xref: /openbmc/linux/fs/nfs/dir.c (revision 4aea96f4)
1 /*
2  *  linux/fs/nfs/dir.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  nfs directory handling functions
7  *
8  * 10 Apr 1996	Added silly rename for unlink	--okir
9  * 28 Sep 1996	Improved directory cache --okir
10  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
11  *              Re-implemented silly rename for unlink, newly implemented
12  *              silly rename for nfs_rename() following the suggestions
13  *              of Olaf Kirch (okir) found in this file.
14  *              Following Linus comments on my original hack, this version
15  *              depends only on the dcache stuff and doesn't touch the inode
16  *              layer (iput() and friends).
17  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
18  */
19 
20 #include <linux/module.h>
21 #include <linux/time.h>
22 #include <linux/errno.h>
23 #include <linux/stat.h>
24 #include <linux/fcntl.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/mm.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/nfs_fs.h>
31 #include <linux/nfs_mount.h>
32 #include <linux/pagemap.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/swap.h>
37 #include <linux/sched.h>
38 #include <linux/kmemleak.h>
39 #include <linux/xattr.h>
40 
41 #include "delegation.h"
42 #include "iostat.h"
43 #include "internal.h"
44 #include "fscache.h"
45 
46 #include "nfstrace.h"
47 
48 /* #define NFS_DEBUG_VERBOSE 1 */
49 
50 static int nfs_opendir(struct inode *, struct file *);
51 static int nfs_closedir(struct inode *, struct file *);
52 static int nfs_readdir(struct file *, struct dir_context *);
53 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
54 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
55 static void nfs_readdir_clear_array(struct page*);
56 
57 const struct file_operations nfs_dir_operations = {
58 	.llseek		= nfs_llseek_dir,
59 	.read		= generic_read_dir,
60 	.iterate	= nfs_readdir,
61 	.open		= nfs_opendir,
62 	.release	= nfs_closedir,
63 	.fsync		= nfs_fsync_dir,
64 };
65 
66 const struct address_space_operations nfs_dir_aops = {
67 	.freepage = nfs_readdir_clear_array,
68 };
69 
70 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
71 {
72 	struct nfs_inode *nfsi = NFS_I(dir);
73 	struct nfs_open_dir_context *ctx;
74 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
75 	if (ctx != NULL) {
76 		ctx->duped = 0;
77 		ctx->attr_gencount = nfsi->attr_gencount;
78 		ctx->dir_cookie = 0;
79 		ctx->dup_cookie = 0;
80 		ctx->cred = get_rpccred(cred);
81 		spin_lock(&dir->i_lock);
82 		list_add(&ctx->list, &nfsi->open_files);
83 		spin_unlock(&dir->i_lock);
84 		return ctx;
85 	}
86 	return  ERR_PTR(-ENOMEM);
87 }
88 
89 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
90 {
91 	spin_lock(&dir->i_lock);
92 	list_del(&ctx->list);
93 	spin_unlock(&dir->i_lock);
94 	put_rpccred(ctx->cred);
95 	kfree(ctx);
96 }
97 
98 /*
99  * Open file
100  */
101 static int
102 nfs_opendir(struct inode *inode, struct file *filp)
103 {
104 	int res = 0;
105 	struct nfs_open_dir_context *ctx;
106 	struct rpc_cred *cred;
107 
108 	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
109 
110 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
111 
112 	cred = rpc_lookup_cred();
113 	if (IS_ERR(cred))
114 		return PTR_ERR(cred);
115 	ctx = alloc_nfs_open_dir_context(inode, cred);
116 	if (IS_ERR(ctx)) {
117 		res = PTR_ERR(ctx);
118 		goto out;
119 	}
120 	filp->private_data = ctx;
121 out:
122 	put_rpccred(cred);
123 	return res;
124 }
125 
126 static int
127 nfs_closedir(struct inode *inode, struct file *filp)
128 {
129 	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
130 	return 0;
131 }
132 
133 struct nfs_cache_array_entry {
134 	u64 cookie;
135 	u64 ino;
136 	struct qstr string;
137 	unsigned char d_type;
138 };
139 
140 struct nfs_cache_array {
141 	int size;
142 	int eof_index;
143 	u64 last_cookie;
144 	struct nfs_cache_array_entry array[0];
145 };
146 
147 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, bool);
148 typedef struct {
149 	struct file	*file;
150 	struct page	*page;
151 	struct dir_context *ctx;
152 	unsigned long	page_index;
153 	u64		*dir_cookie;
154 	u64		last_cookie;
155 	loff_t		current_index;
156 	decode_dirent_t	decode;
157 
158 	unsigned long	timestamp;
159 	unsigned long	gencount;
160 	unsigned int	cache_entry_index;
161 	bool plus;
162 	bool eof;
163 } nfs_readdir_descriptor_t;
164 
165 /*
166  * we are freeing strings created by nfs_add_to_readdir_array()
167  */
168 static
169 void nfs_readdir_clear_array(struct page *page)
170 {
171 	struct nfs_cache_array *array;
172 	int i;
173 
174 	array = kmap_atomic(page);
175 	for (i = 0; i < array->size; i++)
176 		kfree(array->array[i].string.name);
177 	kunmap_atomic(array);
178 }
179 
180 /*
181  * the caller is responsible for freeing qstr.name
182  * when called by nfs_readdir_add_to_array, the strings will be freed in
183  * nfs_clear_readdir_array()
184  */
185 static
186 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
187 {
188 	string->len = len;
189 	string->name = kmemdup(name, len, GFP_KERNEL);
190 	if (string->name == NULL)
191 		return -ENOMEM;
192 	/*
193 	 * Avoid a kmemleak false positive. The pointer to the name is stored
194 	 * in a page cache page which kmemleak does not scan.
195 	 */
196 	kmemleak_not_leak(string->name);
197 	string->hash = full_name_hash(NULL, name, len);
198 	return 0;
199 }
200 
201 static
202 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
203 {
204 	struct nfs_cache_array *array = kmap(page);
205 	struct nfs_cache_array_entry *cache_entry;
206 	int ret;
207 
208 	cache_entry = &array->array[array->size];
209 
210 	/* Check that this entry lies within the page bounds */
211 	ret = -ENOSPC;
212 	if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
213 		goto out;
214 
215 	cache_entry->cookie = entry->prev_cookie;
216 	cache_entry->ino = entry->ino;
217 	cache_entry->d_type = entry->d_type;
218 	ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
219 	if (ret)
220 		goto out;
221 	array->last_cookie = entry->cookie;
222 	array->size++;
223 	if (entry->eof != 0)
224 		array->eof_index = array->size;
225 out:
226 	kunmap(page);
227 	return ret;
228 }
229 
230 static
231 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
232 {
233 	loff_t diff = desc->ctx->pos - desc->current_index;
234 	unsigned int index;
235 
236 	if (diff < 0)
237 		goto out_eof;
238 	if (diff >= array->size) {
239 		if (array->eof_index >= 0)
240 			goto out_eof;
241 		return -EAGAIN;
242 	}
243 
244 	index = (unsigned int)diff;
245 	*desc->dir_cookie = array->array[index].cookie;
246 	desc->cache_entry_index = index;
247 	return 0;
248 out_eof:
249 	desc->eof = true;
250 	return -EBADCOOKIE;
251 }
252 
253 static bool
254 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
255 {
256 	if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
257 		return false;
258 	smp_rmb();
259 	return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
260 }
261 
262 static
263 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
264 {
265 	int i;
266 	loff_t new_pos;
267 	int status = -EAGAIN;
268 
269 	for (i = 0; i < array->size; i++) {
270 		if (array->array[i].cookie == *desc->dir_cookie) {
271 			struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
272 			struct nfs_open_dir_context *ctx = desc->file->private_data;
273 
274 			new_pos = desc->current_index + i;
275 			if (ctx->attr_gencount != nfsi->attr_gencount ||
276 			    !nfs_readdir_inode_mapping_valid(nfsi)) {
277 				ctx->duped = 0;
278 				ctx->attr_gencount = nfsi->attr_gencount;
279 			} else if (new_pos < desc->ctx->pos) {
280 				if (ctx->duped > 0
281 				    && ctx->dup_cookie == *desc->dir_cookie) {
282 					if (printk_ratelimit()) {
283 						pr_notice("NFS: directory %pD2 contains a readdir loop."
284 								"Please contact your server vendor.  "
285 								"The file: %.*s has duplicate cookie %llu\n",
286 								desc->file, array->array[i].string.len,
287 								array->array[i].string.name, *desc->dir_cookie);
288 					}
289 					status = -ELOOP;
290 					goto out;
291 				}
292 				ctx->dup_cookie = *desc->dir_cookie;
293 				ctx->duped = -1;
294 			}
295 			desc->ctx->pos = new_pos;
296 			desc->cache_entry_index = i;
297 			return 0;
298 		}
299 	}
300 	if (array->eof_index >= 0) {
301 		status = -EBADCOOKIE;
302 		if (*desc->dir_cookie == array->last_cookie)
303 			desc->eof = true;
304 	}
305 out:
306 	return status;
307 }
308 
309 static
310 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
311 {
312 	struct nfs_cache_array *array;
313 	int status;
314 
315 	array = kmap(desc->page);
316 
317 	if (*desc->dir_cookie == 0)
318 		status = nfs_readdir_search_for_pos(array, desc);
319 	else
320 		status = nfs_readdir_search_for_cookie(array, desc);
321 
322 	if (status == -EAGAIN) {
323 		desc->last_cookie = array->last_cookie;
324 		desc->current_index += array->size;
325 		desc->page_index++;
326 	}
327 	kunmap(desc->page);
328 	return status;
329 }
330 
331 /* Fill a page with xdr information before transferring to the cache page */
332 static
333 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
334 			struct nfs_entry *entry, struct file *file, struct inode *inode)
335 {
336 	struct nfs_open_dir_context *ctx = file->private_data;
337 	struct rpc_cred	*cred = ctx->cred;
338 	unsigned long	timestamp, gencount;
339 	int		error;
340 
341  again:
342 	timestamp = jiffies;
343 	gencount = nfs_inc_attr_generation_counter();
344 	error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
345 					  NFS_SERVER(inode)->dtsize, desc->plus);
346 	if (error < 0) {
347 		/* We requested READDIRPLUS, but the server doesn't grok it */
348 		if (error == -ENOTSUPP && desc->plus) {
349 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
350 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
351 			desc->plus = false;
352 			goto again;
353 		}
354 		goto error;
355 	}
356 	desc->timestamp = timestamp;
357 	desc->gencount = gencount;
358 error:
359 	return error;
360 }
361 
362 static int xdr_decode(nfs_readdir_descriptor_t *desc,
363 		      struct nfs_entry *entry, struct xdr_stream *xdr)
364 {
365 	int error;
366 
367 	error = desc->decode(xdr, entry, desc->plus);
368 	if (error)
369 		return error;
370 	entry->fattr->time_start = desc->timestamp;
371 	entry->fattr->gencount = desc->gencount;
372 	return 0;
373 }
374 
375 /* Match file and dirent using either filehandle or fileid
376  * Note: caller is responsible for checking the fsid
377  */
378 static
379 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
380 {
381 	struct inode *inode;
382 	struct nfs_inode *nfsi;
383 
384 	if (d_really_is_negative(dentry))
385 		return 0;
386 
387 	inode = d_inode(dentry);
388 	if (is_bad_inode(inode) || NFS_STALE(inode))
389 		return 0;
390 
391 	nfsi = NFS_I(inode);
392 	if (entry->fattr->fileid != nfsi->fileid)
393 		return 0;
394 	if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
395 		return 0;
396 	return 1;
397 }
398 
399 static
400 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
401 {
402 	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
403 		return false;
404 	if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
405 		return true;
406 	if (ctx->pos == 0)
407 		return true;
408 	return false;
409 }
410 
411 /*
412  * This function is called by the lookup and getattr code to request the
413  * use of readdirplus to accelerate any future lookups in the same
414  * directory.
415  */
416 void nfs_advise_use_readdirplus(struct inode *dir)
417 {
418 	struct nfs_inode *nfsi = NFS_I(dir);
419 
420 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
421 	    !list_empty(&nfsi->open_files))
422 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
423 }
424 
425 /*
426  * This function is mainly for use by nfs_getattr().
427  *
428  * If this is an 'ls -l', we want to force use of readdirplus.
429  * Do this by checking if there is an active file descriptor
430  * and calling nfs_advise_use_readdirplus, then forcing a
431  * cache flush.
432  */
433 void nfs_force_use_readdirplus(struct inode *dir)
434 {
435 	struct nfs_inode *nfsi = NFS_I(dir);
436 
437 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
438 	    !list_empty(&nfsi->open_files)) {
439 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
440 		invalidate_mapping_pages(dir->i_mapping, 0, -1);
441 	}
442 }
443 
444 static
445 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
446 {
447 	struct qstr filename = QSTR_INIT(entry->name, entry->len);
448 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
449 	struct dentry *dentry;
450 	struct dentry *alias;
451 	struct inode *dir = d_inode(parent);
452 	struct inode *inode;
453 	int status;
454 
455 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
456 		return;
457 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
458 		return;
459 	if (filename.len == 0)
460 		return;
461 	/* Validate that the name doesn't contain any illegal '\0' */
462 	if (strnlen(filename.name, filename.len) != filename.len)
463 		return;
464 	/* ...or '/' */
465 	if (strnchr(filename.name, filename.len, '/'))
466 		return;
467 	if (filename.name[0] == '.') {
468 		if (filename.len == 1)
469 			return;
470 		if (filename.len == 2 && filename.name[1] == '.')
471 			return;
472 	}
473 	filename.hash = full_name_hash(parent, filename.name, filename.len);
474 
475 	dentry = d_lookup(parent, &filename);
476 again:
477 	if (!dentry) {
478 		dentry = d_alloc_parallel(parent, &filename, &wq);
479 		if (IS_ERR(dentry))
480 			return;
481 	}
482 	if (!d_in_lookup(dentry)) {
483 		/* Is there a mountpoint here? If so, just exit */
484 		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
485 					&entry->fattr->fsid))
486 			goto out;
487 		if (nfs_same_file(dentry, entry)) {
488 			if (!entry->fh->size)
489 				goto out;
490 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
491 			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
492 			if (!status)
493 				nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
494 			goto out;
495 		} else {
496 			d_invalidate(dentry);
497 			dput(dentry);
498 			dentry = NULL;
499 			goto again;
500 		}
501 	}
502 	if (!entry->fh->size) {
503 		d_lookup_done(dentry);
504 		goto out;
505 	}
506 
507 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
508 	alias = d_splice_alias(inode, dentry);
509 	d_lookup_done(dentry);
510 	if (alias) {
511 		if (IS_ERR(alias))
512 			goto out;
513 		dput(dentry);
514 		dentry = alias;
515 	}
516 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
517 out:
518 	dput(dentry);
519 }
520 
521 /* Perform conversion from xdr to cache array */
522 static
523 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
524 				struct page **xdr_pages, struct page *page, unsigned int buflen)
525 {
526 	struct xdr_stream stream;
527 	struct xdr_buf buf;
528 	struct page *scratch;
529 	struct nfs_cache_array *array;
530 	unsigned int count = 0;
531 	int status;
532 
533 	scratch = alloc_page(GFP_KERNEL);
534 	if (scratch == NULL)
535 		return -ENOMEM;
536 
537 	if (buflen == 0)
538 		goto out_nopages;
539 
540 	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
541 	xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
542 
543 	do {
544 		status = xdr_decode(desc, entry, &stream);
545 		if (status != 0) {
546 			if (status == -EAGAIN)
547 				status = 0;
548 			break;
549 		}
550 
551 		count++;
552 
553 		if (desc->plus)
554 			nfs_prime_dcache(file_dentry(desc->file), entry);
555 
556 		status = nfs_readdir_add_to_array(entry, page);
557 		if (status != 0)
558 			break;
559 	} while (!entry->eof);
560 
561 out_nopages:
562 	if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
563 		array = kmap(page);
564 		array->eof_index = array->size;
565 		status = 0;
566 		kunmap(page);
567 	}
568 
569 	put_page(scratch);
570 	return status;
571 }
572 
573 static
574 void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
575 {
576 	unsigned int i;
577 	for (i = 0; i < npages; i++)
578 		put_page(pages[i]);
579 }
580 
581 /*
582  * nfs_readdir_large_page will allocate pages that must be freed with a call
583  * to nfs_readdir_free_pagearray
584  */
585 static
586 int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
587 {
588 	unsigned int i;
589 
590 	for (i = 0; i < npages; i++) {
591 		struct page *page = alloc_page(GFP_KERNEL);
592 		if (page == NULL)
593 			goto out_freepages;
594 		pages[i] = page;
595 	}
596 	return 0;
597 
598 out_freepages:
599 	nfs_readdir_free_pages(pages, i);
600 	return -ENOMEM;
601 }
602 
603 static
604 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
605 {
606 	struct page *pages[NFS_MAX_READDIR_PAGES];
607 	struct nfs_entry entry;
608 	struct file	*file = desc->file;
609 	struct nfs_cache_array *array;
610 	int status = -ENOMEM;
611 	unsigned int array_size = ARRAY_SIZE(pages);
612 
613 	entry.prev_cookie = 0;
614 	entry.cookie = desc->last_cookie;
615 	entry.eof = 0;
616 	entry.fh = nfs_alloc_fhandle();
617 	entry.fattr = nfs_alloc_fattr();
618 	entry.server = NFS_SERVER(inode);
619 	if (entry.fh == NULL || entry.fattr == NULL)
620 		goto out;
621 
622 	entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
623 	if (IS_ERR(entry.label)) {
624 		status = PTR_ERR(entry.label);
625 		goto out;
626 	}
627 
628 	array = kmap(page);
629 	memset(array, 0, sizeof(struct nfs_cache_array));
630 	array->eof_index = -1;
631 
632 	status = nfs_readdir_alloc_pages(pages, array_size);
633 	if (status < 0)
634 		goto out_release_array;
635 	do {
636 		unsigned int pglen;
637 		status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
638 
639 		if (status < 0)
640 			break;
641 		pglen = status;
642 		status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
643 		if (status < 0) {
644 			if (status == -ENOSPC)
645 				status = 0;
646 			break;
647 		}
648 	} while (array->eof_index < 0);
649 
650 	nfs_readdir_free_pages(pages, array_size);
651 out_release_array:
652 	kunmap(page);
653 	nfs4_label_free(entry.label);
654 out:
655 	nfs_free_fattr(entry.fattr);
656 	nfs_free_fhandle(entry.fh);
657 	return status;
658 }
659 
660 /*
661  * Now we cache directories properly, by converting xdr information
662  * to an array that can be used for lookups later.  This results in
663  * fewer cache pages, since we can store more information on each page.
664  * We only need to convert from xdr once so future lookups are much simpler
665  */
666 static
667 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
668 {
669 	struct inode	*inode = file_inode(desc->file);
670 	int ret;
671 
672 	ret = nfs_readdir_xdr_to_array(desc, page, inode);
673 	if (ret < 0)
674 		goto error;
675 	SetPageUptodate(page);
676 
677 	if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
678 		/* Should never happen */
679 		nfs_zap_mapping(inode, inode->i_mapping);
680 	}
681 	unlock_page(page);
682 	return 0;
683  error:
684 	unlock_page(page);
685 	return ret;
686 }
687 
688 static
689 void cache_page_release(nfs_readdir_descriptor_t *desc)
690 {
691 	if (!desc->page->mapping)
692 		nfs_readdir_clear_array(desc->page);
693 	put_page(desc->page);
694 	desc->page = NULL;
695 }
696 
697 static
698 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
699 {
700 	return read_cache_page(desc->file->f_mapping,
701 			desc->page_index, (filler_t *)nfs_readdir_filler, desc);
702 }
703 
704 /*
705  * Returns 0 if desc->dir_cookie was found on page desc->page_index
706  */
707 static
708 int find_cache_page(nfs_readdir_descriptor_t *desc)
709 {
710 	int res;
711 
712 	desc->page = get_cache_page(desc);
713 	if (IS_ERR(desc->page))
714 		return PTR_ERR(desc->page);
715 
716 	res = nfs_readdir_search_array(desc);
717 	if (res != 0)
718 		cache_page_release(desc);
719 	return res;
720 }
721 
722 /* Search for desc->dir_cookie from the beginning of the page cache */
723 static inline
724 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
725 {
726 	int res;
727 
728 	if (desc->page_index == 0) {
729 		desc->current_index = 0;
730 		desc->last_cookie = 0;
731 	}
732 	do {
733 		res = find_cache_page(desc);
734 	} while (res == -EAGAIN);
735 	return res;
736 }
737 
738 /*
739  * Once we've found the start of the dirent within a page: fill 'er up...
740  */
741 static
742 int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
743 {
744 	struct file	*file = desc->file;
745 	int i = 0;
746 	int res = 0;
747 	struct nfs_cache_array *array = NULL;
748 	struct nfs_open_dir_context *ctx = file->private_data;
749 
750 	array = kmap(desc->page);
751 	for (i = desc->cache_entry_index; i < array->size; i++) {
752 		struct nfs_cache_array_entry *ent;
753 
754 		ent = &array->array[i];
755 		if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
756 		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
757 			desc->eof = true;
758 			break;
759 		}
760 		desc->ctx->pos++;
761 		if (i < (array->size-1))
762 			*desc->dir_cookie = array->array[i+1].cookie;
763 		else
764 			*desc->dir_cookie = array->last_cookie;
765 		if (ctx->duped != 0)
766 			ctx->duped = 1;
767 	}
768 	if (array->eof_index >= 0)
769 		desc->eof = true;
770 
771 	kunmap(desc->page);
772 	cache_page_release(desc);
773 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
774 			(unsigned long long)*desc->dir_cookie, res);
775 	return res;
776 }
777 
778 /*
779  * If we cannot find a cookie in our cache, we suspect that this is
780  * because it points to a deleted file, so we ask the server to return
781  * whatever it thinks is the next entry. We then feed this to filldir.
782  * If all goes well, we should then be able to find our way round the
783  * cache on the next call to readdir_search_pagecache();
784  *
785  * NOTE: we cannot add the anonymous page to the pagecache because
786  *	 the data it contains might not be page aligned. Besides,
787  *	 we should already have a complete representation of the
788  *	 directory in the page cache by the time we get here.
789  */
790 static inline
791 int uncached_readdir(nfs_readdir_descriptor_t *desc)
792 {
793 	struct page	*page = NULL;
794 	int		status;
795 	struct inode *inode = file_inode(desc->file);
796 	struct nfs_open_dir_context *ctx = desc->file->private_data;
797 
798 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
799 			(unsigned long long)*desc->dir_cookie);
800 
801 	page = alloc_page(GFP_HIGHUSER);
802 	if (!page) {
803 		status = -ENOMEM;
804 		goto out;
805 	}
806 
807 	desc->page_index = 0;
808 	desc->last_cookie = *desc->dir_cookie;
809 	desc->page = page;
810 	ctx->duped = 0;
811 
812 	status = nfs_readdir_xdr_to_array(desc, page, inode);
813 	if (status < 0)
814 		goto out_release;
815 
816 	status = nfs_do_filldir(desc);
817 
818  out:
819 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
820 			__func__, status);
821 	return status;
822  out_release:
823 	cache_page_release(desc);
824 	goto out;
825 }
826 
827 /* The file offset position represents the dirent entry number.  A
828    last cookie cache takes care of the common case of reading the
829    whole directory.
830  */
831 static int nfs_readdir(struct file *file, struct dir_context *ctx)
832 {
833 	struct dentry	*dentry = file_dentry(file);
834 	struct inode	*inode = d_inode(dentry);
835 	nfs_readdir_descriptor_t my_desc,
836 			*desc = &my_desc;
837 	struct nfs_open_dir_context *dir_ctx = file->private_data;
838 	int res = 0;
839 
840 	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
841 			file, (long long)ctx->pos);
842 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
843 
844 	/*
845 	 * ctx->pos points to the dirent entry number.
846 	 * *desc->dir_cookie has the cookie for the next entry. We have
847 	 * to either find the entry with the appropriate number or
848 	 * revalidate the cookie.
849 	 */
850 	memset(desc, 0, sizeof(*desc));
851 
852 	desc->file = file;
853 	desc->ctx = ctx;
854 	desc->dir_cookie = &dir_ctx->dir_cookie;
855 	desc->decode = NFS_PROTO(inode)->decode_dirent;
856 	desc->plus = nfs_use_readdirplus(inode, ctx);
857 
858 	if (ctx->pos == 0 || nfs_attribute_cache_expired(inode))
859 		res = nfs_revalidate_mapping(inode, file->f_mapping);
860 	if (res < 0)
861 		goto out;
862 
863 	do {
864 		res = readdir_search_pagecache(desc);
865 
866 		if (res == -EBADCOOKIE) {
867 			res = 0;
868 			/* This means either end of directory */
869 			if (*desc->dir_cookie && !desc->eof) {
870 				/* Or that the server has 'lost' a cookie */
871 				res = uncached_readdir(desc);
872 				if (res == 0)
873 					continue;
874 			}
875 			break;
876 		}
877 		if (res == -ETOOSMALL && desc->plus) {
878 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
879 			nfs_zap_caches(inode);
880 			desc->page_index = 0;
881 			desc->plus = false;
882 			desc->eof = false;
883 			continue;
884 		}
885 		if (res < 0)
886 			break;
887 
888 		res = nfs_do_filldir(desc);
889 		if (res < 0)
890 			break;
891 	} while (!desc->eof);
892 out:
893 	if (res > 0)
894 		res = 0;
895 	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
896 	return res;
897 }
898 
899 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
900 {
901 	struct inode *inode = file_inode(filp);
902 	struct nfs_open_dir_context *dir_ctx = filp->private_data;
903 
904 	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
905 			filp, offset, whence);
906 
907 	switch (whence) {
908 	default:
909 		return -EINVAL;
910 	case SEEK_SET:
911 		if (offset < 0)
912 			return -EINVAL;
913 		inode_lock(inode);
914 		break;
915 	case SEEK_CUR:
916 		if (offset == 0)
917 			return filp->f_pos;
918 		inode_lock(inode);
919 		offset += filp->f_pos;
920 		if (offset < 0) {
921 			inode_unlock(inode);
922 			return -EINVAL;
923 		}
924 	}
925 	if (offset != filp->f_pos) {
926 		filp->f_pos = offset;
927 		dir_ctx->dir_cookie = 0;
928 		dir_ctx->duped = 0;
929 	}
930 	inode_unlock(inode);
931 	return offset;
932 }
933 
934 /*
935  * All directory operations under NFS are synchronous, so fsync()
936  * is a dummy operation.
937  */
938 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
939 			 int datasync)
940 {
941 	struct inode *inode = file_inode(filp);
942 
943 	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
944 
945 	inode_lock(inode);
946 	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
947 	inode_unlock(inode);
948 	return 0;
949 }
950 
951 /**
952  * nfs_force_lookup_revalidate - Mark the directory as having changed
953  * @dir - pointer to directory inode
954  *
955  * This forces the revalidation code in nfs_lookup_revalidate() to do a
956  * full lookup on all child dentries of 'dir' whenever a change occurs
957  * on the server that might have invalidated our dcache.
958  *
959  * The caller should be holding dir->i_lock
960  */
961 void nfs_force_lookup_revalidate(struct inode *dir)
962 {
963 	NFS_I(dir)->cache_change_attribute++;
964 }
965 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
966 
967 /*
968  * A check for whether or not the parent directory has changed.
969  * In the case it has, we assume that the dentries are untrustworthy
970  * and may need to be looked up again.
971  * If rcu_walk prevents us from performing a full check, return 0.
972  */
973 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
974 			      int rcu_walk)
975 {
976 	if (IS_ROOT(dentry))
977 		return 1;
978 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
979 		return 0;
980 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
981 		return 0;
982 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
983 	if (nfs_mapping_need_revalidate_inode(dir)) {
984 		if (rcu_walk)
985 			return 0;
986 		if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
987 			return 0;
988 	}
989 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
990 		return 0;
991 	return 1;
992 }
993 
994 /*
995  * Use intent information to check whether or not we're going to do
996  * an O_EXCL create using this path component.
997  */
998 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
999 {
1000 	if (NFS_PROTO(dir)->version == 2)
1001 		return 0;
1002 	return flags & LOOKUP_EXCL;
1003 }
1004 
1005 /*
1006  * Inode and filehandle revalidation for lookups.
1007  *
1008  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1009  * or if the intent information indicates that we're about to open this
1010  * particular file and the "nocto" mount flag is not set.
1011  *
1012  */
1013 static
1014 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1015 {
1016 	struct nfs_server *server = NFS_SERVER(inode);
1017 	int ret;
1018 
1019 	if (IS_AUTOMOUNT(inode))
1020 		return 0;
1021 
1022 	if (flags & LOOKUP_OPEN) {
1023 		switch (inode->i_mode & S_IFMT) {
1024 		case S_IFREG:
1025 			/* A NFSv4 OPEN will revalidate later */
1026 			if (server->caps & NFS_CAP_ATOMIC_OPEN)
1027 				goto out;
1028 			/* Fallthrough */
1029 		case S_IFDIR:
1030 			if (server->flags & NFS_MOUNT_NOCTO)
1031 				break;
1032 			/* NFS close-to-open cache consistency validation */
1033 			goto out_force;
1034 		}
1035 	}
1036 
1037 	/* VFS wants an on-the-wire revalidation */
1038 	if (flags & LOOKUP_REVAL)
1039 		goto out_force;
1040 out:
1041 	return (inode->i_nlink == 0) ? -ESTALE : 0;
1042 out_force:
1043 	if (flags & LOOKUP_RCU)
1044 		return -ECHILD;
1045 	ret = __nfs_revalidate_inode(server, inode);
1046 	if (ret != 0)
1047 		return ret;
1048 	goto out;
1049 }
1050 
1051 /*
1052  * We judge how long we want to trust negative
1053  * dentries by looking at the parent inode mtime.
1054  *
1055  * If parent mtime has changed, we revalidate, else we wait for a
1056  * period corresponding to the parent's attribute cache timeout value.
1057  *
1058  * If LOOKUP_RCU prevents us from performing a full check, return 1
1059  * suggesting a reval is needed.
1060  *
1061  * Note that when creating a new file, or looking up a rename target,
1062  * then it shouldn't be necessary to revalidate a negative dentry.
1063  */
1064 static inline
1065 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1066 		       unsigned int flags)
1067 {
1068 	if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1069 		return 0;
1070 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1071 		return 1;
1072 	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1073 }
1074 
1075 static int
1076 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1077 			   struct inode *inode, int error)
1078 {
1079 	switch (error) {
1080 	case 1:
1081 		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1082 			__func__, dentry);
1083 		return 1;
1084 	case 0:
1085 		nfs_mark_for_revalidate(dir);
1086 		if (inode && S_ISDIR(inode->i_mode)) {
1087 			/* Purge readdir caches. */
1088 			nfs_zap_caches(inode);
1089 			/*
1090 			 * We can't d_drop the root of a disconnected tree:
1091 			 * its d_hash is on the s_anon list and d_drop() would hide
1092 			 * it from shrink_dcache_for_unmount(), leading to busy
1093 			 * inodes on unmount and further oopses.
1094 			 */
1095 			if (IS_ROOT(dentry))
1096 				return 1;
1097 		}
1098 		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1099 				__func__, dentry);
1100 		return 0;
1101 	}
1102 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1103 				__func__, dentry, error);
1104 	return error;
1105 }
1106 
1107 static int
1108 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1109 			       unsigned int flags)
1110 {
1111 	int ret = 1;
1112 	if (nfs_neg_need_reval(dir, dentry, flags)) {
1113 		if (flags & LOOKUP_RCU)
1114 			return -ECHILD;
1115 		ret = 0;
1116 	}
1117 	return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1118 }
1119 
1120 static int
1121 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1122 				struct inode *inode)
1123 {
1124 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1125 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1126 }
1127 
1128 static int
1129 nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry,
1130 			     struct inode *inode)
1131 {
1132 	struct nfs_fh *fhandle;
1133 	struct nfs_fattr *fattr;
1134 	struct nfs4_label *label;
1135 	int ret;
1136 
1137 	ret = -ENOMEM;
1138 	fhandle = nfs_alloc_fhandle();
1139 	fattr = nfs_alloc_fattr();
1140 	label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL);
1141 	if (fhandle == NULL || fattr == NULL || IS_ERR(label))
1142 		goto out;
1143 
1144 	ret = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1145 	if (ret < 0) {
1146 		if (ret == -ESTALE || ret == -ENOENT)
1147 			ret = 0;
1148 		goto out;
1149 	}
1150 	ret = 0;
1151 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1152 		goto out;
1153 	if (nfs_refresh_inode(inode, fattr) < 0)
1154 		goto out;
1155 
1156 	nfs_setsecurity(inode, fattr, label);
1157 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1158 
1159 	/* set a readdirplus hint that we had a cache miss */
1160 	nfs_force_use_readdirplus(dir);
1161 	ret = 1;
1162 out:
1163 	nfs_free_fattr(fattr);
1164 	nfs_free_fhandle(fhandle);
1165 	nfs4_label_free(label);
1166 	return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1167 }
1168 
1169 /*
1170  * This is called every time the dcache has a lookup hit,
1171  * and we should check whether we can really trust that
1172  * lookup.
1173  *
1174  * NOTE! The hit can be a negative hit too, don't assume
1175  * we have an inode!
1176  *
1177  * If the parent directory is seen to have changed, we throw out the
1178  * cached dentry and do a new lookup.
1179  */
1180 static int
1181 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1182 			 unsigned int flags)
1183 {
1184 	struct inode *inode;
1185 	int error;
1186 
1187 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1188 	inode = d_inode(dentry);
1189 
1190 	if (!inode)
1191 		return nfs_lookup_revalidate_negative(dir, dentry, flags);
1192 
1193 	if (is_bad_inode(inode)) {
1194 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1195 				__func__, dentry);
1196 		goto out_bad;
1197 	}
1198 
1199 	if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1200 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1201 
1202 	/* Force a full look up iff the parent directory has changed */
1203 	if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1204 	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1205 		error = nfs_lookup_verify_inode(inode, flags);
1206 		if (error) {
1207 			if (error == -ESTALE)
1208 				nfs_zap_caches(dir);
1209 			goto out_bad;
1210 		}
1211 		nfs_advise_use_readdirplus(dir);
1212 		goto out_valid;
1213 	}
1214 
1215 	if (flags & LOOKUP_RCU)
1216 		return -ECHILD;
1217 
1218 	if (NFS_STALE(inode))
1219 		goto out_bad;
1220 
1221 	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1222 	error = nfs_lookup_revalidate_dentry(dir, dentry, inode);
1223 	trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1224 	return error;
1225 out_valid:
1226 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1227 out_bad:
1228 	if (flags & LOOKUP_RCU)
1229 		return -ECHILD;
1230 	return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1231 }
1232 
1233 static int
1234 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1235 			int (*reval)(struct inode *, struct dentry *, unsigned int))
1236 {
1237 	struct dentry *parent;
1238 	struct inode *dir;
1239 	int ret;
1240 
1241 	if (flags & LOOKUP_RCU) {
1242 		parent = READ_ONCE(dentry->d_parent);
1243 		dir = d_inode_rcu(parent);
1244 		if (!dir)
1245 			return -ECHILD;
1246 		ret = reval(dir, dentry, flags);
1247 		if (parent != READ_ONCE(dentry->d_parent))
1248 			return -ECHILD;
1249 	} else {
1250 		parent = dget_parent(dentry);
1251 		ret = reval(d_inode(parent), dentry, flags);
1252 		dput(parent);
1253 	}
1254 	return ret;
1255 }
1256 
1257 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1258 {
1259 	return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1260 }
1261 
1262 /*
1263  * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1264  * when we don't really care about the dentry name. This is called when a
1265  * pathwalk ends on a dentry that was not found via a normal lookup in the
1266  * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1267  *
1268  * In this situation, we just want to verify that the inode itself is OK
1269  * since the dentry might have changed on the server.
1270  */
1271 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1272 {
1273 	struct inode *inode = d_inode(dentry);
1274 	int error = 0;
1275 
1276 	/*
1277 	 * I believe we can only get a negative dentry here in the case of a
1278 	 * procfs-style symlink. Just assume it's correct for now, but we may
1279 	 * eventually need to do something more here.
1280 	 */
1281 	if (!inode) {
1282 		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1283 				__func__, dentry);
1284 		return 1;
1285 	}
1286 
1287 	if (is_bad_inode(inode)) {
1288 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1289 				__func__, dentry);
1290 		return 0;
1291 	}
1292 
1293 	error = nfs_lookup_verify_inode(inode, flags);
1294 	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1295 			__func__, inode->i_ino, error ? "invalid" : "valid");
1296 	return !error;
1297 }
1298 
1299 /*
1300  * This is called from dput() when d_count is going to 0.
1301  */
1302 static int nfs_dentry_delete(const struct dentry *dentry)
1303 {
1304 	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1305 		dentry, dentry->d_flags);
1306 
1307 	/* Unhash any dentry with a stale inode */
1308 	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1309 		return 1;
1310 
1311 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1312 		/* Unhash it, so that ->d_iput() would be called */
1313 		return 1;
1314 	}
1315 	if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1316 		/* Unhash it, so that ancestors of killed async unlink
1317 		 * files will be cleaned up during umount */
1318 		return 1;
1319 	}
1320 	return 0;
1321 
1322 }
1323 
1324 /* Ensure that we revalidate inode->i_nlink */
1325 static void nfs_drop_nlink(struct inode *inode)
1326 {
1327 	spin_lock(&inode->i_lock);
1328 	/* drop the inode if we're reasonably sure this is the last link */
1329 	if (inode->i_nlink > 0)
1330 		drop_nlink(inode);
1331 	NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1332 	NFS_I(inode)->cache_validity |= NFS_INO_INVALID_CHANGE
1333 		| NFS_INO_INVALID_CTIME
1334 		| NFS_INO_INVALID_OTHER
1335 		| NFS_INO_REVAL_FORCED;
1336 	spin_unlock(&inode->i_lock);
1337 }
1338 
1339 /*
1340  * Called when the dentry loses inode.
1341  * We use it to clean up silly-renamed files.
1342  */
1343 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1344 {
1345 	if (S_ISDIR(inode->i_mode))
1346 		/* drop any readdir cache as it could easily be old */
1347 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1348 
1349 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1350 		nfs_complete_unlink(dentry, inode);
1351 		nfs_drop_nlink(inode);
1352 	}
1353 	iput(inode);
1354 }
1355 
1356 static void nfs_d_release(struct dentry *dentry)
1357 {
1358 	/* free cached devname value, if it survived that far */
1359 	if (unlikely(dentry->d_fsdata)) {
1360 		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1361 			WARN_ON(1);
1362 		else
1363 			kfree(dentry->d_fsdata);
1364 	}
1365 }
1366 
1367 const struct dentry_operations nfs_dentry_operations = {
1368 	.d_revalidate	= nfs_lookup_revalidate,
1369 	.d_weak_revalidate	= nfs_weak_revalidate,
1370 	.d_delete	= nfs_dentry_delete,
1371 	.d_iput		= nfs_dentry_iput,
1372 	.d_automount	= nfs_d_automount,
1373 	.d_release	= nfs_d_release,
1374 };
1375 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1376 
1377 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1378 {
1379 	struct dentry *res;
1380 	struct inode *inode = NULL;
1381 	struct nfs_fh *fhandle = NULL;
1382 	struct nfs_fattr *fattr = NULL;
1383 	struct nfs4_label *label = NULL;
1384 	int error;
1385 
1386 	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1387 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1388 
1389 	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1390 		return ERR_PTR(-ENAMETOOLONG);
1391 
1392 	/*
1393 	 * If we're doing an exclusive create, optimize away the lookup
1394 	 * but don't hash the dentry.
1395 	 */
1396 	if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1397 		return NULL;
1398 
1399 	res = ERR_PTR(-ENOMEM);
1400 	fhandle = nfs_alloc_fhandle();
1401 	fattr = nfs_alloc_fattr();
1402 	if (fhandle == NULL || fattr == NULL)
1403 		goto out;
1404 
1405 	label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1406 	if (IS_ERR(label))
1407 		goto out;
1408 
1409 	trace_nfs_lookup_enter(dir, dentry, flags);
1410 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1411 	if (error == -ENOENT)
1412 		goto no_entry;
1413 	if (error < 0) {
1414 		res = ERR_PTR(error);
1415 		goto out_label;
1416 	}
1417 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1418 	res = ERR_CAST(inode);
1419 	if (IS_ERR(res))
1420 		goto out_label;
1421 
1422 	/* Notify readdir to use READDIRPLUS */
1423 	nfs_force_use_readdirplus(dir);
1424 
1425 no_entry:
1426 	res = d_splice_alias(inode, dentry);
1427 	if (res != NULL) {
1428 		if (IS_ERR(res))
1429 			goto out_label;
1430 		dentry = res;
1431 	}
1432 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1433 out_label:
1434 	trace_nfs_lookup_exit(dir, dentry, flags, error);
1435 	nfs4_label_free(label);
1436 out:
1437 	nfs_free_fattr(fattr);
1438 	nfs_free_fhandle(fhandle);
1439 	return res;
1440 }
1441 EXPORT_SYMBOL_GPL(nfs_lookup);
1442 
1443 #if IS_ENABLED(CONFIG_NFS_V4)
1444 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1445 
1446 const struct dentry_operations nfs4_dentry_operations = {
1447 	.d_revalidate	= nfs4_lookup_revalidate,
1448 	.d_weak_revalidate	= nfs_weak_revalidate,
1449 	.d_delete	= nfs_dentry_delete,
1450 	.d_iput		= nfs_dentry_iput,
1451 	.d_automount	= nfs_d_automount,
1452 	.d_release	= nfs_d_release,
1453 };
1454 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1455 
1456 static fmode_t flags_to_mode(int flags)
1457 {
1458 	fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1459 	if ((flags & O_ACCMODE) != O_WRONLY)
1460 		res |= FMODE_READ;
1461 	if ((flags & O_ACCMODE) != O_RDONLY)
1462 		res |= FMODE_WRITE;
1463 	return res;
1464 }
1465 
1466 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1467 {
1468 	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1469 }
1470 
1471 static int do_open(struct inode *inode, struct file *filp)
1472 {
1473 	nfs_fscache_open_file(inode, filp);
1474 	return 0;
1475 }
1476 
1477 static int nfs_finish_open(struct nfs_open_context *ctx,
1478 			   struct dentry *dentry,
1479 			   struct file *file, unsigned open_flags)
1480 {
1481 	int err;
1482 
1483 	err = finish_open(file, dentry, do_open);
1484 	if (err)
1485 		goto out;
1486 	if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1487 		nfs_file_set_open_context(file, ctx);
1488 	else
1489 		err = -ESTALE;
1490 out:
1491 	return err;
1492 }
1493 
1494 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1495 		    struct file *file, unsigned open_flags,
1496 		    umode_t mode)
1497 {
1498 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1499 	struct nfs_open_context *ctx;
1500 	struct dentry *res;
1501 	struct iattr attr = { .ia_valid = ATTR_OPEN };
1502 	struct inode *inode;
1503 	unsigned int lookup_flags = 0;
1504 	bool switched = false;
1505 	int created = 0;
1506 	int err;
1507 
1508 	/* Expect a negative dentry */
1509 	BUG_ON(d_inode(dentry));
1510 
1511 	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1512 			dir->i_sb->s_id, dir->i_ino, dentry);
1513 
1514 	err = nfs_check_flags(open_flags);
1515 	if (err)
1516 		return err;
1517 
1518 	/* NFS only supports OPEN on regular files */
1519 	if ((open_flags & O_DIRECTORY)) {
1520 		if (!d_in_lookup(dentry)) {
1521 			/*
1522 			 * Hashed negative dentry with O_DIRECTORY: dentry was
1523 			 * revalidated and is fine, no need to perform lookup
1524 			 * again
1525 			 */
1526 			return -ENOENT;
1527 		}
1528 		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1529 		goto no_open;
1530 	}
1531 
1532 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1533 		return -ENAMETOOLONG;
1534 
1535 	if (open_flags & O_CREAT) {
1536 		struct nfs_server *server = NFS_SERVER(dir);
1537 
1538 		if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1539 			mode &= ~current_umask();
1540 
1541 		attr.ia_valid |= ATTR_MODE;
1542 		attr.ia_mode = mode;
1543 	}
1544 	if (open_flags & O_TRUNC) {
1545 		attr.ia_valid |= ATTR_SIZE;
1546 		attr.ia_size = 0;
1547 	}
1548 
1549 	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1550 		d_drop(dentry);
1551 		switched = true;
1552 		dentry = d_alloc_parallel(dentry->d_parent,
1553 					  &dentry->d_name, &wq);
1554 		if (IS_ERR(dentry))
1555 			return PTR_ERR(dentry);
1556 		if (unlikely(!d_in_lookup(dentry)))
1557 			return finish_no_open(file, dentry);
1558 	}
1559 
1560 	ctx = create_nfs_open_context(dentry, open_flags, file);
1561 	err = PTR_ERR(ctx);
1562 	if (IS_ERR(ctx))
1563 		goto out;
1564 
1565 	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1566 	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
1567 	if (created)
1568 		file->f_mode |= FMODE_CREATED;
1569 	if (IS_ERR(inode)) {
1570 		err = PTR_ERR(inode);
1571 		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1572 		put_nfs_open_context(ctx);
1573 		d_drop(dentry);
1574 		switch (err) {
1575 		case -ENOENT:
1576 			d_splice_alias(NULL, dentry);
1577 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1578 			break;
1579 		case -EISDIR:
1580 		case -ENOTDIR:
1581 			goto no_open;
1582 		case -ELOOP:
1583 			if (!(open_flags & O_NOFOLLOW))
1584 				goto no_open;
1585 			break;
1586 			/* case -EINVAL: */
1587 		default:
1588 			break;
1589 		}
1590 		goto out;
1591 	}
1592 
1593 	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
1594 	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1595 	put_nfs_open_context(ctx);
1596 out:
1597 	if (unlikely(switched)) {
1598 		d_lookup_done(dentry);
1599 		dput(dentry);
1600 	}
1601 	return err;
1602 
1603 no_open:
1604 	res = nfs_lookup(dir, dentry, lookup_flags);
1605 	if (switched) {
1606 		d_lookup_done(dentry);
1607 		if (!res)
1608 			res = dentry;
1609 		else
1610 			dput(dentry);
1611 	}
1612 	if (IS_ERR(res))
1613 		return PTR_ERR(res);
1614 	return finish_no_open(file, res);
1615 }
1616 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1617 
1618 static int
1619 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1620 			  unsigned int flags)
1621 {
1622 	struct inode *inode;
1623 
1624 	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1625 		goto full_reval;
1626 	if (d_mountpoint(dentry))
1627 		goto full_reval;
1628 
1629 	inode = d_inode(dentry);
1630 
1631 	/* We can't create new files in nfs_open_revalidate(), so we
1632 	 * optimize away revalidation of negative dentries.
1633 	 */
1634 	if (inode == NULL)
1635 		goto full_reval;
1636 
1637 	if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1638 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1639 
1640 	/* NFS only supports OPEN on regular files */
1641 	if (!S_ISREG(inode->i_mode))
1642 		goto full_reval;
1643 
1644 	/* We cannot do exclusive creation on a positive dentry */
1645 	if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
1646 		goto reval_dentry;
1647 
1648 	/* Check if the directory changed */
1649 	if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
1650 		goto reval_dentry;
1651 
1652 	/* Let f_op->open() actually open (and revalidate) the file */
1653 	return 1;
1654 reval_dentry:
1655 	if (flags & LOOKUP_RCU)
1656 		return -ECHILD;
1657 	return nfs_lookup_revalidate_dentry(dir, dentry, inode);;
1658 
1659 full_reval:
1660 	return nfs_do_lookup_revalidate(dir, dentry, flags);
1661 }
1662 
1663 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1664 {
1665 	return __nfs_lookup_revalidate(dentry, flags,
1666 			nfs4_do_lookup_revalidate);
1667 }
1668 
1669 #endif /* CONFIG_NFSV4 */
1670 
1671 /*
1672  * Code common to create, mkdir, and mknod.
1673  */
1674 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1675 				struct nfs_fattr *fattr,
1676 				struct nfs4_label *label)
1677 {
1678 	struct dentry *parent = dget_parent(dentry);
1679 	struct inode *dir = d_inode(parent);
1680 	struct inode *inode;
1681 	struct dentry *d;
1682 	int error = -EACCES;
1683 
1684 	d_drop(dentry);
1685 
1686 	/* We may have been initialized further down */
1687 	if (d_really_is_positive(dentry))
1688 		goto out;
1689 	if (fhandle->size == 0) {
1690 		error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1691 		if (error)
1692 			goto out_error;
1693 	}
1694 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1695 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1696 		struct nfs_server *server = NFS_SB(dentry->d_sb);
1697 		error = server->nfs_client->rpc_ops->getattr(server, fhandle,
1698 				fattr, NULL, NULL);
1699 		if (error < 0)
1700 			goto out_error;
1701 	}
1702 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1703 	d = d_splice_alias(inode, dentry);
1704 	if (IS_ERR(d)) {
1705 		error = PTR_ERR(d);
1706 		goto out_error;
1707 	}
1708 	dput(d);
1709 out:
1710 	dput(parent);
1711 	return 0;
1712 out_error:
1713 	nfs_mark_for_revalidate(dir);
1714 	dput(parent);
1715 	return error;
1716 }
1717 EXPORT_SYMBOL_GPL(nfs_instantiate);
1718 
1719 /*
1720  * Following a failed create operation, we drop the dentry rather
1721  * than retain a negative dentry. This avoids a problem in the event
1722  * that the operation succeeded on the server, but an error in the
1723  * reply path made it appear to have failed.
1724  */
1725 int nfs_create(struct inode *dir, struct dentry *dentry,
1726 		umode_t mode, bool excl)
1727 {
1728 	struct iattr attr;
1729 	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1730 	int error;
1731 
1732 	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1733 			dir->i_sb->s_id, dir->i_ino, dentry);
1734 
1735 	attr.ia_mode = mode;
1736 	attr.ia_valid = ATTR_MODE;
1737 
1738 	trace_nfs_create_enter(dir, dentry, open_flags);
1739 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1740 	trace_nfs_create_exit(dir, dentry, open_flags, error);
1741 	if (error != 0)
1742 		goto out_err;
1743 	return 0;
1744 out_err:
1745 	d_drop(dentry);
1746 	return error;
1747 }
1748 EXPORT_SYMBOL_GPL(nfs_create);
1749 
1750 /*
1751  * See comments for nfs_proc_create regarding failed operations.
1752  */
1753 int
1754 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1755 {
1756 	struct iattr attr;
1757 	int status;
1758 
1759 	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1760 			dir->i_sb->s_id, dir->i_ino, dentry);
1761 
1762 	attr.ia_mode = mode;
1763 	attr.ia_valid = ATTR_MODE;
1764 
1765 	trace_nfs_mknod_enter(dir, dentry);
1766 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1767 	trace_nfs_mknod_exit(dir, dentry, status);
1768 	if (status != 0)
1769 		goto out_err;
1770 	return 0;
1771 out_err:
1772 	d_drop(dentry);
1773 	return status;
1774 }
1775 EXPORT_SYMBOL_GPL(nfs_mknod);
1776 
1777 /*
1778  * See comments for nfs_proc_create regarding failed operations.
1779  */
1780 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1781 {
1782 	struct iattr attr;
1783 	int error;
1784 
1785 	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1786 			dir->i_sb->s_id, dir->i_ino, dentry);
1787 
1788 	attr.ia_valid = ATTR_MODE;
1789 	attr.ia_mode = mode | S_IFDIR;
1790 
1791 	trace_nfs_mkdir_enter(dir, dentry);
1792 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1793 	trace_nfs_mkdir_exit(dir, dentry, error);
1794 	if (error != 0)
1795 		goto out_err;
1796 	return 0;
1797 out_err:
1798 	d_drop(dentry);
1799 	return error;
1800 }
1801 EXPORT_SYMBOL_GPL(nfs_mkdir);
1802 
1803 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1804 {
1805 	if (simple_positive(dentry))
1806 		d_delete(dentry);
1807 }
1808 
1809 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1810 {
1811 	int error;
1812 
1813 	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1814 			dir->i_sb->s_id, dir->i_ino, dentry);
1815 
1816 	trace_nfs_rmdir_enter(dir, dentry);
1817 	if (d_really_is_positive(dentry)) {
1818 		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1819 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1820 		/* Ensure the VFS deletes this inode */
1821 		switch (error) {
1822 		case 0:
1823 			clear_nlink(d_inode(dentry));
1824 			break;
1825 		case -ENOENT:
1826 			nfs_dentry_handle_enoent(dentry);
1827 		}
1828 		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1829 	} else
1830 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1831 	trace_nfs_rmdir_exit(dir, dentry, error);
1832 
1833 	return error;
1834 }
1835 EXPORT_SYMBOL_GPL(nfs_rmdir);
1836 
1837 /*
1838  * Remove a file after making sure there are no pending writes,
1839  * and after checking that the file has only one user.
1840  *
1841  * We invalidate the attribute cache and free the inode prior to the operation
1842  * to avoid possible races if the server reuses the inode.
1843  */
1844 static int nfs_safe_remove(struct dentry *dentry)
1845 {
1846 	struct inode *dir = d_inode(dentry->d_parent);
1847 	struct inode *inode = d_inode(dentry);
1848 	int error = -EBUSY;
1849 
1850 	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
1851 
1852 	/* If the dentry was sillyrenamed, we simply call d_delete() */
1853 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1854 		error = 0;
1855 		goto out;
1856 	}
1857 
1858 	trace_nfs_remove_enter(dir, dentry);
1859 	if (inode != NULL) {
1860 		error = NFS_PROTO(dir)->remove(dir, dentry);
1861 		if (error == 0)
1862 			nfs_drop_nlink(inode);
1863 	} else
1864 		error = NFS_PROTO(dir)->remove(dir, dentry);
1865 	if (error == -ENOENT)
1866 		nfs_dentry_handle_enoent(dentry);
1867 	trace_nfs_remove_exit(dir, dentry, error);
1868 out:
1869 	return error;
1870 }
1871 
1872 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1873  *  belongs to an active ".nfs..." file and we return -EBUSY.
1874  *
1875  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1876  */
1877 int nfs_unlink(struct inode *dir, struct dentry *dentry)
1878 {
1879 	int error;
1880 	int need_rehash = 0;
1881 
1882 	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
1883 		dir->i_ino, dentry);
1884 
1885 	trace_nfs_unlink_enter(dir, dentry);
1886 	spin_lock(&dentry->d_lock);
1887 	if (d_count(dentry) > 1) {
1888 		spin_unlock(&dentry->d_lock);
1889 		/* Start asynchronous writeout of the inode */
1890 		write_inode_now(d_inode(dentry), 0);
1891 		error = nfs_sillyrename(dir, dentry);
1892 		goto out;
1893 	}
1894 	if (!d_unhashed(dentry)) {
1895 		__d_drop(dentry);
1896 		need_rehash = 1;
1897 	}
1898 	spin_unlock(&dentry->d_lock);
1899 	error = nfs_safe_remove(dentry);
1900 	if (!error || error == -ENOENT) {
1901 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1902 	} else if (need_rehash)
1903 		d_rehash(dentry);
1904 out:
1905 	trace_nfs_unlink_exit(dir, dentry, error);
1906 	return error;
1907 }
1908 EXPORT_SYMBOL_GPL(nfs_unlink);
1909 
1910 /*
1911  * To create a symbolic link, most file systems instantiate a new inode,
1912  * add a page to it containing the path, then write it out to the disk
1913  * using prepare_write/commit_write.
1914  *
1915  * Unfortunately the NFS client can't create the in-core inode first
1916  * because it needs a file handle to create an in-core inode (see
1917  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1918  * symlink request has completed on the server.
1919  *
1920  * So instead we allocate a raw page, copy the symname into it, then do
1921  * the SYMLINK request with the page as the buffer.  If it succeeds, we
1922  * now have a new file handle and can instantiate an in-core NFS inode
1923  * and move the raw page into its mapping.
1924  */
1925 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1926 {
1927 	struct page *page;
1928 	char *kaddr;
1929 	struct iattr attr;
1930 	unsigned int pathlen = strlen(symname);
1931 	int error;
1932 
1933 	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
1934 		dir->i_ino, dentry, symname);
1935 
1936 	if (pathlen > PAGE_SIZE)
1937 		return -ENAMETOOLONG;
1938 
1939 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
1940 	attr.ia_valid = ATTR_MODE;
1941 
1942 	page = alloc_page(GFP_USER);
1943 	if (!page)
1944 		return -ENOMEM;
1945 
1946 	kaddr = page_address(page);
1947 	memcpy(kaddr, symname, pathlen);
1948 	if (pathlen < PAGE_SIZE)
1949 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1950 
1951 	trace_nfs_symlink_enter(dir, dentry);
1952 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1953 	trace_nfs_symlink_exit(dir, dentry, error);
1954 	if (error != 0) {
1955 		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1956 			dir->i_sb->s_id, dir->i_ino,
1957 			dentry, symname, error);
1958 		d_drop(dentry);
1959 		__free_page(page);
1960 		return error;
1961 	}
1962 
1963 	/*
1964 	 * No big deal if we can't add this page to the page cache here.
1965 	 * READLINK will get the missing page from the server if needed.
1966 	 */
1967 	if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
1968 							GFP_KERNEL)) {
1969 		SetPageUptodate(page);
1970 		unlock_page(page);
1971 		/*
1972 		 * add_to_page_cache_lru() grabs an extra page refcount.
1973 		 * Drop it here to avoid leaking this page later.
1974 		 */
1975 		put_page(page);
1976 	} else
1977 		__free_page(page);
1978 
1979 	return 0;
1980 }
1981 EXPORT_SYMBOL_GPL(nfs_symlink);
1982 
1983 int
1984 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1985 {
1986 	struct inode *inode = d_inode(old_dentry);
1987 	int error;
1988 
1989 	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
1990 		old_dentry, dentry);
1991 
1992 	trace_nfs_link_enter(inode, dir, dentry);
1993 	d_drop(dentry);
1994 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1995 	if (error == 0) {
1996 		ihold(inode);
1997 		d_add(dentry, inode);
1998 	}
1999 	trace_nfs_link_exit(inode, dir, dentry, error);
2000 	return error;
2001 }
2002 EXPORT_SYMBOL_GPL(nfs_link);
2003 
2004 /*
2005  * RENAME
2006  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2007  * different file handle for the same inode after a rename (e.g. when
2008  * moving to a different directory). A fail-safe method to do so would
2009  * be to look up old_dir/old_name, create a link to new_dir/new_name and
2010  * rename the old file using the sillyrename stuff. This way, the original
2011  * file in old_dir will go away when the last process iput()s the inode.
2012  *
2013  * FIXED.
2014  *
2015  * It actually works quite well. One needs to have the possibility for
2016  * at least one ".nfs..." file in each directory the file ever gets
2017  * moved or linked to which happens automagically with the new
2018  * implementation that only depends on the dcache stuff instead of
2019  * using the inode layer
2020  *
2021  * Unfortunately, things are a little more complicated than indicated
2022  * above. For a cross-directory move, we want to make sure we can get
2023  * rid of the old inode after the operation.  This means there must be
2024  * no pending writes (if it's a file), and the use count must be 1.
2025  * If these conditions are met, we can drop the dentries before doing
2026  * the rename.
2027  */
2028 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2029 	       struct inode *new_dir, struct dentry *new_dentry,
2030 	       unsigned int flags)
2031 {
2032 	struct inode *old_inode = d_inode(old_dentry);
2033 	struct inode *new_inode = d_inode(new_dentry);
2034 	struct dentry *dentry = NULL, *rehash = NULL;
2035 	struct rpc_task *task;
2036 	int error = -EBUSY;
2037 
2038 	if (flags)
2039 		return -EINVAL;
2040 
2041 	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2042 		 old_dentry, new_dentry,
2043 		 d_count(new_dentry));
2044 
2045 	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2046 	/*
2047 	 * For non-directories, check whether the target is busy and if so,
2048 	 * make a copy of the dentry and then do a silly-rename. If the
2049 	 * silly-rename succeeds, the copied dentry is hashed and becomes
2050 	 * the new target.
2051 	 */
2052 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2053 		/*
2054 		 * To prevent any new references to the target during the
2055 		 * rename, we unhash the dentry in advance.
2056 		 */
2057 		if (!d_unhashed(new_dentry)) {
2058 			d_drop(new_dentry);
2059 			rehash = new_dentry;
2060 		}
2061 
2062 		if (d_count(new_dentry) > 2) {
2063 			int err;
2064 
2065 			/* copy the target dentry's name */
2066 			dentry = d_alloc(new_dentry->d_parent,
2067 					 &new_dentry->d_name);
2068 			if (!dentry)
2069 				goto out;
2070 
2071 			/* silly-rename the existing target ... */
2072 			err = nfs_sillyrename(new_dir, new_dentry);
2073 			if (err)
2074 				goto out;
2075 
2076 			new_dentry = dentry;
2077 			rehash = NULL;
2078 			new_inode = NULL;
2079 		}
2080 	}
2081 
2082 	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2083 	if (IS_ERR(task)) {
2084 		error = PTR_ERR(task);
2085 		goto out;
2086 	}
2087 
2088 	error = rpc_wait_for_completion_task(task);
2089 	if (error != 0) {
2090 		((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2091 		/* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2092 		smp_wmb();
2093 	} else
2094 		error = task->tk_status;
2095 	rpc_put_task(task);
2096 	/* Ensure the inode attributes are revalidated */
2097 	if (error == 0) {
2098 		spin_lock(&old_inode->i_lock);
2099 		NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2100 		NFS_I(old_inode)->cache_validity |= NFS_INO_INVALID_CHANGE
2101 			| NFS_INO_INVALID_CTIME
2102 			| NFS_INO_REVAL_FORCED;
2103 		spin_unlock(&old_inode->i_lock);
2104 	}
2105 out:
2106 	if (rehash)
2107 		d_rehash(rehash);
2108 	trace_nfs_rename_exit(old_dir, old_dentry,
2109 			new_dir, new_dentry, error);
2110 	if (!error) {
2111 		if (new_inode != NULL)
2112 			nfs_drop_nlink(new_inode);
2113 		/*
2114 		 * The d_move() should be here instead of in an async RPC completion
2115 		 * handler because we need the proper locks to move the dentry.  If
2116 		 * we're interrupted by a signal, the async RPC completion handler
2117 		 * should mark the directories for revalidation.
2118 		 */
2119 		d_move(old_dentry, new_dentry);
2120 		nfs_set_verifier(old_dentry,
2121 					nfs_save_change_attribute(new_dir));
2122 	} else if (error == -ENOENT)
2123 		nfs_dentry_handle_enoent(old_dentry);
2124 
2125 	/* new dentry created? */
2126 	if (dentry)
2127 		dput(dentry);
2128 	return error;
2129 }
2130 EXPORT_SYMBOL_GPL(nfs_rename);
2131 
2132 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2133 static LIST_HEAD(nfs_access_lru_list);
2134 static atomic_long_t nfs_access_nr_entries;
2135 
2136 static unsigned long nfs_access_max_cachesize = ULONG_MAX;
2137 module_param(nfs_access_max_cachesize, ulong, 0644);
2138 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2139 
2140 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2141 {
2142 	put_rpccred(entry->cred);
2143 	kfree_rcu(entry, rcu_head);
2144 	smp_mb__before_atomic();
2145 	atomic_long_dec(&nfs_access_nr_entries);
2146 	smp_mb__after_atomic();
2147 }
2148 
2149 static void nfs_access_free_list(struct list_head *head)
2150 {
2151 	struct nfs_access_entry *cache;
2152 
2153 	while (!list_empty(head)) {
2154 		cache = list_entry(head->next, struct nfs_access_entry, lru);
2155 		list_del(&cache->lru);
2156 		nfs_access_free_entry(cache);
2157 	}
2158 }
2159 
2160 static unsigned long
2161 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2162 {
2163 	LIST_HEAD(head);
2164 	struct nfs_inode *nfsi, *next;
2165 	struct nfs_access_entry *cache;
2166 	long freed = 0;
2167 
2168 	spin_lock(&nfs_access_lru_lock);
2169 	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2170 		struct inode *inode;
2171 
2172 		if (nr_to_scan-- == 0)
2173 			break;
2174 		inode = &nfsi->vfs_inode;
2175 		spin_lock(&inode->i_lock);
2176 		if (list_empty(&nfsi->access_cache_entry_lru))
2177 			goto remove_lru_entry;
2178 		cache = list_entry(nfsi->access_cache_entry_lru.next,
2179 				struct nfs_access_entry, lru);
2180 		list_move(&cache->lru, &head);
2181 		rb_erase(&cache->rb_node, &nfsi->access_cache);
2182 		freed++;
2183 		if (!list_empty(&nfsi->access_cache_entry_lru))
2184 			list_move_tail(&nfsi->access_cache_inode_lru,
2185 					&nfs_access_lru_list);
2186 		else {
2187 remove_lru_entry:
2188 			list_del_init(&nfsi->access_cache_inode_lru);
2189 			smp_mb__before_atomic();
2190 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2191 			smp_mb__after_atomic();
2192 		}
2193 		spin_unlock(&inode->i_lock);
2194 	}
2195 	spin_unlock(&nfs_access_lru_lock);
2196 	nfs_access_free_list(&head);
2197 	return freed;
2198 }
2199 
2200 unsigned long
2201 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2202 {
2203 	int nr_to_scan = sc->nr_to_scan;
2204 	gfp_t gfp_mask = sc->gfp_mask;
2205 
2206 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2207 		return SHRINK_STOP;
2208 	return nfs_do_access_cache_scan(nr_to_scan);
2209 }
2210 
2211 
2212 unsigned long
2213 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2214 {
2215 	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2216 }
2217 
2218 static void
2219 nfs_access_cache_enforce_limit(void)
2220 {
2221 	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2222 	unsigned long diff;
2223 	unsigned int nr_to_scan;
2224 
2225 	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2226 		return;
2227 	nr_to_scan = 100;
2228 	diff = nr_entries - nfs_access_max_cachesize;
2229 	if (diff < nr_to_scan)
2230 		nr_to_scan = diff;
2231 	nfs_do_access_cache_scan(nr_to_scan);
2232 }
2233 
2234 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2235 {
2236 	struct rb_root *root_node = &nfsi->access_cache;
2237 	struct rb_node *n;
2238 	struct nfs_access_entry *entry;
2239 
2240 	/* Unhook entries from the cache */
2241 	while ((n = rb_first(root_node)) != NULL) {
2242 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2243 		rb_erase(n, root_node);
2244 		list_move(&entry->lru, head);
2245 	}
2246 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2247 }
2248 
2249 void nfs_access_zap_cache(struct inode *inode)
2250 {
2251 	LIST_HEAD(head);
2252 
2253 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2254 		return;
2255 	/* Remove from global LRU init */
2256 	spin_lock(&nfs_access_lru_lock);
2257 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2258 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2259 
2260 	spin_lock(&inode->i_lock);
2261 	__nfs_access_zap_cache(NFS_I(inode), &head);
2262 	spin_unlock(&inode->i_lock);
2263 	spin_unlock(&nfs_access_lru_lock);
2264 	nfs_access_free_list(&head);
2265 }
2266 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2267 
2268 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2269 {
2270 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2271 	struct nfs_access_entry *entry;
2272 
2273 	while (n != NULL) {
2274 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2275 
2276 		if (cred < entry->cred)
2277 			n = n->rb_left;
2278 		else if (cred > entry->cred)
2279 			n = n->rb_right;
2280 		else
2281 			return entry;
2282 	}
2283 	return NULL;
2284 }
2285 
2286 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res, bool may_block)
2287 {
2288 	struct nfs_inode *nfsi = NFS_I(inode);
2289 	struct nfs_access_entry *cache;
2290 	bool retry = true;
2291 	int err;
2292 
2293 	spin_lock(&inode->i_lock);
2294 	for(;;) {
2295 		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2296 			goto out_zap;
2297 		cache = nfs_access_search_rbtree(inode, cred);
2298 		err = -ENOENT;
2299 		if (cache == NULL)
2300 			goto out;
2301 		/* Found an entry, is our attribute cache valid? */
2302 		if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2303 			break;
2304 		err = -ECHILD;
2305 		if (!may_block)
2306 			goto out;
2307 		if (!retry)
2308 			goto out_zap;
2309 		spin_unlock(&inode->i_lock);
2310 		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2311 		if (err)
2312 			return err;
2313 		spin_lock(&inode->i_lock);
2314 		retry = false;
2315 	}
2316 	res->cred = cache->cred;
2317 	res->mask = cache->mask;
2318 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2319 	err = 0;
2320 out:
2321 	spin_unlock(&inode->i_lock);
2322 	return err;
2323 out_zap:
2324 	spin_unlock(&inode->i_lock);
2325 	nfs_access_zap_cache(inode);
2326 	return -ENOENT;
2327 }
2328 
2329 static int nfs_access_get_cached_rcu(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2330 {
2331 	/* Only check the most recently returned cache entry,
2332 	 * but do it without locking.
2333 	 */
2334 	struct nfs_inode *nfsi = NFS_I(inode);
2335 	struct nfs_access_entry *cache;
2336 	int err = -ECHILD;
2337 	struct list_head *lh;
2338 
2339 	rcu_read_lock();
2340 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2341 		goto out;
2342 	lh = rcu_dereference(nfsi->access_cache_entry_lru.prev);
2343 	cache = list_entry(lh, struct nfs_access_entry, lru);
2344 	if (lh == &nfsi->access_cache_entry_lru ||
2345 	    cred != cache->cred)
2346 		cache = NULL;
2347 	if (cache == NULL)
2348 		goto out;
2349 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2350 		goto out;
2351 	res->cred = cache->cred;
2352 	res->mask = cache->mask;
2353 	err = 0;
2354 out:
2355 	rcu_read_unlock();
2356 	return err;
2357 }
2358 
2359 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2360 {
2361 	struct nfs_inode *nfsi = NFS_I(inode);
2362 	struct rb_root *root_node = &nfsi->access_cache;
2363 	struct rb_node **p = &root_node->rb_node;
2364 	struct rb_node *parent = NULL;
2365 	struct nfs_access_entry *entry;
2366 
2367 	spin_lock(&inode->i_lock);
2368 	while (*p != NULL) {
2369 		parent = *p;
2370 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2371 
2372 		if (set->cred < entry->cred)
2373 			p = &parent->rb_left;
2374 		else if (set->cred > entry->cred)
2375 			p = &parent->rb_right;
2376 		else
2377 			goto found;
2378 	}
2379 	rb_link_node(&set->rb_node, parent, p);
2380 	rb_insert_color(&set->rb_node, root_node);
2381 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2382 	spin_unlock(&inode->i_lock);
2383 	return;
2384 found:
2385 	rb_replace_node(parent, &set->rb_node, root_node);
2386 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2387 	list_del(&entry->lru);
2388 	spin_unlock(&inode->i_lock);
2389 	nfs_access_free_entry(entry);
2390 }
2391 
2392 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2393 {
2394 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2395 	if (cache == NULL)
2396 		return;
2397 	RB_CLEAR_NODE(&cache->rb_node);
2398 	cache->cred = get_rpccred(set->cred);
2399 	cache->mask = set->mask;
2400 
2401 	/* The above field assignments must be visible
2402 	 * before this item appears on the lru.  We cannot easily
2403 	 * use rcu_assign_pointer, so just force the memory barrier.
2404 	 */
2405 	smp_wmb();
2406 	nfs_access_add_rbtree(inode, cache);
2407 
2408 	/* Update accounting */
2409 	smp_mb__before_atomic();
2410 	atomic_long_inc(&nfs_access_nr_entries);
2411 	smp_mb__after_atomic();
2412 
2413 	/* Add inode to global LRU list */
2414 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2415 		spin_lock(&nfs_access_lru_lock);
2416 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2417 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2418 					&nfs_access_lru_list);
2419 		spin_unlock(&nfs_access_lru_lock);
2420 	}
2421 	nfs_access_cache_enforce_limit();
2422 }
2423 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2424 
2425 #define NFS_MAY_READ (NFS_ACCESS_READ)
2426 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2427 		NFS_ACCESS_EXTEND | \
2428 		NFS_ACCESS_DELETE)
2429 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2430 		NFS_ACCESS_EXTEND)
2431 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2432 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2433 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2434 static int
2435 nfs_access_calc_mask(u32 access_result, umode_t umode)
2436 {
2437 	int mask = 0;
2438 
2439 	if (access_result & NFS_MAY_READ)
2440 		mask |= MAY_READ;
2441 	if (S_ISDIR(umode)) {
2442 		if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2443 			mask |= MAY_WRITE;
2444 		if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2445 			mask |= MAY_EXEC;
2446 	} else if (S_ISREG(umode)) {
2447 		if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2448 			mask |= MAY_WRITE;
2449 		if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2450 			mask |= MAY_EXEC;
2451 	} else if (access_result & NFS_MAY_WRITE)
2452 			mask |= MAY_WRITE;
2453 	return mask;
2454 }
2455 
2456 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2457 {
2458 	entry->mask = access_result;
2459 }
2460 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2461 
2462 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2463 {
2464 	struct nfs_access_entry cache;
2465 	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2466 	int cache_mask;
2467 	int status;
2468 
2469 	trace_nfs_access_enter(inode);
2470 
2471 	status = nfs_access_get_cached_rcu(inode, cred, &cache);
2472 	if (status != 0)
2473 		status = nfs_access_get_cached(inode, cred, &cache, may_block);
2474 	if (status == 0)
2475 		goto out_cached;
2476 
2477 	status = -ECHILD;
2478 	if (!may_block)
2479 		goto out;
2480 
2481 	/*
2482 	 * Determine which access bits we want to ask for...
2483 	 */
2484 	cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND;
2485 	if (S_ISDIR(inode->i_mode))
2486 		cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
2487 	else
2488 		cache.mask |= NFS_ACCESS_EXECUTE;
2489 	cache.cred = cred;
2490 	status = NFS_PROTO(inode)->access(inode, &cache);
2491 	if (status != 0) {
2492 		if (status == -ESTALE) {
2493 			nfs_zap_caches(inode);
2494 			if (!S_ISDIR(inode->i_mode))
2495 				set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2496 		}
2497 		goto out;
2498 	}
2499 	nfs_access_add_cache(inode, &cache);
2500 out_cached:
2501 	cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
2502 	if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2503 		status = -EACCES;
2504 out:
2505 	trace_nfs_access_exit(inode, status);
2506 	return status;
2507 }
2508 
2509 static int nfs_open_permission_mask(int openflags)
2510 {
2511 	int mask = 0;
2512 
2513 	if (openflags & __FMODE_EXEC) {
2514 		/* ONLY check exec rights */
2515 		mask = MAY_EXEC;
2516 	} else {
2517 		if ((openflags & O_ACCMODE) != O_WRONLY)
2518 			mask |= MAY_READ;
2519 		if ((openflags & O_ACCMODE) != O_RDONLY)
2520 			mask |= MAY_WRITE;
2521 	}
2522 
2523 	return mask;
2524 }
2525 
2526 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2527 {
2528 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2529 }
2530 EXPORT_SYMBOL_GPL(nfs_may_open);
2531 
2532 static int nfs_execute_ok(struct inode *inode, int mask)
2533 {
2534 	struct nfs_server *server = NFS_SERVER(inode);
2535 	int ret = 0;
2536 
2537 	if (S_ISDIR(inode->i_mode))
2538 		return 0;
2539 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_OTHER)) {
2540 		if (mask & MAY_NOT_BLOCK)
2541 			return -ECHILD;
2542 		ret = __nfs_revalidate_inode(server, inode);
2543 	}
2544 	if (ret == 0 && !execute_ok(inode))
2545 		ret = -EACCES;
2546 	return ret;
2547 }
2548 
2549 int nfs_permission(struct inode *inode, int mask)
2550 {
2551 	struct rpc_cred *cred;
2552 	int res = 0;
2553 
2554 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2555 
2556 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2557 		goto out;
2558 	/* Is this sys_access() ? */
2559 	if (mask & (MAY_ACCESS | MAY_CHDIR))
2560 		goto force_lookup;
2561 
2562 	switch (inode->i_mode & S_IFMT) {
2563 		case S_IFLNK:
2564 			goto out;
2565 		case S_IFREG:
2566 			if ((mask & MAY_OPEN) &&
2567 			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2568 				return 0;
2569 			break;
2570 		case S_IFDIR:
2571 			/*
2572 			 * Optimize away all write operations, since the server
2573 			 * will check permissions when we perform the op.
2574 			 */
2575 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2576 				goto out;
2577 	}
2578 
2579 force_lookup:
2580 	if (!NFS_PROTO(inode)->access)
2581 		goto out_notsup;
2582 
2583 	/* Always try fast lookups first */
2584 	rcu_read_lock();
2585 	cred = rpc_lookup_cred_nonblock();
2586 	if (!IS_ERR(cred))
2587 		res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK);
2588 	else
2589 		res = PTR_ERR(cred);
2590 	rcu_read_unlock();
2591 	if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) {
2592 		/* Fast lookup failed, try the slow way */
2593 		cred = rpc_lookup_cred();
2594 		if (!IS_ERR(cred)) {
2595 			res = nfs_do_access(inode, cred, mask);
2596 			put_rpccred(cred);
2597 		} else
2598 			res = PTR_ERR(cred);
2599 	}
2600 out:
2601 	if (!res && (mask & MAY_EXEC))
2602 		res = nfs_execute_ok(inode, mask);
2603 
2604 	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2605 		inode->i_sb->s_id, inode->i_ino, mask, res);
2606 	return res;
2607 out_notsup:
2608 	if (mask & MAY_NOT_BLOCK)
2609 		return -ECHILD;
2610 
2611 	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2612 	if (res == 0)
2613 		res = generic_permission(inode, mask);
2614 	goto out;
2615 }
2616 EXPORT_SYMBOL_GPL(nfs_permission);
2617 
2618 /*
2619  * Local variables:
2620  *  version-control: t
2621  *  kept-new-versions: 5
2622  * End:
2623  */
2624