1 /* 2 * linux/fs/nfs/dir.c 3 * 4 * Copyright (C) 1992 Rick Sladkey 5 * 6 * nfs directory handling functions 7 * 8 * 10 Apr 1996 Added silly rename for unlink --okir 9 * 28 Sep 1996 Improved directory cache --okir 10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de 11 * Re-implemented silly rename for unlink, newly implemented 12 * silly rename for nfs_rename() following the suggestions 13 * of Olaf Kirch (okir) found in this file. 14 * Following Linus comments on my original hack, this version 15 * depends only on the dcache stuff and doesn't touch the inode 16 * layer (iput() and friends). 17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM 18 */ 19 20 #include <linux/module.h> 21 #include <linux/time.h> 22 #include <linux/errno.h> 23 #include <linux/stat.h> 24 #include <linux/fcntl.h> 25 #include <linux/string.h> 26 #include <linux/kernel.h> 27 #include <linux/slab.h> 28 #include <linux/mm.h> 29 #include <linux/sunrpc/clnt.h> 30 #include <linux/nfs_fs.h> 31 #include <linux/nfs_mount.h> 32 #include <linux/pagemap.h> 33 #include <linux/pagevec.h> 34 #include <linux/namei.h> 35 #include <linux/mount.h> 36 #include <linux/swap.h> 37 #include <linux/sched.h> 38 #include <linux/kmemleak.h> 39 #include <linux/xattr.h> 40 41 #include "delegation.h" 42 #include "iostat.h" 43 #include "internal.h" 44 #include "fscache.h" 45 46 #include "nfstrace.h" 47 48 /* #define NFS_DEBUG_VERBOSE 1 */ 49 50 static int nfs_opendir(struct inode *, struct file *); 51 static int nfs_closedir(struct inode *, struct file *); 52 static int nfs_readdir(struct file *, struct dir_context *); 53 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int); 54 static loff_t nfs_llseek_dir(struct file *, loff_t, int); 55 static void nfs_readdir_clear_array(struct page*); 56 57 const struct file_operations nfs_dir_operations = { 58 .llseek = nfs_llseek_dir, 59 .read = generic_read_dir, 60 .iterate_shared = nfs_readdir, 61 .open = nfs_opendir, 62 .release = nfs_closedir, 63 .fsync = nfs_fsync_dir, 64 }; 65 66 const struct address_space_operations nfs_dir_aops = { 67 .freepage = nfs_readdir_clear_array, 68 }; 69 70 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred) 71 { 72 struct nfs_inode *nfsi = NFS_I(dir); 73 struct nfs_open_dir_context *ctx; 74 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); 75 if (ctx != NULL) { 76 ctx->duped = 0; 77 ctx->attr_gencount = nfsi->attr_gencount; 78 ctx->dir_cookie = 0; 79 ctx->dup_cookie = 0; 80 ctx->cred = get_rpccred(cred); 81 spin_lock(&dir->i_lock); 82 list_add(&ctx->list, &nfsi->open_files); 83 spin_unlock(&dir->i_lock); 84 return ctx; 85 } 86 return ERR_PTR(-ENOMEM); 87 } 88 89 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx) 90 { 91 spin_lock(&dir->i_lock); 92 list_del(&ctx->list); 93 spin_unlock(&dir->i_lock); 94 put_rpccred(ctx->cred); 95 kfree(ctx); 96 } 97 98 /* 99 * Open file 100 */ 101 static int 102 nfs_opendir(struct inode *inode, struct file *filp) 103 { 104 int res = 0; 105 struct nfs_open_dir_context *ctx; 106 struct rpc_cred *cred; 107 108 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp); 109 110 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 111 112 cred = rpc_lookup_cred(); 113 if (IS_ERR(cred)) 114 return PTR_ERR(cred); 115 ctx = alloc_nfs_open_dir_context(inode, cred); 116 if (IS_ERR(ctx)) { 117 res = PTR_ERR(ctx); 118 goto out; 119 } 120 filp->private_data = ctx; 121 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) { 122 /* This is a mountpoint, so d_revalidate will never 123 * have been called, so we need to refresh the 124 * inode (for close-open consistency) ourselves. 125 */ 126 __nfs_revalidate_inode(NFS_SERVER(inode), inode); 127 } 128 out: 129 put_rpccred(cred); 130 return res; 131 } 132 133 static int 134 nfs_closedir(struct inode *inode, struct file *filp) 135 { 136 put_nfs_open_dir_context(file_inode(filp), filp->private_data); 137 return 0; 138 } 139 140 struct nfs_cache_array_entry { 141 u64 cookie; 142 u64 ino; 143 struct qstr string; 144 unsigned char d_type; 145 }; 146 147 struct nfs_cache_array { 148 atomic_t refcount; 149 int size; 150 int eof_index; 151 u64 last_cookie; 152 struct nfs_cache_array_entry array[0]; 153 }; 154 155 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int); 156 typedef struct { 157 struct file *file; 158 struct page *page; 159 struct dir_context *ctx; 160 unsigned long page_index; 161 u64 *dir_cookie; 162 u64 last_cookie; 163 loff_t current_index; 164 decode_dirent_t decode; 165 166 unsigned long timestamp; 167 unsigned long gencount; 168 unsigned int cache_entry_index; 169 unsigned int plus:1; 170 unsigned int eof:1; 171 } nfs_readdir_descriptor_t; 172 173 /* 174 * The caller is responsible for calling nfs_readdir_release_array(page) 175 */ 176 static 177 struct nfs_cache_array *nfs_readdir_get_array(struct page *page) 178 { 179 void *ptr; 180 if (page == NULL) 181 return ERR_PTR(-EIO); 182 ptr = kmap(page); 183 if (ptr == NULL) 184 return ERR_PTR(-ENOMEM); 185 return ptr; 186 } 187 188 static 189 void nfs_readdir_release_array(struct page *page) 190 { 191 kunmap(page); 192 } 193 194 /* 195 * we are freeing strings created by nfs_add_to_readdir_array() 196 */ 197 static 198 void nfs_readdir_clear_array(struct page *page) 199 { 200 struct nfs_cache_array *array; 201 int i; 202 203 array = kmap_atomic(page); 204 if (atomic_dec_and_test(&array->refcount)) 205 for (i = 0; i < array->size; i++) 206 kfree(array->array[i].string.name); 207 kunmap_atomic(array); 208 } 209 210 static bool grab_page(struct page *page) 211 { 212 struct nfs_cache_array *array = kmap_atomic(page); 213 bool res = atomic_inc_not_zero(&array->refcount); 214 kunmap_atomic(array); 215 return res; 216 } 217 218 /* 219 * the caller is responsible for freeing qstr.name 220 * when called by nfs_readdir_add_to_array, the strings will be freed in 221 * nfs_clear_readdir_array() 222 */ 223 static 224 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len) 225 { 226 string->len = len; 227 string->name = kmemdup(name, len, GFP_KERNEL); 228 if (string->name == NULL) 229 return -ENOMEM; 230 /* 231 * Avoid a kmemleak false positive. The pointer to the name is stored 232 * in a page cache page which kmemleak does not scan. 233 */ 234 kmemleak_not_leak(string->name); 235 string->hash = full_name_hash(name, len); 236 return 0; 237 } 238 239 static 240 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page) 241 { 242 struct nfs_cache_array *array = nfs_readdir_get_array(page); 243 struct nfs_cache_array_entry *cache_entry; 244 int ret; 245 246 if (IS_ERR(array)) 247 return PTR_ERR(array); 248 249 cache_entry = &array->array[array->size]; 250 251 /* Check that this entry lies within the page bounds */ 252 ret = -ENOSPC; 253 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE) 254 goto out; 255 256 cache_entry->cookie = entry->prev_cookie; 257 cache_entry->ino = entry->ino; 258 cache_entry->d_type = entry->d_type; 259 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len); 260 if (ret) 261 goto out; 262 array->last_cookie = entry->cookie; 263 array->size++; 264 if (entry->eof != 0) 265 array->eof_index = array->size; 266 out: 267 nfs_readdir_release_array(page); 268 return ret; 269 } 270 271 static 272 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 273 { 274 loff_t diff = desc->ctx->pos - desc->current_index; 275 unsigned int index; 276 277 if (diff < 0) 278 goto out_eof; 279 if (diff >= array->size) { 280 if (array->eof_index >= 0) 281 goto out_eof; 282 return -EAGAIN; 283 } 284 285 index = (unsigned int)diff; 286 *desc->dir_cookie = array->array[index].cookie; 287 desc->cache_entry_index = index; 288 return 0; 289 out_eof: 290 desc->eof = 1; 291 return -EBADCOOKIE; 292 } 293 294 static bool 295 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi) 296 { 297 if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA)) 298 return false; 299 smp_rmb(); 300 return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags); 301 } 302 303 static 304 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 305 { 306 int i; 307 loff_t new_pos; 308 int status = -EAGAIN; 309 310 for (i = 0; i < array->size; i++) { 311 if (array->array[i].cookie == *desc->dir_cookie) { 312 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file)); 313 struct nfs_open_dir_context *ctx = desc->file->private_data; 314 315 new_pos = desc->current_index + i; 316 if (ctx->attr_gencount != nfsi->attr_gencount || 317 !nfs_readdir_inode_mapping_valid(nfsi)) { 318 ctx->duped = 0; 319 ctx->attr_gencount = nfsi->attr_gencount; 320 } else if (new_pos < desc->ctx->pos) { 321 if (ctx->duped > 0 322 && ctx->dup_cookie == *desc->dir_cookie) { 323 if (printk_ratelimit()) { 324 pr_notice("NFS: directory %pD2 contains a readdir loop." 325 "Please contact your server vendor. " 326 "The file: %.*s has duplicate cookie %llu\n", 327 desc->file, array->array[i].string.len, 328 array->array[i].string.name, *desc->dir_cookie); 329 } 330 status = -ELOOP; 331 goto out; 332 } 333 ctx->dup_cookie = *desc->dir_cookie; 334 ctx->duped = -1; 335 } 336 desc->ctx->pos = new_pos; 337 desc->cache_entry_index = i; 338 return 0; 339 } 340 } 341 if (array->eof_index >= 0) { 342 status = -EBADCOOKIE; 343 if (*desc->dir_cookie == array->last_cookie) 344 desc->eof = 1; 345 } 346 out: 347 return status; 348 } 349 350 static 351 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc) 352 { 353 struct nfs_cache_array *array; 354 int status; 355 356 array = nfs_readdir_get_array(desc->page); 357 if (IS_ERR(array)) { 358 status = PTR_ERR(array); 359 goto out; 360 } 361 362 if (*desc->dir_cookie == 0) 363 status = nfs_readdir_search_for_pos(array, desc); 364 else 365 status = nfs_readdir_search_for_cookie(array, desc); 366 367 if (status == -EAGAIN) { 368 desc->last_cookie = array->last_cookie; 369 desc->current_index += array->size; 370 desc->page_index++; 371 } 372 nfs_readdir_release_array(desc->page); 373 out: 374 return status; 375 } 376 377 /* Fill a page with xdr information before transferring to the cache page */ 378 static 379 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc, 380 struct nfs_entry *entry, struct file *file, struct inode *inode) 381 { 382 struct nfs_open_dir_context *ctx = file->private_data; 383 struct rpc_cred *cred = ctx->cred; 384 unsigned long timestamp, gencount; 385 int error; 386 387 again: 388 timestamp = jiffies; 389 gencount = nfs_inc_attr_generation_counter(); 390 error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages, 391 NFS_SERVER(inode)->dtsize, desc->plus); 392 if (error < 0) { 393 /* We requested READDIRPLUS, but the server doesn't grok it */ 394 if (error == -ENOTSUPP && desc->plus) { 395 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS; 396 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 397 desc->plus = 0; 398 goto again; 399 } 400 goto error; 401 } 402 desc->timestamp = timestamp; 403 desc->gencount = gencount; 404 error: 405 return error; 406 } 407 408 static int xdr_decode(nfs_readdir_descriptor_t *desc, 409 struct nfs_entry *entry, struct xdr_stream *xdr) 410 { 411 int error; 412 413 error = desc->decode(xdr, entry, desc->plus); 414 if (error) 415 return error; 416 entry->fattr->time_start = desc->timestamp; 417 entry->fattr->gencount = desc->gencount; 418 return 0; 419 } 420 421 /* Match file and dirent using either filehandle or fileid 422 * Note: caller is responsible for checking the fsid 423 */ 424 static 425 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry) 426 { 427 struct nfs_inode *nfsi; 428 429 if (d_really_is_negative(dentry)) 430 return 0; 431 432 nfsi = NFS_I(d_inode(dentry)); 433 if (entry->fattr->fileid == nfsi->fileid) 434 return 1; 435 if (nfs_compare_fh(entry->fh, &nfsi->fh) == 0) 436 return 1; 437 return 0; 438 } 439 440 static 441 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx) 442 { 443 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS)) 444 return false; 445 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags)) 446 return true; 447 if (ctx->pos == 0) 448 return true; 449 return false; 450 } 451 452 /* 453 * This function is called by the lookup code to request the use of 454 * readdirplus to accelerate any future lookups in the same 455 * directory. 456 */ 457 static 458 void nfs_advise_use_readdirplus(struct inode *dir) 459 { 460 set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags); 461 } 462 463 /* 464 * This function is mainly for use by nfs_getattr(). 465 * 466 * If this is an 'ls -l', we want to force use of readdirplus. 467 * Do this by checking if there is an active file descriptor 468 * and calling nfs_advise_use_readdirplus, then forcing a 469 * cache flush. 470 */ 471 void nfs_force_use_readdirplus(struct inode *dir) 472 { 473 if (!list_empty(&NFS_I(dir)->open_files)) { 474 nfs_advise_use_readdirplus(dir); 475 nfs_zap_mapping(dir, dir->i_mapping); 476 } 477 } 478 479 static 480 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry) 481 { 482 struct qstr filename = QSTR_INIT(entry->name, entry->len); 483 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 484 struct dentry *dentry; 485 struct dentry *alias; 486 struct inode *dir = d_inode(parent); 487 struct inode *inode; 488 int status; 489 490 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID)) 491 return; 492 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID)) 493 return; 494 if (filename.name[0] == '.') { 495 if (filename.len == 1) 496 return; 497 if (filename.len == 2 && filename.name[1] == '.') 498 return; 499 } 500 filename.hash = full_name_hash(filename.name, filename.len); 501 502 dentry = d_lookup(parent, &filename); 503 again: 504 if (!dentry) { 505 dentry = d_alloc_parallel(parent, &filename, &wq); 506 if (IS_ERR(dentry)) 507 return; 508 } 509 if (!d_in_lookup(dentry)) { 510 /* Is there a mountpoint here? If so, just exit */ 511 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid, 512 &entry->fattr->fsid)) 513 goto out; 514 if (nfs_same_file(dentry, entry)) { 515 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 516 status = nfs_refresh_inode(d_inode(dentry), entry->fattr); 517 if (!status) 518 nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label); 519 goto out; 520 } else { 521 d_invalidate(dentry); 522 dput(dentry); 523 dentry = NULL; 524 goto again; 525 } 526 } 527 528 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label); 529 alias = d_splice_alias(inode, dentry); 530 d_lookup_done(dentry); 531 if (alias) { 532 if (IS_ERR(alias)) 533 goto out; 534 dput(dentry); 535 dentry = alias; 536 } 537 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 538 out: 539 dput(dentry); 540 } 541 542 /* Perform conversion from xdr to cache array */ 543 static 544 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry, 545 struct page **xdr_pages, struct page *page, unsigned int buflen) 546 { 547 struct xdr_stream stream; 548 struct xdr_buf buf; 549 struct page *scratch; 550 struct nfs_cache_array *array; 551 unsigned int count = 0; 552 int status; 553 554 scratch = alloc_page(GFP_KERNEL); 555 if (scratch == NULL) 556 return -ENOMEM; 557 558 if (buflen == 0) 559 goto out_nopages; 560 561 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen); 562 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE); 563 564 do { 565 status = xdr_decode(desc, entry, &stream); 566 if (status != 0) { 567 if (status == -EAGAIN) 568 status = 0; 569 break; 570 } 571 572 count++; 573 574 if (desc->plus != 0) 575 nfs_prime_dcache(file_dentry(desc->file), entry); 576 577 status = nfs_readdir_add_to_array(entry, page); 578 if (status != 0) 579 break; 580 } while (!entry->eof); 581 582 out_nopages: 583 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) { 584 array = nfs_readdir_get_array(page); 585 if (!IS_ERR(array)) { 586 array->eof_index = array->size; 587 status = 0; 588 nfs_readdir_release_array(page); 589 } else 590 status = PTR_ERR(array); 591 } 592 593 put_page(scratch); 594 return status; 595 } 596 597 static 598 void nfs_readdir_free_pages(struct page **pages, unsigned int npages) 599 { 600 unsigned int i; 601 for (i = 0; i < npages; i++) 602 put_page(pages[i]); 603 } 604 605 /* 606 * nfs_readdir_large_page will allocate pages that must be freed with a call 607 * to nfs_readdir_free_pagearray 608 */ 609 static 610 int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages) 611 { 612 unsigned int i; 613 614 for (i = 0; i < npages; i++) { 615 struct page *page = alloc_page(GFP_KERNEL); 616 if (page == NULL) 617 goto out_freepages; 618 pages[i] = page; 619 } 620 return 0; 621 622 out_freepages: 623 nfs_readdir_free_pages(pages, i); 624 return -ENOMEM; 625 } 626 627 static 628 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode) 629 { 630 struct page *pages[NFS_MAX_READDIR_PAGES]; 631 struct nfs_entry entry; 632 struct file *file = desc->file; 633 struct nfs_cache_array *array; 634 int status = -ENOMEM; 635 unsigned int array_size = ARRAY_SIZE(pages); 636 637 entry.prev_cookie = 0; 638 entry.cookie = desc->last_cookie; 639 entry.eof = 0; 640 entry.fh = nfs_alloc_fhandle(); 641 entry.fattr = nfs_alloc_fattr(); 642 entry.server = NFS_SERVER(inode); 643 if (entry.fh == NULL || entry.fattr == NULL) 644 goto out; 645 646 entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT); 647 if (IS_ERR(entry.label)) { 648 status = PTR_ERR(entry.label); 649 goto out; 650 } 651 652 array = nfs_readdir_get_array(page); 653 if (IS_ERR(array)) { 654 status = PTR_ERR(array); 655 goto out_label_free; 656 } 657 memset(array, 0, sizeof(struct nfs_cache_array)); 658 atomic_set(&array->refcount, 1); 659 array->eof_index = -1; 660 661 status = nfs_readdir_alloc_pages(pages, array_size); 662 if (status < 0) 663 goto out_release_array; 664 do { 665 unsigned int pglen; 666 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode); 667 668 if (status < 0) 669 break; 670 pglen = status; 671 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen); 672 if (status < 0) { 673 if (status == -ENOSPC) 674 status = 0; 675 break; 676 } 677 } while (array->eof_index < 0); 678 679 nfs_readdir_free_pages(pages, array_size); 680 out_release_array: 681 nfs_readdir_release_array(page); 682 out_label_free: 683 nfs4_label_free(entry.label); 684 out: 685 nfs_free_fattr(entry.fattr); 686 nfs_free_fhandle(entry.fh); 687 return status; 688 } 689 690 /* 691 * Now we cache directories properly, by converting xdr information 692 * to an array that can be used for lookups later. This results in 693 * fewer cache pages, since we can store more information on each page. 694 * We only need to convert from xdr once so future lookups are much simpler 695 */ 696 static 697 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page) 698 { 699 struct inode *inode = file_inode(desc->file); 700 int ret; 701 702 ret = nfs_readdir_xdr_to_array(desc, page, inode); 703 if (ret < 0) 704 goto error; 705 SetPageUptodate(page); 706 707 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) { 708 /* Should never happen */ 709 nfs_zap_mapping(inode, inode->i_mapping); 710 } 711 unlock_page(page); 712 return 0; 713 error: 714 unlock_page(page); 715 return ret; 716 } 717 718 static 719 void cache_page_release(nfs_readdir_descriptor_t *desc) 720 { 721 nfs_readdir_clear_array(desc->page); 722 put_page(desc->page); 723 desc->page = NULL; 724 } 725 726 static 727 struct page *get_cache_page(nfs_readdir_descriptor_t *desc) 728 { 729 struct page *page; 730 731 for (;;) { 732 page = read_cache_page(file_inode(desc->file)->i_mapping, 733 desc->page_index, (filler_t *)nfs_readdir_filler, desc); 734 if (IS_ERR(page) || grab_page(page)) 735 break; 736 put_page(page); 737 } 738 return page; 739 } 740 741 /* 742 * Returns 0 if desc->dir_cookie was found on page desc->page_index 743 */ 744 static 745 int find_cache_page(nfs_readdir_descriptor_t *desc) 746 { 747 int res; 748 749 desc->page = get_cache_page(desc); 750 if (IS_ERR(desc->page)) 751 return PTR_ERR(desc->page); 752 753 res = nfs_readdir_search_array(desc); 754 if (res != 0) 755 cache_page_release(desc); 756 return res; 757 } 758 759 /* Search for desc->dir_cookie from the beginning of the page cache */ 760 static inline 761 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc) 762 { 763 int res; 764 765 if (desc->page_index == 0) { 766 desc->current_index = 0; 767 desc->last_cookie = 0; 768 } 769 do { 770 res = find_cache_page(desc); 771 } while (res == -EAGAIN); 772 return res; 773 } 774 775 /* 776 * Once we've found the start of the dirent within a page: fill 'er up... 777 */ 778 static 779 int nfs_do_filldir(nfs_readdir_descriptor_t *desc) 780 { 781 struct file *file = desc->file; 782 int i = 0; 783 int res = 0; 784 struct nfs_cache_array *array = NULL; 785 struct nfs_open_dir_context *ctx = file->private_data; 786 787 array = nfs_readdir_get_array(desc->page); 788 if (IS_ERR(array)) { 789 res = PTR_ERR(array); 790 goto out; 791 } 792 793 for (i = desc->cache_entry_index; i < array->size; i++) { 794 struct nfs_cache_array_entry *ent; 795 796 ent = &array->array[i]; 797 if (!dir_emit(desc->ctx, ent->string.name, ent->string.len, 798 nfs_compat_user_ino64(ent->ino), ent->d_type)) { 799 desc->eof = 1; 800 break; 801 } 802 desc->ctx->pos++; 803 if (i < (array->size-1)) 804 *desc->dir_cookie = array->array[i+1].cookie; 805 else 806 *desc->dir_cookie = array->last_cookie; 807 if (ctx->duped != 0) 808 ctx->duped = 1; 809 } 810 if (array->eof_index >= 0) 811 desc->eof = 1; 812 813 nfs_readdir_release_array(desc->page); 814 out: 815 cache_page_release(desc); 816 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n", 817 (unsigned long long)*desc->dir_cookie, res); 818 return res; 819 } 820 821 /* 822 * If we cannot find a cookie in our cache, we suspect that this is 823 * because it points to a deleted file, so we ask the server to return 824 * whatever it thinks is the next entry. We then feed this to filldir. 825 * If all goes well, we should then be able to find our way round the 826 * cache on the next call to readdir_search_pagecache(); 827 * 828 * NOTE: we cannot add the anonymous page to the pagecache because 829 * the data it contains might not be page aligned. Besides, 830 * we should already have a complete representation of the 831 * directory in the page cache by the time we get here. 832 */ 833 static inline 834 int uncached_readdir(nfs_readdir_descriptor_t *desc) 835 { 836 struct page *page = NULL; 837 int status; 838 struct inode *inode = file_inode(desc->file); 839 struct nfs_open_dir_context *ctx = desc->file->private_data; 840 841 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n", 842 (unsigned long long)*desc->dir_cookie); 843 844 page = alloc_page(GFP_HIGHUSER); 845 if (!page) { 846 status = -ENOMEM; 847 goto out; 848 } 849 850 desc->page_index = 0; 851 desc->last_cookie = *desc->dir_cookie; 852 desc->page = page; 853 ctx->duped = 0; 854 855 status = nfs_readdir_xdr_to_array(desc, page, inode); 856 if (status < 0) 857 goto out_release; 858 859 status = nfs_do_filldir(desc); 860 861 out: 862 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", 863 __func__, status); 864 return status; 865 out_release: 866 cache_page_release(desc); 867 goto out; 868 } 869 870 static bool nfs_dir_mapping_need_revalidate(struct inode *dir) 871 { 872 struct nfs_inode *nfsi = NFS_I(dir); 873 874 if (nfs_attribute_cache_expired(dir)) 875 return true; 876 if (nfsi->cache_validity & NFS_INO_INVALID_DATA) 877 return true; 878 return false; 879 } 880 881 /* The file offset position represents the dirent entry number. A 882 last cookie cache takes care of the common case of reading the 883 whole directory. 884 */ 885 static int nfs_readdir(struct file *file, struct dir_context *ctx) 886 { 887 struct dentry *dentry = file_dentry(file); 888 struct inode *inode = d_inode(dentry); 889 nfs_readdir_descriptor_t my_desc, 890 *desc = &my_desc; 891 struct nfs_open_dir_context *dir_ctx = file->private_data; 892 int res = 0; 893 894 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n", 895 file, (long long)ctx->pos); 896 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS); 897 898 /* 899 * ctx->pos points to the dirent entry number. 900 * *desc->dir_cookie has the cookie for the next entry. We have 901 * to either find the entry with the appropriate number or 902 * revalidate the cookie. 903 */ 904 memset(desc, 0, sizeof(*desc)); 905 906 desc->file = file; 907 desc->ctx = ctx; 908 desc->dir_cookie = &dir_ctx->dir_cookie; 909 desc->decode = NFS_PROTO(inode)->decode_dirent; 910 desc->plus = nfs_use_readdirplus(inode, ctx) ? 1 : 0; 911 912 if (ctx->pos == 0 || nfs_dir_mapping_need_revalidate(inode)) 913 res = nfs_revalidate_mapping(inode, file->f_mapping); 914 if (res < 0) 915 goto out; 916 917 do { 918 res = readdir_search_pagecache(desc); 919 920 if (res == -EBADCOOKIE) { 921 res = 0; 922 /* This means either end of directory */ 923 if (*desc->dir_cookie && desc->eof == 0) { 924 /* Or that the server has 'lost' a cookie */ 925 res = uncached_readdir(desc); 926 if (res == 0) 927 continue; 928 } 929 break; 930 } 931 if (res == -ETOOSMALL && desc->plus) { 932 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 933 nfs_zap_caches(inode); 934 desc->page_index = 0; 935 desc->plus = 0; 936 desc->eof = 0; 937 continue; 938 } 939 if (res < 0) 940 break; 941 942 res = nfs_do_filldir(desc); 943 if (res < 0) 944 break; 945 } while (!desc->eof); 946 out: 947 if (res > 0) 948 res = 0; 949 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res); 950 return res; 951 } 952 953 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence) 954 { 955 struct nfs_open_dir_context *dir_ctx = filp->private_data; 956 957 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n", 958 filp, offset, whence); 959 960 switch (whence) { 961 case 1: 962 offset += filp->f_pos; 963 case 0: 964 if (offset >= 0) 965 break; 966 default: 967 return -EINVAL; 968 } 969 if (offset != filp->f_pos) { 970 filp->f_pos = offset; 971 dir_ctx->dir_cookie = 0; 972 dir_ctx->duped = 0; 973 } 974 return offset; 975 } 976 977 /* 978 * All directory operations under NFS are synchronous, so fsync() 979 * is a dummy operation. 980 */ 981 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end, 982 int datasync) 983 { 984 struct inode *inode = file_inode(filp); 985 986 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync); 987 988 inode_lock(inode); 989 nfs_inc_stats(inode, NFSIOS_VFSFSYNC); 990 inode_unlock(inode); 991 return 0; 992 } 993 994 /** 995 * nfs_force_lookup_revalidate - Mark the directory as having changed 996 * @dir - pointer to directory inode 997 * 998 * This forces the revalidation code in nfs_lookup_revalidate() to do a 999 * full lookup on all child dentries of 'dir' whenever a change occurs 1000 * on the server that might have invalidated our dcache. 1001 * 1002 * The caller should be holding dir->i_lock 1003 */ 1004 void nfs_force_lookup_revalidate(struct inode *dir) 1005 { 1006 NFS_I(dir)->cache_change_attribute++; 1007 } 1008 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate); 1009 1010 /* 1011 * A check for whether or not the parent directory has changed. 1012 * In the case it has, we assume that the dentries are untrustworthy 1013 * and may need to be looked up again. 1014 * If rcu_walk prevents us from performing a full check, return 0. 1015 */ 1016 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry, 1017 int rcu_walk) 1018 { 1019 int ret; 1020 1021 if (IS_ROOT(dentry)) 1022 return 1; 1023 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE) 1024 return 0; 1025 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 1026 return 0; 1027 /* Revalidate nfsi->cache_change_attribute before we declare a match */ 1028 if (rcu_walk) 1029 ret = nfs_revalidate_inode_rcu(NFS_SERVER(dir), dir); 1030 else 1031 ret = nfs_revalidate_inode(NFS_SERVER(dir), dir); 1032 if (ret < 0) 1033 return 0; 1034 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 1035 return 0; 1036 return 1; 1037 } 1038 1039 /* 1040 * Use intent information to check whether or not we're going to do 1041 * an O_EXCL create using this path component. 1042 */ 1043 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags) 1044 { 1045 if (NFS_PROTO(dir)->version == 2) 1046 return 0; 1047 return flags & LOOKUP_EXCL; 1048 } 1049 1050 /* 1051 * Inode and filehandle revalidation for lookups. 1052 * 1053 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL, 1054 * or if the intent information indicates that we're about to open this 1055 * particular file and the "nocto" mount flag is not set. 1056 * 1057 */ 1058 static 1059 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags) 1060 { 1061 struct nfs_server *server = NFS_SERVER(inode); 1062 int ret; 1063 1064 if (IS_AUTOMOUNT(inode)) 1065 return 0; 1066 /* VFS wants an on-the-wire revalidation */ 1067 if (flags & LOOKUP_REVAL) 1068 goto out_force; 1069 /* This is an open(2) */ 1070 if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) && 1071 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode))) 1072 goto out_force; 1073 out: 1074 return (inode->i_nlink == 0) ? -ENOENT : 0; 1075 out_force: 1076 if (flags & LOOKUP_RCU) 1077 return -ECHILD; 1078 ret = __nfs_revalidate_inode(server, inode); 1079 if (ret != 0) 1080 return ret; 1081 goto out; 1082 } 1083 1084 /* 1085 * We judge how long we want to trust negative 1086 * dentries by looking at the parent inode mtime. 1087 * 1088 * If parent mtime has changed, we revalidate, else we wait for a 1089 * period corresponding to the parent's attribute cache timeout value. 1090 * 1091 * If LOOKUP_RCU prevents us from performing a full check, return 1 1092 * suggesting a reval is needed. 1093 */ 1094 static inline 1095 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry, 1096 unsigned int flags) 1097 { 1098 /* Don't revalidate a negative dentry if we're creating a new file */ 1099 if (flags & LOOKUP_CREATE) 1100 return 0; 1101 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG) 1102 return 1; 1103 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU); 1104 } 1105 1106 /* 1107 * This is called every time the dcache has a lookup hit, 1108 * and we should check whether we can really trust that 1109 * lookup. 1110 * 1111 * NOTE! The hit can be a negative hit too, don't assume 1112 * we have an inode! 1113 * 1114 * If the parent directory is seen to have changed, we throw out the 1115 * cached dentry and do a new lookup. 1116 */ 1117 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1118 { 1119 struct inode *dir; 1120 struct inode *inode; 1121 struct dentry *parent; 1122 struct nfs_fh *fhandle = NULL; 1123 struct nfs_fattr *fattr = NULL; 1124 struct nfs4_label *label = NULL; 1125 int error; 1126 1127 if (flags & LOOKUP_RCU) { 1128 parent = ACCESS_ONCE(dentry->d_parent); 1129 dir = d_inode_rcu(parent); 1130 if (!dir) 1131 return -ECHILD; 1132 } else { 1133 parent = dget_parent(dentry); 1134 dir = d_inode(parent); 1135 } 1136 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE); 1137 inode = d_inode(dentry); 1138 1139 if (!inode) { 1140 if (nfs_neg_need_reval(dir, dentry, flags)) { 1141 if (flags & LOOKUP_RCU) 1142 return -ECHILD; 1143 goto out_bad; 1144 } 1145 goto out_valid_noent; 1146 } 1147 1148 if (is_bad_inode(inode)) { 1149 if (flags & LOOKUP_RCU) 1150 return -ECHILD; 1151 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1152 __func__, dentry); 1153 goto out_bad; 1154 } 1155 1156 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ)) 1157 goto out_set_verifier; 1158 1159 /* Force a full look up iff the parent directory has changed */ 1160 if (!nfs_is_exclusive_create(dir, flags) && 1161 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) { 1162 1163 if (nfs_lookup_verify_inode(inode, flags)) { 1164 if (flags & LOOKUP_RCU) 1165 return -ECHILD; 1166 goto out_zap_parent; 1167 } 1168 goto out_valid; 1169 } 1170 1171 if (flags & LOOKUP_RCU) 1172 return -ECHILD; 1173 1174 if (NFS_STALE(inode)) 1175 goto out_bad; 1176 1177 error = -ENOMEM; 1178 fhandle = nfs_alloc_fhandle(); 1179 fattr = nfs_alloc_fattr(); 1180 if (fhandle == NULL || fattr == NULL) 1181 goto out_error; 1182 1183 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT); 1184 if (IS_ERR(label)) 1185 goto out_error; 1186 1187 trace_nfs_lookup_revalidate_enter(dir, dentry, flags); 1188 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label); 1189 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error); 1190 if (error) 1191 goto out_bad; 1192 if (nfs_compare_fh(NFS_FH(inode), fhandle)) 1193 goto out_bad; 1194 if ((error = nfs_refresh_inode(inode, fattr)) != 0) 1195 goto out_bad; 1196 1197 nfs_setsecurity(inode, fattr, label); 1198 1199 nfs_free_fattr(fattr); 1200 nfs_free_fhandle(fhandle); 1201 nfs4_label_free(label); 1202 1203 out_set_verifier: 1204 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1205 out_valid: 1206 /* Success: notify readdir to use READDIRPLUS */ 1207 nfs_advise_use_readdirplus(dir); 1208 out_valid_noent: 1209 if (flags & LOOKUP_RCU) { 1210 if (parent != ACCESS_ONCE(dentry->d_parent)) 1211 return -ECHILD; 1212 } else 1213 dput(parent); 1214 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n", 1215 __func__, dentry); 1216 return 1; 1217 out_zap_parent: 1218 nfs_zap_caches(dir); 1219 out_bad: 1220 WARN_ON(flags & LOOKUP_RCU); 1221 nfs_free_fattr(fattr); 1222 nfs_free_fhandle(fhandle); 1223 nfs4_label_free(label); 1224 nfs_mark_for_revalidate(dir); 1225 if (inode && S_ISDIR(inode->i_mode)) { 1226 /* Purge readdir caches. */ 1227 nfs_zap_caches(inode); 1228 /* 1229 * We can't d_drop the root of a disconnected tree: 1230 * its d_hash is on the s_anon list and d_drop() would hide 1231 * it from shrink_dcache_for_unmount(), leading to busy 1232 * inodes on unmount and further oopses. 1233 */ 1234 if (IS_ROOT(dentry)) 1235 goto out_valid; 1236 } 1237 dput(parent); 1238 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n", 1239 __func__, dentry); 1240 return 0; 1241 out_error: 1242 WARN_ON(flags & LOOKUP_RCU); 1243 nfs_free_fattr(fattr); 1244 nfs_free_fhandle(fhandle); 1245 nfs4_label_free(label); 1246 dput(parent); 1247 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n", 1248 __func__, dentry, error); 1249 return error; 1250 } 1251 1252 /* 1253 * A weaker form of d_revalidate for revalidating just the d_inode(dentry) 1254 * when we don't really care about the dentry name. This is called when a 1255 * pathwalk ends on a dentry that was not found via a normal lookup in the 1256 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals). 1257 * 1258 * In this situation, we just want to verify that the inode itself is OK 1259 * since the dentry might have changed on the server. 1260 */ 1261 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags) 1262 { 1263 int error; 1264 struct inode *inode = d_inode(dentry); 1265 1266 /* 1267 * I believe we can only get a negative dentry here in the case of a 1268 * procfs-style symlink. Just assume it's correct for now, but we may 1269 * eventually need to do something more here. 1270 */ 1271 if (!inode) { 1272 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n", 1273 __func__, dentry); 1274 return 1; 1275 } 1276 1277 if (is_bad_inode(inode)) { 1278 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1279 __func__, dentry); 1280 return 0; 1281 } 1282 1283 error = nfs_revalidate_inode(NFS_SERVER(inode), inode); 1284 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n", 1285 __func__, inode->i_ino, error ? "invalid" : "valid"); 1286 return !error; 1287 } 1288 1289 /* 1290 * This is called from dput() when d_count is going to 0. 1291 */ 1292 static int nfs_dentry_delete(const struct dentry *dentry) 1293 { 1294 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n", 1295 dentry, dentry->d_flags); 1296 1297 /* Unhash any dentry with a stale inode */ 1298 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry))) 1299 return 1; 1300 1301 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1302 /* Unhash it, so that ->d_iput() would be called */ 1303 return 1; 1304 } 1305 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) { 1306 /* Unhash it, so that ancestors of killed async unlink 1307 * files will be cleaned up during umount */ 1308 return 1; 1309 } 1310 return 0; 1311 1312 } 1313 1314 /* Ensure that we revalidate inode->i_nlink */ 1315 static void nfs_drop_nlink(struct inode *inode) 1316 { 1317 spin_lock(&inode->i_lock); 1318 /* drop the inode if we're reasonably sure this is the last link */ 1319 if (inode->i_nlink == 1) 1320 clear_nlink(inode); 1321 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR; 1322 spin_unlock(&inode->i_lock); 1323 } 1324 1325 /* 1326 * Called when the dentry loses inode. 1327 * We use it to clean up silly-renamed files. 1328 */ 1329 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode) 1330 { 1331 if (S_ISDIR(inode->i_mode)) 1332 /* drop any readdir cache as it could easily be old */ 1333 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA; 1334 1335 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1336 nfs_complete_unlink(dentry, inode); 1337 nfs_drop_nlink(inode); 1338 } 1339 iput(inode); 1340 } 1341 1342 static void nfs_d_release(struct dentry *dentry) 1343 { 1344 /* free cached devname value, if it survived that far */ 1345 if (unlikely(dentry->d_fsdata)) { 1346 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1347 WARN_ON(1); 1348 else 1349 kfree(dentry->d_fsdata); 1350 } 1351 } 1352 1353 const struct dentry_operations nfs_dentry_operations = { 1354 .d_revalidate = nfs_lookup_revalidate, 1355 .d_weak_revalidate = nfs_weak_revalidate, 1356 .d_delete = nfs_dentry_delete, 1357 .d_iput = nfs_dentry_iput, 1358 .d_automount = nfs_d_automount, 1359 .d_release = nfs_d_release, 1360 }; 1361 EXPORT_SYMBOL_GPL(nfs_dentry_operations); 1362 1363 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 1364 { 1365 struct dentry *res; 1366 struct dentry *parent; 1367 struct inode *inode = NULL; 1368 struct nfs_fh *fhandle = NULL; 1369 struct nfs_fattr *fattr = NULL; 1370 struct nfs4_label *label = NULL; 1371 int error; 1372 1373 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry); 1374 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP); 1375 1376 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen)) 1377 return ERR_PTR(-ENAMETOOLONG); 1378 1379 /* 1380 * If we're doing an exclusive create, optimize away the lookup 1381 * but don't hash the dentry. 1382 */ 1383 if (nfs_is_exclusive_create(dir, flags)) 1384 return NULL; 1385 1386 res = ERR_PTR(-ENOMEM); 1387 fhandle = nfs_alloc_fhandle(); 1388 fattr = nfs_alloc_fattr(); 1389 if (fhandle == NULL || fattr == NULL) 1390 goto out; 1391 1392 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT); 1393 if (IS_ERR(label)) 1394 goto out; 1395 1396 parent = dentry->d_parent; 1397 /* Protect against concurrent sillydeletes */ 1398 trace_nfs_lookup_enter(dir, dentry, flags); 1399 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label); 1400 if (error == -ENOENT) 1401 goto no_entry; 1402 if (error < 0) { 1403 res = ERR_PTR(error); 1404 goto out_unblock_sillyrename; 1405 } 1406 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label); 1407 res = ERR_CAST(inode); 1408 if (IS_ERR(res)) 1409 goto out_unblock_sillyrename; 1410 1411 /* Success: notify readdir to use READDIRPLUS */ 1412 nfs_advise_use_readdirplus(dir); 1413 1414 no_entry: 1415 res = d_splice_alias(inode, dentry); 1416 if (res != NULL) { 1417 if (IS_ERR(res)) 1418 goto out_unblock_sillyrename; 1419 dentry = res; 1420 } 1421 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1422 out_unblock_sillyrename: 1423 trace_nfs_lookup_exit(dir, dentry, flags, error); 1424 nfs4_label_free(label); 1425 out: 1426 nfs_free_fattr(fattr); 1427 nfs_free_fhandle(fhandle); 1428 return res; 1429 } 1430 EXPORT_SYMBOL_GPL(nfs_lookup); 1431 1432 #if IS_ENABLED(CONFIG_NFS_V4) 1433 static int nfs4_lookup_revalidate(struct dentry *, unsigned int); 1434 1435 const struct dentry_operations nfs4_dentry_operations = { 1436 .d_revalidate = nfs4_lookup_revalidate, 1437 .d_delete = nfs_dentry_delete, 1438 .d_iput = nfs_dentry_iput, 1439 .d_automount = nfs_d_automount, 1440 .d_release = nfs_d_release, 1441 }; 1442 EXPORT_SYMBOL_GPL(nfs4_dentry_operations); 1443 1444 static fmode_t flags_to_mode(int flags) 1445 { 1446 fmode_t res = (__force fmode_t)flags & FMODE_EXEC; 1447 if ((flags & O_ACCMODE) != O_WRONLY) 1448 res |= FMODE_READ; 1449 if ((flags & O_ACCMODE) != O_RDONLY) 1450 res |= FMODE_WRITE; 1451 return res; 1452 } 1453 1454 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags) 1455 { 1456 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags)); 1457 } 1458 1459 static int do_open(struct inode *inode, struct file *filp) 1460 { 1461 nfs_fscache_open_file(inode, filp); 1462 return 0; 1463 } 1464 1465 static int nfs_finish_open(struct nfs_open_context *ctx, 1466 struct dentry *dentry, 1467 struct file *file, unsigned open_flags, 1468 int *opened) 1469 { 1470 int err; 1471 1472 err = finish_open(file, dentry, do_open, opened); 1473 if (err) 1474 goto out; 1475 nfs_file_set_open_context(file, ctx); 1476 1477 out: 1478 return err; 1479 } 1480 1481 int nfs_atomic_open(struct inode *dir, struct dentry *dentry, 1482 struct file *file, unsigned open_flags, 1483 umode_t mode, int *opened) 1484 { 1485 struct nfs_open_context *ctx; 1486 struct dentry *res; 1487 struct iattr attr = { .ia_valid = ATTR_OPEN }; 1488 struct inode *inode; 1489 unsigned int lookup_flags = 0; 1490 int err; 1491 1492 /* Expect a negative dentry */ 1493 BUG_ON(d_inode(dentry)); 1494 1495 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n", 1496 dir->i_sb->s_id, dir->i_ino, dentry); 1497 1498 err = nfs_check_flags(open_flags); 1499 if (err) 1500 return err; 1501 1502 /* NFS only supports OPEN on regular files */ 1503 if ((open_flags & O_DIRECTORY)) { 1504 if (!d_unhashed(dentry)) { 1505 /* 1506 * Hashed negative dentry with O_DIRECTORY: dentry was 1507 * revalidated and is fine, no need to perform lookup 1508 * again 1509 */ 1510 return -ENOENT; 1511 } 1512 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY; 1513 goto no_open; 1514 } 1515 1516 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 1517 return -ENAMETOOLONG; 1518 1519 if (open_flags & O_CREAT) { 1520 attr.ia_valid |= ATTR_MODE; 1521 attr.ia_mode = mode & ~current_umask(); 1522 } 1523 if (open_flags & O_TRUNC) { 1524 attr.ia_valid |= ATTR_SIZE; 1525 attr.ia_size = 0; 1526 } 1527 1528 ctx = create_nfs_open_context(dentry, open_flags); 1529 err = PTR_ERR(ctx); 1530 if (IS_ERR(ctx)) 1531 goto out; 1532 1533 trace_nfs_atomic_open_enter(dir, ctx, open_flags); 1534 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, opened); 1535 if (IS_ERR(inode)) { 1536 err = PTR_ERR(inode); 1537 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 1538 put_nfs_open_context(ctx); 1539 switch (err) { 1540 case -ENOENT: 1541 d_drop(dentry); 1542 d_add(dentry, NULL); 1543 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1544 break; 1545 case -EISDIR: 1546 case -ENOTDIR: 1547 goto no_open; 1548 case -ELOOP: 1549 if (!(open_flags & O_NOFOLLOW)) 1550 goto no_open; 1551 break; 1552 /* case -EINVAL: */ 1553 default: 1554 break; 1555 } 1556 goto out; 1557 } 1558 1559 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags, opened); 1560 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 1561 put_nfs_open_context(ctx); 1562 out: 1563 return err; 1564 1565 no_open: 1566 res = nfs_lookup(dir, dentry, lookup_flags); 1567 err = PTR_ERR(res); 1568 if (IS_ERR(res)) 1569 goto out; 1570 1571 return finish_no_open(file, res); 1572 } 1573 EXPORT_SYMBOL_GPL(nfs_atomic_open); 1574 1575 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1576 { 1577 struct inode *inode; 1578 int ret = 0; 1579 1580 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY)) 1581 goto no_open; 1582 if (d_mountpoint(dentry)) 1583 goto no_open; 1584 if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1) 1585 goto no_open; 1586 1587 inode = d_inode(dentry); 1588 1589 /* We can't create new files in nfs_open_revalidate(), so we 1590 * optimize away revalidation of negative dentries. 1591 */ 1592 if (inode == NULL) { 1593 struct dentry *parent; 1594 struct inode *dir; 1595 1596 if (flags & LOOKUP_RCU) { 1597 parent = ACCESS_ONCE(dentry->d_parent); 1598 dir = d_inode_rcu(parent); 1599 if (!dir) 1600 return -ECHILD; 1601 } else { 1602 parent = dget_parent(dentry); 1603 dir = d_inode(parent); 1604 } 1605 if (!nfs_neg_need_reval(dir, dentry, flags)) 1606 ret = 1; 1607 else if (flags & LOOKUP_RCU) 1608 ret = -ECHILD; 1609 if (!(flags & LOOKUP_RCU)) 1610 dput(parent); 1611 else if (parent != ACCESS_ONCE(dentry->d_parent)) 1612 return -ECHILD; 1613 goto out; 1614 } 1615 1616 /* NFS only supports OPEN on regular files */ 1617 if (!S_ISREG(inode->i_mode)) 1618 goto no_open; 1619 /* We cannot do exclusive creation on a positive dentry */ 1620 if (flags & LOOKUP_EXCL) 1621 goto no_open; 1622 1623 /* Let f_op->open() actually open (and revalidate) the file */ 1624 ret = 1; 1625 1626 out: 1627 return ret; 1628 1629 no_open: 1630 return nfs_lookup_revalidate(dentry, flags); 1631 } 1632 1633 #endif /* CONFIG_NFSV4 */ 1634 1635 /* 1636 * Code common to create, mkdir, and mknod. 1637 */ 1638 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle, 1639 struct nfs_fattr *fattr, 1640 struct nfs4_label *label) 1641 { 1642 struct dentry *parent = dget_parent(dentry); 1643 struct inode *dir = d_inode(parent); 1644 struct inode *inode; 1645 int error = -EACCES; 1646 1647 d_drop(dentry); 1648 1649 /* We may have been initialized further down */ 1650 if (d_really_is_positive(dentry)) 1651 goto out; 1652 if (fhandle->size == 0) { 1653 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL); 1654 if (error) 1655 goto out_error; 1656 } 1657 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1658 if (!(fattr->valid & NFS_ATTR_FATTR)) { 1659 struct nfs_server *server = NFS_SB(dentry->d_sb); 1660 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL); 1661 if (error < 0) 1662 goto out_error; 1663 } 1664 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label); 1665 error = PTR_ERR(inode); 1666 if (IS_ERR(inode)) 1667 goto out_error; 1668 d_add(dentry, inode); 1669 out: 1670 dput(parent); 1671 return 0; 1672 out_error: 1673 nfs_mark_for_revalidate(dir); 1674 dput(parent); 1675 return error; 1676 } 1677 EXPORT_SYMBOL_GPL(nfs_instantiate); 1678 1679 /* 1680 * Following a failed create operation, we drop the dentry rather 1681 * than retain a negative dentry. This avoids a problem in the event 1682 * that the operation succeeded on the server, but an error in the 1683 * reply path made it appear to have failed. 1684 */ 1685 int nfs_create(struct inode *dir, struct dentry *dentry, 1686 umode_t mode, bool excl) 1687 { 1688 struct iattr attr; 1689 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT; 1690 int error; 1691 1692 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n", 1693 dir->i_sb->s_id, dir->i_ino, dentry); 1694 1695 attr.ia_mode = mode; 1696 attr.ia_valid = ATTR_MODE; 1697 1698 trace_nfs_create_enter(dir, dentry, open_flags); 1699 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags); 1700 trace_nfs_create_exit(dir, dentry, open_flags, error); 1701 if (error != 0) 1702 goto out_err; 1703 return 0; 1704 out_err: 1705 d_drop(dentry); 1706 return error; 1707 } 1708 EXPORT_SYMBOL_GPL(nfs_create); 1709 1710 /* 1711 * See comments for nfs_proc_create regarding failed operations. 1712 */ 1713 int 1714 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev) 1715 { 1716 struct iattr attr; 1717 int status; 1718 1719 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n", 1720 dir->i_sb->s_id, dir->i_ino, dentry); 1721 1722 attr.ia_mode = mode; 1723 attr.ia_valid = ATTR_MODE; 1724 1725 trace_nfs_mknod_enter(dir, dentry); 1726 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev); 1727 trace_nfs_mknod_exit(dir, dentry, status); 1728 if (status != 0) 1729 goto out_err; 1730 return 0; 1731 out_err: 1732 d_drop(dentry); 1733 return status; 1734 } 1735 EXPORT_SYMBOL_GPL(nfs_mknod); 1736 1737 /* 1738 * See comments for nfs_proc_create regarding failed operations. 1739 */ 1740 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1741 { 1742 struct iattr attr; 1743 int error; 1744 1745 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n", 1746 dir->i_sb->s_id, dir->i_ino, dentry); 1747 1748 attr.ia_valid = ATTR_MODE; 1749 attr.ia_mode = mode | S_IFDIR; 1750 1751 trace_nfs_mkdir_enter(dir, dentry); 1752 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr); 1753 trace_nfs_mkdir_exit(dir, dentry, error); 1754 if (error != 0) 1755 goto out_err; 1756 return 0; 1757 out_err: 1758 d_drop(dentry); 1759 return error; 1760 } 1761 EXPORT_SYMBOL_GPL(nfs_mkdir); 1762 1763 static void nfs_dentry_handle_enoent(struct dentry *dentry) 1764 { 1765 if (simple_positive(dentry)) 1766 d_delete(dentry); 1767 } 1768 1769 int nfs_rmdir(struct inode *dir, struct dentry *dentry) 1770 { 1771 int error; 1772 1773 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n", 1774 dir->i_sb->s_id, dir->i_ino, dentry); 1775 1776 trace_nfs_rmdir_enter(dir, dentry); 1777 if (d_really_is_positive(dentry)) { 1778 down_write(&NFS_I(d_inode(dentry))->rmdir_sem); 1779 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1780 /* Ensure the VFS deletes this inode */ 1781 switch (error) { 1782 case 0: 1783 clear_nlink(d_inode(dentry)); 1784 break; 1785 case -ENOENT: 1786 nfs_dentry_handle_enoent(dentry); 1787 } 1788 up_write(&NFS_I(d_inode(dentry))->rmdir_sem); 1789 } else 1790 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1791 trace_nfs_rmdir_exit(dir, dentry, error); 1792 1793 return error; 1794 } 1795 EXPORT_SYMBOL_GPL(nfs_rmdir); 1796 1797 /* 1798 * Remove a file after making sure there are no pending writes, 1799 * and after checking that the file has only one user. 1800 * 1801 * We invalidate the attribute cache and free the inode prior to the operation 1802 * to avoid possible races if the server reuses the inode. 1803 */ 1804 static int nfs_safe_remove(struct dentry *dentry) 1805 { 1806 struct inode *dir = d_inode(dentry->d_parent); 1807 struct inode *inode = d_inode(dentry); 1808 int error = -EBUSY; 1809 1810 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry); 1811 1812 /* If the dentry was sillyrenamed, we simply call d_delete() */ 1813 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1814 error = 0; 1815 goto out; 1816 } 1817 1818 trace_nfs_remove_enter(dir, dentry); 1819 if (inode != NULL) { 1820 NFS_PROTO(inode)->return_delegation(inode); 1821 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name); 1822 if (error == 0) 1823 nfs_drop_nlink(inode); 1824 } else 1825 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name); 1826 if (error == -ENOENT) 1827 nfs_dentry_handle_enoent(dentry); 1828 trace_nfs_remove_exit(dir, dentry, error); 1829 out: 1830 return error; 1831 } 1832 1833 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode 1834 * belongs to an active ".nfs..." file and we return -EBUSY. 1835 * 1836 * If sillyrename() returns 0, we do nothing, otherwise we unlink. 1837 */ 1838 int nfs_unlink(struct inode *dir, struct dentry *dentry) 1839 { 1840 int error; 1841 int need_rehash = 0; 1842 1843 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id, 1844 dir->i_ino, dentry); 1845 1846 trace_nfs_unlink_enter(dir, dentry); 1847 spin_lock(&dentry->d_lock); 1848 if (d_count(dentry) > 1) { 1849 spin_unlock(&dentry->d_lock); 1850 /* Start asynchronous writeout of the inode */ 1851 write_inode_now(d_inode(dentry), 0); 1852 error = nfs_sillyrename(dir, dentry); 1853 goto out; 1854 } 1855 if (!d_unhashed(dentry)) { 1856 __d_drop(dentry); 1857 need_rehash = 1; 1858 } 1859 spin_unlock(&dentry->d_lock); 1860 error = nfs_safe_remove(dentry); 1861 if (!error || error == -ENOENT) { 1862 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1863 } else if (need_rehash) 1864 d_rehash(dentry); 1865 out: 1866 trace_nfs_unlink_exit(dir, dentry, error); 1867 return error; 1868 } 1869 EXPORT_SYMBOL_GPL(nfs_unlink); 1870 1871 /* 1872 * To create a symbolic link, most file systems instantiate a new inode, 1873 * add a page to it containing the path, then write it out to the disk 1874 * using prepare_write/commit_write. 1875 * 1876 * Unfortunately the NFS client can't create the in-core inode first 1877 * because it needs a file handle to create an in-core inode (see 1878 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the 1879 * symlink request has completed on the server. 1880 * 1881 * So instead we allocate a raw page, copy the symname into it, then do 1882 * the SYMLINK request with the page as the buffer. If it succeeds, we 1883 * now have a new file handle and can instantiate an in-core NFS inode 1884 * and move the raw page into its mapping. 1885 */ 1886 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 1887 { 1888 struct page *page; 1889 char *kaddr; 1890 struct iattr attr; 1891 unsigned int pathlen = strlen(symname); 1892 int error; 1893 1894 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id, 1895 dir->i_ino, dentry, symname); 1896 1897 if (pathlen > PAGE_SIZE) 1898 return -ENAMETOOLONG; 1899 1900 attr.ia_mode = S_IFLNK | S_IRWXUGO; 1901 attr.ia_valid = ATTR_MODE; 1902 1903 page = alloc_page(GFP_USER); 1904 if (!page) 1905 return -ENOMEM; 1906 1907 kaddr = page_address(page); 1908 memcpy(kaddr, symname, pathlen); 1909 if (pathlen < PAGE_SIZE) 1910 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen); 1911 1912 trace_nfs_symlink_enter(dir, dentry); 1913 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr); 1914 trace_nfs_symlink_exit(dir, dentry, error); 1915 if (error != 0) { 1916 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n", 1917 dir->i_sb->s_id, dir->i_ino, 1918 dentry, symname, error); 1919 d_drop(dentry); 1920 __free_page(page); 1921 return error; 1922 } 1923 1924 /* 1925 * No big deal if we can't add this page to the page cache here. 1926 * READLINK will get the missing page from the server if needed. 1927 */ 1928 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0, 1929 GFP_KERNEL)) { 1930 SetPageUptodate(page); 1931 unlock_page(page); 1932 /* 1933 * add_to_page_cache_lru() grabs an extra page refcount. 1934 * Drop it here to avoid leaking this page later. 1935 */ 1936 put_page(page); 1937 } else 1938 __free_page(page); 1939 1940 return 0; 1941 } 1942 EXPORT_SYMBOL_GPL(nfs_symlink); 1943 1944 int 1945 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 1946 { 1947 struct inode *inode = d_inode(old_dentry); 1948 int error; 1949 1950 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n", 1951 old_dentry, dentry); 1952 1953 trace_nfs_link_enter(inode, dir, dentry); 1954 NFS_PROTO(inode)->return_delegation(inode); 1955 1956 d_drop(dentry); 1957 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name); 1958 if (error == 0) { 1959 ihold(inode); 1960 d_add(dentry, inode); 1961 } 1962 trace_nfs_link_exit(inode, dir, dentry, error); 1963 return error; 1964 } 1965 EXPORT_SYMBOL_GPL(nfs_link); 1966 1967 /* 1968 * RENAME 1969 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a 1970 * different file handle for the same inode after a rename (e.g. when 1971 * moving to a different directory). A fail-safe method to do so would 1972 * be to look up old_dir/old_name, create a link to new_dir/new_name and 1973 * rename the old file using the sillyrename stuff. This way, the original 1974 * file in old_dir will go away when the last process iput()s the inode. 1975 * 1976 * FIXED. 1977 * 1978 * It actually works quite well. One needs to have the possibility for 1979 * at least one ".nfs..." file in each directory the file ever gets 1980 * moved or linked to which happens automagically with the new 1981 * implementation that only depends on the dcache stuff instead of 1982 * using the inode layer 1983 * 1984 * Unfortunately, things are a little more complicated than indicated 1985 * above. For a cross-directory move, we want to make sure we can get 1986 * rid of the old inode after the operation. This means there must be 1987 * no pending writes (if it's a file), and the use count must be 1. 1988 * If these conditions are met, we can drop the dentries before doing 1989 * the rename. 1990 */ 1991 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry, 1992 struct inode *new_dir, struct dentry *new_dentry) 1993 { 1994 struct inode *old_inode = d_inode(old_dentry); 1995 struct inode *new_inode = d_inode(new_dentry); 1996 struct dentry *dentry = NULL, *rehash = NULL; 1997 struct rpc_task *task; 1998 int error = -EBUSY; 1999 2000 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n", 2001 old_dentry, new_dentry, 2002 d_count(new_dentry)); 2003 2004 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry); 2005 /* 2006 * For non-directories, check whether the target is busy and if so, 2007 * make a copy of the dentry and then do a silly-rename. If the 2008 * silly-rename succeeds, the copied dentry is hashed and becomes 2009 * the new target. 2010 */ 2011 if (new_inode && !S_ISDIR(new_inode->i_mode)) { 2012 /* 2013 * To prevent any new references to the target during the 2014 * rename, we unhash the dentry in advance. 2015 */ 2016 if (!d_unhashed(new_dentry)) { 2017 d_drop(new_dentry); 2018 rehash = new_dentry; 2019 } 2020 2021 if (d_count(new_dentry) > 2) { 2022 int err; 2023 2024 /* copy the target dentry's name */ 2025 dentry = d_alloc(new_dentry->d_parent, 2026 &new_dentry->d_name); 2027 if (!dentry) 2028 goto out; 2029 2030 /* silly-rename the existing target ... */ 2031 err = nfs_sillyrename(new_dir, new_dentry); 2032 if (err) 2033 goto out; 2034 2035 new_dentry = dentry; 2036 rehash = NULL; 2037 new_inode = NULL; 2038 } 2039 } 2040 2041 NFS_PROTO(old_inode)->return_delegation(old_inode); 2042 if (new_inode != NULL) 2043 NFS_PROTO(new_inode)->return_delegation(new_inode); 2044 2045 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL); 2046 if (IS_ERR(task)) { 2047 error = PTR_ERR(task); 2048 goto out; 2049 } 2050 2051 error = rpc_wait_for_completion_task(task); 2052 if (error == 0) 2053 error = task->tk_status; 2054 rpc_put_task(task); 2055 nfs_mark_for_revalidate(old_inode); 2056 out: 2057 if (rehash) 2058 d_rehash(rehash); 2059 trace_nfs_rename_exit(old_dir, old_dentry, 2060 new_dir, new_dentry, error); 2061 if (!error) { 2062 if (new_inode != NULL) 2063 nfs_drop_nlink(new_inode); 2064 d_move(old_dentry, new_dentry); 2065 nfs_set_verifier(new_dentry, 2066 nfs_save_change_attribute(new_dir)); 2067 } else if (error == -ENOENT) 2068 nfs_dentry_handle_enoent(old_dentry); 2069 2070 /* new dentry created? */ 2071 if (dentry) 2072 dput(dentry); 2073 return error; 2074 } 2075 EXPORT_SYMBOL_GPL(nfs_rename); 2076 2077 static DEFINE_SPINLOCK(nfs_access_lru_lock); 2078 static LIST_HEAD(nfs_access_lru_list); 2079 static atomic_long_t nfs_access_nr_entries; 2080 2081 static unsigned long nfs_access_max_cachesize = ULONG_MAX; 2082 module_param(nfs_access_max_cachesize, ulong, 0644); 2083 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length"); 2084 2085 static void nfs_access_free_entry(struct nfs_access_entry *entry) 2086 { 2087 put_rpccred(entry->cred); 2088 kfree_rcu(entry, rcu_head); 2089 smp_mb__before_atomic(); 2090 atomic_long_dec(&nfs_access_nr_entries); 2091 smp_mb__after_atomic(); 2092 } 2093 2094 static void nfs_access_free_list(struct list_head *head) 2095 { 2096 struct nfs_access_entry *cache; 2097 2098 while (!list_empty(head)) { 2099 cache = list_entry(head->next, struct nfs_access_entry, lru); 2100 list_del(&cache->lru); 2101 nfs_access_free_entry(cache); 2102 } 2103 } 2104 2105 static unsigned long 2106 nfs_do_access_cache_scan(unsigned int nr_to_scan) 2107 { 2108 LIST_HEAD(head); 2109 struct nfs_inode *nfsi, *next; 2110 struct nfs_access_entry *cache; 2111 long freed = 0; 2112 2113 spin_lock(&nfs_access_lru_lock); 2114 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) { 2115 struct inode *inode; 2116 2117 if (nr_to_scan-- == 0) 2118 break; 2119 inode = &nfsi->vfs_inode; 2120 spin_lock(&inode->i_lock); 2121 if (list_empty(&nfsi->access_cache_entry_lru)) 2122 goto remove_lru_entry; 2123 cache = list_entry(nfsi->access_cache_entry_lru.next, 2124 struct nfs_access_entry, lru); 2125 list_move(&cache->lru, &head); 2126 rb_erase(&cache->rb_node, &nfsi->access_cache); 2127 freed++; 2128 if (!list_empty(&nfsi->access_cache_entry_lru)) 2129 list_move_tail(&nfsi->access_cache_inode_lru, 2130 &nfs_access_lru_list); 2131 else { 2132 remove_lru_entry: 2133 list_del_init(&nfsi->access_cache_inode_lru); 2134 smp_mb__before_atomic(); 2135 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags); 2136 smp_mb__after_atomic(); 2137 } 2138 spin_unlock(&inode->i_lock); 2139 } 2140 spin_unlock(&nfs_access_lru_lock); 2141 nfs_access_free_list(&head); 2142 return freed; 2143 } 2144 2145 unsigned long 2146 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc) 2147 { 2148 int nr_to_scan = sc->nr_to_scan; 2149 gfp_t gfp_mask = sc->gfp_mask; 2150 2151 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL) 2152 return SHRINK_STOP; 2153 return nfs_do_access_cache_scan(nr_to_scan); 2154 } 2155 2156 2157 unsigned long 2158 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc) 2159 { 2160 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries)); 2161 } 2162 2163 static void 2164 nfs_access_cache_enforce_limit(void) 2165 { 2166 long nr_entries = atomic_long_read(&nfs_access_nr_entries); 2167 unsigned long diff; 2168 unsigned int nr_to_scan; 2169 2170 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize) 2171 return; 2172 nr_to_scan = 100; 2173 diff = nr_entries - nfs_access_max_cachesize; 2174 if (diff < nr_to_scan) 2175 nr_to_scan = diff; 2176 nfs_do_access_cache_scan(nr_to_scan); 2177 } 2178 2179 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head) 2180 { 2181 struct rb_root *root_node = &nfsi->access_cache; 2182 struct rb_node *n; 2183 struct nfs_access_entry *entry; 2184 2185 /* Unhook entries from the cache */ 2186 while ((n = rb_first(root_node)) != NULL) { 2187 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2188 rb_erase(n, root_node); 2189 list_move(&entry->lru, head); 2190 } 2191 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS; 2192 } 2193 2194 void nfs_access_zap_cache(struct inode *inode) 2195 { 2196 LIST_HEAD(head); 2197 2198 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0) 2199 return; 2200 /* Remove from global LRU init */ 2201 spin_lock(&nfs_access_lru_lock); 2202 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2203 list_del_init(&NFS_I(inode)->access_cache_inode_lru); 2204 2205 spin_lock(&inode->i_lock); 2206 __nfs_access_zap_cache(NFS_I(inode), &head); 2207 spin_unlock(&inode->i_lock); 2208 spin_unlock(&nfs_access_lru_lock); 2209 nfs_access_free_list(&head); 2210 } 2211 EXPORT_SYMBOL_GPL(nfs_access_zap_cache); 2212 2213 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred) 2214 { 2215 struct rb_node *n = NFS_I(inode)->access_cache.rb_node; 2216 struct nfs_access_entry *entry; 2217 2218 while (n != NULL) { 2219 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2220 2221 if (cred < entry->cred) 2222 n = n->rb_left; 2223 else if (cred > entry->cred) 2224 n = n->rb_right; 2225 else 2226 return entry; 2227 } 2228 return NULL; 2229 } 2230 2231 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res) 2232 { 2233 struct nfs_inode *nfsi = NFS_I(inode); 2234 struct nfs_access_entry *cache; 2235 int err = -ENOENT; 2236 2237 spin_lock(&inode->i_lock); 2238 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2239 goto out_zap; 2240 cache = nfs_access_search_rbtree(inode, cred); 2241 if (cache == NULL) 2242 goto out; 2243 if (!nfs_have_delegated_attributes(inode) && 2244 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo)) 2245 goto out_stale; 2246 res->jiffies = cache->jiffies; 2247 res->cred = cache->cred; 2248 res->mask = cache->mask; 2249 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru); 2250 err = 0; 2251 out: 2252 spin_unlock(&inode->i_lock); 2253 return err; 2254 out_stale: 2255 rb_erase(&cache->rb_node, &nfsi->access_cache); 2256 list_del(&cache->lru); 2257 spin_unlock(&inode->i_lock); 2258 nfs_access_free_entry(cache); 2259 return -ENOENT; 2260 out_zap: 2261 spin_unlock(&inode->i_lock); 2262 nfs_access_zap_cache(inode); 2263 return -ENOENT; 2264 } 2265 2266 static int nfs_access_get_cached_rcu(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res) 2267 { 2268 /* Only check the most recently returned cache entry, 2269 * but do it without locking. 2270 */ 2271 struct nfs_inode *nfsi = NFS_I(inode); 2272 struct nfs_access_entry *cache; 2273 int err = -ECHILD; 2274 struct list_head *lh; 2275 2276 rcu_read_lock(); 2277 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2278 goto out; 2279 lh = rcu_dereference(nfsi->access_cache_entry_lru.prev); 2280 cache = list_entry(lh, struct nfs_access_entry, lru); 2281 if (lh == &nfsi->access_cache_entry_lru || 2282 cred != cache->cred) 2283 cache = NULL; 2284 if (cache == NULL) 2285 goto out; 2286 if (!nfs_have_delegated_attributes(inode) && 2287 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo)) 2288 goto out; 2289 res->jiffies = cache->jiffies; 2290 res->cred = cache->cred; 2291 res->mask = cache->mask; 2292 err = 0; 2293 out: 2294 rcu_read_unlock(); 2295 return err; 2296 } 2297 2298 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set) 2299 { 2300 struct nfs_inode *nfsi = NFS_I(inode); 2301 struct rb_root *root_node = &nfsi->access_cache; 2302 struct rb_node **p = &root_node->rb_node; 2303 struct rb_node *parent = NULL; 2304 struct nfs_access_entry *entry; 2305 2306 spin_lock(&inode->i_lock); 2307 while (*p != NULL) { 2308 parent = *p; 2309 entry = rb_entry(parent, struct nfs_access_entry, rb_node); 2310 2311 if (set->cred < entry->cred) 2312 p = &parent->rb_left; 2313 else if (set->cred > entry->cred) 2314 p = &parent->rb_right; 2315 else 2316 goto found; 2317 } 2318 rb_link_node(&set->rb_node, parent, p); 2319 rb_insert_color(&set->rb_node, root_node); 2320 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2321 spin_unlock(&inode->i_lock); 2322 return; 2323 found: 2324 rb_replace_node(parent, &set->rb_node, root_node); 2325 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2326 list_del(&entry->lru); 2327 spin_unlock(&inode->i_lock); 2328 nfs_access_free_entry(entry); 2329 } 2330 2331 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set) 2332 { 2333 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL); 2334 if (cache == NULL) 2335 return; 2336 RB_CLEAR_NODE(&cache->rb_node); 2337 cache->jiffies = set->jiffies; 2338 cache->cred = get_rpccred(set->cred); 2339 cache->mask = set->mask; 2340 2341 /* The above field assignments must be visible 2342 * before this item appears on the lru. We cannot easily 2343 * use rcu_assign_pointer, so just force the memory barrier. 2344 */ 2345 smp_wmb(); 2346 nfs_access_add_rbtree(inode, cache); 2347 2348 /* Update accounting */ 2349 smp_mb__before_atomic(); 2350 atomic_long_inc(&nfs_access_nr_entries); 2351 smp_mb__after_atomic(); 2352 2353 /* Add inode to global LRU list */ 2354 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) { 2355 spin_lock(&nfs_access_lru_lock); 2356 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2357 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, 2358 &nfs_access_lru_list); 2359 spin_unlock(&nfs_access_lru_lock); 2360 } 2361 nfs_access_cache_enforce_limit(); 2362 } 2363 EXPORT_SYMBOL_GPL(nfs_access_add_cache); 2364 2365 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result) 2366 { 2367 entry->mask = 0; 2368 if (access_result & NFS4_ACCESS_READ) 2369 entry->mask |= MAY_READ; 2370 if (access_result & 2371 (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE)) 2372 entry->mask |= MAY_WRITE; 2373 if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE)) 2374 entry->mask |= MAY_EXEC; 2375 } 2376 EXPORT_SYMBOL_GPL(nfs_access_set_mask); 2377 2378 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask) 2379 { 2380 struct nfs_access_entry cache; 2381 int status; 2382 2383 trace_nfs_access_enter(inode); 2384 2385 status = nfs_access_get_cached_rcu(inode, cred, &cache); 2386 if (status != 0) 2387 status = nfs_access_get_cached(inode, cred, &cache); 2388 if (status == 0) 2389 goto out_cached; 2390 2391 status = -ECHILD; 2392 if (mask & MAY_NOT_BLOCK) 2393 goto out; 2394 2395 /* Be clever: ask server to check for all possible rights */ 2396 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ; 2397 cache.cred = cred; 2398 cache.jiffies = jiffies; 2399 status = NFS_PROTO(inode)->access(inode, &cache); 2400 if (status != 0) { 2401 if (status == -ESTALE) { 2402 nfs_zap_caches(inode); 2403 if (!S_ISDIR(inode->i_mode)) 2404 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags); 2405 } 2406 goto out; 2407 } 2408 nfs_access_add_cache(inode, &cache); 2409 out_cached: 2410 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0) 2411 status = -EACCES; 2412 out: 2413 trace_nfs_access_exit(inode, status); 2414 return status; 2415 } 2416 2417 static int nfs_open_permission_mask(int openflags) 2418 { 2419 int mask = 0; 2420 2421 if (openflags & __FMODE_EXEC) { 2422 /* ONLY check exec rights */ 2423 mask = MAY_EXEC; 2424 } else { 2425 if ((openflags & O_ACCMODE) != O_WRONLY) 2426 mask |= MAY_READ; 2427 if ((openflags & O_ACCMODE) != O_RDONLY) 2428 mask |= MAY_WRITE; 2429 } 2430 2431 return mask; 2432 } 2433 2434 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags) 2435 { 2436 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags)); 2437 } 2438 EXPORT_SYMBOL_GPL(nfs_may_open); 2439 2440 static int nfs_execute_ok(struct inode *inode, int mask) 2441 { 2442 struct nfs_server *server = NFS_SERVER(inode); 2443 int ret; 2444 2445 if (mask & MAY_NOT_BLOCK) 2446 ret = nfs_revalidate_inode_rcu(server, inode); 2447 else 2448 ret = nfs_revalidate_inode(server, inode); 2449 if (ret == 0 && !execute_ok(inode)) 2450 ret = -EACCES; 2451 return ret; 2452 } 2453 2454 int nfs_permission(struct inode *inode, int mask) 2455 { 2456 struct rpc_cred *cred; 2457 int res = 0; 2458 2459 nfs_inc_stats(inode, NFSIOS_VFSACCESS); 2460 2461 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 2462 goto out; 2463 /* Is this sys_access() ? */ 2464 if (mask & (MAY_ACCESS | MAY_CHDIR)) 2465 goto force_lookup; 2466 2467 switch (inode->i_mode & S_IFMT) { 2468 case S_IFLNK: 2469 goto out; 2470 case S_IFREG: 2471 if ((mask & MAY_OPEN) && 2472 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)) 2473 return 0; 2474 break; 2475 case S_IFDIR: 2476 /* 2477 * Optimize away all write operations, since the server 2478 * will check permissions when we perform the op. 2479 */ 2480 if ((mask & MAY_WRITE) && !(mask & MAY_READ)) 2481 goto out; 2482 } 2483 2484 force_lookup: 2485 if (!NFS_PROTO(inode)->access) 2486 goto out_notsup; 2487 2488 /* Always try fast lookups first */ 2489 rcu_read_lock(); 2490 cred = rpc_lookup_cred_nonblock(); 2491 if (!IS_ERR(cred)) 2492 res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK); 2493 else 2494 res = PTR_ERR(cred); 2495 rcu_read_unlock(); 2496 if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) { 2497 /* Fast lookup failed, try the slow way */ 2498 cred = rpc_lookup_cred(); 2499 if (!IS_ERR(cred)) { 2500 res = nfs_do_access(inode, cred, mask); 2501 put_rpccred(cred); 2502 } else 2503 res = PTR_ERR(cred); 2504 } 2505 out: 2506 if (!res && (mask & MAY_EXEC)) 2507 res = nfs_execute_ok(inode, mask); 2508 2509 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n", 2510 inode->i_sb->s_id, inode->i_ino, mask, res); 2511 return res; 2512 out_notsup: 2513 if (mask & MAY_NOT_BLOCK) 2514 return -ECHILD; 2515 2516 res = nfs_revalidate_inode(NFS_SERVER(inode), inode); 2517 if (res == 0) 2518 res = generic_permission(inode, mask); 2519 goto out; 2520 } 2521 EXPORT_SYMBOL_GPL(nfs_permission); 2522 2523 /* 2524 * Local variables: 2525 * version-control: t 2526 * kept-new-versions: 5 2527 * End: 2528 */ 2529