xref: /openbmc/linux/fs/nfs/dir.c (revision 47921921)
1 /*
2  *  linux/fs/nfs/dir.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  nfs directory handling functions
7  *
8  * 10 Apr 1996	Added silly rename for unlink	--okir
9  * 28 Sep 1996	Improved directory cache --okir
10  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
11  *              Re-implemented silly rename for unlink, newly implemented
12  *              silly rename for nfs_rename() following the suggestions
13  *              of Olaf Kirch (okir) found in this file.
14  *              Following Linus comments on my original hack, this version
15  *              depends only on the dcache stuff and doesn't touch the inode
16  *              layer (iput() and friends).
17  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
18  */
19 
20 #include <linux/module.h>
21 #include <linux/time.h>
22 #include <linux/errno.h>
23 #include <linux/stat.h>
24 #include <linux/fcntl.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/mm.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/nfs_fs.h>
31 #include <linux/nfs_mount.h>
32 #include <linux/pagemap.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/swap.h>
37 #include <linux/sched.h>
38 #include <linux/kmemleak.h>
39 #include <linux/xattr.h>
40 
41 #include "delegation.h"
42 #include "iostat.h"
43 #include "internal.h"
44 #include "fscache.h"
45 
46 #include "nfstrace.h"
47 
48 /* #define NFS_DEBUG_VERBOSE 1 */
49 
50 static int nfs_opendir(struct inode *, struct file *);
51 static int nfs_closedir(struct inode *, struct file *);
52 static int nfs_readdir(struct file *, struct dir_context *);
53 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
54 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
55 static void nfs_readdir_clear_array(struct page*);
56 
57 const struct file_operations nfs_dir_operations = {
58 	.llseek		= nfs_llseek_dir,
59 	.read		= generic_read_dir,
60 	.iterate	= nfs_readdir,
61 	.open		= nfs_opendir,
62 	.release	= nfs_closedir,
63 	.fsync		= nfs_fsync_dir,
64 };
65 
66 const struct address_space_operations nfs_dir_aops = {
67 	.freepage = nfs_readdir_clear_array,
68 };
69 
70 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
71 {
72 	struct nfs_inode *nfsi = NFS_I(dir);
73 	struct nfs_open_dir_context *ctx;
74 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
75 	if (ctx != NULL) {
76 		ctx->duped = 0;
77 		ctx->attr_gencount = nfsi->attr_gencount;
78 		ctx->dir_cookie = 0;
79 		ctx->dup_cookie = 0;
80 		ctx->cred = get_rpccred(cred);
81 		spin_lock(&dir->i_lock);
82 		list_add(&ctx->list, &nfsi->open_files);
83 		spin_unlock(&dir->i_lock);
84 		return ctx;
85 	}
86 	return  ERR_PTR(-ENOMEM);
87 }
88 
89 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
90 {
91 	spin_lock(&dir->i_lock);
92 	list_del(&ctx->list);
93 	spin_unlock(&dir->i_lock);
94 	put_rpccred(ctx->cred);
95 	kfree(ctx);
96 }
97 
98 /*
99  * Open file
100  */
101 static int
102 nfs_opendir(struct inode *inode, struct file *filp)
103 {
104 	int res = 0;
105 	struct nfs_open_dir_context *ctx;
106 	struct rpc_cred *cred;
107 
108 	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
109 
110 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
111 
112 	cred = rpc_lookup_cred();
113 	if (IS_ERR(cred))
114 		return PTR_ERR(cred);
115 	ctx = alloc_nfs_open_dir_context(inode, cred);
116 	if (IS_ERR(ctx)) {
117 		res = PTR_ERR(ctx);
118 		goto out;
119 	}
120 	filp->private_data = ctx;
121 out:
122 	put_rpccred(cred);
123 	return res;
124 }
125 
126 static int
127 nfs_closedir(struct inode *inode, struct file *filp)
128 {
129 	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
130 	return 0;
131 }
132 
133 struct nfs_cache_array_entry {
134 	u64 cookie;
135 	u64 ino;
136 	struct qstr string;
137 	unsigned char d_type;
138 };
139 
140 struct nfs_cache_array {
141 	int size;
142 	int eof_index;
143 	u64 last_cookie;
144 	struct nfs_cache_array_entry array[0];
145 };
146 
147 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, bool);
148 typedef struct {
149 	struct file	*file;
150 	struct page	*page;
151 	struct dir_context *ctx;
152 	unsigned long	page_index;
153 	u64		*dir_cookie;
154 	u64		last_cookie;
155 	loff_t		current_index;
156 	decode_dirent_t	decode;
157 
158 	unsigned long	timestamp;
159 	unsigned long	gencount;
160 	unsigned int	cache_entry_index;
161 	bool plus;
162 	bool eof;
163 } nfs_readdir_descriptor_t;
164 
165 /*
166  * we are freeing strings created by nfs_add_to_readdir_array()
167  */
168 static
169 void nfs_readdir_clear_array(struct page *page)
170 {
171 	struct nfs_cache_array *array;
172 	int i;
173 
174 	array = kmap_atomic(page);
175 	for (i = 0; i < array->size; i++)
176 		kfree(array->array[i].string.name);
177 	kunmap_atomic(array);
178 }
179 
180 /*
181  * the caller is responsible for freeing qstr.name
182  * when called by nfs_readdir_add_to_array, the strings will be freed in
183  * nfs_clear_readdir_array()
184  */
185 static
186 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
187 {
188 	string->len = len;
189 	string->name = kmemdup(name, len, GFP_KERNEL);
190 	if (string->name == NULL)
191 		return -ENOMEM;
192 	/*
193 	 * Avoid a kmemleak false positive. The pointer to the name is stored
194 	 * in a page cache page which kmemleak does not scan.
195 	 */
196 	kmemleak_not_leak(string->name);
197 	string->hash = full_name_hash(NULL, name, len);
198 	return 0;
199 }
200 
201 static
202 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
203 {
204 	struct nfs_cache_array *array = kmap(page);
205 	struct nfs_cache_array_entry *cache_entry;
206 	int ret;
207 
208 	cache_entry = &array->array[array->size];
209 
210 	/* Check that this entry lies within the page bounds */
211 	ret = -ENOSPC;
212 	if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
213 		goto out;
214 
215 	cache_entry->cookie = entry->prev_cookie;
216 	cache_entry->ino = entry->ino;
217 	cache_entry->d_type = entry->d_type;
218 	ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
219 	if (ret)
220 		goto out;
221 	array->last_cookie = entry->cookie;
222 	array->size++;
223 	if (entry->eof != 0)
224 		array->eof_index = array->size;
225 out:
226 	kunmap(page);
227 	return ret;
228 }
229 
230 static
231 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
232 {
233 	loff_t diff = desc->ctx->pos - desc->current_index;
234 	unsigned int index;
235 
236 	if (diff < 0)
237 		goto out_eof;
238 	if (diff >= array->size) {
239 		if (array->eof_index >= 0)
240 			goto out_eof;
241 		return -EAGAIN;
242 	}
243 
244 	index = (unsigned int)diff;
245 	*desc->dir_cookie = array->array[index].cookie;
246 	desc->cache_entry_index = index;
247 	return 0;
248 out_eof:
249 	desc->eof = true;
250 	return -EBADCOOKIE;
251 }
252 
253 static bool
254 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
255 {
256 	if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
257 		return false;
258 	smp_rmb();
259 	return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
260 }
261 
262 static
263 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
264 {
265 	int i;
266 	loff_t new_pos;
267 	int status = -EAGAIN;
268 
269 	for (i = 0; i < array->size; i++) {
270 		if (array->array[i].cookie == *desc->dir_cookie) {
271 			struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
272 			struct nfs_open_dir_context *ctx = desc->file->private_data;
273 
274 			new_pos = desc->current_index + i;
275 			if (ctx->attr_gencount != nfsi->attr_gencount ||
276 			    !nfs_readdir_inode_mapping_valid(nfsi)) {
277 				ctx->duped = 0;
278 				ctx->attr_gencount = nfsi->attr_gencount;
279 			} else if (new_pos < desc->ctx->pos) {
280 				if (ctx->duped > 0
281 				    && ctx->dup_cookie == *desc->dir_cookie) {
282 					if (printk_ratelimit()) {
283 						pr_notice("NFS: directory %pD2 contains a readdir loop."
284 								"Please contact your server vendor.  "
285 								"The file: %.*s has duplicate cookie %llu\n",
286 								desc->file, array->array[i].string.len,
287 								array->array[i].string.name, *desc->dir_cookie);
288 					}
289 					status = -ELOOP;
290 					goto out;
291 				}
292 				ctx->dup_cookie = *desc->dir_cookie;
293 				ctx->duped = -1;
294 			}
295 			desc->ctx->pos = new_pos;
296 			desc->cache_entry_index = i;
297 			return 0;
298 		}
299 	}
300 	if (array->eof_index >= 0) {
301 		status = -EBADCOOKIE;
302 		if (*desc->dir_cookie == array->last_cookie)
303 			desc->eof = true;
304 	}
305 out:
306 	return status;
307 }
308 
309 static
310 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
311 {
312 	struct nfs_cache_array *array;
313 	int status;
314 
315 	array = kmap(desc->page);
316 
317 	if (*desc->dir_cookie == 0)
318 		status = nfs_readdir_search_for_pos(array, desc);
319 	else
320 		status = nfs_readdir_search_for_cookie(array, desc);
321 
322 	if (status == -EAGAIN) {
323 		desc->last_cookie = array->last_cookie;
324 		desc->current_index += array->size;
325 		desc->page_index++;
326 	}
327 	kunmap(desc->page);
328 	return status;
329 }
330 
331 /* Fill a page with xdr information before transferring to the cache page */
332 static
333 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
334 			struct nfs_entry *entry, struct file *file, struct inode *inode)
335 {
336 	struct nfs_open_dir_context *ctx = file->private_data;
337 	struct rpc_cred	*cred = ctx->cred;
338 	unsigned long	timestamp, gencount;
339 	int		error;
340 
341  again:
342 	timestamp = jiffies;
343 	gencount = nfs_inc_attr_generation_counter();
344 	error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
345 					  NFS_SERVER(inode)->dtsize, desc->plus);
346 	if (error < 0) {
347 		/* We requested READDIRPLUS, but the server doesn't grok it */
348 		if (error == -ENOTSUPP && desc->plus) {
349 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
350 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
351 			desc->plus = false;
352 			goto again;
353 		}
354 		goto error;
355 	}
356 	desc->timestamp = timestamp;
357 	desc->gencount = gencount;
358 error:
359 	return error;
360 }
361 
362 static int xdr_decode(nfs_readdir_descriptor_t *desc,
363 		      struct nfs_entry *entry, struct xdr_stream *xdr)
364 {
365 	int error;
366 
367 	error = desc->decode(xdr, entry, desc->plus);
368 	if (error)
369 		return error;
370 	entry->fattr->time_start = desc->timestamp;
371 	entry->fattr->gencount = desc->gencount;
372 	return 0;
373 }
374 
375 /* Match file and dirent using either filehandle or fileid
376  * Note: caller is responsible for checking the fsid
377  */
378 static
379 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
380 {
381 	struct inode *inode;
382 	struct nfs_inode *nfsi;
383 
384 	if (d_really_is_negative(dentry))
385 		return 0;
386 
387 	inode = d_inode(dentry);
388 	if (is_bad_inode(inode) || NFS_STALE(inode))
389 		return 0;
390 
391 	nfsi = NFS_I(inode);
392 	if (entry->fattr->fileid != nfsi->fileid)
393 		return 0;
394 	if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
395 		return 0;
396 	return 1;
397 }
398 
399 static
400 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
401 {
402 	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
403 		return false;
404 	if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
405 		return true;
406 	if (ctx->pos == 0)
407 		return true;
408 	return false;
409 }
410 
411 /*
412  * This function is called by the lookup and getattr code to request the
413  * use of readdirplus to accelerate any future lookups in the same
414  * directory.
415  */
416 void nfs_advise_use_readdirplus(struct inode *dir)
417 {
418 	struct nfs_inode *nfsi = NFS_I(dir);
419 
420 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
421 	    !list_empty(&nfsi->open_files))
422 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
423 }
424 
425 /*
426  * This function is mainly for use by nfs_getattr().
427  *
428  * If this is an 'ls -l', we want to force use of readdirplus.
429  * Do this by checking if there is an active file descriptor
430  * and calling nfs_advise_use_readdirplus, then forcing a
431  * cache flush.
432  */
433 void nfs_force_use_readdirplus(struct inode *dir)
434 {
435 	struct nfs_inode *nfsi = NFS_I(dir);
436 
437 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
438 	    !list_empty(&nfsi->open_files)) {
439 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
440 		invalidate_mapping_pages(dir->i_mapping, 0, -1);
441 	}
442 }
443 
444 static
445 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
446 {
447 	struct qstr filename = QSTR_INIT(entry->name, entry->len);
448 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
449 	struct dentry *dentry;
450 	struct dentry *alias;
451 	struct inode *dir = d_inode(parent);
452 	struct inode *inode;
453 	int status;
454 
455 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
456 		return;
457 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
458 		return;
459 	if (filename.len == 0)
460 		return;
461 	/* Validate that the name doesn't contain any illegal '\0' */
462 	if (strnlen(filename.name, filename.len) != filename.len)
463 		return;
464 	/* ...or '/' */
465 	if (strnchr(filename.name, filename.len, '/'))
466 		return;
467 	if (filename.name[0] == '.') {
468 		if (filename.len == 1)
469 			return;
470 		if (filename.len == 2 && filename.name[1] == '.')
471 			return;
472 	}
473 	filename.hash = full_name_hash(parent, filename.name, filename.len);
474 
475 	dentry = d_lookup(parent, &filename);
476 again:
477 	if (!dentry) {
478 		dentry = d_alloc_parallel(parent, &filename, &wq);
479 		if (IS_ERR(dentry))
480 			return;
481 	}
482 	if (!d_in_lookup(dentry)) {
483 		/* Is there a mountpoint here? If so, just exit */
484 		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
485 					&entry->fattr->fsid))
486 			goto out;
487 		if (nfs_same_file(dentry, entry)) {
488 			if (!entry->fh->size)
489 				goto out;
490 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
491 			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
492 			if (!status)
493 				nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
494 			goto out;
495 		} else {
496 			d_invalidate(dentry);
497 			dput(dentry);
498 			dentry = NULL;
499 			goto again;
500 		}
501 	}
502 	if (!entry->fh->size) {
503 		d_lookup_done(dentry);
504 		goto out;
505 	}
506 
507 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
508 	alias = d_splice_alias(inode, dentry);
509 	d_lookup_done(dentry);
510 	if (alias) {
511 		if (IS_ERR(alias))
512 			goto out;
513 		dput(dentry);
514 		dentry = alias;
515 	}
516 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
517 out:
518 	dput(dentry);
519 }
520 
521 /* Perform conversion from xdr to cache array */
522 static
523 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
524 				struct page **xdr_pages, struct page *page, unsigned int buflen)
525 {
526 	struct xdr_stream stream;
527 	struct xdr_buf buf;
528 	struct page *scratch;
529 	struct nfs_cache_array *array;
530 	unsigned int count = 0;
531 	int status;
532 
533 	scratch = alloc_page(GFP_KERNEL);
534 	if (scratch == NULL)
535 		return -ENOMEM;
536 
537 	if (buflen == 0)
538 		goto out_nopages;
539 
540 	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
541 	xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
542 
543 	do {
544 		status = xdr_decode(desc, entry, &stream);
545 		if (status != 0) {
546 			if (status == -EAGAIN)
547 				status = 0;
548 			break;
549 		}
550 
551 		count++;
552 
553 		if (desc->plus)
554 			nfs_prime_dcache(file_dentry(desc->file), entry);
555 
556 		status = nfs_readdir_add_to_array(entry, page);
557 		if (status != 0)
558 			break;
559 	} while (!entry->eof);
560 
561 out_nopages:
562 	if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
563 		array = kmap(page);
564 		array->eof_index = array->size;
565 		status = 0;
566 		kunmap(page);
567 	}
568 
569 	put_page(scratch);
570 	return status;
571 }
572 
573 static
574 void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
575 {
576 	unsigned int i;
577 	for (i = 0; i < npages; i++)
578 		put_page(pages[i]);
579 }
580 
581 /*
582  * nfs_readdir_large_page will allocate pages that must be freed with a call
583  * to nfs_readdir_free_pagearray
584  */
585 static
586 int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
587 {
588 	unsigned int i;
589 
590 	for (i = 0; i < npages; i++) {
591 		struct page *page = alloc_page(GFP_KERNEL);
592 		if (page == NULL)
593 			goto out_freepages;
594 		pages[i] = page;
595 	}
596 	return 0;
597 
598 out_freepages:
599 	nfs_readdir_free_pages(pages, i);
600 	return -ENOMEM;
601 }
602 
603 static
604 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
605 {
606 	struct page *pages[NFS_MAX_READDIR_PAGES];
607 	struct nfs_entry entry;
608 	struct file	*file = desc->file;
609 	struct nfs_cache_array *array;
610 	int status = -ENOMEM;
611 	unsigned int array_size = ARRAY_SIZE(pages);
612 
613 	entry.prev_cookie = 0;
614 	entry.cookie = desc->last_cookie;
615 	entry.eof = 0;
616 	entry.fh = nfs_alloc_fhandle();
617 	entry.fattr = nfs_alloc_fattr();
618 	entry.server = NFS_SERVER(inode);
619 	if (entry.fh == NULL || entry.fattr == NULL)
620 		goto out;
621 
622 	entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
623 	if (IS_ERR(entry.label)) {
624 		status = PTR_ERR(entry.label);
625 		goto out;
626 	}
627 
628 	array = kmap(page);
629 	memset(array, 0, sizeof(struct nfs_cache_array));
630 	array->eof_index = -1;
631 
632 	status = nfs_readdir_alloc_pages(pages, array_size);
633 	if (status < 0)
634 		goto out_release_array;
635 	do {
636 		unsigned int pglen;
637 		status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
638 
639 		if (status < 0)
640 			break;
641 		pglen = status;
642 		status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
643 		if (status < 0) {
644 			if (status == -ENOSPC)
645 				status = 0;
646 			break;
647 		}
648 	} while (array->eof_index < 0);
649 
650 	nfs_readdir_free_pages(pages, array_size);
651 out_release_array:
652 	kunmap(page);
653 	nfs4_label_free(entry.label);
654 out:
655 	nfs_free_fattr(entry.fattr);
656 	nfs_free_fhandle(entry.fh);
657 	return status;
658 }
659 
660 /*
661  * Now we cache directories properly, by converting xdr information
662  * to an array that can be used for lookups later.  This results in
663  * fewer cache pages, since we can store more information on each page.
664  * We only need to convert from xdr once so future lookups are much simpler
665  */
666 static
667 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
668 {
669 	struct inode	*inode = file_inode(desc->file);
670 	int ret;
671 
672 	ret = nfs_readdir_xdr_to_array(desc, page, inode);
673 	if (ret < 0)
674 		goto error;
675 	SetPageUptodate(page);
676 
677 	if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
678 		/* Should never happen */
679 		nfs_zap_mapping(inode, inode->i_mapping);
680 	}
681 	unlock_page(page);
682 	return 0;
683  error:
684 	unlock_page(page);
685 	return ret;
686 }
687 
688 static
689 void cache_page_release(nfs_readdir_descriptor_t *desc)
690 {
691 	if (!desc->page->mapping)
692 		nfs_readdir_clear_array(desc->page);
693 	put_page(desc->page);
694 	desc->page = NULL;
695 }
696 
697 static
698 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
699 {
700 	return read_cache_page(desc->file->f_mapping,
701 			desc->page_index, (filler_t *)nfs_readdir_filler, desc);
702 }
703 
704 /*
705  * Returns 0 if desc->dir_cookie was found on page desc->page_index
706  */
707 static
708 int find_cache_page(nfs_readdir_descriptor_t *desc)
709 {
710 	int res;
711 
712 	desc->page = get_cache_page(desc);
713 	if (IS_ERR(desc->page))
714 		return PTR_ERR(desc->page);
715 
716 	res = nfs_readdir_search_array(desc);
717 	if (res != 0)
718 		cache_page_release(desc);
719 	return res;
720 }
721 
722 /* Search for desc->dir_cookie from the beginning of the page cache */
723 static inline
724 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
725 {
726 	int res;
727 
728 	if (desc->page_index == 0) {
729 		desc->current_index = 0;
730 		desc->last_cookie = 0;
731 	}
732 	do {
733 		res = find_cache_page(desc);
734 	} while (res == -EAGAIN);
735 	return res;
736 }
737 
738 /*
739  * Once we've found the start of the dirent within a page: fill 'er up...
740  */
741 static
742 int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
743 {
744 	struct file	*file = desc->file;
745 	int i = 0;
746 	int res = 0;
747 	struct nfs_cache_array *array = NULL;
748 	struct nfs_open_dir_context *ctx = file->private_data;
749 
750 	array = kmap(desc->page);
751 	for (i = desc->cache_entry_index; i < array->size; i++) {
752 		struct nfs_cache_array_entry *ent;
753 
754 		ent = &array->array[i];
755 		if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
756 		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
757 			desc->eof = true;
758 			break;
759 		}
760 		desc->ctx->pos++;
761 		if (i < (array->size-1))
762 			*desc->dir_cookie = array->array[i+1].cookie;
763 		else
764 			*desc->dir_cookie = array->last_cookie;
765 		if (ctx->duped != 0)
766 			ctx->duped = 1;
767 	}
768 	if (array->eof_index >= 0)
769 		desc->eof = true;
770 
771 	kunmap(desc->page);
772 	cache_page_release(desc);
773 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
774 			(unsigned long long)*desc->dir_cookie, res);
775 	return res;
776 }
777 
778 /*
779  * If we cannot find a cookie in our cache, we suspect that this is
780  * because it points to a deleted file, so we ask the server to return
781  * whatever it thinks is the next entry. We then feed this to filldir.
782  * If all goes well, we should then be able to find our way round the
783  * cache on the next call to readdir_search_pagecache();
784  *
785  * NOTE: we cannot add the anonymous page to the pagecache because
786  *	 the data it contains might not be page aligned. Besides,
787  *	 we should already have a complete representation of the
788  *	 directory in the page cache by the time we get here.
789  */
790 static inline
791 int uncached_readdir(nfs_readdir_descriptor_t *desc)
792 {
793 	struct page	*page = NULL;
794 	int		status;
795 	struct inode *inode = file_inode(desc->file);
796 	struct nfs_open_dir_context *ctx = desc->file->private_data;
797 
798 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
799 			(unsigned long long)*desc->dir_cookie);
800 
801 	page = alloc_page(GFP_HIGHUSER);
802 	if (!page) {
803 		status = -ENOMEM;
804 		goto out;
805 	}
806 
807 	desc->page_index = 0;
808 	desc->last_cookie = *desc->dir_cookie;
809 	desc->page = page;
810 	ctx->duped = 0;
811 
812 	status = nfs_readdir_xdr_to_array(desc, page, inode);
813 	if (status < 0)
814 		goto out_release;
815 
816 	status = nfs_do_filldir(desc);
817 
818  out:
819 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
820 			__func__, status);
821 	return status;
822  out_release:
823 	cache_page_release(desc);
824 	goto out;
825 }
826 
827 /* The file offset position represents the dirent entry number.  A
828    last cookie cache takes care of the common case of reading the
829    whole directory.
830  */
831 static int nfs_readdir(struct file *file, struct dir_context *ctx)
832 {
833 	struct dentry	*dentry = file_dentry(file);
834 	struct inode	*inode = d_inode(dentry);
835 	nfs_readdir_descriptor_t my_desc,
836 			*desc = &my_desc;
837 	struct nfs_open_dir_context *dir_ctx = file->private_data;
838 	int res = 0;
839 
840 	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
841 			file, (long long)ctx->pos);
842 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
843 
844 	/*
845 	 * ctx->pos points to the dirent entry number.
846 	 * *desc->dir_cookie has the cookie for the next entry. We have
847 	 * to either find the entry with the appropriate number or
848 	 * revalidate the cookie.
849 	 */
850 	memset(desc, 0, sizeof(*desc));
851 
852 	desc->file = file;
853 	desc->ctx = ctx;
854 	desc->dir_cookie = &dir_ctx->dir_cookie;
855 	desc->decode = NFS_PROTO(inode)->decode_dirent;
856 	desc->plus = nfs_use_readdirplus(inode, ctx);
857 
858 	if (ctx->pos == 0 || nfs_attribute_cache_expired(inode))
859 		res = nfs_revalidate_mapping(inode, file->f_mapping);
860 	if (res < 0)
861 		goto out;
862 
863 	do {
864 		res = readdir_search_pagecache(desc);
865 
866 		if (res == -EBADCOOKIE) {
867 			res = 0;
868 			/* This means either end of directory */
869 			if (*desc->dir_cookie && !desc->eof) {
870 				/* Or that the server has 'lost' a cookie */
871 				res = uncached_readdir(desc);
872 				if (res == 0)
873 					continue;
874 			}
875 			break;
876 		}
877 		if (res == -ETOOSMALL && desc->plus) {
878 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
879 			nfs_zap_caches(inode);
880 			desc->page_index = 0;
881 			desc->plus = false;
882 			desc->eof = false;
883 			continue;
884 		}
885 		if (res < 0)
886 			break;
887 
888 		res = nfs_do_filldir(desc);
889 		if (res < 0)
890 			break;
891 	} while (!desc->eof);
892 out:
893 	if (res > 0)
894 		res = 0;
895 	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
896 	return res;
897 }
898 
899 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
900 {
901 	struct inode *inode = file_inode(filp);
902 	struct nfs_open_dir_context *dir_ctx = filp->private_data;
903 
904 	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
905 			filp, offset, whence);
906 
907 	inode_lock(inode);
908 	switch (whence) {
909 		case 1:
910 			offset += filp->f_pos;
911 		case 0:
912 			if (offset >= 0)
913 				break;
914 		default:
915 			offset = -EINVAL;
916 			goto out;
917 	}
918 	if (offset != filp->f_pos) {
919 		filp->f_pos = offset;
920 		dir_ctx->dir_cookie = 0;
921 		dir_ctx->duped = 0;
922 	}
923 out:
924 	inode_unlock(inode);
925 	return offset;
926 }
927 
928 /*
929  * All directory operations under NFS are synchronous, so fsync()
930  * is a dummy operation.
931  */
932 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
933 			 int datasync)
934 {
935 	struct inode *inode = file_inode(filp);
936 
937 	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
938 
939 	inode_lock(inode);
940 	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
941 	inode_unlock(inode);
942 	return 0;
943 }
944 
945 /**
946  * nfs_force_lookup_revalidate - Mark the directory as having changed
947  * @dir - pointer to directory inode
948  *
949  * This forces the revalidation code in nfs_lookup_revalidate() to do a
950  * full lookup on all child dentries of 'dir' whenever a change occurs
951  * on the server that might have invalidated our dcache.
952  *
953  * The caller should be holding dir->i_lock
954  */
955 void nfs_force_lookup_revalidate(struct inode *dir)
956 {
957 	NFS_I(dir)->cache_change_attribute++;
958 }
959 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
960 
961 /*
962  * A check for whether or not the parent directory has changed.
963  * In the case it has, we assume that the dentries are untrustworthy
964  * and may need to be looked up again.
965  * If rcu_walk prevents us from performing a full check, return 0.
966  */
967 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
968 			      int rcu_walk)
969 {
970 	if (IS_ROOT(dentry))
971 		return 1;
972 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
973 		return 0;
974 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
975 		return 0;
976 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
977 	if (nfs_mapping_need_revalidate_inode(dir)) {
978 		if (rcu_walk)
979 			return 0;
980 		if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
981 			return 0;
982 	}
983 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
984 		return 0;
985 	return 1;
986 }
987 
988 /*
989  * Use intent information to check whether or not we're going to do
990  * an O_EXCL create using this path component.
991  */
992 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
993 {
994 	if (NFS_PROTO(dir)->version == 2)
995 		return 0;
996 	return flags & LOOKUP_EXCL;
997 }
998 
999 /*
1000  * Inode and filehandle revalidation for lookups.
1001  *
1002  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1003  * or if the intent information indicates that we're about to open this
1004  * particular file and the "nocto" mount flag is not set.
1005  *
1006  */
1007 static
1008 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1009 {
1010 	struct nfs_server *server = NFS_SERVER(inode);
1011 	int ret;
1012 
1013 	if (IS_AUTOMOUNT(inode))
1014 		return 0;
1015 
1016 	if (flags & LOOKUP_OPEN) {
1017 		switch (inode->i_mode & S_IFMT) {
1018 		case S_IFREG:
1019 			/* A NFSv4 OPEN will revalidate later */
1020 			if (server->caps & NFS_CAP_ATOMIC_OPEN)
1021 				goto out;
1022 			/* Fallthrough */
1023 		case S_IFDIR:
1024 			if (server->flags & NFS_MOUNT_NOCTO)
1025 				break;
1026 			/* NFS close-to-open cache consistency validation */
1027 			goto out_force;
1028 		}
1029 	}
1030 
1031 	/* VFS wants an on-the-wire revalidation */
1032 	if (flags & LOOKUP_REVAL)
1033 		goto out_force;
1034 out:
1035 	return (inode->i_nlink == 0) ? -ENOENT : 0;
1036 out_force:
1037 	if (flags & LOOKUP_RCU)
1038 		return -ECHILD;
1039 	ret = __nfs_revalidate_inode(server, inode);
1040 	if (ret != 0)
1041 		return ret;
1042 	goto out;
1043 }
1044 
1045 /*
1046  * We judge how long we want to trust negative
1047  * dentries by looking at the parent inode mtime.
1048  *
1049  * If parent mtime has changed, we revalidate, else we wait for a
1050  * period corresponding to the parent's attribute cache timeout value.
1051  *
1052  * If LOOKUP_RCU prevents us from performing a full check, return 1
1053  * suggesting a reval is needed.
1054  */
1055 static inline
1056 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1057 		       unsigned int flags)
1058 {
1059 	/* Don't revalidate a negative dentry if we're creating a new file */
1060 	if (flags & LOOKUP_CREATE)
1061 		return 0;
1062 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1063 		return 1;
1064 	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1065 }
1066 
1067 /*
1068  * This is called every time the dcache has a lookup hit,
1069  * and we should check whether we can really trust that
1070  * lookup.
1071  *
1072  * NOTE! The hit can be a negative hit too, don't assume
1073  * we have an inode!
1074  *
1075  * If the parent directory is seen to have changed, we throw out the
1076  * cached dentry and do a new lookup.
1077  */
1078 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1079 {
1080 	struct inode *dir;
1081 	struct inode *inode;
1082 	struct dentry *parent;
1083 	struct nfs_fh *fhandle = NULL;
1084 	struct nfs_fattr *fattr = NULL;
1085 	struct nfs4_label *label = NULL;
1086 	int error;
1087 
1088 	if (flags & LOOKUP_RCU) {
1089 		parent = READ_ONCE(dentry->d_parent);
1090 		dir = d_inode_rcu(parent);
1091 		if (!dir)
1092 			return -ECHILD;
1093 	} else {
1094 		parent = dget_parent(dentry);
1095 		dir = d_inode(parent);
1096 	}
1097 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1098 	inode = d_inode(dentry);
1099 
1100 	if (!inode) {
1101 		if (nfs_neg_need_reval(dir, dentry, flags)) {
1102 			if (flags & LOOKUP_RCU)
1103 				return -ECHILD;
1104 			goto out_bad;
1105 		}
1106 		goto out_valid;
1107 	}
1108 
1109 	if (is_bad_inode(inode)) {
1110 		if (flags & LOOKUP_RCU)
1111 			return -ECHILD;
1112 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1113 				__func__, dentry);
1114 		goto out_bad;
1115 	}
1116 
1117 	if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1118 		goto out_set_verifier;
1119 
1120 	/* Force a full look up iff the parent directory has changed */
1121 	if (!nfs_is_exclusive_create(dir, flags) &&
1122 	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1123 		error = nfs_lookup_verify_inode(inode, flags);
1124 		if (error) {
1125 			if (flags & LOOKUP_RCU)
1126 				return -ECHILD;
1127 			if (error == -ESTALE)
1128 				goto out_zap_parent;
1129 			goto out_error;
1130 		}
1131 		nfs_advise_use_readdirplus(dir);
1132 		goto out_valid;
1133 	}
1134 
1135 	if (flags & LOOKUP_RCU)
1136 		return -ECHILD;
1137 
1138 	if (NFS_STALE(inode))
1139 		goto out_bad;
1140 
1141 	error = -ENOMEM;
1142 	fhandle = nfs_alloc_fhandle();
1143 	fattr = nfs_alloc_fattr();
1144 	if (fhandle == NULL || fattr == NULL)
1145 		goto out_error;
1146 
1147 	label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
1148 	if (IS_ERR(label))
1149 		goto out_error;
1150 
1151 	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1152 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1153 	trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1154 	if (error == -ESTALE || error == -ENOENT)
1155 		goto out_bad;
1156 	if (error)
1157 		goto out_error;
1158 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1159 		goto out_bad;
1160 	if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1161 		goto out_bad;
1162 
1163 	nfs_setsecurity(inode, fattr, label);
1164 
1165 	nfs_free_fattr(fattr);
1166 	nfs_free_fhandle(fhandle);
1167 	nfs4_label_free(label);
1168 
1169 	/* set a readdirplus hint that we had a cache miss */
1170 	nfs_force_use_readdirplus(dir);
1171 
1172 out_set_verifier:
1173 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1174  out_valid:
1175 	if (flags & LOOKUP_RCU) {
1176 		if (parent != READ_ONCE(dentry->d_parent))
1177 			return -ECHILD;
1178 	} else
1179 		dput(parent);
1180 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1181 			__func__, dentry);
1182 	return 1;
1183 out_zap_parent:
1184 	nfs_zap_caches(dir);
1185  out_bad:
1186 	WARN_ON(flags & LOOKUP_RCU);
1187 	nfs_free_fattr(fattr);
1188 	nfs_free_fhandle(fhandle);
1189 	nfs4_label_free(label);
1190 	nfs_mark_for_revalidate(dir);
1191 	if (inode && S_ISDIR(inode->i_mode)) {
1192 		/* Purge readdir caches. */
1193 		nfs_zap_caches(inode);
1194 		/*
1195 		 * We can't d_drop the root of a disconnected tree:
1196 		 * its d_hash is on the s_anon list and d_drop() would hide
1197 		 * it from shrink_dcache_for_unmount(), leading to busy
1198 		 * inodes on unmount and further oopses.
1199 		 */
1200 		if (IS_ROOT(dentry))
1201 			goto out_valid;
1202 	}
1203 	dput(parent);
1204 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1205 			__func__, dentry);
1206 	return 0;
1207 out_error:
1208 	WARN_ON(flags & LOOKUP_RCU);
1209 	nfs_free_fattr(fattr);
1210 	nfs_free_fhandle(fhandle);
1211 	nfs4_label_free(label);
1212 	dput(parent);
1213 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1214 			__func__, dentry, error);
1215 	return error;
1216 }
1217 
1218 /*
1219  * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1220  * when we don't really care about the dentry name. This is called when a
1221  * pathwalk ends on a dentry that was not found via a normal lookup in the
1222  * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1223  *
1224  * In this situation, we just want to verify that the inode itself is OK
1225  * since the dentry might have changed on the server.
1226  */
1227 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1228 {
1229 	struct inode *inode = d_inode(dentry);
1230 	int error = 0;
1231 
1232 	/*
1233 	 * I believe we can only get a negative dentry here in the case of a
1234 	 * procfs-style symlink. Just assume it's correct for now, but we may
1235 	 * eventually need to do something more here.
1236 	 */
1237 	if (!inode) {
1238 		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1239 				__func__, dentry);
1240 		return 1;
1241 	}
1242 
1243 	if (is_bad_inode(inode)) {
1244 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1245 				__func__, dentry);
1246 		return 0;
1247 	}
1248 
1249 	error = nfs_lookup_verify_inode(inode, flags);
1250 	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1251 			__func__, inode->i_ino, error ? "invalid" : "valid");
1252 	return !error;
1253 }
1254 
1255 /*
1256  * This is called from dput() when d_count is going to 0.
1257  */
1258 static int nfs_dentry_delete(const struct dentry *dentry)
1259 {
1260 	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1261 		dentry, dentry->d_flags);
1262 
1263 	/* Unhash any dentry with a stale inode */
1264 	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1265 		return 1;
1266 
1267 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1268 		/* Unhash it, so that ->d_iput() would be called */
1269 		return 1;
1270 	}
1271 	if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1272 		/* Unhash it, so that ancestors of killed async unlink
1273 		 * files will be cleaned up during umount */
1274 		return 1;
1275 	}
1276 	return 0;
1277 
1278 }
1279 
1280 /* Ensure that we revalidate inode->i_nlink */
1281 static void nfs_drop_nlink(struct inode *inode)
1282 {
1283 	spin_lock(&inode->i_lock);
1284 	/* drop the inode if we're reasonably sure this is the last link */
1285 	if (inode->i_nlink == 1)
1286 		clear_nlink(inode);
1287 	NFS_I(inode)->cache_validity |= NFS_INO_INVALID_CHANGE
1288 		| NFS_INO_INVALID_CTIME
1289 		| NFS_INO_INVALID_OTHER;
1290 	spin_unlock(&inode->i_lock);
1291 }
1292 
1293 /*
1294  * Called when the dentry loses inode.
1295  * We use it to clean up silly-renamed files.
1296  */
1297 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1298 {
1299 	if (S_ISDIR(inode->i_mode))
1300 		/* drop any readdir cache as it could easily be old */
1301 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1302 
1303 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1304 		nfs_complete_unlink(dentry, inode);
1305 		nfs_drop_nlink(inode);
1306 	}
1307 	iput(inode);
1308 }
1309 
1310 static void nfs_d_release(struct dentry *dentry)
1311 {
1312 	/* free cached devname value, if it survived that far */
1313 	if (unlikely(dentry->d_fsdata)) {
1314 		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1315 			WARN_ON(1);
1316 		else
1317 			kfree(dentry->d_fsdata);
1318 	}
1319 }
1320 
1321 const struct dentry_operations nfs_dentry_operations = {
1322 	.d_revalidate	= nfs_lookup_revalidate,
1323 	.d_weak_revalidate	= nfs_weak_revalidate,
1324 	.d_delete	= nfs_dentry_delete,
1325 	.d_iput		= nfs_dentry_iput,
1326 	.d_automount	= nfs_d_automount,
1327 	.d_release	= nfs_d_release,
1328 };
1329 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1330 
1331 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1332 {
1333 	struct dentry *res;
1334 	struct inode *inode = NULL;
1335 	struct nfs_fh *fhandle = NULL;
1336 	struct nfs_fattr *fattr = NULL;
1337 	struct nfs4_label *label = NULL;
1338 	int error;
1339 
1340 	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1341 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1342 
1343 	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1344 		return ERR_PTR(-ENAMETOOLONG);
1345 
1346 	/*
1347 	 * If we're doing an exclusive create, optimize away the lookup
1348 	 * but don't hash the dentry.
1349 	 */
1350 	if (nfs_is_exclusive_create(dir, flags))
1351 		return NULL;
1352 
1353 	res = ERR_PTR(-ENOMEM);
1354 	fhandle = nfs_alloc_fhandle();
1355 	fattr = nfs_alloc_fattr();
1356 	if (fhandle == NULL || fattr == NULL)
1357 		goto out;
1358 
1359 	label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1360 	if (IS_ERR(label))
1361 		goto out;
1362 
1363 	trace_nfs_lookup_enter(dir, dentry, flags);
1364 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1365 	if (error == -ENOENT)
1366 		goto no_entry;
1367 	if (error < 0) {
1368 		res = ERR_PTR(error);
1369 		goto out_label;
1370 	}
1371 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1372 	res = ERR_CAST(inode);
1373 	if (IS_ERR(res))
1374 		goto out_label;
1375 
1376 	/* Notify readdir to use READDIRPLUS */
1377 	nfs_force_use_readdirplus(dir);
1378 
1379 no_entry:
1380 	res = d_splice_alias(inode, dentry);
1381 	if (res != NULL) {
1382 		if (IS_ERR(res))
1383 			goto out_label;
1384 		dentry = res;
1385 	}
1386 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1387 out_label:
1388 	trace_nfs_lookup_exit(dir, dentry, flags, error);
1389 	nfs4_label_free(label);
1390 out:
1391 	nfs_free_fattr(fattr);
1392 	nfs_free_fhandle(fhandle);
1393 	return res;
1394 }
1395 EXPORT_SYMBOL_GPL(nfs_lookup);
1396 
1397 #if IS_ENABLED(CONFIG_NFS_V4)
1398 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1399 
1400 const struct dentry_operations nfs4_dentry_operations = {
1401 	.d_revalidate	= nfs4_lookup_revalidate,
1402 	.d_weak_revalidate	= nfs_weak_revalidate,
1403 	.d_delete	= nfs_dentry_delete,
1404 	.d_iput		= nfs_dentry_iput,
1405 	.d_automount	= nfs_d_automount,
1406 	.d_release	= nfs_d_release,
1407 };
1408 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1409 
1410 static fmode_t flags_to_mode(int flags)
1411 {
1412 	fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1413 	if ((flags & O_ACCMODE) != O_WRONLY)
1414 		res |= FMODE_READ;
1415 	if ((flags & O_ACCMODE) != O_RDONLY)
1416 		res |= FMODE_WRITE;
1417 	return res;
1418 }
1419 
1420 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1421 {
1422 	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1423 }
1424 
1425 static int do_open(struct inode *inode, struct file *filp)
1426 {
1427 	nfs_fscache_open_file(inode, filp);
1428 	return 0;
1429 }
1430 
1431 static int nfs_finish_open(struct nfs_open_context *ctx,
1432 			   struct dentry *dentry,
1433 			   struct file *file, unsigned open_flags,
1434 			   int *opened)
1435 {
1436 	int err;
1437 
1438 	err = finish_open(file, dentry, do_open, opened);
1439 	if (err)
1440 		goto out;
1441 	if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1442 		nfs_file_set_open_context(file, ctx);
1443 	else
1444 		err = -ESTALE;
1445 out:
1446 	return err;
1447 }
1448 
1449 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1450 		    struct file *file, unsigned open_flags,
1451 		    umode_t mode, int *opened)
1452 {
1453 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1454 	struct nfs_open_context *ctx;
1455 	struct dentry *res;
1456 	struct iattr attr = { .ia_valid = ATTR_OPEN };
1457 	struct inode *inode;
1458 	unsigned int lookup_flags = 0;
1459 	bool switched = false;
1460 	int err;
1461 
1462 	/* Expect a negative dentry */
1463 	BUG_ON(d_inode(dentry));
1464 
1465 	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1466 			dir->i_sb->s_id, dir->i_ino, dentry);
1467 
1468 	err = nfs_check_flags(open_flags);
1469 	if (err)
1470 		return err;
1471 
1472 	/* NFS only supports OPEN on regular files */
1473 	if ((open_flags & O_DIRECTORY)) {
1474 		if (!d_in_lookup(dentry)) {
1475 			/*
1476 			 * Hashed negative dentry with O_DIRECTORY: dentry was
1477 			 * revalidated and is fine, no need to perform lookup
1478 			 * again
1479 			 */
1480 			return -ENOENT;
1481 		}
1482 		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1483 		goto no_open;
1484 	}
1485 
1486 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1487 		return -ENAMETOOLONG;
1488 
1489 	if (open_flags & O_CREAT) {
1490 		struct nfs_server *server = NFS_SERVER(dir);
1491 
1492 		if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1493 			mode &= ~current_umask();
1494 
1495 		attr.ia_valid |= ATTR_MODE;
1496 		attr.ia_mode = mode;
1497 	}
1498 	if (open_flags & O_TRUNC) {
1499 		attr.ia_valid |= ATTR_SIZE;
1500 		attr.ia_size = 0;
1501 	}
1502 
1503 	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1504 		d_drop(dentry);
1505 		switched = true;
1506 		dentry = d_alloc_parallel(dentry->d_parent,
1507 					  &dentry->d_name, &wq);
1508 		if (IS_ERR(dentry))
1509 			return PTR_ERR(dentry);
1510 		if (unlikely(!d_in_lookup(dentry)))
1511 			return finish_no_open(file, dentry);
1512 	}
1513 
1514 	ctx = create_nfs_open_context(dentry, open_flags, file);
1515 	err = PTR_ERR(ctx);
1516 	if (IS_ERR(ctx))
1517 		goto out;
1518 
1519 	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1520 	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, opened);
1521 	if (IS_ERR(inode)) {
1522 		err = PTR_ERR(inode);
1523 		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1524 		put_nfs_open_context(ctx);
1525 		d_drop(dentry);
1526 		switch (err) {
1527 		case -ENOENT:
1528 			d_splice_alias(NULL, dentry);
1529 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1530 			break;
1531 		case -EISDIR:
1532 		case -ENOTDIR:
1533 			goto no_open;
1534 		case -ELOOP:
1535 			if (!(open_flags & O_NOFOLLOW))
1536 				goto no_open;
1537 			break;
1538 			/* case -EINVAL: */
1539 		default:
1540 			break;
1541 		}
1542 		goto out;
1543 	}
1544 
1545 	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags, opened);
1546 	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1547 	put_nfs_open_context(ctx);
1548 out:
1549 	if (unlikely(switched)) {
1550 		d_lookup_done(dentry);
1551 		dput(dentry);
1552 	}
1553 	return err;
1554 
1555 no_open:
1556 	res = nfs_lookup(dir, dentry, lookup_flags);
1557 	if (switched) {
1558 		d_lookup_done(dentry);
1559 		if (!res)
1560 			res = dentry;
1561 		else
1562 			dput(dentry);
1563 	}
1564 	if (IS_ERR(res))
1565 		return PTR_ERR(res);
1566 	return finish_no_open(file, res);
1567 }
1568 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1569 
1570 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1571 {
1572 	struct inode *inode;
1573 	int ret = 0;
1574 
1575 	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1576 		goto no_open;
1577 	if (d_mountpoint(dentry))
1578 		goto no_open;
1579 	if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1)
1580 		goto no_open;
1581 
1582 	inode = d_inode(dentry);
1583 
1584 	/* We can't create new files in nfs_open_revalidate(), so we
1585 	 * optimize away revalidation of negative dentries.
1586 	 */
1587 	if (inode == NULL) {
1588 		struct dentry *parent;
1589 		struct inode *dir;
1590 
1591 		if (flags & LOOKUP_RCU) {
1592 			parent = READ_ONCE(dentry->d_parent);
1593 			dir = d_inode_rcu(parent);
1594 			if (!dir)
1595 				return -ECHILD;
1596 		} else {
1597 			parent = dget_parent(dentry);
1598 			dir = d_inode(parent);
1599 		}
1600 		if (!nfs_neg_need_reval(dir, dentry, flags))
1601 			ret = 1;
1602 		else if (flags & LOOKUP_RCU)
1603 			ret = -ECHILD;
1604 		if (!(flags & LOOKUP_RCU))
1605 			dput(parent);
1606 		else if (parent != READ_ONCE(dentry->d_parent))
1607 			return -ECHILD;
1608 		goto out;
1609 	}
1610 
1611 	/* NFS only supports OPEN on regular files */
1612 	if (!S_ISREG(inode->i_mode))
1613 		goto no_open;
1614 	/* We cannot do exclusive creation on a positive dentry */
1615 	if (flags & LOOKUP_EXCL)
1616 		goto no_open;
1617 
1618 	/* Let f_op->open() actually open (and revalidate) the file */
1619 	ret = 1;
1620 
1621 out:
1622 	return ret;
1623 
1624 no_open:
1625 	return nfs_lookup_revalidate(dentry, flags);
1626 }
1627 
1628 #endif /* CONFIG_NFSV4 */
1629 
1630 /*
1631  * Code common to create, mkdir, and mknod.
1632  */
1633 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1634 				struct nfs_fattr *fattr,
1635 				struct nfs4_label *label)
1636 {
1637 	struct dentry *parent = dget_parent(dentry);
1638 	struct inode *dir = d_inode(parent);
1639 	struct inode *inode;
1640 	int error = -EACCES;
1641 
1642 	d_drop(dentry);
1643 
1644 	/* We may have been initialized further down */
1645 	if (d_really_is_positive(dentry))
1646 		goto out;
1647 	if (fhandle->size == 0) {
1648 		error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1649 		if (error)
1650 			goto out_error;
1651 	}
1652 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1653 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1654 		struct nfs_server *server = NFS_SB(dentry->d_sb);
1655 		error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL);
1656 		if (error < 0)
1657 			goto out_error;
1658 	}
1659 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1660 	error = PTR_ERR(inode);
1661 	if (IS_ERR(inode))
1662 		goto out_error;
1663 	d_add(dentry, inode);
1664 out:
1665 	dput(parent);
1666 	return 0;
1667 out_error:
1668 	nfs_mark_for_revalidate(dir);
1669 	dput(parent);
1670 	return error;
1671 }
1672 EXPORT_SYMBOL_GPL(nfs_instantiate);
1673 
1674 /*
1675  * Following a failed create operation, we drop the dentry rather
1676  * than retain a negative dentry. This avoids a problem in the event
1677  * that the operation succeeded on the server, but an error in the
1678  * reply path made it appear to have failed.
1679  */
1680 int nfs_create(struct inode *dir, struct dentry *dentry,
1681 		umode_t mode, bool excl)
1682 {
1683 	struct iattr attr;
1684 	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1685 	int error;
1686 
1687 	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1688 			dir->i_sb->s_id, dir->i_ino, dentry);
1689 
1690 	attr.ia_mode = mode;
1691 	attr.ia_valid = ATTR_MODE;
1692 
1693 	trace_nfs_create_enter(dir, dentry, open_flags);
1694 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1695 	trace_nfs_create_exit(dir, dentry, open_flags, error);
1696 	if (error != 0)
1697 		goto out_err;
1698 	return 0;
1699 out_err:
1700 	d_drop(dentry);
1701 	return error;
1702 }
1703 EXPORT_SYMBOL_GPL(nfs_create);
1704 
1705 /*
1706  * See comments for nfs_proc_create regarding failed operations.
1707  */
1708 int
1709 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1710 {
1711 	struct iattr attr;
1712 	int status;
1713 
1714 	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1715 			dir->i_sb->s_id, dir->i_ino, dentry);
1716 
1717 	attr.ia_mode = mode;
1718 	attr.ia_valid = ATTR_MODE;
1719 
1720 	trace_nfs_mknod_enter(dir, dentry);
1721 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1722 	trace_nfs_mknod_exit(dir, dentry, status);
1723 	if (status != 0)
1724 		goto out_err;
1725 	return 0;
1726 out_err:
1727 	d_drop(dentry);
1728 	return status;
1729 }
1730 EXPORT_SYMBOL_GPL(nfs_mknod);
1731 
1732 /*
1733  * See comments for nfs_proc_create regarding failed operations.
1734  */
1735 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1736 {
1737 	struct iattr attr;
1738 	int error;
1739 
1740 	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1741 			dir->i_sb->s_id, dir->i_ino, dentry);
1742 
1743 	attr.ia_valid = ATTR_MODE;
1744 	attr.ia_mode = mode | S_IFDIR;
1745 
1746 	trace_nfs_mkdir_enter(dir, dentry);
1747 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1748 	trace_nfs_mkdir_exit(dir, dentry, error);
1749 	if (error != 0)
1750 		goto out_err;
1751 	return 0;
1752 out_err:
1753 	d_drop(dentry);
1754 	return error;
1755 }
1756 EXPORT_SYMBOL_GPL(nfs_mkdir);
1757 
1758 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1759 {
1760 	if (simple_positive(dentry))
1761 		d_delete(dentry);
1762 }
1763 
1764 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1765 {
1766 	int error;
1767 
1768 	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1769 			dir->i_sb->s_id, dir->i_ino, dentry);
1770 
1771 	trace_nfs_rmdir_enter(dir, dentry);
1772 	if (d_really_is_positive(dentry)) {
1773 		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1774 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1775 		/* Ensure the VFS deletes this inode */
1776 		switch (error) {
1777 		case 0:
1778 			clear_nlink(d_inode(dentry));
1779 			break;
1780 		case -ENOENT:
1781 			nfs_dentry_handle_enoent(dentry);
1782 		}
1783 		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1784 	} else
1785 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1786 	trace_nfs_rmdir_exit(dir, dentry, error);
1787 
1788 	return error;
1789 }
1790 EXPORT_SYMBOL_GPL(nfs_rmdir);
1791 
1792 /*
1793  * Remove a file after making sure there are no pending writes,
1794  * and after checking that the file has only one user.
1795  *
1796  * We invalidate the attribute cache and free the inode prior to the operation
1797  * to avoid possible races if the server reuses the inode.
1798  */
1799 static int nfs_safe_remove(struct dentry *dentry)
1800 {
1801 	struct inode *dir = d_inode(dentry->d_parent);
1802 	struct inode *inode = d_inode(dentry);
1803 	int error = -EBUSY;
1804 
1805 	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
1806 
1807 	/* If the dentry was sillyrenamed, we simply call d_delete() */
1808 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1809 		error = 0;
1810 		goto out;
1811 	}
1812 
1813 	trace_nfs_remove_enter(dir, dentry);
1814 	if (inode != NULL) {
1815 		error = NFS_PROTO(dir)->remove(dir, dentry);
1816 		if (error == 0)
1817 			nfs_drop_nlink(inode);
1818 	} else
1819 		error = NFS_PROTO(dir)->remove(dir, dentry);
1820 	if (error == -ENOENT)
1821 		nfs_dentry_handle_enoent(dentry);
1822 	trace_nfs_remove_exit(dir, dentry, error);
1823 out:
1824 	return error;
1825 }
1826 
1827 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1828  *  belongs to an active ".nfs..." file and we return -EBUSY.
1829  *
1830  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1831  */
1832 int nfs_unlink(struct inode *dir, struct dentry *dentry)
1833 {
1834 	int error;
1835 	int need_rehash = 0;
1836 
1837 	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
1838 		dir->i_ino, dentry);
1839 
1840 	trace_nfs_unlink_enter(dir, dentry);
1841 	spin_lock(&dentry->d_lock);
1842 	if (d_count(dentry) > 1) {
1843 		spin_unlock(&dentry->d_lock);
1844 		/* Start asynchronous writeout of the inode */
1845 		write_inode_now(d_inode(dentry), 0);
1846 		error = nfs_sillyrename(dir, dentry);
1847 		goto out;
1848 	}
1849 	if (!d_unhashed(dentry)) {
1850 		__d_drop(dentry);
1851 		need_rehash = 1;
1852 	}
1853 	spin_unlock(&dentry->d_lock);
1854 	error = nfs_safe_remove(dentry);
1855 	if (!error || error == -ENOENT) {
1856 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1857 	} else if (need_rehash)
1858 		d_rehash(dentry);
1859 out:
1860 	trace_nfs_unlink_exit(dir, dentry, error);
1861 	return error;
1862 }
1863 EXPORT_SYMBOL_GPL(nfs_unlink);
1864 
1865 /*
1866  * To create a symbolic link, most file systems instantiate a new inode,
1867  * add a page to it containing the path, then write it out to the disk
1868  * using prepare_write/commit_write.
1869  *
1870  * Unfortunately the NFS client can't create the in-core inode first
1871  * because it needs a file handle to create an in-core inode (see
1872  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1873  * symlink request has completed on the server.
1874  *
1875  * So instead we allocate a raw page, copy the symname into it, then do
1876  * the SYMLINK request with the page as the buffer.  If it succeeds, we
1877  * now have a new file handle and can instantiate an in-core NFS inode
1878  * and move the raw page into its mapping.
1879  */
1880 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1881 {
1882 	struct page *page;
1883 	char *kaddr;
1884 	struct iattr attr;
1885 	unsigned int pathlen = strlen(symname);
1886 	int error;
1887 
1888 	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
1889 		dir->i_ino, dentry, symname);
1890 
1891 	if (pathlen > PAGE_SIZE)
1892 		return -ENAMETOOLONG;
1893 
1894 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
1895 	attr.ia_valid = ATTR_MODE;
1896 
1897 	page = alloc_page(GFP_USER);
1898 	if (!page)
1899 		return -ENOMEM;
1900 
1901 	kaddr = page_address(page);
1902 	memcpy(kaddr, symname, pathlen);
1903 	if (pathlen < PAGE_SIZE)
1904 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1905 
1906 	trace_nfs_symlink_enter(dir, dentry);
1907 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1908 	trace_nfs_symlink_exit(dir, dentry, error);
1909 	if (error != 0) {
1910 		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1911 			dir->i_sb->s_id, dir->i_ino,
1912 			dentry, symname, error);
1913 		d_drop(dentry);
1914 		__free_page(page);
1915 		return error;
1916 	}
1917 
1918 	/*
1919 	 * No big deal if we can't add this page to the page cache here.
1920 	 * READLINK will get the missing page from the server if needed.
1921 	 */
1922 	if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
1923 							GFP_KERNEL)) {
1924 		SetPageUptodate(page);
1925 		unlock_page(page);
1926 		/*
1927 		 * add_to_page_cache_lru() grabs an extra page refcount.
1928 		 * Drop it here to avoid leaking this page later.
1929 		 */
1930 		put_page(page);
1931 	} else
1932 		__free_page(page);
1933 
1934 	return 0;
1935 }
1936 EXPORT_SYMBOL_GPL(nfs_symlink);
1937 
1938 int
1939 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1940 {
1941 	struct inode *inode = d_inode(old_dentry);
1942 	int error;
1943 
1944 	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
1945 		old_dentry, dentry);
1946 
1947 	trace_nfs_link_enter(inode, dir, dentry);
1948 	d_drop(dentry);
1949 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1950 	if (error == 0) {
1951 		ihold(inode);
1952 		d_add(dentry, inode);
1953 	}
1954 	trace_nfs_link_exit(inode, dir, dentry, error);
1955 	return error;
1956 }
1957 EXPORT_SYMBOL_GPL(nfs_link);
1958 
1959 /*
1960  * RENAME
1961  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1962  * different file handle for the same inode after a rename (e.g. when
1963  * moving to a different directory). A fail-safe method to do so would
1964  * be to look up old_dir/old_name, create a link to new_dir/new_name and
1965  * rename the old file using the sillyrename stuff. This way, the original
1966  * file in old_dir will go away when the last process iput()s the inode.
1967  *
1968  * FIXED.
1969  *
1970  * It actually works quite well. One needs to have the possibility for
1971  * at least one ".nfs..." file in each directory the file ever gets
1972  * moved or linked to which happens automagically with the new
1973  * implementation that only depends on the dcache stuff instead of
1974  * using the inode layer
1975  *
1976  * Unfortunately, things are a little more complicated than indicated
1977  * above. For a cross-directory move, we want to make sure we can get
1978  * rid of the old inode after the operation.  This means there must be
1979  * no pending writes (if it's a file), and the use count must be 1.
1980  * If these conditions are met, we can drop the dentries before doing
1981  * the rename.
1982  */
1983 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1984 	       struct inode *new_dir, struct dentry *new_dentry,
1985 	       unsigned int flags)
1986 {
1987 	struct inode *old_inode = d_inode(old_dentry);
1988 	struct inode *new_inode = d_inode(new_dentry);
1989 	struct dentry *dentry = NULL, *rehash = NULL;
1990 	struct rpc_task *task;
1991 	int error = -EBUSY;
1992 
1993 	if (flags)
1994 		return -EINVAL;
1995 
1996 	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
1997 		 old_dentry, new_dentry,
1998 		 d_count(new_dentry));
1999 
2000 	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2001 	/*
2002 	 * For non-directories, check whether the target is busy and if so,
2003 	 * make a copy of the dentry and then do a silly-rename. If the
2004 	 * silly-rename succeeds, the copied dentry is hashed and becomes
2005 	 * the new target.
2006 	 */
2007 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2008 		/*
2009 		 * To prevent any new references to the target during the
2010 		 * rename, we unhash the dentry in advance.
2011 		 */
2012 		if (!d_unhashed(new_dentry)) {
2013 			d_drop(new_dentry);
2014 			rehash = new_dentry;
2015 		}
2016 
2017 		if (d_count(new_dentry) > 2) {
2018 			int err;
2019 
2020 			/* copy the target dentry's name */
2021 			dentry = d_alloc(new_dentry->d_parent,
2022 					 &new_dentry->d_name);
2023 			if (!dentry)
2024 				goto out;
2025 
2026 			/* silly-rename the existing target ... */
2027 			err = nfs_sillyrename(new_dir, new_dentry);
2028 			if (err)
2029 				goto out;
2030 
2031 			new_dentry = dentry;
2032 			rehash = NULL;
2033 			new_inode = NULL;
2034 		}
2035 	}
2036 
2037 	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2038 	if (IS_ERR(task)) {
2039 		error = PTR_ERR(task);
2040 		goto out;
2041 	}
2042 
2043 	error = rpc_wait_for_completion_task(task);
2044 	if (error != 0) {
2045 		((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2046 		/* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2047 		smp_wmb();
2048 	} else
2049 		error = task->tk_status;
2050 	rpc_put_task(task);
2051 	nfs_mark_for_revalidate(old_inode);
2052 out:
2053 	if (rehash)
2054 		d_rehash(rehash);
2055 	trace_nfs_rename_exit(old_dir, old_dentry,
2056 			new_dir, new_dentry, error);
2057 	if (!error) {
2058 		if (new_inode != NULL)
2059 			nfs_drop_nlink(new_inode);
2060 		/*
2061 		 * The d_move() should be here instead of in an async RPC completion
2062 		 * handler because we need the proper locks to move the dentry.  If
2063 		 * we're interrupted by a signal, the async RPC completion handler
2064 		 * should mark the directories for revalidation.
2065 		 */
2066 		d_move(old_dentry, new_dentry);
2067 		nfs_set_verifier(old_dentry,
2068 					nfs_save_change_attribute(new_dir));
2069 	} else if (error == -ENOENT)
2070 		nfs_dentry_handle_enoent(old_dentry);
2071 
2072 	/* new dentry created? */
2073 	if (dentry)
2074 		dput(dentry);
2075 	return error;
2076 }
2077 EXPORT_SYMBOL_GPL(nfs_rename);
2078 
2079 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2080 static LIST_HEAD(nfs_access_lru_list);
2081 static atomic_long_t nfs_access_nr_entries;
2082 
2083 static unsigned long nfs_access_max_cachesize = ULONG_MAX;
2084 module_param(nfs_access_max_cachesize, ulong, 0644);
2085 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2086 
2087 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2088 {
2089 	put_rpccred(entry->cred);
2090 	kfree_rcu(entry, rcu_head);
2091 	smp_mb__before_atomic();
2092 	atomic_long_dec(&nfs_access_nr_entries);
2093 	smp_mb__after_atomic();
2094 }
2095 
2096 static void nfs_access_free_list(struct list_head *head)
2097 {
2098 	struct nfs_access_entry *cache;
2099 
2100 	while (!list_empty(head)) {
2101 		cache = list_entry(head->next, struct nfs_access_entry, lru);
2102 		list_del(&cache->lru);
2103 		nfs_access_free_entry(cache);
2104 	}
2105 }
2106 
2107 static unsigned long
2108 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2109 {
2110 	LIST_HEAD(head);
2111 	struct nfs_inode *nfsi, *next;
2112 	struct nfs_access_entry *cache;
2113 	long freed = 0;
2114 
2115 	spin_lock(&nfs_access_lru_lock);
2116 	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2117 		struct inode *inode;
2118 
2119 		if (nr_to_scan-- == 0)
2120 			break;
2121 		inode = &nfsi->vfs_inode;
2122 		spin_lock(&inode->i_lock);
2123 		if (list_empty(&nfsi->access_cache_entry_lru))
2124 			goto remove_lru_entry;
2125 		cache = list_entry(nfsi->access_cache_entry_lru.next,
2126 				struct nfs_access_entry, lru);
2127 		list_move(&cache->lru, &head);
2128 		rb_erase(&cache->rb_node, &nfsi->access_cache);
2129 		freed++;
2130 		if (!list_empty(&nfsi->access_cache_entry_lru))
2131 			list_move_tail(&nfsi->access_cache_inode_lru,
2132 					&nfs_access_lru_list);
2133 		else {
2134 remove_lru_entry:
2135 			list_del_init(&nfsi->access_cache_inode_lru);
2136 			smp_mb__before_atomic();
2137 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2138 			smp_mb__after_atomic();
2139 		}
2140 		spin_unlock(&inode->i_lock);
2141 	}
2142 	spin_unlock(&nfs_access_lru_lock);
2143 	nfs_access_free_list(&head);
2144 	return freed;
2145 }
2146 
2147 unsigned long
2148 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2149 {
2150 	int nr_to_scan = sc->nr_to_scan;
2151 	gfp_t gfp_mask = sc->gfp_mask;
2152 
2153 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2154 		return SHRINK_STOP;
2155 	return nfs_do_access_cache_scan(nr_to_scan);
2156 }
2157 
2158 
2159 unsigned long
2160 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2161 {
2162 	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2163 }
2164 
2165 static void
2166 nfs_access_cache_enforce_limit(void)
2167 {
2168 	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2169 	unsigned long diff;
2170 	unsigned int nr_to_scan;
2171 
2172 	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2173 		return;
2174 	nr_to_scan = 100;
2175 	diff = nr_entries - nfs_access_max_cachesize;
2176 	if (diff < nr_to_scan)
2177 		nr_to_scan = diff;
2178 	nfs_do_access_cache_scan(nr_to_scan);
2179 }
2180 
2181 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2182 {
2183 	struct rb_root *root_node = &nfsi->access_cache;
2184 	struct rb_node *n;
2185 	struct nfs_access_entry *entry;
2186 
2187 	/* Unhook entries from the cache */
2188 	while ((n = rb_first(root_node)) != NULL) {
2189 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2190 		rb_erase(n, root_node);
2191 		list_move(&entry->lru, head);
2192 	}
2193 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2194 }
2195 
2196 void nfs_access_zap_cache(struct inode *inode)
2197 {
2198 	LIST_HEAD(head);
2199 
2200 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2201 		return;
2202 	/* Remove from global LRU init */
2203 	spin_lock(&nfs_access_lru_lock);
2204 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2205 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2206 
2207 	spin_lock(&inode->i_lock);
2208 	__nfs_access_zap_cache(NFS_I(inode), &head);
2209 	spin_unlock(&inode->i_lock);
2210 	spin_unlock(&nfs_access_lru_lock);
2211 	nfs_access_free_list(&head);
2212 }
2213 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2214 
2215 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2216 {
2217 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2218 	struct nfs_access_entry *entry;
2219 
2220 	while (n != NULL) {
2221 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2222 
2223 		if (cred < entry->cred)
2224 			n = n->rb_left;
2225 		else if (cred > entry->cred)
2226 			n = n->rb_right;
2227 		else
2228 			return entry;
2229 	}
2230 	return NULL;
2231 }
2232 
2233 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res, bool may_block)
2234 {
2235 	struct nfs_inode *nfsi = NFS_I(inode);
2236 	struct nfs_access_entry *cache;
2237 	bool retry = true;
2238 	int err;
2239 
2240 	spin_lock(&inode->i_lock);
2241 	for(;;) {
2242 		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2243 			goto out_zap;
2244 		cache = nfs_access_search_rbtree(inode, cred);
2245 		err = -ENOENT;
2246 		if (cache == NULL)
2247 			goto out;
2248 		/* Found an entry, is our attribute cache valid? */
2249 		if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2250 			break;
2251 		err = -ECHILD;
2252 		if (!may_block)
2253 			goto out;
2254 		if (!retry)
2255 			goto out_zap;
2256 		spin_unlock(&inode->i_lock);
2257 		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2258 		if (err)
2259 			return err;
2260 		spin_lock(&inode->i_lock);
2261 		retry = false;
2262 	}
2263 	res->cred = cache->cred;
2264 	res->mask = cache->mask;
2265 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2266 	err = 0;
2267 out:
2268 	spin_unlock(&inode->i_lock);
2269 	return err;
2270 out_zap:
2271 	spin_unlock(&inode->i_lock);
2272 	nfs_access_zap_cache(inode);
2273 	return -ENOENT;
2274 }
2275 
2276 static int nfs_access_get_cached_rcu(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2277 {
2278 	/* Only check the most recently returned cache entry,
2279 	 * but do it without locking.
2280 	 */
2281 	struct nfs_inode *nfsi = NFS_I(inode);
2282 	struct nfs_access_entry *cache;
2283 	int err = -ECHILD;
2284 	struct list_head *lh;
2285 
2286 	rcu_read_lock();
2287 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2288 		goto out;
2289 	lh = rcu_dereference(nfsi->access_cache_entry_lru.prev);
2290 	cache = list_entry(lh, struct nfs_access_entry, lru);
2291 	if (lh == &nfsi->access_cache_entry_lru ||
2292 	    cred != cache->cred)
2293 		cache = NULL;
2294 	if (cache == NULL)
2295 		goto out;
2296 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2297 		goto out;
2298 	res->cred = cache->cred;
2299 	res->mask = cache->mask;
2300 	err = 0;
2301 out:
2302 	rcu_read_unlock();
2303 	return err;
2304 }
2305 
2306 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2307 {
2308 	struct nfs_inode *nfsi = NFS_I(inode);
2309 	struct rb_root *root_node = &nfsi->access_cache;
2310 	struct rb_node **p = &root_node->rb_node;
2311 	struct rb_node *parent = NULL;
2312 	struct nfs_access_entry *entry;
2313 
2314 	spin_lock(&inode->i_lock);
2315 	while (*p != NULL) {
2316 		parent = *p;
2317 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2318 
2319 		if (set->cred < entry->cred)
2320 			p = &parent->rb_left;
2321 		else if (set->cred > entry->cred)
2322 			p = &parent->rb_right;
2323 		else
2324 			goto found;
2325 	}
2326 	rb_link_node(&set->rb_node, parent, p);
2327 	rb_insert_color(&set->rb_node, root_node);
2328 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2329 	spin_unlock(&inode->i_lock);
2330 	return;
2331 found:
2332 	rb_replace_node(parent, &set->rb_node, root_node);
2333 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2334 	list_del(&entry->lru);
2335 	spin_unlock(&inode->i_lock);
2336 	nfs_access_free_entry(entry);
2337 }
2338 
2339 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2340 {
2341 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2342 	if (cache == NULL)
2343 		return;
2344 	RB_CLEAR_NODE(&cache->rb_node);
2345 	cache->cred = get_rpccred(set->cred);
2346 	cache->mask = set->mask;
2347 
2348 	/* The above field assignments must be visible
2349 	 * before this item appears on the lru.  We cannot easily
2350 	 * use rcu_assign_pointer, so just force the memory barrier.
2351 	 */
2352 	smp_wmb();
2353 	nfs_access_add_rbtree(inode, cache);
2354 
2355 	/* Update accounting */
2356 	smp_mb__before_atomic();
2357 	atomic_long_inc(&nfs_access_nr_entries);
2358 	smp_mb__after_atomic();
2359 
2360 	/* Add inode to global LRU list */
2361 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2362 		spin_lock(&nfs_access_lru_lock);
2363 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2364 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2365 					&nfs_access_lru_list);
2366 		spin_unlock(&nfs_access_lru_lock);
2367 	}
2368 	nfs_access_cache_enforce_limit();
2369 }
2370 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2371 
2372 #define NFS_MAY_READ (NFS_ACCESS_READ)
2373 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2374 		NFS_ACCESS_EXTEND | \
2375 		NFS_ACCESS_DELETE)
2376 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2377 		NFS_ACCESS_EXTEND)
2378 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2379 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2380 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2381 static int
2382 nfs_access_calc_mask(u32 access_result, umode_t umode)
2383 {
2384 	int mask = 0;
2385 
2386 	if (access_result & NFS_MAY_READ)
2387 		mask |= MAY_READ;
2388 	if (S_ISDIR(umode)) {
2389 		if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2390 			mask |= MAY_WRITE;
2391 		if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2392 			mask |= MAY_EXEC;
2393 	} else if (S_ISREG(umode)) {
2394 		if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2395 			mask |= MAY_WRITE;
2396 		if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2397 			mask |= MAY_EXEC;
2398 	} else if (access_result & NFS_MAY_WRITE)
2399 			mask |= MAY_WRITE;
2400 	return mask;
2401 }
2402 
2403 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2404 {
2405 	entry->mask = access_result;
2406 }
2407 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2408 
2409 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2410 {
2411 	struct nfs_access_entry cache;
2412 	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2413 	int cache_mask;
2414 	int status;
2415 
2416 	trace_nfs_access_enter(inode);
2417 
2418 	status = nfs_access_get_cached_rcu(inode, cred, &cache);
2419 	if (status != 0)
2420 		status = nfs_access_get_cached(inode, cred, &cache, may_block);
2421 	if (status == 0)
2422 		goto out_cached;
2423 
2424 	status = -ECHILD;
2425 	if (!may_block)
2426 		goto out;
2427 
2428 	/*
2429 	 * Determine which access bits we want to ask for...
2430 	 */
2431 	cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND;
2432 	if (S_ISDIR(inode->i_mode))
2433 		cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
2434 	else
2435 		cache.mask |= NFS_ACCESS_EXECUTE;
2436 	cache.cred = cred;
2437 	status = NFS_PROTO(inode)->access(inode, &cache);
2438 	if (status != 0) {
2439 		if (status == -ESTALE) {
2440 			nfs_zap_caches(inode);
2441 			if (!S_ISDIR(inode->i_mode))
2442 				set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2443 		}
2444 		goto out;
2445 	}
2446 	nfs_access_add_cache(inode, &cache);
2447 out_cached:
2448 	cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
2449 	if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2450 		status = -EACCES;
2451 out:
2452 	trace_nfs_access_exit(inode, status);
2453 	return status;
2454 }
2455 
2456 static int nfs_open_permission_mask(int openflags)
2457 {
2458 	int mask = 0;
2459 
2460 	if (openflags & __FMODE_EXEC) {
2461 		/* ONLY check exec rights */
2462 		mask = MAY_EXEC;
2463 	} else {
2464 		if ((openflags & O_ACCMODE) != O_WRONLY)
2465 			mask |= MAY_READ;
2466 		if ((openflags & O_ACCMODE) != O_RDONLY)
2467 			mask |= MAY_WRITE;
2468 	}
2469 
2470 	return mask;
2471 }
2472 
2473 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2474 {
2475 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2476 }
2477 EXPORT_SYMBOL_GPL(nfs_may_open);
2478 
2479 static int nfs_execute_ok(struct inode *inode, int mask)
2480 {
2481 	struct nfs_server *server = NFS_SERVER(inode);
2482 	int ret = 0;
2483 
2484 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) {
2485 		if (mask & MAY_NOT_BLOCK)
2486 			return -ECHILD;
2487 		ret = __nfs_revalidate_inode(server, inode);
2488 	}
2489 	if (ret == 0 && !execute_ok(inode))
2490 		ret = -EACCES;
2491 	return ret;
2492 }
2493 
2494 int nfs_permission(struct inode *inode, int mask)
2495 {
2496 	struct rpc_cred *cred;
2497 	int res = 0;
2498 
2499 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2500 
2501 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2502 		goto out;
2503 	/* Is this sys_access() ? */
2504 	if (mask & (MAY_ACCESS | MAY_CHDIR))
2505 		goto force_lookup;
2506 
2507 	switch (inode->i_mode & S_IFMT) {
2508 		case S_IFLNK:
2509 			goto out;
2510 		case S_IFREG:
2511 			if ((mask & MAY_OPEN) &&
2512 			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2513 				return 0;
2514 			break;
2515 		case S_IFDIR:
2516 			/*
2517 			 * Optimize away all write operations, since the server
2518 			 * will check permissions when we perform the op.
2519 			 */
2520 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2521 				goto out;
2522 	}
2523 
2524 force_lookup:
2525 	if (!NFS_PROTO(inode)->access)
2526 		goto out_notsup;
2527 
2528 	/* Always try fast lookups first */
2529 	rcu_read_lock();
2530 	cred = rpc_lookup_cred_nonblock();
2531 	if (!IS_ERR(cred))
2532 		res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK);
2533 	else
2534 		res = PTR_ERR(cred);
2535 	rcu_read_unlock();
2536 	if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) {
2537 		/* Fast lookup failed, try the slow way */
2538 		cred = rpc_lookup_cred();
2539 		if (!IS_ERR(cred)) {
2540 			res = nfs_do_access(inode, cred, mask);
2541 			put_rpccred(cred);
2542 		} else
2543 			res = PTR_ERR(cred);
2544 	}
2545 out:
2546 	if (!res && (mask & MAY_EXEC))
2547 		res = nfs_execute_ok(inode, mask);
2548 
2549 	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2550 		inode->i_sb->s_id, inode->i_ino, mask, res);
2551 	return res;
2552 out_notsup:
2553 	if (mask & MAY_NOT_BLOCK)
2554 		return -ECHILD;
2555 
2556 	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2557 	if (res == 0)
2558 		res = generic_permission(inode, mask);
2559 	goto out;
2560 }
2561 EXPORT_SYMBOL_GPL(nfs_permission);
2562 
2563 /*
2564  * Local variables:
2565  *  version-control: t
2566  *  kept-new-versions: 5
2567  * End:
2568  */
2569