
854 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
855 		lock_kernel();
856 		drop_nlink(inode);
857 		nfs_complete_unlink(dentry, inode);
858 		unlock_kernel();
859 	}
860 	iput(inode);
861 }
862 
863 struct dentry_operations nfs_dentry_operations = {
864 	.d_revalidate	= nfs_lookup_revalidate,
865 	.d_delete	= nfs_dentry_delete,
866 	.d_iput		= nfs_dentry_iput,
867 };
868 
869 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
870 {
871 	struct dentry *res;
872 	struct dentry *parent;
873 	struct inode *inode = NULL;
874 	int error;
875 	struct nfs_fh fhandle;
876 	struct nfs_fattr fattr;
877 
878 	dfprintk(VFS, "NFS: lookup(%s/%s)\n",
879 		dentry->d_parent->d_name.name, dentry->d_name.name);
880 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
881 
882 	res = ERR_PTR(-ENAMETOOLONG);
883 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
884 		goto out;
885 
886 	res = ERR_PTR(-ENOMEM);
887 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
888 
889 	lock_kernel();
890 
891 	/*
892 	 * If we're doing an exclusive create, optimize away the lookup
893 	 * but don't hash the dentry.
894 	 */
895 	if (nfs_is_exclusive_create(dir, nd)) {
896 		d_instantiate(dentry, NULL);
897 		res = NULL;
898 		goto out_unlock;
899 	}
900 
901 	parent = dentry->d_parent;
902 	/* Protect against concurrent sillydeletes */
903 	nfs_block_sillyrename(parent);
904 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
905 	if (error == -ENOENT)
906 		goto no_entry;
907 	if (error < 0) {
908 		res = ERR_PTR(error);
909 		goto out_unblock_sillyrename;
910 	}
911 	inode = nfs_fhget(dentry->d_sb, &fhandle, &fattr);
912 	res = (struct dentry *)inode;
913 	if (IS_ERR(res))
914 		goto out_unblock_sillyrename;
915 
916 no_entry:
917 	res = d_materialise_unique(dentry, inode);
918 	if (res != NULL) {
919 		if (IS_ERR(res))
920 			goto out_unblock_sillyrename;
921 		dentry = res;
922 	}
923 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
924 out_unblock_sillyrename:
925 	nfs_unblock_sillyrename(parent);
926 out_unlock:
927 	unlock_kernel();
928 out:
929 	return res;
930 }
931 
932 #ifdef CONFIG_NFS_V4
933 static int nfs_open_revalidate(struct dentry *, struct nameidata *);
934 
935 struct dentry_operations nfs4_dentry_operations = {
936 	.d_revalidate	= nfs_open_revalidate,
937 	.d_delete	= nfs_dentry_delete,
938 	.d_iput		= nfs_dentry_iput,
939 };
940 
941 /*
942  * Use intent information to determine whether we need to substitute
943  * the NFSv4-style stateful OPEN for the LOOKUP call
944  */
945 static int is_atomic_open(struct inode *dir, struct nameidata *nd)
946 {
947 	if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
948 		return 0;
949 	/* NFS does not (yet) have a stateful open for directories */
950 	if (nd->flags & LOOKUP_DIRECTORY)
951 		return 0;
952 	/* Are we trying to write to a read only partition? */
953 	if (IS_RDONLY(dir) && (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE)))
954 		return 0;
955 	return 1;
956 }
957 
958 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
959 {
960 	struct dentry *res = NULL;
961 	int error;
962 
963 	dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
964 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
965 
966 	/* Check that we are indeed trying to open this file */
967 	if (!is_atomic_open(dir, nd))
968 		goto no_open;
969 
970 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
971 		res = ERR_PTR(-ENAMETOOLONG);
972 		goto out;
973 	}
974 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
975 
976 	/* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash
977 	 * the dentry. */
978 	if (nd->intent.open.flags & O_EXCL) {
979 		d_instantiate(dentry, NULL);
980 		goto out;
981 	}
982 
983 	/* Open the file on the server */
984 	lock_kernel();
985 	res = nfs4_atomic_open(dir, dentry, nd);
986 	unlock_kernel();
987 	if (IS_ERR(res)) {
988 		error = PTR_ERR(res);
989 		switch (error) {
990 			/* Make a negative dentry */
991 			case -ENOENT:
992 				res = NULL;
993 				goto out;
994 			/* This turned out not to be a regular file */
995 			case -EISDIR:
996 			case -ENOTDIR:
997 				goto no_open;
998 			case -ELOOP:
999 				if (!(nd->intent.open.flags & O_NOFOLLOW))
1000 					goto no_open;
1001 			/* case -EINVAL: */
1002 			default:
1003 				goto out;
1004 		}
1005 	} else if (res != NULL)
1006 		dentry = res;
1007 out:
1008 	return res;
1009 no_open:
1010 	return nfs_lookup(dir, dentry, nd);
1011 }
1012 
1013 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1014 {
1015 	struct dentry *parent = NULL;
1016 	struct inode *inode = dentry->d_inode;
1017 	struct inode *dir;
1018 	int openflags, ret = 0;
1019 
1020 	parent = dget_parent(dentry);
1021 	dir = parent->d_inode;
1022 	if (!is_atomic_open(dir, nd))
1023 		goto no_open;
1024 	/* We can't create new files in nfs_open_revalidate(), so we
1025 	 * optimize away revalidation of negative dentries.
1026 	 */
1027 	if (inode == NULL) {
1028 		if (!nfs_neg_need_reval(dir, dentry, nd))
1029 			ret = 1;
1030 		goto out;
1031 	}
1032 
1033 	/* NFS only supports OPEN on regular files */
1034 	if (!S_ISREG(inode->i_mode))
1035 		goto no_open;
1036 	openflags = nd->intent.open.flags;
1037 	/* We cannot do exclusive creation on a positive dentry */
1038 	if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1039 		goto no_open;
1040 	/* We can't create new files, or truncate existing ones here */
1041 	openflags &= ~(O_CREAT|O_TRUNC);
1042 
1043 	/*
1044 	 * Note: we're not holding inode->i_mutex and so may be racing with
1045 	 * operations that change the directory. We therefore save the
1046 	 * change attribute *before* we do the RPC call.
1047 	 */
1048 	lock_kernel();
1049 	ret = nfs4_open_revalidate(dir, dentry, openflags, nd);
1050 	unlock_kernel();
1051 out:
1052 	dput(parent);
1053 	if (!ret)
1054 		d_drop(dentry);
1055 	return ret;
1056 no_open:
1057 	dput(parent);
1058 	if (inode != NULL && nfs_have_delegation(inode, FMODE_READ))
1059 		return 1;
1060 	return nfs_lookup_revalidate(dentry, nd);
1061 }
1062 #endif /* CONFIG_NFSV4 */
1063 
1064 static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc)
1065 {
1066 	struct dentry *parent = desc->file->f_path.dentry;
1067 	struct inode *dir = parent->d_inode;
1068 	struct nfs_entry *entry = desc->entry;
1069 	struct dentry *dentry, *alias;
1070 	struct qstr name = {
1071 		.name = entry->name,
1072 		.len = entry->len,
1073 	};
1074 	struct inode *inode;
1075 	unsigned long verf = nfs_save_change_attribute(dir);
1076 
1077 	switch (name.len) {
1078 		case 2:
1079 			if (name.name[0] == '.' && name.name[1] == '.')
1080 				return dget_parent(parent);
1081 			break;
1082 		case 1:
1083 			if (name.name[0] == '.')
1084 				return dget(parent);
1085 	}
1086 
1087 	spin_lock(&dir->i_lock);
1088 	if (NFS_I(dir)->cache_validity & NFS_INO_INVALID_DATA) {
1089 		spin_unlock(&dir->i_lock);
1090 		return NULL;
1091 	}
1092 	spin_unlock(&dir->i_lock);
1093 
1094 	name.hash = full_name_hash(name.name, name.len);
1095 	dentry = d_lookup(parent, &name);
1096 	if (dentry != NULL) {
1097 		/* Is this a positive dentry that matches the readdir info? */
1098 		if (dentry->d_inode != NULL &&
1099 				(NFS_FILEID(dentry->d_inode) == entry->ino ||
1100 				d_mountpoint(dentry))) {
1101 			if (!desc->plus || entry->fh->size == 0)
1102 				return dentry;
1103 			if (nfs_compare_fh(NFS_FH(dentry->d_inode),
1104 						entry->fh) == 0)
1105 				goto out_renew;
1106 		}
1107 		/* No, so d_drop to allow one to be created */
1108 		d_drop(dentry);
1109 		dput(dentry);
1110 	}
1111 	if (!desc->plus || !(entry->fattr->valid & NFS_ATTR_FATTR))
1112 		return NULL;
1113 	if (name.len > NFS_SERVER(dir)->namelen)
1114 		return NULL;
1115 	/* Note: caller is already holding the dir->i_mutex! */
1116 	dentry = d_alloc(parent, &name);
1117 	if (dentry == NULL)
1118 		return NULL;
1119 	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1120 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
1121 	if (IS_ERR(inode)) {
1122 		dput(dentry);
1123 		return NULL;
1124 	}
1125 
1126 	alias = d_materialise_unique(dentry, inode);
1127 	if (alias != NULL) {
1128 		dput(dentry);
1129 		if (IS_ERR(alias))
1130 			return NULL;
1131 		dentry = alias;
1132 	}
1133 
1134 out_renew:
1135 	nfs_set_verifier(dentry, verf);
1136 	return dentry;
1137 }
1138 
1139 /*
1140  * Code common to create, mkdir, and mknod.
1141  */
1142 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1143 				struct nfs_fattr *fattr)
1144 {
1145 	struct dentry *parent = dget_parent(dentry);
1146 	struct inode *dir = parent->d_inode;
1147 	struct inode *inode;
1148 	int error = -EACCES;
1149 
1150 	d_drop(dentry);
1151 
1152 	/* We may have been initialized further down */
1153 	if (dentry->d_inode)
1154 		goto out;
1155 	if (fhandle->size == 0) {
1156 		error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1157 		if (error)
1158 			goto out_error;
1159 	}
1160 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1161 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1162 		struct nfs_server *server = NFS_SB(dentry->d_sb);
1163 		error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1164 		if (error < 0)
1165 			goto out_error;
1166 	}
1167 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1168 	error = PTR_ERR(inode);
1169 	if (IS_ERR(inode))
1170 		goto out_error;
1171 	d_add(dentry, inode);
1172 out:
1173 	dput(parent);
1174 	return 0;
1175 out_error:
1176 	nfs_mark_for_revalidate(dir);
1177 	dput(parent);
1178 	return error;
1179 }
1180 
1181 /*
1182  * Following a failed create operation, we drop the dentry rather
1183  * than retain a negative dentry. This avoids a problem in the event
1184  * that the operation succeeded on the server, but an error in the
1185  * reply path made it appear to have failed.
1186  */
1187 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode,
1188 		struct nameidata *nd)
1189 {
1190 	struct iattr attr;
1191 	int error;
1192 	int open_flags = 0;
1193 
1194 	dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1195 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1196 
1197 	attr.ia_mode = mode;
1198 	attr.ia_valid = ATTR_MODE;
1199 
1200 	if ((nd->flags & LOOKUP_CREATE) != 0)
1201 		open_flags = nd->intent.open.flags;
1202 
1203 	lock_kernel();
1204 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, nd);
1205 	if (error != 0)
1206 		goto out_err;
1207 	unlock_kernel();
1208 	return 0;
1209 out_err:
1210 	unlock_kernel();
1211 	d_drop(dentry);
1212 	return error;
1213 }
1214 
1215 /*
1216  * See comments for nfs_proc_create regarding failed operations.
1217  */
1218 static int
1219 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev)
1220 {
1221 	struct iattr attr;
1222 	int status;
1223 
1224 	dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1225 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1226 
1227 	if (!new_valid_dev(rdev))
1228 		return -EINVAL;
1229 
1230 	attr.ia_mode = mode;
1231 	attr.ia_valid = ATTR_MODE;
1232 
1233 	lock_kernel();
1234 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1235 	if (status != 0)
1236 		goto out_err;
1237 	unlock_kernel();
1238 	return 0;
1239 out_err:
1240 	unlock_kernel();
1241 	d_drop(dentry);
1242 	return status;
1243 }
1244 
1245 /*
1246  * See comments for nfs_proc_create regarding failed operations.
1247  */
1248 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1249 {
1250 	struct iattr attr;
1251 	int error;
1252 
1253 	dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1254 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1255 
1256 	attr.ia_valid = ATTR_MODE;
1257 	attr.ia_mode = mode | S_IFDIR;
1258 
1259 	lock_kernel();
1260 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1261 	if (error != 0)
1262 		goto out_err;
1263 	unlock_kernel();
1264 	return 0;
1265 out_err:
1266 	d_drop(dentry);
1267 	unlock_kernel();
1268 	return error;
1269 }
1270 
1271 static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1272 {
1273 	int error;
1274 
1275 	dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1276 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1277 
1278 	lock_kernel();
1279 	error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1280 	/* Ensure the VFS deletes this inode */
1281 	if (error == 0 && dentry->d_inode != NULL)
1282 		clear_nlink(dentry->d_inode);
1283 	unlock_kernel();
1284 
1285 	return error;
1286 }
1287 
1288 static int nfs_sillyrename(struct inode *dir, struct dentry *dentry)
1289 {
1290 	static unsigned int sillycounter;
1291 	const int      fileidsize  = sizeof(NFS_FILEID(dentry->d_inode))*2;
1292 	const int      countersize = sizeof(sillycounter)*2;
1293 	const int      slen        = sizeof(".nfs")+fileidsize+countersize-1;
1294 	char           silly[slen+1];
1295 	struct qstr    qsilly;
1296 	struct dentry *sdentry;
1297 	int            error = -EIO;
1298 
1299 	dfprintk(VFS, "NFS: silly-rename(%s/%s, ct=%d)\n",
1300 		dentry->d_parent->d_name.name, dentry->d_name.name,
1301 		atomic_read(&dentry->d_count));
1302 	nfs_inc_stats(dir, NFSIOS_SILLYRENAME);
1303 
1304 	/*
1305 	 * We don't allow a dentry to be silly-renamed twice.
1306 	 */
1307 	error = -EBUSY;
1308 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1309 		goto out;
1310 
1311 	sprintf(silly, ".nfs%*.*Lx",
1312 		fileidsize, fileidsize,
1313 		(unsigned long long)NFS_FILEID(dentry->d_inode));
1314 
1315 	/* Return delegation in anticipation of the rename */
1316 	nfs_inode_return_delegation(dentry->d_inode);
1317 
1318 	sdentry = NULL;
1319 	do {
1320 		char *suffix = silly + slen - countersize;
1321 
1322 		dput(sdentry);
1323 		sillycounter++;
1324 		sprintf(suffix, "%*.*x", countersize, countersize, sillycounter);
1325 
1326 		dfprintk(VFS, "NFS: trying to rename %s to %s\n",
1327 				dentry->d_name.name, silly);
1328 
1329 		sdentry = lookup_one_len(silly, dentry->d_parent, slen);
1330 		/*
1331 		 * N.B. Better to return EBUSY here ... it could be
1332 		 * dangerous to delete the file while it's in use.
1333 		 */
1334 		if (IS_ERR(sdentry))
1335 			goto out;
1336 	} while(sdentry->d_inode != NULL); /* need negative lookup */
1337 
1338 	qsilly.name = silly;
1339 	qsilly.len  = strlen(silly);
1340 	if (dentry->d_inode) {
1341 		error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1342 				dir, &qsilly);
1343 		nfs_mark_for_revalidate(dentry->d_inode);
1344 	} else
1345 		error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1346 				dir, &qsilly);
1347 	if (!error) {
1348 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1349 		d_move(dentry, sdentry);
1350 		error = nfs_async_unlink(dir, dentry);
1351  		/* If we return 0 we don't unlink */
1352 	}
1353 	dput(sdentry);
1354 out:
1355 	return error;
1356 }
1357 
1358 /*
1359  * Remove a file after making sure there are no pending writes,
1360  * and after checking that the file has only one user.
1361  *
1362  * We invalidate the attribute cache and free the inode prior to the operation
1363  * to avoid possible races if the server reuses the inode.
1364  */
1365 static int nfs_safe_remove(struct dentry *dentry)
1366 {
1367 	struct inode *dir = dentry->d_parent->d_inode;
1368 	struct inode *inode = dentry->d_inode;
1369 	int error = -EBUSY;
1370 
1371 	dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1372 		dentry->d_parent->d_name.name, dentry->d_name.name);
1373 
1374 	/* If the dentry was sillyrenamed, we simply call d_delete() */
1375 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1376 		error = 0;
1377 		goto out;
1378 	}
1379 
1380 	if (inode != NULL) {
1381 		nfs_inode_return_delegation(inode);
1382 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1383 		/* The VFS may want to delete this inode */
1384 		if (error == 0)
1385 			drop_nlink(inode);
1386 		nfs_mark_for_revalidate(inode);
1387 	} else
1388 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1389 out:
1390 	return error;
1391 }
1392 
1393 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1394  *  belongs to an active ".nfs..." file and we return -EBUSY.
1395  *
1396  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1397  */
1398 static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1399 {
1400 	int error;
1401 	int need_rehash = 0;
1402 
1403 	dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1404 		dir->i_ino, dentry->d_name.name);
1405 
1406 	lock_kernel();
1407 	spin_lock(&dcache_lock);
1408 	spin_lock(&dentry->d_lock);
1409 	if (atomic_read(&dentry->d_count) > 1) {
1410 		spin_unlock(&dentry->d_lock);
1411 		spin_unlock(&dcache_lock);
1412 		/* Start asynchronous writeout of the inode */
1413 		write_inode_now(dentry->d_inode, 0);
1414 		error = nfs_sillyrename(dir, dentry);
1415 		unlock_kernel();
1416 		return error;
1417 	}
1418 	if (!d_unhashed(dentry)) {
1419 		__d_drop(dentry);
1420 		need_rehash = 1;
1421 	}
1422 	spin_unlock(&dentry->d_lock);
1423 	spin_unlock(&dcache_lock);
1424 	error = nfs_safe_remove(dentry);
1425 	if (!error) {
1426 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1427 	} else if (need_rehash)
1428 		d_rehash(dentry);
1429 	unlock_kernel();
1430 	return error;
1431 }
1432 
1433 /*
1434  * To create a symbolic link, most file systems instantiate a new inode,
1435  * add a page to it containing the path, then write it out to the disk
1436  * using prepare_write/commit_write.
1437  *
1438  * Unfortunately the NFS client can't create the in-core inode first
1439  * because it needs a file handle to create an in-core inode (see
1440  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1441  * symlink request has completed on the server.
1442  *
1443  * So instead we allocate a raw page, copy the symname into it, then do
1444  * the SYMLINK request with the page as the buffer.  If it succeeds, we
1445  * now have a new file handle and can instantiate an in-core NFS inode
1446  * and move the raw page into its mapping.
1447  */
1448 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1449 {
1450 	struct pagevec lru_pvec;
1451 	struct page *page;
1452 	char *kaddr;
1453 	struct iattr attr;
1454 	unsigned int pathlen = strlen(symname);
1455 	int error;
1456 
1457 	dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1458 		dir->i_ino, dentry->d_name.name, symname);
1459 
1460 	if (pathlen > PAGE_SIZE)
1461 		return -ENAMETOOLONG;
1462 
1463 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
1464 	attr.ia_valid = ATTR_MODE;
1465 
1466 	lock_kernel();
1467 
1468 	page = alloc_page(GFP_HIGHUSER);
1469 	if (!page) {
1470 		unlock_kernel();
1471 		return -ENOMEM;
1472 	}
1473 
1474 	kaddr = kmap_atomic(page, KM_USER0);
1475 	memcpy(kaddr, symname, pathlen);
1476 	if (pathlen < PAGE_SIZE)
1477 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1478 	kunmap_atomic(kaddr, KM_USER0);
1479 
1480 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1481 	if (error != 0) {
1482 		dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1483 			dir->i_sb->s_id, dir->i_ino,
1484 			dentry->d_name.name, symname, error);
1485 		d_drop(dentry);
1486 		__free_page(page);
1487 		unlock_kernel();
1488 		return error;
1489 	}
1490 
1491 	/*
1492 	 * No big deal if we can't add this page to the page cache here.
1493 	 * READLINK will get the missing page from the server if needed.
1494 	 */
1495 	pagevec_init(&lru_pvec, 0);
1496 	if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1497 							GFP_KERNEL)) {
1498 		pagevec_add(&lru_pvec, page);
1499 		pagevec_lru_add(&lru_pvec);
1500 		SetPageUptodate(page);
1501 		unlock_page(page);
1502 	} else
1503 		__free_page(page);
1504 
1505 	unlock_kernel();
1506 	return 0;
1507 }
1508 
1509 static int
1510 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1511 {
1512 	struct inode *inode = old_dentry->d_inode;
1513 	int error;
1514 
1515 	dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1516 		old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1517 		dentry->d_parent->d_name.name, dentry->d_name.name);
1518 
1519 	lock_kernel();
1520 	d_drop(dentry);
1521 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1522 	if (error == 0) {
1523 		atomic_inc(&inode->i_count);
1524 		d_add(dentry, inode);
1525 	}
1526 	unlock_kernel();
1527 	return error;
1528 }
1529 
1530 /*
1531  * RENAME
1532  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1533  * different file handle for the same inode after a rename (e.g. when
1534  * moving to a different directory). A fail-safe method to do so would
1535  * be to look up old_dir/old_name, create a link to new_dir/new_name and
1536  * rename the old file using the sillyrename stuff. This way, the original
1537  * file in old_dir will go away when the last process iput()s the inode.
1538  *
1539  * FIXED.
1540  *
1541  * It actually works quite well. One needs to have the possibility for
1542  * at least one ".nfs..." file in each directory the file ever gets
1543  * moved or linked to which happens automagically with the new
1544  * implementation that only depends on the dcache stuff instead of
1545  * using the inode layer
1546  *
1547  * Unfortunately, things are a little more complicated than indicated
1548  * above. For a cross-directory move, we want to make sure we can get
1549  * rid of the old inode after the operation.  This means there must be
1550  * no pending writes (if it's a file), and the use count must be 1.
1551  * If these conditions are met, we can drop the dentries before doing
1552  * the rename.
1553  */
1554 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1555 		      struct inode *new_dir, struct dentry *new_dentry)
1556 {
1557 	struct inode *old_inode = old_dentry->d_inode;
1558 	struct inode *new_inode = new_dentry->d_inode;
1559 	struct dentry *dentry = NULL, *rehash = NULL;
1560 	int error = -EBUSY;
1561 
1562 	/*
1563 	 * To prevent any new references to the target during the rename,
1564 	 * we unhash the dentry and free the inode in advance.
1565 	 */
1566 	lock_kernel();
1567 	if (!d_unhashed(new_dentry)) {
1568 		d_drop(new_dentry);
1569 		rehash = new_dentry;
1570 	}
1571 
1572 	dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1573 		 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1574 		 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1575 		 atomic_read(&new_dentry->d_count));
1576 
1577 	/*
1578 	 * First check whether the target is busy ... we can't
1579 	 * safely do _any_ rename if the target is in use.
1580 	 *
1581 	 * For files, make a copy of the dentry and then do a
1582 	 * silly-rename. If the silly-rename succeeds, the
1583 	 * copied dentry is hashed and becomes the new target.
1584 	 */
1585 	if (!new_inode)
1586 		goto go_ahead;
1587 	if (S_ISDIR(new_inode->i_mode)) {
1588 		error = -EISDIR;
1589 		if (!S_ISDIR(old_inode->i_mode))
1590 			goto out;
1591 	} else if (atomic_read(&new_dentry->d_count) > 2) {
1592 		int err;
1593 		/* copy the target dentry's name */
1594 		dentry = d_alloc(new_dentry->d_parent,
1595 				 &new_dentry->d_name);
1596 		if (!dentry)
1597 			goto out;
1598 
1599 		/* silly-rename the existing target ... */
1600 		err = nfs_sillyrename(new_dir, new_dentry);
1601 		if (!err) {
1602 			new_dentry = rehash = dentry;
1603 			new_inode = NULL;
1604 			/* instantiate the replacement target */
1605 			d_instantiate(new_dentry, NULL);
1606 		} else if (atomic_read(&new_dentry->d_count) > 1)
1607 			/* dentry still busy? */
1608 			goto out;
1609 	} else
1610 		drop_nlink(new_inode);
1611 
1612 go_ahead:
1613 	/*
1614 	 * ... prune child dentries and writebacks if needed.
1615 	 */
1616 	if (atomic_read(&old_dentry->d_count) > 1) {
1617 		if (S_ISREG(old_inode->i_mode))
1618 			nfs_wb_all(old_inode);
1619 		shrink_dcache_parent(old_dentry);
1620 	}
1621 	nfs_inode_return_delegation(old_inode);
1622 
1623 	if (new_inode != NULL) {
1624 		nfs_inode_return_delegation(new_inode);
1625 		d_delete(new_dentry);
1626 	}
1627 
1628 	error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1629 					   new_dir, &new_dentry->d_name);
1630 	nfs_mark_for_revalidate(old_inode);
1631 out:
1632 	if (rehash)
1633 		d_rehash(rehash);
1634 	if (!error) {
1635 		d_move(old_dentry, new_dentry);
1636 		nfs_set_verifier(new_dentry,
1637 					nfs_save_change_attribute(new_dir));
1638 	}
1639 
1640 	/* new dentry created? */
1641 	if (dentry)
1642 		dput(dentry);
1643 	unlock_kernel();
1644 	return error;
1645 }
1646 
1647 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1648 static LIST_HEAD(nfs_access_lru_list);
1649 static atomic_long_t nfs_access_nr_entries;
1650 
1651 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1652 {
1653 	put_rpccred(entry->cred);
1654 	kfree(entry);
1655 	smp_mb__before_atomic_dec();
1656 	atomic_long_dec(&nfs_access_nr_entries);
1657 	smp_mb__after_atomic_dec();
1658 }
1659 
1660 int nfs_access_cache_shrinker(int nr_to_scan, gfp_t gfp_mask)
1661 {
1662 	LIST_HEAD(head);
1663 	struct nfs_inode *nfsi;
1664 	struct nfs_access_entry *cache;
1665 
1666 restart:
1667 	spin_lock(&nfs_access_lru_lock);
1668 	list_for_each_entry(nfsi, &nfs_access_lru_list, access_cache_inode_lru) {
1669 		struct inode *inode;
1670 
1671 		if (nr_to_scan-- == 0)
1672 			break;
1673 		inode = igrab(&nfsi->vfs_inode);
1674 		if (inode == NULL)
1675 			continue;
1676 		spin_lock(&inode->i_lock);
1677 		if (list_empty(&nfsi->access_cache_entry_lru))
1678 			goto remove_lru_entry;
1679 		cache = list_entry(nfsi->access_cache_entry_lru.next,
1680 				struct nfs_access_entry, lru);
1681 		list_move(&cache->lru, &head);
1682 		rb_erase(&cache->rb_node, &nfsi->access_cache);
1683 		if (!list_empty(&nfsi->access_cache_entry_lru))
1684 			list_move_tail(&nfsi->access_cache_inode_lru,
1685 					&nfs_access_lru_list);
1686 		else {
1687 remove_lru_entry:
1688 			list_del_init(&nfsi->access_cache_inode_lru);
1689 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1690 		}
1691 		spin_unlock(&inode->i_lock);
1692 		spin_unlock(&nfs_access_lru_lock);
1693 		iput(inode);
1694 		goto restart;
1695 	}
1696 	spin_unlock(&nfs_access_lru_lock);
1697 	while (!list_empty(&head)) {
1698 		cache = list_entry(head.next, struct nfs_access_entry, lru);
1699 		list_del(&cache->lru);
1700 		nfs_access_free_entry(cache);
1701 	}
1702 	return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
1703 }
1704 
1705 static void __nfs_access_zap_cache(struct inode *inode)
1706 {
1707 	struct nfs_inode *nfsi = NFS_I(inode);
1708 	struct rb_root *root_node = &nfsi->access_cache;
1709 	struct rb_node *n, *dispose = NULL;
1710 	struct nfs_access_entry *entry;
1711 
1712 	/* Unhook entries from the cache */
1713 	while ((n = rb_first(root_node)) != NULL) {
1714 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
1715 		rb_erase(n, root_node);
1716 		list_del(&entry->lru);
1717 		n->rb_left = dispose;
1718 		dispose = n;
1719 	}
1720 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
1721 	spin_unlock(&inode->i_lock);
1722 
1723 	/* Now kill them all! */
1724 	while (dispose != NULL) {
1725 		n = dispose;
1726 		dispose = n->rb_left;
1727 		nfs_access_free_entry(rb_entry(n, struct nfs_access_entry, rb_node));
1728 	}
1729 }
1730 
1731 void nfs_access_zap_cache(struct inode *inode)
1732 {
1733 	/* Remove from global LRU init */
1734 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_FLAGS(inode))) {
1735 		spin_lock(&nfs_access_lru_lock);
1736 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
1737 		spin_unlock(&nfs_access_lru_lock);
1738 	}
1739 
1740 	spin_lock(&inode->i_lock);
1741 	/* This will release the spinlock */
1742 	__nfs_access_zap_cache(inode);
1743 }
1744 
1745 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
1746 {
1747 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
1748 	struct nfs_access_entry *entry;
1749 
1750 	while (n != NULL) {
1751 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
1752 
1753 		if (cred < entry->cred)
1754 			n = n->rb_left;
1755 		else if (cred > entry->cred)
1756 			n = n->rb_right;
1757 		else
1758 			return entry;
1759 	}
1760 	return NULL;
1761 }
1762 
1763 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
1764 {
1765 	struct nfs_inode *nfsi = NFS_I(inode);
1766 	struct nfs_access_entry *cache;
1767 	int err = -ENOENT;
1768 
1769 	spin_lock(&inode->i_lock);
1770 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
1771 		goto out_zap;
1772 	cache = nfs_access_search_rbtree(inode, cred);
1773 	if (cache == NULL)
1774 		goto out;
1775 	if (!time_in_range(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
1776 		goto out_stale;
1777 	res->jiffies = cache->jiffies;
1778 	res->cred = cache->cred;
1779 	res->mask = cache->mask;
1780 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
1781 	err = 0;
1782 out:
1783 	spin_unlock(&inode->i_lock);
1784 	return err;
1785 out_stale:
1786 	rb_erase(&cache->rb_node, &nfsi->access_cache);
1787 	list_del(&cache->lru);
1788 	spin_unlock(&inode->i_lock);
1789 	nfs_access_free_entry(cache);
1790 	return -ENOENT;
1791 out_zap:
1792 	/* This will release the spinlock */
1793 	__nfs_access_zap_cache(inode);
1794 	return -ENOENT;
1795 }
1796 
1797 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
1798 {
1799 	struct nfs_inode *nfsi = NFS_I(inode);
1800 	struct rb_root *root_node = &nfsi->access_cache;
1801 	struct rb_node **p = &root_node->rb_node;
1802 	struct rb_node *parent = NULL;
1803 	struct nfs_access_entry *entry;
1804 
1805 	spin_lock(&inode->i_lock);
1806 	while (*p != NULL) {
1807 		parent = *p;
1808 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
1809 
1810 		if (set->cred < entry->cred)
1811 			p = &parent->rb_left;
1812 		else if (set->cred > entry->cred)
1813 			p = &parent->rb_right;
1814 		else
1815 			goto found;
1816 	}
1817 	rb_link_node(&set->rb_node, parent, p);
1818 	rb_insert_color(&set->rb_node, root_node);
1819 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1820 	spin_unlock(&inode->i_lock);
1821 	return;
1822 found:
1823 	rb_replace_node(parent, &set->rb_node, root_node);
1824 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1825 	list_del(&entry->lru);
1826 	spin_unlock(&inode->i_lock);
1827 	nfs_access_free_entry(entry);
1828 }
1829 
1830 static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
1831 {
1832 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
1833 	if (cache == NULL)
1834 		return;
1835 	RB_CLEAR_NODE(&cache->rb_node);
1836 	cache->jiffies = set->jiffies;
1837 	cache->cred = get_rpccred(set->cred);
1838 	cache->mask = set->mask;
1839 
1840 	nfs_access_add_rbtree(inode, cache);
1841 
1842 	/* Update accounting */
1843 	smp_mb__before_atomic_inc();
1844 	atomic_long_inc(&nfs_access_nr_entries);
1845 	smp_mb__after_atomic_inc();
1846 
1847 	/* Add inode to global LRU list */
1848 	if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_FLAGS(inode))) {
1849 		spin_lock(&nfs_access_lru_lock);
1850 		list_add_tail(&NFS_I(inode)->access_cache_inode_lru, &nfs_access_lru_list);
1851 		spin_unlock(&nfs_access_lru_lock);
1852 	}
1853 }
1854 
1855 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
1856 {
1857 	struct nfs_access_entry cache;
1858 	int status;
1859 
1860 	status = nfs_access_get_cached(inode, cred, &cache);
1861 	if (status == 0)
1862 		goto out;
1863 
1864 	/* Be clever: ask server to check for all possible rights */
1865 	cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
1866 	cache.cred = cred;
1867 	cache.jiffies = jiffies;
1868 	status = NFS_PROTO(inode)->access(inode, &cache);
1869 	if (status != 0)
1870 		return status;
1871 	nfs_access_add_cache(inode, &cache);
1872 out:
1873 	if ((cache.mask & mask) == mask)
1874 		return 0;
1875 	return -EACCES;
1876 }
1877 
1878 static int nfs_open_permission_mask(int openflags)
1879 {
1880 	int mask = 0;
1881 
1882 	if (openflags & FMODE_READ)
1883 		mask |= MAY_READ;
1884 	if (openflags & FMODE_WRITE)
1885 		mask |= MAY_WRITE;
1886 	if (openflags & FMODE_EXEC)
1887 		mask |= MAY_EXEC;
1888 	return mask;
1889 }
1890 
1891 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
1892 {
1893 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
1894 }
1895 
1896 int nfs_permission(struct inode *inode, int mask, struct nameidata *nd)
1897 {
1898 	struct rpc_cred *cred;
1899 	int res = 0;
1900 
1901 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
1902 
1903 	if (mask == 0)
1904 		goto out;
1905 	/* Is this sys_access() ? */
1906 	if (nd != NULL && (nd->flags & LOOKUP_ACCESS))
1907 		goto force_lookup;
1908 
1909 	switch (inode->i_mode & S_IFMT) {
1910 		case S_IFLNK:
1911 			goto out;
1912 		case S_IFREG:
1913 			/* NFSv4 has atomic_open... */
1914 			if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
1915 					&& nd != NULL
1916 					&& (nd->flags & LOOKUP_OPEN))
1917 				goto out;
1918 			break;
1919 		case S_IFDIR:
1920 			/*
1921 			 * Optimize away all write operations, since the server
1922 			 * will check permissions when we perform the op.
1923 			 */
1924 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
1925 				goto out;
1926 	}
1927 
1928 force_lookup:
1929 	lock_kernel();
1930 
1931 	if (!NFS_PROTO(inode)->access)
1932 		goto out_notsup;
1933 
1934 	cred = rpcauth_lookupcred(NFS_CLIENT(inode)->cl_auth, 0);
1935 	if (!IS_ERR(cred)) {
1936 		res = nfs_do_access(inode, cred, mask);
1937 		put_rpccred(cred);
1938 	} else
1939 		res = PTR_ERR(cred);
1940 	unlock_kernel();
1941 out:
1942 	dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
1943 		inode->i_sb->s_id, inode->i_ino, mask, res);
1944 	return res;
1945 out_notsup:
1946 	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1947 	if (res == 0)
1948 		res = generic_permission(inode, mask, NULL);
1949 	unlock_kernel();
1950 	goto out;
1951 }
1952 
1953 /*
1954  * Local variables:
1955  *  version-control: t
1956  *  kept-new-versions: 5
1957  * End:
1958  */
1959