xref: /openbmc/linux/fs/nfs/dir.c (revision 49317a7f)
1 /*
2  *  linux/fs/nfs/dir.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  nfs directory handling functions
7  *
8  * 10 Apr 1996	Added silly rename for unlink	--okir
9  * 28 Sep 1996	Improved directory cache --okir
10  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
11  *              Re-implemented silly rename for unlink, newly implemented
12  *              silly rename for nfs_rename() following the suggestions
13  *              of Olaf Kirch (okir) found in this file.
14  *              Following Linus comments on my original hack, this version
15  *              depends only on the dcache stuff and doesn't touch the inode
16  *              layer (iput() and friends).
17  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
18  */
19 
20 #include <linux/module.h>
21 #include <linux/time.h>
22 #include <linux/errno.h>
23 #include <linux/stat.h>
24 #include <linux/fcntl.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/mm.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/nfs_fs.h>
31 #include <linux/nfs_mount.h>
32 #include <linux/pagemap.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/swap.h>
37 #include <linux/sched.h>
38 #include <linux/kmemleak.h>
39 #include <linux/xattr.h>
40 
41 #include "delegation.h"
42 #include "iostat.h"
43 #include "internal.h"
44 #include "fscache.h"
45 
46 #include "nfstrace.h"
47 
48 /* #define NFS_DEBUG_VERBOSE 1 */
49 
50 static int nfs_opendir(struct inode *, struct file *);
51 static int nfs_closedir(struct inode *, struct file *);
52 static int nfs_readdir(struct file *, struct dir_context *);
53 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
54 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
55 static void nfs_readdir_clear_array(struct page*);
56 
57 const struct file_operations nfs_dir_operations = {
58 	.llseek		= nfs_llseek_dir,
59 	.read		= generic_read_dir,
60 	.iterate	= nfs_readdir,
61 	.open		= nfs_opendir,
62 	.release	= nfs_closedir,
63 	.fsync		= nfs_fsync_dir,
64 };
65 
66 const struct address_space_operations nfs_dir_aops = {
67 	.freepage = nfs_readdir_clear_array,
68 };
69 
70 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
71 {
72 	struct nfs_inode *nfsi = NFS_I(dir);
73 	struct nfs_open_dir_context *ctx;
74 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
75 	if (ctx != NULL) {
76 		ctx->duped = 0;
77 		ctx->attr_gencount = nfsi->attr_gencount;
78 		ctx->dir_cookie = 0;
79 		ctx->dup_cookie = 0;
80 		ctx->cred = get_rpccred(cred);
81 		spin_lock(&dir->i_lock);
82 		list_add(&ctx->list, &nfsi->open_files);
83 		spin_unlock(&dir->i_lock);
84 		return ctx;
85 	}
86 	return  ERR_PTR(-ENOMEM);
87 }
88 
89 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
90 {
91 	spin_lock(&dir->i_lock);
92 	list_del(&ctx->list);
93 	spin_unlock(&dir->i_lock);
94 	put_rpccred(ctx->cred);
95 	kfree(ctx);
96 }
97 
98 /*
99  * Open file
100  */
101 static int
102 nfs_opendir(struct inode *inode, struct file *filp)
103 {
104 	int res = 0;
105 	struct nfs_open_dir_context *ctx;
106 	struct rpc_cred *cred;
107 
108 	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
109 
110 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
111 
112 	cred = rpc_lookup_cred();
113 	if (IS_ERR(cred))
114 		return PTR_ERR(cred);
115 	ctx = alloc_nfs_open_dir_context(inode, cred);
116 	if (IS_ERR(ctx)) {
117 		res = PTR_ERR(ctx);
118 		goto out;
119 	}
120 	filp->private_data = ctx;
121 	if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
122 		/* This is a mountpoint, so d_revalidate will never
123 		 * have been called, so we need to refresh the
124 		 * inode (for close-open consistency) ourselves.
125 		 */
126 		__nfs_revalidate_inode(NFS_SERVER(inode), inode);
127 	}
128 out:
129 	put_rpccred(cred);
130 	return res;
131 }
132 
133 static int
134 nfs_closedir(struct inode *inode, struct file *filp)
135 {
136 	put_nfs_open_dir_context(filp->f_path.dentry->d_inode, filp->private_data);
137 	return 0;
138 }
139 
140 struct nfs_cache_array_entry {
141 	u64 cookie;
142 	u64 ino;
143 	struct qstr string;
144 	unsigned char d_type;
145 };
146 
147 struct nfs_cache_array {
148 	int size;
149 	int eof_index;
150 	u64 last_cookie;
151 	struct nfs_cache_array_entry array[0];
152 };
153 
154 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
155 typedef struct {
156 	struct file	*file;
157 	struct page	*page;
158 	struct dir_context *ctx;
159 	unsigned long	page_index;
160 	u64		*dir_cookie;
161 	u64		last_cookie;
162 	loff_t		current_index;
163 	decode_dirent_t	decode;
164 
165 	unsigned long	timestamp;
166 	unsigned long	gencount;
167 	unsigned int	cache_entry_index;
168 	unsigned int	plus:1;
169 	unsigned int	eof:1;
170 } nfs_readdir_descriptor_t;
171 
172 /*
173  * The caller is responsible for calling nfs_readdir_release_array(page)
174  */
175 static
176 struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
177 {
178 	void *ptr;
179 	if (page == NULL)
180 		return ERR_PTR(-EIO);
181 	ptr = kmap(page);
182 	if (ptr == NULL)
183 		return ERR_PTR(-ENOMEM);
184 	return ptr;
185 }
186 
187 static
188 void nfs_readdir_release_array(struct page *page)
189 {
190 	kunmap(page);
191 }
192 
193 /*
194  * we are freeing strings created by nfs_add_to_readdir_array()
195  */
196 static
197 void nfs_readdir_clear_array(struct page *page)
198 {
199 	struct nfs_cache_array *array;
200 	int i;
201 
202 	array = kmap_atomic(page);
203 	for (i = 0; i < array->size; i++)
204 		kfree(array->array[i].string.name);
205 	kunmap_atomic(array);
206 }
207 
208 /*
209  * the caller is responsible for freeing qstr.name
210  * when called by nfs_readdir_add_to_array, the strings will be freed in
211  * nfs_clear_readdir_array()
212  */
213 static
214 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
215 {
216 	string->len = len;
217 	string->name = kmemdup(name, len, GFP_KERNEL);
218 	if (string->name == NULL)
219 		return -ENOMEM;
220 	/*
221 	 * Avoid a kmemleak false positive. The pointer to the name is stored
222 	 * in a page cache page which kmemleak does not scan.
223 	 */
224 	kmemleak_not_leak(string->name);
225 	string->hash = full_name_hash(name, len);
226 	return 0;
227 }
228 
229 static
230 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
231 {
232 	struct nfs_cache_array *array = nfs_readdir_get_array(page);
233 	struct nfs_cache_array_entry *cache_entry;
234 	int ret;
235 
236 	if (IS_ERR(array))
237 		return PTR_ERR(array);
238 
239 	cache_entry = &array->array[array->size];
240 
241 	/* Check that this entry lies within the page bounds */
242 	ret = -ENOSPC;
243 	if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
244 		goto out;
245 
246 	cache_entry->cookie = entry->prev_cookie;
247 	cache_entry->ino = entry->ino;
248 	cache_entry->d_type = entry->d_type;
249 	ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
250 	if (ret)
251 		goto out;
252 	array->last_cookie = entry->cookie;
253 	array->size++;
254 	if (entry->eof != 0)
255 		array->eof_index = array->size;
256 out:
257 	nfs_readdir_release_array(page);
258 	return ret;
259 }
260 
261 static
262 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
263 {
264 	loff_t diff = desc->ctx->pos - desc->current_index;
265 	unsigned int index;
266 
267 	if (diff < 0)
268 		goto out_eof;
269 	if (diff >= array->size) {
270 		if (array->eof_index >= 0)
271 			goto out_eof;
272 		return -EAGAIN;
273 	}
274 
275 	index = (unsigned int)diff;
276 	*desc->dir_cookie = array->array[index].cookie;
277 	desc->cache_entry_index = index;
278 	return 0;
279 out_eof:
280 	desc->eof = 1;
281 	return -EBADCOOKIE;
282 }
283 
284 static bool
285 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
286 {
287 	if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
288 		return false;
289 	smp_rmb();
290 	return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
291 }
292 
293 static
294 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
295 {
296 	int i;
297 	loff_t new_pos;
298 	int status = -EAGAIN;
299 
300 	for (i = 0; i < array->size; i++) {
301 		if (array->array[i].cookie == *desc->dir_cookie) {
302 			struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
303 			struct nfs_open_dir_context *ctx = desc->file->private_data;
304 
305 			new_pos = desc->current_index + i;
306 			if (ctx->attr_gencount != nfsi->attr_gencount ||
307 			    !nfs_readdir_inode_mapping_valid(nfsi)) {
308 				ctx->duped = 0;
309 				ctx->attr_gencount = nfsi->attr_gencount;
310 			} else if (new_pos < desc->ctx->pos) {
311 				if (ctx->duped > 0
312 				    && ctx->dup_cookie == *desc->dir_cookie) {
313 					if (printk_ratelimit()) {
314 						pr_notice("NFS: directory %pD2 contains a readdir loop."
315 								"Please contact your server vendor.  "
316 								"The file: %.*s has duplicate cookie %llu\n",
317 								desc->file, array->array[i].string.len,
318 								array->array[i].string.name, *desc->dir_cookie);
319 					}
320 					status = -ELOOP;
321 					goto out;
322 				}
323 				ctx->dup_cookie = *desc->dir_cookie;
324 				ctx->duped = -1;
325 			}
326 			desc->ctx->pos = new_pos;
327 			desc->cache_entry_index = i;
328 			return 0;
329 		}
330 	}
331 	if (array->eof_index >= 0) {
332 		status = -EBADCOOKIE;
333 		if (*desc->dir_cookie == array->last_cookie)
334 			desc->eof = 1;
335 	}
336 out:
337 	return status;
338 }
339 
340 static
341 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
342 {
343 	struct nfs_cache_array *array;
344 	int status;
345 
346 	array = nfs_readdir_get_array(desc->page);
347 	if (IS_ERR(array)) {
348 		status = PTR_ERR(array);
349 		goto out;
350 	}
351 
352 	if (*desc->dir_cookie == 0)
353 		status = nfs_readdir_search_for_pos(array, desc);
354 	else
355 		status = nfs_readdir_search_for_cookie(array, desc);
356 
357 	if (status == -EAGAIN) {
358 		desc->last_cookie = array->last_cookie;
359 		desc->current_index += array->size;
360 		desc->page_index++;
361 	}
362 	nfs_readdir_release_array(desc->page);
363 out:
364 	return status;
365 }
366 
367 /* Fill a page with xdr information before transferring to the cache page */
368 static
369 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
370 			struct nfs_entry *entry, struct file *file, struct inode *inode)
371 {
372 	struct nfs_open_dir_context *ctx = file->private_data;
373 	struct rpc_cred	*cred = ctx->cred;
374 	unsigned long	timestamp, gencount;
375 	int		error;
376 
377  again:
378 	timestamp = jiffies;
379 	gencount = nfs_inc_attr_generation_counter();
380 	error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages,
381 					  NFS_SERVER(inode)->dtsize, desc->plus);
382 	if (error < 0) {
383 		/* We requested READDIRPLUS, but the server doesn't grok it */
384 		if (error == -ENOTSUPP && desc->plus) {
385 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
386 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
387 			desc->plus = 0;
388 			goto again;
389 		}
390 		goto error;
391 	}
392 	desc->timestamp = timestamp;
393 	desc->gencount = gencount;
394 error:
395 	return error;
396 }
397 
398 static int xdr_decode(nfs_readdir_descriptor_t *desc,
399 		      struct nfs_entry *entry, struct xdr_stream *xdr)
400 {
401 	int error;
402 
403 	error = desc->decode(xdr, entry, desc->plus);
404 	if (error)
405 		return error;
406 	entry->fattr->time_start = desc->timestamp;
407 	entry->fattr->gencount = desc->gencount;
408 	return 0;
409 }
410 
411 static
412 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
413 {
414 	if (dentry->d_inode == NULL)
415 		goto different;
416 	if (nfs_compare_fh(entry->fh, NFS_FH(dentry->d_inode)) != 0)
417 		goto different;
418 	return 1;
419 different:
420 	return 0;
421 }
422 
423 static
424 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
425 {
426 	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
427 		return false;
428 	if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
429 		return true;
430 	if (ctx->pos == 0)
431 		return true;
432 	return false;
433 }
434 
435 /*
436  * This function is called by the lookup code to request the use of
437  * readdirplus to accelerate any future lookups in the same
438  * directory.
439  */
440 static
441 void nfs_advise_use_readdirplus(struct inode *dir)
442 {
443 	set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags);
444 }
445 
446 /*
447  * This function is mainly for use by nfs_getattr().
448  *
449  * If this is an 'ls -l', we want to force use of readdirplus.
450  * Do this by checking if there is an active file descriptor
451  * and calling nfs_advise_use_readdirplus, then forcing a
452  * cache flush.
453  */
454 void nfs_force_use_readdirplus(struct inode *dir)
455 {
456 	if (!list_empty(&NFS_I(dir)->open_files)) {
457 		nfs_advise_use_readdirplus(dir);
458 		nfs_zap_mapping(dir, dir->i_mapping);
459 	}
460 }
461 
462 static
463 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
464 {
465 	struct qstr filename = QSTR_INIT(entry->name, entry->len);
466 	struct dentry *dentry;
467 	struct dentry *alias;
468 	struct inode *dir = parent->d_inode;
469 	struct inode *inode;
470 	int status;
471 
472 	if (filename.name[0] == '.') {
473 		if (filename.len == 1)
474 			return;
475 		if (filename.len == 2 && filename.name[1] == '.')
476 			return;
477 	}
478 	filename.hash = full_name_hash(filename.name, filename.len);
479 
480 	dentry = d_lookup(parent, &filename);
481 	if (dentry != NULL) {
482 		if (nfs_same_file(dentry, entry)) {
483 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
484 			status = nfs_refresh_inode(dentry->d_inode, entry->fattr);
485 			if (!status)
486 				nfs_setsecurity(dentry->d_inode, entry->fattr, entry->label);
487 			goto out;
488 		} else {
489 			if (d_invalidate(dentry) != 0)
490 				goto out;
491 			dput(dentry);
492 		}
493 	}
494 
495 	dentry = d_alloc(parent, &filename);
496 	if (dentry == NULL)
497 		return;
498 
499 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
500 	if (IS_ERR(inode))
501 		goto out;
502 
503 	alias = d_materialise_unique(dentry, inode);
504 	if (IS_ERR(alias))
505 		goto out;
506 	else if (alias) {
507 		nfs_set_verifier(alias, nfs_save_change_attribute(dir));
508 		dput(alias);
509 	} else
510 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
511 
512 out:
513 	dput(dentry);
514 }
515 
516 /* Perform conversion from xdr to cache array */
517 static
518 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
519 				struct page **xdr_pages, struct page *page, unsigned int buflen)
520 {
521 	struct xdr_stream stream;
522 	struct xdr_buf buf;
523 	struct page *scratch;
524 	struct nfs_cache_array *array;
525 	unsigned int count = 0;
526 	int status;
527 
528 	scratch = alloc_page(GFP_KERNEL);
529 	if (scratch == NULL)
530 		return -ENOMEM;
531 
532 	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
533 	xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
534 
535 	do {
536 		status = xdr_decode(desc, entry, &stream);
537 		if (status != 0) {
538 			if (status == -EAGAIN)
539 				status = 0;
540 			break;
541 		}
542 
543 		count++;
544 
545 		if (desc->plus != 0)
546 			nfs_prime_dcache(desc->file->f_path.dentry, entry);
547 
548 		status = nfs_readdir_add_to_array(entry, page);
549 		if (status != 0)
550 			break;
551 	} while (!entry->eof);
552 
553 	if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
554 		array = nfs_readdir_get_array(page);
555 		if (!IS_ERR(array)) {
556 			array->eof_index = array->size;
557 			status = 0;
558 			nfs_readdir_release_array(page);
559 		} else
560 			status = PTR_ERR(array);
561 	}
562 
563 	put_page(scratch);
564 	return status;
565 }
566 
567 static
568 void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages)
569 {
570 	unsigned int i;
571 	for (i = 0; i < npages; i++)
572 		put_page(pages[i]);
573 }
574 
575 static
576 void nfs_readdir_free_large_page(void *ptr, struct page **pages,
577 		unsigned int npages)
578 {
579 	nfs_readdir_free_pagearray(pages, npages);
580 }
581 
582 /*
583  * nfs_readdir_large_page will allocate pages that must be freed with a call
584  * to nfs_readdir_free_large_page
585  */
586 static
587 int nfs_readdir_large_page(struct page **pages, unsigned int npages)
588 {
589 	unsigned int i;
590 
591 	for (i = 0; i < npages; i++) {
592 		struct page *page = alloc_page(GFP_KERNEL);
593 		if (page == NULL)
594 			goto out_freepages;
595 		pages[i] = page;
596 	}
597 	return 0;
598 
599 out_freepages:
600 	nfs_readdir_free_pagearray(pages, i);
601 	return -ENOMEM;
602 }
603 
604 static
605 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
606 {
607 	struct page *pages[NFS_MAX_READDIR_PAGES];
608 	void *pages_ptr = NULL;
609 	struct nfs_entry entry;
610 	struct file	*file = desc->file;
611 	struct nfs_cache_array *array;
612 	int status = -ENOMEM;
613 	unsigned int array_size = ARRAY_SIZE(pages);
614 
615 	entry.prev_cookie = 0;
616 	entry.cookie = desc->last_cookie;
617 	entry.eof = 0;
618 	entry.fh = nfs_alloc_fhandle();
619 	entry.fattr = nfs_alloc_fattr();
620 	entry.server = NFS_SERVER(inode);
621 	if (entry.fh == NULL || entry.fattr == NULL)
622 		goto out;
623 
624 	entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
625 	if (IS_ERR(entry.label)) {
626 		status = PTR_ERR(entry.label);
627 		goto out;
628 	}
629 
630 	array = nfs_readdir_get_array(page);
631 	if (IS_ERR(array)) {
632 		status = PTR_ERR(array);
633 		goto out_label_free;
634 	}
635 	memset(array, 0, sizeof(struct nfs_cache_array));
636 	array->eof_index = -1;
637 
638 	status = nfs_readdir_large_page(pages, array_size);
639 	if (status < 0)
640 		goto out_release_array;
641 	do {
642 		unsigned int pglen;
643 		status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
644 
645 		if (status < 0)
646 			break;
647 		pglen = status;
648 		status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
649 		if (status < 0) {
650 			if (status == -ENOSPC)
651 				status = 0;
652 			break;
653 		}
654 	} while (array->eof_index < 0);
655 
656 	nfs_readdir_free_large_page(pages_ptr, pages, array_size);
657 out_release_array:
658 	nfs_readdir_release_array(page);
659 out_label_free:
660 	nfs4_label_free(entry.label);
661 out:
662 	nfs_free_fattr(entry.fattr);
663 	nfs_free_fhandle(entry.fh);
664 	return status;
665 }
666 
667 /*
668  * Now we cache directories properly, by converting xdr information
669  * to an array that can be used for lookups later.  This results in
670  * fewer cache pages, since we can store more information on each page.
671  * We only need to convert from xdr once so future lookups are much simpler
672  */
673 static
674 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
675 {
676 	struct inode	*inode = file_inode(desc->file);
677 	int ret;
678 
679 	ret = nfs_readdir_xdr_to_array(desc, page, inode);
680 	if (ret < 0)
681 		goto error;
682 	SetPageUptodate(page);
683 
684 	if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
685 		/* Should never happen */
686 		nfs_zap_mapping(inode, inode->i_mapping);
687 	}
688 	unlock_page(page);
689 	return 0;
690  error:
691 	unlock_page(page);
692 	return ret;
693 }
694 
695 static
696 void cache_page_release(nfs_readdir_descriptor_t *desc)
697 {
698 	if (!desc->page->mapping)
699 		nfs_readdir_clear_array(desc->page);
700 	page_cache_release(desc->page);
701 	desc->page = NULL;
702 }
703 
704 static
705 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
706 {
707 	return read_cache_page(file_inode(desc->file)->i_mapping,
708 			desc->page_index, (filler_t *)nfs_readdir_filler, desc);
709 }
710 
711 /*
712  * Returns 0 if desc->dir_cookie was found on page desc->page_index
713  */
714 static
715 int find_cache_page(nfs_readdir_descriptor_t *desc)
716 {
717 	int res;
718 
719 	desc->page = get_cache_page(desc);
720 	if (IS_ERR(desc->page))
721 		return PTR_ERR(desc->page);
722 
723 	res = nfs_readdir_search_array(desc);
724 	if (res != 0)
725 		cache_page_release(desc);
726 	return res;
727 }
728 
729 /* Search for desc->dir_cookie from the beginning of the page cache */
730 static inline
731 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
732 {
733 	int res;
734 
735 	if (desc->page_index == 0) {
736 		desc->current_index = 0;
737 		desc->last_cookie = 0;
738 	}
739 	do {
740 		res = find_cache_page(desc);
741 	} while (res == -EAGAIN);
742 	return res;
743 }
744 
745 /*
746  * Once we've found the start of the dirent within a page: fill 'er up...
747  */
748 static
749 int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
750 {
751 	struct file	*file = desc->file;
752 	int i = 0;
753 	int res = 0;
754 	struct nfs_cache_array *array = NULL;
755 	struct nfs_open_dir_context *ctx = file->private_data;
756 
757 	array = nfs_readdir_get_array(desc->page);
758 	if (IS_ERR(array)) {
759 		res = PTR_ERR(array);
760 		goto out;
761 	}
762 
763 	for (i = desc->cache_entry_index; i < array->size; i++) {
764 		struct nfs_cache_array_entry *ent;
765 
766 		ent = &array->array[i];
767 		if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
768 		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
769 			desc->eof = 1;
770 			break;
771 		}
772 		desc->ctx->pos++;
773 		if (i < (array->size-1))
774 			*desc->dir_cookie = array->array[i+1].cookie;
775 		else
776 			*desc->dir_cookie = array->last_cookie;
777 		if (ctx->duped != 0)
778 			ctx->duped = 1;
779 	}
780 	if (array->eof_index >= 0)
781 		desc->eof = 1;
782 
783 	nfs_readdir_release_array(desc->page);
784 out:
785 	cache_page_release(desc);
786 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
787 			(unsigned long long)*desc->dir_cookie, res);
788 	return res;
789 }
790 
791 /*
792  * If we cannot find a cookie in our cache, we suspect that this is
793  * because it points to a deleted file, so we ask the server to return
794  * whatever it thinks is the next entry. We then feed this to filldir.
795  * If all goes well, we should then be able to find our way round the
796  * cache on the next call to readdir_search_pagecache();
797  *
798  * NOTE: we cannot add the anonymous page to the pagecache because
799  *	 the data it contains might not be page aligned. Besides,
800  *	 we should already have a complete representation of the
801  *	 directory in the page cache by the time we get here.
802  */
803 static inline
804 int uncached_readdir(nfs_readdir_descriptor_t *desc)
805 {
806 	struct page	*page = NULL;
807 	int		status;
808 	struct inode *inode = file_inode(desc->file);
809 	struct nfs_open_dir_context *ctx = desc->file->private_data;
810 
811 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
812 			(unsigned long long)*desc->dir_cookie);
813 
814 	page = alloc_page(GFP_HIGHUSER);
815 	if (!page) {
816 		status = -ENOMEM;
817 		goto out;
818 	}
819 
820 	desc->page_index = 0;
821 	desc->last_cookie = *desc->dir_cookie;
822 	desc->page = page;
823 	ctx->duped = 0;
824 
825 	status = nfs_readdir_xdr_to_array(desc, page, inode);
826 	if (status < 0)
827 		goto out_release;
828 
829 	status = nfs_do_filldir(desc);
830 
831  out:
832 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
833 			__func__, status);
834 	return status;
835  out_release:
836 	cache_page_release(desc);
837 	goto out;
838 }
839 
840 static bool nfs_dir_mapping_need_revalidate(struct inode *dir)
841 {
842 	struct nfs_inode *nfsi = NFS_I(dir);
843 
844 	if (nfs_attribute_cache_expired(dir))
845 		return true;
846 	if (nfsi->cache_validity & NFS_INO_INVALID_DATA)
847 		return true;
848 	return false;
849 }
850 
851 /* The file offset position represents the dirent entry number.  A
852    last cookie cache takes care of the common case of reading the
853    whole directory.
854  */
855 static int nfs_readdir(struct file *file, struct dir_context *ctx)
856 {
857 	struct dentry	*dentry = file->f_path.dentry;
858 	struct inode	*inode = dentry->d_inode;
859 	nfs_readdir_descriptor_t my_desc,
860 			*desc = &my_desc;
861 	struct nfs_open_dir_context *dir_ctx = file->private_data;
862 	int res = 0;
863 
864 	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
865 			file, (long long)ctx->pos);
866 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
867 
868 	/*
869 	 * ctx->pos points to the dirent entry number.
870 	 * *desc->dir_cookie has the cookie for the next entry. We have
871 	 * to either find the entry with the appropriate number or
872 	 * revalidate the cookie.
873 	 */
874 	memset(desc, 0, sizeof(*desc));
875 
876 	desc->file = file;
877 	desc->ctx = ctx;
878 	desc->dir_cookie = &dir_ctx->dir_cookie;
879 	desc->decode = NFS_PROTO(inode)->decode_dirent;
880 	desc->plus = nfs_use_readdirplus(inode, ctx) ? 1 : 0;
881 
882 	nfs_block_sillyrename(dentry);
883 	if (ctx->pos == 0 || nfs_dir_mapping_need_revalidate(inode))
884 		res = nfs_revalidate_mapping(inode, file->f_mapping);
885 	if (res < 0)
886 		goto out;
887 
888 	do {
889 		res = readdir_search_pagecache(desc);
890 
891 		if (res == -EBADCOOKIE) {
892 			res = 0;
893 			/* This means either end of directory */
894 			if (*desc->dir_cookie && desc->eof == 0) {
895 				/* Or that the server has 'lost' a cookie */
896 				res = uncached_readdir(desc);
897 				if (res == 0)
898 					continue;
899 			}
900 			break;
901 		}
902 		if (res == -ETOOSMALL && desc->plus) {
903 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
904 			nfs_zap_caches(inode);
905 			desc->page_index = 0;
906 			desc->plus = 0;
907 			desc->eof = 0;
908 			continue;
909 		}
910 		if (res < 0)
911 			break;
912 
913 		res = nfs_do_filldir(desc);
914 		if (res < 0)
915 			break;
916 	} while (!desc->eof);
917 out:
918 	nfs_unblock_sillyrename(dentry);
919 	if (res > 0)
920 		res = 0;
921 	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
922 	return res;
923 }
924 
925 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
926 {
927 	struct inode *inode = file_inode(filp);
928 	struct nfs_open_dir_context *dir_ctx = filp->private_data;
929 
930 	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
931 			filp, offset, whence);
932 
933 	mutex_lock(&inode->i_mutex);
934 	switch (whence) {
935 		case 1:
936 			offset += filp->f_pos;
937 		case 0:
938 			if (offset >= 0)
939 				break;
940 		default:
941 			offset = -EINVAL;
942 			goto out;
943 	}
944 	if (offset != filp->f_pos) {
945 		filp->f_pos = offset;
946 		dir_ctx->dir_cookie = 0;
947 		dir_ctx->duped = 0;
948 	}
949 out:
950 	mutex_unlock(&inode->i_mutex);
951 	return offset;
952 }
953 
954 /*
955  * All directory operations under NFS are synchronous, so fsync()
956  * is a dummy operation.
957  */
958 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
959 			 int datasync)
960 {
961 	struct inode *inode = file_inode(filp);
962 
963 	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
964 
965 	mutex_lock(&inode->i_mutex);
966 	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
967 	mutex_unlock(&inode->i_mutex);
968 	return 0;
969 }
970 
971 /**
972  * nfs_force_lookup_revalidate - Mark the directory as having changed
973  * @dir - pointer to directory inode
974  *
975  * This forces the revalidation code in nfs_lookup_revalidate() to do a
976  * full lookup on all child dentries of 'dir' whenever a change occurs
977  * on the server that might have invalidated our dcache.
978  *
979  * The caller should be holding dir->i_lock
980  */
981 void nfs_force_lookup_revalidate(struct inode *dir)
982 {
983 	NFS_I(dir)->cache_change_attribute++;
984 }
985 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
986 
987 /*
988  * A check for whether or not the parent directory has changed.
989  * In the case it has, we assume that the dentries are untrustworthy
990  * and may need to be looked up again.
991  */
992 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
993 {
994 	if (IS_ROOT(dentry))
995 		return 1;
996 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
997 		return 0;
998 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
999 		return 0;
1000 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1001 	if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1002 		return 0;
1003 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1004 		return 0;
1005 	return 1;
1006 }
1007 
1008 /*
1009  * Use intent information to check whether or not we're going to do
1010  * an O_EXCL create using this path component.
1011  */
1012 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1013 {
1014 	if (NFS_PROTO(dir)->version == 2)
1015 		return 0;
1016 	return flags & LOOKUP_EXCL;
1017 }
1018 
1019 /*
1020  * Inode and filehandle revalidation for lookups.
1021  *
1022  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1023  * or if the intent information indicates that we're about to open this
1024  * particular file and the "nocto" mount flag is not set.
1025  *
1026  */
1027 static
1028 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1029 {
1030 	struct nfs_server *server = NFS_SERVER(inode);
1031 	int ret;
1032 
1033 	if (IS_AUTOMOUNT(inode))
1034 		return 0;
1035 	/* VFS wants an on-the-wire revalidation */
1036 	if (flags & LOOKUP_REVAL)
1037 		goto out_force;
1038 	/* This is an open(2) */
1039 	if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) &&
1040 	    (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
1041 		goto out_force;
1042 out:
1043 	return (inode->i_nlink == 0) ? -ENOENT : 0;
1044 out_force:
1045 	ret = __nfs_revalidate_inode(server, inode);
1046 	if (ret != 0)
1047 		return ret;
1048 	goto out;
1049 }
1050 
1051 /*
1052  * We judge how long we want to trust negative
1053  * dentries by looking at the parent inode mtime.
1054  *
1055  * If parent mtime has changed, we revalidate, else we wait for a
1056  * period corresponding to the parent's attribute cache timeout value.
1057  */
1058 static inline
1059 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1060 		       unsigned int flags)
1061 {
1062 	/* Don't revalidate a negative dentry if we're creating a new file */
1063 	if (flags & LOOKUP_CREATE)
1064 		return 0;
1065 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1066 		return 1;
1067 	return !nfs_check_verifier(dir, dentry);
1068 }
1069 
1070 /*
1071  * This is called every time the dcache has a lookup hit,
1072  * and we should check whether we can really trust that
1073  * lookup.
1074  *
1075  * NOTE! The hit can be a negative hit too, don't assume
1076  * we have an inode!
1077  *
1078  * If the parent directory is seen to have changed, we throw out the
1079  * cached dentry and do a new lookup.
1080  */
1081 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1082 {
1083 	struct inode *dir;
1084 	struct inode *inode;
1085 	struct dentry *parent;
1086 	struct nfs_fh *fhandle = NULL;
1087 	struct nfs_fattr *fattr = NULL;
1088 	struct nfs4_label *label = NULL;
1089 	int error;
1090 
1091 	if (flags & LOOKUP_RCU)
1092 		return -ECHILD;
1093 
1094 	parent = dget_parent(dentry);
1095 	dir = parent->d_inode;
1096 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1097 	inode = dentry->d_inode;
1098 
1099 	if (!inode) {
1100 		if (nfs_neg_need_reval(dir, dentry, flags))
1101 			goto out_bad;
1102 		goto out_valid_noent;
1103 	}
1104 
1105 	if (is_bad_inode(inode)) {
1106 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1107 				__func__, dentry);
1108 		goto out_bad;
1109 	}
1110 
1111 	if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1112 		goto out_set_verifier;
1113 
1114 	/* Force a full look up iff the parent directory has changed */
1115 	if (!nfs_is_exclusive_create(dir, flags) && nfs_check_verifier(dir, dentry)) {
1116 		if (nfs_lookup_verify_inode(inode, flags))
1117 			goto out_zap_parent;
1118 		goto out_valid;
1119 	}
1120 
1121 	if (NFS_STALE(inode))
1122 		goto out_bad;
1123 
1124 	error = -ENOMEM;
1125 	fhandle = nfs_alloc_fhandle();
1126 	fattr = nfs_alloc_fattr();
1127 	if (fhandle == NULL || fattr == NULL)
1128 		goto out_error;
1129 
1130 	label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
1131 	if (IS_ERR(label))
1132 		goto out_error;
1133 
1134 	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1135 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1136 	trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1137 	if (error)
1138 		goto out_bad;
1139 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1140 		goto out_bad;
1141 	if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1142 		goto out_bad;
1143 
1144 	nfs_setsecurity(inode, fattr, label);
1145 
1146 	nfs_free_fattr(fattr);
1147 	nfs_free_fhandle(fhandle);
1148 	nfs4_label_free(label);
1149 
1150 out_set_verifier:
1151 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1152  out_valid:
1153 	/* Success: notify readdir to use READDIRPLUS */
1154 	nfs_advise_use_readdirplus(dir);
1155  out_valid_noent:
1156 	dput(parent);
1157 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1158 			__func__, dentry);
1159 	return 1;
1160 out_zap_parent:
1161 	nfs_zap_caches(dir);
1162  out_bad:
1163 	nfs_free_fattr(fattr);
1164 	nfs_free_fhandle(fhandle);
1165 	nfs4_label_free(label);
1166 	nfs_mark_for_revalidate(dir);
1167 	if (inode && S_ISDIR(inode->i_mode)) {
1168 		/* Purge readdir caches. */
1169 		nfs_zap_caches(inode);
1170 		/*
1171 		 * We can't d_drop the root of a disconnected tree:
1172 		 * its d_hash is on the s_anon list and d_drop() would hide
1173 		 * it from shrink_dcache_for_unmount(), leading to busy
1174 		 * inodes on unmount and further oopses.
1175 		 */
1176 		if (IS_ROOT(dentry))
1177 			goto out_valid;
1178 	}
1179 	/* If we have submounts, don't unhash ! */
1180 	if (check_submounts_and_drop(dentry) != 0)
1181 		goto out_valid;
1182 
1183 	dput(parent);
1184 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1185 			__func__, dentry);
1186 	return 0;
1187 out_error:
1188 	nfs_free_fattr(fattr);
1189 	nfs_free_fhandle(fhandle);
1190 	nfs4_label_free(label);
1191 	dput(parent);
1192 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1193 			__func__, dentry, error);
1194 	return error;
1195 }
1196 
1197 /*
1198  * A weaker form of d_revalidate for revalidating just the dentry->d_inode
1199  * when we don't really care about the dentry name. This is called when a
1200  * pathwalk ends on a dentry that was not found via a normal lookup in the
1201  * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1202  *
1203  * In this situation, we just want to verify that the inode itself is OK
1204  * since the dentry might have changed on the server.
1205  */
1206 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1207 {
1208 	int error;
1209 	struct inode *inode = dentry->d_inode;
1210 
1211 	/*
1212 	 * I believe we can only get a negative dentry here in the case of a
1213 	 * procfs-style symlink. Just assume it's correct for now, but we may
1214 	 * eventually need to do something more here.
1215 	 */
1216 	if (!inode) {
1217 		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1218 				__func__, dentry);
1219 		return 1;
1220 	}
1221 
1222 	if (is_bad_inode(inode)) {
1223 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1224 				__func__, dentry);
1225 		return 0;
1226 	}
1227 
1228 	error = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1229 	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1230 			__func__, inode->i_ino, error ? "invalid" : "valid");
1231 	return !error;
1232 }
1233 
1234 /*
1235  * This is called from dput() when d_count is going to 0.
1236  */
1237 static int nfs_dentry_delete(const struct dentry *dentry)
1238 {
1239 	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1240 		dentry, dentry->d_flags);
1241 
1242 	/* Unhash any dentry with a stale inode */
1243 	if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
1244 		return 1;
1245 
1246 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1247 		/* Unhash it, so that ->d_iput() would be called */
1248 		return 1;
1249 	}
1250 	if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1251 		/* Unhash it, so that ancestors of killed async unlink
1252 		 * files will be cleaned up during umount */
1253 		return 1;
1254 	}
1255 	return 0;
1256 
1257 }
1258 
1259 /* Ensure that we revalidate inode->i_nlink */
1260 static void nfs_drop_nlink(struct inode *inode)
1261 {
1262 	spin_lock(&inode->i_lock);
1263 	/* drop the inode if we're reasonably sure this is the last link */
1264 	if (inode->i_nlink == 1)
1265 		clear_nlink(inode);
1266 	NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR;
1267 	spin_unlock(&inode->i_lock);
1268 }
1269 
1270 /*
1271  * Called when the dentry loses inode.
1272  * We use it to clean up silly-renamed files.
1273  */
1274 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1275 {
1276 	if (S_ISDIR(inode->i_mode))
1277 		/* drop any readdir cache as it could easily be old */
1278 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1279 
1280 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1281 		nfs_complete_unlink(dentry, inode);
1282 		nfs_drop_nlink(inode);
1283 	}
1284 	iput(inode);
1285 }
1286 
1287 static void nfs_d_release(struct dentry *dentry)
1288 {
1289 	/* free cached devname value, if it survived that far */
1290 	if (unlikely(dentry->d_fsdata)) {
1291 		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1292 			WARN_ON(1);
1293 		else
1294 			kfree(dentry->d_fsdata);
1295 	}
1296 }
1297 
1298 const struct dentry_operations nfs_dentry_operations = {
1299 	.d_revalidate	= nfs_lookup_revalidate,
1300 	.d_weak_revalidate	= nfs_weak_revalidate,
1301 	.d_delete	= nfs_dentry_delete,
1302 	.d_iput		= nfs_dentry_iput,
1303 	.d_automount	= nfs_d_automount,
1304 	.d_release	= nfs_d_release,
1305 };
1306 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1307 
1308 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1309 {
1310 	struct dentry *res;
1311 	struct dentry *parent;
1312 	struct inode *inode = NULL;
1313 	struct nfs_fh *fhandle = NULL;
1314 	struct nfs_fattr *fattr = NULL;
1315 	struct nfs4_label *label = NULL;
1316 	int error;
1317 
1318 	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1319 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1320 
1321 	res = ERR_PTR(-ENAMETOOLONG);
1322 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1323 		goto out;
1324 
1325 	/*
1326 	 * If we're doing an exclusive create, optimize away the lookup
1327 	 * but don't hash the dentry.
1328 	 */
1329 	if (nfs_is_exclusive_create(dir, flags)) {
1330 		d_instantiate(dentry, NULL);
1331 		res = NULL;
1332 		goto out;
1333 	}
1334 
1335 	res = ERR_PTR(-ENOMEM);
1336 	fhandle = nfs_alloc_fhandle();
1337 	fattr = nfs_alloc_fattr();
1338 	if (fhandle == NULL || fattr == NULL)
1339 		goto out;
1340 
1341 	label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1342 	if (IS_ERR(label))
1343 		goto out;
1344 
1345 	parent = dentry->d_parent;
1346 	/* Protect against concurrent sillydeletes */
1347 	trace_nfs_lookup_enter(dir, dentry, flags);
1348 	nfs_block_sillyrename(parent);
1349 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1350 	if (error == -ENOENT)
1351 		goto no_entry;
1352 	if (error < 0) {
1353 		res = ERR_PTR(error);
1354 		goto out_unblock_sillyrename;
1355 	}
1356 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1357 	res = ERR_CAST(inode);
1358 	if (IS_ERR(res))
1359 		goto out_unblock_sillyrename;
1360 
1361 	/* Success: notify readdir to use READDIRPLUS */
1362 	nfs_advise_use_readdirplus(dir);
1363 
1364 no_entry:
1365 	res = d_materialise_unique(dentry, inode);
1366 	if (res != NULL) {
1367 		if (IS_ERR(res))
1368 			goto out_unblock_sillyrename;
1369 		dentry = res;
1370 	}
1371 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1372 out_unblock_sillyrename:
1373 	nfs_unblock_sillyrename(parent);
1374 	trace_nfs_lookup_exit(dir, dentry, flags, error);
1375 	nfs4_label_free(label);
1376 out:
1377 	nfs_free_fattr(fattr);
1378 	nfs_free_fhandle(fhandle);
1379 	return res;
1380 }
1381 EXPORT_SYMBOL_GPL(nfs_lookup);
1382 
1383 #if IS_ENABLED(CONFIG_NFS_V4)
1384 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1385 
1386 const struct dentry_operations nfs4_dentry_operations = {
1387 	.d_revalidate	= nfs4_lookup_revalidate,
1388 	.d_delete	= nfs_dentry_delete,
1389 	.d_iput		= nfs_dentry_iput,
1390 	.d_automount	= nfs_d_automount,
1391 	.d_release	= nfs_d_release,
1392 };
1393 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1394 
1395 static fmode_t flags_to_mode(int flags)
1396 {
1397 	fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1398 	if ((flags & O_ACCMODE) != O_WRONLY)
1399 		res |= FMODE_READ;
1400 	if ((flags & O_ACCMODE) != O_RDONLY)
1401 		res |= FMODE_WRITE;
1402 	return res;
1403 }
1404 
1405 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags)
1406 {
1407 	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags));
1408 }
1409 
1410 static int do_open(struct inode *inode, struct file *filp)
1411 {
1412 	nfs_fscache_open_file(inode, filp);
1413 	return 0;
1414 }
1415 
1416 static int nfs_finish_open(struct nfs_open_context *ctx,
1417 			   struct dentry *dentry,
1418 			   struct file *file, unsigned open_flags,
1419 			   int *opened)
1420 {
1421 	int err;
1422 
1423 	if ((open_flags & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL))
1424 		*opened |= FILE_CREATED;
1425 
1426 	err = finish_open(file, dentry, do_open, opened);
1427 	if (err)
1428 		goto out;
1429 	nfs_file_set_open_context(file, ctx);
1430 
1431 out:
1432 	return err;
1433 }
1434 
1435 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1436 		    struct file *file, unsigned open_flags,
1437 		    umode_t mode, int *opened)
1438 {
1439 	struct nfs_open_context *ctx;
1440 	struct dentry *res;
1441 	struct iattr attr = { .ia_valid = ATTR_OPEN };
1442 	struct inode *inode;
1443 	unsigned int lookup_flags = 0;
1444 	int err;
1445 
1446 	/* Expect a negative dentry */
1447 	BUG_ON(dentry->d_inode);
1448 
1449 	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1450 			dir->i_sb->s_id, dir->i_ino, dentry);
1451 
1452 	err = nfs_check_flags(open_flags);
1453 	if (err)
1454 		return err;
1455 
1456 	/* NFS only supports OPEN on regular files */
1457 	if ((open_flags & O_DIRECTORY)) {
1458 		if (!d_unhashed(dentry)) {
1459 			/*
1460 			 * Hashed negative dentry with O_DIRECTORY: dentry was
1461 			 * revalidated and is fine, no need to perform lookup
1462 			 * again
1463 			 */
1464 			return -ENOENT;
1465 		}
1466 		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1467 		goto no_open;
1468 	}
1469 
1470 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1471 		return -ENAMETOOLONG;
1472 
1473 	if (open_flags & O_CREAT) {
1474 		attr.ia_valid |= ATTR_MODE;
1475 		attr.ia_mode = mode & ~current_umask();
1476 	}
1477 	if (open_flags & O_TRUNC) {
1478 		attr.ia_valid |= ATTR_SIZE;
1479 		attr.ia_size = 0;
1480 	}
1481 
1482 	ctx = create_nfs_open_context(dentry, open_flags);
1483 	err = PTR_ERR(ctx);
1484 	if (IS_ERR(ctx))
1485 		goto out;
1486 
1487 	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1488 	nfs_block_sillyrename(dentry->d_parent);
1489 	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, opened);
1490 	nfs_unblock_sillyrename(dentry->d_parent);
1491 	if (IS_ERR(inode)) {
1492 		err = PTR_ERR(inode);
1493 		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1494 		put_nfs_open_context(ctx);
1495 		switch (err) {
1496 		case -ENOENT:
1497 			d_drop(dentry);
1498 			d_add(dentry, NULL);
1499 			break;
1500 		case -EISDIR:
1501 		case -ENOTDIR:
1502 			goto no_open;
1503 		case -ELOOP:
1504 			if (!(open_flags & O_NOFOLLOW))
1505 				goto no_open;
1506 			break;
1507 			/* case -EINVAL: */
1508 		default:
1509 			break;
1510 		}
1511 		goto out;
1512 	}
1513 
1514 	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags, opened);
1515 	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1516 	put_nfs_open_context(ctx);
1517 out:
1518 	return err;
1519 
1520 no_open:
1521 	res = nfs_lookup(dir, dentry, lookup_flags);
1522 	err = PTR_ERR(res);
1523 	if (IS_ERR(res))
1524 		goto out;
1525 
1526 	return finish_no_open(file, res);
1527 }
1528 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1529 
1530 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1531 {
1532 	struct inode *inode;
1533 	int ret = 0;
1534 
1535 	if (flags & LOOKUP_RCU)
1536 		return -ECHILD;
1537 
1538 	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1539 		goto no_open;
1540 	if (d_mountpoint(dentry))
1541 		goto no_open;
1542 	if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1)
1543 		goto no_open;
1544 
1545 	inode = dentry->d_inode;
1546 
1547 	/* We can't create new files in nfs_open_revalidate(), so we
1548 	 * optimize away revalidation of negative dentries.
1549 	 */
1550 	if (inode == NULL) {
1551 		struct dentry *parent;
1552 		struct inode *dir;
1553 
1554 		parent = dget_parent(dentry);
1555 		dir = parent->d_inode;
1556 		if (!nfs_neg_need_reval(dir, dentry, flags))
1557 			ret = 1;
1558 		dput(parent);
1559 		goto out;
1560 	}
1561 
1562 	/* NFS only supports OPEN on regular files */
1563 	if (!S_ISREG(inode->i_mode))
1564 		goto no_open;
1565 	/* We cannot do exclusive creation on a positive dentry */
1566 	if (flags & LOOKUP_EXCL)
1567 		goto no_open;
1568 
1569 	/* Let f_op->open() actually open (and revalidate) the file */
1570 	ret = 1;
1571 
1572 out:
1573 	return ret;
1574 
1575 no_open:
1576 	return nfs_lookup_revalidate(dentry, flags);
1577 }
1578 
1579 #endif /* CONFIG_NFSV4 */
1580 
1581 /*
1582  * Code common to create, mkdir, and mknod.
1583  */
1584 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1585 				struct nfs_fattr *fattr,
1586 				struct nfs4_label *label)
1587 {
1588 	struct dentry *parent = dget_parent(dentry);
1589 	struct inode *dir = parent->d_inode;
1590 	struct inode *inode;
1591 	int error = -EACCES;
1592 
1593 	d_drop(dentry);
1594 
1595 	/* We may have been initialized further down */
1596 	if (dentry->d_inode)
1597 		goto out;
1598 	if (fhandle->size == 0) {
1599 		error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1600 		if (error)
1601 			goto out_error;
1602 	}
1603 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1604 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1605 		struct nfs_server *server = NFS_SB(dentry->d_sb);
1606 		error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL);
1607 		if (error < 0)
1608 			goto out_error;
1609 	}
1610 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1611 	error = PTR_ERR(inode);
1612 	if (IS_ERR(inode))
1613 		goto out_error;
1614 	d_add(dentry, inode);
1615 out:
1616 	dput(parent);
1617 	return 0;
1618 out_error:
1619 	nfs_mark_for_revalidate(dir);
1620 	dput(parent);
1621 	return error;
1622 }
1623 EXPORT_SYMBOL_GPL(nfs_instantiate);
1624 
1625 /*
1626  * Following a failed create operation, we drop the dentry rather
1627  * than retain a negative dentry. This avoids a problem in the event
1628  * that the operation succeeded on the server, but an error in the
1629  * reply path made it appear to have failed.
1630  */
1631 int nfs_create(struct inode *dir, struct dentry *dentry,
1632 		umode_t mode, bool excl)
1633 {
1634 	struct iattr attr;
1635 	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1636 	int error;
1637 
1638 	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1639 			dir->i_sb->s_id, dir->i_ino, dentry);
1640 
1641 	attr.ia_mode = mode;
1642 	attr.ia_valid = ATTR_MODE;
1643 
1644 	trace_nfs_create_enter(dir, dentry, open_flags);
1645 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1646 	trace_nfs_create_exit(dir, dentry, open_flags, error);
1647 	if (error != 0)
1648 		goto out_err;
1649 	return 0;
1650 out_err:
1651 	d_drop(dentry);
1652 	return error;
1653 }
1654 EXPORT_SYMBOL_GPL(nfs_create);
1655 
1656 /*
1657  * See comments for nfs_proc_create regarding failed operations.
1658  */
1659 int
1660 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1661 {
1662 	struct iattr attr;
1663 	int status;
1664 
1665 	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1666 			dir->i_sb->s_id, dir->i_ino, dentry);
1667 
1668 	if (!new_valid_dev(rdev))
1669 		return -EINVAL;
1670 
1671 	attr.ia_mode = mode;
1672 	attr.ia_valid = ATTR_MODE;
1673 
1674 	trace_nfs_mknod_enter(dir, dentry);
1675 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1676 	trace_nfs_mknod_exit(dir, dentry, status);
1677 	if (status != 0)
1678 		goto out_err;
1679 	return 0;
1680 out_err:
1681 	d_drop(dentry);
1682 	return status;
1683 }
1684 EXPORT_SYMBOL_GPL(nfs_mknod);
1685 
1686 /*
1687  * See comments for nfs_proc_create regarding failed operations.
1688  */
1689 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1690 {
1691 	struct iattr attr;
1692 	int error;
1693 
1694 	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1695 			dir->i_sb->s_id, dir->i_ino, dentry);
1696 
1697 	attr.ia_valid = ATTR_MODE;
1698 	attr.ia_mode = mode | S_IFDIR;
1699 
1700 	trace_nfs_mkdir_enter(dir, dentry);
1701 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1702 	trace_nfs_mkdir_exit(dir, dentry, error);
1703 	if (error != 0)
1704 		goto out_err;
1705 	return 0;
1706 out_err:
1707 	d_drop(dentry);
1708 	return error;
1709 }
1710 EXPORT_SYMBOL_GPL(nfs_mkdir);
1711 
1712 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1713 {
1714 	if (dentry->d_inode != NULL && !d_unhashed(dentry))
1715 		d_delete(dentry);
1716 }
1717 
1718 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1719 {
1720 	int error;
1721 
1722 	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1723 			dir->i_sb->s_id, dir->i_ino, dentry);
1724 
1725 	trace_nfs_rmdir_enter(dir, dentry);
1726 	if (dentry->d_inode) {
1727 		nfs_wait_on_sillyrename(dentry);
1728 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1729 		/* Ensure the VFS deletes this inode */
1730 		switch (error) {
1731 		case 0:
1732 			clear_nlink(dentry->d_inode);
1733 			break;
1734 		case -ENOENT:
1735 			nfs_dentry_handle_enoent(dentry);
1736 		}
1737 	} else
1738 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1739 	trace_nfs_rmdir_exit(dir, dentry, error);
1740 
1741 	return error;
1742 }
1743 EXPORT_SYMBOL_GPL(nfs_rmdir);
1744 
1745 /*
1746  * Remove a file after making sure there are no pending writes,
1747  * and after checking that the file has only one user.
1748  *
1749  * We invalidate the attribute cache and free the inode prior to the operation
1750  * to avoid possible races if the server reuses the inode.
1751  */
1752 static int nfs_safe_remove(struct dentry *dentry)
1753 {
1754 	struct inode *dir = dentry->d_parent->d_inode;
1755 	struct inode *inode = dentry->d_inode;
1756 	int error = -EBUSY;
1757 
1758 	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
1759 
1760 	/* If the dentry was sillyrenamed, we simply call d_delete() */
1761 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1762 		error = 0;
1763 		goto out;
1764 	}
1765 
1766 	trace_nfs_remove_enter(dir, dentry);
1767 	if (inode != NULL) {
1768 		NFS_PROTO(inode)->return_delegation(inode);
1769 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1770 		if (error == 0)
1771 			nfs_drop_nlink(inode);
1772 	} else
1773 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1774 	if (error == -ENOENT)
1775 		nfs_dentry_handle_enoent(dentry);
1776 	trace_nfs_remove_exit(dir, dentry, error);
1777 out:
1778 	return error;
1779 }
1780 
1781 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1782  *  belongs to an active ".nfs..." file and we return -EBUSY.
1783  *
1784  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1785  */
1786 int nfs_unlink(struct inode *dir, struct dentry *dentry)
1787 {
1788 	int error;
1789 	int need_rehash = 0;
1790 
1791 	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
1792 		dir->i_ino, dentry);
1793 
1794 	trace_nfs_unlink_enter(dir, dentry);
1795 	spin_lock(&dentry->d_lock);
1796 	if (d_count(dentry) > 1) {
1797 		spin_unlock(&dentry->d_lock);
1798 		/* Start asynchronous writeout of the inode */
1799 		write_inode_now(dentry->d_inode, 0);
1800 		error = nfs_sillyrename(dir, dentry);
1801 		goto out;
1802 	}
1803 	if (!d_unhashed(dentry)) {
1804 		__d_drop(dentry);
1805 		need_rehash = 1;
1806 	}
1807 	spin_unlock(&dentry->d_lock);
1808 	error = nfs_safe_remove(dentry);
1809 	if (!error || error == -ENOENT) {
1810 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1811 	} else if (need_rehash)
1812 		d_rehash(dentry);
1813 out:
1814 	trace_nfs_unlink_exit(dir, dentry, error);
1815 	return error;
1816 }
1817 EXPORT_SYMBOL_GPL(nfs_unlink);
1818 
1819 /*
1820  * To create a symbolic link, most file systems instantiate a new inode,
1821  * add a page to it containing the path, then write it out to the disk
1822  * using prepare_write/commit_write.
1823  *
1824  * Unfortunately the NFS client can't create the in-core inode first
1825  * because it needs a file handle to create an in-core inode (see
1826  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1827  * symlink request has completed on the server.
1828  *
1829  * So instead we allocate a raw page, copy the symname into it, then do
1830  * the SYMLINK request with the page as the buffer.  If it succeeds, we
1831  * now have a new file handle and can instantiate an in-core NFS inode
1832  * and move the raw page into its mapping.
1833  */
1834 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1835 {
1836 	struct page *page;
1837 	char *kaddr;
1838 	struct iattr attr;
1839 	unsigned int pathlen = strlen(symname);
1840 	int error;
1841 
1842 	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
1843 		dir->i_ino, dentry, symname);
1844 
1845 	if (pathlen > PAGE_SIZE)
1846 		return -ENAMETOOLONG;
1847 
1848 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
1849 	attr.ia_valid = ATTR_MODE;
1850 
1851 	page = alloc_page(GFP_HIGHUSER);
1852 	if (!page)
1853 		return -ENOMEM;
1854 
1855 	kaddr = kmap_atomic(page);
1856 	memcpy(kaddr, symname, pathlen);
1857 	if (pathlen < PAGE_SIZE)
1858 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1859 	kunmap_atomic(kaddr);
1860 
1861 	trace_nfs_symlink_enter(dir, dentry);
1862 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1863 	trace_nfs_symlink_exit(dir, dentry, error);
1864 	if (error != 0) {
1865 		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1866 			dir->i_sb->s_id, dir->i_ino,
1867 			dentry, symname, error);
1868 		d_drop(dentry);
1869 		__free_page(page);
1870 		return error;
1871 	}
1872 
1873 	/*
1874 	 * No big deal if we can't add this page to the page cache here.
1875 	 * READLINK will get the missing page from the server if needed.
1876 	 */
1877 	if (!add_to_page_cache_lru(page, dentry->d_inode->i_mapping, 0,
1878 							GFP_KERNEL)) {
1879 		SetPageUptodate(page);
1880 		unlock_page(page);
1881 		/*
1882 		 * add_to_page_cache_lru() grabs an extra page refcount.
1883 		 * Drop it here to avoid leaking this page later.
1884 		 */
1885 		page_cache_release(page);
1886 	} else
1887 		__free_page(page);
1888 
1889 	return 0;
1890 }
1891 EXPORT_SYMBOL_GPL(nfs_symlink);
1892 
1893 int
1894 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1895 {
1896 	struct inode *inode = old_dentry->d_inode;
1897 	int error;
1898 
1899 	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
1900 		old_dentry, dentry);
1901 
1902 	trace_nfs_link_enter(inode, dir, dentry);
1903 	NFS_PROTO(inode)->return_delegation(inode);
1904 
1905 	d_drop(dentry);
1906 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1907 	if (error == 0) {
1908 		ihold(inode);
1909 		d_add(dentry, inode);
1910 	}
1911 	trace_nfs_link_exit(inode, dir, dentry, error);
1912 	return error;
1913 }
1914 EXPORT_SYMBOL_GPL(nfs_link);
1915 
1916 /*
1917  * RENAME
1918  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1919  * different file handle for the same inode after a rename (e.g. when
1920  * moving to a different directory). A fail-safe method to do so would
1921  * be to look up old_dir/old_name, create a link to new_dir/new_name and
1922  * rename the old file using the sillyrename stuff. This way, the original
1923  * file in old_dir will go away when the last process iput()s the inode.
1924  *
1925  * FIXED.
1926  *
1927  * It actually works quite well. One needs to have the possibility for
1928  * at least one ".nfs..." file in each directory the file ever gets
1929  * moved or linked to which happens automagically with the new
1930  * implementation that only depends on the dcache stuff instead of
1931  * using the inode layer
1932  *
1933  * Unfortunately, things are a little more complicated than indicated
1934  * above. For a cross-directory move, we want to make sure we can get
1935  * rid of the old inode after the operation.  This means there must be
1936  * no pending writes (if it's a file), and the use count must be 1.
1937  * If these conditions are met, we can drop the dentries before doing
1938  * the rename.
1939  */
1940 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1941 		      struct inode *new_dir, struct dentry *new_dentry)
1942 {
1943 	struct inode *old_inode = old_dentry->d_inode;
1944 	struct inode *new_inode = new_dentry->d_inode;
1945 	struct dentry *dentry = NULL, *rehash = NULL;
1946 	struct rpc_task *task;
1947 	int error = -EBUSY;
1948 
1949 	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
1950 		 old_dentry, new_dentry,
1951 		 d_count(new_dentry));
1952 
1953 	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
1954 	/*
1955 	 * For non-directories, check whether the target is busy and if so,
1956 	 * make a copy of the dentry and then do a silly-rename. If the
1957 	 * silly-rename succeeds, the copied dentry is hashed and becomes
1958 	 * the new target.
1959 	 */
1960 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
1961 		/*
1962 		 * To prevent any new references to the target during the
1963 		 * rename, we unhash the dentry in advance.
1964 		 */
1965 		if (!d_unhashed(new_dentry)) {
1966 			d_drop(new_dentry);
1967 			rehash = new_dentry;
1968 		}
1969 
1970 		if (d_count(new_dentry) > 2) {
1971 			int err;
1972 
1973 			/* copy the target dentry's name */
1974 			dentry = d_alloc(new_dentry->d_parent,
1975 					 &new_dentry->d_name);
1976 			if (!dentry)
1977 				goto out;
1978 
1979 			/* silly-rename the existing target ... */
1980 			err = nfs_sillyrename(new_dir, new_dentry);
1981 			if (err)
1982 				goto out;
1983 
1984 			new_dentry = dentry;
1985 			rehash = NULL;
1986 			new_inode = NULL;
1987 		}
1988 	}
1989 
1990 	NFS_PROTO(old_inode)->return_delegation(old_inode);
1991 	if (new_inode != NULL)
1992 		NFS_PROTO(new_inode)->return_delegation(new_inode);
1993 
1994 	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
1995 	if (IS_ERR(task)) {
1996 		error = PTR_ERR(task);
1997 		goto out;
1998 	}
1999 
2000 	error = rpc_wait_for_completion_task(task);
2001 	if (error == 0)
2002 		error = task->tk_status;
2003 	rpc_put_task(task);
2004 	nfs_mark_for_revalidate(old_inode);
2005 out:
2006 	if (rehash)
2007 		d_rehash(rehash);
2008 	trace_nfs_rename_exit(old_dir, old_dentry,
2009 			new_dir, new_dentry, error);
2010 	if (!error) {
2011 		if (new_inode != NULL)
2012 			nfs_drop_nlink(new_inode);
2013 		d_move(old_dentry, new_dentry);
2014 		nfs_set_verifier(new_dentry,
2015 					nfs_save_change_attribute(new_dir));
2016 	} else if (error == -ENOENT)
2017 		nfs_dentry_handle_enoent(old_dentry);
2018 
2019 	/* new dentry created? */
2020 	if (dentry)
2021 		dput(dentry);
2022 	return error;
2023 }
2024 EXPORT_SYMBOL_GPL(nfs_rename);
2025 
2026 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2027 static LIST_HEAD(nfs_access_lru_list);
2028 static atomic_long_t nfs_access_nr_entries;
2029 
2030 static unsigned long nfs_access_max_cachesize = ULONG_MAX;
2031 module_param(nfs_access_max_cachesize, ulong, 0644);
2032 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2033 
2034 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2035 {
2036 	put_rpccred(entry->cred);
2037 	kfree(entry);
2038 	smp_mb__before_atomic();
2039 	atomic_long_dec(&nfs_access_nr_entries);
2040 	smp_mb__after_atomic();
2041 }
2042 
2043 static void nfs_access_free_list(struct list_head *head)
2044 {
2045 	struct nfs_access_entry *cache;
2046 
2047 	while (!list_empty(head)) {
2048 		cache = list_entry(head->next, struct nfs_access_entry, lru);
2049 		list_del(&cache->lru);
2050 		nfs_access_free_entry(cache);
2051 	}
2052 }
2053 
2054 static unsigned long
2055 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2056 {
2057 	LIST_HEAD(head);
2058 	struct nfs_inode *nfsi, *next;
2059 	struct nfs_access_entry *cache;
2060 	long freed = 0;
2061 
2062 	spin_lock(&nfs_access_lru_lock);
2063 	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2064 		struct inode *inode;
2065 
2066 		if (nr_to_scan-- == 0)
2067 			break;
2068 		inode = &nfsi->vfs_inode;
2069 		spin_lock(&inode->i_lock);
2070 		if (list_empty(&nfsi->access_cache_entry_lru))
2071 			goto remove_lru_entry;
2072 		cache = list_entry(nfsi->access_cache_entry_lru.next,
2073 				struct nfs_access_entry, lru);
2074 		list_move(&cache->lru, &head);
2075 		rb_erase(&cache->rb_node, &nfsi->access_cache);
2076 		freed++;
2077 		if (!list_empty(&nfsi->access_cache_entry_lru))
2078 			list_move_tail(&nfsi->access_cache_inode_lru,
2079 					&nfs_access_lru_list);
2080 		else {
2081 remove_lru_entry:
2082 			list_del_init(&nfsi->access_cache_inode_lru);
2083 			smp_mb__before_atomic();
2084 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2085 			smp_mb__after_atomic();
2086 		}
2087 		spin_unlock(&inode->i_lock);
2088 	}
2089 	spin_unlock(&nfs_access_lru_lock);
2090 	nfs_access_free_list(&head);
2091 	return freed;
2092 }
2093 
2094 unsigned long
2095 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2096 {
2097 	int nr_to_scan = sc->nr_to_scan;
2098 	gfp_t gfp_mask = sc->gfp_mask;
2099 
2100 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2101 		return SHRINK_STOP;
2102 	return nfs_do_access_cache_scan(nr_to_scan);
2103 }
2104 
2105 
2106 unsigned long
2107 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2108 {
2109 	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2110 }
2111 
2112 static void
2113 nfs_access_cache_enforce_limit(void)
2114 {
2115 	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2116 	unsigned long diff;
2117 	unsigned int nr_to_scan;
2118 
2119 	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2120 		return;
2121 	nr_to_scan = 100;
2122 	diff = nr_entries - nfs_access_max_cachesize;
2123 	if (diff < nr_to_scan)
2124 		nr_to_scan = diff;
2125 	nfs_do_access_cache_scan(nr_to_scan);
2126 }
2127 
2128 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2129 {
2130 	struct rb_root *root_node = &nfsi->access_cache;
2131 	struct rb_node *n;
2132 	struct nfs_access_entry *entry;
2133 
2134 	/* Unhook entries from the cache */
2135 	while ((n = rb_first(root_node)) != NULL) {
2136 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2137 		rb_erase(n, root_node);
2138 		list_move(&entry->lru, head);
2139 	}
2140 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2141 }
2142 
2143 void nfs_access_zap_cache(struct inode *inode)
2144 {
2145 	LIST_HEAD(head);
2146 
2147 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2148 		return;
2149 	/* Remove from global LRU init */
2150 	spin_lock(&nfs_access_lru_lock);
2151 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2152 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2153 
2154 	spin_lock(&inode->i_lock);
2155 	__nfs_access_zap_cache(NFS_I(inode), &head);
2156 	spin_unlock(&inode->i_lock);
2157 	spin_unlock(&nfs_access_lru_lock);
2158 	nfs_access_free_list(&head);
2159 }
2160 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2161 
2162 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2163 {
2164 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2165 	struct nfs_access_entry *entry;
2166 
2167 	while (n != NULL) {
2168 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2169 
2170 		if (cred < entry->cred)
2171 			n = n->rb_left;
2172 		else if (cred > entry->cred)
2173 			n = n->rb_right;
2174 		else
2175 			return entry;
2176 	}
2177 	return NULL;
2178 }
2179 
2180 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2181 {
2182 	struct nfs_inode *nfsi = NFS_I(inode);
2183 	struct nfs_access_entry *cache;
2184 	int err = -ENOENT;
2185 
2186 	spin_lock(&inode->i_lock);
2187 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2188 		goto out_zap;
2189 	cache = nfs_access_search_rbtree(inode, cred);
2190 	if (cache == NULL)
2191 		goto out;
2192 	if (!nfs_have_delegated_attributes(inode) &&
2193 	    !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2194 		goto out_stale;
2195 	res->jiffies = cache->jiffies;
2196 	res->cred = cache->cred;
2197 	res->mask = cache->mask;
2198 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2199 	err = 0;
2200 out:
2201 	spin_unlock(&inode->i_lock);
2202 	return err;
2203 out_stale:
2204 	rb_erase(&cache->rb_node, &nfsi->access_cache);
2205 	list_del(&cache->lru);
2206 	spin_unlock(&inode->i_lock);
2207 	nfs_access_free_entry(cache);
2208 	return -ENOENT;
2209 out_zap:
2210 	spin_unlock(&inode->i_lock);
2211 	nfs_access_zap_cache(inode);
2212 	return -ENOENT;
2213 }
2214 
2215 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2216 {
2217 	struct nfs_inode *nfsi = NFS_I(inode);
2218 	struct rb_root *root_node = &nfsi->access_cache;
2219 	struct rb_node **p = &root_node->rb_node;
2220 	struct rb_node *parent = NULL;
2221 	struct nfs_access_entry *entry;
2222 
2223 	spin_lock(&inode->i_lock);
2224 	while (*p != NULL) {
2225 		parent = *p;
2226 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2227 
2228 		if (set->cred < entry->cred)
2229 			p = &parent->rb_left;
2230 		else if (set->cred > entry->cred)
2231 			p = &parent->rb_right;
2232 		else
2233 			goto found;
2234 	}
2235 	rb_link_node(&set->rb_node, parent, p);
2236 	rb_insert_color(&set->rb_node, root_node);
2237 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2238 	spin_unlock(&inode->i_lock);
2239 	return;
2240 found:
2241 	rb_replace_node(parent, &set->rb_node, root_node);
2242 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2243 	list_del(&entry->lru);
2244 	spin_unlock(&inode->i_lock);
2245 	nfs_access_free_entry(entry);
2246 }
2247 
2248 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2249 {
2250 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2251 	if (cache == NULL)
2252 		return;
2253 	RB_CLEAR_NODE(&cache->rb_node);
2254 	cache->jiffies = set->jiffies;
2255 	cache->cred = get_rpccred(set->cred);
2256 	cache->mask = set->mask;
2257 
2258 	nfs_access_add_rbtree(inode, cache);
2259 
2260 	/* Update accounting */
2261 	smp_mb__before_atomic();
2262 	atomic_long_inc(&nfs_access_nr_entries);
2263 	smp_mb__after_atomic();
2264 
2265 	/* Add inode to global LRU list */
2266 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2267 		spin_lock(&nfs_access_lru_lock);
2268 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2269 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2270 					&nfs_access_lru_list);
2271 		spin_unlock(&nfs_access_lru_lock);
2272 	}
2273 	nfs_access_cache_enforce_limit();
2274 }
2275 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2276 
2277 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2278 {
2279 	entry->mask = 0;
2280 	if (access_result & NFS4_ACCESS_READ)
2281 		entry->mask |= MAY_READ;
2282 	if (access_result &
2283 	    (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
2284 		entry->mask |= MAY_WRITE;
2285 	if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
2286 		entry->mask |= MAY_EXEC;
2287 }
2288 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2289 
2290 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2291 {
2292 	struct nfs_access_entry cache;
2293 	int status;
2294 
2295 	trace_nfs_access_enter(inode);
2296 
2297 	status = nfs_access_get_cached(inode, cred, &cache);
2298 	if (status == 0)
2299 		goto out_cached;
2300 
2301 	/* Be clever: ask server to check for all possible rights */
2302 	cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2303 	cache.cred = cred;
2304 	cache.jiffies = jiffies;
2305 	status = NFS_PROTO(inode)->access(inode, &cache);
2306 	if (status != 0) {
2307 		if (status == -ESTALE) {
2308 			nfs_zap_caches(inode);
2309 			if (!S_ISDIR(inode->i_mode))
2310 				set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2311 		}
2312 		goto out;
2313 	}
2314 	nfs_access_add_cache(inode, &cache);
2315 out_cached:
2316 	if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2317 		status = -EACCES;
2318 out:
2319 	trace_nfs_access_exit(inode, status);
2320 	return status;
2321 }
2322 
2323 static int nfs_open_permission_mask(int openflags)
2324 {
2325 	int mask = 0;
2326 
2327 	if (openflags & __FMODE_EXEC) {
2328 		/* ONLY check exec rights */
2329 		mask = MAY_EXEC;
2330 	} else {
2331 		if ((openflags & O_ACCMODE) != O_WRONLY)
2332 			mask |= MAY_READ;
2333 		if ((openflags & O_ACCMODE) != O_RDONLY)
2334 			mask |= MAY_WRITE;
2335 	}
2336 
2337 	return mask;
2338 }
2339 
2340 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2341 {
2342 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2343 }
2344 EXPORT_SYMBOL_GPL(nfs_may_open);
2345 
2346 int nfs_permission(struct inode *inode, int mask)
2347 {
2348 	struct rpc_cred *cred;
2349 	int res = 0;
2350 
2351 	if (mask & MAY_NOT_BLOCK)
2352 		return -ECHILD;
2353 
2354 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2355 
2356 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2357 		goto out;
2358 	/* Is this sys_access() ? */
2359 	if (mask & (MAY_ACCESS | MAY_CHDIR))
2360 		goto force_lookup;
2361 
2362 	switch (inode->i_mode & S_IFMT) {
2363 		case S_IFLNK:
2364 			goto out;
2365 		case S_IFREG:
2366 			break;
2367 		case S_IFDIR:
2368 			/*
2369 			 * Optimize away all write operations, since the server
2370 			 * will check permissions when we perform the op.
2371 			 */
2372 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2373 				goto out;
2374 	}
2375 
2376 force_lookup:
2377 	if (!NFS_PROTO(inode)->access)
2378 		goto out_notsup;
2379 
2380 	cred = rpc_lookup_cred();
2381 	if (!IS_ERR(cred)) {
2382 		res = nfs_do_access(inode, cred, mask);
2383 		put_rpccred(cred);
2384 	} else
2385 		res = PTR_ERR(cred);
2386 out:
2387 	if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
2388 		res = -EACCES;
2389 
2390 	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2391 		inode->i_sb->s_id, inode->i_ino, mask, res);
2392 	return res;
2393 out_notsup:
2394 	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2395 	if (res == 0)
2396 		res = generic_permission(inode, mask);
2397 	goto out;
2398 }
2399 EXPORT_SYMBOL_GPL(nfs_permission);
2400 
2401 /*
2402  * Local variables:
2403  *  version-control: t
2404  *  kept-new-versions: 5
2405  * End:
2406  */
2407