1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/nfs/dir.c 4 * 5 * Copyright (C) 1992 Rick Sladkey 6 * 7 * nfs directory handling functions 8 * 9 * 10 Apr 1996 Added silly rename for unlink --okir 10 * 28 Sep 1996 Improved directory cache --okir 11 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de 12 * Re-implemented silly rename for unlink, newly implemented 13 * silly rename for nfs_rename() following the suggestions 14 * of Olaf Kirch (okir) found in this file. 15 * Following Linus comments on my original hack, this version 16 * depends only on the dcache stuff and doesn't touch the inode 17 * layer (iput() and friends). 18 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM 19 */ 20 21 #include <linux/module.h> 22 #include <linux/time.h> 23 #include <linux/errno.h> 24 #include <linux/stat.h> 25 #include <linux/fcntl.h> 26 #include <linux/string.h> 27 #include <linux/kernel.h> 28 #include <linux/slab.h> 29 #include <linux/mm.h> 30 #include <linux/sunrpc/clnt.h> 31 #include <linux/nfs_fs.h> 32 #include <linux/nfs_mount.h> 33 #include <linux/pagemap.h> 34 #include <linux/pagevec.h> 35 #include <linux/namei.h> 36 #include <linux/mount.h> 37 #include <linux/swap.h> 38 #include <linux/sched.h> 39 #include <linux/kmemleak.h> 40 #include <linux/xattr.h> 41 42 #include "delegation.h" 43 #include "iostat.h" 44 #include "internal.h" 45 #include "fscache.h" 46 47 #include "nfstrace.h" 48 49 /* #define NFS_DEBUG_VERBOSE 1 */ 50 51 static int nfs_opendir(struct inode *, struct file *); 52 static int nfs_closedir(struct inode *, struct file *); 53 static int nfs_readdir(struct file *, struct dir_context *); 54 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int); 55 static loff_t nfs_llseek_dir(struct file *, loff_t, int); 56 static void nfs_readdir_clear_array(struct page*); 57 58 const struct file_operations nfs_dir_operations = { 59 .llseek = nfs_llseek_dir, 60 .read = generic_read_dir, 61 .iterate_shared = nfs_readdir, 62 .open = nfs_opendir, 63 .release = nfs_closedir, 64 .fsync = nfs_fsync_dir, 65 }; 66 67 const struct address_space_operations nfs_dir_aops = { 68 .freepage = nfs_readdir_clear_array, 69 }; 70 71 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir) 72 { 73 struct nfs_inode *nfsi = NFS_I(dir); 74 struct nfs_open_dir_context *ctx; 75 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); 76 if (ctx != NULL) { 77 ctx->duped = 0; 78 ctx->attr_gencount = nfsi->attr_gencount; 79 ctx->dir_cookie = 0; 80 ctx->dup_cookie = 0; 81 ctx->page_index = 0; 82 spin_lock(&dir->i_lock); 83 if (list_empty(&nfsi->open_files) && 84 (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER)) 85 nfs_set_cache_invalid(dir, 86 NFS_INO_INVALID_DATA | 87 NFS_INO_REVAL_FORCED); 88 list_add(&ctx->list, &nfsi->open_files); 89 clear_bit(NFS_INO_FORCE_READDIR, &nfsi->flags); 90 spin_unlock(&dir->i_lock); 91 return ctx; 92 } 93 return ERR_PTR(-ENOMEM); 94 } 95 96 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx) 97 { 98 spin_lock(&dir->i_lock); 99 list_del(&ctx->list); 100 spin_unlock(&dir->i_lock); 101 kfree(ctx); 102 } 103 104 /* 105 * Open file 106 */ 107 static int 108 nfs_opendir(struct inode *inode, struct file *filp) 109 { 110 int res = 0; 111 struct nfs_open_dir_context *ctx; 112 113 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp); 114 115 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 116 117 ctx = alloc_nfs_open_dir_context(inode); 118 if (IS_ERR(ctx)) { 119 res = PTR_ERR(ctx); 120 goto out; 121 } 122 filp->private_data = ctx; 123 out: 124 return res; 125 } 126 127 static int 128 nfs_closedir(struct inode *inode, struct file *filp) 129 { 130 put_nfs_open_dir_context(file_inode(filp), filp->private_data); 131 return 0; 132 } 133 134 struct nfs_cache_array_entry { 135 u64 cookie; 136 u64 ino; 137 const char *name; 138 unsigned int name_len; 139 unsigned char d_type; 140 }; 141 142 struct nfs_cache_array { 143 u64 last_cookie; 144 unsigned int size; 145 unsigned char page_full : 1, 146 page_is_eof : 1, 147 cookies_are_ordered : 1; 148 struct nfs_cache_array_entry array[]; 149 }; 150 151 struct nfs_readdir_descriptor { 152 struct file *file; 153 struct page *page; 154 struct dir_context *ctx; 155 pgoff_t page_index; 156 u64 dir_cookie; 157 u64 last_cookie; 158 u64 dup_cookie; 159 loff_t current_index; 160 loff_t prev_index; 161 162 __be32 verf[NFS_DIR_VERIFIER_SIZE]; 163 unsigned long dir_verifier; 164 unsigned long timestamp; 165 unsigned long gencount; 166 unsigned long attr_gencount; 167 unsigned int cache_entry_index; 168 signed char duped; 169 bool plus; 170 bool eof; 171 }; 172 173 static void nfs_readdir_array_init(struct nfs_cache_array *array) 174 { 175 memset(array, 0, sizeof(struct nfs_cache_array)); 176 } 177 178 static void nfs_readdir_page_init_array(struct page *page, u64 last_cookie) 179 { 180 struct nfs_cache_array *array; 181 182 array = kmap_atomic(page); 183 nfs_readdir_array_init(array); 184 array->last_cookie = last_cookie; 185 array->cookies_are_ordered = 1; 186 kunmap_atomic(array); 187 } 188 189 /* 190 * we are freeing strings created by nfs_add_to_readdir_array() 191 */ 192 static 193 void nfs_readdir_clear_array(struct page *page) 194 { 195 struct nfs_cache_array *array; 196 int i; 197 198 array = kmap_atomic(page); 199 for (i = 0; i < array->size; i++) 200 kfree(array->array[i].name); 201 nfs_readdir_array_init(array); 202 kunmap_atomic(array); 203 } 204 205 static struct page * 206 nfs_readdir_page_array_alloc(u64 last_cookie, gfp_t gfp_flags) 207 { 208 struct page *page = alloc_page(gfp_flags); 209 if (page) 210 nfs_readdir_page_init_array(page, last_cookie); 211 return page; 212 } 213 214 static void nfs_readdir_page_array_free(struct page *page) 215 { 216 if (page) { 217 nfs_readdir_clear_array(page); 218 put_page(page); 219 } 220 } 221 222 static void nfs_readdir_array_set_eof(struct nfs_cache_array *array) 223 { 224 array->page_is_eof = 1; 225 array->page_full = 1; 226 } 227 228 static bool nfs_readdir_array_is_full(struct nfs_cache_array *array) 229 { 230 return array->page_full; 231 } 232 233 /* 234 * the caller is responsible for freeing qstr.name 235 * when called by nfs_readdir_add_to_array, the strings will be freed in 236 * nfs_clear_readdir_array() 237 */ 238 static const char *nfs_readdir_copy_name(const char *name, unsigned int len) 239 { 240 const char *ret = kmemdup_nul(name, len, GFP_KERNEL); 241 242 /* 243 * Avoid a kmemleak false positive. The pointer to the name is stored 244 * in a page cache page which kmemleak does not scan. 245 */ 246 if (ret != NULL) 247 kmemleak_not_leak(ret); 248 return ret; 249 } 250 251 /* 252 * Check that the next array entry lies entirely within the page bounds 253 */ 254 static int nfs_readdir_array_can_expand(struct nfs_cache_array *array) 255 { 256 struct nfs_cache_array_entry *cache_entry; 257 258 if (array->page_full) 259 return -ENOSPC; 260 cache_entry = &array->array[array->size + 1]; 261 if ((char *)cache_entry - (char *)array > PAGE_SIZE) { 262 array->page_full = 1; 263 return -ENOSPC; 264 } 265 return 0; 266 } 267 268 static 269 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page) 270 { 271 struct nfs_cache_array *array; 272 struct nfs_cache_array_entry *cache_entry; 273 const char *name; 274 int ret; 275 276 name = nfs_readdir_copy_name(entry->name, entry->len); 277 if (!name) 278 return -ENOMEM; 279 280 array = kmap_atomic(page); 281 ret = nfs_readdir_array_can_expand(array); 282 if (ret) { 283 kfree(name); 284 goto out; 285 } 286 287 cache_entry = &array->array[array->size]; 288 cache_entry->cookie = entry->prev_cookie; 289 cache_entry->ino = entry->ino; 290 cache_entry->d_type = entry->d_type; 291 cache_entry->name_len = entry->len; 292 cache_entry->name = name; 293 array->last_cookie = entry->cookie; 294 if (array->last_cookie <= cache_entry->cookie) 295 array->cookies_are_ordered = 0; 296 array->size++; 297 if (entry->eof != 0) 298 nfs_readdir_array_set_eof(array); 299 out: 300 kunmap_atomic(array); 301 return ret; 302 } 303 304 static struct page *nfs_readdir_page_get_locked(struct address_space *mapping, 305 pgoff_t index, u64 last_cookie) 306 { 307 struct page *page; 308 309 page = grab_cache_page(mapping, index); 310 if (page && !PageUptodate(page)) { 311 nfs_readdir_page_init_array(page, last_cookie); 312 if (invalidate_inode_pages2_range(mapping, index + 1, -1) < 0) 313 nfs_zap_mapping(mapping->host, mapping); 314 SetPageUptodate(page); 315 } 316 317 return page; 318 } 319 320 static u64 nfs_readdir_page_last_cookie(struct page *page) 321 { 322 struct nfs_cache_array *array; 323 u64 ret; 324 325 array = kmap_atomic(page); 326 ret = array->last_cookie; 327 kunmap_atomic(array); 328 return ret; 329 } 330 331 static bool nfs_readdir_page_needs_filling(struct page *page) 332 { 333 struct nfs_cache_array *array; 334 bool ret; 335 336 array = kmap_atomic(page); 337 ret = !nfs_readdir_array_is_full(array); 338 kunmap_atomic(array); 339 return ret; 340 } 341 342 static void nfs_readdir_page_set_eof(struct page *page) 343 { 344 struct nfs_cache_array *array; 345 346 array = kmap_atomic(page); 347 nfs_readdir_array_set_eof(array); 348 kunmap_atomic(array); 349 } 350 351 static void nfs_readdir_page_unlock_and_put(struct page *page) 352 { 353 unlock_page(page); 354 put_page(page); 355 } 356 357 static struct page *nfs_readdir_page_get_next(struct address_space *mapping, 358 pgoff_t index, u64 cookie) 359 { 360 struct page *page; 361 362 page = nfs_readdir_page_get_locked(mapping, index, cookie); 363 if (page) { 364 if (nfs_readdir_page_last_cookie(page) == cookie) 365 return page; 366 nfs_readdir_page_unlock_and_put(page); 367 } 368 return NULL; 369 } 370 371 static inline 372 int is_32bit_api(void) 373 { 374 #ifdef CONFIG_COMPAT 375 return in_compat_syscall(); 376 #else 377 return (BITS_PER_LONG == 32); 378 #endif 379 } 380 381 static 382 bool nfs_readdir_use_cookie(const struct file *filp) 383 { 384 if ((filp->f_mode & FMODE_32BITHASH) || 385 (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api())) 386 return false; 387 return true; 388 } 389 390 static int nfs_readdir_search_for_pos(struct nfs_cache_array *array, 391 struct nfs_readdir_descriptor *desc) 392 { 393 loff_t diff = desc->ctx->pos - desc->current_index; 394 unsigned int index; 395 396 if (diff < 0) 397 goto out_eof; 398 if (diff >= array->size) { 399 if (array->page_is_eof) 400 goto out_eof; 401 return -EAGAIN; 402 } 403 404 index = (unsigned int)diff; 405 desc->dir_cookie = array->array[index].cookie; 406 desc->cache_entry_index = index; 407 return 0; 408 out_eof: 409 desc->eof = true; 410 return -EBADCOOKIE; 411 } 412 413 static bool 414 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi) 415 { 416 if (nfsi->cache_validity & (NFS_INO_INVALID_CHANGE | 417 NFS_INO_INVALID_DATA)) 418 return false; 419 smp_rmb(); 420 return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags); 421 } 422 423 static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array, 424 u64 cookie) 425 { 426 if (!array->cookies_are_ordered) 427 return true; 428 /* Optimisation for monotonically increasing cookies */ 429 if (cookie >= array->last_cookie) 430 return false; 431 if (array->size && cookie < array->array[0].cookie) 432 return false; 433 return true; 434 } 435 436 static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, 437 struct nfs_readdir_descriptor *desc) 438 { 439 int i; 440 loff_t new_pos; 441 int status = -EAGAIN; 442 443 if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie)) 444 goto check_eof; 445 446 for (i = 0; i < array->size; i++) { 447 if (array->array[i].cookie == desc->dir_cookie) { 448 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file)); 449 450 new_pos = desc->current_index + i; 451 if (desc->attr_gencount != nfsi->attr_gencount || 452 !nfs_readdir_inode_mapping_valid(nfsi)) { 453 desc->duped = 0; 454 desc->attr_gencount = nfsi->attr_gencount; 455 } else if (new_pos < desc->prev_index) { 456 if (desc->duped > 0 457 && desc->dup_cookie == desc->dir_cookie) { 458 if (printk_ratelimit()) { 459 pr_notice("NFS: directory %pD2 contains a readdir loop." 460 "Please contact your server vendor. " 461 "The file: %s has duplicate cookie %llu\n", 462 desc->file, array->array[i].name, desc->dir_cookie); 463 } 464 status = -ELOOP; 465 goto out; 466 } 467 desc->dup_cookie = desc->dir_cookie; 468 desc->duped = -1; 469 } 470 if (nfs_readdir_use_cookie(desc->file)) 471 desc->ctx->pos = desc->dir_cookie; 472 else 473 desc->ctx->pos = new_pos; 474 desc->prev_index = new_pos; 475 desc->cache_entry_index = i; 476 return 0; 477 } 478 } 479 check_eof: 480 if (array->page_is_eof) { 481 status = -EBADCOOKIE; 482 if (desc->dir_cookie == array->last_cookie) 483 desc->eof = true; 484 } 485 out: 486 return status; 487 } 488 489 static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc) 490 { 491 struct nfs_cache_array *array; 492 int status; 493 494 array = kmap_atomic(desc->page); 495 496 if (desc->dir_cookie == 0) 497 status = nfs_readdir_search_for_pos(array, desc); 498 else 499 status = nfs_readdir_search_for_cookie(array, desc); 500 501 if (status == -EAGAIN) { 502 desc->last_cookie = array->last_cookie; 503 desc->current_index += array->size; 504 desc->page_index++; 505 } 506 kunmap_atomic(array); 507 return status; 508 } 509 510 /* Fill a page with xdr information before transferring to the cache page */ 511 static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc, 512 __be32 *verf, u64 cookie, 513 struct page **pages, size_t bufsize, 514 __be32 *verf_res) 515 { 516 struct inode *inode = file_inode(desc->file); 517 struct nfs_readdir_arg arg = { 518 .dentry = file_dentry(desc->file), 519 .cred = desc->file->f_cred, 520 .verf = verf, 521 .cookie = cookie, 522 .pages = pages, 523 .page_len = bufsize, 524 .plus = desc->plus, 525 }; 526 struct nfs_readdir_res res = { 527 .verf = verf_res, 528 }; 529 unsigned long timestamp, gencount; 530 int error; 531 532 again: 533 timestamp = jiffies; 534 gencount = nfs_inc_attr_generation_counter(); 535 desc->dir_verifier = nfs_save_change_attribute(inode); 536 error = NFS_PROTO(inode)->readdir(&arg, &res); 537 if (error < 0) { 538 /* We requested READDIRPLUS, but the server doesn't grok it */ 539 if (error == -ENOTSUPP && desc->plus) { 540 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS; 541 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 542 desc->plus = arg.plus = false; 543 goto again; 544 } 545 goto error; 546 } 547 desc->timestamp = timestamp; 548 desc->gencount = gencount; 549 error: 550 return error; 551 } 552 553 static int xdr_decode(struct nfs_readdir_descriptor *desc, 554 struct nfs_entry *entry, struct xdr_stream *xdr) 555 { 556 struct inode *inode = file_inode(desc->file); 557 int error; 558 559 error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus); 560 if (error) 561 return error; 562 entry->fattr->time_start = desc->timestamp; 563 entry->fattr->gencount = desc->gencount; 564 return 0; 565 } 566 567 /* Match file and dirent using either filehandle or fileid 568 * Note: caller is responsible for checking the fsid 569 */ 570 static 571 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry) 572 { 573 struct inode *inode; 574 struct nfs_inode *nfsi; 575 576 if (d_really_is_negative(dentry)) 577 return 0; 578 579 inode = d_inode(dentry); 580 if (is_bad_inode(inode) || NFS_STALE(inode)) 581 return 0; 582 583 nfsi = NFS_I(inode); 584 if (entry->fattr->fileid != nfsi->fileid) 585 return 0; 586 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0) 587 return 0; 588 return 1; 589 } 590 591 static 592 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx) 593 { 594 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS)) 595 return false; 596 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags)) 597 return true; 598 if (ctx->pos == 0) 599 return true; 600 return false; 601 } 602 603 /* 604 * This function is called by the lookup and getattr code to request the 605 * use of readdirplus to accelerate any future lookups in the same 606 * directory. 607 */ 608 void nfs_advise_use_readdirplus(struct inode *dir) 609 { 610 struct nfs_inode *nfsi = NFS_I(dir); 611 612 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) && 613 !list_empty(&nfsi->open_files)) 614 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags); 615 } 616 617 /* 618 * This function is mainly for use by nfs_getattr(). 619 * 620 * If this is an 'ls -l', we want to force use of readdirplus. 621 * Do this by checking if there is an active file descriptor 622 * and calling nfs_advise_use_readdirplus, then forcing a 623 * cache flush. 624 */ 625 void nfs_force_use_readdirplus(struct inode *dir) 626 { 627 struct nfs_inode *nfsi = NFS_I(dir); 628 629 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) && 630 !list_empty(&nfsi->open_files)) { 631 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags); 632 set_bit(NFS_INO_FORCE_READDIR, &nfsi->flags); 633 } 634 } 635 636 static 637 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry, 638 unsigned long dir_verifier) 639 { 640 struct qstr filename = QSTR_INIT(entry->name, entry->len); 641 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 642 struct dentry *dentry; 643 struct dentry *alias; 644 struct inode *inode; 645 int status; 646 647 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID)) 648 return; 649 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID)) 650 return; 651 if (filename.len == 0) 652 return; 653 /* Validate that the name doesn't contain any illegal '\0' */ 654 if (strnlen(filename.name, filename.len) != filename.len) 655 return; 656 /* ...or '/' */ 657 if (strnchr(filename.name, filename.len, '/')) 658 return; 659 if (filename.name[0] == '.') { 660 if (filename.len == 1) 661 return; 662 if (filename.len == 2 && filename.name[1] == '.') 663 return; 664 } 665 filename.hash = full_name_hash(parent, filename.name, filename.len); 666 667 dentry = d_lookup(parent, &filename); 668 again: 669 if (!dentry) { 670 dentry = d_alloc_parallel(parent, &filename, &wq); 671 if (IS_ERR(dentry)) 672 return; 673 } 674 if (!d_in_lookup(dentry)) { 675 /* Is there a mountpoint here? If so, just exit */ 676 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid, 677 &entry->fattr->fsid)) 678 goto out; 679 if (nfs_same_file(dentry, entry)) { 680 if (!entry->fh->size) 681 goto out; 682 nfs_set_verifier(dentry, dir_verifier); 683 status = nfs_refresh_inode(d_inode(dentry), entry->fattr); 684 if (!status) 685 nfs_setsecurity(d_inode(dentry), entry->fattr); 686 goto out; 687 } else { 688 d_invalidate(dentry); 689 dput(dentry); 690 dentry = NULL; 691 goto again; 692 } 693 } 694 if (!entry->fh->size) { 695 d_lookup_done(dentry); 696 goto out; 697 } 698 699 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr); 700 alias = d_splice_alias(inode, dentry); 701 d_lookup_done(dentry); 702 if (alias) { 703 if (IS_ERR(alias)) 704 goto out; 705 dput(dentry); 706 dentry = alias; 707 } 708 nfs_set_verifier(dentry, dir_verifier); 709 out: 710 dput(dentry); 711 } 712 713 /* Perform conversion from xdr to cache array */ 714 static int nfs_readdir_page_filler(struct nfs_readdir_descriptor *desc, 715 struct nfs_entry *entry, 716 struct page **xdr_pages, 717 unsigned int buflen, 718 struct page **arrays, 719 size_t narrays) 720 { 721 struct address_space *mapping = desc->file->f_mapping; 722 struct xdr_stream stream; 723 struct xdr_buf buf; 724 struct page *scratch, *new, *page = *arrays; 725 int status; 726 727 scratch = alloc_page(GFP_KERNEL); 728 if (scratch == NULL) 729 return -ENOMEM; 730 731 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen); 732 xdr_set_scratch_page(&stream, scratch); 733 734 do { 735 if (entry->fattr->label) 736 entry->fattr->label->len = NFS4_MAXLABELLEN; 737 738 status = xdr_decode(desc, entry, &stream); 739 if (status != 0) 740 break; 741 742 if (desc->plus) 743 nfs_prime_dcache(file_dentry(desc->file), entry, 744 desc->dir_verifier); 745 746 status = nfs_readdir_add_to_array(entry, page); 747 if (status != -ENOSPC) 748 continue; 749 750 if (page->mapping != mapping) { 751 if (!--narrays) 752 break; 753 new = nfs_readdir_page_array_alloc(entry->prev_cookie, 754 GFP_KERNEL); 755 if (!new) 756 break; 757 arrays++; 758 *arrays = page = new; 759 } else { 760 new = nfs_readdir_page_get_next(mapping, 761 page->index + 1, 762 entry->prev_cookie); 763 if (!new) 764 break; 765 if (page != *arrays) 766 nfs_readdir_page_unlock_and_put(page); 767 page = new; 768 } 769 status = nfs_readdir_add_to_array(entry, page); 770 } while (!status && !entry->eof); 771 772 switch (status) { 773 case -EBADCOOKIE: 774 if (entry->eof) { 775 nfs_readdir_page_set_eof(page); 776 status = 0; 777 } 778 break; 779 case -ENOSPC: 780 case -EAGAIN: 781 status = 0; 782 break; 783 } 784 785 if (page != *arrays) 786 nfs_readdir_page_unlock_and_put(page); 787 788 put_page(scratch); 789 return status; 790 } 791 792 static void nfs_readdir_free_pages(struct page **pages, size_t npages) 793 { 794 while (npages--) 795 put_page(pages[npages]); 796 kfree(pages); 797 } 798 799 /* 800 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call 801 * to nfs_readdir_free_pages() 802 */ 803 static struct page **nfs_readdir_alloc_pages(size_t npages) 804 { 805 struct page **pages; 806 size_t i; 807 808 pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL); 809 if (!pages) 810 return NULL; 811 for (i = 0; i < npages; i++) { 812 struct page *page = alloc_page(GFP_KERNEL); 813 if (page == NULL) 814 goto out_freepages; 815 pages[i] = page; 816 } 817 return pages; 818 819 out_freepages: 820 nfs_readdir_free_pages(pages, i); 821 return NULL; 822 } 823 824 static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc, 825 __be32 *verf_arg, __be32 *verf_res, 826 struct page **arrays, size_t narrays) 827 { 828 struct page **pages; 829 struct page *page = *arrays; 830 struct nfs_entry *entry; 831 size_t array_size; 832 struct inode *inode = file_inode(desc->file); 833 size_t dtsize = NFS_SERVER(inode)->dtsize; 834 int status = -ENOMEM; 835 836 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 837 if (!entry) 838 return -ENOMEM; 839 entry->cookie = nfs_readdir_page_last_cookie(page); 840 entry->fh = nfs_alloc_fhandle(); 841 entry->fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode)); 842 entry->server = NFS_SERVER(inode); 843 if (entry->fh == NULL || entry->fattr == NULL) 844 goto out; 845 846 array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT; 847 pages = nfs_readdir_alloc_pages(array_size); 848 if (!pages) 849 goto out; 850 851 do { 852 unsigned int pglen; 853 status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie, 854 pages, dtsize, 855 verf_res); 856 if (status < 0) 857 break; 858 859 pglen = status; 860 if (pglen == 0) { 861 nfs_readdir_page_set_eof(page); 862 break; 863 } 864 865 verf_arg = verf_res; 866 867 status = nfs_readdir_page_filler(desc, entry, pages, pglen, 868 arrays, narrays); 869 } while (!status && nfs_readdir_page_needs_filling(page)); 870 871 nfs_readdir_free_pages(pages, array_size); 872 out: 873 nfs_free_fattr(entry->fattr); 874 nfs_free_fhandle(entry->fh); 875 kfree(entry); 876 return status; 877 } 878 879 static void nfs_readdir_page_put(struct nfs_readdir_descriptor *desc) 880 { 881 put_page(desc->page); 882 desc->page = NULL; 883 } 884 885 static void 886 nfs_readdir_page_unlock_and_put_cached(struct nfs_readdir_descriptor *desc) 887 { 888 unlock_page(desc->page); 889 nfs_readdir_page_put(desc); 890 } 891 892 static struct page * 893 nfs_readdir_page_get_cached(struct nfs_readdir_descriptor *desc) 894 { 895 return nfs_readdir_page_get_locked(desc->file->f_mapping, 896 desc->page_index, 897 desc->last_cookie); 898 } 899 900 /* 901 * Returns 0 if desc->dir_cookie was found on page desc->page_index 902 * and locks the page to prevent removal from the page cache. 903 */ 904 static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc) 905 { 906 struct inode *inode = file_inode(desc->file); 907 struct nfs_inode *nfsi = NFS_I(inode); 908 __be32 verf[NFS_DIR_VERIFIER_SIZE]; 909 int res; 910 911 desc->page = nfs_readdir_page_get_cached(desc); 912 if (!desc->page) 913 return -ENOMEM; 914 if (nfs_readdir_page_needs_filling(desc->page)) { 915 res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf, 916 &desc->page, 1); 917 if (res < 0) { 918 nfs_readdir_page_unlock_and_put_cached(desc); 919 if (res == -EBADCOOKIE || res == -ENOTSYNC) { 920 invalidate_inode_pages2(desc->file->f_mapping); 921 desc->page_index = 0; 922 return -EAGAIN; 923 } 924 return res; 925 } 926 /* 927 * Set the cookie verifier if the page cache was empty 928 */ 929 if (desc->page_index == 0) 930 memcpy(nfsi->cookieverf, verf, 931 sizeof(nfsi->cookieverf)); 932 } 933 res = nfs_readdir_search_array(desc); 934 if (res == 0) 935 return 0; 936 nfs_readdir_page_unlock_and_put_cached(desc); 937 return res; 938 } 939 940 static bool nfs_readdir_dont_search_cache(struct nfs_readdir_descriptor *desc) 941 { 942 struct address_space *mapping = desc->file->f_mapping; 943 struct inode *dir = file_inode(desc->file); 944 unsigned int dtsize = NFS_SERVER(dir)->dtsize; 945 loff_t size = i_size_read(dir); 946 947 /* 948 * Default to uncached readdir if the page cache is empty, and 949 * we're looking for a non-zero cookie in a large directory. 950 */ 951 return desc->dir_cookie != 0 && mapping->nrpages == 0 && size > dtsize; 952 } 953 954 /* Search for desc->dir_cookie from the beginning of the page cache */ 955 static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc) 956 { 957 int res; 958 959 if (nfs_readdir_dont_search_cache(desc)) 960 return -EBADCOOKIE; 961 962 do { 963 if (desc->page_index == 0) { 964 desc->current_index = 0; 965 desc->prev_index = 0; 966 desc->last_cookie = 0; 967 } 968 res = find_and_lock_cache_page(desc); 969 } while (res == -EAGAIN); 970 return res; 971 } 972 973 /* 974 * Once we've found the start of the dirent within a page: fill 'er up... 975 */ 976 static void nfs_do_filldir(struct nfs_readdir_descriptor *desc, 977 const __be32 *verf) 978 { 979 struct file *file = desc->file; 980 struct nfs_cache_array *array; 981 unsigned int i = 0; 982 983 array = kmap(desc->page); 984 for (i = desc->cache_entry_index; i < array->size; i++) { 985 struct nfs_cache_array_entry *ent; 986 987 ent = &array->array[i]; 988 if (!dir_emit(desc->ctx, ent->name, ent->name_len, 989 nfs_compat_user_ino64(ent->ino), ent->d_type)) { 990 desc->eof = true; 991 break; 992 } 993 memcpy(desc->verf, verf, sizeof(desc->verf)); 994 if (i < (array->size-1)) 995 desc->dir_cookie = array->array[i+1].cookie; 996 else 997 desc->dir_cookie = array->last_cookie; 998 if (nfs_readdir_use_cookie(file)) 999 desc->ctx->pos = desc->dir_cookie; 1000 else 1001 desc->ctx->pos++; 1002 if (desc->duped != 0) 1003 desc->duped = 1; 1004 } 1005 if (array->page_is_eof) 1006 desc->eof = true; 1007 1008 kunmap(desc->page); 1009 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n", 1010 (unsigned long long)desc->dir_cookie); 1011 } 1012 1013 /* 1014 * If we cannot find a cookie in our cache, we suspect that this is 1015 * because it points to a deleted file, so we ask the server to return 1016 * whatever it thinks is the next entry. We then feed this to filldir. 1017 * If all goes well, we should then be able to find our way round the 1018 * cache on the next call to readdir_search_pagecache(); 1019 * 1020 * NOTE: we cannot add the anonymous page to the pagecache because 1021 * the data it contains might not be page aligned. Besides, 1022 * we should already have a complete representation of the 1023 * directory in the page cache by the time we get here. 1024 */ 1025 static int uncached_readdir(struct nfs_readdir_descriptor *desc) 1026 { 1027 struct page **arrays; 1028 size_t i, sz = 512; 1029 __be32 verf[NFS_DIR_VERIFIER_SIZE]; 1030 int status = -ENOMEM; 1031 1032 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n", 1033 (unsigned long long)desc->dir_cookie); 1034 1035 arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL); 1036 if (!arrays) 1037 goto out; 1038 arrays[0] = nfs_readdir_page_array_alloc(desc->dir_cookie, GFP_KERNEL); 1039 if (!arrays[0]) 1040 goto out; 1041 1042 desc->page_index = 0; 1043 desc->last_cookie = desc->dir_cookie; 1044 desc->duped = 0; 1045 1046 status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz); 1047 1048 for (i = 0; !desc->eof && i < sz && arrays[i]; i++) { 1049 desc->page = arrays[i]; 1050 nfs_do_filldir(desc, verf); 1051 } 1052 desc->page = NULL; 1053 1054 1055 for (i = 0; i < sz && arrays[i]; i++) 1056 nfs_readdir_page_array_free(arrays[i]); 1057 out: 1058 kfree(arrays); 1059 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status); 1060 return status; 1061 } 1062 1063 /* The file offset position represents the dirent entry number. A 1064 last cookie cache takes care of the common case of reading the 1065 whole directory. 1066 */ 1067 static int nfs_readdir(struct file *file, struct dir_context *ctx) 1068 { 1069 struct dentry *dentry = file_dentry(file); 1070 struct inode *inode = d_inode(dentry); 1071 struct nfs_inode *nfsi = NFS_I(inode); 1072 struct nfs_open_dir_context *dir_ctx = file->private_data; 1073 struct nfs_readdir_descriptor *desc; 1074 pgoff_t page_index; 1075 int res; 1076 1077 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n", 1078 file, (long long)ctx->pos); 1079 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS); 1080 1081 /* 1082 * ctx->pos points to the dirent entry number. 1083 * *desc->dir_cookie has the cookie for the next entry. We have 1084 * to either find the entry with the appropriate number or 1085 * revalidate the cookie. 1086 */ 1087 if (ctx->pos == 0 || nfs_attribute_cache_expired(inode)) { 1088 res = nfs_revalidate_mapping(inode, file->f_mapping); 1089 if (res < 0) 1090 goto out; 1091 } 1092 1093 res = -ENOMEM; 1094 desc = kzalloc(sizeof(*desc), GFP_KERNEL); 1095 if (!desc) 1096 goto out; 1097 desc->file = file; 1098 desc->ctx = ctx; 1099 desc->plus = nfs_use_readdirplus(inode, ctx); 1100 1101 spin_lock(&file->f_lock); 1102 desc->dir_cookie = dir_ctx->dir_cookie; 1103 desc->dup_cookie = dir_ctx->dup_cookie; 1104 desc->duped = dir_ctx->duped; 1105 page_index = dir_ctx->page_index; 1106 desc->attr_gencount = dir_ctx->attr_gencount; 1107 memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf)); 1108 spin_unlock(&file->f_lock); 1109 1110 if (test_and_clear_bit(NFS_INO_FORCE_READDIR, &nfsi->flags) && 1111 list_is_singular(&nfsi->open_files)) 1112 invalidate_mapping_pages(inode->i_mapping, page_index + 1, -1); 1113 1114 do { 1115 res = readdir_search_pagecache(desc); 1116 1117 if (res == -EBADCOOKIE) { 1118 res = 0; 1119 /* This means either end of directory */ 1120 if (desc->dir_cookie && !desc->eof) { 1121 /* Or that the server has 'lost' a cookie */ 1122 res = uncached_readdir(desc); 1123 if (res == 0) 1124 continue; 1125 if (res == -EBADCOOKIE || res == -ENOTSYNC) 1126 res = 0; 1127 } 1128 break; 1129 } 1130 if (res == -ETOOSMALL && desc->plus) { 1131 clear_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags); 1132 nfs_zap_caches(inode); 1133 desc->page_index = 0; 1134 desc->plus = false; 1135 desc->eof = false; 1136 continue; 1137 } 1138 if (res < 0) 1139 break; 1140 1141 nfs_do_filldir(desc, nfsi->cookieverf); 1142 nfs_readdir_page_unlock_and_put_cached(desc); 1143 } while (!desc->eof); 1144 1145 spin_lock(&file->f_lock); 1146 dir_ctx->dir_cookie = desc->dir_cookie; 1147 dir_ctx->dup_cookie = desc->dup_cookie; 1148 dir_ctx->duped = desc->duped; 1149 dir_ctx->attr_gencount = desc->attr_gencount; 1150 dir_ctx->page_index = desc->page_index; 1151 memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf)); 1152 spin_unlock(&file->f_lock); 1153 1154 kfree(desc); 1155 1156 out: 1157 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res); 1158 return res; 1159 } 1160 1161 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence) 1162 { 1163 struct nfs_open_dir_context *dir_ctx = filp->private_data; 1164 1165 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n", 1166 filp, offset, whence); 1167 1168 switch (whence) { 1169 default: 1170 return -EINVAL; 1171 case SEEK_SET: 1172 if (offset < 0) 1173 return -EINVAL; 1174 spin_lock(&filp->f_lock); 1175 break; 1176 case SEEK_CUR: 1177 if (offset == 0) 1178 return filp->f_pos; 1179 spin_lock(&filp->f_lock); 1180 offset += filp->f_pos; 1181 if (offset < 0) { 1182 spin_unlock(&filp->f_lock); 1183 return -EINVAL; 1184 } 1185 } 1186 if (offset != filp->f_pos) { 1187 filp->f_pos = offset; 1188 if (nfs_readdir_use_cookie(filp)) 1189 dir_ctx->dir_cookie = offset; 1190 else 1191 dir_ctx->dir_cookie = 0; 1192 if (offset == 0) 1193 memset(dir_ctx->verf, 0, sizeof(dir_ctx->verf)); 1194 dir_ctx->duped = 0; 1195 } 1196 spin_unlock(&filp->f_lock); 1197 return offset; 1198 } 1199 1200 /* 1201 * All directory operations under NFS are synchronous, so fsync() 1202 * is a dummy operation. 1203 */ 1204 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end, 1205 int datasync) 1206 { 1207 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync); 1208 1209 nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC); 1210 return 0; 1211 } 1212 1213 /** 1214 * nfs_force_lookup_revalidate - Mark the directory as having changed 1215 * @dir: pointer to directory inode 1216 * 1217 * This forces the revalidation code in nfs_lookup_revalidate() to do a 1218 * full lookup on all child dentries of 'dir' whenever a change occurs 1219 * on the server that might have invalidated our dcache. 1220 * 1221 * Note that we reserve bit '0' as a tag to let us know when a dentry 1222 * was revalidated while holding a delegation on its inode. 1223 * 1224 * The caller should be holding dir->i_lock 1225 */ 1226 void nfs_force_lookup_revalidate(struct inode *dir) 1227 { 1228 NFS_I(dir)->cache_change_attribute += 2; 1229 } 1230 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate); 1231 1232 /** 1233 * nfs_verify_change_attribute - Detects NFS remote directory changes 1234 * @dir: pointer to parent directory inode 1235 * @verf: previously saved change attribute 1236 * 1237 * Return "false" if the verifiers doesn't match the change attribute. 1238 * This would usually indicate that the directory contents have changed on 1239 * the server, and that any dentries need revalidating. 1240 */ 1241 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf) 1242 { 1243 return (verf & ~1UL) == nfs_save_change_attribute(dir); 1244 } 1245 1246 static void nfs_set_verifier_delegated(unsigned long *verf) 1247 { 1248 *verf |= 1UL; 1249 } 1250 1251 #if IS_ENABLED(CONFIG_NFS_V4) 1252 static void nfs_unset_verifier_delegated(unsigned long *verf) 1253 { 1254 *verf &= ~1UL; 1255 } 1256 #endif /* IS_ENABLED(CONFIG_NFS_V4) */ 1257 1258 static bool nfs_test_verifier_delegated(unsigned long verf) 1259 { 1260 return verf & 1; 1261 } 1262 1263 static bool nfs_verifier_is_delegated(struct dentry *dentry) 1264 { 1265 return nfs_test_verifier_delegated(dentry->d_time); 1266 } 1267 1268 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf) 1269 { 1270 struct inode *inode = d_inode(dentry); 1271 struct inode *dir = d_inode(dentry->d_parent); 1272 1273 if (!nfs_verify_change_attribute(dir, verf)) 1274 return; 1275 if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) 1276 nfs_set_verifier_delegated(&verf); 1277 dentry->d_time = verf; 1278 } 1279 1280 /** 1281 * nfs_set_verifier - save a parent directory verifier in the dentry 1282 * @dentry: pointer to dentry 1283 * @verf: verifier to save 1284 * 1285 * Saves the parent directory verifier in @dentry. If the inode has 1286 * a delegation, we also tag the dentry as having been revalidated 1287 * while holding a delegation so that we know we don't have to 1288 * look it up again after a directory change. 1289 */ 1290 void nfs_set_verifier(struct dentry *dentry, unsigned long verf) 1291 { 1292 1293 spin_lock(&dentry->d_lock); 1294 nfs_set_verifier_locked(dentry, verf); 1295 spin_unlock(&dentry->d_lock); 1296 } 1297 EXPORT_SYMBOL_GPL(nfs_set_verifier); 1298 1299 #if IS_ENABLED(CONFIG_NFS_V4) 1300 /** 1301 * nfs_clear_verifier_delegated - clear the dir verifier delegation tag 1302 * @inode: pointer to inode 1303 * 1304 * Iterates through the dentries in the inode alias list and clears 1305 * the tag used to indicate that the dentry has been revalidated 1306 * while holding a delegation. 1307 * This function is intended for use when the delegation is being 1308 * returned or revoked. 1309 */ 1310 void nfs_clear_verifier_delegated(struct inode *inode) 1311 { 1312 struct dentry *alias; 1313 1314 if (!inode) 1315 return; 1316 spin_lock(&inode->i_lock); 1317 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 1318 spin_lock(&alias->d_lock); 1319 nfs_unset_verifier_delegated(&alias->d_time); 1320 spin_unlock(&alias->d_lock); 1321 } 1322 spin_unlock(&inode->i_lock); 1323 } 1324 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated); 1325 #endif /* IS_ENABLED(CONFIG_NFS_V4) */ 1326 1327 /* 1328 * A check for whether or not the parent directory has changed. 1329 * In the case it has, we assume that the dentries are untrustworthy 1330 * and may need to be looked up again. 1331 * If rcu_walk prevents us from performing a full check, return 0. 1332 */ 1333 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry, 1334 int rcu_walk) 1335 { 1336 if (IS_ROOT(dentry)) 1337 return 1; 1338 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE) 1339 return 0; 1340 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 1341 return 0; 1342 /* Revalidate nfsi->cache_change_attribute before we declare a match */ 1343 if (nfs_mapping_need_revalidate_inode(dir)) { 1344 if (rcu_walk) 1345 return 0; 1346 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0) 1347 return 0; 1348 } 1349 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 1350 return 0; 1351 return 1; 1352 } 1353 1354 /* 1355 * Use intent information to check whether or not we're going to do 1356 * an O_EXCL create using this path component. 1357 */ 1358 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags) 1359 { 1360 if (NFS_PROTO(dir)->version == 2) 1361 return 0; 1362 return flags & LOOKUP_EXCL; 1363 } 1364 1365 /* 1366 * Inode and filehandle revalidation for lookups. 1367 * 1368 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL, 1369 * or if the intent information indicates that we're about to open this 1370 * particular file and the "nocto" mount flag is not set. 1371 * 1372 */ 1373 static 1374 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags) 1375 { 1376 struct nfs_server *server = NFS_SERVER(inode); 1377 int ret; 1378 1379 if (IS_AUTOMOUNT(inode)) 1380 return 0; 1381 1382 if (flags & LOOKUP_OPEN) { 1383 switch (inode->i_mode & S_IFMT) { 1384 case S_IFREG: 1385 /* A NFSv4 OPEN will revalidate later */ 1386 if (server->caps & NFS_CAP_ATOMIC_OPEN) 1387 goto out; 1388 fallthrough; 1389 case S_IFDIR: 1390 if (server->flags & NFS_MOUNT_NOCTO) 1391 break; 1392 /* NFS close-to-open cache consistency validation */ 1393 goto out_force; 1394 } 1395 } 1396 1397 /* VFS wants an on-the-wire revalidation */ 1398 if (flags & LOOKUP_REVAL) 1399 goto out_force; 1400 out: 1401 return (inode->i_nlink == 0) ? -ESTALE : 0; 1402 out_force: 1403 if (flags & LOOKUP_RCU) 1404 return -ECHILD; 1405 ret = __nfs_revalidate_inode(server, inode); 1406 if (ret != 0) 1407 return ret; 1408 goto out; 1409 } 1410 1411 static void nfs_mark_dir_for_revalidate(struct inode *inode) 1412 { 1413 spin_lock(&inode->i_lock); 1414 nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE); 1415 spin_unlock(&inode->i_lock); 1416 } 1417 1418 /* 1419 * We judge how long we want to trust negative 1420 * dentries by looking at the parent inode mtime. 1421 * 1422 * If parent mtime has changed, we revalidate, else we wait for a 1423 * period corresponding to the parent's attribute cache timeout value. 1424 * 1425 * If LOOKUP_RCU prevents us from performing a full check, return 1 1426 * suggesting a reval is needed. 1427 * 1428 * Note that when creating a new file, or looking up a rename target, 1429 * then it shouldn't be necessary to revalidate a negative dentry. 1430 */ 1431 static inline 1432 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry, 1433 unsigned int flags) 1434 { 1435 if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET)) 1436 return 0; 1437 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG) 1438 return 1; 1439 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU); 1440 } 1441 1442 static int 1443 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry, 1444 struct inode *inode, int error) 1445 { 1446 switch (error) { 1447 case 1: 1448 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n", 1449 __func__, dentry); 1450 return 1; 1451 case 0: 1452 /* 1453 * We can't d_drop the root of a disconnected tree: 1454 * its d_hash is on the s_anon list and d_drop() would hide 1455 * it from shrink_dcache_for_unmount(), leading to busy 1456 * inodes on unmount and further oopses. 1457 */ 1458 if (inode && IS_ROOT(dentry)) 1459 return 1; 1460 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n", 1461 __func__, dentry); 1462 return 0; 1463 } 1464 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n", 1465 __func__, dentry, error); 1466 return error; 1467 } 1468 1469 static int 1470 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry, 1471 unsigned int flags) 1472 { 1473 int ret = 1; 1474 if (nfs_neg_need_reval(dir, dentry, flags)) { 1475 if (flags & LOOKUP_RCU) 1476 return -ECHILD; 1477 ret = 0; 1478 } 1479 return nfs_lookup_revalidate_done(dir, dentry, NULL, ret); 1480 } 1481 1482 static int 1483 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry, 1484 struct inode *inode) 1485 { 1486 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1487 return nfs_lookup_revalidate_done(dir, dentry, inode, 1); 1488 } 1489 1490 static int 1491 nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry, 1492 struct inode *inode) 1493 { 1494 struct nfs_fh *fhandle; 1495 struct nfs_fattr *fattr; 1496 unsigned long dir_verifier; 1497 int ret; 1498 1499 ret = -ENOMEM; 1500 fhandle = nfs_alloc_fhandle(); 1501 fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode)); 1502 if (fhandle == NULL || fattr == NULL) 1503 goto out; 1504 1505 dir_verifier = nfs_save_change_attribute(dir); 1506 ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr); 1507 if (ret < 0) { 1508 switch (ret) { 1509 case -ESTALE: 1510 case -ENOENT: 1511 ret = 0; 1512 break; 1513 case -ETIMEDOUT: 1514 if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL) 1515 ret = 1; 1516 } 1517 goto out; 1518 } 1519 ret = 0; 1520 if (nfs_compare_fh(NFS_FH(inode), fhandle)) 1521 goto out; 1522 if (nfs_refresh_inode(inode, fattr) < 0) 1523 goto out; 1524 1525 nfs_setsecurity(inode, fattr); 1526 nfs_set_verifier(dentry, dir_verifier); 1527 1528 /* set a readdirplus hint that we had a cache miss */ 1529 nfs_force_use_readdirplus(dir); 1530 ret = 1; 1531 out: 1532 nfs_free_fattr(fattr); 1533 nfs_free_fhandle(fhandle); 1534 1535 /* 1536 * If the lookup failed despite the dentry change attribute being 1537 * a match, then we should revalidate the directory cache. 1538 */ 1539 if (!ret && nfs_verify_change_attribute(dir, dentry->d_time)) 1540 nfs_mark_dir_for_revalidate(dir); 1541 return nfs_lookup_revalidate_done(dir, dentry, inode, ret); 1542 } 1543 1544 /* 1545 * This is called every time the dcache has a lookup hit, 1546 * and we should check whether we can really trust that 1547 * lookup. 1548 * 1549 * NOTE! The hit can be a negative hit too, don't assume 1550 * we have an inode! 1551 * 1552 * If the parent directory is seen to have changed, we throw out the 1553 * cached dentry and do a new lookup. 1554 */ 1555 static int 1556 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry, 1557 unsigned int flags) 1558 { 1559 struct inode *inode; 1560 int error; 1561 1562 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE); 1563 inode = d_inode(dentry); 1564 1565 if (!inode) 1566 return nfs_lookup_revalidate_negative(dir, dentry, flags); 1567 1568 if (is_bad_inode(inode)) { 1569 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1570 __func__, dentry); 1571 goto out_bad; 1572 } 1573 1574 if (nfs_verifier_is_delegated(dentry)) 1575 return nfs_lookup_revalidate_delegated(dir, dentry, inode); 1576 1577 /* Force a full look up iff the parent directory has changed */ 1578 if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) && 1579 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) { 1580 error = nfs_lookup_verify_inode(inode, flags); 1581 if (error) { 1582 if (error == -ESTALE) 1583 nfs_mark_dir_for_revalidate(dir); 1584 goto out_bad; 1585 } 1586 nfs_advise_use_readdirplus(dir); 1587 goto out_valid; 1588 } 1589 1590 if (flags & LOOKUP_RCU) 1591 return -ECHILD; 1592 1593 if (NFS_STALE(inode)) 1594 goto out_bad; 1595 1596 trace_nfs_lookup_revalidate_enter(dir, dentry, flags); 1597 error = nfs_lookup_revalidate_dentry(dir, dentry, inode); 1598 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error); 1599 return error; 1600 out_valid: 1601 return nfs_lookup_revalidate_done(dir, dentry, inode, 1); 1602 out_bad: 1603 if (flags & LOOKUP_RCU) 1604 return -ECHILD; 1605 return nfs_lookup_revalidate_done(dir, dentry, inode, 0); 1606 } 1607 1608 static int 1609 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags, 1610 int (*reval)(struct inode *, struct dentry *, unsigned int)) 1611 { 1612 struct dentry *parent; 1613 struct inode *dir; 1614 int ret; 1615 1616 if (flags & LOOKUP_RCU) { 1617 parent = READ_ONCE(dentry->d_parent); 1618 dir = d_inode_rcu(parent); 1619 if (!dir) 1620 return -ECHILD; 1621 ret = reval(dir, dentry, flags); 1622 if (parent != READ_ONCE(dentry->d_parent)) 1623 return -ECHILD; 1624 } else { 1625 parent = dget_parent(dentry); 1626 ret = reval(d_inode(parent), dentry, flags); 1627 dput(parent); 1628 } 1629 return ret; 1630 } 1631 1632 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1633 { 1634 return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate); 1635 } 1636 1637 /* 1638 * A weaker form of d_revalidate for revalidating just the d_inode(dentry) 1639 * when we don't really care about the dentry name. This is called when a 1640 * pathwalk ends on a dentry that was not found via a normal lookup in the 1641 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals). 1642 * 1643 * In this situation, we just want to verify that the inode itself is OK 1644 * since the dentry might have changed on the server. 1645 */ 1646 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags) 1647 { 1648 struct inode *inode = d_inode(dentry); 1649 int error = 0; 1650 1651 /* 1652 * I believe we can only get a negative dentry here in the case of a 1653 * procfs-style symlink. Just assume it's correct for now, but we may 1654 * eventually need to do something more here. 1655 */ 1656 if (!inode) { 1657 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n", 1658 __func__, dentry); 1659 return 1; 1660 } 1661 1662 if (is_bad_inode(inode)) { 1663 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1664 __func__, dentry); 1665 return 0; 1666 } 1667 1668 error = nfs_lookup_verify_inode(inode, flags); 1669 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n", 1670 __func__, inode->i_ino, error ? "invalid" : "valid"); 1671 return !error; 1672 } 1673 1674 /* 1675 * This is called from dput() when d_count is going to 0. 1676 */ 1677 static int nfs_dentry_delete(const struct dentry *dentry) 1678 { 1679 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n", 1680 dentry, dentry->d_flags); 1681 1682 /* Unhash any dentry with a stale inode */ 1683 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry))) 1684 return 1; 1685 1686 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1687 /* Unhash it, so that ->d_iput() would be called */ 1688 return 1; 1689 } 1690 if (!(dentry->d_sb->s_flags & SB_ACTIVE)) { 1691 /* Unhash it, so that ancestors of killed async unlink 1692 * files will be cleaned up during umount */ 1693 return 1; 1694 } 1695 return 0; 1696 1697 } 1698 1699 /* Ensure that we revalidate inode->i_nlink */ 1700 static void nfs_drop_nlink(struct inode *inode) 1701 { 1702 spin_lock(&inode->i_lock); 1703 /* drop the inode if we're reasonably sure this is the last link */ 1704 if (inode->i_nlink > 0) 1705 drop_nlink(inode); 1706 NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter(); 1707 nfs_set_cache_invalid( 1708 inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME | 1709 NFS_INO_INVALID_NLINK); 1710 spin_unlock(&inode->i_lock); 1711 } 1712 1713 /* 1714 * Called when the dentry loses inode. 1715 * We use it to clean up silly-renamed files. 1716 */ 1717 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode) 1718 { 1719 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1720 nfs_complete_unlink(dentry, inode); 1721 nfs_drop_nlink(inode); 1722 } 1723 iput(inode); 1724 } 1725 1726 static void nfs_d_release(struct dentry *dentry) 1727 { 1728 /* free cached devname value, if it survived that far */ 1729 if (unlikely(dentry->d_fsdata)) { 1730 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1731 WARN_ON(1); 1732 else 1733 kfree(dentry->d_fsdata); 1734 } 1735 } 1736 1737 const struct dentry_operations nfs_dentry_operations = { 1738 .d_revalidate = nfs_lookup_revalidate, 1739 .d_weak_revalidate = nfs_weak_revalidate, 1740 .d_delete = nfs_dentry_delete, 1741 .d_iput = nfs_dentry_iput, 1742 .d_automount = nfs_d_automount, 1743 .d_release = nfs_d_release, 1744 }; 1745 EXPORT_SYMBOL_GPL(nfs_dentry_operations); 1746 1747 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 1748 { 1749 struct dentry *res; 1750 struct inode *inode = NULL; 1751 struct nfs_fh *fhandle = NULL; 1752 struct nfs_fattr *fattr = NULL; 1753 unsigned long dir_verifier; 1754 int error; 1755 1756 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry); 1757 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP); 1758 1759 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen)) 1760 return ERR_PTR(-ENAMETOOLONG); 1761 1762 /* 1763 * If we're doing an exclusive create, optimize away the lookup 1764 * but don't hash the dentry. 1765 */ 1766 if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET) 1767 return NULL; 1768 1769 res = ERR_PTR(-ENOMEM); 1770 fhandle = nfs_alloc_fhandle(); 1771 fattr = nfs_alloc_fattr_with_label(NFS_SERVER(dir)); 1772 if (fhandle == NULL || fattr == NULL) 1773 goto out; 1774 1775 dir_verifier = nfs_save_change_attribute(dir); 1776 trace_nfs_lookup_enter(dir, dentry, flags); 1777 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr); 1778 if (error == -ENOENT) 1779 goto no_entry; 1780 if (error < 0) { 1781 res = ERR_PTR(error); 1782 goto out; 1783 } 1784 inode = nfs_fhget(dentry->d_sb, fhandle, fattr); 1785 res = ERR_CAST(inode); 1786 if (IS_ERR(res)) 1787 goto out; 1788 1789 /* Notify readdir to use READDIRPLUS */ 1790 nfs_force_use_readdirplus(dir); 1791 1792 no_entry: 1793 res = d_splice_alias(inode, dentry); 1794 if (res != NULL) { 1795 if (IS_ERR(res)) 1796 goto out; 1797 dentry = res; 1798 } 1799 nfs_set_verifier(dentry, dir_verifier); 1800 out: 1801 trace_nfs_lookup_exit(dir, dentry, flags, PTR_ERR_OR_ZERO(res)); 1802 nfs_free_fattr(fattr); 1803 nfs_free_fhandle(fhandle); 1804 return res; 1805 } 1806 EXPORT_SYMBOL_GPL(nfs_lookup); 1807 1808 #if IS_ENABLED(CONFIG_NFS_V4) 1809 static int nfs4_lookup_revalidate(struct dentry *, unsigned int); 1810 1811 const struct dentry_operations nfs4_dentry_operations = { 1812 .d_revalidate = nfs4_lookup_revalidate, 1813 .d_weak_revalidate = nfs_weak_revalidate, 1814 .d_delete = nfs_dentry_delete, 1815 .d_iput = nfs_dentry_iput, 1816 .d_automount = nfs_d_automount, 1817 .d_release = nfs_d_release, 1818 }; 1819 EXPORT_SYMBOL_GPL(nfs4_dentry_operations); 1820 1821 static fmode_t flags_to_mode(int flags) 1822 { 1823 fmode_t res = (__force fmode_t)flags & FMODE_EXEC; 1824 if ((flags & O_ACCMODE) != O_WRONLY) 1825 res |= FMODE_READ; 1826 if ((flags & O_ACCMODE) != O_RDONLY) 1827 res |= FMODE_WRITE; 1828 return res; 1829 } 1830 1831 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp) 1832 { 1833 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp); 1834 } 1835 1836 static int do_open(struct inode *inode, struct file *filp) 1837 { 1838 nfs_fscache_open_file(inode, filp); 1839 return 0; 1840 } 1841 1842 static int nfs_finish_open(struct nfs_open_context *ctx, 1843 struct dentry *dentry, 1844 struct file *file, unsigned open_flags) 1845 { 1846 int err; 1847 1848 err = finish_open(file, dentry, do_open); 1849 if (err) 1850 goto out; 1851 if (S_ISREG(file->f_path.dentry->d_inode->i_mode)) 1852 nfs_file_set_open_context(file, ctx); 1853 else 1854 err = -EOPENSTALE; 1855 out: 1856 return err; 1857 } 1858 1859 int nfs_atomic_open(struct inode *dir, struct dentry *dentry, 1860 struct file *file, unsigned open_flags, 1861 umode_t mode) 1862 { 1863 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1864 struct nfs_open_context *ctx; 1865 struct dentry *res; 1866 struct iattr attr = { .ia_valid = ATTR_OPEN }; 1867 struct inode *inode; 1868 unsigned int lookup_flags = 0; 1869 bool switched = false; 1870 int created = 0; 1871 int err; 1872 1873 /* Expect a negative dentry */ 1874 BUG_ON(d_inode(dentry)); 1875 1876 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n", 1877 dir->i_sb->s_id, dir->i_ino, dentry); 1878 1879 err = nfs_check_flags(open_flags); 1880 if (err) 1881 return err; 1882 1883 /* NFS only supports OPEN on regular files */ 1884 if ((open_flags & O_DIRECTORY)) { 1885 if (!d_in_lookup(dentry)) { 1886 /* 1887 * Hashed negative dentry with O_DIRECTORY: dentry was 1888 * revalidated and is fine, no need to perform lookup 1889 * again 1890 */ 1891 return -ENOENT; 1892 } 1893 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY; 1894 goto no_open; 1895 } 1896 1897 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 1898 return -ENAMETOOLONG; 1899 1900 if (open_flags & O_CREAT) { 1901 struct nfs_server *server = NFS_SERVER(dir); 1902 1903 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK)) 1904 mode &= ~current_umask(); 1905 1906 attr.ia_valid |= ATTR_MODE; 1907 attr.ia_mode = mode; 1908 } 1909 if (open_flags & O_TRUNC) { 1910 attr.ia_valid |= ATTR_SIZE; 1911 attr.ia_size = 0; 1912 } 1913 1914 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) { 1915 d_drop(dentry); 1916 switched = true; 1917 dentry = d_alloc_parallel(dentry->d_parent, 1918 &dentry->d_name, &wq); 1919 if (IS_ERR(dentry)) 1920 return PTR_ERR(dentry); 1921 if (unlikely(!d_in_lookup(dentry))) 1922 return finish_no_open(file, dentry); 1923 } 1924 1925 ctx = create_nfs_open_context(dentry, open_flags, file); 1926 err = PTR_ERR(ctx); 1927 if (IS_ERR(ctx)) 1928 goto out; 1929 1930 trace_nfs_atomic_open_enter(dir, ctx, open_flags); 1931 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created); 1932 if (created) 1933 file->f_mode |= FMODE_CREATED; 1934 if (IS_ERR(inode)) { 1935 err = PTR_ERR(inode); 1936 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 1937 put_nfs_open_context(ctx); 1938 d_drop(dentry); 1939 switch (err) { 1940 case -ENOENT: 1941 d_splice_alias(NULL, dentry); 1942 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1943 break; 1944 case -EISDIR: 1945 case -ENOTDIR: 1946 goto no_open; 1947 case -ELOOP: 1948 if (!(open_flags & O_NOFOLLOW)) 1949 goto no_open; 1950 break; 1951 /* case -EINVAL: */ 1952 default: 1953 break; 1954 } 1955 goto out; 1956 } 1957 1958 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags); 1959 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 1960 put_nfs_open_context(ctx); 1961 out: 1962 if (unlikely(switched)) { 1963 d_lookup_done(dentry); 1964 dput(dentry); 1965 } 1966 return err; 1967 1968 no_open: 1969 res = nfs_lookup(dir, dentry, lookup_flags); 1970 if (switched) { 1971 d_lookup_done(dentry); 1972 if (!res) 1973 res = dentry; 1974 else 1975 dput(dentry); 1976 } 1977 if (IS_ERR(res)) 1978 return PTR_ERR(res); 1979 return finish_no_open(file, res); 1980 } 1981 EXPORT_SYMBOL_GPL(nfs_atomic_open); 1982 1983 static int 1984 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry, 1985 unsigned int flags) 1986 { 1987 struct inode *inode; 1988 1989 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY)) 1990 goto full_reval; 1991 if (d_mountpoint(dentry)) 1992 goto full_reval; 1993 1994 inode = d_inode(dentry); 1995 1996 /* We can't create new files in nfs_open_revalidate(), so we 1997 * optimize away revalidation of negative dentries. 1998 */ 1999 if (inode == NULL) 2000 goto full_reval; 2001 2002 if (nfs_verifier_is_delegated(dentry)) 2003 return nfs_lookup_revalidate_delegated(dir, dentry, inode); 2004 2005 /* NFS only supports OPEN on regular files */ 2006 if (!S_ISREG(inode->i_mode)) 2007 goto full_reval; 2008 2009 /* We cannot do exclusive creation on a positive dentry */ 2010 if (flags & (LOOKUP_EXCL | LOOKUP_REVAL)) 2011 goto reval_dentry; 2012 2013 /* Check if the directory changed */ 2014 if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) 2015 goto reval_dentry; 2016 2017 /* Let f_op->open() actually open (and revalidate) the file */ 2018 return 1; 2019 reval_dentry: 2020 if (flags & LOOKUP_RCU) 2021 return -ECHILD; 2022 return nfs_lookup_revalidate_dentry(dir, dentry, inode); 2023 2024 full_reval: 2025 return nfs_do_lookup_revalidate(dir, dentry, flags); 2026 } 2027 2028 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags) 2029 { 2030 return __nfs_lookup_revalidate(dentry, flags, 2031 nfs4_do_lookup_revalidate); 2032 } 2033 2034 #endif /* CONFIG_NFSV4 */ 2035 2036 struct dentry * 2037 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle, 2038 struct nfs_fattr *fattr) 2039 { 2040 struct dentry *parent = dget_parent(dentry); 2041 struct inode *dir = d_inode(parent); 2042 struct inode *inode; 2043 struct dentry *d; 2044 int error; 2045 2046 d_drop(dentry); 2047 2048 if (fhandle->size == 0) { 2049 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr); 2050 if (error) 2051 goto out_error; 2052 } 2053 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2054 if (!(fattr->valid & NFS_ATTR_FATTR)) { 2055 struct nfs_server *server = NFS_SB(dentry->d_sb); 2056 error = server->nfs_client->rpc_ops->getattr(server, fhandle, 2057 fattr, NULL); 2058 if (error < 0) 2059 goto out_error; 2060 } 2061 inode = nfs_fhget(dentry->d_sb, fhandle, fattr); 2062 d = d_splice_alias(inode, dentry); 2063 out: 2064 dput(parent); 2065 return d; 2066 out_error: 2067 d = ERR_PTR(error); 2068 goto out; 2069 } 2070 EXPORT_SYMBOL_GPL(nfs_add_or_obtain); 2071 2072 /* 2073 * Code common to create, mkdir, and mknod. 2074 */ 2075 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle, 2076 struct nfs_fattr *fattr) 2077 { 2078 struct dentry *d; 2079 2080 d = nfs_add_or_obtain(dentry, fhandle, fattr); 2081 if (IS_ERR(d)) 2082 return PTR_ERR(d); 2083 2084 /* Callers don't care */ 2085 dput(d); 2086 return 0; 2087 } 2088 EXPORT_SYMBOL_GPL(nfs_instantiate); 2089 2090 /* 2091 * Following a failed create operation, we drop the dentry rather 2092 * than retain a negative dentry. This avoids a problem in the event 2093 * that the operation succeeded on the server, but an error in the 2094 * reply path made it appear to have failed. 2095 */ 2096 int nfs_create(struct user_namespace *mnt_userns, struct inode *dir, 2097 struct dentry *dentry, umode_t mode, bool excl) 2098 { 2099 struct iattr attr; 2100 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT; 2101 int error; 2102 2103 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n", 2104 dir->i_sb->s_id, dir->i_ino, dentry); 2105 2106 attr.ia_mode = mode; 2107 attr.ia_valid = ATTR_MODE; 2108 2109 trace_nfs_create_enter(dir, dentry, open_flags); 2110 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags); 2111 trace_nfs_create_exit(dir, dentry, open_flags, error); 2112 if (error != 0) 2113 goto out_err; 2114 return 0; 2115 out_err: 2116 d_drop(dentry); 2117 return error; 2118 } 2119 EXPORT_SYMBOL_GPL(nfs_create); 2120 2121 /* 2122 * See comments for nfs_proc_create regarding failed operations. 2123 */ 2124 int 2125 nfs_mknod(struct user_namespace *mnt_userns, struct inode *dir, 2126 struct dentry *dentry, umode_t mode, dev_t rdev) 2127 { 2128 struct iattr attr; 2129 int status; 2130 2131 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n", 2132 dir->i_sb->s_id, dir->i_ino, dentry); 2133 2134 attr.ia_mode = mode; 2135 attr.ia_valid = ATTR_MODE; 2136 2137 trace_nfs_mknod_enter(dir, dentry); 2138 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev); 2139 trace_nfs_mknod_exit(dir, dentry, status); 2140 if (status != 0) 2141 goto out_err; 2142 return 0; 2143 out_err: 2144 d_drop(dentry); 2145 return status; 2146 } 2147 EXPORT_SYMBOL_GPL(nfs_mknod); 2148 2149 /* 2150 * See comments for nfs_proc_create regarding failed operations. 2151 */ 2152 int nfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 2153 struct dentry *dentry, umode_t mode) 2154 { 2155 struct iattr attr; 2156 int error; 2157 2158 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n", 2159 dir->i_sb->s_id, dir->i_ino, dentry); 2160 2161 attr.ia_valid = ATTR_MODE; 2162 attr.ia_mode = mode | S_IFDIR; 2163 2164 trace_nfs_mkdir_enter(dir, dentry); 2165 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr); 2166 trace_nfs_mkdir_exit(dir, dentry, error); 2167 if (error != 0) 2168 goto out_err; 2169 return 0; 2170 out_err: 2171 d_drop(dentry); 2172 return error; 2173 } 2174 EXPORT_SYMBOL_GPL(nfs_mkdir); 2175 2176 static void nfs_dentry_handle_enoent(struct dentry *dentry) 2177 { 2178 if (simple_positive(dentry)) 2179 d_delete(dentry); 2180 } 2181 2182 static void nfs_dentry_remove_handle_error(struct inode *dir, 2183 struct dentry *dentry, int error) 2184 { 2185 switch (error) { 2186 case -ENOENT: 2187 d_delete(dentry); 2188 fallthrough; 2189 case 0: 2190 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2191 } 2192 } 2193 2194 int nfs_rmdir(struct inode *dir, struct dentry *dentry) 2195 { 2196 int error; 2197 2198 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n", 2199 dir->i_sb->s_id, dir->i_ino, dentry); 2200 2201 trace_nfs_rmdir_enter(dir, dentry); 2202 if (d_really_is_positive(dentry)) { 2203 down_write(&NFS_I(d_inode(dentry))->rmdir_sem); 2204 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 2205 /* Ensure the VFS deletes this inode */ 2206 switch (error) { 2207 case 0: 2208 clear_nlink(d_inode(dentry)); 2209 break; 2210 case -ENOENT: 2211 nfs_dentry_handle_enoent(dentry); 2212 } 2213 up_write(&NFS_I(d_inode(dentry))->rmdir_sem); 2214 } else 2215 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 2216 nfs_dentry_remove_handle_error(dir, dentry, error); 2217 trace_nfs_rmdir_exit(dir, dentry, error); 2218 2219 return error; 2220 } 2221 EXPORT_SYMBOL_GPL(nfs_rmdir); 2222 2223 /* 2224 * Remove a file after making sure there are no pending writes, 2225 * and after checking that the file has only one user. 2226 * 2227 * We invalidate the attribute cache and free the inode prior to the operation 2228 * to avoid possible races if the server reuses the inode. 2229 */ 2230 static int nfs_safe_remove(struct dentry *dentry) 2231 { 2232 struct inode *dir = d_inode(dentry->d_parent); 2233 struct inode *inode = d_inode(dentry); 2234 int error = -EBUSY; 2235 2236 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry); 2237 2238 /* If the dentry was sillyrenamed, we simply call d_delete() */ 2239 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 2240 error = 0; 2241 goto out; 2242 } 2243 2244 trace_nfs_remove_enter(dir, dentry); 2245 if (inode != NULL) { 2246 error = NFS_PROTO(dir)->remove(dir, dentry); 2247 if (error == 0) 2248 nfs_drop_nlink(inode); 2249 } else 2250 error = NFS_PROTO(dir)->remove(dir, dentry); 2251 if (error == -ENOENT) 2252 nfs_dentry_handle_enoent(dentry); 2253 trace_nfs_remove_exit(dir, dentry, error); 2254 out: 2255 return error; 2256 } 2257 2258 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode 2259 * belongs to an active ".nfs..." file and we return -EBUSY. 2260 * 2261 * If sillyrename() returns 0, we do nothing, otherwise we unlink. 2262 */ 2263 int nfs_unlink(struct inode *dir, struct dentry *dentry) 2264 { 2265 int error; 2266 int need_rehash = 0; 2267 2268 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id, 2269 dir->i_ino, dentry); 2270 2271 trace_nfs_unlink_enter(dir, dentry); 2272 spin_lock(&dentry->d_lock); 2273 if (d_count(dentry) > 1) { 2274 spin_unlock(&dentry->d_lock); 2275 /* Start asynchronous writeout of the inode */ 2276 write_inode_now(d_inode(dentry), 0); 2277 error = nfs_sillyrename(dir, dentry); 2278 goto out; 2279 } 2280 if (!d_unhashed(dentry)) { 2281 __d_drop(dentry); 2282 need_rehash = 1; 2283 } 2284 spin_unlock(&dentry->d_lock); 2285 error = nfs_safe_remove(dentry); 2286 nfs_dentry_remove_handle_error(dir, dentry, error); 2287 if (need_rehash) 2288 d_rehash(dentry); 2289 out: 2290 trace_nfs_unlink_exit(dir, dentry, error); 2291 return error; 2292 } 2293 EXPORT_SYMBOL_GPL(nfs_unlink); 2294 2295 /* 2296 * To create a symbolic link, most file systems instantiate a new inode, 2297 * add a page to it containing the path, then write it out to the disk 2298 * using prepare_write/commit_write. 2299 * 2300 * Unfortunately the NFS client can't create the in-core inode first 2301 * because it needs a file handle to create an in-core inode (see 2302 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the 2303 * symlink request has completed on the server. 2304 * 2305 * So instead we allocate a raw page, copy the symname into it, then do 2306 * the SYMLINK request with the page as the buffer. If it succeeds, we 2307 * now have a new file handle and can instantiate an in-core NFS inode 2308 * and move the raw page into its mapping. 2309 */ 2310 int nfs_symlink(struct user_namespace *mnt_userns, struct inode *dir, 2311 struct dentry *dentry, const char *symname) 2312 { 2313 struct page *page; 2314 char *kaddr; 2315 struct iattr attr; 2316 unsigned int pathlen = strlen(symname); 2317 int error; 2318 2319 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id, 2320 dir->i_ino, dentry, symname); 2321 2322 if (pathlen > PAGE_SIZE) 2323 return -ENAMETOOLONG; 2324 2325 attr.ia_mode = S_IFLNK | S_IRWXUGO; 2326 attr.ia_valid = ATTR_MODE; 2327 2328 page = alloc_page(GFP_USER); 2329 if (!page) 2330 return -ENOMEM; 2331 2332 kaddr = page_address(page); 2333 memcpy(kaddr, symname, pathlen); 2334 if (pathlen < PAGE_SIZE) 2335 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen); 2336 2337 trace_nfs_symlink_enter(dir, dentry); 2338 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr); 2339 trace_nfs_symlink_exit(dir, dentry, error); 2340 if (error != 0) { 2341 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n", 2342 dir->i_sb->s_id, dir->i_ino, 2343 dentry, symname, error); 2344 d_drop(dentry); 2345 __free_page(page); 2346 return error; 2347 } 2348 2349 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2350 2351 /* 2352 * No big deal if we can't add this page to the page cache here. 2353 * READLINK will get the missing page from the server if needed. 2354 */ 2355 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0, 2356 GFP_KERNEL)) { 2357 SetPageUptodate(page); 2358 unlock_page(page); 2359 /* 2360 * add_to_page_cache_lru() grabs an extra page refcount. 2361 * Drop it here to avoid leaking this page later. 2362 */ 2363 put_page(page); 2364 } else 2365 __free_page(page); 2366 2367 return 0; 2368 } 2369 EXPORT_SYMBOL_GPL(nfs_symlink); 2370 2371 int 2372 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2373 { 2374 struct inode *inode = d_inode(old_dentry); 2375 int error; 2376 2377 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n", 2378 old_dentry, dentry); 2379 2380 trace_nfs_link_enter(inode, dir, dentry); 2381 d_drop(dentry); 2382 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name); 2383 if (error == 0) { 2384 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2385 ihold(inode); 2386 d_add(dentry, inode); 2387 } 2388 trace_nfs_link_exit(inode, dir, dentry, error); 2389 return error; 2390 } 2391 EXPORT_SYMBOL_GPL(nfs_link); 2392 2393 /* 2394 * RENAME 2395 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a 2396 * different file handle for the same inode after a rename (e.g. when 2397 * moving to a different directory). A fail-safe method to do so would 2398 * be to look up old_dir/old_name, create a link to new_dir/new_name and 2399 * rename the old file using the sillyrename stuff. This way, the original 2400 * file in old_dir will go away when the last process iput()s the inode. 2401 * 2402 * FIXED. 2403 * 2404 * It actually works quite well. One needs to have the possibility for 2405 * at least one ".nfs..." file in each directory the file ever gets 2406 * moved or linked to which happens automagically with the new 2407 * implementation that only depends on the dcache stuff instead of 2408 * using the inode layer 2409 * 2410 * Unfortunately, things are a little more complicated than indicated 2411 * above. For a cross-directory move, we want to make sure we can get 2412 * rid of the old inode after the operation. This means there must be 2413 * no pending writes (if it's a file), and the use count must be 1. 2414 * If these conditions are met, we can drop the dentries before doing 2415 * the rename. 2416 */ 2417 int nfs_rename(struct user_namespace *mnt_userns, struct inode *old_dir, 2418 struct dentry *old_dentry, struct inode *new_dir, 2419 struct dentry *new_dentry, unsigned int flags) 2420 { 2421 struct inode *old_inode = d_inode(old_dentry); 2422 struct inode *new_inode = d_inode(new_dentry); 2423 struct dentry *dentry = NULL, *rehash = NULL; 2424 struct rpc_task *task; 2425 int error = -EBUSY; 2426 2427 if (flags) 2428 return -EINVAL; 2429 2430 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n", 2431 old_dentry, new_dentry, 2432 d_count(new_dentry)); 2433 2434 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry); 2435 /* 2436 * For non-directories, check whether the target is busy and if so, 2437 * make a copy of the dentry and then do a silly-rename. If the 2438 * silly-rename succeeds, the copied dentry is hashed and becomes 2439 * the new target. 2440 */ 2441 if (new_inode && !S_ISDIR(new_inode->i_mode)) { 2442 /* 2443 * To prevent any new references to the target during the 2444 * rename, we unhash the dentry in advance. 2445 */ 2446 if (!d_unhashed(new_dentry)) { 2447 d_drop(new_dentry); 2448 rehash = new_dentry; 2449 } 2450 2451 if (d_count(new_dentry) > 2) { 2452 int err; 2453 2454 /* copy the target dentry's name */ 2455 dentry = d_alloc(new_dentry->d_parent, 2456 &new_dentry->d_name); 2457 if (!dentry) 2458 goto out; 2459 2460 /* silly-rename the existing target ... */ 2461 err = nfs_sillyrename(new_dir, new_dentry); 2462 if (err) 2463 goto out; 2464 2465 new_dentry = dentry; 2466 rehash = NULL; 2467 new_inode = NULL; 2468 } 2469 } 2470 2471 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL); 2472 if (IS_ERR(task)) { 2473 error = PTR_ERR(task); 2474 goto out; 2475 } 2476 2477 error = rpc_wait_for_completion_task(task); 2478 if (error != 0) { 2479 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1; 2480 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */ 2481 smp_wmb(); 2482 } else 2483 error = task->tk_status; 2484 rpc_put_task(task); 2485 /* Ensure the inode attributes are revalidated */ 2486 if (error == 0) { 2487 spin_lock(&old_inode->i_lock); 2488 NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter(); 2489 nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE | 2490 NFS_INO_INVALID_CTIME | 2491 NFS_INO_REVAL_FORCED); 2492 spin_unlock(&old_inode->i_lock); 2493 } 2494 out: 2495 if (rehash) 2496 d_rehash(rehash); 2497 trace_nfs_rename_exit(old_dir, old_dentry, 2498 new_dir, new_dentry, error); 2499 if (!error) { 2500 if (new_inode != NULL) 2501 nfs_drop_nlink(new_inode); 2502 /* 2503 * The d_move() should be here instead of in an async RPC completion 2504 * handler because we need the proper locks to move the dentry. If 2505 * we're interrupted by a signal, the async RPC completion handler 2506 * should mark the directories for revalidation. 2507 */ 2508 d_move(old_dentry, new_dentry); 2509 nfs_set_verifier(old_dentry, 2510 nfs_save_change_attribute(new_dir)); 2511 } else if (error == -ENOENT) 2512 nfs_dentry_handle_enoent(old_dentry); 2513 2514 /* new dentry created? */ 2515 if (dentry) 2516 dput(dentry); 2517 return error; 2518 } 2519 EXPORT_SYMBOL_GPL(nfs_rename); 2520 2521 static DEFINE_SPINLOCK(nfs_access_lru_lock); 2522 static LIST_HEAD(nfs_access_lru_list); 2523 static atomic_long_t nfs_access_nr_entries; 2524 2525 static unsigned long nfs_access_max_cachesize = 4*1024*1024; 2526 module_param(nfs_access_max_cachesize, ulong, 0644); 2527 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length"); 2528 2529 static void nfs_access_free_entry(struct nfs_access_entry *entry) 2530 { 2531 put_cred(entry->cred); 2532 kfree_rcu(entry, rcu_head); 2533 smp_mb__before_atomic(); 2534 atomic_long_dec(&nfs_access_nr_entries); 2535 smp_mb__after_atomic(); 2536 } 2537 2538 static void nfs_access_free_list(struct list_head *head) 2539 { 2540 struct nfs_access_entry *cache; 2541 2542 while (!list_empty(head)) { 2543 cache = list_entry(head->next, struct nfs_access_entry, lru); 2544 list_del(&cache->lru); 2545 nfs_access_free_entry(cache); 2546 } 2547 } 2548 2549 static unsigned long 2550 nfs_do_access_cache_scan(unsigned int nr_to_scan) 2551 { 2552 LIST_HEAD(head); 2553 struct nfs_inode *nfsi, *next; 2554 struct nfs_access_entry *cache; 2555 long freed = 0; 2556 2557 spin_lock(&nfs_access_lru_lock); 2558 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) { 2559 struct inode *inode; 2560 2561 if (nr_to_scan-- == 0) 2562 break; 2563 inode = &nfsi->vfs_inode; 2564 spin_lock(&inode->i_lock); 2565 if (list_empty(&nfsi->access_cache_entry_lru)) 2566 goto remove_lru_entry; 2567 cache = list_entry(nfsi->access_cache_entry_lru.next, 2568 struct nfs_access_entry, lru); 2569 list_move(&cache->lru, &head); 2570 rb_erase(&cache->rb_node, &nfsi->access_cache); 2571 freed++; 2572 if (!list_empty(&nfsi->access_cache_entry_lru)) 2573 list_move_tail(&nfsi->access_cache_inode_lru, 2574 &nfs_access_lru_list); 2575 else { 2576 remove_lru_entry: 2577 list_del_init(&nfsi->access_cache_inode_lru); 2578 smp_mb__before_atomic(); 2579 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags); 2580 smp_mb__after_atomic(); 2581 } 2582 spin_unlock(&inode->i_lock); 2583 } 2584 spin_unlock(&nfs_access_lru_lock); 2585 nfs_access_free_list(&head); 2586 return freed; 2587 } 2588 2589 unsigned long 2590 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc) 2591 { 2592 int nr_to_scan = sc->nr_to_scan; 2593 gfp_t gfp_mask = sc->gfp_mask; 2594 2595 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL) 2596 return SHRINK_STOP; 2597 return nfs_do_access_cache_scan(nr_to_scan); 2598 } 2599 2600 2601 unsigned long 2602 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc) 2603 { 2604 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries)); 2605 } 2606 2607 static void 2608 nfs_access_cache_enforce_limit(void) 2609 { 2610 long nr_entries = atomic_long_read(&nfs_access_nr_entries); 2611 unsigned long diff; 2612 unsigned int nr_to_scan; 2613 2614 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize) 2615 return; 2616 nr_to_scan = 100; 2617 diff = nr_entries - nfs_access_max_cachesize; 2618 if (diff < nr_to_scan) 2619 nr_to_scan = diff; 2620 nfs_do_access_cache_scan(nr_to_scan); 2621 } 2622 2623 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head) 2624 { 2625 struct rb_root *root_node = &nfsi->access_cache; 2626 struct rb_node *n; 2627 struct nfs_access_entry *entry; 2628 2629 /* Unhook entries from the cache */ 2630 while ((n = rb_first(root_node)) != NULL) { 2631 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2632 rb_erase(n, root_node); 2633 list_move(&entry->lru, head); 2634 } 2635 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS; 2636 } 2637 2638 void nfs_access_zap_cache(struct inode *inode) 2639 { 2640 LIST_HEAD(head); 2641 2642 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0) 2643 return; 2644 /* Remove from global LRU init */ 2645 spin_lock(&nfs_access_lru_lock); 2646 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2647 list_del_init(&NFS_I(inode)->access_cache_inode_lru); 2648 2649 spin_lock(&inode->i_lock); 2650 __nfs_access_zap_cache(NFS_I(inode), &head); 2651 spin_unlock(&inode->i_lock); 2652 spin_unlock(&nfs_access_lru_lock); 2653 nfs_access_free_list(&head); 2654 } 2655 EXPORT_SYMBOL_GPL(nfs_access_zap_cache); 2656 2657 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred) 2658 { 2659 struct rb_node *n = NFS_I(inode)->access_cache.rb_node; 2660 2661 while (n != NULL) { 2662 struct nfs_access_entry *entry = 2663 rb_entry(n, struct nfs_access_entry, rb_node); 2664 int cmp = cred_fscmp(cred, entry->cred); 2665 2666 if (cmp < 0) 2667 n = n->rb_left; 2668 else if (cmp > 0) 2669 n = n->rb_right; 2670 else 2671 return entry; 2672 } 2673 return NULL; 2674 } 2675 2676 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res, bool may_block) 2677 { 2678 struct nfs_inode *nfsi = NFS_I(inode); 2679 struct nfs_access_entry *cache; 2680 bool retry = true; 2681 int err; 2682 2683 spin_lock(&inode->i_lock); 2684 for(;;) { 2685 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2686 goto out_zap; 2687 cache = nfs_access_search_rbtree(inode, cred); 2688 err = -ENOENT; 2689 if (cache == NULL) 2690 goto out; 2691 /* Found an entry, is our attribute cache valid? */ 2692 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) 2693 break; 2694 if (!retry) 2695 break; 2696 err = -ECHILD; 2697 if (!may_block) 2698 goto out; 2699 spin_unlock(&inode->i_lock); 2700 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode); 2701 if (err) 2702 return err; 2703 spin_lock(&inode->i_lock); 2704 retry = false; 2705 } 2706 res->cred = cache->cred; 2707 res->mask = cache->mask; 2708 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru); 2709 err = 0; 2710 out: 2711 spin_unlock(&inode->i_lock); 2712 return err; 2713 out_zap: 2714 spin_unlock(&inode->i_lock); 2715 nfs_access_zap_cache(inode); 2716 return -ENOENT; 2717 } 2718 2719 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, struct nfs_access_entry *res) 2720 { 2721 /* Only check the most recently returned cache entry, 2722 * but do it without locking. 2723 */ 2724 struct nfs_inode *nfsi = NFS_I(inode); 2725 struct nfs_access_entry *cache; 2726 int err = -ECHILD; 2727 struct list_head *lh; 2728 2729 rcu_read_lock(); 2730 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2731 goto out; 2732 lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru)); 2733 cache = list_entry(lh, struct nfs_access_entry, lru); 2734 if (lh == &nfsi->access_cache_entry_lru || 2735 cred_fscmp(cred, cache->cred) != 0) 2736 cache = NULL; 2737 if (cache == NULL) 2738 goto out; 2739 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) 2740 goto out; 2741 res->cred = cache->cred; 2742 res->mask = cache->mask; 2743 err = 0; 2744 out: 2745 rcu_read_unlock(); 2746 return err; 2747 } 2748 2749 int nfs_access_get_cached(struct inode *inode, const struct cred *cred, struct 2750 nfs_access_entry *res, bool may_block) 2751 { 2752 int status; 2753 2754 status = nfs_access_get_cached_rcu(inode, cred, res); 2755 if (status != 0) 2756 status = nfs_access_get_cached_locked(inode, cred, res, 2757 may_block); 2758 2759 return status; 2760 } 2761 EXPORT_SYMBOL_GPL(nfs_access_get_cached); 2762 2763 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set) 2764 { 2765 struct nfs_inode *nfsi = NFS_I(inode); 2766 struct rb_root *root_node = &nfsi->access_cache; 2767 struct rb_node **p = &root_node->rb_node; 2768 struct rb_node *parent = NULL; 2769 struct nfs_access_entry *entry; 2770 int cmp; 2771 2772 spin_lock(&inode->i_lock); 2773 while (*p != NULL) { 2774 parent = *p; 2775 entry = rb_entry(parent, struct nfs_access_entry, rb_node); 2776 cmp = cred_fscmp(set->cred, entry->cred); 2777 2778 if (cmp < 0) 2779 p = &parent->rb_left; 2780 else if (cmp > 0) 2781 p = &parent->rb_right; 2782 else 2783 goto found; 2784 } 2785 rb_link_node(&set->rb_node, parent, p); 2786 rb_insert_color(&set->rb_node, root_node); 2787 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2788 spin_unlock(&inode->i_lock); 2789 return; 2790 found: 2791 rb_replace_node(parent, &set->rb_node, root_node); 2792 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2793 list_del(&entry->lru); 2794 spin_unlock(&inode->i_lock); 2795 nfs_access_free_entry(entry); 2796 } 2797 2798 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set) 2799 { 2800 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL); 2801 if (cache == NULL) 2802 return; 2803 RB_CLEAR_NODE(&cache->rb_node); 2804 cache->cred = get_cred(set->cred); 2805 cache->mask = set->mask; 2806 2807 /* The above field assignments must be visible 2808 * before this item appears on the lru. We cannot easily 2809 * use rcu_assign_pointer, so just force the memory barrier. 2810 */ 2811 smp_wmb(); 2812 nfs_access_add_rbtree(inode, cache); 2813 2814 /* Update accounting */ 2815 smp_mb__before_atomic(); 2816 atomic_long_inc(&nfs_access_nr_entries); 2817 smp_mb__after_atomic(); 2818 2819 /* Add inode to global LRU list */ 2820 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) { 2821 spin_lock(&nfs_access_lru_lock); 2822 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2823 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, 2824 &nfs_access_lru_list); 2825 spin_unlock(&nfs_access_lru_lock); 2826 } 2827 nfs_access_cache_enforce_limit(); 2828 } 2829 EXPORT_SYMBOL_GPL(nfs_access_add_cache); 2830 2831 #define NFS_MAY_READ (NFS_ACCESS_READ) 2832 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \ 2833 NFS_ACCESS_EXTEND | \ 2834 NFS_ACCESS_DELETE) 2835 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \ 2836 NFS_ACCESS_EXTEND) 2837 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE 2838 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP) 2839 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE) 2840 static int 2841 nfs_access_calc_mask(u32 access_result, umode_t umode) 2842 { 2843 int mask = 0; 2844 2845 if (access_result & NFS_MAY_READ) 2846 mask |= MAY_READ; 2847 if (S_ISDIR(umode)) { 2848 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE) 2849 mask |= MAY_WRITE; 2850 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP) 2851 mask |= MAY_EXEC; 2852 } else if (S_ISREG(umode)) { 2853 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE) 2854 mask |= MAY_WRITE; 2855 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE) 2856 mask |= MAY_EXEC; 2857 } else if (access_result & NFS_MAY_WRITE) 2858 mask |= MAY_WRITE; 2859 return mask; 2860 } 2861 2862 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result) 2863 { 2864 entry->mask = access_result; 2865 } 2866 EXPORT_SYMBOL_GPL(nfs_access_set_mask); 2867 2868 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask) 2869 { 2870 struct nfs_access_entry cache; 2871 bool may_block = (mask & MAY_NOT_BLOCK) == 0; 2872 int cache_mask = -1; 2873 int status; 2874 2875 trace_nfs_access_enter(inode); 2876 2877 status = nfs_access_get_cached(inode, cred, &cache, may_block); 2878 if (status == 0) 2879 goto out_cached; 2880 2881 status = -ECHILD; 2882 if (!may_block) 2883 goto out; 2884 2885 /* 2886 * Determine which access bits we want to ask for... 2887 */ 2888 cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND; 2889 if (nfs_server_capable(inode, NFS_CAP_XATTR)) { 2890 cache.mask |= NFS_ACCESS_XAREAD | NFS_ACCESS_XAWRITE | 2891 NFS_ACCESS_XALIST; 2892 } 2893 if (S_ISDIR(inode->i_mode)) 2894 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP; 2895 else 2896 cache.mask |= NFS_ACCESS_EXECUTE; 2897 cache.cred = cred; 2898 status = NFS_PROTO(inode)->access(inode, &cache); 2899 if (status != 0) { 2900 if (status == -ESTALE) { 2901 if (!S_ISDIR(inode->i_mode)) 2902 nfs_set_inode_stale(inode); 2903 else 2904 nfs_zap_caches(inode); 2905 } 2906 goto out; 2907 } 2908 nfs_access_add_cache(inode, &cache); 2909 out_cached: 2910 cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode); 2911 if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0) 2912 status = -EACCES; 2913 out: 2914 trace_nfs_access_exit(inode, mask, cache_mask, status); 2915 return status; 2916 } 2917 2918 static int nfs_open_permission_mask(int openflags) 2919 { 2920 int mask = 0; 2921 2922 if (openflags & __FMODE_EXEC) { 2923 /* ONLY check exec rights */ 2924 mask = MAY_EXEC; 2925 } else { 2926 if ((openflags & O_ACCMODE) != O_WRONLY) 2927 mask |= MAY_READ; 2928 if ((openflags & O_ACCMODE) != O_RDONLY) 2929 mask |= MAY_WRITE; 2930 } 2931 2932 return mask; 2933 } 2934 2935 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags) 2936 { 2937 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags)); 2938 } 2939 EXPORT_SYMBOL_GPL(nfs_may_open); 2940 2941 static int nfs_execute_ok(struct inode *inode, int mask) 2942 { 2943 struct nfs_server *server = NFS_SERVER(inode); 2944 int ret = 0; 2945 2946 if (S_ISDIR(inode->i_mode)) 2947 return 0; 2948 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) { 2949 if (mask & MAY_NOT_BLOCK) 2950 return -ECHILD; 2951 ret = __nfs_revalidate_inode(server, inode); 2952 } 2953 if (ret == 0 && !execute_ok(inode)) 2954 ret = -EACCES; 2955 return ret; 2956 } 2957 2958 int nfs_permission(struct user_namespace *mnt_userns, 2959 struct inode *inode, 2960 int mask) 2961 { 2962 const struct cred *cred = current_cred(); 2963 int res = 0; 2964 2965 nfs_inc_stats(inode, NFSIOS_VFSACCESS); 2966 2967 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 2968 goto out; 2969 /* Is this sys_access() ? */ 2970 if (mask & (MAY_ACCESS | MAY_CHDIR)) 2971 goto force_lookup; 2972 2973 switch (inode->i_mode & S_IFMT) { 2974 case S_IFLNK: 2975 goto out; 2976 case S_IFREG: 2977 if ((mask & MAY_OPEN) && 2978 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)) 2979 return 0; 2980 break; 2981 case S_IFDIR: 2982 /* 2983 * Optimize away all write operations, since the server 2984 * will check permissions when we perform the op. 2985 */ 2986 if ((mask & MAY_WRITE) && !(mask & MAY_READ)) 2987 goto out; 2988 } 2989 2990 force_lookup: 2991 if (!NFS_PROTO(inode)->access) 2992 goto out_notsup; 2993 2994 res = nfs_do_access(inode, cred, mask); 2995 out: 2996 if (!res && (mask & MAY_EXEC)) 2997 res = nfs_execute_ok(inode, mask); 2998 2999 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n", 3000 inode->i_sb->s_id, inode->i_ino, mask, res); 3001 return res; 3002 out_notsup: 3003 if (mask & MAY_NOT_BLOCK) 3004 return -ECHILD; 3005 3006 res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE | 3007 NFS_INO_INVALID_OTHER); 3008 if (res == 0) 3009 res = generic_permission(&init_user_ns, inode, mask); 3010 goto out; 3011 } 3012 EXPORT_SYMBOL_GPL(nfs_permission); 3013