xref: /openbmc/linux/fs/nfs/dir.c (revision 3e30a927)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/nfs/dir.c
4  *
5  *  Copyright (C) 1992  Rick Sladkey
6  *
7  *  nfs directory handling functions
8  *
9  * 10 Apr 1996	Added silly rename for unlink	--okir
10  * 28 Sep 1996	Improved directory cache --okir
11  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
12  *              Re-implemented silly rename for unlink, newly implemented
13  *              silly rename for nfs_rename() following the suggestions
14  *              of Olaf Kirch (okir) found in this file.
15  *              Following Linus comments on my original hack, this version
16  *              depends only on the dcache stuff and doesn't touch the inode
17  *              layer (iput() and friends).
18  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
19  */
20 
21 #include <linux/module.h>
22 #include <linux/time.h>
23 #include <linux/errno.h>
24 #include <linux/stat.h>
25 #include <linux/fcntl.h>
26 #include <linux/string.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/mm.h>
30 #include <linux/sunrpc/clnt.h>
31 #include <linux/nfs_fs.h>
32 #include <linux/nfs_mount.h>
33 #include <linux/pagemap.h>
34 #include <linux/pagevec.h>
35 #include <linux/namei.h>
36 #include <linux/mount.h>
37 #include <linux/swap.h>
38 #include <linux/sched.h>
39 #include <linux/kmemleak.h>
40 #include <linux/xattr.h>
41 
42 #include "delegation.h"
43 #include "iostat.h"
44 #include "internal.h"
45 #include "fscache.h"
46 
47 #include "nfstrace.h"
48 
49 /* #define NFS_DEBUG_VERBOSE 1 */
50 
51 static int nfs_opendir(struct inode *, struct file *);
52 static int nfs_closedir(struct inode *, struct file *);
53 static int nfs_readdir(struct file *, struct dir_context *);
54 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
55 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
56 static void nfs_readdir_clear_array(struct page*);
57 
58 const struct file_operations nfs_dir_operations = {
59 	.llseek		= nfs_llseek_dir,
60 	.read		= generic_read_dir,
61 	.iterate_shared	= nfs_readdir,
62 	.open		= nfs_opendir,
63 	.release	= nfs_closedir,
64 	.fsync		= nfs_fsync_dir,
65 };
66 
67 const struct address_space_operations nfs_dir_aops = {
68 	.freepage = nfs_readdir_clear_array,
69 };
70 
71 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, const struct cred *cred)
72 {
73 	struct nfs_inode *nfsi = NFS_I(dir);
74 	struct nfs_open_dir_context *ctx;
75 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
76 	if (ctx != NULL) {
77 		ctx->duped = 0;
78 		ctx->attr_gencount = nfsi->attr_gencount;
79 		ctx->dir_cookie = 0;
80 		ctx->dup_cookie = 0;
81 		ctx->cred = get_cred(cred);
82 		spin_lock(&dir->i_lock);
83 		if (list_empty(&nfsi->open_files) &&
84 		    (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
85 			nfsi->cache_validity |= NFS_INO_INVALID_DATA |
86 				NFS_INO_REVAL_FORCED;
87 		list_add(&ctx->list, &nfsi->open_files);
88 		spin_unlock(&dir->i_lock);
89 		return ctx;
90 	}
91 	return  ERR_PTR(-ENOMEM);
92 }
93 
94 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
95 {
96 	spin_lock(&dir->i_lock);
97 	list_del(&ctx->list);
98 	spin_unlock(&dir->i_lock);
99 	put_cred(ctx->cred);
100 	kfree(ctx);
101 }
102 
103 /*
104  * Open file
105  */
106 static int
107 nfs_opendir(struct inode *inode, struct file *filp)
108 {
109 	int res = 0;
110 	struct nfs_open_dir_context *ctx;
111 
112 	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
113 
114 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
115 
116 	ctx = alloc_nfs_open_dir_context(inode, current_cred());
117 	if (IS_ERR(ctx)) {
118 		res = PTR_ERR(ctx);
119 		goto out;
120 	}
121 	filp->private_data = ctx;
122 out:
123 	return res;
124 }
125 
126 static int
127 nfs_closedir(struct inode *inode, struct file *filp)
128 {
129 	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
130 	return 0;
131 }
132 
133 struct nfs_cache_array_entry {
134 	u64 cookie;
135 	u64 ino;
136 	struct qstr string;
137 	unsigned char d_type;
138 };
139 
140 struct nfs_cache_array {
141 	int size;
142 	int eof_index;
143 	u64 last_cookie;
144 	struct nfs_cache_array_entry array[0];
145 };
146 
147 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, bool);
148 typedef struct {
149 	struct file	*file;
150 	struct page	*page;
151 	struct dir_context *ctx;
152 	unsigned long	page_index;
153 	u64		*dir_cookie;
154 	u64		last_cookie;
155 	loff_t		current_index;
156 	decode_dirent_t	decode;
157 
158 	unsigned long	timestamp;
159 	unsigned long	gencount;
160 	unsigned int	cache_entry_index;
161 	bool plus;
162 	bool eof;
163 } nfs_readdir_descriptor_t;
164 
165 static
166 void nfs_readdir_init_array(struct page *page)
167 {
168 	struct nfs_cache_array *array;
169 
170 	array = kmap_atomic(page);
171 	memset(array, 0, sizeof(struct nfs_cache_array));
172 	array->eof_index = -1;
173 	kunmap_atomic(array);
174 }
175 
176 /*
177  * we are freeing strings created by nfs_add_to_readdir_array()
178  */
179 static
180 void nfs_readdir_clear_array(struct page *page)
181 {
182 	struct nfs_cache_array *array;
183 	int i;
184 
185 	array = kmap_atomic(page);
186 	for (i = 0; i < array->size; i++)
187 		kfree(array->array[i].string.name);
188 	array->size = 0;
189 	kunmap_atomic(array);
190 }
191 
192 /*
193  * the caller is responsible for freeing qstr.name
194  * when called by nfs_readdir_add_to_array, the strings will be freed in
195  * nfs_clear_readdir_array()
196  */
197 static
198 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
199 {
200 	string->len = len;
201 	string->name = kmemdup_nul(name, len, GFP_KERNEL);
202 	if (string->name == NULL)
203 		return -ENOMEM;
204 	/*
205 	 * Avoid a kmemleak false positive. The pointer to the name is stored
206 	 * in a page cache page which kmemleak does not scan.
207 	 */
208 	kmemleak_not_leak(string->name);
209 	string->hash = full_name_hash(NULL, name, len);
210 	return 0;
211 }
212 
213 static
214 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
215 {
216 	struct nfs_cache_array *array = kmap(page);
217 	struct nfs_cache_array_entry *cache_entry;
218 	int ret;
219 
220 	cache_entry = &array->array[array->size];
221 
222 	/* Check that this entry lies within the page bounds */
223 	ret = -ENOSPC;
224 	if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
225 		goto out;
226 
227 	cache_entry->cookie = entry->prev_cookie;
228 	cache_entry->ino = entry->ino;
229 	cache_entry->d_type = entry->d_type;
230 	ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
231 	if (ret)
232 		goto out;
233 	array->last_cookie = entry->cookie;
234 	array->size++;
235 	if (entry->eof != 0)
236 		array->eof_index = array->size;
237 out:
238 	kunmap(page);
239 	return ret;
240 }
241 
242 static
243 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
244 {
245 	loff_t diff = desc->ctx->pos - desc->current_index;
246 	unsigned int index;
247 
248 	if (diff < 0)
249 		goto out_eof;
250 	if (diff >= array->size) {
251 		if (array->eof_index >= 0)
252 			goto out_eof;
253 		return -EAGAIN;
254 	}
255 
256 	index = (unsigned int)diff;
257 	*desc->dir_cookie = array->array[index].cookie;
258 	desc->cache_entry_index = index;
259 	return 0;
260 out_eof:
261 	desc->eof = true;
262 	return -EBADCOOKIE;
263 }
264 
265 static bool
266 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
267 {
268 	if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
269 		return false;
270 	smp_rmb();
271 	return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
272 }
273 
274 static
275 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
276 {
277 	int i;
278 	loff_t new_pos;
279 	int status = -EAGAIN;
280 
281 	for (i = 0; i < array->size; i++) {
282 		if (array->array[i].cookie == *desc->dir_cookie) {
283 			struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
284 			struct nfs_open_dir_context *ctx = desc->file->private_data;
285 
286 			new_pos = desc->current_index + i;
287 			if (ctx->attr_gencount != nfsi->attr_gencount ||
288 			    !nfs_readdir_inode_mapping_valid(nfsi)) {
289 				ctx->duped = 0;
290 				ctx->attr_gencount = nfsi->attr_gencount;
291 			} else if (new_pos < desc->ctx->pos) {
292 				if (ctx->duped > 0
293 				    && ctx->dup_cookie == *desc->dir_cookie) {
294 					if (printk_ratelimit()) {
295 						pr_notice("NFS: directory %pD2 contains a readdir loop."
296 								"Please contact your server vendor.  "
297 								"The file: %.*s has duplicate cookie %llu\n",
298 								desc->file, array->array[i].string.len,
299 								array->array[i].string.name, *desc->dir_cookie);
300 					}
301 					status = -ELOOP;
302 					goto out;
303 				}
304 				ctx->dup_cookie = *desc->dir_cookie;
305 				ctx->duped = -1;
306 			}
307 			desc->ctx->pos = new_pos;
308 			desc->cache_entry_index = i;
309 			return 0;
310 		}
311 	}
312 	if (array->eof_index >= 0) {
313 		status = -EBADCOOKIE;
314 		if (*desc->dir_cookie == array->last_cookie)
315 			desc->eof = true;
316 	}
317 out:
318 	return status;
319 }
320 
321 static
322 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
323 {
324 	struct nfs_cache_array *array;
325 	int status;
326 
327 	array = kmap(desc->page);
328 
329 	if (*desc->dir_cookie == 0)
330 		status = nfs_readdir_search_for_pos(array, desc);
331 	else
332 		status = nfs_readdir_search_for_cookie(array, desc);
333 
334 	if (status == -EAGAIN) {
335 		desc->last_cookie = array->last_cookie;
336 		desc->current_index += array->size;
337 		desc->page_index++;
338 	}
339 	kunmap(desc->page);
340 	return status;
341 }
342 
343 /* Fill a page with xdr information before transferring to the cache page */
344 static
345 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
346 			struct nfs_entry *entry, struct file *file, struct inode *inode)
347 {
348 	struct nfs_open_dir_context *ctx = file->private_data;
349 	const struct cred *cred = ctx->cred;
350 	unsigned long	timestamp, gencount;
351 	int		error;
352 
353  again:
354 	timestamp = jiffies;
355 	gencount = nfs_inc_attr_generation_counter();
356 	error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
357 					  NFS_SERVER(inode)->dtsize, desc->plus);
358 	if (error < 0) {
359 		/* We requested READDIRPLUS, but the server doesn't grok it */
360 		if (error == -ENOTSUPP && desc->plus) {
361 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
362 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
363 			desc->plus = false;
364 			goto again;
365 		}
366 		goto error;
367 	}
368 	desc->timestamp = timestamp;
369 	desc->gencount = gencount;
370 error:
371 	return error;
372 }
373 
374 static int xdr_decode(nfs_readdir_descriptor_t *desc,
375 		      struct nfs_entry *entry, struct xdr_stream *xdr)
376 {
377 	int error;
378 
379 	error = desc->decode(xdr, entry, desc->plus);
380 	if (error)
381 		return error;
382 	entry->fattr->time_start = desc->timestamp;
383 	entry->fattr->gencount = desc->gencount;
384 	return 0;
385 }
386 
387 /* Match file and dirent using either filehandle or fileid
388  * Note: caller is responsible for checking the fsid
389  */
390 static
391 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
392 {
393 	struct inode *inode;
394 	struct nfs_inode *nfsi;
395 
396 	if (d_really_is_negative(dentry))
397 		return 0;
398 
399 	inode = d_inode(dentry);
400 	if (is_bad_inode(inode) || NFS_STALE(inode))
401 		return 0;
402 
403 	nfsi = NFS_I(inode);
404 	if (entry->fattr->fileid != nfsi->fileid)
405 		return 0;
406 	if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
407 		return 0;
408 	return 1;
409 }
410 
411 static
412 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
413 {
414 	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
415 		return false;
416 	if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
417 		return true;
418 	if (ctx->pos == 0)
419 		return true;
420 	return false;
421 }
422 
423 /*
424  * This function is called by the lookup and getattr code to request the
425  * use of readdirplus to accelerate any future lookups in the same
426  * directory.
427  */
428 void nfs_advise_use_readdirplus(struct inode *dir)
429 {
430 	struct nfs_inode *nfsi = NFS_I(dir);
431 
432 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
433 	    !list_empty(&nfsi->open_files))
434 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
435 }
436 
437 /*
438  * This function is mainly for use by nfs_getattr().
439  *
440  * If this is an 'ls -l', we want to force use of readdirplus.
441  * Do this by checking if there is an active file descriptor
442  * and calling nfs_advise_use_readdirplus, then forcing a
443  * cache flush.
444  */
445 void nfs_force_use_readdirplus(struct inode *dir)
446 {
447 	struct nfs_inode *nfsi = NFS_I(dir);
448 
449 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
450 	    !list_empty(&nfsi->open_files)) {
451 		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
452 		invalidate_mapping_pages(dir->i_mapping,
453 			nfsi->page_index + 1, -1);
454 	}
455 }
456 
457 static
458 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
459 {
460 	struct qstr filename = QSTR_INIT(entry->name, entry->len);
461 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
462 	struct dentry *dentry;
463 	struct dentry *alias;
464 	struct inode *dir = d_inode(parent);
465 	struct inode *inode;
466 	int status;
467 
468 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
469 		return;
470 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
471 		return;
472 	if (filename.len == 0)
473 		return;
474 	/* Validate that the name doesn't contain any illegal '\0' */
475 	if (strnlen(filename.name, filename.len) != filename.len)
476 		return;
477 	/* ...or '/' */
478 	if (strnchr(filename.name, filename.len, '/'))
479 		return;
480 	if (filename.name[0] == '.') {
481 		if (filename.len == 1)
482 			return;
483 		if (filename.len == 2 && filename.name[1] == '.')
484 			return;
485 	}
486 	filename.hash = full_name_hash(parent, filename.name, filename.len);
487 
488 	dentry = d_lookup(parent, &filename);
489 again:
490 	if (!dentry) {
491 		dentry = d_alloc_parallel(parent, &filename, &wq);
492 		if (IS_ERR(dentry))
493 			return;
494 	}
495 	if (!d_in_lookup(dentry)) {
496 		/* Is there a mountpoint here? If so, just exit */
497 		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
498 					&entry->fattr->fsid))
499 			goto out;
500 		if (nfs_same_file(dentry, entry)) {
501 			if (!entry->fh->size)
502 				goto out;
503 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
504 			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
505 			if (!status)
506 				nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
507 			goto out;
508 		} else {
509 			d_invalidate(dentry);
510 			dput(dentry);
511 			dentry = NULL;
512 			goto again;
513 		}
514 	}
515 	if (!entry->fh->size) {
516 		d_lookup_done(dentry);
517 		goto out;
518 	}
519 
520 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
521 	alias = d_splice_alias(inode, dentry);
522 	d_lookup_done(dentry);
523 	if (alias) {
524 		if (IS_ERR(alias))
525 			goto out;
526 		dput(dentry);
527 		dentry = alias;
528 	}
529 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
530 out:
531 	dput(dentry);
532 }
533 
534 /* Perform conversion from xdr to cache array */
535 static
536 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
537 				struct page **xdr_pages, struct page *page, unsigned int buflen)
538 {
539 	struct xdr_stream stream;
540 	struct xdr_buf buf;
541 	struct page *scratch;
542 	struct nfs_cache_array *array;
543 	unsigned int count = 0;
544 	int status;
545 
546 	scratch = alloc_page(GFP_KERNEL);
547 	if (scratch == NULL)
548 		return -ENOMEM;
549 
550 	if (buflen == 0)
551 		goto out_nopages;
552 
553 	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
554 	xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
555 
556 	do {
557 		status = xdr_decode(desc, entry, &stream);
558 		if (status != 0) {
559 			if (status == -EAGAIN)
560 				status = 0;
561 			break;
562 		}
563 
564 		count++;
565 
566 		if (desc->plus)
567 			nfs_prime_dcache(file_dentry(desc->file), entry);
568 
569 		status = nfs_readdir_add_to_array(entry, page);
570 		if (status != 0)
571 			break;
572 	} while (!entry->eof);
573 
574 out_nopages:
575 	if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
576 		array = kmap(page);
577 		array->eof_index = array->size;
578 		status = 0;
579 		kunmap(page);
580 	}
581 
582 	put_page(scratch);
583 	return status;
584 }
585 
586 static
587 void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
588 {
589 	unsigned int i;
590 	for (i = 0; i < npages; i++)
591 		put_page(pages[i]);
592 }
593 
594 /*
595  * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
596  * to nfs_readdir_free_pages()
597  */
598 static
599 int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
600 {
601 	unsigned int i;
602 
603 	for (i = 0; i < npages; i++) {
604 		struct page *page = alloc_page(GFP_KERNEL);
605 		if (page == NULL)
606 			goto out_freepages;
607 		pages[i] = page;
608 	}
609 	return 0;
610 
611 out_freepages:
612 	nfs_readdir_free_pages(pages, i);
613 	return -ENOMEM;
614 }
615 
616 static
617 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
618 {
619 	struct page *pages[NFS_MAX_READDIR_PAGES];
620 	struct nfs_entry entry;
621 	struct file	*file = desc->file;
622 	struct nfs_cache_array *array;
623 	int status = -ENOMEM;
624 	unsigned int array_size = ARRAY_SIZE(pages);
625 
626 	nfs_readdir_init_array(page);
627 
628 	entry.prev_cookie = 0;
629 	entry.cookie = desc->last_cookie;
630 	entry.eof = 0;
631 	entry.fh = nfs_alloc_fhandle();
632 	entry.fattr = nfs_alloc_fattr();
633 	entry.server = NFS_SERVER(inode);
634 	if (entry.fh == NULL || entry.fattr == NULL)
635 		goto out;
636 
637 	entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
638 	if (IS_ERR(entry.label)) {
639 		status = PTR_ERR(entry.label);
640 		goto out;
641 	}
642 
643 	array = kmap(page);
644 
645 	status = nfs_readdir_alloc_pages(pages, array_size);
646 	if (status < 0)
647 		goto out_release_array;
648 	do {
649 		unsigned int pglen;
650 		status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
651 
652 		if (status < 0)
653 			break;
654 		pglen = status;
655 		status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
656 		if (status < 0) {
657 			if (status == -ENOSPC)
658 				status = 0;
659 			break;
660 		}
661 	} while (array->eof_index < 0);
662 
663 	nfs_readdir_free_pages(pages, array_size);
664 out_release_array:
665 	kunmap(page);
666 	nfs4_label_free(entry.label);
667 out:
668 	nfs_free_fattr(entry.fattr);
669 	nfs_free_fhandle(entry.fh);
670 	return status;
671 }
672 
673 /*
674  * Now we cache directories properly, by converting xdr information
675  * to an array that can be used for lookups later.  This results in
676  * fewer cache pages, since we can store more information on each page.
677  * We only need to convert from xdr once so future lookups are much simpler
678  */
679 static
680 int nfs_readdir_filler(void *data, struct page* page)
681 {
682 	nfs_readdir_descriptor_t *desc = data;
683 	struct inode	*inode = file_inode(desc->file);
684 	int ret;
685 
686 	ret = nfs_readdir_xdr_to_array(desc, page, inode);
687 	if (ret < 0)
688 		goto error;
689 	SetPageUptodate(page);
690 
691 	if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
692 		/* Should never happen */
693 		nfs_zap_mapping(inode, inode->i_mapping);
694 	}
695 	unlock_page(page);
696 	return 0;
697  error:
698 	nfs_readdir_clear_array(page);
699 	unlock_page(page);
700 	return ret;
701 }
702 
703 static
704 void cache_page_release(nfs_readdir_descriptor_t *desc)
705 {
706 	put_page(desc->page);
707 	desc->page = NULL;
708 }
709 
710 static
711 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
712 {
713 	return read_cache_page(desc->file->f_mapping, desc->page_index,
714 			nfs_readdir_filler, desc);
715 }
716 
717 /*
718  * Returns 0 if desc->dir_cookie was found on page desc->page_index
719  * and locks the page to prevent removal from the page cache.
720  */
721 static
722 int find_and_lock_cache_page(nfs_readdir_descriptor_t *desc)
723 {
724 	struct inode *inode = file_inode(desc->file);
725 	struct nfs_inode *nfsi = NFS_I(inode);
726 	int res;
727 
728 	desc->page = get_cache_page(desc);
729 	if (IS_ERR(desc->page))
730 		return PTR_ERR(desc->page);
731 	res = lock_page_killable(desc->page);
732 	if (res != 0)
733 		goto error;
734 	res = -EAGAIN;
735 	if (desc->page->mapping != NULL) {
736 		res = nfs_readdir_search_array(desc);
737 		if (res == 0) {
738 			nfsi->page_index = desc->page_index;
739 			return 0;
740 		}
741 	}
742 	unlock_page(desc->page);
743 error:
744 	cache_page_release(desc);
745 	return res;
746 }
747 
748 /* Search for desc->dir_cookie from the beginning of the page cache */
749 static inline
750 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
751 {
752 	int res;
753 
754 	if (desc->page_index == 0) {
755 		desc->current_index = 0;
756 		desc->last_cookie = 0;
757 	}
758 	do {
759 		res = find_and_lock_cache_page(desc);
760 	} while (res == -EAGAIN);
761 	return res;
762 }
763 
764 /*
765  * Once we've found the start of the dirent within a page: fill 'er up...
766  */
767 static
768 int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
769 {
770 	struct file	*file = desc->file;
771 	int i = 0;
772 	int res = 0;
773 	struct nfs_cache_array *array = NULL;
774 	struct nfs_open_dir_context *ctx = file->private_data;
775 
776 	array = kmap(desc->page);
777 	for (i = desc->cache_entry_index; i < array->size; i++) {
778 		struct nfs_cache_array_entry *ent;
779 
780 		ent = &array->array[i];
781 		if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
782 		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
783 			desc->eof = true;
784 			break;
785 		}
786 		desc->ctx->pos++;
787 		if (i < (array->size-1))
788 			*desc->dir_cookie = array->array[i+1].cookie;
789 		else
790 			*desc->dir_cookie = array->last_cookie;
791 		if (ctx->duped != 0)
792 			ctx->duped = 1;
793 	}
794 	if (array->eof_index >= 0)
795 		desc->eof = true;
796 
797 	kunmap(desc->page);
798 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
799 			(unsigned long long)*desc->dir_cookie, res);
800 	return res;
801 }
802 
803 /*
804  * If we cannot find a cookie in our cache, we suspect that this is
805  * because it points to a deleted file, so we ask the server to return
806  * whatever it thinks is the next entry. We then feed this to filldir.
807  * If all goes well, we should then be able to find our way round the
808  * cache on the next call to readdir_search_pagecache();
809  *
810  * NOTE: we cannot add the anonymous page to the pagecache because
811  *	 the data it contains might not be page aligned. Besides,
812  *	 we should already have a complete representation of the
813  *	 directory in the page cache by the time we get here.
814  */
815 static inline
816 int uncached_readdir(nfs_readdir_descriptor_t *desc)
817 {
818 	struct page	*page = NULL;
819 	int		status;
820 	struct inode *inode = file_inode(desc->file);
821 	struct nfs_open_dir_context *ctx = desc->file->private_data;
822 
823 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
824 			(unsigned long long)*desc->dir_cookie);
825 
826 	page = alloc_page(GFP_HIGHUSER);
827 	if (!page) {
828 		status = -ENOMEM;
829 		goto out;
830 	}
831 
832 	desc->page_index = 0;
833 	desc->last_cookie = *desc->dir_cookie;
834 	desc->page = page;
835 	ctx->duped = 0;
836 
837 	status = nfs_readdir_xdr_to_array(desc, page, inode);
838 	if (status < 0)
839 		goto out_release;
840 
841 	status = nfs_do_filldir(desc);
842 
843  out_release:
844 	nfs_readdir_clear_array(desc->page);
845 	cache_page_release(desc);
846  out:
847 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
848 			__func__, status);
849 	return status;
850 }
851 
852 /* The file offset position represents the dirent entry number.  A
853    last cookie cache takes care of the common case of reading the
854    whole directory.
855  */
856 static int nfs_readdir(struct file *file, struct dir_context *ctx)
857 {
858 	struct dentry	*dentry = file_dentry(file);
859 	struct inode	*inode = d_inode(dentry);
860 	nfs_readdir_descriptor_t my_desc,
861 			*desc = &my_desc;
862 	struct nfs_open_dir_context *dir_ctx = file->private_data;
863 	int res = 0;
864 
865 	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
866 			file, (long long)ctx->pos);
867 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
868 
869 	/*
870 	 * ctx->pos points to the dirent entry number.
871 	 * *desc->dir_cookie has the cookie for the next entry. We have
872 	 * to either find the entry with the appropriate number or
873 	 * revalidate the cookie.
874 	 */
875 	memset(desc, 0, sizeof(*desc));
876 
877 	desc->file = file;
878 	desc->ctx = ctx;
879 	desc->dir_cookie = &dir_ctx->dir_cookie;
880 	desc->decode = NFS_PROTO(inode)->decode_dirent;
881 	desc->plus = nfs_use_readdirplus(inode, ctx);
882 
883 	if (ctx->pos == 0 || nfs_attribute_cache_expired(inode))
884 		res = nfs_revalidate_mapping(inode, file->f_mapping);
885 	if (res < 0)
886 		goto out;
887 
888 	do {
889 		res = readdir_search_pagecache(desc);
890 
891 		if (res == -EBADCOOKIE) {
892 			res = 0;
893 			/* This means either end of directory */
894 			if (*desc->dir_cookie && !desc->eof) {
895 				/* Or that the server has 'lost' a cookie */
896 				res = uncached_readdir(desc);
897 				if (res == 0)
898 					continue;
899 			}
900 			break;
901 		}
902 		if (res == -ETOOSMALL && desc->plus) {
903 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
904 			nfs_zap_caches(inode);
905 			desc->page_index = 0;
906 			desc->plus = false;
907 			desc->eof = false;
908 			continue;
909 		}
910 		if (res < 0)
911 			break;
912 
913 		res = nfs_do_filldir(desc);
914 		unlock_page(desc->page);
915 		cache_page_release(desc);
916 		if (res < 0)
917 			break;
918 	} while (!desc->eof);
919 out:
920 	if (res > 0)
921 		res = 0;
922 	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
923 	return res;
924 }
925 
926 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
927 {
928 	struct inode *inode = file_inode(filp);
929 	struct nfs_open_dir_context *dir_ctx = filp->private_data;
930 
931 	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
932 			filp, offset, whence);
933 
934 	switch (whence) {
935 	default:
936 		return -EINVAL;
937 	case SEEK_SET:
938 		if (offset < 0)
939 			return -EINVAL;
940 		inode_lock(inode);
941 		break;
942 	case SEEK_CUR:
943 		if (offset == 0)
944 			return filp->f_pos;
945 		inode_lock(inode);
946 		offset += filp->f_pos;
947 		if (offset < 0) {
948 			inode_unlock(inode);
949 			return -EINVAL;
950 		}
951 	}
952 	if (offset != filp->f_pos) {
953 		filp->f_pos = offset;
954 		dir_ctx->dir_cookie = 0;
955 		dir_ctx->duped = 0;
956 	}
957 	inode_unlock(inode);
958 	return offset;
959 }
960 
961 /*
962  * All directory operations under NFS are synchronous, so fsync()
963  * is a dummy operation.
964  */
965 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
966 			 int datasync)
967 {
968 	struct inode *inode = file_inode(filp);
969 
970 	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
971 
972 	inode_lock(inode);
973 	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
974 	inode_unlock(inode);
975 	return 0;
976 }
977 
978 /**
979  * nfs_force_lookup_revalidate - Mark the directory as having changed
980  * @dir: pointer to directory inode
981  *
982  * This forces the revalidation code in nfs_lookup_revalidate() to do a
983  * full lookup on all child dentries of 'dir' whenever a change occurs
984  * on the server that might have invalidated our dcache.
985  *
986  * The caller should be holding dir->i_lock
987  */
988 void nfs_force_lookup_revalidate(struct inode *dir)
989 {
990 	NFS_I(dir)->cache_change_attribute++;
991 }
992 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
993 
994 /*
995  * A check for whether or not the parent directory has changed.
996  * In the case it has, we assume that the dentries are untrustworthy
997  * and may need to be looked up again.
998  * If rcu_walk prevents us from performing a full check, return 0.
999  */
1000 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1001 			      int rcu_walk)
1002 {
1003 	if (IS_ROOT(dentry))
1004 		return 1;
1005 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1006 		return 0;
1007 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1008 		return 0;
1009 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1010 	if (nfs_mapping_need_revalidate_inode(dir)) {
1011 		if (rcu_walk)
1012 			return 0;
1013 		if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1014 			return 0;
1015 	}
1016 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1017 		return 0;
1018 	return 1;
1019 }
1020 
1021 /*
1022  * Use intent information to check whether or not we're going to do
1023  * an O_EXCL create using this path component.
1024  */
1025 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1026 {
1027 	if (NFS_PROTO(dir)->version == 2)
1028 		return 0;
1029 	return flags & LOOKUP_EXCL;
1030 }
1031 
1032 /*
1033  * Inode and filehandle revalidation for lookups.
1034  *
1035  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1036  * or if the intent information indicates that we're about to open this
1037  * particular file and the "nocto" mount flag is not set.
1038  *
1039  */
1040 static
1041 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1042 {
1043 	struct nfs_server *server = NFS_SERVER(inode);
1044 	int ret;
1045 
1046 	if (IS_AUTOMOUNT(inode))
1047 		return 0;
1048 
1049 	if (flags & LOOKUP_OPEN) {
1050 		switch (inode->i_mode & S_IFMT) {
1051 		case S_IFREG:
1052 			/* A NFSv4 OPEN will revalidate later */
1053 			if (server->caps & NFS_CAP_ATOMIC_OPEN)
1054 				goto out;
1055 			/* Fallthrough */
1056 		case S_IFDIR:
1057 			if (server->flags & NFS_MOUNT_NOCTO)
1058 				break;
1059 			/* NFS close-to-open cache consistency validation */
1060 			goto out_force;
1061 		}
1062 	}
1063 
1064 	/* VFS wants an on-the-wire revalidation */
1065 	if (flags & LOOKUP_REVAL)
1066 		goto out_force;
1067 out:
1068 	return (inode->i_nlink == 0) ? -ESTALE : 0;
1069 out_force:
1070 	if (flags & LOOKUP_RCU)
1071 		return -ECHILD;
1072 	ret = __nfs_revalidate_inode(server, inode);
1073 	if (ret != 0)
1074 		return ret;
1075 	goto out;
1076 }
1077 
1078 /*
1079  * We judge how long we want to trust negative
1080  * dentries by looking at the parent inode mtime.
1081  *
1082  * If parent mtime has changed, we revalidate, else we wait for a
1083  * period corresponding to the parent's attribute cache timeout value.
1084  *
1085  * If LOOKUP_RCU prevents us from performing a full check, return 1
1086  * suggesting a reval is needed.
1087  *
1088  * Note that when creating a new file, or looking up a rename target,
1089  * then it shouldn't be necessary to revalidate a negative dentry.
1090  */
1091 static inline
1092 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1093 		       unsigned int flags)
1094 {
1095 	if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1096 		return 0;
1097 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1098 		return 1;
1099 	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1100 }
1101 
1102 static int
1103 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1104 			   struct inode *inode, int error)
1105 {
1106 	switch (error) {
1107 	case 1:
1108 		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1109 			__func__, dentry);
1110 		return 1;
1111 	case 0:
1112 		nfs_mark_for_revalidate(dir);
1113 		if (inode && S_ISDIR(inode->i_mode)) {
1114 			/* Purge readdir caches. */
1115 			nfs_zap_caches(inode);
1116 			/*
1117 			 * We can't d_drop the root of a disconnected tree:
1118 			 * its d_hash is on the s_anon list and d_drop() would hide
1119 			 * it from shrink_dcache_for_unmount(), leading to busy
1120 			 * inodes on unmount and further oopses.
1121 			 */
1122 			if (IS_ROOT(dentry))
1123 				return 1;
1124 		}
1125 		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1126 				__func__, dentry);
1127 		return 0;
1128 	}
1129 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1130 				__func__, dentry, error);
1131 	return error;
1132 }
1133 
1134 static int
1135 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1136 			       unsigned int flags)
1137 {
1138 	int ret = 1;
1139 	if (nfs_neg_need_reval(dir, dentry, flags)) {
1140 		if (flags & LOOKUP_RCU)
1141 			return -ECHILD;
1142 		ret = 0;
1143 	}
1144 	return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1145 }
1146 
1147 static int
1148 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1149 				struct inode *inode)
1150 {
1151 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1152 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1153 }
1154 
1155 static int
1156 nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry,
1157 			     struct inode *inode)
1158 {
1159 	struct nfs_fh *fhandle;
1160 	struct nfs_fattr *fattr;
1161 	struct nfs4_label *label;
1162 	int ret;
1163 
1164 	ret = -ENOMEM;
1165 	fhandle = nfs_alloc_fhandle();
1166 	fattr = nfs_alloc_fattr();
1167 	label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL);
1168 	if (fhandle == NULL || fattr == NULL || IS_ERR(label))
1169 		goto out;
1170 
1171 	ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1172 	if (ret < 0) {
1173 		switch (ret) {
1174 		case -ESTALE:
1175 		case -ENOENT:
1176 			ret = 0;
1177 			break;
1178 		case -ETIMEDOUT:
1179 			if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1180 				ret = 1;
1181 		}
1182 		goto out;
1183 	}
1184 	ret = 0;
1185 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1186 		goto out;
1187 	if (nfs_refresh_inode(inode, fattr) < 0)
1188 		goto out;
1189 
1190 	nfs_setsecurity(inode, fattr, label);
1191 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1192 
1193 	/* set a readdirplus hint that we had a cache miss */
1194 	nfs_force_use_readdirplus(dir);
1195 	ret = 1;
1196 out:
1197 	nfs_free_fattr(fattr);
1198 	nfs_free_fhandle(fhandle);
1199 	nfs4_label_free(label);
1200 	return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1201 }
1202 
1203 /*
1204  * This is called every time the dcache has a lookup hit,
1205  * and we should check whether we can really trust that
1206  * lookup.
1207  *
1208  * NOTE! The hit can be a negative hit too, don't assume
1209  * we have an inode!
1210  *
1211  * If the parent directory is seen to have changed, we throw out the
1212  * cached dentry and do a new lookup.
1213  */
1214 static int
1215 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1216 			 unsigned int flags)
1217 {
1218 	struct inode *inode;
1219 	int error;
1220 
1221 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1222 	inode = d_inode(dentry);
1223 
1224 	if (!inode)
1225 		return nfs_lookup_revalidate_negative(dir, dentry, flags);
1226 
1227 	if (is_bad_inode(inode)) {
1228 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1229 				__func__, dentry);
1230 		goto out_bad;
1231 	}
1232 
1233 	if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1234 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1235 
1236 	/* Force a full look up iff the parent directory has changed */
1237 	if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1238 	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1239 		error = nfs_lookup_verify_inode(inode, flags);
1240 		if (error) {
1241 			if (error == -ESTALE)
1242 				nfs_zap_caches(dir);
1243 			goto out_bad;
1244 		}
1245 		nfs_advise_use_readdirplus(dir);
1246 		goto out_valid;
1247 	}
1248 
1249 	if (flags & LOOKUP_RCU)
1250 		return -ECHILD;
1251 
1252 	if (NFS_STALE(inode))
1253 		goto out_bad;
1254 
1255 	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1256 	error = nfs_lookup_revalidate_dentry(dir, dentry, inode);
1257 	trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1258 	return error;
1259 out_valid:
1260 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1261 out_bad:
1262 	if (flags & LOOKUP_RCU)
1263 		return -ECHILD;
1264 	return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1265 }
1266 
1267 static int
1268 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1269 			int (*reval)(struct inode *, struct dentry *, unsigned int))
1270 {
1271 	struct dentry *parent;
1272 	struct inode *dir;
1273 	int ret;
1274 
1275 	if (flags & LOOKUP_RCU) {
1276 		parent = READ_ONCE(dentry->d_parent);
1277 		dir = d_inode_rcu(parent);
1278 		if (!dir)
1279 			return -ECHILD;
1280 		ret = reval(dir, dentry, flags);
1281 		if (parent != READ_ONCE(dentry->d_parent))
1282 			return -ECHILD;
1283 	} else {
1284 		parent = dget_parent(dentry);
1285 		ret = reval(d_inode(parent), dentry, flags);
1286 		dput(parent);
1287 	}
1288 	return ret;
1289 }
1290 
1291 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1292 {
1293 	return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1294 }
1295 
1296 /*
1297  * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1298  * when we don't really care about the dentry name. This is called when a
1299  * pathwalk ends on a dentry that was not found via a normal lookup in the
1300  * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1301  *
1302  * In this situation, we just want to verify that the inode itself is OK
1303  * since the dentry might have changed on the server.
1304  */
1305 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1306 {
1307 	struct inode *inode = d_inode(dentry);
1308 	int error = 0;
1309 
1310 	/*
1311 	 * I believe we can only get a negative dentry here in the case of a
1312 	 * procfs-style symlink. Just assume it's correct for now, but we may
1313 	 * eventually need to do something more here.
1314 	 */
1315 	if (!inode) {
1316 		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1317 				__func__, dentry);
1318 		return 1;
1319 	}
1320 
1321 	if (is_bad_inode(inode)) {
1322 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1323 				__func__, dentry);
1324 		return 0;
1325 	}
1326 
1327 	error = nfs_lookup_verify_inode(inode, flags);
1328 	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1329 			__func__, inode->i_ino, error ? "invalid" : "valid");
1330 	return !error;
1331 }
1332 
1333 /*
1334  * This is called from dput() when d_count is going to 0.
1335  */
1336 static int nfs_dentry_delete(const struct dentry *dentry)
1337 {
1338 	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1339 		dentry, dentry->d_flags);
1340 
1341 	/* Unhash any dentry with a stale inode */
1342 	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1343 		return 1;
1344 
1345 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1346 		/* Unhash it, so that ->d_iput() would be called */
1347 		return 1;
1348 	}
1349 	if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1350 		/* Unhash it, so that ancestors of killed async unlink
1351 		 * files will be cleaned up during umount */
1352 		return 1;
1353 	}
1354 	return 0;
1355 
1356 }
1357 
1358 /* Ensure that we revalidate inode->i_nlink */
1359 static void nfs_drop_nlink(struct inode *inode)
1360 {
1361 	spin_lock(&inode->i_lock);
1362 	/* drop the inode if we're reasonably sure this is the last link */
1363 	if (inode->i_nlink > 0)
1364 		drop_nlink(inode);
1365 	NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1366 	NFS_I(inode)->cache_validity |= NFS_INO_INVALID_CHANGE
1367 		| NFS_INO_INVALID_CTIME
1368 		| NFS_INO_INVALID_OTHER
1369 		| NFS_INO_REVAL_FORCED;
1370 	spin_unlock(&inode->i_lock);
1371 }
1372 
1373 /*
1374  * Called when the dentry loses inode.
1375  * We use it to clean up silly-renamed files.
1376  */
1377 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1378 {
1379 	if (S_ISDIR(inode->i_mode))
1380 		/* drop any readdir cache as it could easily be old */
1381 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1382 
1383 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1384 		nfs_complete_unlink(dentry, inode);
1385 		nfs_drop_nlink(inode);
1386 	}
1387 	iput(inode);
1388 }
1389 
1390 static void nfs_d_release(struct dentry *dentry)
1391 {
1392 	/* free cached devname value, if it survived that far */
1393 	if (unlikely(dentry->d_fsdata)) {
1394 		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1395 			WARN_ON(1);
1396 		else
1397 			kfree(dentry->d_fsdata);
1398 	}
1399 }
1400 
1401 const struct dentry_operations nfs_dentry_operations = {
1402 	.d_revalidate	= nfs_lookup_revalidate,
1403 	.d_weak_revalidate	= nfs_weak_revalidate,
1404 	.d_delete	= nfs_dentry_delete,
1405 	.d_iput		= nfs_dentry_iput,
1406 	.d_automount	= nfs_d_automount,
1407 	.d_release	= nfs_d_release,
1408 };
1409 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1410 
1411 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1412 {
1413 	struct dentry *res;
1414 	struct inode *inode = NULL;
1415 	struct nfs_fh *fhandle = NULL;
1416 	struct nfs_fattr *fattr = NULL;
1417 	struct nfs4_label *label = NULL;
1418 	int error;
1419 
1420 	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1421 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1422 
1423 	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1424 		return ERR_PTR(-ENAMETOOLONG);
1425 
1426 	/*
1427 	 * If we're doing an exclusive create, optimize away the lookup
1428 	 * but don't hash the dentry.
1429 	 */
1430 	if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1431 		return NULL;
1432 
1433 	res = ERR_PTR(-ENOMEM);
1434 	fhandle = nfs_alloc_fhandle();
1435 	fattr = nfs_alloc_fattr();
1436 	if (fhandle == NULL || fattr == NULL)
1437 		goto out;
1438 
1439 	label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1440 	if (IS_ERR(label))
1441 		goto out;
1442 
1443 	trace_nfs_lookup_enter(dir, dentry, flags);
1444 	error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1445 	if (error == -ENOENT)
1446 		goto no_entry;
1447 	if (error < 0) {
1448 		res = ERR_PTR(error);
1449 		goto out_label;
1450 	}
1451 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1452 	res = ERR_CAST(inode);
1453 	if (IS_ERR(res))
1454 		goto out_label;
1455 
1456 	/* Notify readdir to use READDIRPLUS */
1457 	nfs_force_use_readdirplus(dir);
1458 
1459 no_entry:
1460 	res = d_splice_alias(inode, dentry);
1461 	if (res != NULL) {
1462 		if (IS_ERR(res))
1463 			goto out_label;
1464 		dentry = res;
1465 	}
1466 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1467 out_label:
1468 	trace_nfs_lookup_exit(dir, dentry, flags, error);
1469 	nfs4_label_free(label);
1470 out:
1471 	nfs_free_fattr(fattr);
1472 	nfs_free_fhandle(fhandle);
1473 	return res;
1474 }
1475 EXPORT_SYMBOL_GPL(nfs_lookup);
1476 
1477 #if IS_ENABLED(CONFIG_NFS_V4)
1478 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1479 
1480 const struct dentry_operations nfs4_dentry_operations = {
1481 	.d_revalidate	= nfs4_lookup_revalidate,
1482 	.d_weak_revalidate	= nfs_weak_revalidate,
1483 	.d_delete	= nfs_dentry_delete,
1484 	.d_iput		= nfs_dentry_iput,
1485 	.d_automount	= nfs_d_automount,
1486 	.d_release	= nfs_d_release,
1487 };
1488 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1489 
1490 static fmode_t flags_to_mode(int flags)
1491 {
1492 	fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1493 	if ((flags & O_ACCMODE) != O_WRONLY)
1494 		res |= FMODE_READ;
1495 	if ((flags & O_ACCMODE) != O_RDONLY)
1496 		res |= FMODE_WRITE;
1497 	return res;
1498 }
1499 
1500 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1501 {
1502 	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1503 }
1504 
1505 static int do_open(struct inode *inode, struct file *filp)
1506 {
1507 	nfs_fscache_open_file(inode, filp);
1508 	return 0;
1509 }
1510 
1511 static int nfs_finish_open(struct nfs_open_context *ctx,
1512 			   struct dentry *dentry,
1513 			   struct file *file, unsigned open_flags)
1514 {
1515 	int err;
1516 
1517 	err = finish_open(file, dentry, do_open);
1518 	if (err)
1519 		goto out;
1520 	if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1521 		nfs_file_set_open_context(file, ctx);
1522 	else
1523 		err = -EOPENSTALE;
1524 out:
1525 	return err;
1526 }
1527 
1528 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1529 		    struct file *file, unsigned open_flags,
1530 		    umode_t mode)
1531 {
1532 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1533 	struct nfs_open_context *ctx;
1534 	struct dentry *res;
1535 	struct iattr attr = { .ia_valid = ATTR_OPEN };
1536 	struct inode *inode;
1537 	unsigned int lookup_flags = 0;
1538 	bool switched = false;
1539 	int created = 0;
1540 	int err;
1541 
1542 	/* Expect a negative dentry */
1543 	BUG_ON(d_inode(dentry));
1544 
1545 	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1546 			dir->i_sb->s_id, dir->i_ino, dentry);
1547 
1548 	err = nfs_check_flags(open_flags);
1549 	if (err)
1550 		return err;
1551 
1552 	/* NFS only supports OPEN on regular files */
1553 	if ((open_flags & O_DIRECTORY)) {
1554 		if (!d_in_lookup(dentry)) {
1555 			/*
1556 			 * Hashed negative dentry with O_DIRECTORY: dentry was
1557 			 * revalidated and is fine, no need to perform lookup
1558 			 * again
1559 			 */
1560 			return -ENOENT;
1561 		}
1562 		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1563 		goto no_open;
1564 	}
1565 
1566 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1567 		return -ENAMETOOLONG;
1568 
1569 	if (open_flags & O_CREAT) {
1570 		struct nfs_server *server = NFS_SERVER(dir);
1571 
1572 		if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1573 			mode &= ~current_umask();
1574 
1575 		attr.ia_valid |= ATTR_MODE;
1576 		attr.ia_mode = mode;
1577 	}
1578 	if (open_flags & O_TRUNC) {
1579 		attr.ia_valid |= ATTR_SIZE;
1580 		attr.ia_size = 0;
1581 	}
1582 
1583 	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1584 		d_drop(dentry);
1585 		switched = true;
1586 		dentry = d_alloc_parallel(dentry->d_parent,
1587 					  &dentry->d_name, &wq);
1588 		if (IS_ERR(dentry))
1589 			return PTR_ERR(dentry);
1590 		if (unlikely(!d_in_lookup(dentry)))
1591 			return finish_no_open(file, dentry);
1592 	}
1593 
1594 	ctx = create_nfs_open_context(dentry, open_flags, file);
1595 	err = PTR_ERR(ctx);
1596 	if (IS_ERR(ctx))
1597 		goto out;
1598 
1599 	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1600 	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
1601 	if (created)
1602 		file->f_mode |= FMODE_CREATED;
1603 	if (IS_ERR(inode)) {
1604 		err = PTR_ERR(inode);
1605 		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1606 		put_nfs_open_context(ctx);
1607 		d_drop(dentry);
1608 		switch (err) {
1609 		case -ENOENT:
1610 			d_splice_alias(NULL, dentry);
1611 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1612 			break;
1613 		case -EISDIR:
1614 		case -ENOTDIR:
1615 			goto no_open;
1616 		case -ELOOP:
1617 			if (!(open_flags & O_NOFOLLOW))
1618 				goto no_open;
1619 			break;
1620 			/* case -EINVAL: */
1621 		default:
1622 			break;
1623 		}
1624 		goto out;
1625 	}
1626 
1627 	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
1628 	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1629 	put_nfs_open_context(ctx);
1630 out:
1631 	if (unlikely(switched)) {
1632 		d_lookup_done(dentry);
1633 		dput(dentry);
1634 	}
1635 	return err;
1636 
1637 no_open:
1638 	res = nfs_lookup(dir, dentry, lookup_flags);
1639 	if (switched) {
1640 		d_lookup_done(dentry);
1641 		if (!res)
1642 			res = dentry;
1643 		else
1644 			dput(dentry);
1645 	}
1646 	if (IS_ERR(res))
1647 		return PTR_ERR(res);
1648 	return finish_no_open(file, res);
1649 }
1650 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1651 
1652 static int
1653 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1654 			  unsigned int flags)
1655 {
1656 	struct inode *inode;
1657 
1658 	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1659 		goto full_reval;
1660 	if (d_mountpoint(dentry))
1661 		goto full_reval;
1662 
1663 	inode = d_inode(dentry);
1664 
1665 	/* We can't create new files in nfs_open_revalidate(), so we
1666 	 * optimize away revalidation of negative dentries.
1667 	 */
1668 	if (inode == NULL)
1669 		goto full_reval;
1670 
1671 	if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1672 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1673 
1674 	/* NFS only supports OPEN on regular files */
1675 	if (!S_ISREG(inode->i_mode))
1676 		goto full_reval;
1677 
1678 	/* We cannot do exclusive creation on a positive dentry */
1679 	if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
1680 		goto reval_dentry;
1681 
1682 	/* Check if the directory changed */
1683 	if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
1684 		goto reval_dentry;
1685 
1686 	/* Let f_op->open() actually open (and revalidate) the file */
1687 	return 1;
1688 reval_dentry:
1689 	if (flags & LOOKUP_RCU)
1690 		return -ECHILD;
1691 	return nfs_lookup_revalidate_dentry(dir, dentry, inode);
1692 
1693 full_reval:
1694 	return nfs_do_lookup_revalidate(dir, dentry, flags);
1695 }
1696 
1697 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1698 {
1699 	return __nfs_lookup_revalidate(dentry, flags,
1700 			nfs4_do_lookup_revalidate);
1701 }
1702 
1703 #endif /* CONFIG_NFSV4 */
1704 
1705 struct dentry *
1706 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
1707 				struct nfs_fattr *fattr,
1708 				struct nfs4_label *label)
1709 {
1710 	struct dentry *parent = dget_parent(dentry);
1711 	struct inode *dir = d_inode(parent);
1712 	struct inode *inode;
1713 	struct dentry *d;
1714 	int error;
1715 
1716 	d_drop(dentry);
1717 
1718 	if (fhandle->size == 0) {
1719 		error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, NULL);
1720 		if (error)
1721 			goto out_error;
1722 	}
1723 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1724 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1725 		struct nfs_server *server = NFS_SB(dentry->d_sb);
1726 		error = server->nfs_client->rpc_ops->getattr(server, fhandle,
1727 				fattr, NULL, NULL);
1728 		if (error < 0)
1729 			goto out_error;
1730 	}
1731 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1732 	d = d_splice_alias(inode, dentry);
1733 out:
1734 	dput(parent);
1735 	return d;
1736 out_error:
1737 	nfs_mark_for_revalidate(dir);
1738 	d = ERR_PTR(error);
1739 	goto out;
1740 }
1741 EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
1742 
1743 /*
1744  * Code common to create, mkdir, and mknod.
1745  */
1746 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1747 				struct nfs_fattr *fattr,
1748 				struct nfs4_label *label)
1749 {
1750 	struct dentry *d;
1751 
1752 	d = nfs_add_or_obtain(dentry, fhandle, fattr, label);
1753 	if (IS_ERR(d))
1754 		return PTR_ERR(d);
1755 
1756 	/* Callers don't care */
1757 	dput(d);
1758 	return 0;
1759 }
1760 EXPORT_SYMBOL_GPL(nfs_instantiate);
1761 
1762 /*
1763  * Following a failed create operation, we drop the dentry rather
1764  * than retain a negative dentry. This avoids a problem in the event
1765  * that the operation succeeded on the server, but an error in the
1766  * reply path made it appear to have failed.
1767  */
1768 int nfs_create(struct inode *dir, struct dentry *dentry,
1769 		umode_t mode, bool excl)
1770 {
1771 	struct iattr attr;
1772 	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1773 	int error;
1774 
1775 	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1776 			dir->i_sb->s_id, dir->i_ino, dentry);
1777 
1778 	attr.ia_mode = mode;
1779 	attr.ia_valid = ATTR_MODE;
1780 
1781 	trace_nfs_create_enter(dir, dentry, open_flags);
1782 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1783 	trace_nfs_create_exit(dir, dentry, open_flags, error);
1784 	if (error != 0)
1785 		goto out_err;
1786 	return 0;
1787 out_err:
1788 	d_drop(dentry);
1789 	return error;
1790 }
1791 EXPORT_SYMBOL_GPL(nfs_create);
1792 
1793 /*
1794  * See comments for nfs_proc_create regarding failed operations.
1795  */
1796 int
1797 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1798 {
1799 	struct iattr attr;
1800 	int status;
1801 
1802 	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1803 			dir->i_sb->s_id, dir->i_ino, dentry);
1804 
1805 	attr.ia_mode = mode;
1806 	attr.ia_valid = ATTR_MODE;
1807 
1808 	trace_nfs_mknod_enter(dir, dentry);
1809 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1810 	trace_nfs_mknod_exit(dir, dentry, status);
1811 	if (status != 0)
1812 		goto out_err;
1813 	return 0;
1814 out_err:
1815 	d_drop(dentry);
1816 	return status;
1817 }
1818 EXPORT_SYMBOL_GPL(nfs_mknod);
1819 
1820 /*
1821  * See comments for nfs_proc_create regarding failed operations.
1822  */
1823 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1824 {
1825 	struct iattr attr;
1826 	int error;
1827 
1828 	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1829 			dir->i_sb->s_id, dir->i_ino, dentry);
1830 
1831 	attr.ia_valid = ATTR_MODE;
1832 	attr.ia_mode = mode | S_IFDIR;
1833 
1834 	trace_nfs_mkdir_enter(dir, dentry);
1835 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1836 	trace_nfs_mkdir_exit(dir, dentry, error);
1837 	if (error != 0)
1838 		goto out_err;
1839 	return 0;
1840 out_err:
1841 	d_drop(dentry);
1842 	return error;
1843 }
1844 EXPORT_SYMBOL_GPL(nfs_mkdir);
1845 
1846 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1847 {
1848 	if (simple_positive(dentry))
1849 		d_delete(dentry);
1850 }
1851 
1852 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1853 {
1854 	int error;
1855 
1856 	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1857 			dir->i_sb->s_id, dir->i_ino, dentry);
1858 
1859 	trace_nfs_rmdir_enter(dir, dentry);
1860 	if (d_really_is_positive(dentry)) {
1861 		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1862 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1863 		/* Ensure the VFS deletes this inode */
1864 		switch (error) {
1865 		case 0:
1866 			clear_nlink(d_inode(dentry));
1867 			break;
1868 		case -ENOENT:
1869 			nfs_dentry_handle_enoent(dentry);
1870 		}
1871 		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1872 	} else
1873 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1874 	trace_nfs_rmdir_exit(dir, dentry, error);
1875 
1876 	return error;
1877 }
1878 EXPORT_SYMBOL_GPL(nfs_rmdir);
1879 
1880 /*
1881  * Remove a file after making sure there are no pending writes,
1882  * and after checking that the file has only one user.
1883  *
1884  * We invalidate the attribute cache and free the inode prior to the operation
1885  * to avoid possible races if the server reuses the inode.
1886  */
1887 static int nfs_safe_remove(struct dentry *dentry)
1888 {
1889 	struct inode *dir = d_inode(dentry->d_parent);
1890 	struct inode *inode = d_inode(dentry);
1891 	int error = -EBUSY;
1892 
1893 	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
1894 
1895 	/* If the dentry was sillyrenamed, we simply call d_delete() */
1896 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1897 		error = 0;
1898 		goto out;
1899 	}
1900 
1901 	trace_nfs_remove_enter(dir, dentry);
1902 	if (inode != NULL) {
1903 		error = NFS_PROTO(dir)->remove(dir, dentry);
1904 		if (error == 0)
1905 			nfs_drop_nlink(inode);
1906 	} else
1907 		error = NFS_PROTO(dir)->remove(dir, dentry);
1908 	if (error == -ENOENT)
1909 		nfs_dentry_handle_enoent(dentry);
1910 	trace_nfs_remove_exit(dir, dentry, error);
1911 out:
1912 	return error;
1913 }
1914 
1915 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1916  *  belongs to an active ".nfs..." file and we return -EBUSY.
1917  *
1918  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1919  */
1920 int nfs_unlink(struct inode *dir, struct dentry *dentry)
1921 {
1922 	int error;
1923 	int need_rehash = 0;
1924 
1925 	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
1926 		dir->i_ino, dentry);
1927 
1928 	trace_nfs_unlink_enter(dir, dentry);
1929 	spin_lock(&dentry->d_lock);
1930 	if (d_count(dentry) > 1) {
1931 		spin_unlock(&dentry->d_lock);
1932 		/* Start asynchronous writeout of the inode */
1933 		write_inode_now(d_inode(dentry), 0);
1934 		error = nfs_sillyrename(dir, dentry);
1935 		goto out;
1936 	}
1937 	if (!d_unhashed(dentry)) {
1938 		__d_drop(dentry);
1939 		need_rehash = 1;
1940 	}
1941 	spin_unlock(&dentry->d_lock);
1942 	error = nfs_safe_remove(dentry);
1943 	if (!error || error == -ENOENT) {
1944 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1945 	} else if (need_rehash)
1946 		d_rehash(dentry);
1947 out:
1948 	trace_nfs_unlink_exit(dir, dentry, error);
1949 	return error;
1950 }
1951 EXPORT_SYMBOL_GPL(nfs_unlink);
1952 
1953 /*
1954  * To create a symbolic link, most file systems instantiate a new inode,
1955  * add a page to it containing the path, then write it out to the disk
1956  * using prepare_write/commit_write.
1957  *
1958  * Unfortunately the NFS client can't create the in-core inode first
1959  * because it needs a file handle to create an in-core inode (see
1960  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1961  * symlink request has completed on the server.
1962  *
1963  * So instead we allocate a raw page, copy the symname into it, then do
1964  * the SYMLINK request with the page as the buffer.  If it succeeds, we
1965  * now have a new file handle and can instantiate an in-core NFS inode
1966  * and move the raw page into its mapping.
1967  */
1968 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1969 {
1970 	struct page *page;
1971 	char *kaddr;
1972 	struct iattr attr;
1973 	unsigned int pathlen = strlen(symname);
1974 	int error;
1975 
1976 	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
1977 		dir->i_ino, dentry, symname);
1978 
1979 	if (pathlen > PAGE_SIZE)
1980 		return -ENAMETOOLONG;
1981 
1982 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
1983 	attr.ia_valid = ATTR_MODE;
1984 
1985 	page = alloc_page(GFP_USER);
1986 	if (!page)
1987 		return -ENOMEM;
1988 
1989 	kaddr = page_address(page);
1990 	memcpy(kaddr, symname, pathlen);
1991 	if (pathlen < PAGE_SIZE)
1992 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1993 
1994 	trace_nfs_symlink_enter(dir, dentry);
1995 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1996 	trace_nfs_symlink_exit(dir, dentry, error);
1997 	if (error != 0) {
1998 		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1999 			dir->i_sb->s_id, dir->i_ino,
2000 			dentry, symname, error);
2001 		d_drop(dentry);
2002 		__free_page(page);
2003 		return error;
2004 	}
2005 
2006 	/*
2007 	 * No big deal if we can't add this page to the page cache here.
2008 	 * READLINK will get the missing page from the server if needed.
2009 	 */
2010 	if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2011 							GFP_KERNEL)) {
2012 		SetPageUptodate(page);
2013 		unlock_page(page);
2014 		/*
2015 		 * add_to_page_cache_lru() grabs an extra page refcount.
2016 		 * Drop it here to avoid leaking this page later.
2017 		 */
2018 		put_page(page);
2019 	} else
2020 		__free_page(page);
2021 
2022 	return 0;
2023 }
2024 EXPORT_SYMBOL_GPL(nfs_symlink);
2025 
2026 int
2027 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2028 {
2029 	struct inode *inode = d_inode(old_dentry);
2030 	int error;
2031 
2032 	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2033 		old_dentry, dentry);
2034 
2035 	trace_nfs_link_enter(inode, dir, dentry);
2036 	d_drop(dentry);
2037 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2038 	if (error == 0) {
2039 		ihold(inode);
2040 		d_add(dentry, inode);
2041 	}
2042 	trace_nfs_link_exit(inode, dir, dentry, error);
2043 	return error;
2044 }
2045 EXPORT_SYMBOL_GPL(nfs_link);
2046 
2047 /*
2048  * RENAME
2049  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2050  * different file handle for the same inode after a rename (e.g. when
2051  * moving to a different directory). A fail-safe method to do so would
2052  * be to look up old_dir/old_name, create a link to new_dir/new_name and
2053  * rename the old file using the sillyrename stuff. This way, the original
2054  * file in old_dir will go away when the last process iput()s the inode.
2055  *
2056  * FIXED.
2057  *
2058  * It actually works quite well. One needs to have the possibility for
2059  * at least one ".nfs..." file in each directory the file ever gets
2060  * moved or linked to which happens automagically with the new
2061  * implementation that only depends on the dcache stuff instead of
2062  * using the inode layer
2063  *
2064  * Unfortunately, things are a little more complicated than indicated
2065  * above. For a cross-directory move, we want to make sure we can get
2066  * rid of the old inode after the operation.  This means there must be
2067  * no pending writes (if it's a file), and the use count must be 1.
2068  * If these conditions are met, we can drop the dentries before doing
2069  * the rename.
2070  */
2071 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2072 	       struct inode *new_dir, struct dentry *new_dentry,
2073 	       unsigned int flags)
2074 {
2075 	struct inode *old_inode = d_inode(old_dentry);
2076 	struct inode *new_inode = d_inode(new_dentry);
2077 	struct dentry *dentry = NULL, *rehash = NULL;
2078 	struct rpc_task *task;
2079 	int error = -EBUSY;
2080 
2081 	if (flags)
2082 		return -EINVAL;
2083 
2084 	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2085 		 old_dentry, new_dentry,
2086 		 d_count(new_dentry));
2087 
2088 	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2089 	/*
2090 	 * For non-directories, check whether the target is busy and if so,
2091 	 * make a copy of the dentry and then do a silly-rename. If the
2092 	 * silly-rename succeeds, the copied dentry is hashed and becomes
2093 	 * the new target.
2094 	 */
2095 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2096 		/*
2097 		 * To prevent any new references to the target during the
2098 		 * rename, we unhash the dentry in advance.
2099 		 */
2100 		if (!d_unhashed(new_dentry)) {
2101 			d_drop(new_dentry);
2102 			rehash = new_dentry;
2103 		}
2104 
2105 		if (d_count(new_dentry) > 2) {
2106 			int err;
2107 
2108 			/* copy the target dentry's name */
2109 			dentry = d_alloc(new_dentry->d_parent,
2110 					 &new_dentry->d_name);
2111 			if (!dentry)
2112 				goto out;
2113 
2114 			/* silly-rename the existing target ... */
2115 			err = nfs_sillyrename(new_dir, new_dentry);
2116 			if (err)
2117 				goto out;
2118 
2119 			new_dentry = dentry;
2120 			rehash = NULL;
2121 			new_inode = NULL;
2122 		}
2123 	}
2124 
2125 	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2126 	if (IS_ERR(task)) {
2127 		error = PTR_ERR(task);
2128 		goto out;
2129 	}
2130 
2131 	error = rpc_wait_for_completion_task(task);
2132 	if (error != 0) {
2133 		((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2134 		/* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2135 		smp_wmb();
2136 	} else
2137 		error = task->tk_status;
2138 	rpc_put_task(task);
2139 	/* Ensure the inode attributes are revalidated */
2140 	if (error == 0) {
2141 		spin_lock(&old_inode->i_lock);
2142 		NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2143 		NFS_I(old_inode)->cache_validity |= NFS_INO_INVALID_CHANGE
2144 			| NFS_INO_INVALID_CTIME
2145 			| NFS_INO_REVAL_FORCED;
2146 		spin_unlock(&old_inode->i_lock);
2147 	}
2148 out:
2149 	if (rehash)
2150 		d_rehash(rehash);
2151 	trace_nfs_rename_exit(old_dir, old_dentry,
2152 			new_dir, new_dentry, error);
2153 	if (!error) {
2154 		if (new_inode != NULL)
2155 			nfs_drop_nlink(new_inode);
2156 		/*
2157 		 * The d_move() should be here instead of in an async RPC completion
2158 		 * handler because we need the proper locks to move the dentry.  If
2159 		 * we're interrupted by a signal, the async RPC completion handler
2160 		 * should mark the directories for revalidation.
2161 		 */
2162 		d_move(old_dentry, new_dentry);
2163 		nfs_set_verifier(old_dentry,
2164 					nfs_save_change_attribute(new_dir));
2165 	} else if (error == -ENOENT)
2166 		nfs_dentry_handle_enoent(old_dentry);
2167 
2168 	/* new dentry created? */
2169 	if (dentry)
2170 		dput(dentry);
2171 	return error;
2172 }
2173 EXPORT_SYMBOL_GPL(nfs_rename);
2174 
2175 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2176 static LIST_HEAD(nfs_access_lru_list);
2177 static atomic_long_t nfs_access_nr_entries;
2178 
2179 static unsigned long nfs_access_max_cachesize = ULONG_MAX;
2180 module_param(nfs_access_max_cachesize, ulong, 0644);
2181 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2182 
2183 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2184 {
2185 	put_cred(entry->cred);
2186 	kfree_rcu(entry, rcu_head);
2187 	smp_mb__before_atomic();
2188 	atomic_long_dec(&nfs_access_nr_entries);
2189 	smp_mb__after_atomic();
2190 }
2191 
2192 static void nfs_access_free_list(struct list_head *head)
2193 {
2194 	struct nfs_access_entry *cache;
2195 
2196 	while (!list_empty(head)) {
2197 		cache = list_entry(head->next, struct nfs_access_entry, lru);
2198 		list_del(&cache->lru);
2199 		nfs_access_free_entry(cache);
2200 	}
2201 }
2202 
2203 static unsigned long
2204 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2205 {
2206 	LIST_HEAD(head);
2207 	struct nfs_inode *nfsi, *next;
2208 	struct nfs_access_entry *cache;
2209 	long freed = 0;
2210 
2211 	spin_lock(&nfs_access_lru_lock);
2212 	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2213 		struct inode *inode;
2214 
2215 		if (nr_to_scan-- == 0)
2216 			break;
2217 		inode = &nfsi->vfs_inode;
2218 		spin_lock(&inode->i_lock);
2219 		if (list_empty(&nfsi->access_cache_entry_lru))
2220 			goto remove_lru_entry;
2221 		cache = list_entry(nfsi->access_cache_entry_lru.next,
2222 				struct nfs_access_entry, lru);
2223 		list_move(&cache->lru, &head);
2224 		rb_erase(&cache->rb_node, &nfsi->access_cache);
2225 		freed++;
2226 		if (!list_empty(&nfsi->access_cache_entry_lru))
2227 			list_move_tail(&nfsi->access_cache_inode_lru,
2228 					&nfs_access_lru_list);
2229 		else {
2230 remove_lru_entry:
2231 			list_del_init(&nfsi->access_cache_inode_lru);
2232 			smp_mb__before_atomic();
2233 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2234 			smp_mb__after_atomic();
2235 		}
2236 		spin_unlock(&inode->i_lock);
2237 	}
2238 	spin_unlock(&nfs_access_lru_lock);
2239 	nfs_access_free_list(&head);
2240 	return freed;
2241 }
2242 
2243 unsigned long
2244 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2245 {
2246 	int nr_to_scan = sc->nr_to_scan;
2247 	gfp_t gfp_mask = sc->gfp_mask;
2248 
2249 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2250 		return SHRINK_STOP;
2251 	return nfs_do_access_cache_scan(nr_to_scan);
2252 }
2253 
2254 
2255 unsigned long
2256 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2257 {
2258 	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2259 }
2260 
2261 static void
2262 nfs_access_cache_enforce_limit(void)
2263 {
2264 	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2265 	unsigned long diff;
2266 	unsigned int nr_to_scan;
2267 
2268 	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2269 		return;
2270 	nr_to_scan = 100;
2271 	diff = nr_entries - nfs_access_max_cachesize;
2272 	if (diff < nr_to_scan)
2273 		nr_to_scan = diff;
2274 	nfs_do_access_cache_scan(nr_to_scan);
2275 }
2276 
2277 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2278 {
2279 	struct rb_root *root_node = &nfsi->access_cache;
2280 	struct rb_node *n;
2281 	struct nfs_access_entry *entry;
2282 
2283 	/* Unhook entries from the cache */
2284 	while ((n = rb_first(root_node)) != NULL) {
2285 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2286 		rb_erase(n, root_node);
2287 		list_move(&entry->lru, head);
2288 	}
2289 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2290 }
2291 
2292 void nfs_access_zap_cache(struct inode *inode)
2293 {
2294 	LIST_HEAD(head);
2295 
2296 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2297 		return;
2298 	/* Remove from global LRU init */
2299 	spin_lock(&nfs_access_lru_lock);
2300 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2301 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2302 
2303 	spin_lock(&inode->i_lock);
2304 	__nfs_access_zap_cache(NFS_I(inode), &head);
2305 	spin_unlock(&inode->i_lock);
2306 	spin_unlock(&nfs_access_lru_lock);
2307 	nfs_access_free_list(&head);
2308 }
2309 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2310 
2311 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2312 {
2313 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2314 
2315 	while (n != NULL) {
2316 		struct nfs_access_entry *entry =
2317 			rb_entry(n, struct nfs_access_entry, rb_node);
2318 		int cmp = cred_fscmp(cred, entry->cred);
2319 
2320 		if (cmp < 0)
2321 			n = n->rb_left;
2322 		else if (cmp > 0)
2323 			n = n->rb_right;
2324 		else
2325 			return entry;
2326 	}
2327 	return NULL;
2328 }
2329 
2330 static int nfs_access_get_cached(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res, bool may_block)
2331 {
2332 	struct nfs_inode *nfsi = NFS_I(inode);
2333 	struct nfs_access_entry *cache;
2334 	bool retry = true;
2335 	int err;
2336 
2337 	spin_lock(&inode->i_lock);
2338 	for(;;) {
2339 		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2340 			goto out_zap;
2341 		cache = nfs_access_search_rbtree(inode, cred);
2342 		err = -ENOENT;
2343 		if (cache == NULL)
2344 			goto out;
2345 		/* Found an entry, is our attribute cache valid? */
2346 		if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2347 			break;
2348 		if (!retry)
2349 			break;
2350 		err = -ECHILD;
2351 		if (!may_block)
2352 			goto out;
2353 		spin_unlock(&inode->i_lock);
2354 		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2355 		if (err)
2356 			return err;
2357 		spin_lock(&inode->i_lock);
2358 		retry = false;
2359 	}
2360 	res->cred = cache->cred;
2361 	res->mask = cache->mask;
2362 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2363 	err = 0;
2364 out:
2365 	spin_unlock(&inode->i_lock);
2366 	return err;
2367 out_zap:
2368 	spin_unlock(&inode->i_lock);
2369 	nfs_access_zap_cache(inode);
2370 	return -ENOENT;
2371 }
2372 
2373 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res)
2374 {
2375 	/* Only check the most recently returned cache entry,
2376 	 * but do it without locking.
2377 	 */
2378 	struct nfs_inode *nfsi = NFS_I(inode);
2379 	struct nfs_access_entry *cache;
2380 	int err = -ECHILD;
2381 	struct list_head *lh;
2382 
2383 	rcu_read_lock();
2384 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2385 		goto out;
2386 	lh = rcu_dereference(nfsi->access_cache_entry_lru.prev);
2387 	cache = list_entry(lh, struct nfs_access_entry, lru);
2388 	if (lh == &nfsi->access_cache_entry_lru ||
2389 	    cred_fscmp(cred, cache->cred) != 0)
2390 		cache = NULL;
2391 	if (cache == NULL)
2392 		goto out;
2393 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2394 		goto out;
2395 	res->cred = cache->cred;
2396 	res->mask = cache->mask;
2397 	err = 0;
2398 out:
2399 	rcu_read_unlock();
2400 	return err;
2401 }
2402 
2403 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2404 {
2405 	struct nfs_inode *nfsi = NFS_I(inode);
2406 	struct rb_root *root_node = &nfsi->access_cache;
2407 	struct rb_node **p = &root_node->rb_node;
2408 	struct rb_node *parent = NULL;
2409 	struct nfs_access_entry *entry;
2410 	int cmp;
2411 
2412 	spin_lock(&inode->i_lock);
2413 	while (*p != NULL) {
2414 		parent = *p;
2415 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2416 		cmp = cred_fscmp(set->cred, entry->cred);
2417 
2418 		if (cmp < 0)
2419 			p = &parent->rb_left;
2420 		else if (cmp > 0)
2421 			p = &parent->rb_right;
2422 		else
2423 			goto found;
2424 	}
2425 	rb_link_node(&set->rb_node, parent, p);
2426 	rb_insert_color(&set->rb_node, root_node);
2427 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2428 	spin_unlock(&inode->i_lock);
2429 	return;
2430 found:
2431 	rb_replace_node(parent, &set->rb_node, root_node);
2432 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2433 	list_del(&entry->lru);
2434 	spin_unlock(&inode->i_lock);
2435 	nfs_access_free_entry(entry);
2436 }
2437 
2438 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2439 {
2440 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2441 	if (cache == NULL)
2442 		return;
2443 	RB_CLEAR_NODE(&cache->rb_node);
2444 	cache->cred = get_cred(set->cred);
2445 	cache->mask = set->mask;
2446 
2447 	/* The above field assignments must be visible
2448 	 * before this item appears on the lru.  We cannot easily
2449 	 * use rcu_assign_pointer, so just force the memory barrier.
2450 	 */
2451 	smp_wmb();
2452 	nfs_access_add_rbtree(inode, cache);
2453 
2454 	/* Update accounting */
2455 	smp_mb__before_atomic();
2456 	atomic_long_inc(&nfs_access_nr_entries);
2457 	smp_mb__after_atomic();
2458 
2459 	/* Add inode to global LRU list */
2460 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2461 		spin_lock(&nfs_access_lru_lock);
2462 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2463 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2464 					&nfs_access_lru_list);
2465 		spin_unlock(&nfs_access_lru_lock);
2466 	}
2467 	nfs_access_cache_enforce_limit();
2468 }
2469 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2470 
2471 #define NFS_MAY_READ (NFS_ACCESS_READ)
2472 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2473 		NFS_ACCESS_EXTEND | \
2474 		NFS_ACCESS_DELETE)
2475 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2476 		NFS_ACCESS_EXTEND)
2477 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2478 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2479 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2480 static int
2481 nfs_access_calc_mask(u32 access_result, umode_t umode)
2482 {
2483 	int mask = 0;
2484 
2485 	if (access_result & NFS_MAY_READ)
2486 		mask |= MAY_READ;
2487 	if (S_ISDIR(umode)) {
2488 		if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2489 			mask |= MAY_WRITE;
2490 		if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2491 			mask |= MAY_EXEC;
2492 	} else if (S_ISREG(umode)) {
2493 		if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2494 			mask |= MAY_WRITE;
2495 		if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2496 			mask |= MAY_EXEC;
2497 	} else if (access_result & NFS_MAY_WRITE)
2498 			mask |= MAY_WRITE;
2499 	return mask;
2500 }
2501 
2502 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2503 {
2504 	entry->mask = access_result;
2505 }
2506 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2507 
2508 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
2509 {
2510 	struct nfs_access_entry cache;
2511 	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2512 	int cache_mask = -1;
2513 	int status;
2514 
2515 	trace_nfs_access_enter(inode);
2516 
2517 	status = nfs_access_get_cached_rcu(inode, cred, &cache);
2518 	if (status != 0)
2519 		status = nfs_access_get_cached(inode, cred, &cache, may_block);
2520 	if (status == 0)
2521 		goto out_cached;
2522 
2523 	status = -ECHILD;
2524 	if (!may_block)
2525 		goto out;
2526 
2527 	/*
2528 	 * Determine which access bits we want to ask for...
2529 	 */
2530 	cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND;
2531 	if (S_ISDIR(inode->i_mode))
2532 		cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
2533 	else
2534 		cache.mask |= NFS_ACCESS_EXECUTE;
2535 	cache.cred = cred;
2536 	status = NFS_PROTO(inode)->access(inode, &cache);
2537 	if (status != 0) {
2538 		if (status == -ESTALE) {
2539 			nfs_zap_caches(inode);
2540 			if (!S_ISDIR(inode->i_mode))
2541 				set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2542 		}
2543 		goto out;
2544 	}
2545 	nfs_access_add_cache(inode, &cache);
2546 out_cached:
2547 	cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
2548 	if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2549 		status = -EACCES;
2550 out:
2551 	trace_nfs_access_exit(inode, mask, cache_mask, status);
2552 	return status;
2553 }
2554 
2555 static int nfs_open_permission_mask(int openflags)
2556 {
2557 	int mask = 0;
2558 
2559 	if (openflags & __FMODE_EXEC) {
2560 		/* ONLY check exec rights */
2561 		mask = MAY_EXEC;
2562 	} else {
2563 		if ((openflags & O_ACCMODE) != O_WRONLY)
2564 			mask |= MAY_READ;
2565 		if ((openflags & O_ACCMODE) != O_RDONLY)
2566 			mask |= MAY_WRITE;
2567 	}
2568 
2569 	return mask;
2570 }
2571 
2572 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
2573 {
2574 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2575 }
2576 EXPORT_SYMBOL_GPL(nfs_may_open);
2577 
2578 static int nfs_execute_ok(struct inode *inode, int mask)
2579 {
2580 	struct nfs_server *server = NFS_SERVER(inode);
2581 	int ret = 0;
2582 
2583 	if (S_ISDIR(inode->i_mode))
2584 		return 0;
2585 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_OTHER)) {
2586 		if (mask & MAY_NOT_BLOCK)
2587 			return -ECHILD;
2588 		ret = __nfs_revalidate_inode(server, inode);
2589 	}
2590 	if (ret == 0 && !execute_ok(inode))
2591 		ret = -EACCES;
2592 	return ret;
2593 }
2594 
2595 int nfs_permission(struct inode *inode, int mask)
2596 {
2597 	const struct cred *cred = current_cred();
2598 	int res = 0;
2599 
2600 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2601 
2602 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2603 		goto out;
2604 	/* Is this sys_access() ? */
2605 	if (mask & (MAY_ACCESS | MAY_CHDIR))
2606 		goto force_lookup;
2607 
2608 	switch (inode->i_mode & S_IFMT) {
2609 		case S_IFLNK:
2610 			goto out;
2611 		case S_IFREG:
2612 			if ((mask & MAY_OPEN) &&
2613 			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2614 				return 0;
2615 			break;
2616 		case S_IFDIR:
2617 			/*
2618 			 * Optimize away all write operations, since the server
2619 			 * will check permissions when we perform the op.
2620 			 */
2621 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2622 				goto out;
2623 	}
2624 
2625 force_lookup:
2626 	if (!NFS_PROTO(inode)->access)
2627 		goto out_notsup;
2628 
2629 	/* Always try fast lookups first */
2630 	rcu_read_lock();
2631 	res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK);
2632 	rcu_read_unlock();
2633 	if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) {
2634 		/* Fast lookup failed, try the slow way */
2635 		res = nfs_do_access(inode, cred, mask);
2636 	}
2637 out:
2638 	if (!res && (mask & MAY_EXEC))
2639 		res = nfs_execute_ok(inode, mask);
2640 
2641 	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2642 		inode->i_sb->s_id, inode->i_ino, mask, res);
2643 	return res;
2644 out_notsup:
2645 	if (mask & MAY_NOT_BLOCK)
2646 		return -ECHILD;
2647 
2648 	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2649 	if (res == 0)
2650 		res = generic_permission(inode, mask);
2651 	goto out;
2652 }
2653 EXPORT_SYMBOL_GPL(nfs_permission);
2654 
2655 /*
2656  * Local variables:
2657  *  version-control: t
2658  *  kept-new-versions: 5
2659  * End:
2660  */
2661