xref: /openbmc/linux/fs/nfs/dir.c (revision 4161b450)
1 /*
2  *  linux/fs/nfs/dir.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  nfs directory handling functions
7  *
8  * 10 Apr 1996	Added silly rename for unlink	--okir
9  * 28 Sep 1996	Improved directory cache --okir
10  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
11  *              Re-implemented silly rename for unlink, newly implemented
12  *              silly rename for nfs_rename() following the suggestions
13  *              of Olaf Kirch (okir) found in this file.
14  *              Following Linus comments on my original hack, this version
15  *              depends only on the dcache stuff and doesn't touch the inode
16  *              layer (iput() and friends).
17  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
18  */
19 
20 #include <linux/module.h>
21 #include <linux/time.h>
22 #include <linux/errno.h>
23 #include <linux/stat.h>
24 #include <linux/fcntl.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/mm.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/nfs_fs.h>
31 #include <linux/nfs_mount.h>
32 #include <linux/pagemap.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/swap.h>
37 #include <linux/sched.h>
38 #include <linux/kmemleak.h>
39 #include <linux/xattr.h>
40 
41 #include "delegation.h"
42 #include "iostat.h"
43 #include "internal.h"
44 #include "fscache.h"
45 
46 #include "nfstrace.h"
47 
48 /* #define NFS_DEBUG_VERBOSE 1 */
49 
50 static int nfs_opendir(struct inode *, struct file *);
51 static int nfs_closedir(struct inode *, struct file *);
52 static int nfs_readdir(struct file *, struct dir_context *);
53 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
54 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
55 static void nfs_readdir_clear_array(struct page*);
56 
57 const struct file_operations nfs_dir_operations = {
58 	.llseek		= nfs_llseek_dir,
59 	.read		= generic_read_dir,
60 	.iterate	= nfs_readdir,
61 	.open		= nfs_opendir,
62 	.release	= nfs_closedir,
63 	.fsync		= nfs_fsync_dir,
64 };
65 
66 const struct address_space_operations nfs_dir_aops = {
67 	.freepage = nfs_readdir_clear_array,
68 };
69 
70 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
71 {
72 	struct nfs_inode *nfsi = NFS_I(dir);
73 	struct nfs_open_dir_context *ctx;
74 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
75 	if (ctx != NULL) {
76 		ctx->duped = 0;
77 		ctx->attr_gencount = nfsi->attr_gencount;
78 		ctx->dir_cookie = 0;
79 		ctx->dup_cookie = 0;
80 		ctx->cred = get_rpccred(cred);
81 		spin_lock(&dir->i_lock);
82 		list_add(&ctx->list, &nfsi->open_files);
83 		spin_unlock(&dir->i_lock);
84 		return ctx;
85 	}
86 	return  ERR_PTR(-ENOMEM);
87 }
88 
89 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
90 {
91 	spin_lock(&dir->i_lock);
92 	list_del(&ctx->list);
93 	spin_unlock(&dir->i_lock);
94 	put_rpccred(ctx->cred);
95 	kfree(ctx);
96 }
97 
98 /*
99  * Open file
100  */
101 static int
102 nfs_opendir(struct inode *inode, struct file *filp)
103 {
104 	int res = 0;
105 	struct nfs_open_dir_context *ctx;
106 	struct rpc_cred *cred;
107 
108 	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
109 
110 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
111 
112 	cred = rpc_lookup_cred();
113 	if (IS_ERR(cred))
114 		return PTR_ERR(cred);
115 	ctx = alloc_nfs_open_dir_context(inode, cred);
116 	if (IS_ERR(ctx)) {
117 		res = PTR_ERR(ctx);
118 		goto out;
119 	}
120 	filp->private_data = ctx;
121 	if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
122 		/* This is a mountpoint, so d_revalidate will never
123 		 * have been called, so we need to refresh the
124 		 * inode (for close-open consistency) ourselves.
125 		 */
126 		__nfs_revalidate_inode(NFS_SERVER(inode), inode);
127 	}
128 out:
129 	put_rpccred(cred);
130 	return res;
131 }
132 
133 static int
134 nfs_closedir(struct inode *inode, struct file *filp)
135 {
136 	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
137 	return 0;
138 }
139 
140 struct nfs_cache_array_entry {
141 	u64 cookie;
142 	u64 ino;
143 	struct qstr string;
144 	unsigned char d_type;
145 };
146 
147 struct nfs_cache_array {
148 	int size;
149 	int eof_index;
150 	u64 last_cookie;
151 	struct nfs_cache_array_entry array[0];
152 };
153 
154 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
155 typedef struct {
156 	struct file	*file;
157 	struct page	*page;
158 	struct dir_context *ctx;
159 	unsigned long	page_index;
160 	u64		*dir_cookie;
161 	u64		last_cookie;
162 	loff_t		current_index;
163 	decode_dirent_t	decode;
164 
165 	unsigned long	timestamp;
166 	unsigned long	gencount;
167 	unsigned int	cache_entry_index;
168 	unsigned int	plus:1;
169 	unsigned int	eof:1;
170 } nfs_readdir_descriptor_t;
171 
172 /*
173  * The caller is responsible for calling nfs_readdir_release_array(page)
174  */
175 static
176 struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
177 {
178 	void *ptr;
179 	if (page == NULL)
180 		return ERR_PTR(-EIO);
181 	ptr = kmap(page);
182 	if (ptr == NULL)
183 		return ERR_PTR(-ENOMEM);
184 	return ptr;
185 }
186 
187 static
188 void nfs_readdir_release_array(struct page *page)
189 {
190 	kunmap(page);
191 }
192 
193 /*
194  * we are freeing strings created by nfs_add_to_readdir_array()
195  */
196 static
197 void nfs_readdir_clear_array(struct page *page)
198 {
199 	struct nfs_cache_array *array;
200 	int i;
201 
202 	array = kmap_atomic(page);
203 	for (i = 0; i < array->size; i++)
204 		kfree(array->array[i].string.name);
205 	kunmap_atomic(array);
206 }
207 
208 /*
209  * the caller is responsible for freeing qstr.name
210  * when called by nfs_readdir_add_to_array, the strings will be freed in
211  * nfs_clear_readdir_array()
212  */
213 static
214 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
215 {
216 	string->len = len;
217 	string->name = kmemdup(name, len, GFP_KERNEL);
218 	if (string->name == NULL)
219 		return -ENOMEM;
220 	/*
221 	 * Avoid a kmemleak false positive. The pointer to the name is stored
222 	 * in a page cache page which kmemleak does not scan.
223 	 */
224 	kmemleak_not_leak(string->name);
225 	string->hash = full_name_hash(name, len);
226 	return 0;
227 }
228 
229 static
230 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
231 {
232 	struct nfs_cache_array *array = nfs_readdir_get_array(page);
233 	struct nfs_cache_array_entry *cache_entry;
234 	int ret;
235 
236 	if (IS_ERR(array))
237 		return PTR_ERR(array);
238 
239 	cache_entry = &array->array[array->size];
240 
241 	/* Check that this entry lies within the page bounds */
242 	ret = -ENOSPC;
243 	if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
244 		goto out;
245 
246 	cache_entry->cookie = entry->prev_cookie;
247 	cache_entry->ino = entry->ino;
248 	cache_entry->d_type = entry->d_type;
249 	ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
250 	if (ret)
251 		goto out;
252 	array->last_cookie = entry->cookie;
253 	array->size++;
254 	if (entry->eof != 0)
255 		array->eof_index = array->size;
256 out:
257 	nfs_readdir_release_array(page);
258 	return ret;
259 }
260 
261 static
262 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
263 {
264 	loff_t diff = desc->ctx->pos - desc->current_index;
265 	unsigned int index;
266 
267 	if (diff < 0)
268 		goto out_eof;
269 	if (diff >= array->size) {
270 		if (array->eof_index >= 0)
271 			goto out_eof;
272 		return -EAGAIN;
273 	}
274 
275 	index = (unsigned int)diff;
276 	*desc->dir_cookie = array->array[index].cookie;
277 	desc->cache_entry_index = index;
278 	return 0;
279 out_eof:
280 	desc->eof = 1;
281 	return -EBADCOOKIE;
282 }
283 
284 static bool
285 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
286 {
287 	if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
288 		return false;
289 	smp_rmb();
290 	return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
291 }
292 
293 static
294 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
295 {
296 	int i;
297 	loff_t new_pos;
298 	int status = -EAGAIN;
299 
300 	for (i = 0; i < array->size; i++) {
301 		if (array->array[i].cookie == *desc->dir_cookie) {
302 			struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
303 			struct nfs_open_dir_context *ctx = desc->file->private_data;
304 
305 			new_pos = desc->current_index + i;
306 			if (ctx->attr_gencount != nfsi->attr_gencount ||
307 			    !nfs_readdir_inode_mapping_valid(nfsi)) {
308 				ctx->duped = 0;
309 				ctx->attr_gencount = nfsi->attr_gencount;
310 			} else if (new_pos < desc->ctx->pos) {
311 				if (ctx->duped > 0
312 				    && ctx->dup_cookie == *desc->dir_cookie) {
313 					if (printk_ratelimit()) {
314 						pr_notice("NFS: directory %pD2 contains a readdir loop."
315 								"Please contact your server vendor.  "
316 								"The file: %.*s has duplicate cookie %llu\n",
317 								desc->file, array->array[i].string.len,
318 								array->array[i].string.name, *desc->dir_cookie);
319 					}
320 					status = -ELOOP;
321 					goto out;
322 				}
323 				ctx->dup_cookie = *desc->dir_cookie;
324 				ctx->duped = -1;
325 			}
326 			desc->ctx->pos = new_pos;
327 			desc->cache_entry_index = i;
328 			return 0;
329 		}
330 	}
331 	if (array->eof_index >= 0) {
332 		status = -EBADCOOKIE;
333 		if (*desc->dir_cookie == array->last_cookie)
334 			desc->eof = 1;
335 	}
336 out:
337 	return status;
338 }
339 
340 static
341 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
342 {
343 	struct nfs_cache_array *array;
344 	int status;
345 
346 	array = nfs_readdir_get_array(desc->page);
347 	if (IS_ERR(array)) {
348 		status = PTR_ERR(array);
349 		goto out;
350 	}
351 
352 	if (*desc->dir_cookie == 0)
353 		status = nfs_readdir_search_for_pos(array, desc);
354 	else
355 		status = nfs_readdir_search_for_cookie(array, desc);
356 
357 	if (status == -EAGAIN) {
358 		desc->last_cookie = array->last_cookie;
359 		desc->current_index += array->size;
360 		desc->page_index++;
361 	}
362 	nfs_readdir_release_array(desc->page);
363 out:
364 	return status;
365 }
366 
367 /* Fill a page with xdr information before transferring to the cache page */
368 static
369 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
370 			struct nfs_entry *entry, struct file *file, struct inode *inode)
371 {
372 	struct nfs_open_dir_context *ctx = file->private_data;
373 	struct rpc_cred	*cred = ctx->cred;
374 	unsigned long	timestamp, gencount;
375 	int		error;
376 
377  again:
378 	timestamp = jiffies;
379 	gencount = nfs_inc_attr_generation_counter();
380 	error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages,
381 					  NFS_SERVER(inode)->dtsize, desc->plus);
382 	if (error < 0) {
383 		/* We requested READDIRPLUS, but the server doesn't grok it */
384 		if (error == -ENOTSUPP && desc->plus) {
385 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
386 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
387 			desc->plus = 0;
388 			goto again;
389 		}
390 		goto error;
391 	}
392 	desc->timestamp = timestamp;
393 	desc->gencount = gencount;
394 error:
395 	return error;
396 }
397 
398 static int xdr_decode(nfs_readdir_descriptor_t *desc,
399 		      struct nfs_entry *entry, struct xdr_stream *xdr)
400 {
401 	int error;
402 
403 	error = desc->decode(xdr, entry, desc->plus);
404 	if (error)
405 		return error;
406 	entry->fattr->time_start = desc->timestamp;
407 	entry->fattr->gencount = desc->gencount;
408 	return 0;
409 }
410 
411 static
412 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
413 {
414 	if (dentry->d_inode == NULL)
415 		goto different;
416 	if (nfs_compare_fh(entry->fh, NFS_FH(dentry->d_inode)) != 0)
417 		goto different;
418 	return 1;
419 different:
420 	return 0;
421 }
422 
423 static
424 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
425 {
426 	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
427 		return false;
428 	if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
429 		return true;
430 	if (ctx->pos == 0)
431 		return true;
432 	return false;
433 }
434 
435 /*
436  * This function is called by the lookup code to request the use of
437  * readdirplus to accelerate any future lookups in the same
438  * directory.
439  */
440 static
441 void nfs_advise_use_readdirplus(struct inode *dir)
442 {
443 	set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags);
444 }
445 
446 /*
447  * This function is mainly for use by nfs_getattr().
448  *
449  * If this is an 'ls -l', we want to force use of readdirplus.
450  * Do this by checking if there is an active file descriptor
451  * and calling nfs_advise_use_readdirplus, then forcing a
452  * cache flush.
453  */
454 void nfs_force_use_readdirplus(struct inode *dir)
455 {
456 	if (!list_empty(&NFS_I(dir)->open_files)) {
457 		nfs_advise_use_readdirplus(dir);
458 		nfs_zap_mapping(dir, dir->i_mapping);
459 	}
460 }
461 
462 static
463 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
464 {
465 	struct qstr filename = QSTR_INIT(entry->name, entry->len);
466 	struct dentry *dentry;
467 	struct dentry *alias;
468 	struct inode *dir = parent->d_inode;
469 	struct inode *inode;
470 	int status;
471 
472 	if (filename.name[0] == '.') {
473 		if (filename.len == 1)
474 			return;
475 		if (filename.len == 2 && filename.name[1] == '.')
476 			return;
477 	}
478 	filename.hash = full_name_hash(filename.name, filename.len);
479 
480 	dentry = d_lookup(parent, &filename);
481 	if (dentry != NULL) {
482 		if (nfs_same_file(dentry, entry)) {
483 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
484 			status = nfs_refresh_inode(dentry->d_inode, entry->fattr);
485 			if (!status)
486 				nfs_setsecurity(dentry->d_inode, entry->fattr, entry->label);
487 			goto out;
488 		} else {
489 			d_invalidate(dentry);
490 			dput(dentry);
491 		}
492 	}
493 
494 	dentry = d_alloc(parent, &filename);
495 	if (dentry == NULL)
496 		return;
497 
498 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
499 	if (IS_ERR(inode))
500 		goto out;
501 
502 	alias = d_splice_alias(inode, dentry);
503 	if (IS_ERR(alias))
504 		goto out;
505 	else if (alias) {
506 		nfs_set_verifier(alias, nfs_save_change_attribute(dir));
507 		dput(alias);
508 	} else
509 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
510 
511 out:
512 	dput(dentry);
513 }
514 
515 /* Perform conversion from xdr to cache array */
516 static
517 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
518 				struct page **xdr_pages, struct page *page, unsigned int buflen)
519 {
520 	struct xdr_stream stream;
521 	struct xdr_buf buf;
522 	struct page *scratch;
523 	struct nfs_cache_array *array;
524 	unsigned int count = 0;
525 	int status;
526 
527 	scratch = alloc_page(GFP_KERNEL);
528 	if (scratch == NULL)
529 		return -ENOMEM;
530 
531 	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
532 	xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
533 
534 	do {
535 		status = xdr_decode(desc, entry, &stream);
536 		if (status != 0) {
537 			if (status == -EAGAIN)
538 				status = 0;
539 			break;
540 		}
541 
542 		count++;
543 
544 		if (desc->plus != 0)
545 			nfs_prime_dcache(desc->file->f_path.dentry, entry);
546 
547 		status = nfs_readdir_add_to_array(entry, page);
548 		if (status != 0)
549 			break;
550 	} while (!entry->eof);
551 
552 	if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
553 		array = nfs_readdir_get_array(page);
554 		if (!IS_ERR(array)) {
555 			array->eof_index = array->size;
556 			status = 0;
557 			nfs_readdir_release_array(page);
558 		} else
559 			status = PTR_ERR(array);
560 	}
561 
562 	put_page(scratch);
563 	return status;
564 }
565 
566 static
567 void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages)
568 {
569 	unsigned int i;
570 	for (i = 0; i < npages; i++)
571 		put_page(pages[i]);
572 }
573 
574 static
575 void nfs_readdir_free_large_page(void *ptr, struct page **pages,
576 		unsigned int npages)
577 {
578 	nfs_readdir_free_pagearray(pages, npages);
579 }
580 
581 /*
582  * nfs_readdir_large_page will allocate pages that must be freed with a call
583  * to nfs_readdir_free_large_page
584  */
585 static
586 int nfs_readdir_large_page(struct page **pages, unsigned int npages)
587 {
588 	unsigned int i;
589 
590 	for (i = 0; i < npages; i++) {
591 		struct page *page = alloc_page(GFP_KERNEL);
592 		if (page == NULL)
593 			goto out_freepages;
594 		pages[i] = page;
595 	}
596 	return 0;
597 
598 out_freepages:
599 	nfs_readdir_free_pagearray(pages, i);
600 	return -ENOMEM;
601 }
602 
603 static
604 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
605 {
606 	struct page *pages[NFS_MAX_READDIR_PAGES];
607 	void *pages_ptr = NULL;
608 	struct nfs_entry entry;
609 	struct file	*file = desc->file;
610 	struct nfs_cache_array *array;
611 	int status = -ENOMEM;
612 	unsigned int array_size = ARRAY_SIZE(pages);
613 
614 	entry.prev_cookie = 0;
615 	entry.cookie = desc->last_cookie;
616 	entry.eof = 0;
617 	entry.fh = nfs_alloc_fhandle();
618 	entry.fattr = nfs_alloc_fattr();
619 	entry.server = NFS_SERVER(inode);
620 	if (entry.fh == NULL || entry.fattr == NULL)
621 		goto out;
622 
623 	entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
624 	if (IS_ERR(entry.label)) {
625 		status = PTR_ERR(entry.label);
626 		goto out;
627 	}
628 
629 	array = nfs_readdir_get_array(page);
630 	if (IS_ERR(array)) {
631 		status = PTR_ERR(array);
632 		goto out_label_free;
633 	}
634 	memset(array, 0, sizeof(struct nfs_cache_array));
635 	array->eof_index = -1;
636 
637 	status = nfs_readdir_large_page(pages, array_size);
638 	if (status < 0)
639 		goto out_release_array;
640 	do {
641 		unsigned int pglen;
642 		status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
643 
644 		if (status < 0)
645 			break;
646 		pglen = status;
647 		status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
648 		if (status < 0) {
649 			if (status == -ENOSPC)
650 				status = 0;
651 			break;
652 		}
653 	} while (array->eof_index < 0);
654 
655 	nfs_readdir_free_large_page(pages_ptr, pages, array_size);
656 out_release_array:
657 	nfs_readdir_release_array(page);
658 out_label_free:
659 	nfs4_label_free(entry.label);
660 out:
661 	nfs_free_fattr(entry.fattr);
662 	nfs_free_fhandle(entry.fh);
663 	return status;
664 }
665 
666 /*
667  * Now we cache directories properly, by converting xdr information
668  * to an array that can be used for lookups later.  This results in
669  * fewer cache pages, since we can store more information on each page.
670  * We only need to convert from xdr once so future lookups are much simpler
671  */
672 static
673 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
674 {
675 	struct inode	*inode = file_inode(desc->file);
676 	int ret;
677 
678 	ret = nfs_readdir_xdr_to_array(desc, page, inode);
679 	if (ret < 0)
680 		goto error;
681 	SetPageUptodate(page);
682 
683 	if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
684 		/* Should never happen */
685 		nfs_zap_mapping(inode, inode->i_mapping);
686 	}
687 	unlock_page(page);
688 	return 0;
689  error:
690 	unlock_page(page);
691 	return ret;
692 }
693 
694 static
695 void cache_page_release(nfs_readdir_descriptor_t *desc)
696 {
697 	if (!desc->page->mapping)
698 		nfs_readdir_clear_array(desc->page);
699 	page_cache_release(desc->page);
700 	desc->page = NULL;
701 }
702 
703 static
704 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
705 {
706 	return read_cache_page(file_inode(desc->file)->i_mapping,
707 			desc->page_index, (filler_t *)nfs_readdir_filler, desc);
708 }
709 
710 /*
711  * Returns 0 if desc->dir_cookie was found on page desc->page_index
712  */
713 static
714 int find_cache_page(nfs_readdir_descriptor_t *desc)
715 {
716 	int res;
717 
718 	desc->page = get_cache_page(desc);
719 	if (IS_ERR(desc->page))
720 		return PTR_ERR(desc->page);
721 
722 	res = nfs_readdir_search_array(desc);
723 	if (res != 0)
724 		cache_page_release(desc);
725 	return res;
726 }
727 
728 /* Search for desc->dir_cookie from the beginning of the page cache */
729 static inline
730 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
731 {
732 	int res;
733 
734 	if (desc->page_index == 0) {
735 		desc->current_index = 0;
736 		desc->last_cookie = 0;
737 	}
738 	do {
739 		res = find_cache_page(desc);
740 	} while (res == -EAGAIN);
741 	return res;
742 }
743 
744 /*
745  * Once we've found the start of the dirent within a page: fill 'er up...
746  */
747 static
748 int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
749 {
750 	struct file	*file = desc->file;
751 	int i = 0;
752 	int res = 0;
753 	struct nfs_cache_array *array = NULL;
754 	struct nfs_open_dir_context *ctx = file->private_data;
755 
756 	array = nfs_readdir_get_array(desc->page);
757 	if (IS_ERR(array)) {
758 		res = PTR_ERR(array);
759 		goto out;
760 	}
761 
762 	for (i = desc->cache_entry_index; i < array->size; i++) {
763 		struct nfs_cache_array_entry *ent;
764 
765 		ent = &array->array[i];
766 		if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
767 		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
768 			desc->eof = 1;
769 			break;
770 		}
771 		desc->ctx->pos++;
772 		if (i < (array->size-1))
773 			*desc->dir_cookie = array->array[i+1].cookie;
774 		else
775 			*desc->dir_cookie = array->last_cookie;
776 		if (ctx->duped != 0)
777 			ctx->duped = 1;
778 	}
779 	if (array->eof_index >= 0)
780 		desc->eof = 1;
781 
782 	nfs_readdir_release_array(desc->page);
783 out:
784 	cache_page_release(desc);
785 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
786 			(unsigned long long)*desc->dir_cookie, res);
787 	return res;
788 }
789 
790 /*
791  * If we cannot find a cookie in our cache, we suspect that this is
792  * because it points to a deleted file, so we ask the server to return
793  * whatever it thinks is the next entry. We then feed this to filldir.
794  * If all goes well, we should then be able to find our way round the
795  * cache on the next call to readdir_search_pagecache();
796  *
797  * NOTE: we cannot add the anonymous page to the pagecache because
798  *	 the data it contains might not be page aligned. Besides,
799  *	 we should already have a complete representation of the
800  *	 directory in the page cache by the time we get here.
801  */
802 static inline
803 int uncached_readdir(nfs_readdir_descriptor_t *desc)
804 {
805 	struct page	*page = NULL;
806 	int		status;
807 	struct inode *inode = file_inode(desc->file);
808 	struct nfs_open_dir_context *ctx = desc->file->private_data;
809 
810 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
811 			(unsigned long long)*desc->dir_cookie);
812 
813 	page = alloc_page(GFP_HIGHUSER);
814 	if (!page) {
815 		status = -ENOMEM;
816 		goto out;
817 	}
818 
819 	desc->page_index = 0;
820 	desc->last_cookie = *desc->dir_cookie;
821 	desc->page = page;
822 	ctx->duped = 0;
823 
824 	status = nfs_readdir_xdr_to_array(desc, page, inode);
825 	if (status < 0)
826 		goto out_release;
827 
828 	status = nfs_do_filldir(desc);
829 
830  out:
831 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
832 			__func__, status);
833 	return status;
834  out_release:
835 	cache_page_release(desc);
836 	goto out;
837 }
838 
839 static bool nfs_dir_mapping_need_revalidate(struct inode *dir)
840 {
841 	struct nfs_inode *nfsi = NFS_I(dir);
842 
843 	if (nfs_attribute_cache_expired(dir))
844 		return true;
845 	if (nfsi->cache_validity & NFS_INO_INVALID_DATA)
846 		return true;
847 	return false;
848 }
849 
850 /* The file offset position represents the dirent entry number.  A
851    last cookie cache takes care of the common case of reading the
852    whole directory.
853  */
854 static int nfs_readdir(struct file *file, struct dir_context *ctx)
855 {
856 	struct dentry	*dentry = file->f_path.dentry;
857 	struct inode	*inode = dentry->d_inode;
858 	nfs_readdir_descriptor_t my_desc,
859 			*desc = &my_desc;
860 	struct nfs_open_dir_context *dir_ctx = file->private_data;
861 	int res = 0;
862 
863 	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
864 			file, (long long)ctx->pos);
865 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
866 
867 	/*
868 	 * ctx->pos points to the dirent entry number.
869 	 * *desc->dir_cookie has the cookie for the next entry. We have
870 	 * to either find the entry with the appropriate number or
871 	 * revalidate the cookie.
872 	 */
873 	memset(desc, 0, sizeof(*desc));
874 
875 	desc->file = file;
876 	desc->ctx = ctx;
877 	desc->dir_cookie = &dir_ctx->dir_cookie;
878 	desc->decode = NFS_PROTO(inode)->decode_dirent;
879 	desc->plus = nfs_use_readdirplus(inode, ctx) ? 1 : 0;
880 
881 	nfs_block_sillyrename(dentry);
882 	if (ctx->pos == 0 || nfs_dir_mapping_need_revalidate(inode))
883 		res = nfs_revalidate_mapping(inode, file->f_mapping);
884 	if (res < 0)
885 		goto out;
886 
887 	do {
888 		res = readdir_search_pagecache(desc);
889 
890 		if (res == -EBADCOOKIE) {
891 			res = 0;
892 			/* This means either end of directory */
893 			if (*desc->dir_cookie && desc->eof == 0) {
894 				/* Or that the server has 'lost' a cookie */
895 				res = uncached_readdir(desc);
896 				if (res == 0)
897 					continue;
898 			}
899 			break;
900 		}
901 		if (res == -ETOOSMALL && desc->plus) {
902 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
903 			nfs_zap_caches(inode);
904 			desc->page_index = 0;
905 			desc->plus = 0;
906 			desc->eof = 0;
907 			continue;
908 		}
909 		if (res < 0)
910 			break;
911 
912 		res = nfs_do_filldir(desc);
913 		if (res < 0)
914 			break;
915 	} while (!desc->eof);
916 out:
917 	nfs_unblock_sillyrename(dentry);
918 	if (res > 0)
919 		res = 0;
920 	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
921 	return res;
922 }
923 
924 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
925 {
926 	struct inode *inode = file_inode(filp);
927 	struct nfs_open_dir_context *dir_ctx = filp->private_data;
928 
929 	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
930 			filp, offset, whence);
931 
932 	mutex_lock(&inode->i_mutex);
933 	switch (whence) {
934 		case 1:
935 			offset += filp->f_pos;
936 		case 0:
937 			if (offset >= 0)
938 				break;
939 		default:
940 			offset = -EINVAL;
941 			goto out;
942 	}
943 	if (offset != filp->f_pos) {
944 		filp->f_pos = offset;
945 		dir_ctx->dir_cookie = 0;
946 		dir_ctx->duped = 0;
947 	}
948 out:
949 	mutex_unlock(&inode->i_mutex);
950 	return offset;
951 }
952 
953 /*
954  * All directory operations under NFS are synchronous, so fsync()
955  * is a dummy operation.
956  */
957 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
958 			 int datasync)
959 {
960 	struct inode *inode = file_inode(filp);
961 
962 	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
963 
964 	mutex_lock(&inode->i_mutex);
965 	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
966 	mutex_unlock(&inode->i_mutex);
967 	return 0;
968 }
969 
970 /**
971  * nfs_force_lookup_revalidate - Mark the directory as having changed
972  * @dir - pointer to directory inode
973  *
974  * This forces the revalidation code in nfs_lookup_revalidate() to do a
975  * full lookup on all child dentries of 'dir' whenever a change occurs
976  * on the server that might have invalidated our dcache.
977  *
978  * The caller should be holding dir->i_lock
979  */
980 void nfs_force_lookup_revalidate(struct inode *dir)
981 {
982 	NFS_I(dir)->cache_change_attribute++;
983 }
984 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
985 
986 /*
987  * A check for whether or not the parent directory has changed.
988  * In the case it has, we assume that the dentries are untrustworthy
989  * and may need to be looked up again.
990  * If rcu_walk prevents us from performing a full check, return 0.
991  */
992 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
993 			      int rcu_walk)
994 {
995 	int ret;
996 
997 	if (IS_ROOT(dentry))
998 		return 1;
999 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1000 		return 0;
1001 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1002 		return 0;
1003 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1004 	if (rcu_walk)
1005 		ret = nfs_revalidate_inode_rcu(NFS_SERVER(dir), dir);
1006 	else
1007 		ret = nfs_revalidate_inode(NFS_SERVER(dir), dir);
1008 	if (ret < 0)
1009 		return 0;
1010 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1011 		return 0;
1012 	return 1;
1013 }
1014 
1015 /*
1016  * Use intent information to check whether or not we're going to do
1017  * an O_EXCL create using this path component.
1018  */
1019 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1020 {
1021 	if (NFS_PROTO(dir)->version == 2)
1022 		return 0;
1023 	return flags & LOOKUP_EXCL;
1024 }
1025 
1026 /*
1027  * Inode and filehandle revalidation for lookups.
1028  *
1029  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1030  * or if the intent information indicates that we're about to open this
1031  * particular file and the "nocto" mount flag is not set.
1032  *
1033  */
1034 static
1035 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1036 {
1037 	struct nfs_server *server = NFS_SERVER(inode);
1038 	int ret;
1039 
1040 	if (IS_AUTOMOUNT(inode))
1041 		return 0;
1042 	/* VFS wants an on-the-wire revalidation */
1043 	if (flags & LOOKUP_REVAL)
1044 		goto out_force;
1045 	/* This is an open(2) */
1046 	if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) &&
1047 	    (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
1048 		goto out_force;
1049 out:
1050 	return (inode->i_nlink == 0) ? -ENOENT : 0;
1051 out_force:
1052 	if (flags & LOOKUP_RCU)
1053 		return -ECHILD;
1054 	ret = __nfs_revalidate_inode(server, inode);
1055 	if (ret != 0)
1056 		return ret;
1057 	goto out;
1058 }
1059 
1060 /*
1061  * We judge how long we want to trust negative
1062  * dentries by looking at the parent inode mtime.
1063  *
1064  * If parent mtime has changed, we revalidate, else we wait for a
1065  * period corresponding to the parent's attribute cache timeout value.
1066  *
1067  * If LOOKUP_RCU prevents us from performing a full check, return 1
1068  * suggesting a reval is needed.
1069  */
1070 static inline
1071 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1072 		       unsigned int flags)
1073 {
1074 	/* Don't revalidate a negative dentry if we're creating a new file */
1075 	if (flags & LOOKUP_CREATE)
1076 		return 0;
1077 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1078 		return 1;
1079 	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1080 }
1081 
1082 /*
1083  * This is called every time the dcache has a lookup hit,
1084  * and we should check whether we can really trust that
1085  * lookup.
1086  *
1087  * NOTE! The hit can be a negative hit too, don't assume
1088  * we have an inode!
1089  *
1090  * If the parent directory is seen to have changed, we throw out the
1091  * cached dentry and do a new lookup.
1092  */
1093 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1094 {
1095 	struct inode *dir;
1096 	struct inode *inode;
1097 	struct dentry *parent;
1098 	struct nfs_fh *fhandle = NULL;
1099 	struct nfs_fattr *fattr = NULL;
1100 	struct nfs4_label *label = NULL;
1101 	int error;
1102 
1103 	if (flags & LOOKUP_RCU) {
1104 		parent = ACCESS_ONCE(dentry->d_parent);
1105 		dir = ACCESS_ONCE(parent->d_inode);
1106 		if (!dir)
1107 			return -ECHILD;
1108 	} else {
1109 		parent = dget_parent(dentry);
1110 		dir = parent->d_inode;
1111 	}
1112 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1113 	inode = dentry->d_inode;
1114 
1115 	if (!inode) {
1116 		if (nfs_neg_need_reval(dir, dentry, flags)) {
1117 			if (flags & LOOKUP_RCU)
1118 				return -ECHILD;
1119 			goto out_bad;
1120 		}
1121 		goto out_valid_noent;
1122 	}
1123 
1124 	if (is_bad_inode(inode)) {
1125 		if (flags & LOOKUP_RCU)
1126 			return -ECHILD;
1127 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1128 				__func__, dentry);
1129 		goto out_bad;
1130 	}
1131 
1132 	if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1133 		goto out_set_verifier;
1134 
1135 	/* Force a full look up iff the parent directory has changed */
1136 	if (!nfs_is_exclusive_create(dir, flags) &&
1137 	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1138 
1139 		if (nfs_lookup_verify_inode(inode, flags)) {
1140 			if (flags & LOOKUP_RCU)
1141 				return -ECHILD;
1142 			goto out_zap_parent;
1143 		}
1144 		goto out_valid;
1145 	}
1146 
1147 	if (flags & LOOKUP_RCU)
1148 		return -ECHILD;
1149 
1150 	if (NFS_STALE(inode))
1151 		goto out_bad;
1152 
1153 	error = -ENOMEM;
1154 	fhandle = nfs_alloc_fhandle();
1155 	fattr = nfs_alloc_fattr();
1156 	if (fhandle == NULL || fattr == NULL)
1157 		goto out_error;
1158 
1159 	label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
1160 	if (IS_ERR(label))
1161 		goto out_error;
1162 
1163 	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1164 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1165 	trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1166 	if (error)
1167 		goto out_bad;
1168 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1169 		goto out_bad;
1170 	if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1171 		goto out_bad;
1172 
1173 	nfs_setsecurity(inode, fattr, label);
1174 
1175 	nfs_free_fattr(fattr);
1176 	nfs_free_fhandle(fhandle);
1177 	nfs4_label_free(label);
1178 
1179 out_set_verifier:
1180 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1181  out_valid:
1182 	/* Success: notify readdir to use READDIRPLUS */
1183 	nfs_advise_use_readdirplus(dir);
1184  out_valid_noent:
1185 	if (flags & LOOKUP_RCU) {
1186 		if (parent != ACCESS_ONCE(dentry->d_parent))
1187 			return -ECHILD;
1188 	} else
1189 		dput(parent);
1190 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1191 			__func__, dentry);
1192 	return 1;
1193 out_zap_parent:
1194 	nfs_zap_caches(dir);
1195  out_bad:
1196 	WARN_ON(flags & LOOKUP_RCU);
1197 	nfs_free_fattr(fattr);
1198 	nfs_free_fhandle(fhandle);
1199 	nfs4_label_free(label);
1200 	nfs_mark_for_revalidate(dir);
1201 	if (inode && S_ISDIR(inode->i_mode)) {
1202 		/* Purge readdir caches. */
1203 		nfs_zap_caches(inode);
1204 		/*
1205 		 * We can't d_drop the root of a disconnected tree:
1206 		 * its d_hash is on the s_anon list and d_drop() would hide
1207 		 * it from shrink_dcache_for_unmount(), leading to busy
1208 		 * inodes on unmount and further oopses.
1209 		 */
1210 		if (IS_ROOT(dentry))
1211 			goto out_valid;
1212 	}
1213 	dput(parent);
1214 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1215 			__func__, dentry);
1216 	return 0;
1217 out_error:
1218 	WARN_ON(flags & LOOKUP_RCU);
1219 	nfs_free_fattr(fattr);
1220 	nfs_free_fhandle(fhandle);
1221 	nfs4_label_free(label);
1222 	dput(parent);
1223 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1224 			__func__, dentry, error);
1225 	return error;
1226 }
1227 
1228 /*
1229  * A weaker form of d_revalidate for revalidating just the dentry->d_inode
1230  * when we don't really care about the dentry name. This is called when a
1231  * pathwalk ends on a dentry that was not found via a normal lookup in the
1232  * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1233  *
1234  * In this situation, we just want to verify that the inode itself is OK
1235  * since the dentry might have changed on the server.
1236  */
1237 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1238 {
1239 	int error;
1240 	struct inode *inode = dentry->d_inode;
1241 
1242 	/*
1243 	 * I believe we can only get a negative dentry here in the case of a
1244 	 * procfs-style symlink. Just assume it's correct for now, but we may
1245 	 * eventually need to do something more here.
1246 	 */
1247 	if (!inode) {
1248 		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1249 				__func__, dentry);
1250 		return 1;
1251 	}
1252 
1253 	if (is_bad_inode(inode)) {
1254 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1255 				__func__, dentry);
1256 		return 0;
1257 	}
1258 
1259 	error = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1260 	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1261 			__func__, inode->i_ino, error ? "invalid" : "valid");
1262 	return !error;
1263 }
1264 
1265 /*
1266  * This is called from dput() when d_count is going to 0.
1267  */
1268 static int nfs_dentry_delete(const struct dentry *dentry)
1269 {
1270 	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1271 		dentry, dentry->d_flags);
1272 
1273 	/* Unhash any dentry with a stale inode */
1274 	if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
1275 		return 1;
1276 
1277 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1278 		/* Unhash it, so that ->d_iput() would be called */
1279 		return 1;
1280 	}
1281 	if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1282 		/* Unhash it, so that ancestors of killed async unlink
1283 		 * files will be cleaned up during umount */
1284 		return 1;
1285 	}
1286 	return 0;
1287 
1288 }
1289 
1290 /* Ensure that we revalidate inode->i_nlink */
1291 static void nfs_drop_nlink(struct inode *inode)
1292 {
1293 	spin_lock(&inode->i_lock);
1294 	/* drop the inode if we're reasonably sure this is the last link */
1295 	if (inode->i_nlink == 1)
1296 		clear_nlink(inode);
1297 	NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR;
1298 	spin_unlock(&inode->i_lock);
1299 }
1300 
1301 /*
1302  * Called when the dentry loses inode.
1303  * We use it to clean up silly-renamed files.
1304  */
1305 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1306 {
1307 	if (S_ISDIR(inode->i_mode))
1308 		/* drop any readdir cache as it could easily be old */
1309 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1310 
1311 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1312 		nfs_complete_unlink(dentry, inode);
1313 		nfs_drop_nlink(inode);
1314 	}
1315 	iput(inode);
1316 }
1317 
1318 static void nfs_d_release(struct dentry *dentry)
1319 {
1320 	/* free cached devname value, if it survived that far */
1321 	if (unlikely(dentry->d_fsdata)) {
1322 		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1323 			WARN_ON(1);
1324 		else
1325 			kfree(dentry->d_fsdata);
1326 	}
1327 }
1328 
1329 const struct dentry_operations nfs_dentry_operations = {
1330 	.d_revalidate	= nfs_lookup_revalidate,
1331 	.d_weak_revalidate	= nfs_weak_revalidate,
1332 	.d_delete	= nfs_dentry_delete,
1333 	.d_iput		= nfs_dentry_iput,
1334 	.d_automount	= nfs_d_automount,
1335 	.d_release	= nfs_d_release,
1336 };
1337 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1338 
1339 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1340 {
1341 	struct dentry *res;
1342 	struct dentry *parent;
1343 	struct inode *inode = NULL;
1344 	struct nfs_fh *fhandle = NULL;
1345 	struct nfs_fattr *fattr = NULL;
1346 	struct nfs4_label *label = NULL;
1347 	int error;
1348 
1349 	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1350 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1351 
1352 	res = ERR_PTR(-ENAMETOOLONG);
1353 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1354 		goto out;
1355 
1356 	/*
1357 	 * If we're doing an exclusive create, optimize away the lookup
1358 	 * but don't hash the dentry.
1359 	 */
1360 	if (nfs_is_exclusive_create(dir, flags)) {
1361 		d_instantiate(dentry, NULL);
1362 		res = NULL;
1363 		goto out;
1364 	}
1365 
1366 	res = ERR_PTR(-ENOMEM);
1367 	fhandle = nfs_alloc_fhandle();
1368 	fattr = nfs_alloc_fattr();
1369 	if (fhandle == NULL || fattr == NULL)
1370 		goto out;
1371 
1372 	label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1373 	if (IS_ERR(label))
1374 		goto out;
1375 
1376 	parent = dentry->d_parent;
1377 	/* Protect against concurrent sillydeletes */
1378 	trace_nfs_lookup_enter(dir, dentry, flags);
1379 	nfs_block_sillyrename(parent);
1380 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1381 	if (error == -ENOENT)
1382 		goto no_entry;
1383 	if (error < 0) {
1384 		res = ERR_PTR(error);
1385 		goto out_unblock_sillyrename;
1386 	}
1387 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1388 	res = ERR_CAST(inode);
1389 	if (IS_ERR(res))
1390 		goto out_unblock_sillyrename;
1391 
1392 	/* Success: notify readdir to use READDIRPLUS */
1393 	nfs_advise_use_readdirplus(dir);
1394 
1395 no_entry:
1396 	res = d_splice_alias(inode, dentry);
1397 	if (res != NULL) {
1398 		if (IS_ERR(res))
1399 			goto out_unblock_sillyrename;
1400 		dentry = res;
1401 	}
1402 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1403 out_unblock_sillyrename:
1404 	nfs_unblock_sillyrename(parent);
1405 	trace_nfs_lookup_exit(dir, dentry, flags, error);
1406 	nfs4_label_free(label);
1407 out:
1408 	nfs_free_fattr(fattr);
1409 	nfs_free_fhandle(fhandle);
1410 	return res;
1411 }
1412 EXPORT_SYMBOL_GPL(nfs_lookup);
1413 
1414 #if IS_ENABLED(CONFIG_NFS_V4)
1415 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1416 
1417 const struct dentry_operations nfs4_dentry_operations = {
1418 	.d_revalidate	= nfs4_lookup_revalidate,
1419 	.d_delete	= nfs_dentry_delete,
1420 	.d_iput		= nfs_dentry_iput,
1421 	.d_automount	= nfs_d_automount,
1422 	.d_release	= nfs_d_release,
1423 };
1424 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1425 
1426 static fmode_t flags_to_mode(int flags)
1427 {
1428 	fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1429 	if ((flags & O_ACCMODE) != O_WRONLY)
1430 		res |= FMODE_READ;
1431 	if ((flags & O_ACCMODE) != O_RDONLY)
1432 		res |= FMODE_WRITE;
1433 	return res;
1434 }
1435 
1436 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags)
1437 {
1438 	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags));
1439 }
1440 
1441 static int do_open(struct inode *inode, struct file *filp)
1442 {
1443 	nfs_fscache_open_file(inode, filp);
1444 	return 0;
1445 }
1446 
1447 static int nfs_finish_open(struct nfs_open_context *ctx,
1448 			   struct dentry *dentry,
1449 			   struct file *file, unsigned open_flags,
1450 			   int *opened)
1451 {
1452 	int err;
1453 
1454 	if ((open_flags & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL))
1455 		*opened |= FILE_CREATED;
1456 
1457 	err = finish_open(file, dentry, do_open, opened);
1458 	if (err)
1459 		goto out;
1460 	nfs_file_set_open_context(file, ctx);
1461 
1462 out:
1463 	return err;
1464 }
1465 
1466 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1467 		    struct file *file, unsigned open_flags,
1468 		    umode_t mode, int *opened)
1469 {
1470 	struct nfs_open_context *ctx;
1471 	struct dentry *res;
1472 	struct iattr attr = { .ia_valid = ATTR_OPEN };
1473 	struct inode *inode;
1474 	unsigned int lookup_flags = 0;
1475 	int err;
1476 
1477 	/* Expect a negative dentry */
1478 	BUG_ON(dentry->d_inode);
1479 
1480 	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1481 			dir->i_sb->s_id, dir->i_ino, dentry);
1482 
1483 	err = nfs_check_flags(open_flags);
1484 	if (err)
1485 		return err;
1486 
1487 	/* NFS only supports OPEN on regular files */
1488 	if ((open_flags & O_DIRECTORY)) {
1489 		if (!d_unhashed(dentry)) {
1490 			/*
1491 			 * Hashed negative dentry with O_DIRECTORY: dentry was
1492 			 * revalidated and is fine, no need to perform lookup
1493 			 * again
1494 			 */
1495 			return -ENOENT;
1496 		}
1497 		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1498 		goto no_open;
1499 	}
1500 
1501 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1502 		return -ENAMETOOLONG;
1503 
1504 	if (open_flags & O_CREAT) {
1505 		attr.ia_valid |= ATTR_MODE;
1506 		attr.ia_mode = mode & ~current_umask();
1507 	}
1508 	if (open_flags & O_TRUNC) {
1509 		attr.ia_valid |= ATTR_SIZE;
1510 		attr.ia_size = 0;
1511 	}
1512 
1513 	ctx = create_nfs_open_context(dentry, open_flags);
1514 	err = PTR_ERR(ctx);
1515 	if (IS_ERR(ctx))
1516 		goto out;
1517 
1518 	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1519 	nfs_block_sillyrename(dentry->d_parent);
1520 	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, opened);
1521 	nfs_unblock_sillyrename(dentry->d_parent);
1522 	if (IS_ERR(inode)) {
1523 		err = PTR_ERR(inode);
1524 		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1525 		put_nfs_open_context(ctx);
1526 		switch (err) {
1527 		case -ENOENT:
1528 			d_drop(dentry);
1529 			d_add(dentry, NULL);
1530 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1531 			break;
1532 		case -EISDIR:
1533 		case -ENOTDIR:
1534 			goto no_open;
1535 		case -ELOOP:
1536 			if (!(open_flags & O_NOFOLLOW))
1537 				goto no_open;
1538 			break;
1539 			/* case -EINVAL: */
1540 		default:
1541 			break;
1542 		}
1543 		goto out;
1544 	}
1545 
1546 	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags, opened);
1547 	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1548 	put_nfs_open_context(ctx);
1549 out:
1550 	return err;
1551 
1552 no_open:
1553 	res = nfs_lookup(dir, dentry, lookup_flags);
1554 	err = PTR_ERR(res);
1555 	if (IS_ERR(res))
1556 		goto out;
1557 
1558 	return finish_no_open(file, res);
1559 }
1560 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1561 
1562 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1563 {
1564 	struct inode *inode;
1565 	int ret = 0;
1566 
1567 	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1568 		goto no_open;
1569 	if (d_mountpoint(dentry))
1570 		goto no_open;
1571 	if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1)
1572 		goto no_open;
1573 
1574 	inode = dentry->d_inode;
1575 
1576 	/* We can't create new files in nfs_open_revalidate(), so we
1577 	 * optimize away revalidation of negative dentries.
1578 	 */
1579 	if (inode == NULL) {
1580 		struct dentry *parent;
1581 		struct inode *dir;
1582 
1583 		if (flags & LOOKUP_RCU) {
1584 			parent = ACCESS_ONCE(dentry->d_parent);
1585 			dir = ACCESS_ONCE(parent->d_inode);
1586 			if (!dir)
1587 				return -ECHILD;
1588 		} else {
1589 			parent = dget_parent(dentry);
1590 			dir = parent->d_inode;
1591 		}
1592 		if (!nfs_neg_need_reval(dir, dentry, flags))
1593 			ret = 1;
1594 		else if (flags & LOOKUP_RCU)
1595 			ret = -ECHILD;
1596 		if (!(flags & LOOKUP_RCU))
1597 			dput(parent);
1598 		else if (parent != ACCESS_ONCE(dentry->d_parent))
1599 			return -ECHILD;
1600 		goto out;
1601 	}
1602 
1603 	/* NFS only supports OPEN on regular files */
1604 	if (!S_ISREG(inode->i_mode))
1605 		goto no_open;
1606 	/* We cannot do exclusive creation on a positive dentry */
1607 	if (flags & LOOKUP_EXCL)
1608 		goto no_open;
1609 
1610 	/* Let f_op->open() actually open (and revalidate) the file */
1611 	ret = 1;
1612 
1613 out:
1614 	return ret;
1615 
1616 no_open:
1617 	return nfs_lookup_revalidate(dentry, flags);
1618 }
1619 
1620 #endif /* CONFIG_NFSV4 */
1621 
1622 /*
1623  * Code common to create, mkdir, and mknod.
1624  */
1625 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1626 				struct nfs_fattr *fattr,
1627 				struct nfs4_label *label)
1628 {
1629 	struct dentry *parent = dget_parent(dentry);
1630 	struct inode *dir = parent->d_inode;
1631 	struct inode *inode;
1632 	int error = -EACCES;
1633 
1634 	d_drop(dentry);
1635 
1636 	/* We may have been initialized further down */
1637 	if (dentry->d_inode)
1638 		goto out;
1639 	if (fhandle->size == 0) {
1640 		error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1641 		if (error)
1642 			goto out_error;
1643 	}
1644 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1645 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1646 		struct nfs_server *server = NFS_SB(dentry->d_sb);
1647 		error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL);
1648 		if (error < 0)
1649 			goto out_error;
1650 	}
1651 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1652 	error = PTR_ERR(inode);
1653 	if (IS_ERR(inode))
1654 		goto out_error;
1655 	d_add(dentry, inode);
1656 out:
1657 	dput(parent);
1658 	return 0;
1659 out_error:
1660 	nfs_mark_for_revalidate(dir);
1661 	dput(parent);
1662 	return error;
1663 }
1664 EXPORT_SYMBOL_GPL(nfs_instantiate);
1665 
1666 /*
1667  * Following a failed create operation, we drop the dentry rather
1668  * than retain a negative dentry. This avoids a problem in the event
1669  * that the operation succeeded on the server, but an error in the
1670  * reply path made it appear to have failed.
1671  */
1672 int nfs_create(struct inode *dir, struct dentry *dentry,
1673 		umode_t mode, bool excl)
1674 {
1675 	struct iattr attr;
1676 	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1677 	int error;
1678 
1679 	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1680 			dir->i_sb->s_id, dir->i_ino, dentry);
1681 
1682 	attr.ia_mode = mode;
1683 	attr.ia_valid = ATTR_MODE;
1684 
1685 	trace_nfs_create_enter(dir, dentry, open_flags);
1686 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1687 	trace_nfs_create_exit(dir, dentry, open_flags, error);
1688 	if (error != 0)
1689 		goto out_err;
1690 	return 0;
1691 out_err:
1692 	d_drop(dentry);
1693 	return error;
1694 }
1695 EXPORT_SYMBOL_GPL(nfs_create);
1696 
1697 /*
1698  * See comments for nfs_proc_create regarding failed operations.
1699  */
1700 int
1701 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1702 {
1703 	struct iattr attr;
1704 	int status;
1705 
1706 	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1707 			dir->i_sb->s_id, dir->i_ino, dentry);
1708 
1709 	if (!new_valid_dev(rdev))
1710 		return -EINVAL;
1711 
1712 	attr.ia_mode = mode;
1713 	attr.ia_valid = ATTR_MODE;
1714 
1715 	trace_nfs_mknod_enter(dir, dentry);
1716 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1717 	trace_nfs_mknod_exit(dir, dentry, status);
1718 	if (status != 0)
1719 		goto out_err;
1720 	return 0;
1721 out_err:
1722 	d_drop(dentry);
1723 	return status;
1724 }
1725 EXPORT_SYMBOL_GPL(nfs_mknod);
1726 
1727 /*
1728  * See comments for nfs_proc_create regarding failed operations.
1729  */
1730 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1731 {
1732 	struct iattr attr;
1733 	int error;
1734 
1735 	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1736 			dir->i_sb->s_id, dir->i_ino, dentry);
1737 
1738 	attr.ia_valid = ATTR_MODE;
1739 	attr.ia_mode = mode | S_IFDIR;
1740 
1741 	trace_nfs_mkdir_enter(dir, dentry);
1742 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1743 	trace_nfs_mkdir_exit(dir, dentry, error);
1744 	if (error != 0)
1745 		goto out_err;
1746 	return 0;
1747 out_err:
1748 	d_drop(dentry);
1749 	return error;
1750 }
1751 EXPORT_SYMBOL_GPL(nfs_mkdir);
1752 
1753 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1754 {
1755 	if (dentry->d_inode != NULL && !d_unhashed(dentry))
1756 		d_delete(dentry);
1757 }
1758 
1759 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1760 {
1761 	int error;
1762 
1763 	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1764 			dir->i_sb->s_id, dir->i_ino, dentry);
1765 
1766 	trace_nfs_rmdir_enter(dir, dentry);
1767 	if (dentry->d_inode) {
1768 		nfs_wait_on_sillyrename(dentry);
1769 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1770 		/* Ensure the VFS deletes this inode */
1771 		switch (error) {
1772 		case 0:
1773 			clear_nlink(dentry->d_inode);
1774 			break;
1775 		case -ENOENT:
1776 			nfs_dentry_handle_enoent(dentry);
1777 		}
1778 	} else
1779 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1780 	trace_nfs_rmdir_exit(dir, dentry, error);
1781 
1782 	return error;
1783 }
1784 EXPORT_SYMBOL_GPL(nfs_rmdir);
1785 
1786 /*
1787  * Remove a file after making sure there are no pending writes,
1788  * and after checking that the file has only one user.
1789  *
1790  * We invalidate the attribute cache and free the inode prior to the operation
1791  * to avoid possible races if the server reuses the inode.
1792  */
1793 static int nfs_safe_remove(struct dentry *dentry)
1794 {
1795 	struct inode *dir = dentry->d_parent->d_inode;
1796 	struct inode *inode = dentry->d_inode;
1797 	int error = -EBUSY;
1798 
1799 	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
1800 
1801 	/* If the dentry was sillyrenamed, we simply call d_delete() */
1802 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1803 		error = 0;
1804 		goto out;
1805 	}
1806 
1807 	trace_nfs_remove_enter(dir, dentry);
1808 	if (inode != NULL) {
1809 		NFS_PROTO(inode)->return_delegation(inode);
1810 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1811 		if (error == 0)
1812 			nfs_drop_nlink(inode);
1813 	} else
1814 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1815 	if (error == -ENOENT)
1816 		nfs_dentry_handle_enoent(dentry);
1817 	trace_nfs_remove_exit(dir, dentry, error);
1818 out:
1819 	return error;
1820 }
1821 
1822 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1823  *  belongs to an active ".nfs..." file and we return -EBUSY.
1824  *
1825  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1826  */
1827 int nfs_unlink(struct inode *dir, struct dentry *dentry)
1828 {
1829 	int error;
1830 	int need_rehash = 0;
1831 
1832 	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
1833 		dir->i_ino, dentry);
1834 
1835 	trace_nfs_unlink_enter(dir, dentry);
1836 	spin_lock(&dentry->d_lock);
1837 	if (d_count(dentry) > 1) {
1838 		spin_unlock(&dentry->d_lock);
1839 		/* Start asynchronous writeout of the inode */
1840 		write_inode_now(dentry->d_inode, 0);
1841 		error = nfs_sillyrename(dir, dentry);
1842 		goto out;
1843 	}
1844 	if (!d_unhashed(dentry)) {
1845 		__d_drop(dentry);
1846 		need_rehash = 1;
1847 	}
1848 	spin_unlock(&dentry->d_lock);
1849 	error = nfs_safe_remove(dentry);
1850 	if (!error || error == -ENOENT) {
1851 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1852 	} else if (need_rehash)
1853 		d_rehash(dentry);
1854 out:
1855 	trace_nfs_unlink_exit(dir, dentry, error);
1856 	return error;
1857 }
1858 EXPORT_SYMBOL_GPL(nfs_unlink);
1859 
1860 /*
1861  * To create a symbolic link, most file systems instantiate a new inode,
1862  * add a page to it containing the path, then write it out to the disk
1863  * using prepare_write/commit_write.
1864  *
1865  * Unfortunately the NFS client can't create the in-core inode first
1866  * because it needs a file handle to create an in-core inode (see
1867  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1868  * symlink request has completed on the server.
1869  *
1870  * So instead we allocate a raw page, copy the symname into it, then do
1871  * the SYMLINK request with the page as the buffer.  If it succeeds, we
1872  * now have a new file handle and can instantiate an in-core NFS inode
1873  * and move the raw page into its mapping.
1874  */
1875 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1876 {
1877 	struct page *page;
1878 	char *kaddr;
1879 	struct iattr attr;
1880 	unsigned int pathlen = strlen(symname);
1881 	int error;
1882 
1883 	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
1884 		dir->i_ino, dentry, symname);
1885 
1886 	if (pathlen > PAGE_SIZE)
1887 		return -ENAMETOOLONG;
1888 
1889 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
1890 	attr.ia_valid = ATTR_MODE;
1891 
1892 	page = alloc_page(GFP_HIGHUSER);
1893 	if (!page)
1894 		return -ENOMEM;
1895 
1896 	kaddr = kmap_atomic(page);
1897 	memcpy(kaddr, symname, pathlen);
1898 	if (pathlen < PAGE_SIZE)
1899 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1900 	kunmap_atomic(kaddr);
1901 
1902 	trace_nfs_symlink_enter(dir, dentry);
1903 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1904 	trace_nfs_symlink_exit(dir, dentry, error);
1905 	if (error != 0) {
1906 		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1907 			dir->i_sb->s_id, dir->i_ino,
1908 			dentry, symname, error);
1909 		d_drop(dentry);
1910 		__free_page(page);
1911 		return error;
1912 	}
1913 
1914 	/*
1915 	 * No big deal if we can't add this page to the page cache here.
1916 	 * READLINK will get the missing page from the server if needed.
1917 	 */
1918 	if (!add_to_page_cache_lru(page, dentry->d_inode->i_mapping, 0,
1919 							GFP_KERNEL)) {
1920 		SetPageUptodate(page);
1921 		unlock_page(page);
1922 		/*
1923 		 * add_to_page_cache_lru() grabs an extra page refcount.
1924 		 * Drop it here to avoid leaking this page later.
1925 		 */
1926 		page_cache_release(page);
1927 	} else
1928 		__free_page(page);
1929 
1930 	return 0;
1931 }
1932 EXPORT_SYMBOL_GPL(nfs_symlink);
1933 
1934 int
1935 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1936 {
1937 	struct inode *inode = old_dentry->d_inode;
1938 	int error;
1939 
1940 	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
1941 		old_dentry, dentry);
1942 
1943 	trace_nfs_link_enter(inode, dir, dentry);
1944 	NFS_PROTO(inode)->return_delegation(inode);
1945 
1946 	d_drop(dentry);
1947 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1948 	if (error == 0) {
1949 		ihold(inode);
1950 		d_add(dentry, inode);
1951 	}
1952 	trace_nfs_link_exit(inode, dir, dentry, error);
1953 	return error;
1954 }
1955 EXPORT_SYMBOL_GPL(nfs_link);
1956 
1957 /*
1958  * RENAME
1959  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1960  * different file handle for the same inode after a rename (e.g. when
1961  * moving to a different directory). A fail-safe method to do so would
1962  * be to look up old_dir/old_name, create a link to new_dir/new_name and
1963  * rename the old file using the sillyrename stuff. This way, the original
1964  * file in old_dir will go away when the last process iput()s the inode.
1965  *
1966  * FIXED.
1967  *
1968  * It actually works quite well. One needs to have the possibility for
1969  * at least one ".nfs..." file in each directory the file ever gets
1970  * moved or linked to which happens automagically with the new
1971  * implementation that only depends on the dcache stuff instead of
1972  * using the inode layer
1973  *
1974  * Unfortunately, things are a little more complicated than indicated
1975  * above. For a cross-directory move, we want to make sure we can get
1976  * rid of the old inode after the operation.  This means there must be
1977  * no pending writes (if it's a file), and the use count must be 1.
1978  * If these conditions are met, we can drop the dentries before doing
1979  * the rename.
1980  */
1981 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1982 		      struct inode *new_dir, struct dentry *new_dentry)
1983 {
1984 	struct inode *old_inode = old_dentry->d_inode;
1985 	struct inode *new_inode = new_dentry->d_inode;
1986 	struct dentry *dentry = NULL, *rehash = NULL;
1987 	struct rpc_task *task;
1988 	int error = -EBUSY;
1989 
1990 	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
1991 		 old_dentry, new_dentry,
1992 		 d_count(new_dentry));
1993 
1994 	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
1995 	/*
1996 	 * For non-directories, check whether the target is busy and if so,
1997 	 * make a copy of the dentry and then do a silly-rename. If the
1998 	 * silly-rename succeeds, the copied dentry is hashed and becomes
1999 	 * the new target.
2000 	 */
2001 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2002 		/*
2003 		 * To prevent any new references to the target during the
2004 		 * rename, we unhash the dentry in advance.
2005 		 */
2006 		if (!d_unhashed(new_dentry)) {
2007 			d_drop(new_dentry);
2008 			rehash = new_dentry;
2009 		}
2010 
2011 		if (d_count(new_dentry) > 2) {
2012 			int err;
2013 
2014 			/* copy the target dentry's name */
2015 			dentry = d_alloc(new_dentry->d_parent,
2016 					 &new_dentry->d_name);
2017 			if (!dentry)
2018 				goto out;
2019 
2020 			/* silly-rename the existing target ... */
2021 			err = nfs_sillyrename(new_dir, new_dentry);
2022 			if (err)
2023 				goto out;
2024 
2025 			new_dentry = dentry;
2026 			rehash = NULL;
2027 			new_inode = NULL;
2028 		}
2029 	}
2030 
2031 	NFS_PROTO(old_inode)->return_delegation(old_inode);
2032 	if (new_inode != NULL)
2033 		NFS_PROTO(new_inode)->return_delegation(new_inode);
2034 
2035 	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2036 	if (IS_ERR(task)) {
2037 		error = PTR_ERR(task);
2038 		goto out;
2039 	}
2040 
2041 	error = rpc_wait_for_completion_task(task);
2042 	if (error == 0)
2043 		error = task->tk_status;
2044 	rpc_put_task(task);
2045 	nfs_mark_for_revalidate(old_inode);
2046 out:
2047 	if (rehash)
2048 		d_rehash(rehash);
2049 	trace_nfs_rename_exit(old_dir, old_dentry,
2050 			new_dir, new_dentry, error);
2051 	if (!error) {
2052 		if (new_inode != NULL)
2053 			nfs_drop_nlink(new_inode);
2054 		d_move(old_dentry, new_dentry);
2055 		nfs_set_verifier(new_dentry,
2056 					nfs_save_change_attribute(new_dir));
2057 	} else if (error == -ENOENT)
2058 		nfs_dentry_handle_enoent(old_dentry);
2059 
2060 	/* new dentry created? */
2061 	if (dentry)
2062 		dput(dentry);
2063 	return error;
2064 }
2065 EXPORT_SYMBOL_GPL(nfs_rename);
2066 
2067 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2068 static LIST_HEAD(nfs_access_lru_list);
2069 static atomic_long_t nfs_access_nr_entries;
2070 
2071 static unsigned long nfs_access_max_cachesize = ULONG_MAX;
2072 module_param(nfs_access_max_cachesize, ulong, 0644);
2073 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2074 
2075 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2076 {
2077 	put_rpccred(entry->cred);
2078 	kfree_rcu(entry, rcu_head);
2079 	smp_mb__before_atomic();
2080 	atomic_long_dec(&nfs_access_nr_entries);
2081 	smp_mb__after_atomic();
2082 }
2083 
2084 static void nfs_access_free_list(struct list_head *head)
2085 {
2086 	struct nfs_access_entry *cache;
2087 
2088 	while (!list_empty(head)) {
2089 		cache = list_entry(head->next, struct nfs_access_entry, lru);
2090 		list_del(&cache->lru);
2091 		nfs_access_free_entry(cache);
2092 	}
2093 }
2094 
2095 static unsigned long
2096 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2097 {
2098 	LIST_HEAD(head);
2099 	struct nfs_inode *nfsi, *next;
2100 	struct nfs_access_entry *cache;
2101 	long freed = 0;
2102 
2103 	spin_lock(&nfs_access_lru_lock);
2104 	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2105 		struct inode *inode;
2106 
2107 		if (nr_to_scan-- == 0)
2108 			break;
2109 		inode = &nfsi->vfs_inode;
2110 		spin_lock(&inode->i_lock);
2111 		if (list_empty(&nfsi->access_cache_entry_lru))
2112 			goto remove_lru_entry;
2113 		cache = list_entry(nfsi->access_cache_entry_lru.next,
2114 				struct nfs_access_entry, lru);
2115 		list_move(&cache->lru, &head);
2116 		rb_erase(&cache->rb_node, &nfsi->access_cache);
2117 		freed++;
2118 		if (!list_empty(&nfsi->access_cache_entry_lru))
2119 			list_move_tail(&nfsi->access_cache_inode_lru,
2120 					&nfs_access_lru_list);
2121 		else {
2122 remove_lru_entry:
2123 			list_del_init(&nfsi->access_cache_inode_lru);
2124 			smp_mb__before_atomic();
2125 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2126 			smp_mb__after_atomic();
2127 		}
2128 		spin_unlock(&inode->i_lock);
2129 	}
2130 	spin_unlock(&nfs_access_lru_lock);
2131 	nfs_access_free_list(&head);
2132 	return freed;
2133 }
2134 
2135 unsigned long
2136 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2137 {
2138 	int nr_to_scan = sc->nr_to_scan;
2139 	gfp_t gfp_mask = sc->gfp_mask;
2140 
2141 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2142 		return SHRINK_STOP;
2143 	return nfs_do_access_cache_scan(nr_to_scan);
2144 }
2145 
2146 
2147 unsigned long
2148 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2149 {
2150 	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2151 }
2152 
2153 static void
2154 nfs_access_cache_enforce_limit(void)
2155 {
2156 	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2157 	unsigned long diff;
2158 	unsigned int nr_to_scan;
2159 
2160 	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2161 		return;
2162 	nr_to_scan = 100;
2163 	diff = nr_entries - nfs_access_max_cachesize;
2164 	if (diff < nr_to_scan)
2165 		nr_to_scan = diff;
2166 	nfs_do_access_cache_scan(nr_to_scan);
2167 }
2168 
2169 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2170 {
2171 	struct rb_root *root_node = &nfsi->access_cache;
2172 	struct rb_node *n;
2173 	struct nfs_access_entry *entry;
2174 
2175 	/* Unhook entries from the cache */
2176 	while ((n = rb_first(root_node)) != NULL) {
2177 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2178 		rb_erase(n, root_node);
2179 		list_move(&entry->lru, head);
2180 	}
2181 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2182 }
2183 
2184 void nfs_access_zap_cache(struct inode *inode)
2185 {
2186 	LIST_HEAD(head);
2187 
2188 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2189 		return;
2190 	/* Remove from global LRU init */
2191 	spin_lock(&nfs_access_lru_lock);
2192 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2193 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2194 
2195 	spin_lock(&inode->i_lock);
2196 	__nfs_access_zap_cache(NFS_I(inode), &head);
2197 	spin_unlock(&inode->i_lock);
2198 	spin_unlock(&nfs_access_lru_lock);
2199 	nfs_access_free_list(&head);
2200 }
2201 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2202 
2203 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2204 {
2205 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2206 	struct nfs_access_entry *entry;
2207 
2208 	while (n != NULL) {
2209 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2210 
2211 		if (cred < entry->cred)
2212 			n = n->rb_left;
2213 		else if (cred > entry->cred)
2214 			n = n->rb_right;
2215 		else
2216 			return entry;
2217 	}
2218 	return NULL;
2219 }
2220 
2221 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2222 {
2223 	struct nfs_inode *nfsi = NFS_I(inode);
2224 	struct nfs_access_entry *cache;
2225 	int err = -ENOENT;
2226 
2227 	spin_lock(&inode->i_lock);
2228 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2229 		goto out_zap;
2230 	cache = nfs_access_search_rbtree(inode, cred);
2231 	if (cache == NULL)
2232 		goto out;
2233 	if (!nfs_have_delegated_attributes(inode) &&
2234 	    !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2235 		goto out_stale;
2236 	res->jiffies = cache->jiffies;
2237 	res->cred = cache->cred;
2238 	res->mask = cache->mask;
2239 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2240 	err = 0;
2241 out:
2242 	spin_unlock(&inode->i_lock);
2243 	return err;
2244 out_stale:
2245 	rb_erase(&cache->rb_node, &nfsi->access_cache);
2246 	list_del(&cache->lru);
2247 	spin_unlock(&inode->i_lock);
2248 	nfs_access_free_entry(cache);
2249 	return -ENOENT;
2250 out_zap:
2251 	spin_unlock(&inode->i_lock);
2252 	nfs_access_zap_cache(inode);
2253 	return -ENOENT;
2254 }
2255 
2256 static int nfs_access_get_cached_rcu(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2257 {
2258 	/* Only check the most recently returned cache entry,
2259 	 * but do it without locking.
2260 	 */
2261 	struct nfs_inode *nfsi = NFS_I(inode);
2262 	struct nfs_access_entry *cache;
2263 	int err = -ECHILD;
2264 	struct list_head *lh;
2265 
2266 	rcu_read_lock();
2267 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2268 		goto out;
2269 	lh = rcu_dereference(nfsi->access_cache_entry_lru.prev);
2270 	cache = list_entry(lh, struct nfs_access_entry, lru);
2271 	if (lh == &nfsi->access_cache_entry_lru ||
2272 	    cred != cache->cred)
2273 		cache = NULL;
2274 	if (cache == NULL)
2275 		goto out;
2276 	if (!nfs_have_delegated_attributes(inode) &&
2277 	    !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2278 		goto out;
2279 	res->jiffies = cache->jiffies;
2280 	res->cred = cache->cred;
2281 	res->mask = cache->mask;
2282 	err = 0;
2283 out:
2284 	rcu_read_unlock();
2285 	return err;
2286 }
2287 
2288 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2289 {
2290 	struct nfs_inode *nfsi = NFS_I(inode);
2291 	struct rb_root *root_node = &nfsi->access_cache;
2292 	struct rb_node **p = &root_node->rb_node;
2293 	struct rb_node *parent = NULL;
2294 	struct nfs_access_entry *entry;
2295 
2296 	spin_lock(&inode->i_lock);
2297 	while (*p != NULL) {
2298 		parent = *p;
2299 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2300 
2301 		if (set->cred < entry->cred)
2302 			p = &parent->rb_left;
2303 		else if (set->cred > entry->cred)
2304 			p = &parent->rb_right;
2305 		else
2306 			goto found;
2307 	}
2308 	rb_link_node(&set->rb_node, parent, p);
2309 	rb_insert_color(&set->rb_node, root_node);
2310 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2311 	spin_unlock(&inode->i_lock);
2312 	return;
2313 found:
2314 	rb_replace_node(parent, &set->rb_node, root_node);
2315 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2316 	list_del(&entry->lru);
2317 	spin_unlock(&inode->i_lock);
2318 	nfs_access_free_entry(entry);
2319 }
2320 
2321 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2322 {
2323 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2324 	if (cache == NULL)
2325 		return;
2326 	RB_CLEAR_NODE(&cache->rb_node);
2327 	cache->jiffies = set->jiffies;
2328 	cache->cred = get_rpccred(set->cred);
2329 	cache->mask = set->mask;
2330 
2331 	/* The above field assignments must be visible
2332 	 * before this item appears on the lru.  We cannot easily
2333 	 * use rcu_assign_pointer, so just force the memory barrier.
2334 	 */
2335 	smp_wmb();
2336 	nfs_access_add_rbtree(inode, cache);
2337 
2338 	/* Update accounting */
2339 	smp_mb__before_atomic();
2340 	atomic_long_inc(&nfs_access_nr_entries);
2341 	smp_mb__after_atomic();
2342 
2343 	/* Add inode to global LRU list */
2344 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2345 		spin_lock(&nfs_access_lru_lock);
2346 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2347 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2348 					&nfs_access_lru_list);
2349 		spin_unlock(&nfs_access_lru_lock);
2350 	}
2351 	nfs_access_cache_enforce_limit();
2352 }
2353 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2354 
2355 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2356 {
2357 	entry->mask = 0;
2358 	if (access_result & NFS4_ACCESS_READ)
2359 		entry->mask |= MAY_READ;
2360 	if (access_result &
2361 	    (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
2362 		entry->mask |= MAY_WRITE;
2363 	if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
2364 		entry->mask |= MAY_EXEC;
2365 }
2366 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2367 
2368 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2369 {
2370 	struct nfs_access_entry cache;
2371 	int status;
2372 
2373 	trace_nfs_access_enter(inode);
2374 
2375 	status = nfs_access_get_cached_rcu(inode, cred, &cache);
2376 	if (status != 0)
2377 		status = nfs_access_get_cached(inode, cred, &cache);
2378 	if (status == 0)
2379 		goto out_cached;
2380 
2381 	status = -ECHILD;
2382 	if (mask & MAY_NOT_BLOCK)
2383 		goto out;
2384 
2385 	/* Be clever: ask server to check for all possible rights */
2386 	cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2387 	cache.cred = cred;
2388 	cache.jiffies = jiffies;
2389 	status = NFS_PROTO(inode)->access(inode, &cache);
2390 	if (status != 0) {
2391 		if (status == -ESTALE) {
2392 			nfs_zap_caches(inode);
2393 			if (!S_ISDIR(inode->i_mode))
2394 				set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2395 		}
2396 		goto out;
2397 	}
2398 	nfs_access_add_cache(inode, &cache);
2399 out_cached:
2400 	if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2401 		status = -EACCES;
2402 out:
2403 	trace_nfs_access_exit(inode, status);
2404 	return status;
2405 }
2406 
2407 static int nfs_open_permission_mask(int openflags)
2408 {
2409 	int mask = 0;
2410 
2411 	if (openflags & __FMODE_EXEC) {
2412 		/* ONLY check exec rights */
2413 		mask = MAY_EXEC;
2414 	} else {
2415 		if ((openflags & O_ACCMODE) != O_WRONLY)
2416 			mask |= MAY_READ;
2417 		if ((openflags & O_ACCMODE) != O_RDONLY)
2418 			mask |= MAY_WRITE;
2419 	}
2420 
2421 	return mask;
2422 }
2423 
2424 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2425 {
2426 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2427 }
2428 EXPORT_SYMBOL_GPL(nfs_may_open);
2429 
2430 int nfs_permission(struct inode *inode, int mask)
2431 {
2432 	struct rpc_cred *cred;
2433 	int res = 0;
2434 
2435 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2436 
2437 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2438 		goto out;
2439 	/* Is this sys_access() ? */
2440 	if (mask & (MAY_ACCESS | MAY_CHDIR))
2441 		goto force_lookup;
2442 
2443 	switch (inode->i_mode & S_IFMT) {
2444 		case S_IFLNK:
2445 			goto out;
2446 		case S_IFREG:
2447 			break;
2448 		case S_IFDIR:
2449 			/*
2450 			 * Optimize away all write operations, since the server
2451 			 * will check permissions when we perform the op.
2452 			 */
2453 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2454 				goto out;
2455 	}
2456 
2457 force_lookup:
2458 	if (!NFS_PROTO(inode)->access)
2459 		goto out_notsup;
2460 
2461 	/* Always try fast lookups first */
2462 	rcu_read_lock();
2463 	cred = rpc_lookup_cred_nonblock();
2464 	if (!IS_ERR(cred))
2465 		res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK);
2466 	else
2467 		res = PTR_ERR(cred);
2468 	rcu_read_unlock();
2469 	if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) {
2470 		/* Fast lookup failed, try the slow way */
2471 		cred = rpc_lookup_cred();
2472 		if (!IS_ERR(cred)) {
2473 			res = nfs_do_access(inode, cred, mask);
2474 			put_rpccred(cred);
2475 		} else
2476 			res = PTR_ERR(cred);
2477 	}
2478 out:
2479 	if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
2480 		res = -EACCES;
2481 
2482 	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2483 		inode->i_sb->s_id, inode->i_ino, mask, res);
2484 	return res;
2485 out_notsup:
2486 	if (mask & MAY_NOT_BLOCK)
2487 		return -ECHILD;
2488 
2489 	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2490 	if (res == 0)
2491 		res = generic_permission(inode, mask);
2492 	goto out;
2493 }
2494 EXPORT_SYMBOL_GPL(nfs_permission);
2495 
2496 /*
2497  * Local variables:
2498  *  version-control: t
2499  *  kept-new-versions: 5
2500  * End:
2501  */
2502