1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/nfs/dir.c 4 * 5 * Copyright (C) 1992 Rick Sladkey 6 * 7 * nfs directory handling functions 8 * 9 * 10 Apr 1996 Added silly rename for unlink --okir 10 * 28 Sep 1996 Improved directory cache --okir 11 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de 12 * Re-implemented silly rename for unlink, newly implemented 13 * silly rename for nfs_rename() following the suggestions 14 * of Olaf Kirch (okir) found in this file. 15 * Following Linus comments on my original hack, this version 16 * depends only on the dcache stuff and doesn't touch the inode 17 * layer (iput() and friends). 18 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM 19 */ 20 21 #include <linux/module.h> 22 #include <linux/time.h> 23 #include <linux/errno.h> 24 #include <linux/stat.h> 25 #include <linux/fcntl.h> 26 #include <linux/string.h> 27 #include <linux/kernel.h> 28 #include <linux/slab.h> 29 #include <linux/mm.h> 30 #include <linux/sunrpc/clnt.h> 31 #include <linux/nfs_fs.h> 32 #include <linux/nfs_mount.h> 33 #include <linux/pagemap.h> 34 #include <linux/pagevec.h> 35 #include <linux/namei.h> 36 #include <linux/mount.h> 37 #include <linux/swap.h> 38 #include <linux/sched.h> 39 #include <linux/kmemleak.h> 40 #include <linux/xattr.h> 41 42 #include "delegation.h" 43 #include "iostat.h" 44 #include "internal.h" 45 #include "fscache.h" 46 47 #include "nfstrace.h" 48 49 /* #define NFS_DEBUG_VERBOSE 1 */ 50 51 static int nfs_opendir(struct inode *, struct file *); 52 static int nfs_closedir(struct inode *, struct file *); 53 static int nfs_readdir(struct file *, struct dir_context *); 54 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int); 55 static loff_t nfs_llseek_dir(struct file *, loff_t, int); 56 static void nfs_readdir_clear_array(struct page*); 57 58 const struct file_operations nfs_dir_operations = { 59 .llseek = nfs_llseek_dir, 60 .read = generic_read_dir, 61 .iterate_shared = nfs_readdir, 62 .open = nfs_opendir, 63 .release = nfs_closedir, 64 .fsync = nfs_fsync_dir, 65 }; 66 67 const struct address_space_operations nfs_dir_aops = { 68 .freepage = nfs_readdir_clear_array, 69 }; 70 71 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, const struct cred *cred) 72 { 73 struct nfs_inode *nfsi = NFS_I(dir); 74 struct nfs_open_dir_context *ctx; 75 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); 76 if (ctx != NULL) { 77 ctx->duped = 0; 78 ctx->attr_gencount = nfsi->attr_gencount; 79 ctx->dir_cookie = 0; 80 ctx->dup_cookie = 0; 81 ctx->cred = get_cred(cred); 82 spin_lock(&dir->i_lock); 83 if (list_empty(&nfsi->open_files) && 84 (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER)) 85 nfsi->cache_validity |= NFS_INO_INVALID_DATA | 86 NFS_INO_REVAL_FORCED; 87 list_add(&ctx->list, &nfsi->open_files); 88 spin_unlock(&dir->i_lock); 89 return ctx; 90 } 91 return ERR_PTR(-ENOMEM); 92 } 93 94 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx) 95 { 96 spin_lock(&dir->i_lock); 97 list_del(&ctx->list); 98 spin_unlock(&dir->i_lock); 99 put_cred(ctx->cred); 100 kfree(ctx); 101 } 102 103 /* 104 * Open file 105 */ 106 static int 107 nfs_opendir(struct inode *inode, struct file *filp) 108 { 109 int res = 0; 110 struct nfs_open_dir_context *ctx; 111 112 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp); 113 114 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 115 116 ctx = alloc_nfs_open_dir_context(inode, current_cred()); 117 if (IS_ERR(ctx)) { 118 res = PTR_ERR(ctx); 119 goto out; 120 } 121 filp->private_data = ctx; 122 out: 123 return res; 124 } 125 126 static int 127 nfs_closedir(struct inode *inode, struct file *filp) 128 { 129 put_nfs_open_dir_context(file_inode(filp), filp->private_data); 130 return 0; 131 } 132 133 struct nfs_cache_array_entry { 134 u64 cookie; 135 u64 ino; 136 struct qstr string; 137 unsigned char d_type; 138 }; 139 140 struct nfs_cache_array { 141 int size; 142 int eof_index; 143 u64 last_cookie; 144 struct nfs_cache_array_entry array[0]; 145 }; 146 147 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, bool); 148 typedef struct { 149 struct file *file; 150 struct page *page; 151 struct dir_context *ctx; 152 unsigned long page_index; 153 u64 *dir_cookie; 154 u64 last_cookie; 155 loff_t current_index; 156 decode_dirent_t decode; 157 158 unsigned long timestamp; 159 unsigned long gencount; 160 unsigned int cache_entry_index; 161 bool plus; 162 bool eof; 163 } nfs_readdir_descriptor_t; 164 165 static 166 void nfs_readdir_init_array(struct page *page) 167 { 168 struct nfs_cache_array *array; 169 170 array = kmap_atomic(page); 171 memset(array, 0, sizeof(struct nfs_cache_array)); 172 array->eof_index = -1; 173 kunmap_atomic(array); 174 } 175 176 /* 177 * we are freeing strings created by nfs_add_to_readdir_array() 178 */ 179 static 180 void nfs_readdir_clear_array(struct page *page) 181 { 182 struct nfs_cache_array *array; 183 int i; 184 185 array = kmap_atomic(page); 186 for (i = 0; i < array->size; i++) 187 kfree(array->array[i].string.name); 188 array->size = 0; 189 kunmap_atomic(array); 190 } 191 192 /* 193 * the caller is responsible for freeing qstr.name 194 * when called by nfs_readdir_add_to_array, the strings will be freed in 195 * nfs_clear_readdir_array() 196 */ 197 static 198 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len) 199 { 200 string->len = len; 201 string->name = kmemdup_nul(name, len, GFP_KERNEL); 202 if (string->name == NULL) 203 return -ENOMEM; 204 /* 205 * Avoid a kmemleak false positive. The pointer to the name is stored 206 * in a page cache page which kmemleak does not scan. 207 */ 208 kmemleak_not_leak(string->name); 209 string->hash = full_name_hash(NULL, name, len); 210 return 0; 211 } 212 213 static 214 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page) 215 { 216 struct nfs_cache_array *array = kmap(page); 217 struct nfs_cache_array_entry *cache_entry; 218 int ret; 219 220 cache_entry = &array->array[array->size]; 221 222 /* Check that this entry lies within the page bounds */ 223 ret = -ENOSPC; 224 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE) 225 goto out; 226 227 cache_entry->cookie = entry->prev_cookie; 228 cache_entry->ino = entry->ino; 229 cache_entry->d_type = entry->d_type; 230 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len); 231 if (ret) 232 goto out; 233 array->last_cookie = entry->cookie; 234 array->size++; 235 if (entry->eof != 0) 236 array->eof_index = array->size; 237 out: 238 kunmap(page); 239 return ret; 240 } 241 242 static 243 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 244 { 245 loff_t diff = desc->ctx->pos - desc->current_index; 246 unsigned int index; 247 248 if (diff < 0) 249 goto out_eof; 250 if (diff >= array->size) { 251 if (array->eof_index >= 0) 252 goto out_eof; 253 return -EAGAIN; 254 } 255 256 index = (unsigned int)diff; 257 *desc->dir_cookie = array->array[index].cookie; 258 desc->cache_entry_index = index; 259 return 0; 260 out_eof: 261 desc->eof = true; 262 return -EBADCOOKIE; 263 } 264 265 static bool 266 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi) 267 { 268 if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA)) 269 return false; 270 smp_rmb(); 271 return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags); 272 } 273 274 static 275 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 276 { 277 int i; 278 loff_t new_pos; 279 int status = -EAGAIN; 280 281 for (i = 0; i < array->size; i++) { 282 if (array->array[i].cookie == *desc->dir_cookie) { 283 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file)); 284 struct nfs_open_dir_context *ctx = desc->file->private_data; 285 286 new_pos = desc->current_index + i; 287 if (ctx->attr_gencount != nfsi->attr_gencount || 288 !nfs_readdir_inode_mapping_valid(nfsi)) { 289 ctx->duped = 0; 290 ctx->attr_gencount = nfsi->attr_gencount; 291 } else if (new_pos < desc->ctx->pos) { 292 if (ctx->duped > 0 293 && ctx->dup_cookie == *desc->dir_cookie) { 294 if (printk_ratelimit()) { 295 pr_notice("NFS: directory %pD2 contains a readdir loop." 296 "Please contact your server vendor. " 297 "The file: %.*s has duplicate cookie %llu\n", 298 desc->file, array->array[i].string.len, 299 array->array[i].string.name, *desc->dir_cookie); 300 } 301 status = -ELOOP; 302 goto out; 303 } 304 ctx->dup_cookie = *desc->dir_cookie; 305 ctx->duped = -1; 306 } 307 desc->ctx->pos = new_pos; 308 desc->cache_entry_index = i; 309 return 0; 310 } 311 } 312 if (array->eof_index >= 0) { 313 status = -EBADCOOKIE; 314 if (*desc->dir_cookie == array->last_cookie) 315 desc->eof = true; 316 } 317 out: 318 return status; 319 } 320 321 static 322 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc) 323 { 324 struct nfs_cache_array *array; 325 int status; 326 327 array = kmap(desc->page); 328 329 if (*desc->dir_cookie == 0) 330 status = nfs_readdir_search_for_pos(array, desc); 331 else 332 status = nfs_readdir_search_for_cookie(array, desc); 333 334 if (status == -EAGAIN) { 335 desc->last_cookie = array->last_cookie; 336 desc->current_index += array->size; 337 desc->page_index++; 338 } 339 kunmap(desc->page); 340 return status; 341 } 342 343 /* Fill a page with xdr information before transferring to the cache page */ 344 static 345 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc, 346 struct nfs_entry *entry, struct file *file, struct inode *inode) 347 { 348 struct nfs_open_dir_context *ctx = file->private_data; 349 const struct cred *cred = ctx->cred; 350 unsigned long timestamp, gencount; 351 int error; 352 353 again: 354 timestamp = jiffies; 355 gencount = nfs_inc_attr_generation_counter(); 356 error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages, 357 NFS_SERVER(inode)->dtsize, desc->plus); 358 if (error < 0) { 359 /* We requested READDIRPLUS, but the server doesn't grok it */ 360 if (error == -ENOTSUPP && desc->plus) { 361 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS; 362 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 363 desc->plus = false; 364 goto again; 365 } 366 goto error; 367 } 368 desc->timestamp = timestamp; 369 desc->gencount = gencount; 370 error: 371 return error; 372 } 373 374 static int xdr_decode(nfs_readdir_descriptor_t *desc, 375 struct nfs_entry *entry, struct xdr_stream *xdr) 376 { 377 int error; 378 379 error = desc->decode(xdr, entry, desc->plus); 380 if (error) 381 return error; 382 entry->fattr->time_start = desc->timestamp; 383 entry->fattr->gencount = desc->gencount; 384 return 0; 385 } 386 387 /* Match file and dirent using either filehandle or fileid 388 * Note: caller is responsible for checking the fsid 389 */ 390 static 391 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry) 392 { 393 struct inode *inode; 394 struct nfs_inode *nfsi; 395 396 if (d_really_is_negative(dentry)) 397 return 0; 398 399 inode = d_inode(dentry); 400 if (is_bad_inode(inode) || NFS_STALE(inode)) 401 return 0; 402 403 nfsi = NFS_I(inode); 404 if (entry->fattr->fileid != nfsi->fileid) 405 return 0; 406 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0) 407 return 0; 408 return 1; 409 } 410 411 static 412 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx) 413 { 414 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS)) 415 return false; 416 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags)) 417 return true; 418 if (ctx->pos == 0) 419 return true; 420 return false; 421 } 422 423 /* 424 * This function is called by the lookup and getattr code to request the 425 * use of readdirplus to accelerate any future lookups in the same 426 * directory. 427 */ 428 void nfs_advise_use_readdirplus(struct inode *dir) 429 { 430 struct nfs_inode *nfsi = NFS_I(dir); 431 432 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) && 433 !list_empty(&nfsi->open_files)) 434 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags); 435 } 436 437 /* 438 * This function is mainly for use by nfs_getattr(). 439 * 440 * If this is an 'ls -l', we want to force use of readdirplus. 441 * Do this by checking if there is an active file descriptor 442 * and calling nfs_advise_use_readdirplus, then forcing a 443 * cache flush. 444 */ 445 void nfs_force_use_readdirplus(struct inode *dir) 446 { 447 struct nfs_inode *nfsi = NFS_I(dir); 448 449 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) && 450 !list_empty(&nfsi->open_files)) { 451 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags); 452 invalidate_mapping_pages(dir->i_mapping, 453 nfsi->page_index + 1, -1); 454 } 455 } 456 457 static 458 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry) 459 { 460 struct qstr filename = QSTR_INIT(entry->name, entry->len); 461 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 462 struct dentry *dentry; 463 struct dentry *alias; 464 struct inode *dir = d_inode(parent); 465 struct inode *inode; 466 int status; 467 468 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID)) 469 return; 470 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID)) 471 return; 472 if (filename.len == 0) 473 return; 474 /* Validate that the name doesn't contain any illegal '\0' */ 475 if (strnlen(filename.name, filename.len) != filename.len) 476 return; 477 /* ...or '/' */ 478 if (strnchr(filename.name, filename.len, '/')) 479 return; 480 if (filename.name[0] == '.') { 481 if (filename.len == 1) 482 return; 483 if (filename.len == 2 && filename.name[1] == '.') 484 return; 485 } 486 filename.hash = full_name_hash(parent, filename.name, filename.len); 487 488 dentry = d_lookup(parent, &filename); 489 again: 490 if (!dentry) { 491 dentry = d_alloc_parallel(parent, &filename, &wq); 492 if (IS_ERR(dentry)) 493 return; 494 } 495 if (!d_in_lookup(dentry)) { 496 /* Is there a mountpoint here? If so, just exit */ 497 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid, 498 &entry->fattr->fsid)) 499 goto out; 500 if (nfs_same_file(dentry, entry)) { 501 if (!entry->fh->size) 502 goto out; 503 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 504 status = nfs_refresh_inode(d_inode(dentry), entry->fattr); 505 if (!status) 506 nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label); 507 goto out; 508 } else { 509 d_invalidate(dentry); 510 dput(dentry); 511 dentry = NULL; 512 goto again; 513 } 514 } 515 if (!entry->fh->size) { 516 d_lookup_done(dentry); 517 goto out; 518 } 519 520 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label); 521 alias = d_splice_alias(inode, dentry); 522 d_lookup_done(dentry); 523 if (alias) { 524 if (IS_ERR(alias)) 525 goto out; 526 dput(dentry); 527 dentry = alias; 528 } 529 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 530 out: 531 dput(dentry); 532 } 533 534 /* Perform conversion from xdr to cache array */ 535 static 536 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry, 537 struct page **xdr_pages, struct page *page, unsigned int buflen) 538 { 539 struct xdr_stream stream; 540 struct xdr_buf buf; 541 struct page *scratch; 542 struct nfs_cache_array *array; 543 unsigned int count = 0; 544 int status; 545 546 scratch = alloc_page(GFP_KERNEL); 547 if (scratch == NULL) 548 return -ENOMEM; 549 550 if (buflen == 0) 551 goto out_nopages; 552 553 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen); 554 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE); 555 556 do { 557 status = xdr_decode(desc, entry, &stream); 558 if (status != 0) { 559 if (status == -EAGAIN) 560 status = 0; 561 break; 562 } 563 564 count++; 565 566 if (desc->plus) 567 nfs_prime_dcache(file_dentry(desc->file), entry); 568 569 status = nfs_readdir_add_to_array(entry, page); 570 if (status != 0) 571 break; 572 } while (!entry->eof); 573 574 out_nopages: 575 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) { 576 array = kmap(page); 577 array->eof_index = array->size; 578 status = 0; 579 kunmap(page); 580 } 581 582 put_page(scratch); 583 return status; 584 } 585 586 static 587 void nfs_readdir_free_pages(struct page **pages, unsigned int npages) 588 { 589 unsigned int i; 590 for (i = 0; i < npages; i++) 591 put_page(pages[i]); 592 } 593 594 /* 595 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call 596 * to nfs_readdir_free_pages() 597 */ 598 static 599 int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages) 600 { 601 unsigned int i; 602 603 for (i = 0; i < npages; i++) { 604 struct page *page = alloc_page(GFP_KERNEL); 605 if (page == NULL) 606 goto out_freepages; 607 pages[i] = page; 608 } 609 return 0; 610 611 out_freepages: 612 nfs_readdir_free_pages(pages, i); 613 return -ENOMEM; 614 } 615 616 static 617 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode) 618 { 619 struct page *pages[NFS_MAX_READDIR_PAGES]; 620 struct nfs_entry entry; 621 struct file *file = desc->file; 622 struct nfs_cache_array *array; 623 int status = -ENOMEM; 624 unsigned int array_size = ARRAY_SIZE(pages); 625 626 nfs_readdir_init_array(page); 627 628 entry.prev_cookie = 0; 629 entry.cookie = desc->last_cookie; 630 entry.eof = 0; 631 entry.fh = nfs_alloc_fhandle(); 632 entry.fattr = nfs_alloc_fattr(); 633 entry.server = NFS_SERVER(inode); 634 if (entry.fh == NULL || entry.fattr == NULL) 635 goto out; 636 637 entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT); 638 if (IS_ERR(entry.label)) { 639 status = PTR_ERR(entry.label); 640 goto out; 641 } 642 643 array = kmap(page); 644 645 status = nfs_readdir_alloc_pages(pages, array_size); 646 if (status < 0) 647 goto out_release_array; 648 do { 649 unsigned int pglen; 650 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode); 651 652 if (status < 0) 653 break; 654 pglen = status; 655 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen); 656 if (status < 0) { 657 if (status == -ENOSPC) 658 status = 0; 659 break; 660 } 661 } while (array->eof_index < 0); 662 663 nfs_readdir_free_pages(pages, array_size); 664 out_release_array: 665 kunmap(page); 666 nfs4_label_free(entry.label); 667 out: 668 nfs_free_fattr(entry.fattr); 669 nfs_free_fhandle(entry.fh); 670 return status; 671 } 672 673 /* 674 * Now we cache directories properly, by converting xdr information 675 * to an array that can be used for lookups later. This results in 676 * fewer cache pages, since we can store more information on each page. 677 * We only need to convert from xdr once so future lookups are much simpler 678 */ 679 static 680 int nfs_readdir_filler(void *data, struct page* page) 681 { 682 nfs_readdir_descriptor_t *desc = data; 683 struct inode *inode = file_inode(desc->file); 684 int ret; 685 686 ret = nfs_readdir_xdr_to_array(desc, page, inode); 687 if (ret < 0) 688 goto error; 689 SetPageUptodate(page); 690 691 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) { 692 /* Should never happen */ 693 nfs_zap_mapping(inode, inode->i_mapping); 694 } 695 unlock_page(page); 696 return 0; 697 error: 698 nfs_readdir_clear_array(page); 699 unlock_page(page); 700 return ret; 701 } 702 703 static 704 void cache_page_release(nfs_readdir_descriptor_t *desc) 705 { 706 put_page(desc->page); 707 desc->page = NULL; 708 } 709 710 static 711 struct page *get_cache_page(nfs_readdir_descriptor_t *desc) 712 { 713 return read_cache_page(desc->file->f_mapping, desc->page_index, 714 nfs_readdir_filler, desc); 715 } 716 717 /* 718 * Returns 0 if desc->dir_cookie was found on page desc->page_index 719 * and locks the page to prevent removal from the page cache. 720 */ 721 static 722 int find_and_lock_cache_page(nfs_readdir_descriptor_t *desc) 723 { 724 struct inode *inode = file_inode(desc->file); 725 struct nfs_inode *nfsi = NFS_I(inode); 726 int res; 727 728 desc->page = get_cache_page(desc); 729 if (IS_ERR(desc->page)) 730 return PTR_ERR(desc->page); 731 res = lock_page_killable(desc->page); 732 if (res != 0) 733 goto error; 734 res = -EAGAIN; 735 if (desc->page->mapping != NULL) { 736 res = nfs_readdir_search_array(desc); 737 if (res == 0) { 738 nfsi->page_index = desc->page_index; 739 return 0; 740 } 741 } 742 unlock_page(desc->page); 743 error: 744 cache_page_release(desc); 745 return res; 746 } 747 748 /* Search for desc->dir_cookie from the beginning of the page cache */ 749 static inline 750 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc) 751 { 752 int res; 753 754 if (desc->page_index == 0) { 755 desc->current_index = 0; 756 desc->last_cookie = 0; 757 } 758 do { 759 res = find_and_lock_cache_page(desc); 760 } while (res == -EAGAIN); 761 return res; 762 } 763 764 /* 765 * Once we've found the start of the dirent within a page: fill 'er up... 766 */ 767 static 768 int nfs_do_filldir(nfs_readdir_descriptor_t *desc) 769 { 770 struct file *file = desc->file; 771 int i = 0; 772 int res = 0; 773 struct nfs_cache_array *array = NULL; 774 struct nfs_open_dir_context *ctx = file->private_data; 775 776 array = kmap(desc->page); 777 for (i = desc->cache_entry_index; i < array->size; i++) { 778 struct nfs_cache_array_entry *ent; 779 780 ent = &array->array[i]; 781 if (!dir_emit(desc->ctx, ent->string.name, ent->string.len, 782 nfs_compat_user_ino64(ent->ino), ent->d_type)) { 783 desc->eof = true; 784 break; 785 } 786 desc->ctx->pos++; 787 if (i < (array->size-1)) 788 *desc->dir_cookie = array->array[i+1].cookie; 789 else 790 *desc->dir_cookie = array->last_cookie; 791 if (ctx->duped != 0) 792 ctx->duped = 1; 793 } 794 if (array->eof_index >= 0) 795 desc->eof = true; 796 797 kunmap(desc->page); 798 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n", 799 (unsigned long long)*desc->dir_cookie, res); 800 return res; 801 } 802 803 /* 804 * If we cannot find a cookie in our cache, we suspect that this is 805 * because it points to a deleted file, so we ask the server to return 806 * whatever it thinks is the next entry. We then feed this to filldir. 807 * If all goes well, we should then be able to find our way round the 808 * cache on the next call to readdir_search_pagecache(); 809 * 810 * NOTE: we cannot add the anonymous page to the pagecache because 811 * the data it contains might not be page aligned. Besides, 812 * we should already have a complete representation of the 813 * directory in the page cache by the time we get here. 814 */ 815 static inline 816 int uncached_readdir(nfs_readdir_descriptor_t *desc) 817 { 818 struct page *page = NULL; 819 int status; 820 struct inode *inode = file_inode(desc->file); 821 struct nfs_open_dir_context *ctx = desc->file->private_data; 822 823 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n", 824 (unsigned long long)*desc->dir_cookie); 825 826 page = alloc_page(GFP_HIGHUSER); 827 if (!page) { 828 status = -ENOMEM; 829 goto out; 830 } 831 832 desc->page_index = 0; 833 desc->last_cookie = *desc->dir_cookie; 834 desc->page = page; 835 ctx->duped = 0; 836 837 status = nfs_readdir_xdr_to_array(desc, page, inode); 838 if (status < 0) 839 goto out_release; 840 841 status = nfs_do_filldir(desc); 842 843 out_release: 844 nfs_readdir_clear_array(desc->page); 845 cache_page_release(desc); 846 out: 847 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", 848 __func__, status); 849 return status; 850 } 851 852 /* The file offset position represents the dirent entry number. A 853 last cookie cache takes care of the common case of reading the 854 whole directory. 855 */ 856 static int nfs_readdir(struct file *file, struct dir_context *ctx) 857 { 858 struct dentry *dentry = file_dentry(file); 859 struct inode *inode = d_inode(dentry); 860 nfs_readdir_descriptor_t my_desc, 861 *desc = &my_desc; 862 struct nfs_open_dir_context *dir_ctx = file->private_data; 863 int res = 0; 864 865 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n", 866 file, (long long)ctx->pos); 867 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS); 868 869 /* 870 * ctx->pos points to the dirent entry number. 871 * *desc->dir_cookie has the cookie for the next entry. We have 872 * to either find the entry with the appropriate number or 873 * revalidate the cookie. 874 */ 875 memset(desc, 0, sizeof(*desc)); 876 877 desc->file = file; 878 desc->ctx = ctx; 879 desc->dir_cookie = &dir_ctx->dir_cookie; 880 desc->decode = NFS_PROTO(inode)->decode_dirent; 881 desc->plus = nfs_use_readdirplus(inode, ctx); 882 883 if (ctx->pos == 0 || nfs_attribute_cache_expired(inode)) 884 res = nfs_revalidate_mapping(inode, file->f_mapping); 885 if (res < 0) 886 goto out; 887 888 do { 889 res = readdir_search_pagecache(desc); 890 891 if (res == -EBADCOOKIE) { 892 res = 0; 893 /* This means either end of directory */ 894 if (*desc->dir_cookie && !desc->eof) { 895 /* Or that the server has 'lost' a cookie */ 896 res = uncached_readdir(desc); 897 if (res == 0) 898 continue; 899 } 900 break; 901 } 902 if (res == -ETOOSMALL && desc->plus) { 903 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 904 nfs_zap_caches(inode); 905 desc->page_index = 0; 906 desc->plus = false; 907 desc->eof = false; 908 continue; 909 } 910 if (res < 0) 911 break; 912 913 res = nfs_do_filldir(desc); 914 unlock_page(desc->page); 915 cache_page_release(desc); 916 if (res < 0) 917 break; 918 } while (!desc->eof); 919 out: 920 if (res > 0) 921 res = 0; 922 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res); 923 return res; 924 } 925 926 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence) 927 { 928 struct inode *inode = file_inode(filp); 929 struct nfs_open_dir_context *dir_ctx = filp->private_data; 930 931 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n", 932 filp, offset, whence); 933 934 switch (whence) { 935 default: 936 return -EINVAL; 937 case SEEK_SET: 938 if (offset < 0) 939 return -EINVAL; 940 inode_lock(inode); 941 break; 942 case SEEK_CUR: 943 if (offset == 0) 944 return filp->f_pos; 945 inode_lock(inode); 946 offset += filp->f_pos; 947 if (offset < 0) { 948 inode_unlock(inode); 949 return -EINVAL; 950 } 951 } 952 if (offset != filp->f_pos) { 953 filp->f_pos = offset; 954 dir_ctx->dir_cookie = 0; 955 dir_ctx->duped = 0; 956 } 957 inode_unlock(inode); 958 return offset; 959 } 960 961 /* 962 * All directory operations under NFS are synchronous, so fsync() 963 * is a dummy operation. 964 */ 965 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end, 966 int datasync) 967 { 968 struct inode *inode = file_inode(filp); 969 970 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync); 971 972 inode_lock(inode); 973 nfs_inc_stats(inode, NFSIOS_VFSFSYNC); 974 inode_unlock(inode); 975 return 0; 976 } 977 978 /** 979 * nfs_force_lookup_revalidate - Mark the directory as having changed 980 * @dir: pointer to directory inode 981 * 982 * This forces the revalidation code in nfs_lookup_revalidate() to do a 983 * full lookup on all child dentries of 'dir' whenever a change occurs 984 * on the server that might have invalidated our dcache. 985 * 986 * The caller should be holding dir->i_lock 987 */ 988 void nfs_force_lookup_revalidate(struct inode *dir) 989 { 990 NFS_I(dir)->cache_change_attribute++; 991 } 992 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate); 993 994 /* 995 * A check for whether or not the parent directory has changed. 996 * In the case it has, we assume that the dentries are untrustworthy 997 * and may need to be looked up again. 998 * If rcu_walk prevents us from performing a full check, return 0. 999 */ 1000 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry, 1001 int rcu_walk) 1002 { 1003 if (IS_ROOT(dentry)) 1004 return 1; 1005 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE) 1006 return 0; 1007 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 1008 return 0; 1009 /* Revalidate nfsi->cache_change_attribute before we declare a match */ 1010 if (nfs_mapping_need_revalidate_inode(dir)) { 1011 if (rcu_walk) 1012 return 0; 1013 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0) 1014 return 0; 1015 } 1016 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 1017 return 0; 1018 return 1; 1019 } 1020 1021 /* 1022 * Use intent information to check whether or not we're going to do 1023 * an O_EXCL create using this path component. 1024 */ 1025 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags) 1026 { 1027 if (NFS_PROTO(dir)->version == 2) 1028 return 0; 1029 return flags & LOOKUP_EXCL; 1030 } 1031 1032 /* 1033 * Inode and filehandle revalidation for lookups. 1034 * 1035 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL, 1036 * or if the intent information indicates that we're about to open this 1037 * particular file and the "nocto" mount flag is not set. 1038 * 1039 */ 1040 static 1041 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags) 1042 { 1043 struct nfs_server *server = NFS_SERVER(inode); 1044 int ret; 1045 1046 if (IS_AUTOMOUNT(inode)) 1047 return 0; 1048 1049 if (flags & LOOKUP_OPEN) { 1050 switch (inode->i_mode & S_IFMT) { 1051 case S_IFREG: 1052 /* A NFSv4 OPEN will revalidate later */ 1053 if (server->caps & NFS_CAP_ATOMIC_OPEN) 1054 goto out; 1055 /* Fallthrough */ 1056 case S_IFDIR: 1057 if (server->flags & NFS_MOUNT_NOCTO) 1058 break; 1059 /* NFS close-to-open cache consistency validation */ 1060 goto out_force; 1061 } 1062 } 1063 1064 /* VFS wants an on-the-wire revalidation */ 1065 if (flags & LOOKUP_REVAL) 1066 goto out_force; 1067 out: 1068 return (inode->i_nlink == 0) ? -ESTALE : 0; 1069 out_force: 1070 if (flags & LOOKUP_RCU) 1071 return -ECHILD; 1072 ret = __nfs_revalidate_inode(server, inode); 1073 if (ret != 0) 1074 return ret; 1075 goto out; 1076 } 1077 1078 /* 1079 * We judge how long we want to trust negative 1080 * dentries by looking at the parent inode mtime. 1081 * 1082 * If parent mtime has changed, we revalidate, else we wait for a 1083 * period corresponding to the parent's attribute cache timeout value. 1084 * 1085 * If LOOKUP_RCU prevents us from performing a full check, return 1 1086 * suggesting a reval is needed. 1087 * 1088 * Note that when creating a new file, or looking up a rename target, 1089 * then it shouldn't be necessary to revalidate a negative dentry. 1090 */ 1091 static inline 1092 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry, 1093 unsigned int flags) 1094 { 1095 if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET)) 1096 return 0; 1097 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG) 1098 return 1; 1099 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU); 1100 } 1101 1102 static int 1103 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry, 1104 struct inode *inode, int error) 1105 { 1106 switch (error) { 1107 case 1: 1108 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n", 1109 __func__, dentry); 1110 return 1; 1111 case 0: 1112 nfs_mark_for_revalidate(dir); 1113 if (inode && S_ISDIR(inode->i_mode)) { 1114 /* Purge readdir caches. */ 1115 nfs_zap_caches(inode); 1116 /* 1117 * We can't d_drop the root of a disconnected tree: 1118 * its d_hash is on the s_anon list and d_drop() would hide 1119 * it from shrink_dcache_for_unmount(), leading to busy 1120 * inodes on unmount and further oopses. 1121 */ 1122 if (IS_ROOT(dentry)) 1123 return 1; 1124 } 1125 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n", 1126 __func__, dentry); 1127 return 0; 1128 } 1129 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n", 1130 __func__, dentry, error); 1131 return error; 1132 } 1133 1134 static int 1135 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry, 1136 unsigned int flags) 1137 { 1138 int ret = 1; 1139 if (nfs_neg_need_reval(dir, dentry, flags)) { 1140 if (flags & LOOKUP_RCU) 1141 return -ECHILD; 1142 ret = 0; 1143 } 1144 return nfs_lookup_revalidate_done(dir, dentry, NULL, ret); 1145 } 1146 1147 static int 1148 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry, 1149 struct inode *inode) 1150 { 1151 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1152 return nfs_lookup_revalidate_done(dir, dentry, inode, 1); 1153 } 1154 1155 static int 1156 nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry, 1157 struct inode *inode) 1158 { 1159 struct nfs_fh *fhandle; 1160 struct nfs_fattr *fattr; 1161 struct nfs4_label *label; 1162 int ret; 1163 1164 ret = -ENOMEM; 1165 fhandle = nfs_alloc_fhandle(); 1166 fattr = nfs_alloc_fattr(); 1167 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL); 1168 if (fhandle == NULL || fattr == NULL || IS_ERR(label)) 1169 goto out; 1170 1171 ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label); 1172 if (ret < 0) { 1173 switch (ret) { 1174 case -ESTALE: 1175 case -ENOENT: 1176 ret = 0; 1177 break; 1178 case -ETIMEDOUT: 1179 if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL) 1180 ret = 1; 1181 } 1182 goto out; 1183 } 1184 ret = 0; 1185 if (nfs_compare_fh(NFS_FH(inode), fhandle)) 1186 goto out; 1187 if (nfs_refresh_inode(inode, fattr) < 0) 1188 goto out; 1189 1190 nfs_setsecurity(inode, fattr, label); 1191 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1192 1193 /* set a readdirplus hint that we had a cache miss */ 1194 nfs_force_use_readdirplus(dir); 1195 ret = 1; 1196 out: 1197 nfs_free_fattr(fattr); 1198 nfs_free_fhandle(fhandle); 1199 nfs4_label_free(label); 1200 return nfs_lookup_revalidate_done(dir, dentry, inode, ret); 1201 } 1202 1203 /* 1204 * This is called every time the dcache has a lookup hit, 1205 * and we should check whether we can really trust that 1206 * lookup. 1207 * 1208 * NOTE! The hit can be a negative hit too, don't assume 1209 * we have an inode! 1210 * 1211 * If the parent directory is seen to have changed, we throw out the 1212 * cached dentry and do a new lookup. 1213 */ 1214 static int 1215 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry, 1216 unsigned int flags) 1217 { 1218 struct inode *inode; 1219 int error; 1220 1221 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE); 1222 inode = d_inode(dentry); 1223 1224 if (!inode) 1225 return nfs_lookup_revalidate_negative(dir, dentry, flags); 1226 1227 if (is_bad_inode(inode)) { 1228 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1229 __func__, dentry); 1230 goto out_bad; 1231 } 1232 1233 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ)) 1234 return nfs_lookup_revalidate_delegated(dir, dentry, inode); 1235 1236 /* Force a full look up iff the parent directory has changed */ 1237 if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) && 1238 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) { 1239 error = nfs_lookup_verify_inode(inode, flags); 1240 if (error) { 1241 if (error == -ESTALE) 1242 nfs_zap_caches(dir); 1243 goto out_bad; 1244 } 1245 nfs_advise_use_readdirplus(dir); 1246 goto out_valid; 1247 } 1248 1249 if (flags & LOOKUP_RCU) 1250 return -ECHILD; 1251 1252 if (NFS_STALE(inode)) 1253 goto out_bad; 1254 1255 trace_nfs_lookup_revalidate_enter(dir, dentry, flags); 1256 error = nfs_lookup_revalidate_dentry(dir, dentry, inode); 1257 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error); 1258 return error; 1259 out_valid: 1260 return nfs_lookup_revalidate_done(dir, dentry, inode, 1); 1261 out_bad: 1262 if (flags & LOOKUP_RCU) 1263 return -ECHILD; 1264 return nfs_lookup_revalidate_done(dir, dentry, inode, 0); 1265 } 1266 1267 static int 1268 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags, 1269 int (*reval)(struct inode *, struct dentry *, unsigned int)) 1270 { 1271 struct dentry *parent; 1272 struct inode *dir; 1273 int ret; 1274 1275 if (flags & LOOKUP_RCU) { 1276 parent = READ_ONCE(dentry->d_parent); 1277 dir = d_inode_rcu(parent); 1278 if (!dir) 1279 return -ECHILD; 1280 ret = reval(dir, dentry, flags); 1281 if (parent != READ_ONCE(dentry->d_parent)) 1282 return -ECHILD; 1283 } else { 1284 parent = dget_parent(dentry); 1285 ret = reval(d_inode(parent), dentry, flags); 1286 dput(parent); 1287 } 1288 return ret; 1289 } 1290 1291 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1292 { 1293 return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate); 1294 } 1295 1296 /* 1297 * A weaker form of d_revalidate for revalidating just the d_inode(dentry) 1298 * when we don't really care about the dentry name. This is called when a 1299 * pathwalk ends on a dentry that was not found via a normal lookup in the 1300 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals). 1301 * 1302 * In this situation, we just want to verify that the inode itself is OK 1303 * since the dentry might have changed on the server. 1304 */ 1305 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags) 1306 { 1307 struct inode *inode = d_inode(dentry); 1308 int error = 0; 1309 1310 /* 1311 * I believe we can only get a negative dentry here in the case of a 1312 * procfs-style symlink. Just assume it's correct for now, but we may 1313 * eventually need to do something more here. 1314 */ 1315 if (!inode) { 1316 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n", 1317 __func__, dentry); 1318 return 1; 1319 } 1320 1321 if (is_bad_inode(inode)) { 1322 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1323 __func__, dentry); 1324 return 0; 1325 } 1326 1327 error = nfs_lookup_verify_inode(inode, flags); 1328 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n", 1329 __func__, inode->i_ino, error ? "invalid" : "valid"); 1330 return !error; 1331 } 1332 1333 /* 1334 * This is called from dput() when d_count is going to 0. 1335 */ 1336 static int nfs_dentry_delete(const struct dentry *dentry) 1337 { 1338 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n", 1339 dentry, dentry->d_flags); 1340 1341 /* Unhash any dentry with a stale inode */ 1342 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry))) 1343 return 1; 1344 1345 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1346 /* Unhash it, so that ->d_iput() would be called */ 1347 return 1; 1348 } 1349 if (!(dentry->d_sb->s_flags & SB_ACTIVE)) { 1350 /* Unhash it, so that ancestors of killed async unlink 1351 * files will be cleaned up during umount */ 1352 return 1; 1353 } 1354 return 0; 1355 1356 } 1357 1358 /* Ensure that we revalidate inode->i_nlink */ 1359 static void nfs_drop_nlink(struct inode *inode) 1360 { 1361 spin_lock(&inode->i_lock); 1362 /* drop the inode if we're reasonably sure this is the last link */ 1363 if (inode->i_nlink > 0) 1364 drop_nlink(inode); 1365 NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter(); 1366 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_CHANGE 1367 | NFS_INO_INVALID_CTIME 1368 | NFS_INO_INVALID_OTHER 1369 | NFS_INO_REVAL_FORCED; 1370 spin_unlock(&inode->i_lock); 1371 } 1372 1373 /* 1374 * Called when the dentry loses inode. 1375 * We use it to clean up silly-renamed files. 1376 */ 1377 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode) 1378 { 1379 if (S_ISDIR(inode->i_mode)) 1380 /* drop any readdir cache as it could easily be old */ 1381 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA; 1382 1383 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1384 nfs_complete_unlink(dentry, inode); 1385 nfs_drop_nlink(inode); 1386 } 1387 iput(inode); 1388 } 1389 1390 static void nfs_d_release(struct dentry *dentry) 1391 { 1392 /* free cached devname value, if it survived that far */ 1393 if (unlikely(dentry->d_fsdata)) { 1394 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1395 WARN_ON(1); 1396 else 1397 kfree(dentry->d_fsdata); 1398 } 1399 } 1400 1401 const struct dentry_operations nfs_dentry_operations = { 1402 .d_revalidate = nfs_lookup_revalidate, 1403 .d_weak_revalidate = nfs_weak_revalidate, 1404 .d_delete = nfs_dentry_delete, 1405 .d_iput = nfs_dentry_iput, 1406 .d_automount = nfs_d_automount, 1407 .d_release = nfs_d_release, 1408 }; 1409 EXPORT_SYMBOL_GPL(nfs_dentry_operations); 1410 1411 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 1412 { 1413 struct dentry *res; 1414 struct inode *inode = NULL; 1415 struct nfs_fh *fhandle = NULL; 1416 struct nfs_fattr *fattr = NULL; 1417 struct nfs4_label *label = NULL; 1418 int error; 1419 1420 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry); 1421 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP); 1422 1423 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen)) 1424 return ERR_PTR(-ENAMETOOLONG); 1425 1426 /* 1427 * If we're doing an exclusive create, optimize away the lookup 1428 * but don't hash the dentry. 1429 */ 1430 if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET) 1431 return NULL; 1432 1433 res = ERR_PTR(-ENOMEM); 1434 fhandle = nfs_alloc_fhandle(); 1435 fattr = nfs_alloc_fattr(); 1436 if (fhandle == NULL || fattr == NULL) 1437 goto out; 1438 1439 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT); 1440 if (IS_ERR(label)) 1441 goto out; 1442 1443 trace_nfs_lookup_enter(dir, dentry, flags); 1444 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label); 1445 if (error == -ENOENT) 1446 goto no_entry; 1447 if (error < 0) { 1448 res = ERR_PTR(error); 1449 goto out_label; 1450 } 1451 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label); 1452 res = ERR_CAST(inode); 1453 if (IS_ERR(res)) 1454 goto out_label; 1455 1456 /* Notify readdir to use READDIRPLUS */ 1457 nfs_force_use_readdirplus(dir); 1458 1459 no_entry: 1460 res = d_splice_alias(inode, dentry); 1461 if (res != NULL) { 1462 if (IS_ERR(res)) 1463 goto out_label; 1464 dentry = res; 1465 } 1466 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1467 out_label: 1468 trace_nfs_lookup_exit(dir, dentry, flags, error); 1469 nfs4_label_free(label); 1470 out: 1471 nfs_free_fattr(fattr); 1472 nfs_free_fhandle(fhandle); 1473 return res; 1474 } 1475 EXPORT_SYMBOL_GPL(nfs_lookup); 1476 1477 #if IS_ENABLED(CONFIG_NFS_V4) 1478 static int nfs4_lookup_revalidate(struct dentry *, unsigned int); 1479 1480 const struct dentry_operations nfs4_dentry_operations = { 1481 .d_revalidate = nfs4_lookup_revalidate, 1482 .d_weak_revalidate = nfs_weak_revalidate, 1483 .d_delete = nfs_dentry_delete, 1484 .d_iput = nfs_dentry_iput, 1485 .d_automount = nfs_d_automount, 1486 .d_release = nfs_d_release, 1487 }; 1488 EXPORT_SYMBOL_GPL(nfs4_dentry_operations); 1489 1490 static fmode_t flags_to_mode(int flags) 1491 { 1492 fmode_t res = (__force fmode_t)flags & FMODE_EXEC; 1493 if ((flags & O_ACCMODE) != O_WRONLY) 1494 res |= FMODE_READ; 1495 if ((flags & O_ACCMODE) != O_RDONLY) 1496 res |= FMODE_WRITE; 1497 return res; 1498 } 1499 1500 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp) 1501 { 1502 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp); 1503 } 1504 1505 static int do_open(struct inode *inode, struct file *filp) 1506 { 1507 nfs_fscache_open_file(inode, filp); 1508 return 0; 1509 } 1510 1511 static int nfs_finish_open(struct nfs_open_context *ctx, 1512 struct dentry *dentry, 1513 struct file *file, unsigned open_flags) 1514 { 1515 int err; 1516 1517 err = finish_open(file, dentry, do_open); 1518 if (err) 1519 goto out; 1520 if (S_ISREG(file->f_path.dentry->d_inode->i_mode)) 1521 nfs_file_set_open_context(file, ctx); 1522 else 1523 err = -EOPENSTALE; 1524 out: 1525 return err; 1526 } 1527 1528 int nfs_atomic_open(struct inode *dir, struct dentry *dentry, 1529 struct file *file, unsigned open_flags, 1530 umode_t mode) 1531 { 1532 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1533 struct nfs_open_context *ctx; 1534 struct dentry *res; 1535 struct iattr attr = { .ia_valid = ATTR_OPEN }; 1536 struct inode *inode; 1537 unsigned int lookup_flags = 0; 1538 bool switched = false; 1539 int created = 0; 1540 int err; 1541 1542 /* Expect a negative dentry */ 1543 BUG_ON(d_inode(dentry)); 1544 1545 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n", 1546 dir->i_sb->s_id, dir->i_ino, dentry); 1547 1548 err = nfs_check_flags(open_flags); 1549 if (err) 1550 return err; 1551 1552 /* NFS only supports OPEN on regular files */ 1553 if ((open_flags & O_DIRECTORY)) { 1554 if (!d_in_lookup(dentry)) { 1555 /* 1556 * Hashed negative dentry with O_DIRECTORY: dentry was 1557 * revalidated and is fine, no need to perform lookup 1558 * again 1559 */ 1560 return -ENOENT; 1561 } 1562 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY; 1563 goto no_open; 1564 } 1565 1566 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 1567 return -ENAMETOOLONG; 1568 1569 if (open_flags & O_CREAT) { 1570 struct nfs_server *server = NFS_SERVER(dir); 1571 1572 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK)) 1573 mode &= ~current_umask(); 1574 1575 attr.ia_valid |= ATTR_MODE; 1576 attr.ia_mode = mode; 1577 } 1578 if (open_flags & O_TRUNC) { 1579 attr.ia_valid |= ATTR_SIZE; 1580 attr.ia_size = 0; 1581 } 1582 1583 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) { 1584 d_drop(dentry); 1585 switched = true; 1586 dentry = d_alloc_parallel(dentry->d_parent, 1587 &dentry->d_name, &wq); 1588 if (IS_ERR(dentry)) 1589 return PTR_ERR(dentry); 1590 if (unlikely(!d_in_lookup(dentry))) 1591 return finish_no_open(file, dentry); 1592 } 1593 1594 ctx = create_nfs_open_context(dentry, open_flags, file); 1595 err = PTR_ERR(ctx); 1596 if (IS_ERR(ctx)) 1597 goto out; 1598 1599 trace_nfs_atomic_open_enter(dir, ctx, open_flags); 1600 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created); 1601 if (created) 1602 file->f_mode |= FMODE_CREATED; 1603 if (IS_ERR(inode)) { 1604 err = PTR_ERR(inode); 1605 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 1606 put_nfs_open_context(ctx); 1607 d_drop(dentry); 1608 switch (err) { 1609 case -ENOENT: 1610 d_splice_alias(NULL, dentry); 1611 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1612 break; 1613 case -EISDIR: 1614 case -ENOTDIR: 1615 goto no_open; 1616 case -ELOOP: 1617 if (!(open_flags & O_NOFOLLOW)) 1618 goto no_open; 1619 break; 1620 /* case -EINVAL: */ 1621 default: 1622 break; 1623 } 1624 goto out; 1625 } 1626 1627 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags); 1628 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 1629 put_nfs_open_context(ctx); 1630 out: 1631 if (unlikely(switched)) { 1632 d_lookup_done(dentry); 1633 dput(dentry); 1634 } 1635 return err; 1636 1637 no_open: 1638 res = nfs_lookup(dir, dentry, lookup_flags); 1639 if (switched) { 1640 d_lookup_done(dentry); 1641 if (!res) 1642 res = dentry; 1643 else 1644 dput(dentry); 1645 } 1646 if (IS_ERR(res)) 1647 return PTR_ERR(res); 1648 return finish_no_open(file, res); 1649 } 1650 EXPORT_SYMBOL_GPL(nfs_atomic_open); 1651 1652 static int 1653 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry, 1654 unsigned int flags) 1655 { 1656 struct inode *inode; 1657 1658 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY)) 1659 goto full_reval; 1660 if (d_mountpoint(dentry)) 1661 goto full_reval; 1662 1663 inode = d_inode(dentry); 1664 1665 /* We can't create new files in nfs_open_revalidate(), so we 1666 * optimize away revalidation of negative dentries. 1667 */ 1668 if (inode == NULL) 1669 goto full_reval; 1670 1671 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ)) 1672 return nfs_lookup_revalidate_delegated(dir, dentry, inode); 1673 1674 /* NFS only supports OPEN on regular files */ 1675 if (!S_ISREG(inode->i_mode)) 1676 goto full_reval; 1677 1678 /* We cannot do exclusive creation on a positive dentry */ 1679 if (flags & (LOOKUP_EXCL | LOOKUP_REVAL)) 1680 goto reval_dentry; 1681 1682 /* Check if the directory changed */ 1683 if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) 1684 goto reval_dentry; 1685 1686 /* Let f_op->open() actually open (and revalidate) the file */ 1687 return 1; 1688 reval_dentry: 1689 if (flags & LOOKUP_RCU) 1690 return -ECHILD; 1691 return nfs_lookup_revalidate_dentry(dir, dentry, inode); 1692 1693 full_reval: 1694 return nfs_do_lookup_revalidate(dir, dentry, flags); 1695 } 1696 1697 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1698 { 1699 return __nfs_lookup_revalidate(dentry, flags, 1700 nfs4_do_lookup_revalidate); 1701 } 1702 1703 #endif /* CONFIG_NFSV4 */ 1704 1705 struct dentry * 1706 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle, 1707 struct nfs_fattr *fattr, 1708 struct nfs4_label *label) 1709 { 1710 struct dentry *parent = dget_parent(dentry); 1711 struct inode *dir = d_inode(parent); 1712 struct inode *inode; 1713 struct dentry *d; 1714 int error; 1715 1716 d_drop(dentry); 1717 1718 if (fhandle->size == 0) { 1719 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, NULL); 1720 if (error) 1721 goto out_error; 1722 } 1723 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1724 if (!(fattr->valid & NFS_ATTR_FATTR)) { 1725 struct nfs_server *server = NFS_SB(dentry->d_sb); 1726 error = server->nfs_client->rpc_ops->getattr(server, fhandle, 1727 fattr, NULL, NULL); 1728 if (error < 0) 1729 goto out_error; 1730 } 1731 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label); 1732 d = d_splice_alias(inode, dentry); 1733 out: 1734 dput(parent); 1735 return d; 1736 out_error: 1737 nfs_mark_for_revalidate(dir); 1738 d = ERR_PTR(error); 1739 goto out; 1740 } 1741 EXPORT_SYMBOL_GPL(nfs_add_or_obtain); 1742 1743 /* 1744 * Code common to create, mkdir, and mknod. 1745 */ 1746 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle, 1747 struct nfs_fattr *fattr, 1748 struct nfs4_label *label) 1749 { 1750 struct dentry *d; 1751 1752 d = nfs_add_or_obtain(dentry, fhandle, fattr, label); 1753 if (IS_ERR(d)) 1754 return PTR_ERR(d); 1755 1756 /* Callers don't care */ 1757 dput(d); 1758 return 0; 1759 } 1760 EXPORT_SYMBOL_GPL(nfs_instantiate); 1761 1762 /* 1763 * Following a failed create operation, we drop the dentry rather 1764 * than retain a negative dentry. This avoids a problem in the event 1765 * that the operation succeeded on the server, but an error in the 1766 * reply path made it appear to have failed. 1767 */ 1768 int nfs_create(struct inode *dir, struct dentry *dentry, 1769 umode_t mode, bool excl) 1770 { 1771 struct iattr attr; 1772 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT; 1773 int error; 1774 1775 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n", 1776 dir->i_sb->s_id, dir->i_ino, dentry); 1777 1778 attr.ia_mode = mode; 1779 attr.ia_valid = ATTR_MODE; 1780 1781 trace_nfs_create_enter(dir, dentry, open_flags); 1782 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags); 1783 trace_nfs_create_exit(dir, dentry, open_flags, error); 1784 if (error != 0) 1785 goto out_err; 1786 return 0; 1787 out_err: 1788 d_drop(dentry); 1789 return error; 1790 } 1791 EXPORT_SYMBOL_GPL(nfs_create); 1792 1793 /* 1794 * See comments for nfs_proc_create regarding failed operations. 1795 */ 1796 int 1797 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev) 1798 { 1799 struct iattr attr; 1800 int status; 1801 1802 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n", 1803 dir->i_sb->s_id, dir->i_ino, dentry); 1804 1805 attr.ia_mode = mode; 1806 attr.ia_valid = ATTR_MODE; 1807 1808 trace_nfs_mknod_enter(dir, dentry); 1809 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev); 1810 trace_nfs_mknod_exit(dir, dentry, status); 1811 if (status != 0) 1812 goto out_err; 1813 return 0; 1814 out_err: 1815 d_drop(dentry); 1816 return status; 1817 } 1818 EXPORT_SYMBOL_GPL(nfs_mknod); 1819 1820 /* 1821 * See comments for nfs_proc_create regarding failed operations. 1822 */ 1823 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1824 { 1825 struct iattr attr; 1826 int error; 1827 1828 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n", 1829 dir->i_sb->s_id, dir->i_ino, dentry); 1830 1831 attr.ia_valid = ATTR_MODE; 1832 attr.ia_mode = mode | S_IFDIR; 1833 1834 trace_nfs_mkdir_enter(dir, dentry); 1835 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr); 1836 trace_nfs_mkdir_exit(dir, dentry, error); 1837 if (error != 0) 1838 goto out_err; 1839 return 0; 1840 out_err: 1841 d_drop(dentry); 1842 return error; 1843 } 1844 EXPORT_SYMBOL_GPL(nfs_mkdir); 1845 1846 static void nfs_dentry_handle_enoent(struct dentry *dentry) 1847 { 1848 if (simple_positive(dentry)) 1849 d_delete(dentry); 1850 } 1851 1852 int nfs_rmdir(struct inode *dir, struct dentry *dentry) 1853 { 1854 int error; 1855 1856 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n", 1857 dir->i_sb->s_id, dir->i_ino, dentry); 1858 1859 trace_nfs_rmdir_enter(dir, dentry); 1860 if (d_really_is_positive(dentry)) { 1861 down_write(&NFS_I(d_inode(dentry))->rmdir_sem); 1862 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1863 /* Ensure the VFS deletes this inode */ 1864 switch (error) { 1865 case 0: 1866 clear_nlink(d_inode(dentry)); 1867 break; 1868 case -ENOENT: 1869 nfs_dentry_handle_enoent(dentry); 1870 } 1871 up_write(&NFS_I(d_inode(dentry))->rmdir_sem); 1872 } else 1873 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1874 trace_nfs_rmdir_exit(dir, dentry, error); 1875 1876 return error; 1877 } 1878 EXPORT_SYMBOL_GPL(nfs_rmdir); 1879 1880 /* 1881 * Remove a file after making sure there are no pending writes, 1882 * and after checking that the file has only one user. 1883 * 1884 * We invalidate the attribute cache and free the inode prior to the operation 1885 * to avoid possible races if the server reuses the inode. 1886 */ 1887 static int nfs_safe_remove(struct dentry *dentry) 1888 { 1889 struct inode *dir = d_inode(dentry->d_parent); 1890 struct inode *inode = d_inode(dentry); 1891 int error = -EBUSY; 1892 1893 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry); 1894 1895 /* If the dentry was sillyrenamed, we simply call d_delete() */ 1896 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1897 error = 0; 1898 goto out; 1899 } 1900 1901 trace_nfs_remove_enter(dir, dentry); 1902 if (inode != NULL) { 1903 error = NFS_PROTO(dir)->remove(dir, dentry); 1904 if (error == 0) 1905 nfs_drop_nlink(inode); 1906 } else 1907 error = NFS_PROTO(dir)->remove(dir, dentry); 1908 if (error == -ENOENT) 1909 nfs_dentry_handle_enoent(dentry); 1910 trace_nfs_remove_exit(dir, dentry, error); 1911 out: 1912 return error; 1913 } 1914 1915 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode 1916 * belongs to an active ".nfs..." file and we return -EBUSY. 1917 * 1918 * If sillyrename() returns 0, we do nothing, otherwise we unlink. 1919 */ 1920 int nfs_unlink(struct inode *dir, struct dentry *dentry) 1921 { 1922 int error; 1923 int need_rehash = 0; 1924 1925 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id, 1926 dir->i_ino, dentry); 1927 1928 trace_nfs_unlink_enter(dir, dentry); 1929 spin_lock(&dentry->d_lock); 1930 if (d_count(dentry) > 1) { 1931 spin_unlock(&dentry->d_lock); 1932 /* Start asynchronous writeout of the inode */ 1933 write_inode_now(d_inode(dentry), 0); 1934 error = nfs_sillyrename(dir, dentry); 1935 goto out; 1936 } 1937 if (!d_unhashed(dentry)) { 1938 __d_drop(dentry); 1939 need_rehash = 1; 1940 } 1941 spin_unlock(&dentry->d_lock); 1942 error = nfs_safe_remove(dentry); 1943 if (!error || error == -ENOENT) { 1944 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1945 } else if (need_rehash) 1946 d_rehash(dentry); 1947 out: 1948 trace_nfs_unlink_exit(dir, dentry, error); 1949 return error; 1950 } 1951 EXPORT_SYMBOL_GPL(nfs_unlink); 1952 1953 /* 1954 * To create a symbolic link, most file systems instantiate a new inode, 1955 * add a page to it containing the path, then write it out to the disk 1956 * using prepare_write/commit_write. 1957 * 1958 * Unfortunately the NFS client can't create the in-core inode first 1959 * because it needs a file handle to create an in-core inode (see 1960 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the 1961 * symlink request has completed on the server. 1962 * 1963 * So instead we allocate a raw page, copy the symname into it, then do 1964 * the SYMLINK request with the page as the buffer. If it succeeds, we 1965 * now have a new file handle and can instantiate an in-core NFS inode 1966 * and move the raw page into its mapping. 1967 */ 1968 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 1969 { 1970 struct page *page; 1971 char *kaddr; 1972 struct iattr attr; 1973 unsigned int pathlen = strlen(symname); 1974 int error; 1975 1976 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id, 1977 dir->i_ino, dentry, symname); 1978 1979 if (pathlen > PAGE_SIZE) 1980 return -ENAMETOOLONG; 1981 1982 attr.ia_mode = S_IFLNK | S_IRWXUGO; 1983 attr.ia_valid = ATTR_MODE; 1984 1985 page = alloc_page(GFP_USER); 1986 if (!page) 1987 return -ENOMEM; 1988 1989 kaddr = page_address(page); 1990 memcpy(kaddr, symname, pathlen); 1991 if (pathlen < PAGE_SIZE) 1992 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen); 1993 1994 trace_nfs_symlink_enter(dir, dentry); 1995 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr); 1996 trace_nfs_symlink_exit(dir, dentry, error); 1997 if (error != 0) { 1998 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n", 1999 dir->i_sb->s_id, dir->i_ino, 2000 dentry, symname, error); 2001 d_drop(dentry); 2002 __free_page(page); 2003 return error; 2004 } 2005 2006 /* 2007 * No big deal if we can't add this page to the page cache here. 2008 * READLINK will get the missing page from the server if needed. 2009 */ 2010 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0, 2011 GFP_KERNEL)) { 2012 SetPageUptodate(page); 2013 unlock_page(page); 2014 /* 2015 * add_to_page_cache_lru() grabs an extra page refcount. 2016 * Drop it here to avoid leaking this page later. 2017 */ 2018 put_page(page); 2019 } else 2020 __free_page(page); 2021 2022 return 0; 2023 } 2024 EXPORT_SYMBOL_GPL(nfs_symlink); 2025 2026 int 2027 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2028 { 2029 struct inode *inode = d_inode(old_dentry); 2030 int error; 2031 2032 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n", 2033 old_dentry, dentry); 2034 2035 trace_nfs_link_enter(inode, dir, dentry); 2036 d_drop(dentry); 2037 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name); 2038 if (error == 0) { 2039 ihold(inode); 2040 d_add(dentry, inode); 2041 } 2042 trace_nfs_link_exit(inode, dir, dentry, error); 2043 return error; 2044 } 2045 EXPORT_SYMBOL_GPL(nfs_link); 2046 2047 /* 2048 * RENAME 2049 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a 2050 * different file handle for the same inode after a rename (e.g. when 2051 * moving to a different directory). A fail-safe method to do so would 2052 * be to look up old_dir/old_name, create a link to new_dir/new_name and 2053 * rename the old file using the sillyrename stuff. This way, the original 2054 * file in old_dir will go away when the last process iput()s the inode. 2055 * 2056 * FIXED. 2057 * 2058 * It actually works quite well. One needs to have the possibility for 2059 * at least one ".nfs..." file in each directory the file ever gets 2060 * moved or linked to which happens automagically with the new 2061 * implementation that only depends on the dcache stuff instead of 2062 * using the inode layer 2063 * 2064 * Unfortunately, things are a little more complicated than indicated 2065 * above. For a cross-directory move, we want to make sure we can get 2066 * rid of the old inode after the operation. This means there must be 2067 * no pending writes (if it's a file), and the use count must be 1. 2068 * If these conditions are met, we can drop the dentries before doing 2069 * the rename. 2070 */ 2071 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry, 2072 struct inode *new_dir, struct dentry *new_dentry, 2073 unsigned int flags) 2074 { 2075 struct inode *old_inode = d_inode(old_dentry); 2076 struct inode *new_inode = d_inode(new_dentry); 2077 struct dentry *dentry = NULL, *rehash = NULL; 2078 struct rpc_task *task; 2079 int error = -EBUSY; 2080 2081 if (flags) 2082 return -EINVAL; 2083 2084 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n", 2085 old_dentry, new_dentry, 2086 d_count(new_dentry)); 2087 2088 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry); 2089 /* 2090 * For non-directories, check whether the target is busy and if so, 2091 * make a copy of the dentry and then do a silly-rename. If the 2092 * silly-rename succeeds, the copied dentry is hashed and becomes 2093 * the new target. 2094 */ 2095 if (new_inode && !S_ISDIR(new_inode->i_mode)) { 2096 /* 2097 * To prevent any new references to the target during the 2098 * rename, we unhash the dentry in advance. 2099 */ 2100 if (!d_unhashed(new_dentry)) { 2101 d_drop(new_dentry); 2102 rehash = new_dentry; 2103 } 2104 2105 if (d_count(new_dentry) > 2) { 2106 int err; 2107 2108 /* copy the target dentry's name */ 2109 dentry = d_alloc(new_dentry->d_parent, 2110 &new_dentry->d_name); 2111 if (!dentry) 2112 goto out; 2113 2114 /* silly-rename the existing target ... */ 2115 err = nfs_sillyrename(new_dir, new_dentry); 2116 if (err) 2117 goto out; 2118 2119 new_dentry = dentry; 2120 rehash = NULL; 2121 new_inode = NULL; 2122 } 2123 } 2124 2125 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL); 2126 if (IS_ERR(task)) { 2127 error = PTR_ERR(task); 2128 goto out; 2129 } 2130 2131 error = rpc_wait_for_completion_task(task); 2132 if (error != 0) { 2133 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1; 2134 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */ 2135 smp_wmb(); 2136 } else 2137 error = task->tk_status; 2138 rpc_put_task(task); 2139 /* Ensure the inode attributes are revalidated */ 2140 if (error == 0) { 2141 spin_lock(&old_inode->i_lock); 2142 NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter(); 2143 NFS_I(old_inode)->cache_validity |= NFS_INO_INVALID_CHANGE 2144 | NFS_INO_INVALID_CTIME 2145 | NFS_INO_REVAL_FORCED; 2146 spin_unlock(&old_inode->i_lock); 2147 } 2148 out: 2149 if (rehash) 2150 d_rehash(rehash); 2151 trace_nfs_rename_exit(old_dir, old_dentry, 2152 new_dir, new_dentry, error); 2153 if (!error) { 2154 if (new_inode != NULL) 2155 nfs_drop_nlink(new_inode); 2156 /* 2157 * The d_move() should be here instead of in an async RPC completion 2158 * handler because we need the proper locks to move the dentry. If 2159 * we're interrupted by a signal, the async RPC completion handler 2160 * should mark the directories for revalidation. 2161 */ 2162 d_move(old_dentry, new_dentry); 2163 nfs_set_verifier(old_dentry, 2164 nfs_save_change_attribute(new_dir)); 2165 } else if (error == -ENOENT) 2166 nfs_dentry_handle_enoent(old_dentry); 2167 2168 /* new dentry created? */ 2169 if (dentry) 2170 dput(dentry); 2171 return error; 2172 } 2173 EXPORT_SYMBOL_GPL(nfs_rename); 2174 2175 static DEFINE_SPINLOCK(nfs_access_lru_lock); 2176 static LIST_HEAD(nfs_access_lru_list); 2177 static atomic_long_t nfs_access_nr_entries; 2178 2179 static unsigned long nfs_access_max_cachesize = ULONG_MAX; 2180 module_param(nfs_access_max_cachesize, ulong, 0644); 2181 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length"); 2182 2183 static void nfs_access_free_entry(struct nfs_access_entry *entry) 2184 { 2185 put_cred(entry->cred); 2186 kfree_rcu(entry, rcu_head); 2187 smp_mb__before_atomic(); 2188 atomic_long_dec(&nfs_access_nr_entries); 2189 smp_mb__after_atomic(); 2190 } 2191 2192 static void nfs_access_free_list(struct list_head *head) 2193 { 2194 struct nfs_access_entry *cache; 2195 2196 while (!list_empty(head)) { 2197 cache = list_entry(head->next, struct nfs_access_entry, lru); 2198 list_del(&cache->lru); 2199 nfs_access_free_entry(cache); 2200 } 2201 } 2202 2203 static unsigned long 2204 nfs_do_access_cache_scan(unsigned int nr_to_scan) 2205 { 2206 LIST_HEAD(head); 2207 struct nfs_inode *nfsi, *next; 2208 struct nfs_access_entry *cache; 2209 long freed = 0; 2210 2211 spin_lock(&nfs_access_lru_lock); 2212 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) { 2213 struct inode *inode; 2214 2215 if (nr_to_scan-- == 0) 2216 break; 2217 inode = &nfsi->vfs_inode; 2218 spin_lock(&inode->i_lock); 2219 if (list_empty(&nfsi->access_cache_entry_lru)) 2220 goto remove_lru_entry; 2221 cache = list_entry(nfsi->access_cache_entry_lru.next, 2222 struct nfs_access_entry, lru); 2223 list_move(&cache->lru, &head); 2224 rb_erase(&cache->rb_node, &nfsi->access_cache); 2225 freed++; 2226 if (!list_empty(&nfsi->access_cache_entry_lru)) 2227 list_move_tail(&nfsi->access_cache_inode_lru, 2228 &nfs_access_lru_list); 2229 else { 2230 remove_lru_entry: 2231 list_del_init(&nfsi->access_cache_inode_lru); 2232 smp_mb__before_atomic(); 2233 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags); 2234 smp_mb__after_atomic(); 2235 } 2236 spin_unlock(&inode->i_lock); 2237 } 2238 spin_unlock(&nfs_access_lru_lock); 2239 nfs_access_free_list(&head); 2240 return freed; 2241 } 2242 2243 unsigned long 2244 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc) 2245 { 2246 int nr_to_scan = sc->nr_to_scan; 2247 gfp_t gfp_mask = sc->gfp_mask; 2248 2249 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL) 2250 return SHRINK_STOP; 2251 return nfs_do_access_cache_scan(nr_to_scan); 2252 } 2253 2254 2255 unsigned long 2256 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc) 2257 { 2258 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries)); 2259 } 2260 2261 static void 2262 nfs_access_cache_enforce_limit(void) 2263 { 2264 long nr_entries = atomic_long_read(&nfs_access_nr_entries); 2265 unsigned long diff; 2266 unsigned int nr_to_scan; 2267 2268 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize) 2269 return; 2270 nr_to_scan = 100; 2271 diff = nr_entries - nfs_access_max_cachesize; 2272 if (diff < nr_to_scan) 2273 nr_to_scan = diff; 2274 nfs_do_access_cache_scan(nr_to_scan); 2275 } 2276 2277 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head) 2278 { 2279 struct rb_root *root_node = &nfsi->access_cache; 2280 struct rb_node *n; 2281 struct nfs_access_entry *entry; 2282 2283 /* Unhook entries from the cache */ 2284 while ((n = rb_first(root_node)) != NULL) { 2285 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2286 rb_erase(n, root_node); 2287 list_move(&entry->lru, head); 2288 } 2289 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS; 2290 } 2291 2292 void nfs_access_zap_cache(struct inode *inode) 2293 { 2294 LIST_HEAD(head); 2295 2296 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0) 2297 return; 2298 /* Remove from global LRU init */ 2299 spin_lock(&nfs_access_lru_lock); 2300 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2301 list_del_init(&NFS_I(inode)->access_cache_inode_lru); 2302 2303 spin_lock(&inode->i_lock); 2304 __nfs_access_zap_cache(NFS_I(inode), &head); 2305 spin_unlock(&inode->i_lock); 2306 spin_unlock(&nfs_access_lru_lock); 2307 nfs_access_free_list(&head); 2308 } 2309 EXPORT_SYMBOL_GPL(nfs_access_zap_cache); 2310 2311 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred) 2312 { 2313 struct rb_node *n = NFS_I(inode)->access_cache.rb_node; 2314 2315 while (n != NULL) { 2316 struct nfs_access_entry *entry = 2317 rb_entry(n, struct nfs_access_entry, rb_node); 2318 int cmp = cred_fscmp(cred, entry->cred); 2319 2320 if (cmp < 0) 2321 n = n->rb_left; 2322 else if (cmp > 0) 2323 n = n->rb_right; 2324 else 2325 return entry; 2326 } 2327 return NULL; 2328 } 2329 2330 static int nfs_access_get_cached(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res, bool may_block) 2331 { 2332 struct nfs_inode *nfsi = NFS_I(inode); 2333 struct nfs_access_entry *cache; 2334 bool retry = true; 2335 int err; 2336 2337 spin_lock(&inode->i_lock); 2338 for(;;) { 2339 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2340 goto out_zap; 2341 cache = nfs_access_search_rbtree(inode, cred); 2342 err = -ENOENT; 2343 if (cache == NULL) 2344 goto out; 2345 /* Found an entry, is our attribute cache valid? */ 2346 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) 2347 break; 2348 if (!retry) 2349 break; 2350 err = -ECHILD; 2351 if (!may_block) 2352 goto out; 2353 spin_unlock(&inode->i_lock); 2354 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode); 2355 if (err) 2356 return err; 2357 spin_lock(&inode->i_lock); 2358 retry = false; 2359 } 2360 res->cred = cache->cred; 2361 res->mask = cache->mask; 2362 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru); 2363 err = 0; 2364 out: 2365 spin_unlock(&inode->i_lock); 2366 return err; 2367 out_zap: 2368 spin_unlock(&inode->i_lock); 2369 nfs_access_zap_cache(inode); 2370 return -ENOENT; 2371 } 2372 2373 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res) 2374 { 2375 /* Only check the most recently returned cache entry, 2376 * but do it without locking. 2377 */ 2378 struct nfs_inode *nfsi = NFS_I(inode); 2379 struct nfs_access_entry *cache; 2380 int err = -ECHILD; 2381 struct list_head *lh; 2382 2383 rcu_read_lock(); 2384 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2385 goto out; 2386 lh = rcu_dereference(nfsi->access_cache_entry_lru.prev); 2387 cache = list_entry(lh, struct nfs_access_entry, lru); 2388 if (lh == &nfsi->access_cache_entry_lru || 2389 cred_fscmp(cred, cache->cred) != 0) 2390 cache = NULL; 2391 if (cache == NULL) 2392 goto out; 2393 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) 2394 goto out; 2395 res->cred = cache->cred; 2396 res->mask = cache->mask; 2397 err = 0; 2398 out: 2399 rcu_read_unlock(); 2400 return err; 2401 } 2402 2403 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set) 2404 { 2405 struct nfs_inode *nfsi = NFS_I(inode); 2406 struct rb_root *root_node = &nfsi->access_cache; 2407 struct rb_node **p = &root_node->rb_node; 2408 struct rb_node *parent = NULL; 2409 struct nfs_access_entry *entry; 2410 int cmp; 2411 2412 spin_lock(&inode->i_lock); 2413 while (*p != NULL) { 2414 parent = *p; 2415 entry = rb_entry(parent, struct nfs_access_entry, rb_node); 2416 cmp = cred_fscmp(set->cred, entry->cred); 2417 2418 if (cmp < 0) 2419 p = &parent->rb_left; 2420 else if (cmp > 0) 2421 p = &parent->rb_right; 2422 else 2423 goto found; 2424 } 2425 rb_link_node(&set->rb_node, parent, p); 2426 rb_insert_color(&set->rb_node, root_node); 2427 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2428 spin_unlock(&inode->i_lock); 2429 return; 2430 found: 2431 rb_replace_node(parent, &set->rb_node, root_node); 2432 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2433 list_del(&entry->lru); 2434 spin_unlock(&inode->i_lock); 2435 nfs_access_free_entry(entry); 2436 } 2437 2438 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set) 2439 { 2440 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL); 2441 if (cache == NULL) 2442 return; 2443 RB_CLEAR_NODE(&cache->rb_node); 2444 cache->cred = get_cred(set->cred); 2445 cache->mask = set->mask; 2446 2447 /* The above field assignments must be visible 2448 * before this item appears on the lru. We cannot easily 2449 * use rcu_assign_pointer, so just force the memory barrier. 2450 */ 2451 smp_wmb(); 2452 nfs_access_add_rbtree(inode, cache); 2453 2454 /* Update accounting */ 2455 smp_mb__before_atomic(); 2456 atomic_long_inc(&nfs_access_nr_entries); 2457 smp_mb__after_atomic(); 2458 2459 /* Add inode to global LRU list */ 2460 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) { 2461 spin_lock(&nfs_access_lru_lock); 2462 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2463 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, 2464 &nfs_access_lru_list); 2465 spin_unlock(&nfs_access_lru_lock); 2466 } 2467 nfs_access_cache_enforce_limit(); 2468 } 2469 EXPORT_SYMBOL_GPL(nfs_access_add_cache); 2470 2471 #define NFS_MAY_READ (NFS_ACCESS_READ) 2472 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \ 2473 NFS_ACCESS_EXTEND | \ 2474 NFS_ACCESS_DELETE) 2475 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \ 2476 NFS_ACCESS_EXTEND) 2477 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE 2478 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP) 2479 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE) 2480 static int 2481 nfs_access_calc_mask(u32 access_result, umode_t umode) 2482 { 2483 int mask = 0; 2484 2485 if (access_result & NFS_MAY_READ) 2486 mask |= MAY_READ; 2487 if (S_ISDIR(umode)) { 2488 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE) 2489 mask |= MAY_WRITE; 2490 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP) 2491 mask |= MAY_EXEC; 2492 } else if (S_ISREG(umode)) { 2493 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE) 2494 mask |= MAY_WRITE; 2495 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE) 2496 mask |= MAY_EXEC; 2497 } else if (access_result & NFS_MAY_WRITE) 2498 mask |= MAY_WRITE; 2499 return mask; 2500 } 2501 2502 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result) 2503 { 2504 entry->mask = access_result; 2505 } 2506 EXPORT_SYMBOL_GPL(nfs_access_set_mask); 2507 2508 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask) 2509 { 2510 struct nfs_access_entry cache; 2511 bool may_block = (mask & MAY_NOT_BLOCK) == 0; 2512 int cache_mask = -1; 2513 int status; 2514 2515 trace_nfs_access_enter(inode); 2516 2517 status = nfs_access_get_cached_rcu(inode, cred, &cache); 2518 if (status != 0) 2519 status = nfs_access_get_cached(inode, cred, &cache, may_block); 2520 if (status == 0) 2521 goto out_cached; 2522 2523 status = -ECHILD; 2524 if (!may_block) 2525 goto out; 2526 2527 /* 2528 * Determine which access bits we want to ask for... 2529 */ 2530 cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND; 2531 if (S_ISDIR(inode->i_mode)) 2532 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP; 2533 else 2534 cache.mask |= NFS_ACCESS_EXECUTE; 2535 cache.cred = cred; 2536 status = NFS_PROTO(inode)->access(inode, &cache); 2537 if (status != 0) { 2538 if (status == -ESTALE) { 2539 nfs_zap_caches(inode); 2540 if (!S_ISDIR(inode->i_mode)) 2541 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags); 2542 } 2543 goto out; 2544 } 2545 nfs_access_add_cache(inode, &cache); 2546 out_cached: 2547 cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode); 2548 if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0) 2549 status = -EACCES; 2550 out: 2551 trace_nfs_access_exit(inode, mask, cache_mask, status); 2552 return status; 2553 } 2554 2555 static int nfs_open_permission_mask(int openflags) 2556 { 2557 int mask = 0; 2558 2559 if (openflags & __FMODE_EXEC) { 2560 /* ONLY check exec rights */ 2561 mask = MAY_EXEC; 2562 } else { 2563 if ((openflags & O_ACCMODE) != O_WRONLY) 2564 mask |= MAY_READ; 2565 if ((openflags & O_ACCMODE) != O_RDONLY) 2566 mask |= MAY_WRITE; 2567 } 2568 2569 return mask; 2570 } 2571 2572 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags) 2573 { 2574 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags)); 2575 } 2576 EXPORT_SYMBOL_GPL(nfs_may_open); 2577 2578 static int nfs_execute_ok(struct inode *inode, int mask) 2579 { 2580 struct nfs_server *server = NFS_SERVER(inode); 2581 int ret = 0; 2582 2583 if (S_ISDIR(inode->i_mode)) 2584 return 0; 2585 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_OTHER)) { 2586 if (mask & MAY_NOT_BLOCK) 2587 return -ECHILD; 2588 ret = __nfs_revalidate_inode(server, inode); 2589 } 2590 if (ret == 0 && !execute_ok(inode)) 2591 ret = -EACCES; 2592 return ret; 2593 } 2594 2595 int nfs_permission(struct inode *inode, int mask) 2596 { 2597 const struct cred *cred = current_cred(); 2598 int res = 0; 2599 2600 nfs_inc_stats(inode, NFSIOS_VFSACCESS); 2601 2602 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 2603 goto out; 2604 /* Is this sys_access() ? */ 2605 if (mask & (MAY_ACCESS | MAY_CHDIR)) 2606 goto force_lookup; 2607 2608 switch (inode->i_mode & S_IFMT) { 2609 case S_IFLNK: 2610 goto out; 2611 case S_IFREG: 2612 if ((mask & MAY_OPEN) && 2613 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)) 2614 return 0; 2615 break; 2616 case S_IFDIR: 2617 /* 2618 * Optimize away all write operations, since the server 2619 * will check permissions when we perform the op. 2620 */ 2621 if ((mask & MAY_WRITE) && !(mask & MAY_READ)) 2622 goto out; 2623 } 2624 2625 force_lookup: 2626 if (!NFS_PROTO(inode)->access) 2627 goto out_notsup; 2628 2629 /* Always try fast lookups first */ 2630 rcu_read_lock(); 2631 res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK); 2632 rcu_read_unlock(); 2633 if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) { 2634 /* Fast lookup failed, try the slow way */ 2635 res = nfs_do_access(inode, cred, mask); 2636 } 2637 out: 2638 if (!res && (mask & MAY_EXEC)) 2639 res = nfs_execute_ok(inode, mask); 2640 2641 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n", 2642 inode->i_sb->s_id, inode->i_ino, mask, res); 2643 return res; 2644 out_notsup: 2645 if (mask & MAY_NOT_BLOCK) 2646 return -ECHILD; 2647 2648 res = nfs_revalidate_inode(NFS_SERVER(inode), inode); 2649 if (res == 0) 2650 res = generic_permission(inode, mask); 2651 goto out; 2652 } 2653 EXPORT_SYMBOL_GPL(nfs_permission); 2654 2655 /* 2656 * Local variables: 2657 * version-control: t 2658 * kept-new-versions: 5 2659 * End: 2660 */ 2661