1 /* 2 * linux/fs/nfs/dir.c 3 * 4 * Copyright (C) 1992 Rick Sladkey 5 * 6 * nfs directory handling functions 7 * 8 * 10 Apr 1996 Added silly rename for unlink --okir 9 * 28 Sep 1996 Improved directory cache --okir 10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de 11 * Re-implemented silly rename for unlink, newly implemented 12 * silly rename for nfs_rename() following the suggestions 13 * of Olaf Kirch (okir) found in this file. 14 * Following Linus comments on my original hack, this version 15 * depends only on the dcache stuff and doesn't touch the inode 16 * layer (iput() and friends). 17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM 18 */ 19 20 #include <linux/module.h> 21 #include <linux/time.h> 22 #include <linux/errno.h> 23 #include <linux/stat.h> 24 #include <linux/fcntl.h> 25 #include <linux/string.h> 26 #include <linux/kernel.h> 27 #include <linux/slab.h> 28 #include <linux/mm.h> 29 #include <linux/sunrpc/clnt.h> 30 #include <linux/nfs_fs.h> 31 #include <linux/nfs_mount.h> 32 #include <linux/pagemap.h> 33 #include <linux/pagevec.h> 34 #include <linux/namei.h> 35 #include <linux/mount.h> 36 #include <linux/swap.h> 37 #include <linux/sched.h> 38 #include <linux/kmemleak.h> 39 #include <linux/xattr.h> 40 41 #include "delegation.h" 42 #include "iostat.h" 43 #include "internal.h" 44 #include "fscache.h" 45 46 #include "nfstrace.h" 47 48 /* #define NFS_DEBUG_VERBOSE 1 */ 49 50 static int nfs_opendir(struct inode *, struct file *); 51 static int nfs_closedir(struct inode *, struct file *); 52 static int nfs_readdir(struct file *, struct dir_context *); 53 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int); 54 static loff_t nfs_llseek_dir(struct file *, loff_t, int); 55 static void nfs_readdir_clear_array(struct page*); 56 57 const struct file_operations nfs_dir_operations = { 58 .llseek = nfs_llseek_dir, 59 .read = generic_read_dir, 60 .iterate = nfs_readdir, 61 .open = nfs_opendir, 62 .release = nfs_closedir, 63 .fsync = nfs_fsync_dir, 64 }; 65 66 const struct address_space_operations nfs_dir_aops = { 67 .freepage = nfs_readdir_clear_array, 68 }; 69 70 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred) 71 { 72 struct nfs_inode *nfsi = NFS_I(dir); 73 struct nfs_open_dir_context *ctx; 74 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); 75 if (ctx != NULL) { 76 ctx->duped = 0; 77 ctx->attr_gencount = nfsi->attr_gencount; 78 ctx->dir_cookie = 0; 79 ctx->dup_cookie = 0; 80 ctx->cred = get_rpccred(cred); 81 spin_lock(&dir->i_lock); 82 list_add(&ctx->list, &nfsi->open_files); 83 spin_unlock(&dir->i_lock); 84 return ctx; 85 } 86 return ERR_PTR(-ENOMEM); 87 } 88 89 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx) 90 { 91 spin_lock(&dir->i_lock); 92 list_del(&ctx->list); 93 spin_unlock(&dir->i_lock); 94 put_rpccred(ctx->cred); 95 kfree(ctx); 96 } 97 98 /* 99 * Open file 100 */ 101 static int 102 nfs_opendir(struct inode *inode, struct file *filp) 103 { 104 int res = 0; 105 struct nfs_open_dir_context *ctx; 106 struct rpc_cred *cred; 107 108 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp); 109 110 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 111 112 cred = rpc_lookup_cred(); 113 if (IS_ERR(cred)) 114 return PTR_ERR(cred); 115 ctx = alloc_nfs_open_dir_context(inode, cred); 116 if (IS_ERR(ctx)) { 117 res = PTR_ERR(ctx); 118 goto out; 119 } 120 filp->private_data = ctx; 121 out: 122 put_rpccred(cred); 123 return res; 124 } 125 126 static int 127 nfs_closedir(struct inode *inode, struct file *filp) 128 { 129 put_nfs_open_dir_context(file_inode(filp), filp->private_data); 130 return 0; 131 } 132 133 struct nfs_cache_array_entry { 134 u64 cookie; 135 u64 ino; 136 struct qstr string; 137 unsigned char d_type; 138 }; 139 140 struct nfs_cache_array { 141 int size; 142 int eof_index; 143 u64 last_cookie; 144 struct nfs_cache_array_entry array[0]; 145 }; 146 147 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, bool); 148 typedef struct { 149 struct file *file; 150 struct page *page; 151 struct dir_context *ctx; 152 unsigned long page_index; 153 u64 *dir_cookie; 154 u64 last_cookie; 155 loff_t current_index; 156 decode_dirent_t decode; 157 158 unsigned long timestamp; 159 unsigned long gencount; 160 unsigned int cache_entry_index; 161 bool plus; 162 bool eof; 163 } nfs_readdir_descriptor_t; 164 165 /* 166 * we are freeing strings created by nfs_add_to_readdir_array() 167 */ 168 static 169 void nfs_readdir_clear_array(struct page *page) 170 { 171 struct nfs_cache_array *array; 172 int i; 173 174 array = kmap_atomic(page); 175 for (i = 0; i < array->size; i++) 176 kfree(array->array[i].string.name); 177 kunmap_atomic(array); 178 } 179 180 /* 181 * the caller is responsible for freeing qstr.name 182 * when called by nfs_readdir_add_to_array, the strings will be freed in 183 * nfs_clear_readdir_array() 184 */ 185 static 186 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len) 187 { 188 string->len = len; 189 string->name = kmemdup(name, len, GFP_KERNEL); 190 if (string->name == NULL) 191 return -ENOMEM; 192 /* 193 * Avoid a kmemleak false positive. The pointer to the name is stored 194 * in a page cache page which kmemleak does not scan. 195 */ 196 kmemleak_not_leak(string->name); 197 string->hash = full_name_hash(NULL, name, len); 198 return 0; 199 } 200 201 static 202 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page) 203 { 204 struct nfs_cache_array *array = kmap(page); 205 struct nfs_cache_array_entry *cache_entry; 206 int ret; 207 208 cache_entry = &array->array[array->size]; 209 210 /* Check that this entry lies within the page bounds */ 211 ret = -ENOSPC; 212 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE) 213 goto out; 214 215 cache_entry->cookie = entry->prev_cookie; 216 cache_entry->ino = entry->ino; 217 cache_entry->d_type = entry->d_type; 218 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len); 219 if (ret) 220 goto out; 221 array->last_cookie = entry->cookie; 222 array->size++; 223 if (entry->eof != 0) 224 array->eof_index = array->size; 225 out: 226 kunmap(page); 227 return ret; 228 } 229 230 static 231 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 232 { 233 loff_t diff = desc->ctx->pos - desc->current_index; 234 unsigned int index; 235 236 if (diff < 0) 237 goto out_eof; 238 if (diff >= array->size) { 239 if (array->eof_index >= 0) 240 goto out_eof; 241 return -EAGAIN; 242 } 243 244 index = (unsigned int)diff; 245 *desc->dir_cookie = array->array[index].cookie; 246 desc->cache_entry_index = index; 247 return 0; 248 out_eof: 249 desc->eof = true; 250 return -EBADCOOKIE; 251 } 252 253 static bool 254 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi) 255 { 256 if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA)) 257 return false; 258 smp_rmb(); 259 return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags); 260 } 261 262 static 263 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 264 { 265 int i; 266 loff_t new_pos; 267 int status = -EAGAIN; 268 269 for (i = 0; i < array->size; i++) { 270 if (array->array[i].cookie == *desc->dir_cookie) { 271 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file)); 272 struct nfs_open_dir_context *ctx = desc->file->private_data; 273 274 new_pos = desc->current_index + i; 275 if (ctx->attr_gencount != nfsi->attr_gencount || 276 !nfs_readdir_inode_mapping_valid(nfsi)) { 277 ctx->duped = 0; 278 ctx->attr_gencount = nfsi->attr_gencount; 279 } else if (new_pos < desc->ctx->pos) { 280 if (ctx->duped > 0 281 && ctx->dup_cookie == *desc->dir_cookie) { 282 if (printk_ratelimit()) { 283 pr_notice("NFS: directory %pD2 contains a readdir loop." 284 "Please contact your server vendor. " 285 "The file: %.*s has duplicate cookie %llu\n", 286 desc->file, array->array[i].string.len, 287 array->array[i].string.name, *desc->dir_cookie); 288 } 289 status = -ELOOP; 290 goto out; 291 } 292 ctx->dup_cookie = *desc->dir_cookie; 293 ctx->duped = -1; 294 } 295 desc->ctx->pos = new_pos; 296 desc->cache_entry_index = i; 297 return 0; 298 } 299 } 300 if (array->eof_index >= 0) { 301 status = -EBADCOOKIE; 302 if (*desc->dir_cookie == array->last_cookie) 303 desc->eof = true; 304 } 305 out: 306 return status; 307 } 308 309 static 310 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc) 311 { 312 struct nfs_cache_array *array; 313 int status; 314 315 array = kmap(desc->page); 316 317 if (*desc->dir_cookie == 0) 318 status = nfs_readdir_search_for_pos(array, desc); 319 else 320 status = nfs_readdir_search_for_cookie(array, desc); 321 322 if (status == -EAGAIN) { 323 desc->last_cookie = array->last_cookie; 324 desc->current_index += array->size; 325 desc->page_index++; 326 } 327 kunmap(desc->page); 328 return status; 329 } 330 331 /* Fill a page with xdr information before transferring to the cache page */ 332 static 333 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc, 334 struct nfs_entry *entry, struct file *file, struct inode *inode) 335 { 336 struct nfs_open_dir_context *ctx = file->private_data; 337 struct rpc_cred *cred = ctx->cred; 338 unsigned long timestamp, gencount; 339 int error; 340 341 again: 342 timestamp = jiffies; 343 gencount = nfs_inc_attr_generation_counter(); 344 error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages, 345 NFS_SERVER(inode)->dtsize, desc->plus); 346 if (error < 0) { 347 /* We requested READDIRPLUS, but the server doesn't grok it */ 348 if (error == -ENOTSUPP && desc->plus) { 349 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS; 350 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 351 desc->plus = false; 352 goto again; 353 } 354 goto error; 355 } 356 desc->timestamp = timestamp; 357 desc->gencount = gencount; 358 error: 359 return error; 360 } 361 362 static int xdr_decode(nfs_readdir_descriptor_t *desc, 363 struct nfs_entry *entry, struct xdr_stream *xdr) 364 { 365 int error; 366 367 error = desc->decode(xdr, entry, desc->plus); 368 if (error) 369 return error; 370 entry->fattr->time_start = desc->timestamp; 371 entry->fattr->gencount = desc->gencount; 372 return 0; 373 } 374 375 /* Match file and dirent using either filehandle or fileid 376 * Note: caller is responsible for checking the fsid 377 */ 378 static 379 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry) 380 { 381 struct inode *inode; 382 struct nfs_inode *nfsi; 383 384 if (d_really_is_negative(dentry)) 385 return 0; 386 387 inode = d_inode(dentry); 388 if (is_bad_inode(inode) || NFS_STALE(inode)) 389 return 0; 390 391 nfsi = NFS_I(inode); 392 if (entry->fattr->fileid != nfsi->fileid) 393 return 0; 394 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0) 395 return 0; 396 return 1; 397 } 398 399 static 400 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx) 401 { 402 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS)) 403 return false; 404 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags)) 405 return true; 406 if (ctx->pos == 0) 407 return true; 408 return false; 409 } 410 411 /* 412 * This function is called by the lookup and getattr code to request the 413 * use of readdirplus to accelerate any future lookups in the same 414 * directory. 415 */ 416 void nfs_advise_use_readdirplus(struct inode *dir) 417 { 418 struct nfs_inode *nfsi = NFS_I(dir); 419 420 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) && 421 !list_empty(&nfsi->open_files)) 422 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags); 423 } 424 425 /* 426 * This function is mainly for use by nfs_getattr(). 427 * 428 * If this is an 'ls -l', we want to force use of readdirplus. 429 * Do this by checking if there is an active file descriptor 430 * and calling nfs_advise_use_readdirplus, then forcing a 431 * cache flush. 432 */ 433 void nfs_force_use_readdirplus(struct inode *dir) 434 { 435 struct nfs_inode *nfsi = NFS_I(dir); 436 437 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) && 438 !list_empty(&nfsi->open_files)) { 439 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags); 440 invalidate_mapping_pages(dir->i_mapping, 0, -1); 441 } 442 } 443 444 static 445 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry) 446 { 447 struct qstr filename = QSTR_INIT(entry->name, entry->len); 448 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 449 struct dentry *dentry; 450 struct dentry *alias; 451 struct inode *dir = d_inode(parent); 452 struct inode *inode; 453 int status; 454 455 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID)) 456 return; 457 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID)) 458 return; 459 if (filename.len == 0) 460 return; 461 /* Validate that the name doesn't contain any illegal '\0' */ 462 if (strnlen(filename.name, filename.len) != filename.len) 463 return; 464 /* ...or '/' */ 465 if (strnchr(filename.name, filename.len, '/')) 466 return; 467 if (filename.name[0] == '.') { 468 if (filename.len == 1) 469 return; 470 if (filename.len == 2 && filename.name[1] == '.') 471 return; 472 } 473 filename.hash = full_name_hash(parent, filename.name, filename.len); 474 475 dentry = d_lookup(parent, &filename); 476 again: 477 if (!dentry) { 478 dentry = d_alloc_parallel(parent, &filename, &wq); 479 if (IS_ERR(dentry)) 480 return; 481 } 482 if (!d_in_lookup(dentry)) { 483 /* Is there a mountpoint here? If so, just exit */ 484 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid, 485 &entry->fattr->fsid)) 486 goto out; 487 if (nfs_same_file(dentry, entry)) { 488 if (!entry->fh->size) 489 goto out; 490 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 491 status = nfs_refresh_inode(d_inode(dentry), entry->fattr); 492 if (!status) 493 nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label); 494 goto out; 495 } else { 496 d_invalidate(dentry); 497 dput(dentry); 498 dentry = NULL; 499 goto again; 500 } 501 } 502 if (!entry->fh->size) { 503 d_lookup_done(dentry); 504 goto out; 505 } 506 507 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label); 508 alias = d_splice_alias(inode, dentry); 509 d_lookup_done(dentry); 510 if (alias) { 511 if (IS_ERR(alias)) 512 goto out; 513 dput(dentry); 514 dentry = alias; 515 } 516 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 517 out: 518 dput(dentry); 519 } 520 521 /* Perform conversion from xdr to cache array */ 522 static 523 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry, 524 struct page **xdr_pages, struct page *page, unsigned int buflen) 525 { 526 struct xdr_stream stream; 527 struct xdr_buf buf; 528 struct page *scratch; 529 struct nfs_cache_array *array; 530 unsigned int count = 0; 531 int status; 532 533 scratch = alloc_page(GFP_KERNEL); 534 if (scratch == NULL) 535 return -ENOMEM; 536 537 if (buflen == 0) 538 goto out_nopages; 539 540 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen); 541 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE); 542 543 do { 544 status = xdr_decode(desc, entry, &stream); 545 if (status != 0) { 546 if (status == -EAGAIN) 547 status = 0; 548 break; 549 } 550 551 count++; 552 553 if (desc->plus) 554 nfs_prime_dcache(file_dentry(desc->file), entry); 555 556 status = nfs_readdir_add_to_array(entry, page); 557 if (status != 0) 558 break; 559 } while (!entry->eof); 560 561 out_nopages: 562 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) { 563 array = kmap(page); 564 array->eof_index = array->size; 565 status = 0; 566 kunmap(page); 567 } 568 569 put_page(scratch); 570 return status; 571 } 572 573 static 574 void nfs_readdir_free_pages(struct page **pages, unsigned int npages) 575 { 576 unsigned int i; 577 for (i = 0; i < npages; i++) 578 put_page(pages[i]); 579 } 580 581 /* 582 * nfs_readdir_large_page will allocate pages that must be freed with a call 583 * to nfs_readdir_free_pagearray 584 */ 585 static 586 int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages) 587 { 588 unsigned int i; 589 590 for (i = 0; i < npages; i++) { 591 struct page *page = alloc_page(GFP_KERNEL); 592 if (page == NULL) 593 goto out_freepages; 594 pages[i] = page; 595 } 596 return 0; 597 598 out_freepages: 599 nfs_readdir_free_pages(pages, i); 600 return -ENOMEM; 601 } 602 603 static 604 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode) 605 { 606 struct page *pages[NFS_MAX_READDIR_PAGES]; 607 struct nfs_entry entry; 608 struct file *file = desc->file; 609 struct nfs_cache_array *array; 610 int status = -ENOMEM; 611 unsigned int array_size = ARRAY_SIZE(pages); 612 613 entry.prev_cookie = 0; 614 entry.cookie = desc->last_cookie; 615 entry.eof = 0; 616 entry.fh = nfs_alloc_fhandle(); 617 entry.fattr = nfs_alloc_fattr(); 618 entry.server = NFS_SERVER(inode); 619 if (entry.fh == NULL || entry.fattr == NULL) 620 goto out; 621 622 entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT); 623 if (IS_ERR(entry.label)) { 624 status = PTR_ERR(entry.label); 625 goto out; 626 } 627 628 array = kmap(page); 629 memset(array, 0, sizeof(struct nfs_cache_array)); 630 array->eof_index = -1; 631 632 status = nfs_readdir_alloc_pages(pages, array_size); 633 if (status < 0) 634 goto out_release_array; 635 do { 636 unsigned int pglen; 637 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode); 638 639 if (status < 0) 640 break; 641 pglen = status; 642 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen); 643 if (status < 0) { 644 if (status == -ENOSPC) 645 status = 0; 646 break; 647 } 648 } while (array->eof_index < 0); 649 650 nfs_readdir_free_pages(pages, array_size); 651 out_release_array: 652 kunmap(page); 653 nfs4_label_free(entry.label); 654 out: 655 nfs_free_fattr(entry.fattr); 656 nfs_free_fhandle(entry.fh); 657 return status; 658 } 659 660 /* 661 * Now we cache directories properly, by converting xdr information 662 * to an array that can be used for lookups later. This results in 663 * fewer cache pages, since we can store more information on each page. 664 * We only need to convert from xdr once so future lookups are much simpler 665 */ 666 static 667 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page) 668 { 669 struct inode *inode = file_inode(desc->file); 670 int ret; 671 672 ret = nfs_readdir_xdr_to_array(desc, page, inode); 673 if (ret < 0) 674 goto error; 675 SetPageUptodate(page); 676 677 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) { 678 /* Should never happen */ 679 nfs_zap_mapping(inode, inode->i_mapping); 680 } 681 unlock_page(page); 682 return 0; 683 error: 684 unlock_page(page); 685 return ret; 686 } 687 688 static 689 void cache_page_release(nfs_readdir_descriptor_t *desc) 690 { 691 if (!desc->page->mapping) 692 nfs_readdir_clear_array(desc->page); 693 put_page(desc->page); 694 desc->page = NULL; 695 } 696 697 static 698 struct page *get_cache_page(nfs_readdir_descriptor_t *desc) 699 { 700 return read_cache_page(desc->file->f_mapping, 701 desc->page_index, (filler_t *)nfs_readdir_filler, desc); 702 } 703 704 /* 705 * Returns 0 if desc->dir_cookie was found on page desc->page_index 706 */ 707 static 708 int find_cache_page(nfs_readdir_descriptor_t *desc) 709 { 710 int res; 711 712 desc->page = get_cache_page(desc); 713 if (IS_ERR(desc->page)) 714 return PTR_ERR(desc->page); 715 716 res = nfs_readdir_search_array(desc); 717 if (res != 0) 718 cache_page_release(desc); 719 return res; 720 } 721 722 /* Search for desc->dir_cookie from the beginning of the page cache */ 723 static inline 724 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc) 725 { 726 int res; 727 728 if (desc->page_index == 0) { 729 desc->current_index = 0; 730 desc->last_cookie = 0; 731 } 732 do { 733 res = find_cache_page(desc); 734 } while (res == -EAGAIN); 735 return res; 736 } 737 738 /* 739 * Once we've found the start of the dirent within a page: fill 'er up... 740 */ 741 static 742 int nfs_do_filldir(nfs_readdir_descriptor_t *desc) 743 { 744 struct file *file = desc->file; 745 int i = 0; 746 int res = 0; 747 struct nfs_cache_array *array = NULL; 748 struct nfs_open_dir_context *ctx = file->private_data; 749 750 array = kmap(desc->page); 751 for (i = desc->cache_entry_index; i < array->size; i++) { 752 struct nfs_cache_array_entry *ent; 753 754 ent = &array->array[i]; 755 if (!dir_emit(desc->ctx, ent->string.name, ent->string.len, 756 nfs_compat_user_ino64(ent->ino), ent->d_type)) { 757 desc->eof = true; 758 break; 759 } 760 desc->ctx->pos++; 761 if (i < (array->size-1)) 762 *desc->dir_cookie = array->array[i+1].cookie; 763 else 764 *desc->dir_cookie = array->last_cookie; 765 if (ctx->duped != 0) 766 ctx->duped = 1; 767 } 768 if (array->eof_index >= 0) 769 desc->eof = true; 770 771 kunmap(desc->page); 772 cache_page_release(desc); 773 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n", 774 (unsigned long long)*desc->dir_cookie, res); 775 return res; 776 } 777 778 /* 779 * If we cannot find a cookie in our cache, we suspect that this is 780 * because it points to a deleted file, so we ask the server to return 781 * whatever it thinks is the next entry. We then feed this to filldir. 782 * If all goes well, we should then be able to find our way round the 783 * cache on the next call to readdir_search_pagecache(); 784 * 785 * NOTE: we cannot add the anonymous page to the pagecache because 786 * the data it contains might not be page aligned. Besides, 787 * we should already have a complete representation of the 788 * directory in the page cache by the time we get here. 789 */ 790 static inline 791 int uncached_readdir(nfs_readdir_descriptor_t *desc) 792 { 793 struct page *page = NULL; 794 int status; 795 struct inode *inode = file_inode(desc->file); 796 struct nfs_open_dir_context *ctx = desc->file->private_data; 797 798 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n", 799 (unsigned long long)*desc->dir_cookie); 800 801 page = alloc_page(GFP_HIGHUSER); 802 if (!page) { 803 status = -ENOMEM; 804 goto out; 805 } 806 807 desc->page_index = 0; 808 desc->last_cookie = *desc->dir_cookie; 809 desc->page = page; 810 ctx->duped = 0; 811 812 status = nfs_readdir_xdr_to_array(desc, page, inode); 813 if (status < 0) 814 goto out_release; 815 816 status = nfs_do_filldir(desc); 817 818 out: 819 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", 820 __func__, status); 821 return status; 822 out_release: 823 cache_page_release(desc); 824 goto out; 825 } 826 827 /* The file offset position represents the dirent entry number. A 828 last cookie cache takes care of the common case of reading the 829 whole directory. 830 */ 831 static int nfs_readdir(struct file *file, struct dir_context *ctx) 832 { 833 struct dentry *dentry = file_dentry(file); 834 struct inode *inode = d_inode(dentry); 835 nfs_readdir_descriptor_t my_desc, 836 *desc = &my_desc; 837 struct nfs_open_dir_context *dir_ctx = file->private_data; 838 int res = 0; 839 840 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n", 841 file, (long long)ctx->pos); 842 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS); 843 844 /* 845 * ctx->pos points to the dirent entry number. 846 * *desc->dir_cookie has the cookie for the next entry. We have 847 * to either find the entry with the appropriate number or 848 * revalidate the cookie. 849 */ 850 memset(desc, 0, sizeof(*desc)); 851 852 desc->file = file; 853 desc->ctx = ctx; 854 desc->dir_cookie = &dir_ctx->dir_cookie; 855 desc->decode = NFS_PROTO(inode)->decode_dirent; 856 desc->plus = nfs_use_readdirplus(inode, ctx); 857 858 if (ctx->pos == 0 || nfs_attribute_cache_expired(inode)) 859 res = nfs_revalidate_mapping(inode, file->f_mapping); 860 if (res < 0) 861 goto out; 862 863 do { 864 res = readdir_search_pagecache(desc); 865 866 if (res == -EBADCOOKIE) { 867 res = 0; 868 /* This means either end of directory */ 869 if (*desc->dir_cookie && !desc->eof) { 870 /* Or that the server has 'lost' a cookie */ 871 res = uncached_readdir(desc); 872 if (res == 0) 873 continue; 874 } 875 break; 876 } 877 if (res == -ETOOSMALL && desc->plus) { 878 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 879 nfs_zap_caches(inode); 880 desc->page_index = 0; 881 desc->plus = false; 882 desc->eof = false; 883 continue; 884 } 885 if (res < 0) 886 break; 887 888 res = nfs_do_filldir(desc); 889 if (res < 0) 890 break; 891 } while (!desc->eof); 892 out: 893 if (res > 0) 894 res = 0; 895 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res); 896 return res; 897 } 898 899 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence) 900 { 901 struct inode *inode = file_inode(filp); 902 struct nfs_open_dir_context *dir_ctx = filp->private_data; 903 904 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n", 905 filp, offset, whence); 906 907 switch (whence) { 908 default: 909 return -EINVAL; 910 case SEEK_SET: 911 if (offset < 0) 912 return -EINVAL; 913 inode_lock(inode); 914 break; 915 case SEEK_CUR: 916 if (offset == 0) 917 return filp->f_pos; 918 inode_lock(inode); 919 offset += filp->f_pos; 920 if (offset < 0) { 921 inode_unlock(inode); 922 return -EINVAL; 923 } 924 } 925 if (offset != filp->f_pos) { 926 filp->f_pos = offset; 927 dir_ctx->dir_cookie = 0; 928 dir_ctx->duped = 0; 929 } 930 inode_unlock(inode); 931 return offset; 932 } 933 934 /* 935 * All directory operations under NFS are synchronous, so fsync() 936 * is a dummy operation. 937 */ 938 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end, 939 int datasync) 940 { 941 struct inode *inode = file_inode(filp); 942 943 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync); 944 945 inode_lock(inode); 946 nfs_inc_stats(inode, NFSIOS_VFSFSYNC); 947 inode_unlock(inode); 948 return 0; 949 } 950 951 /** 952 * nfs_force_lookup_revalidate - Mark the directory as having changed 953 * @dir - pointer to directory inode 954 * 955 * This forces the revalidation code in nfs_lookup_revalidate() to do a 956 * full lookup on all child dentries of 'dir' whenever a change occurs 957 * on the server that might have invalidated our dcache. 958 * 959 * The caller should be holding dir->i_lock 960 */ 961 void nfs_force_lookup_revalidate(struct inode *dir) 962 { 963 NFS_I(dir)->cache_change_attribute++; 964 } 965 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate); 966 967 /* 968 * A check for whether or not the parent directory has changed. 969 * In the case it has, we assume that the dentries are untrustworthy 970 * and may need to be looked up again. 971 * If rcu_walk prevents us from performing a full check, return 0. 972 */ 973 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry, 974 int rcu_walk) 975 { 976 if (IS_ROOT(dentry)) 977 return 1; 978 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE) 979 return 0; 980 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 981 return 0; 982 /* Revalidate nfsi->cache_change_attribute before we declare a match */ 983 if (nfs_mapping_need_revalidate_inode(dir)) { 984 if (rcu_walk) 985 return 0; 986 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0) 987 return 0; 988 } 989 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 990 return 0; 991 return 1; 992 } 993 994 /* 995 * Use intent information to check whether or not we're going to do 996 * an O_EXCL create using this path component. 997 */ 998 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags) 999 { 1000 if (NFS_PROTO(dir)->version == 2) 1001 return 0; 1002 return flags & LOOKUP_EXCL; 1003 } 1004 1005 /* 1006 * Inode and filehandle revalidation for lookups. 1007 * 1008 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL, 1009 * or if the intent information indicates that we're about to open this 1010 * particular file and the "nocto" mount flag is not set. 1011 * 1012 */ 1013 static 1014 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags) 1015 { 1016 struct nfs_server *server = NFS_SERVER(inode); 1017 int ret; 1018 1019 if (IS_AUTOMOUNT(inode)) 1020 return 0; 1021 1022 if (flags & LOOKUP_OPEN) { 1023 switch (inode->i_mode & S_IFMT) { 1024 case S_IFREG: 1025 /* A NFSv4 OPEN will revalidate later */ 1026 if (server->caps & NFS_CAP_ATOMIC_OPEN) 1027 goto out; 1028 /* Fallthrough */ 1029 case S_IFDIR: 1030 if (server->flags & NFS_MOUNT_NOCTO) 1031 break; 1032 /* NFS close-to-open cache consistency validation */ 1033 goto out_force; 1034 } 1035 } 1036 1037 /* VFS wants an on-the-wire revalidation */ 1038 if (flags & LOOKUP_REVAL) 1039 goto out_force; 1040 out: 1041 return (inode->i_nlink == 0) ? -ESTALE : 0; 1042 out_force: 1043 if (flags & LOOKUP_RCU) 1044 return -ECHILD; 1045 ret = __nfs_revalidate_inode(server, inode); 1046 if (ret != 0) 1047 return ret; 1048 goto out; 1049 } 1050 1051 /* 1052 * We judge how long we want to trust negative 1053 * dentries by looking at the parent inode mtime. 1054 * 1055 * If parent mtime has changed, we revalidate, else we wait for a 1056 * period corresponding to the parent's attribute cache timeout value. 1057 * 1058 * If LOOKUP_RCU prevents us from performing a full check, return 1 1059 * suggesting a reval is needed. 1060 * 1061 * Note that when creating a new file, or looking up a rename target, 1062 * then it shouldn't be necessary to revalidate a negative dentry. 1063 */ 1064 static inline 1065 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry, 1066 unsigned int flags) 1067 { 1068 if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET)) 1069 return 0; 1070 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG) 1071 return 1; 1072 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU); 1073 } 1074 1075 static int 1076 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry, 1077 struct inode *inode, int error) 1078 { 1079 switch (error) { 1080 case 1: 1081 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n", 1082 __func__, dentry); 1083 return 1; 1084 case 0: 1085 nfs_mark_for_revalidate(dir); 1086 if (inode && S_ISDIR(inode->i_mode)) { 1087 /* Purge readdir caches. */ 1088 nfs_zap_caches(inode); 1089 /* 1090 * We can't d_drop the root of a disconnected tree: 1091 * its d_hash is on the s_anon list and d_drop() would hide 1092 * it from shrink_dcache_for_unmount(), leading to busy 1093 * inodes on unmount and further oopses. 1094 */ 1095 if (IS_ROOT(dentry)) 1096 return 1; 1097 } 1098 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n", 1099 __func__, dentry); 1100 return 0; 1101 } 1102 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n", 1103 __func__, dentry, error); 1104 return error; 1105 } 1106 1107 static int 1108 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry, 1109 unsigned int flags) 1110 { 1111 int ret = 1; 1112 if (nfs_neg_need_reval(dir, dentry, flags)) { 1113 if (flags & LOOKUP_RCU) 1114 return -ECHILD; 1115 ret = 0; 1116 } 1117 return nfs_lookup_revalidate_done(dir, dentry, NULL, ret); 1118 } 1119 1120 static int 1121 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry, 1122 struct inode *inode) 1123 { 1124 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1125 return nfs_lookup_revalidate_done(dir, dentry, inode, 1); 1126 } 1127 1128 static int 1129 nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry, 1130 struct inode *inode) 1131 { 1132 struct nfs_fh *fhandle; 1133 struct nfs_fattr *fattr; 1134 struct nfs4_label *label; 1135 int ret; 1136 1137 ret = -ENOMEM; 1138 fhandle = nfs_alloc_fhandle(); 1139 fattr = nfs_alloc_fattr(); 1140 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL); 1141 if (fhandle == NULL || fattr == NULL || IS_ERR(label)) 1142 goto out; 1143 1144 ret = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label); 1145 if (ret < 0) { 1146 if (ret == -ESTALE || ret == -ENOENT) 1147 ret = 0; 1148 goto out; 1149 } 1150 ret = 0; 1151 if (nfs_compare_fh(NFS_FH(inode), fhandle)) 1152 goto out; 1153 if (nfs_refresh_inode(inode, fattr) < 0) 1154 goto out; 1155 1156 nfs_setsecurity(inode, fattr, label); 1157 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1158 1159 /* set a readdirplus hint that we had a cache miss */ 1160 nfs_force_use_readdirplus(dir); 1161 ret = 1; 1162 out: 1163 nfs_free_fattr(fattr); 1164 nfs_free_fhandle(fhandle); 1165 nfs4_label_free(label); 1166 return nfs_lookup_revalidate_done(dir, dentry, inode, ret); 1167 } 1168 1169 /* 1170 * This is called every time the dcache has a lookup hit, 1171 * and we should check whether we can really trust that 1172 * lookup. 1173 * 1174 * NOTE! The hit can be a negative hit too, don't assume 1175 * we have an inode! 1176 * 1177 * If the parent directory is seen to have changed, we throw out the 1178 * cached dentry and do a new lookup. 1179 */ 1180 static int 1181 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry, 1182 unsigned int flags) 1183 { 1184 struct inode *inode; 1185 int error; 1186 1187 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE); 1188 inode = d_inode(dentry); 1189 1190 if (!inode) 1191 return nfs_lookup_revalidate_negative(dir, dentry, flags); 1192 1193 if (is_bad_inode(inode)) { 1194 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1195 __func__, dentry); 1196 goto out_bad; 1197 } 1198 1199 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ)) 1200 return nfs_lookup_revalidate_delegated(dir, dentry, inode); 1201 1202 /* Force a full look up iff the parent directory has changed */ 1203 if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) && 1204 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) { 1205 error = nfs_lookup_verify_inode(inode, flags); 1206 if (error) { 1207 if (error == -ESTALE) 1208 nfs_zap_caches(dir); 1209 goto out_bad; 1210 } 1211 nfs_advise_use_readdirplus(dir); 1212 goto out_valid; 1213 } 1214 1215 if (flags & LOOKUP_RCU) 1216 return -ECHILD; 1217 1218 if (NFS_STALE(inode)) 1219 goto out_bad; 1220 1221 trace_nfs_lookup_revalidate_enter(dir, dentry, flags); 1222 error = nfs_lookup_revalidate_dentry(dir, dentry, inode); 1223 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error); 1224 return error; 1225 out_valid: 1226 return nfs_lookup_revalidate_done(dir, dentry, inode, 1); 1227 out_bad: 1228 if (flags & LOOKUP_RCU) 1229 return -ECHILD; 1230 return nfs_lookup_revalidate_done(dir, dentry, inode, 0); 1231 } 1232 1233 static int 1234 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags, 1235 int (*reval)(struct inode *, struct dentry *, unsigned int)) 1236 { 1237 struct dentry *parent; 1238 struct inode *dir; 1239 int ret; 1240 1241 if (flags & LOOKUP_RCU) { 1242 parent = READ_ONCE(dentry->d_parent); 1243 dir = d_inode_rcu(parent); 1244 if (!dir) 1245 return -ECHILD; 1246 ret = reval(dir, dentry, flags); 1247 if (parent != READ_ONCE(dentry->d_parent)) 1248 return -ECHILD; 1249 } else { 1250 parent = dget_parent(dentry); 1251 ret = reval(d_inode(parent), dentry, flags); 1252 dput(parent); 1253 } 1254 return ret; 1255 } 1256 1257 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1258 { 1259 return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate); 1260 } 1261 1262 /* 1263 * A weaker form of d_revalidate for revalidating just the d_inode(dentry) 1264 * when we don't really care about the dentry name. This is called when a 1265 * pathwalk ends on a dentry that was not found via a normal lookup in the 1266 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals). 1267 * 1268 * In this situation, we just want to verify that the inode itself is OK 1269 * since the dentry might have changed on the server. 1270 */ 1271 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags) 1272 { 1273 struct inode *inode = d_inode(dentry); 1274 int error = 0; 1275 1276 /* 1277 * I believe we can only get a negative dentry here in the case of a 1278 * procfs-style symlink. Just assume it's correct for now, but we may 1279 * eventually need to do something more here. 1280 */ 1281 if (!inode) { 1282 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n", 1283 __func__, dentry); 1284 return 1; 1285 } 1286 1287 if (is_bad_inode(inode)) { 1288 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1289 __func__, dentry); 1290 return 0; 1291 } 1292 1293 error = nfs_lookup_verify_inode(inode, flags); 1294 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n", 1295 __func__, inode->i_ino, error ? "invalid" : "valid"); 1296 return !error; 1297 } 1298 1299 /* 1300 * This is called from dput() when d_count is going to 0. 1301 */ 1302 static int nfs_dentry_delete(const struct dentry *dentry) 1303 { 1304 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n", 1305 dentry, dentry->d_flags); 1306 1307 /* Unhash any dentry with a stale inode */ 1308 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry))) 1309 return 1; 1310 1311 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1312 /* Unhash it, so that ->d_iput() would be called */ 1313 return 1; 1314 } 1315 if (!(dentry->d_sb->s_flags & SB_ACTIVE)) { 1316 /* Unhash it, so that ancestors of killed async unlink 1317 * files will be cleaned up during umount */ 1318 return 1; 1319 } 1320 return 0; 1321 1322 } 1323 1324 /* Ensure that we revalidate inode->i_nlink */ 1325 static void nfs_drop_nlink(struct inode *inode) 1326 { 1327 spin_lock(&inode->i_lock); 1328 /* drop the inode if we're reasonably sure this is the last link */ 1329 if (inode->i_nlink > 0) 1330 drop_nlink(inode); 1331 NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter(); 1332 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_CHANGE 1333 | NFS_INO_INVALID_CTIME 1334 | NFS_INO_INVALID_OTHER 1335 | NFS_INO_REVAL_FORCED; 1336 spin_unlock(&inode->i_lock); 1337 } 1338 1339 /* 1340 * Called when the dentry loses inode. 1341 * We use it to clean up silly-renamed files. 1342 */ 1343 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode) 1344 { 1345 if (S_ISDIR(inode->i_mode)) 1346 /* drop any readdir cache as it could easily be old */ 1347 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA; 1348 1349 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1350 nfs_complete_unlink(dentry, inode); 1351 nfs_drop_nlink(inode); 1352 } 1353 iput(inode); 1354 } 1355 1356 static void nfs_d_release(struct dentry *dentry) 1357 { 1358 /* free cached devname value, if it survived that far */ 1359 if (unlikely(dentry->d_fsdata)) { 1360 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1361 WARN_ON(1); 1362 else 1363 kfree(dentry->d_fsdata); 1364 } 1365 } 1366 1367 const struct dentry_operations nfs_dentry_operations = { 1368 .d_revalidate = nfs_lookup_revalidate, 1369 .d_weak_revalidate = nfs_weak_revalidate, 1370 .d_delete = nfs_dentry_delete, 1371 .d_iput = nfs_dentry_iput, 1372 .d_automount = nfs_d_automount, 1373 .d_release = nfs_d_release, 1374 }; 1375 EXPORT_SYMBOL_GPL(nfs_dentry_operations); 1376 1377 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 1378 { 1379 struct dentry *res; 1380 struct inode *inode = NULL; 1381 struct nfs_fh *fhandle = NULL; 1382 struct nfs_fattr *fattr = NULL; 1383 struct nfs4_label *label = NULL; 1384 int error; 1385 1386 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry); 1387 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP); 1388 1389 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen)) 1390 return ERR_PTR(-ENAMETOOLONG); 1391 1392 /* 1393 * If we're doing an exclusive create, optimize away the lookup 1394 * but don't hash the dentry. 1395 */ 1396 if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET) 1397 return NULL; 1398 1399 res = ERR_PTR(-ENOMEM); 1400 fhandle = nfs_alloc_fhandle(); 1401 fattr = nfs_alloc_fattr(); 1402 if (fhandle == NULL || fattr == NULL) 1403 goto out; 1404 1405 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT); 1406 if (IS_ERR(label)) 1407 goto out; 1408 1409 trace_nfs_lookup_enter(dir, dentry, flags); 1410 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label); 1411 if (error == -ENOENT) 1412 goto no_entry; 1413 if (error < 0) { 1414 res = ERR_PTR(error); 1415 goto out_label; 1416 } 1417 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label); 1418 res = ERR_CAST(inode); 1419 if (IS_ERR(res)) 1420 goto out_label; 1421 1422 /* Notify readdir to use READDIRPLUS */ 1423 nfs_force_use_readdirplus(dir); 1424 1425 no_entry: 1426 res = d_splice_alias(inode, dentry); 1427 if (res != NULL) { 1428 if (IS_ERR(res)) 1429 goto out_label; 1430 dentry = res; 1431 } 1432 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1433 out_label: 1434 trace_nfs_lookup_exit(dir, dentry, flags, error); 1435 nfs4_label_free(label); 1436 out: 1437 nfs_free_fattr(fattr); 1438 nfs_free_fhandle(fhandle); 1439 return res; 1440 } 1441 EXPORT_SYMBOL_GPL(nfs_lookup); 1442 1443 #if IS_ENABLED(CONFIG_NFS_V4) 1444 static int nfs4_lookup_revalidate(struct dentry *, unsigned int); 1445 1446 const struct dentry_operations nfs4_dentry_operations = { 1447 .d_revalidate = nfs4_lookup_revalidate, 1448 .d_weak_revalidate = nfs_weak_revalidate, 1449 .d_delete = nfs_dentry_delete, 1450 .d_iput = nfs_dentry_iput, 1451 .d_automount = nfs_d_automount, 1452 .d_release = nfs_d_release, 1453 }; 1454 EXPORT_SYMBOL_GPL(nfs4_dentry_operations); 1455 1456 static fmode_t flags_to_mode(int flags) 1457 { 1458 fmode_t res = (__force fmode_t)flags & FMODE_EXEC; 1459 if ((flags & O_ACCMODE) != O_WRONLY) 1460 res |= FMODE_READ; 1461 if ((flags & O_ACCMODE) != O_RDONLY) 1462 res |= FMODE_WRITE; 1463 return res; 1464 } 1465 1466 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp) 1467 { 1468 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp); 1469 } 1470 1471 static int do_open(struct inode *inode, struct file *filp) 1472 { 1473 nfs_fscache_open_file(inode, filp); 1474 return 0; 1475 } 1476 1477 static int nfs_finish_open(struct nfs_open_context *ctx, 1478 struct dentry *dentry, 1479 struct file *file, unsigned open_flags) 1480 { 1481 int err; 1482 1483 err = finish_open(file, dentry, do_open); 1484 if (err) 1485 goto out; 1486 if (S_ISREG(file->f_path.dentry->d_inode->i_mode)) 1487 nfs_file_set_open_context(file, ctx); 1488 else 1489 err = -ESTALE; 1490 out: 1491 return err; 1492 } 1493 1494 int nfs_atomic_open(struct inode *dir, struct dentry *dentry, 1495 struct file *file, unsigned open_flags, 1496 umode_t mode) 1497 { 1498 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1499 struct nfs_open_context *ctx; 1500 struct dentry *res; 1501 struct iattr attr = { .ia_valid = ATTR_OPEN }; 1502 struct inode *inode; 1503 unsigned int lookup_flags = 0; 1504 bool switched = false; 1505 int created = 0; 1506 int err; 1507 1508 /* Expect a negative dentry */ 1509 BUG_ON(d_inode(dentry)); 1510 1511 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n", 1512 dir->i_sb->s_id, dir->i_ino, dentry); 1513 1514 err = nfs_check_flags(open_flags); 1515 if (err) 1516 return err; 1517 1518 /* NFS only supports OPEN on regular files */ 1519 if ((open_flags & O_DIRECTORY)) { 1520 if (!d_in_lookup(dentry)) { 1521 /* 1522 * Hashed negative dentry with O_DIRECTORY: dentry was 1523 * revalidated and is fine, no need to perform lookup 1524 * again 1525 */ 1526 return -ENOENT; 1527 } 1528 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY; 1529 goto no_open; 1530 } 1531 1532 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 1533 return -ENAMETOOLONG; 1534 1535 if (open_flags & O_CREAT) { 1536 struct nfs_server *server = NFS_SERVER(dir); 1537 1538 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK)) 1539 mode &= ~current_umask(); 1540 1541 attr.ia_valid |= ATTR_MODE; 1542 attr.ia_mode = mode; 1543 } 1544 if (open_flags & O_TRUNC) { 1545 attr.ia_valid |= ATTR_SIZE; 1546 attr.ia_size = 0; 1547 } 1548 1549 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) { 1550 d_drop(dentry); 1551 switched = true; 1552 dentry = d_alloc_parallel(dentry->d_parent, 1553 &dentry->d_name, &wq); 1554 if (IS_ERR(dentry)) 1555 return PTR_ERR(dentry); 1556 if (unlikely(!d_in_lookup(dentry))) 1557 return finish_no_open(file, dentry); 1558 } 1559 1560 ctx = create_nfs_open_context(dentry, open_flags, file); 1561 err = PTR_ERR(ctx); 1562 if (IS_ERR(ctx)) 1563 goto out; 1564 1565 trace_nfs_atomic_open_enter(dir, ctx, open_flags); 1566 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created); 1567 if (created) 1568 file->f_mode |= FMODE_CREATED; 1569 if (IS_ERR(inode)) { 1570 err = PTR_ERR(inode); 1571 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 1572 put_nfs_open_context(ctx); 1573 d_drop(dentry); 1574 switch (err) { 1575 case -ENOENT: 1576 d_splice_alias(NULL, dentry); 1577 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1578 break; 1579 case -EISDIR: 1580 case -ENOTDIR: 1581 goto no_open; 1582 case -ELOOP: 1583 if (!(open_flags & O_NOFOLLOW)) 1584 goto no_open; 1585 break; 1586 /* case -EINVAL: */ 1587 default: 1588 break; 1589 } 1590 goto out; 1591 } 1592 1593 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags); 1594 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 1595 put_nfs_open_context(ctx); 1596 out: 1597 if (unlikely(switched)) { 1598 d_lookup_done(dentry); 1599 dput(dentry); 1600 } 1601 return err; 1602 1603 no_open: 1604 res = nfs_lookup(dir, dentry, lookup_flags); 1605 if (switched) { 1606 d_lookup_done(dentry); 1607 if (!res) 1608 res = dentry; 1609 else 1610 dput(dentry); 1611 } 1612 if (IS_ERR(res)) 1613 return PTR_ERR(res); 1614 return finish_no_open(file, res); 1615 } 1616 EXPORT_SYMBOL_GPL(nfs_atomic_open); 1617 1618 static int 1619 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry, 1620 unsigned int flags) 1621 { 1622 struct inode *inode; 1623 1624 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY)) 1625 goto full_reval; 1626 if (d_mountpoint(dentry)) 1627 goto full_reval; 1628 1629 inode = d_inode(dentry); 1630 1631 /* We can't create new files in nfs_open_revalidate(), so we 1632 * optimize away revalidation of negative dentries. 1633 */ 1634 if (inode == NULL) 1635 goto full_reval; 1636 1637 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ)) 1638 return nfs_lookup_revalidate_delegated(dir, dentry, inode); 1639 1640 /* NFS only supports OPEN on regular files */ 1641 if (!S_ISREG(inode->i_mode)) 1642 goto full_reval; 1643 1644 /* We cannot do exclusive creation on a positive dentry */ 1645 if (flags & (LOOKUP_EXCL | LOOKUP_REVAL)) 1646 goto reval_dentry; 1647 1648 /* Check if the directory changed */ 1649 if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) 1650 goto reval_dentry; 1651 1652 /* Let f_op->open() actually open (and revalidate) the file */ 1653 return 1; 1654 reval_dentry: 1655 if (flags & LOOKUP_RCU) 1656 return -ECHILD; 1657 return nfs_lookup_revalidate_dentry(dir, dentry, inode);; 1658 1659 full_reval: 1660 return nfs_do_lookup_revalidate(dir, dentry, flags); 1661 } 1662 1663 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1664 { 1665 return __nfs_lookup_revalidate(dentry, flags, 1666 nfs4_do_lookup_revalidate); 1667 } 1668 1669 #endif /* CONFIG_NFSV4 */ 1670 1671 /* 1672 * Code common to create, mkdir, and mknod. 1673 */ 1674 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle, 1675 struct nfs_fattr *fattr, 1676 struct nfs4_label *label) 1677 { 1678 struct dentry *parent = dget_parent(dentry); 1679 struct inode *dir = d_inode(parent); 1680 struct inode *inode; 1681 struct dentry *d; 1682 int error = -EACCES; 1683 1684 d_drop(dentry); 1685 1686 /* We may have been initialized further down */ 1687 if (d_really_is_positive(dentry)) 1688 goto out; 1689 if (fhandle->size == 0) { 1690 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL); 1691 if (error) 1692 goto out_error; 1693 } 1694 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1695 if (!(fattr->valid & NFS_ATTR_FATTR)) { 1696 struct nfs_server *server = NFS_SB(dentry->d_sb); 1697 error = server->nfs_client->rpc_ops->getattr(server, fhandle, 1698 fattr, NULL, NULL); 1699 if (error < 0) 1700 goto out_error; 1701 } 1702 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label); 1703 d = d_splice_alias(inode, dentry); 1704 if (IS_ERR(d)) { 1705 error = PTR_ERR(d); 1706 goto out_error; 1707 } 1708 dput(d); 1709 out: 1710 dput(parent); 1711 return 0; 1712 out_error: 1713 nfs_mark_for_revalidate(dir); 1714 dput(parent); 1715 return error; 1716 } 1717 EXPORT_SYMBOL_GPL(nfs_instantiate); 1718 1719 /* 1720 * Following a failed create operation, we drop the dentry rather 1721 * than retain a negative dentry. This avoids a problem in the event 1722 * that the operation succeeded on the server, but an error in the 1723 * reply path made it appear to have failed. 1724 */ 1725 int nfs_create(struct inode *dir, struct dentry *dentry, 1726 umode_t mode, bool excl) 1727 { 1728 struct iattr attr; 1729 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT; 1730 int error; 1731 1732 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n", 1733 dir->i_sb->s_id, dir->i_ino, dentry); 1734 1735 attr.ia_mode = mode; 1736 attr.ia_valid = ATTR_MODE; 1737 1738 trace_nfs_create_enter(dir, dentry, open_flags); 1739 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags); 1740 trace_nfs_create_exit(dir, dentry, open_flags, error); 1741 if (error != 0) 1742 goto out_err; 1743 return 0; 1744 out_err: 1745 d_drop(dentry); 1746 return error; 1747 } 1748 EXPORT_SYMBOL_GPL(nfs_create); 1749 1750 /* 1751 * See comments for nfs_proc_create regarding failed operations. 1752 */ 1753 int 1754 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev) 1755 { 1756 struct iattr attr; 1757 int status; 1758 1759 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n", 1760 dir->i_sb->s_id, dir->i_ino, dentry); 1761 1762 attr.ia_mode = mode; 1763 attr.ia_valid = ATTR_MODE; 1764 1765 trace_nfs_mknod_enter(dir, dentry); 1766 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev); 1767 trace_nfs_mknod_exit(dir, dentry, status); 1768 if (status != 0) 1769 goto out_err; 1770 return 0; 1771 out_err: 1772 d_drop(dentry); 1773 return status; 1774 } 1775 EXPORT_SYMBOL_GPL(nfs_mknod); 1776 1777 /* 1778 * See comments for nfs_proc_create regarding failed operations. 1779 */ 1780 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1781 { 1782 struct iattr attr; 1783 int error; 1784 1785 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n", 1786 dir->i_sb->s_id, dir->i_ino, dentry); 1787 1788 attr.ia_valid = ATTR_MODE; 1789 attr.ia_mode = mode | S_IFDIR; 1790 1791 trace_nfs_mkdir_enter(dir, dentry); 1792 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr); 1793 trace_nfs_mkdir_exit(dir, dentry, error); 1794 if (error != 0) 1795 goto out_err; 1796 return 0; 1797 out_err: 1798 d_drop(dentry); 1799 return error; 1800 } 1801 EXPORT_SYMBOL_GPL(nfs_mkdir); 1802 1803 static void nfs_dentry_handle_enoent(struct dentry *dentry) 1804 { 1805 if (simple_positive(dentry)) 1806 d_delete(dentry); 1807 } 1808 1809 int nfs_rmdir(struct inode *dir, struct dentry *dentry) 1810 { 1811 int error; 1812 1813 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n", 1814 dir->i_sb->s_id, dir->i_ino, dentry); 1815 1816 trace_nfs_rmdir_enter(dir, dentry); 1817 if (d_really_is_positive(dentry)) { 1818 down_write(&NFS_I(d_inode(dentry))->rmdir_sem); 1819 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1820 /* Ensure the VFS deletes this inode */ 1821 switch (error) { 1822 case 0: 1823 clear_nlink(d_inode(dentry)); 1824 break; 1825 case -ENOENT: 1826 nfs_dentry_handle_enoent(dentry); 1827 } 1828 up_write(&NFS_I(d_inode(dentry))->rmdir_sem); 1829 } else 1830 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1831 trace_nfs_rmdir_exit(dir, dentry, error); 1832 1833 return error; 1834 } 1835 EXPORT_SYMBOL_GPL(nfs_rmdir); 1836 1837 /* 1838 * Remove a file after making sure there are no pending writes, 1839 * and after checking that the file has only one user. 1840 * 1841 * We invalidate the attribute cache and free the inode prior to the operation 1842 * to avoid possible races if the server reuses the inode. 1843 */ 1844 static int nfs_safe_remove(struct dentry *dentry) 1845 { 1846 struct inode *dir = d_inode(dentry->d_parent); 1847 struct inode *inode = d_inode(dentry); 1848 int error = -EBUSY; 1849 1850 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry); 1851 1852 /* If the dentry was sillyrenamed, we simply call d_delete() */ 1853 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1854 error = 0; 1855 goto out; 1856 } 1857 1858 trace_nfs_remove_enter(dir, dentry); 1859 if (inode != NULL) { 1860 error = NFS_PROTO(dir)->remove(dir, dentry); 1861 if (error == 0) 1862 nfs_drop_nlink(inode); 1863 } else 1864 error = NFS_PROTO(dir)->remove(dir, dentry); 1865 if (error == -ENOENT) 1866 nfs_dentry_handle_enoent(dentry); 1867 trace_nfs_remove_exit(dir, dentry, error); 1868 out: 1869 return error; 1870 } 1871 1872 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode 1873 * belongs to an active ".nfs..." file and we return -EBUSY. 1874 * 1875 * If sillyrename() returns 0, we do nothing, otherwise we unlink. 1876 */ 1877 int nfs_unlink(struct inode *dir, struct dentry *dentry) 1878 { 1879 int error; 1880 int need_rehash = 0; 1881 1882 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id, 1883 dir->i_ino, dentry); 1884 1885 trace_nfs_unlink_enter(dir, dentry); 1886 spin_lock(&dentry->d_lock); 1887 if (d_count(dentry) > 1) { 1888 spin_unlock(&dentry->d_lock); 1889 /* Start asynchronous writeout of the inode */ 1890 write_inode_now(d_inode(dentry), 0); 1891 error = nfs_sillyrename(dir, dentry); 1892 goto out; 1893 } 1894 if (!d_unhashed(dentry)) { 1895 __d_drop(dentry); 1896 need_rehash = 1; 1897 } 1898 spin_unlock(&dentry->d_lock); 1899 error = nfs_safe_remove(dentry); 1900 if (!error || error == -ENOENT) { 1901 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1902 } else if (need_rehash) 1903 d_rehash(dentry); 1904 out: 1905 trace_nfs_unlink_exit(dir, dentry, error); 1906 return error; 1907 } 1908 EXPORT_SYMBOL_GPL(nfs_unlink); 1909 1910 /* 1911 * To create a symbolic link, most file systems instantiate a new inode, 1912 * add a page to it containing the path, then write it out to the disk 1913 * using prepare_write/commit_write. 1914 * 1915 * Unfortunately the NFS client can't create the in-core inode first 1916 * because it needs a file handle to create an in-core inode (see 1917 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the 1918 * symlink request has completed on the server. 1919 * 1920 * So instead we allocate a raw page, copy the symname into it, then do 1921 * the SYMLINK request with the page as the buffer. If it succeeds, we 1922 * now have a new file handle and can instantiate an in-core NFS inode 1923 * and move the raw page into its mapping. 1924 */ 1925 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 1926 { 1927 struct page *page; 1928 char *kaddr; 1929 struct iattr attr; 1930 unsigned int pathlen = strlen(symname); 1931 int error; 1932 1933 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id, 1934 dir->i_ino, dentry, symname); 1935 1936 if (pathlen > PAGE_SIZE) 1937 return -ENAMETOOLONG; 1938 1939 attr.ia_mode = S_IFLNK | S_IRWXUGO; 1940 attr.ia_valid = ATTR_MODE; 1941 1942 page = alloc_page(GFP_USER); 1943 if (!page) 1944 return -ENOMEM; 1945 1946 kaddr = page_address(page); 1947 memcpy(kaddr, symname, pathlen); 1948 if (pathlen < PAGE_SIZE) 1949 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen); 1950 1951 trace_nfs_symlink_enter(dir, dentry); 1952 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr); 1953 trace_nfs_symlink_exit(dir, dentry, error); 1954 if (error != 0) { 1955 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n", 1956 dir->i_sb->s_id, dir->i_ino, 1957 dentry, symname, error); 1958 d_drop(dentry); 1959 __free_page(page); 1960 return error; 1961 } 1962 1963 /* 1964 * No big deal if we can't add this page to the page cache here. 1965 * READLINK will get the missing page from the server if needed. 1966 */ 1967 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0, 1968 GFP_KERNEL)) { 1969 SetPageUptodate(page); 1970 unlock_page(page); 1971 /* 1972 * add_to_page_cache_lru() grabs an extra page refcount. 1973 * Drop it here to avoid leaking this page later. 1974 */ 1975 put_page(page); 1976 } else 1977 __free_page(page); 1978 1979 return 0; 1980 } 1981 EXPORT_SYMBOL_GPL(nfs_symlink); 1982 1983 int 1984 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 1985 { 1986 struct inode *inode = d_inode(old_dentry); 1987 int error; 1988 1989 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n", 1990 old_dentry, dentry); 1991 1992 trace_nfs_link_enter(inode, dir, dentry); 1993 d_drop(dentry); 1994 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name); 1995 if (error == 0) { 1996 ihold(inode); 1997 d_add(dentry, inode); 1998 } 1999 trace_nfs_link_exit(inode, dir, dentry, error); 2000 return error; 2001 } 2002 EXPORT_SYMBOL_GPL(nfs_link); 2003 2004 /* 2005 * RENAME 2006 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a 2007 * different file handle for the same inode after a rename (e.g. when 2008 * moving to a different directory). A fail-safe method to do so would 2009 * be to look up old_dir/old_name, create a link to new_dir/new_name and 2010 * rename the old file using the sillyrename stuff. This way, the original 2011 * file in old_dir will go away when the last process iput()s the inode. 2012 * 2013 * FIXED. 2014 * 2015 * It actually works quite well. One needs to have the possibility for 2016 * at least one ".nfs..." file in each directory the file ever gets 2017 * moved or linked to which happens automagically with the new 2018 * implementation that only depends on the dcache stuff instead of 2019 * using the inode layer 2020 * 2021 * Unfortunately, things are a little more complicated than indicated 2022 * above. For a cross-directory move, we want to make sure we can get 2023 * rid of the old inode after the operation. This means there must be 2024 * no pending writes (if it's a file), and the use count must be 1. 2025 * If these conditions are met, we can drop the dentries before doing 2026 * the rename. 2027 */ 2028 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry, 2029 struct inode *new_dir, struct dentry *new_dentry, 2030 unsigned int flags) 2031 { 2032 struct inode *old_inode = d_inode(old_dentry); 2033 struct inode *new_inode = d_inode(new_dentry); 2034 struct dentry *dentry = NULL, *rehash = NULL; 2035 struct rpc_task *task; 2036 int error = -EBUSY; 2037 2038 if (flags) 2039 return -EINVAL; 2040 2041 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n", 2042 old_dentry, new_dentry, 2043 d_count(new_dentry)); 2044 2045 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry); 2046 /* 2047 * For non-directories, check whether the target is busy and if so, 2048 * make a copy of the dentry and then do a silly-rename. If the 2049 * silly-rename succeeds, the copied dentry is hashed and becomes 2050 * the new target. 2051 */ 2052 if (new_inode && !S_ISDIR(new_inode->i_mode)) { 2053 /* 2054 * To prevent any new references to the target during the 2055 * rename, we unhash the dentry in advance. 2056 */ 2057 if (!d_unhashed(new_dentry)) { 2058 d_drop(new_dentry); 2059 rehash = new_dentry; 2060 } 2061 2062 if (d_count(new_dentry) > 2) { 2063 int err; 2064 2065 /* copy the target dentry's name */ 2066 dentry = d_alloc(new_dentry->d_parent, 2067 &new_dentry->d_name); 2068 if (!dentry) 2069 goto out; 2070 2071 /* silly-rename the existing target ... */ 2072 err = nfs_sillyrename(new_dir, new_dentry); 2073 if (err) 2074 goto out; 2075 2076 new_dentry = dentry; 2077 rehash = NULL; 2078 new_inode = NULL; 2079 } 2080 } 2081 2082 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL); 2083 if (IS_ERR(task)) { 2084 error = PTR_ERR(task); 2085 goto out; 2086 } 2087 2088 error = rpc_wait_for_completion_task(task); 2089 if (error != 0) { 2090 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1; 2091 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */ 2092 smp_wmb(); 2093 } else 2094 error = task->tk_status; 2095 rpc_put_task(task); 2096 /* Ensure the inode attributes are revalidated */ 2097 if (error == 0) { 2098 spin_lock(&old_inode->i_lock); 2099 NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter(); 2100 NFS_I(old_inode)->cache_validity |= NFS_INO_INVALID_CHANGE 2101 | NFS_INO_INVALID_CTIME 2102 | NFS_INO_REVAL_FORCED; 2103 spin_unlock(&old_inode->i_lock); 2104 } 2105 out: 2106 if (rehash) 2107 d_rehash(rehash); 2108 trace_nfs_rename_exit(old_dir, old_dentry, 2109 new_dir, new_dentry, error); 2110 if (!error) { 2111 if (new_inode != NULL) 2112 nfs_drop_nlink(new_inode); 2113 /* 2114 * The d_move() should be here instead of in an async RPC completion 2115 * handler because we need the proper locks to move the dentry. If 2116 * we're interrupted by a signal, the async RPC completion handler 2117 * should mark the directories for revalidation. 2118 */ 2119 d_move(old_dentry, new_dentry); 2120 nfs_set_verifier(old_dentry, 2121 nfs_save_change_attribute(new_dir)); 2122 } else if (error == -ENOENT) 2123 nfs_dentry_handle_enoent(old_dentry); 2124 2125 /* new dentry created? */ 2126 if (dentry) 2127 dput(dentry); 2128 return error; 2129 } 2130 EXPORT_SYMBOL_GPL(nfs_rename); 2131 2132 static DEFINE_SPINLOCK(nfs_access_lru_lock); 2133 static LIST_HEAD(nfs_access_lru_list); 2134 static atomic_long_t nfs_access_nr_entries; 2135 2136 static unsigned long nfs_access_max_cachesize = ULONG_MAX; 2137 module_param(nfs_access_max_cachesize, ulong, 0644); 2138 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length"); 2139 2140 static void nfs_access_free_entry(struct nfs_access_entry *entry) 2141 { 2142 put_rpccred(entry->cred); 2143 kfree_rcu(entry, rcu_head); 2144 smp_mb__before_atomic(); 2145 atomic_long_dec(&nfs_access_nr_entries); 2146 smp_mb__after_atomic(); 2147 } 2148 2149 static void nfs_access_free_list(struct list_head *head) 2150 { 2151 struct nfs_access_entry *cache; 2152 2153 while (!list_empty(head)) { 2154 cache = list_entry(head->next, struct nfs_access_entry, lru); 2155 list_del(&cache->lru); 2156 nfs_access_free_entry(cache); 2157 } 2158 } 2159 2160 static unsigned long 2161 nfs_do_access_cache_scan(unsigned int nr_to_scan) 2162 { 2163 LIST_HEAD(head); 2164 struct nfs_inode *nfsi, *next; 2165 struct nfs_access_entry *cache; 2166 long freed = 0; 2167 2168 spin_lock(&nfs_access_lru_lock); 2169 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) { 2170 struct inode *inode; 2171 2172 if (nr_to_scan-- == 0) 2173 break; 2174 inode = &nfsi->vfs_inode; 2175 spin_lock(&inode->i_lock); 2176 if (list_empty(&nfsi->access_cache_entry_lru)) 2177 goto remove_lru_entry; 2178 cache = list_entry(nfsi->access_cache_entry_lru.next, 2179 struct nfs_access_entry, lru); 2180 list_move(&cache->lru, &head); 2181 rb_erase(&cache->rb_node, &nfsi->access_cache); 2182 freed++; 2183 if (!list_empty(&nfsi->access_cache_entry_lru)) 2184 list_move_tail(&nfsi->access_cache_inode_lru, 2185 &nfs_access_lru_list); 2186 else { 2187 remove_lru_entry: 2188 list_del_init(&nfsi->access_cache_inode_lru); 2189 smp_mb__before_atomic(); 2190 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags); 2191 smp_mb__after_atomic(); 2192 } 2193 spin_unlock(&inode->i_lock); 2194 } 2195 spin_unlock(&nfs_access_lru_lock); 2196 nfs_access_free_list(&head); 2197 return freed; 2198 } 2199 2200 unsigned long 2201 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc) 2202 { 2203 int nr_to_scan = sc->nr_to_scan; 2204 gfp_t gfp_mask = sc->gfp_mask; 2205 2206 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL) 2207 return SHRINK_STOP; 2208 return nfs_do_access_cache_scan(nr_to_scan); 2209 } 2210 2211 2212 unsigned long 2213 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc) 2214 { 2215 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries)); 2216 } 2217 2218 static void 2219 nfs_access_cache_enforce_limit(void) 2220 { 2221 long nr_entries = atomic_long_read(&nfs_access_nr_entries); 2222 unsigned long diff; 2223 unsigned int nr_to_scan; 2224 2225 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize) 2226 return; 2227 nr_to_scan = 100; 2228 diff = nr_entries - nfs_access_max_cachesize; 2229 if (diff < nr_to_scan) 2230 nr_to_scan = diff; 2231 nfs_do_access_cache_scan(nr_to_scan); 2232 } 2233 2234 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head) 2235 { 2236 struct rb_root *root_node = &nfsi->access_cache; 2237 struct rb_node *n; 2238 struct nfs_access_entry *entry; 2239 2240 /* Unhook entries from the cache */ 2241 while ((n = rb_first(root_node)) != NULL) { 2242 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2243 rb_erase(n, root_node); 2244 list_move(&entry->lru, head); 2245 } 2246 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS; 2247 } 2248 2249 void nfs_access_zap_cache(struct inode *inode) 2250 { 2251 LIST_HEAD(head); 2252 2253 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0) 2254 return; 2255 /* Remove from global LRU init */ 2256 spin_lock(&nfs_access_lru_lock); 2257 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2258 list_del_init(&NFS_I(inode)->access_cache_inode_lru); 2259 2260 spin_lock(&inode->i_lock); 2261 __nfs_access_zap_cache(NFS_I(inode), &head); 2262 spin_unlock(&inode->i_lock); 2263 spin_unlock(&nfs_access_lru_lock); 2264 nfs_access_free_list(&head); 2265 } 2266 EXPORT_SYMBOL_GPL(nfs_access_zap_cache); 2267 2268 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred) 2269 { 2270 struct rb_node *n = NFS_I(inode)->access_cache.rb_node; 2271 struct nfs_access_entry *entry; 2272 2273 while (n != NULL) { 2274 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2275 2276 if (cred < entry->cred) 2277 n = n->rb_left; 2278 else if (cred > entry->cred) 2279 n = n->rb_right; 2280 else 2281 return entry; 2282 } 2283 return NULL; 2284 } 2285 2286 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res, bool may_block) 2287 { 2288 struct nfs_inode *nfsi = NFS_I(inode); 2289 struct nfs_access_entry *cache; 2290 bool retry = true; 2291 int err; 2292 2293 spin_lock(&inode->i_lock); 2294 for(;;) { 2295 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2296 goto out_zap; 2297 cache = nfs_access_search_rbtree(inode, cred); 2298 err = -ENOENT; 2299 if (cache == NULL) 2300 goto out; 2301 /* Found an entry, is our attribute cache valid? */ 2302 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) 2303 break; 2304 err = -ECHILD; 2305 if (!may_block) 2306 goto out; 2307 if (!retry) 2308 goto out_zap; 2309 spin_unlock(&inode->i_lock); 2310 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode); 2311 if (err) 2312 return err; 2313 spin_lock(&inode->i_lock); 2314 retry = false; 2315 } 2316 res->cred = cache->cred; 2317 res->mask = cache->mask; 2318 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru); 2319 err = 0; 2320 out: 2321 spin_unlock(&inode->i_lock); 2322 return err; 2323 out_zap: 2324 spin_unlock(&inode->i_lock); 2325 nfs_access_zap_cache(inode); 2326 return -ENOENT; 2327 } 2328 2329 static int nfs_access_get_cached_rcu(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res) 2330 { 2331 /* Only check the most recently returned cache entry, 2332 * but do it without locking. 2333 */ 2334 struct nfs_inode *nfsi = NFS_I(inode); 2335 struct nfs_access_entry *cache; 2336 int err = -ECHILD; 2337 struct list_head *lh; 2338 2339 rcu_read_lock(); 2340 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2341 goto out; 2342 lh = rcu_dereference(nfsi->access_cache_entry_lru.prev); 2343 cache = list_entry(lh, struct nfs_access_entry, lru); 2344 if (lh == &nfsi->access_cache_entry_lru || 2345 cred != cache->cred) 2346 cache = NULL; 2347 if (cache == NULL) 2348 goto out; 2349 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) 2350 goto out; 2351 res->cred = cache->cred; 2352 res->mask = cache->mask; 2353 err = 0; 2354 out: 2355 rcu_read_unlock(); 2356 return err; 2357 } 2358 2359 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set) 2360 { 2361 struct nfs_inode *nfsi = NFS_I(inode); 2362 struct rb_root *root_node = &nfsi->access_cache; 2363 struct rb_node **p = &root_node->rb_node; 2364 struct rb_node *parent = NULL; 2365 struct nfs_access_entry *entry; 2366 2367 spin_lock(&inode->i_lock); 2368 while (*p != NULL) { 2369 parent = *p; 2370 entry = rb_entry(parent, struct nfs_access_entry, rb_node); 2371 2372 if (set->cred < entry->cred) 2373 p = &parent->rb_left; 2374 else if (set->cred > entry->cred) 2375 p = &parent->rb_right; 2376 else 2377 goto found; 2378 } 2379 rb_link_node(&set->rb_node, parent, p); 2380 rb_insert_color(&set->rb_node, root_node); 2381 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2382 spin_unlock(&inode->i_lock); 2383 return; 2384 found: 2385 rb_replace_node(parent, &set->rb_node, root_node); 2386 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2387 list_del(&entry->lru); 2388 spin_unlock(&inode->i_lock); 2389 nfs_access_free_entry(entry); 2390 } 2391 2392 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set) 2393 { 2394 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL); 2395 if (cache == NULL) 2396 return; 2397 RB_CLEAR_NODE(&cache->rb_node); 2398 cache->cred = get_rpccred(set->cred); 2399 cache->mask = set->mask; 2400 2401 /* The above field assignments must be visible 2402 * before this item appears on the lru. We cannot easily 2403 * use rcu_assign_pointer, so just force the memory barrier. 2404 */ 2405 smp_wmb(); 2406 nfs_access_add_rbtree(inode, cache); 2407 2408 /* Update accounting */ 2409 smp_mb__before_atomic(); 2410 atomic_long_inc(&nfs_access_nr_entries); 2411 smp_mb__after_atomic(); 2412 2413 /* Add inode to global LRU list */ 2414 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) { 2415 spin_lock(&nfs_access_lru_lock); 2416 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2417 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, 2418 &nfs_access_lru_list); 2419 spin_unlock(&nfs_access_lru_lock); 2420 } 2421 nfs_access_cache_enforce_limit(); 2422 } 2423 EXPORT_SYMBOL_GPL(nfs_access_add_cache); 2424 2425 #define NFS_MAY_READ (NFS_ACCESS_READ) 2426 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \ 2427 NFS_ACCESS_EXTEND | \ 2428 NFS_ACCESS_DELETE) 2429 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \ 2430 NFS_ACCESS_EXTEND) 2431 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE 2432 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP) 2433 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE) 2434 static int 2435 nfs_access_calc_mask(u32 access_result, umode_t umode) 2436 { 2437 int mask = 0; 2438 2439 if (access_result & NFS_MAY_READ) 2440 mask |= MAY_READ; 2441 if (S_ISDIR(umode)) { 2442 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE) 2443 mask |= MAY_WRITE; 2444 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP) 2445 mask |= MAY_EXEC; 2446 } else if (S_ISREG(umode)) { 2447 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE) 2448 mask |= MAY_WRITE; 2449 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE) 2450 mask |= MAY_EXEC; 2451 } else if (access_result & NFS_MAY_WRITE) 2452 mask |= MAY_WRITE; 2453 return mask; 2454 } 2455 2456 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result) 2457 { 2458 entry->mask = access_result; 2459 } 2460 EXPORT_SYMBOL_GPL(nfs_access_set_mask); 2461 2462 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask) 2463 { 2464 struct nfs_access_entry cache; 2465 bool may_block = (mask & MAY_NOT_BLOCK) == 0; 2466 int cache_mask; 2467 int status; 2468 2469 trace_nfs_access_enter(inode); 2470 2471 status = nfs_access_get_cached_rcu(inode, cred, &cache); 2472 if (status != 0) 2473 status = nfs_access_get_cached(inode, cred, &cache, may_block); 2474 if (status == 0) 2475 goto out_cached; 2476 2477 status = -ECHILD; 2478 if (!may_block) 2479 goto out; 2480 2481 /* 2482 * Determine which access bits we want to ask for... 2483 */ 2484 cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND; 2485 if (S_ISDIR(inode->i_mode)) 2486 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP; 2487 else 2488 cache.mask |= NFS_ACCESS_EXECUTE; 2489 cache.cred = cred; 2490 status = NFS_PROTO(inode)->access(inode, &cache); 2491 if (status != 0) { 2492 if (status == -ESTALE) { 2493 nfs_zap_caches(inode); 2494 if (!S_ISDIR(inode->i_mode)) 2495 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags); 2496 } 2497 goto out; 2498 } 2499 nfs_access_add_cache(inode, &cache); 2500 out_cached: 2501 cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode); 2502 if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0) 2503 status = -EACCES; 2504 out: 2505 trace_nfs_access_exit(inode, status); 2506 return status; 2507 } 2508 2509 static int nfs_open_permission_mask(int openflags) 2510 { 2511 int mask = 0; 2512 2513 if (openflags & __FMODE_EXEC) { 2514 /* ONLY check exec rights */ 2515 mask = MAY_EXEC; 2516 } else { 2517 if ((openflags & O_ACCMODE) != O_WRONLY) 2518 mask |= MAY_READ; 2519 if ((openflags & O_ACCMODE) != O_RDONLY) 2520 mask |= MAY_WRITE; 2521 } 2522 2523 return mask; 2524 } 2525 2526 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags) 2527 { 2528 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags)); 2529 } 2530 EXPORT_SYMBOL_GPL(nfs_may_open); 2531 2532 static int nfs_execute_ok(struct inode *inode, int mask) 2533 { 2534 struct nfs_server *server = NFS_SERVER(inode); 2535 int ret = 0; 2536 2537 if (S_ISDIR(inode->i_mode)) 2538 return 0; 2539 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_OTHER)) { 2540 if (mask & MAY_NOT_BLOCK) 2541 return -ECHILD; 2542 ret = __nfs_revalidate_inode(server, inode); 2543 } 2544 if (ret == 0 && !execute_ok(inode)) 2545 ret = -EACCES; 2546 return ret; 2547 } 2548 2549 int nfs_permission(struct inode *inode, int mask) 2550 { 2551 struct rpc_cred *cred; 2552 int res = 0; 2553 2554 nfs_inc_stats(inode, NFSIOS_VFSACCESS); 2555 2556 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 2557 goto out; 2558 /* Is this sys_access() ? */ 2559 if (mask & (MAY_ACCESS | MAY_CHDIR)) 2560 goto force_lookup; 2561 2562 switch (inode->i_mode & S_IFMT) { 2563 case S_IFLNK: 2564 goto out; 2565 case S_IFREG: 2566 if ((mask & MAY_OPEN) && 2567 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)) 2568 return 0; 2569 break; 2570 case S_IFDIR: 2571 /* 2572 * Optimize away all write operations, since the server 2573 * will check permissions when we perform the op. 2574 */ 2575 if ((mask & MAY_WRITE) && !(mask & MAY_READ)) 2576 goto out; 2577 } 2578 2579 force_lookup: 2580 if (!NFS_PROTO(inode)->access) 2581 goto out_notsup; 2582 2583 /* Always try fast lookups first */ 2584 rcu_read_lock(); 2585 cred = rpc_lookup_cred_nonblock(); 2586 if (!IS_ERR(cred)) 2587 res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK); 2588 else 2589 res = PTR_ERR(cred); 2590 rcu_read_unlock(); 2591 if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) { 2592 /* Fast lookup failed, try the slow way */ 2593 cred = rpc_lookup_cred(); 2594 if (!IS_ERR(cred)) { 2595 res = nfs_do_access(inode, cred, mask); 2596 put_rpccred(cred); 2597 } else 2598 res = PTR_ERR(cred); 2599 } 2600 out: 2601 if (!res && (mask & MAY_EXEC)) 2602 res = nfs_execute_ok(inode, mask); 2603 2604 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n", 2605 inode->i_sb->s_id, inode->i_ino, mask, res); 2606 return res; 2607 out_notsup: 2608 if (mask & MAY_NOT_BLOCK) 2609 return -ECHILD; 2610 2611 res = nfs_revalidate_inode(NFS_SERVER(inode), inode); 2612 if (res == 0) 2613 res = generic_permission(inode, mask); 2614 goto out; 2615 } 2616 EXPORT_SYMBOL_GPL(nfs_permission); 2617 2618 /* 2619 * Local variables: 2620 * version-control: t 2621 * kept-new-versions: 5 2622 * End: 2623 */ 2624