xref: /openbmc/linux/fs/nfs/dir.c (revision 36d43a43)
1 /*
2  *  linux/fs/nfs/dir.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  nfs directory handling functions
7  *
8  * 10 Apr 1996	Added silly rename for unlink	--okir
9  * 28 Sep 1996	Improved directory cache --okir
10  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
11  *              Re-implemented silly rename for unlink, newly implemented
12  *              silly rename for nfs_rename() following the suggestions
13  *              of Olaf Kirch (okir) found in this file.
14  *              Following Linus comments on my original hack, this version
15  *              depends only on the dcache stuff and doesn't touch the inode
16  *              layer (iput() and friends).
17  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
18  */
19 
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/pagevec.h>
33 #include <linux/namei.h>
34 #include <linux/mount.h>
35 #include <linux/sched.h>
36 #include <linux/kmemleak.h>
37 #include <linux/xattr.h>
38 
39 #include "delegation.h"
40 #include "iostat.h"
41 #include "internal.h"
42 #include "fscache.h"
43 
44 /* #define NFS_DEBUG_VERBOSE 1 */
45 
46 static int nfs_opendir(struct inode *, struct file *);
47 static int nfs_readdir(struct file *, void *, filldir_t);
48 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
49 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *);
50 static int nfs_mkdir(struct inode *, struct dentry *, int);
51 static int nfs_rmdir(struct inode *, struct dentry *);
52 static int nfs_unlink(struct inode *, struct dentry *);
53 static int nfs_symlink(struct inode *, struct dentry *, const char *);
54 static int nfs_link(struct dentry *, struct inode *, struct dentry *);
55 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t);
56 static int nfs_rename(struct inode *, struct dentry *,
57 		      struct inode *, struct dentry *);
58 static int nfs_fsync_dir(struct file *, int);
59 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
60 static void nfs_readdir_clear_array(struct page*);
61 
62 const struct file_operations nfs_dir_operations = {
63 	.llseek		= nfs_llseek_dir,
64 	.read		= generic_read_dir,
65 	.readdir	= nfs_readdir,
66 	.open		= nfs_opendir,
67 	.release	= nfs_release,
68 	.fsync		= nfs_fsync_dir,
69 };
70 
71 const struct inode_operations nfs_dir_inode_operations = {
72 	.create		= nfs_create,
73 	.lookup		= nfs_lookup,
74 	.link		= nfs_link,
75 	.unlink		= nfs_unlink,
76 	.symlink	= nfs_symlink,
77 	.mkdir		= nfs_mkdir,
78 	.rmdir		= nfs_rmdir,
79 	.mknod		= nfs_mknod,
80 	.rename		= nfs_rename,
81 	.permission	= nfs_permission,
82 	.getattr	= nfs_getattr,
83 	.setattr	= nfs_setattr,
84 };
85 
86 const struct address_space_operations nfs_dir_aops = {
87 	.freepage = nfs_readdir_clear_array,
88 };
89 
90 #ifdef CONFIG_NFS_V3
91 const struct inode_operations nfs3_dir_inode_operations = {
92 	.create		= nfs_create,
93 	.lookup		= nfs_lookup,
94 	.link		= nfs_link,
95 	.unlink		= nfs_unlink,
96 	.symlink	= nfs_symlink,
97 	.mkdir		= nfs_mkdir,
98 	.rmdir		= nfs_rmdir,
99 	.mknod		= nfs_mknod,
100 	.rename		= nfs_rename,
101 	.permission	= nfs_permission,
102 	.getattr	= nfs_getattr,
103 	.setattr	= nfs_setattr,
104 	.listxattr	= nfs3_listxattr,
105 	.getxattr	= nfs3_getxattr,
106 	.setxattr	= nfs3_setxattr,
107 	.removexattr	= nfs3_removexattr,
108 };
109 #endif  /* CONFIG_NFS_V3 */
110 
111 #ifdef CONFIG_NFS_V4
112 
113 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
114 static int nfs_open_create(struct inode *dir, struct dentry *dentry, int mode, struct nameidata *nd);
115 const struct inode_operations nfs4_dir_inode_operations = {
116 	.create		= nfs_open_create,
117 	.lookup		= nfs_atomic_lookup,
118 	.link		= nfs_link,
119 	.unlink		= nfs_unlink,
120 	.symlink	= nfs_symlink,
121 	.mkdir		= nfs_mkdir,
122 	.rmdir		= nfs_rmdir,
123 	.mknod		= nfs_mknod,
124 	.rename		= nfs_rename,
125 	.permission	= nfs_permission,
126 	.getattr	= nfs_getattr,
127 	.setattr	= nfs_setattr,
128 	.getxattr	= generic_getxattr,
129 	.setxattr	= generic_setxattr,
130 	.listxattr	= generic_listxattr,
131 	.removexattr	= generic_removexattr,
132 };
133 
134 #endif /* CONFIG_NFS_V4 */
135 
136 /*
137  * Open file
138  */
139 static int
140 nfs_opendir(struct inode *inode, struct file *filp)
141 {
142 	int res;
143 
144 	dfprintk(FILE, "NFS: open dir(%s/%s)\n",
145 			filp->f_path.dentry->d_parent->d_name.name,
146 			filp->f_path.dentry->d_name.name);
147 
148 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
149 
150 	/* Call generic open code in order to cache credentials */
151 	res = nfs_open(inode, filp);
152 	if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
153 		/* This is a mountpoint, so d_revalidate will never
154 		 * have been called, so we need to refresh the
155 		 * inode (for close-open consistency) ourselves.
156 		 */
157 		__nfs_revalidate_inode(NFS_SERVER(inode), inode);
158 	}
159 	return res;
160 }
161 
162 struct nfs_cache_array_entry {
163 	u64 cookie;
164 	u64 ino;
165 	struct qstr string;
166 	unsigned char d_type;
167 };
168 
169 struct nfs_cache_array {
170 	unsigned int size;
171 	int eof_index;
172 	u64 last_cookie;
173 	struct nfs_cache_array_entry array[0];
174 };
175 
176 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
177 typedef struct {
178 	struct file	*file;
179 	struct page	*page;
180 	unsigned long	page_index;
181 	u64		*dir_cookie;
182 	u64		last_cookie;
183 	loff_t		current_index;
184 	decode_dirent_t	decode;
185 
186 	unsigned long	timestamp;
187 	unsigned long	gencount;
188 	unsigned int	cache_entry_index;
189 	unsigned int	plus:1;
190 	unsigned int	eof:1;
191 } nfs_readdir_descriptor_t;
192 
193 /*
194  * The caller is responsible for calling nfs_readdir_release_array(page)
195  */
196 static
197 struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
198 {
199 	void *ptr;
200 	if (page == NULL)
201 		return ERR_PTR(-EIO);
202 	ptr = kmap(page);
203 	if (ptr == NULL)
204 		return ERR_PTR(-ENOMEM);
205 	return ptr;
206 }
207 
208 static
209 void nfs_readdir_release_array(struct page *page)
210 {
211 	kunmap(page);
212 }
213 
214 /*
215  * we are freeing strings created by nfs_add_to_readdir_array()
216  */
217 static
218 void nfs_readdir_clear_array(struct page *page)
219 {
220 	struct nfs_cache_array *array;
221 	int i;
222 
223 	array = kmap_atomic(page, KM_USER0);
224 	for (i = 0; i < array->size; i++)
225 		kfree(array->array[i].string.name);
226 	kunmap_atomic(array, KM_USER0);
227 }
228 
229 /*
230  * the caller is responsible for freeing qstr.name
231  * when called by nfs_readdir_add_to_array, the strings will be freed in
232  * nfs_clear_readdir_array()
233  */
234 static
235 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
236 {
237 	string->len = len;
238 	string->name = kmemdup(name, len, GFP_KERNEL);
239 	if (string->name == NULL)
240 		return -ENOMEM;
241 	/*
242 	 * Avoid a kmemleak false positive. The pointer to the name is stored
243 	 * in a page cache page which kmemleak does not scan.
244 	 */
245 	kmemleak_not_leak(string->name);
246 	string->hash = full_name_hash(name, len);
247 	return 0;
248 }
249 
250 static
251 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
252 {
253 	struct nfs_cache_array *array = nfs_readdir_get_array(page);
254 	struct nfs_cache_array_entry *cache_entry;
255 	int ret;
256 
257 	if (IS_ERR(array))
258 		return PTR_ERR(array);
259 
260 	cache_entry = &array->array[array->size];
261 
262 	/* Check that this entry lies within the page bounds */
263 	ret = -ENOSPC;
264 	if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
265 		goto out;
266 
267 	cache_entry->cookie = entry->prev_cookie;
268 	cache_entry->ino = entry->ino;
269 	cache_entry->d_type = entry->d_type;
270 	ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
271 	if (ret)
272 		goto out;
273 	array->last_cookie = entry->cookie;
274 	array->size++;
275 	if (entry->eof != 0)
276 		array->eof_index = array->size;
277 out:
278 	nfs_readdir_release_array(page);
279 	return ret;
280 }
281 
282 static
283 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
284 {
285 	loff_t diff = desc->file->f_pos - desc->current_index;
286 	unsigned int index;
287 
288 	if (diff < 0)
289 		goto out_eof;
290 	if (diff >= array->size) {
291 		if (array->eof_index >= 0)
292 			goto out_eof;
293 		desc->current_index += array->size;
294 		return -EAGAIN;
295 	}
296 
297 	index = (unsigned int)diff;
298 	*desc->dir_cookie = array->array[index].cookie;
299 	desc->cache_entry_index = index;
300 	return 0;
301 out_eof:
302 	desc->eof = 1;
303 	return -EBADCOOKIE;
304 }
305 
306 static
307 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
308 {
309 	int i;
310 	int status = -EAGAIN;
311 
312 	for (i = 0; i < array->size; i++) {
313 		if (array->array[i].cookie == *desc->dir_cookie) {
314 			desc->cache_entry_index = i;
315 			return 0;
316 		}
317 	}
318 	if (array->eof_index >= 0) {
319 		status = -EBADCOOKIE;
320 		if (*desc->dir_cookie == array->last_cookie)
321 			desc->eof = 1;
322 	}
323 	return status;
324 }
325 
326 static
327 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
328 {
329 	struct nfs_cache_array *array;
330 	int status;
331 
332 	array = nfs_readdir_get_array(desc->page);
333 	if (IS_ERR(array)) {
334 		status = PTR_ERR(array);
335 		goto out;
336 	}
337 
338 	if (*desc->dir_cookie == 0)
339 		status = nfs_readdir_search_for_pos(array, desc);
340 	else
341 		status = nfs_readdir_search_for_cookie(array, desc);
342 
343 	if (status == -EAGAIN) {
344 		desc->last_cookie = array->last_cookie;
345 		desc->page_index++;
346 	}
347 	nfs_readdir_release_array(desc->page);
348 out:
349 	return status;
350 }
351 
352 /* Fill a page with xdr information before transferring to the cache page */
353 static
354 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
355 			struct nfs_entry *entry, struct file *file, struct inode *inode)
356 {
357 	struct rpc_cred	*cred = nfs_file_cred(file);
358 	unsigned long	timestamp, gencount;
359 	int		error;
360 
361  again:
362 	timestamp = jiffies;
363 	gencount = nfs_inc_attr_generation_counter();
364 	error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages,
365 					  NFS_SERVER(inode)->dtsize, desc->plus);
366 	if (error < 0) {
367 		/* We requested READDIRPLUS, but the server doesn't grok it */
368 		if (error == -ENOTSUPP && desc->plus) {
369 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
370 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
371 			desc->plus = 0;
372 			goto again;
373 		}
374 		goto error;
375 	}
376 	desc->timestamp = timestamp;
377 	desc->gencount = gencount;
378 error:
379 	return error;
380 }
381 
382 static int xdr_decode(nfs_readdir_descriptor_t *desc,
383 		      struct nfs_entry *entry, struct xdr_stream *xdr)
384 {
385 	int error;
386 
387 	error = desc->decode(xdr, entry, desc->plus);
388 	if (error)
389 		return error;
390 	entry->fattr->time_start = desc->timestamp;
391 	entry->fattr->gencount = desc->gencount;
392 	return 0;
393 }
394 
395 static
396 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
397 {
398 	if (dentry->d_inode == NULL)
399 		goto different;
400 	if (nfs_compare_fh(entry->fh, NFS_FH(dentry->d_inode)) != 0)
401 		goto different;
402 	return 1;
403 different:
404 	return 0;
405 }
406 
407 static
408 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
409 {
410 	struct qstr filename = {
411 		.len = entry->len,
412 		.name = entry->name,
413 	};
414 	struct dentry *dentry;
415 	struct dentry *alias;
416 	struct inode *dir = parent->d_inode;
417 	struct inode *inode;
418 
419 	if (filename.name[0] == '.') {
420 		if (filename.len == 1)
421 			return;
422 		if (filename.len == 2 && filename.name[1] == '.')
423 			return;
424 	}
425 	filename.hash = full_name_hash(filename.name, filename.len);
426 
427 	dentry = d_lookup(parent, &filename);
428 	if (dentry != NULL) {
429 		if (nfs_same_file(dentry, entry)) {
430 			nfs_refresh_inode(dentry->d_inode, entry->fattr);
431 			goto out;
432 		} else {
433 			d_drop(dentry);
434 			dput(dentry);
435 		}
436 	}
437 
438 	dentry = d_alloc(parent, &filename);
439 	if (dentry == NULL)
440 		return;
441 
442 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
443 	if (IS_ERR(inode))
444 		goto out;
445 
446 	alias = d_materialise_unique(dentry, inode);
447 	if (IS_ERR(alias))
448 		goto out;
449 	else if (alias) {
450 		nfs_set_verifier(alias, nfs_save_change_attribute(dir));
451 		dput(alias);
452 	} else
453 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
454 
455 out:
456 	dput(dentry);
457 }
458 
459 /* Perform conversion from xdr to cache array */
460 static
461 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
462 				struct page **xdr_pages, struct page *page, unsigned int buflen)
463 {
464 	struct xdr_stream stream;
465 	struct xdr_buf buf = {
466 		.pages = xdr_pages,
467 		.page_len = buflen,
468 		.buflen = buflen,
469 		.len = buflen,
470 	};
471 	struct page *scratch;
472 	struct nfs_cache_array *array;
473 	unsigned int count = 0;
474 	int status;
475 
476 	scratch = alloc_page(GFP_KERNEL);
477 	if (scratch == NULL)
478 		return -ENOMEM;
479 
480 	xdr_init_decode(&stream, &buf, NULL);
481 	xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
482 
483 	do {
484 		status = xdr_decode(desc, entry, &stream);
485 		if (status != 0) {
486 			if (status == -EAGAIN)
487 				status = 0;
488 			break;
489 		}
490 
491 		count++;
492 
493 		if (desc->plus != 0)
494 			nfs_prime_dcache(desc->file->f_path.dentry, entry);
495 
496 		status = nfs_readdir_add_to_array(entry, page);
497 		if (status != 0)
498 			break;
499 	} while (!entry->eof);
500 
501 	if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
502 		array = nfs_readdir_get_array(page);
503 		if (!IS_ERR(array)) {
504 			array->eof_index = array->size;
505 			status = 0;
506 			nfs_readdir_release_array(page);
507 		} else
508 			status = PTR_ERR(array);
509 	}
510 
511 	put_page(scratch);
512 	return status;
513 }
514 
515 static
516 void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages)
517 {
518 	unsigned int i;
519 	for (i = 0; i < npages; i++)
520 		put_page(pages[i]);
521 }
522 
523 static
524 void nfs_readdir_free_large_page(void *ptr, struct page **pages,
525 		unsigned int npages)
526 {
527 	nfs_readdir_free_pagearray(pages, npages);
528 }
529 
530 /*
531  * nfs_readdir_large_page will allocate pages that must be freed with a call
532  * to nfs_readdir_free_large_page
533  */
534 static
535 int nfs_readdir_large_page(struct page **pages, unsigned int npages)
536 {
537 	unsigned int i;
538 
539 	for (i = 0; i < npages; i++) {
540 		struct page *page = alloc_page(GFP_KERNEL);
541 		if (page == NULL)
542 			goto out_freepages;
543 		pages[i] = page;
544 	}
545 	return 0;
546 
547 out_freepages:
548 	nfs_readdir_free_pagearray(pages, i);
549 	return -ENOMEM;
550 }
551 
552 static
553 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
554 {
555 	struct page *pages[NFS_MAX_READDIR_PAGES];
556 	void *pages_ptr = NULL;
557 	struct nfs_entry entry;
558 	struct file	*file = desc->file;
559 	struct nfs_cache_array *array;
560 	int status = -ENOMEM;
561 	unsigned int array_size = ARRAY_SIZE(pages);
562 
563 	entry.prev_cookie = 0;
564 	entry.cookie = desc->last_cookie;
565 	entry.eof = 0;
566 	entry.fh = nfs_alloc_fhandle();
567 	entry.fattr = nfs_alloc_fattr();
568 	entry.server = NFS_SERVER(inode);
569 	if (entry.fh == NULL || entry.fattr == NULL)
570 		goto out;
571 
572 	array = nfs_readdir_get_array(page);
573 	if (IS_ERR(array)) {
574 		status = PTR_ERR(array);
575 		goto out;
576 	}
577 	memset(array, 0, sizeof(struct nfs_cache_array));
578 	array->eof_index = -1;
579 
580 	status = nfs_readdir_large_page(pages, array_size);
581 	if (status < 0)
582 		goto out_release_array;
583 	do {
584 		unsigned int pglen;
585 		status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
586 
587 		if (status < 0)
588 			break;
589 		pglen = status;
590 		status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
591 		if (status < 0) {
592 			if (status == -ENOSPC)
593 				status = 0;
594 			break;
595 		}
596 	} while (array->eof_index < 0);
597 
598 	nfs_readdir_free_large_page(pages_ptr, pages, array_size);
599 out_release_array:
600 	nfs_readdir_release_array(page);
601 out:
602 	nfs_free_fattr(entry.fattr);
603 	nfs_free_fhandle(entry.fh);
604 	return status;
605 }
606 
607 /*
608  * Now we cache directories properly, by converting xdr information
609  * to an array that can be used for lookups later.  This results in
610  * fewer cache pages, since we can store more information on each page.
611  * We only need to convert from xdr once so future lookups are much simpler
612  */
613 static
614 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
615 {
616 	struct inode	*inode = desc->file->f_path.dentry->d_inode;
617 	int ret;
618 
619 	ret = nfs_readdir_xdr_to_array(desc, page, inode);
620 	if (ret < 0)
621 		goto error;
622 	SetPageUptodate(page);
623 
624 	if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
625 		/* Should never happen */
626 		nfs_zap_mapping(inode, inode->i_mapping);
627 	}
628 	unlock_page(page);
629 	return 0;
630  error:
631 	unlock_page(page);
632 	return ret;
633 }
634 
635 static
636 void cache_page_release(nfs_readdir_descriptor_t *desc)
637 {
638 	if (!desc->page->mapping)
639 		nfs_readdir_clear_array(desc->page);
640 	page_cache_release(desc->page);
641 	desc->page = NULL;
642 }
643 
644 static
645 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
646 {
647 	return read_cache_page(desc->file->f_path.dentry->d_inode->i_mapping,
648 			desc->page_index, (filler_t *)nfs_readdir_filler, desc);
649 }
650 
651 /*
652  * Returns 0 if desc->dir_cookie was found on page desc->page_index
653  */
654 static
655 int find_cache_page(nfs_readdir_descriptor_t *desc)
656 {
657 	int res;
658 
659 	desc->page = get_cache_page(desc);
660 	if (IS_ERR(desc->page))
661 		return PTR_ERR(desc->page);
662 
663 	res = nfs_readdir_search_array(desc);
664 	if (res != 0)
665 		cache_page_release(desc);
666 	return res;
667 }
668 
669 /* Search for desc->dir_cookie from the beginning of the page cache */
670 static inline
671 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
672 {
673 	int res;
674 
675 	if (desc->page_index == 0) {
676 		desc->current_index = 0;
677 		desc->last_cookie = 0;
678 	}
679 	do {
680 		res = find_cache_page(desc);
681 	} while (res == -EAGAIN);
682 	return res;
683 }
684 
685 /*
686  * Once we've found the start of the dirent within a page: fill 'er up...
687  */
688 static
689 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
690 		   filldir_t filldir)
691 {
692 	struct file	*file = desc->file;
693 	int i = 0;
694 	int res = 0;
695 	struct nfs_cache_array *array = NULL;
696 
697 	array = nfs_readdir_get_array(desc->page);
698 	if (IS_ERR(array)) {
699 		res = PTR_ERR(array);
700 		goto out;
701 	}
702 
703 	for (i = desc->cache_entry_index; i < array->size; i++) {
704 		struct nfs_cache_array_entry *ent;
705 
706 		ent = &array->array[i];
707 		if (filldir(dirent, ent->string.name, ent->string.len,
708 		    file->f_pos, nfs_compat_user_ino64(ent->ino),
709 		    ent->d_type) < 0) {
710 			desc->eof = 1;
711 			break;
712 		}
713 		file->f_pos++;
714 		if (i < (array->size-1))
715 			*desc->dir_cookie = array->array[i+1].cookie;
716 		else
717 			*desc->dir_cookie = array->last_cookie;
718 	}
719 	if (array->eof_index >= 0)
720 		desc->eof = 1;
721 
722 	nfs_readdir_release_array(desc->page);
723 out:
724 	cache_page_release(desc);
725 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
726 			(unsigned long long)*desc->dir_cookie, res);
727 	return res;
728 }
729 
730 /*
731  * If we cannot find a cookie in our cache, we suspect that this is
732  * because it points to a deleted file, so we ask the server to return
733  * whatever it thinks is the next entry. We then feed this to filldir.
734  * If all goes well, we should then be able to find our way round the
735  * cache on the next call to readdir_search_pagecache();
736  *
737  * NOTE: we cannot add the anonymous page to the pagecache because
738  *	 the data it contains might not be page aligned. Besides,
739  *	 we should already have a complete representation of the
740  *	 directory in the page cache by the time we get here.
741  */
742 static inline
743 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
744 		     filldir_t filldir)
745 {
746 	struct page	*page = NULL;
747 	int		status;
748 	struct inode *inode = desc->file->f_path.dentry->d_inode;
749 
750 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
751 			(unsigned long long)*desc->dir_cookie);
752 
753 	page = alloc_page(GFP_HIGHUSER);
754 	if (!page) {
755 		status = -ENOMEM;
756 		goto out;
757 	}
758 
759 	desc->page_index = 0;
760 	desc->last_cookie = *desc->dir_cookie;
761 	desc->page = page;
762 
763 	status = nfs_readdir_xdr_to_array(desc, page, inode);
764 	if (status < 0)
765 		goto out_release;
766 
767 	status = nfs_do_filldir(desc, dirent, filldir);
768 
769  out:
770 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
771 			__func__, status);
772 	return status;
773  out_release:
774 	cache_page_release(desc);
775 	goto out;
776 }
777 
778 /* The file offset position represents the dirent entry number.  A
779    last cookie cache takes care of the common case of reading the
780    whole directory.
781  */
782 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
783 {
784 	struct dentry	*dentry = filp->f_path.dentry;
785 	struct inode	*inode = dentry->d_inode;
786 	nfs_readdir_descriptor_t my_desc,
787 			*desc = &my_desc;
788 	int res;
789 
790 	dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n",
791 			dentry->d_parent->d_name.name, dentry->d_name.name,
792 			(long long)filp->f_pos);
793 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
794 
795 	/*
796 	 * filp->f_pos points to the dirent entry number.
797 	 * *desc->dir_cookie has the cookie for the next entry. We have
798 	 * to either find the entry with the appropriate number or
799 	 * revalidate the cookie.
800 	 */
801 	memset(desc, 0, sizeof(*desc));
802 
803 	desc->file = filp;
804 	desc->dir_cookie = &nfs_file_open_context(filp)->dir_cookie;
805 	desc->decode = NFS_PROTO(inode)->decode_dirent;
806 	desc->plus = NFS_USE_READDIRPLUS(inode);
807 
808 	nfs_block_sillyrename(dentry);
809 	res = nfs_revalidate_mapping(inode, filp->f_mapping);
810 	if (res < 0)
811 		goto out;
812 
813 	do {
814 		res = readdir_search_pagecache(desc);
815 
816 		if (res == -EBADCOOKIE) {
817 			res = 0;
818 			/* This means either end of directory */
819 			if (*desc->dir_cookie && desc->eof == 0) {
820 				/* Or that the server has 'lost' a cookie */
821 				res = uncached_readdir(desc, dirent, filldir);
822 				if (res == 0)
823 					continue;
824 			}
825 			break;
826 		}
827 		if (res == -ETOOSMALL && desc->plus) {
828 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
829 			nfs_zap_caches(inode);
830 			desc->page_index = 0;
831 			desc->plus = 0;
832 			desc->eof = 0;
833 			continue;
834 		}
835 		if (res < 0)
836 			break;
837 
838 		res = nfs_do_filldir(desc, dirent, filldir);
839 		if (res < 0)
840 			break;
841 	} while (!desc->eof);
842 out:
843 	nfs_unblock_sillyrename(dentry);
844 	if (res > 0)
845 		res = 0;
846 	dfprintk(FILE, "NFS: readdir(%s/%s) returns %d\n",
847 			dentry->d_parent->d_name.name, dentry->d_name.name,
848 			res);
849 	return res;
850 }
851 
852 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
853 {
854 	struct dentry *dentry = filp->f_path.dentry;
855 	struct inode *inode = dentry->d_inode;
856 
857 	dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n",
858 			dentry->d_parent->d_name.name,
859 			dentry->d_name.name,
860 			offset, origin);
861 
862 	mutex_lock(&inode->i_mutex);
863 	switch (origin) {
864 		case 1:
865 			offset += filp->f_pos;
866 		case 0:
867 			if (offset >= 0)
868 				break;
869 		default:
870 			offset = -EINVAL;
871 			goto out;
872 	}
873 	if (offset != filp->f_pos) {
874 		filp->f_pos = offset;
875 		nfs_file_open_context(filp)->dir_cookie = 0;
876 	}
877 out:
878 	mutex_unlock(&inode->i_mutex);
879 	return offset;
880 }
881 
882 /*
883  * All directory operations under NFS are synchronous, so fsync()
884  * is a dummy operation.
885  */
886 static int nfs_fsync_dir(struct file *filp, int datasync)
887 {
888 	struct dentry *dentry = filp->f_path.dentry;
889 
890 	dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n",
891 			dentry->d_parent->d_name.name, dentry->d_name.name,
892 			datasync);
893 
894 	nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC);
895 	return 0;
896 }
897 
898 /**
899  * nfs_force_lookup_revalidate - Mark the directory as having changed
900  * @dir - pointer to directory inode
901  *
902  * This forces the revalidation code in nfs_lookup_revalidate() to do a
903  * full lookup on all child dentries of 'dir' whenever a change occurs
904  * on the server that might have invalidated our dcache.
905  *
906  * The caller should be holding dir->i_lock
907  */
908 void nfs_force_lookup_revalidate(struct inode *dir)
909 {
910 	NFS_I(dir)->cache_change_attribute++;
911 }
912 
913 /*
914  * A check for whether or not the parent directory has changed.
915  * In the case it has, we assume that the dentries are untrustworthy
916  * and may need to be looked up again.
917  */
918 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
919 {
920 	if (IS_ROOT(dentry))
921 		return 1;
922 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
923 		return 0;
924 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
925 		return 0;
926 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
927 	if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
928 		return 0;
929 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
930 		return 0;
931 	return 1;
932 }
933 
934 /*
935  * Return the intent data that applies to this particular path component
936  *
937  * Note that the current set of intents only apply to the very last
938  * component of the path.
939  * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
940  */
941 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd,
942 						unsigned int mask)
943 {
944 	if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT))
945 		return 0;
946 	return nd->flags & mask;
947 }
948 
949 /*
950  * Use intent information to check whether or not we're going to do
951  * an O_EXCL create using this path component.
952  */
953 static int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
954 {
955 	if (NFS_PROTO(dir)->version == 2)
956 		return 0;
957 	return nd && nfs_lookup_check_intent(nd, LOOKUP_EXCL);
958 }
959 
960 /*
961  * Inode and filehandle revalidation for lookups.
962  *
963  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
964  * or if the intent information indicates that we're about to open this
965  * particular file and the "nocto" mount flag is not set.
966  *
967  */
968 static inline
969 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
970 {
971 	struct nfs_server *server = NFS_SERVER(inode);
972 
973 	if (IS_AUTOMOUNT(inode))
974 		return 0;
975 	if (nd != NULL) {
976 		/* VFS wants an on-the-wire revalidation */
977 		if (nd->flags & LOOKUP_REVAL)
978 			goto out_force;
979 		/* This is an open(2) */
980 		if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
981 				!(server->flags & NFS_MOUNT_NOCTO) &&
982 				(S_ISREG(inode->i_mode) ||
983 				 S_ISDIR(inode->i_mode)))
984 			goto out_force;
985 		return 0;
986 	}
987 	return nfs_revalidate_inode(server, inode);
988 out_force:
989 	return __nfs_revalidate_inode(server, inode);
990 }
991 
992 /*
993  * We judge how long we want to trust negative
994  * dentries by looking at the parent inode mtime.
995  *
996  * If parent mtime has changed, we revalidate, else we wait for a
997  * period corresponding to the parent's attribute cache timeout value.
998  */
999 static inline
1000 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1001 		       struct nameidata *nd)
1002 {
1003 	/* Don't revalidate a negative dentry if we're creating a new file */
1004 	if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
1005 		return 0;
1006 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1007 		return 1;
1008 	return !nfs_check_verifier(dir, dentry);
1009 }
1010 
1011 /*
1012  * This is called every time the dcache has a lookup hit,
1013  * and we should check whether we can really trust that
1014  * lookup.
1015  *
1016  * NOTE! The hit can be a negative hit too, don't assume
1017  * we have an inode!
1018  *
1019  * If the parent directory is seen to have changed, we throw out the
1020  * cached dentry and do a new lookup.
1021  */
1022 static int nfs_lookup_revalidate(struct dentry *dentry, struct nameidata *nd)
1023 {
1024 	struct inode *dir;
1025 	struct inode *inode;
1026 	struct dentry *parent;
1027 	struct nfs_fh *fhandle = NULL;
1028 	struct nfs_fattr *fattr = NULL;
1029 	int error;
1030 
1031 	if (nd->flags & LOOKUP_RCU)
1032 		return -ECHILD;
1033 
1034 	parent = dget_parent(dentry);
1035 	dir = parent->d_inode;
1036 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1037 	inode = dentry->d_inode;
1038 
1039 	if (!inode) {
1040 		if (nfs_neg_need_reval(dir, dentry, nd))
1041 			goto out_bad;
1042 		goto out_valid;
1043 	}
1044 
1045 	if (is_bad_inode(inode)) {
1046 		dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
1047 				__func__, dentry->d_parent->d_name.name,
1048 				dentry->d_name.name);
1049 		goto out_bad;
1050 	}
1051 
1052 	if (nfs_have_delegation(inode, FMODE_READ))
1053 		goto out_set_verifier;
1054 
1055 	/* Force a full look up iff the parent directory has changed */
1056 	if (!nfs_is_exclusive_create(dir, nd) && nfs_check_verifier(dir, dentry)) {
1057 		if (nfs_lookup_verify_inode(inode, nd))
1058 			goto out_zap_parent;
1059 		goto out_valid;
1060 	}
1061 
1062 	if (NFS_STALE(inode))
1063 		goto out_bad;
1064 
1065 	error = -ENOMEM;
1066 	fhandle = nfs_alloc_fhandle();
1067 	fattr = nfs_alloc_fattr();
1068 	if (fhandle == NULL || fattr == NULL)
1069 		goto out_error;
1070 
1071 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1072 	if (error)
1073 		goto out_bad;
1074 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1075 		goto out_bad;
1076 	if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1077 		goto out_bad;
1078 
1079 	nfs_free_fattr(fattr);
1080 	nfs_free_fhandle(fhandle);
1081 out_set_verifier:
1082 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1083  out_valid:
1084 	dput(parent);
1085 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
1086 			__func__, dentry->d_parent->d_name.name,
1087 			dentry->d_name.name);
1088 	return 1;
1089 out_zap_parent:
1090 	nfs_zap_caches(dir);
1091  out_bad:
1092 	nfs_mark_for_revalidate(dir);
1093 	if (inode && S_ISDIR(inode->i_mode)) {
1094 		/* Purge readdir caches. */
1095 		nfs_zap_caches(inode);
1096 		/* If we have submounts, don't unhash ! */
1097 		if (have_submounts(dentry))
1098 			goto out_valid;
1099 		if (dentry->d_flags & DCACHE_DISCONNECTED)
1100 			goto out_valid;
1101 		shrink_dcache_parent(dentry);
1102 	}
1103 	d_drop(dentry);
1104 	nfs_free_fattr(fattr);
1105 	nfs_free_fhandle(fhandle);
1106 	dput(parent);
1107 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
1108 			__func__, dentry->d_parent->d_name.name,
1109 			dentry->d_name.name);
1110 	return 0;
1111 out_error:
1112 	nfs_free_fattr(fattr);
1113 	nfs_free_fhandle(fhandle);
1114 	dput(parent);
1115 	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n",
1116 			__func__, dentry->d_parent->d_name.name,
1117 			dentry->d_name.name, error);
1118 	return error;
1119 }
1120 
1121 /*
1122  * This is called from dput() when d_count is going to 0.
1123  */
1124 static int nfs_dentry_delete(const struct dentry *dentry)
1125 {
1126 	dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
1127 		dentry->d_parent->d_name.name, dentry->d_name.name,
1128 		dentry->d_flags);
1129 
1130 	/* Unhash any dentry with a stale inode */
1131 	if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
1132 		return 1;
1133 
1134 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1135 		/* Unhash it, so that ->d_iput() would be called */
1136 		return 1;
1137 	}
1138 	if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1139 		/* Unhash it, so that ancestors of killed async unlink
1140 		 * files will be cleaned up during umount */
1141 		return 1;
1142 	}
1143 	return 0;
1144 
1145 }
1146 
1147 static void nfs_drop_nlink(struct inode *inode)
1148 {
1149 	spin_lock(&inode->i_lock);
1150 	if (inode->i_nlink > 0)
1151 		drop_nlink(inode);
1152 	spin_unlock(&inode->i_lock);
1153 }
1154 
1155 /*
1156  * Called when the dentry loses inode.
1157  * We use it to clean up silly-renamed files.
1158  */
1159 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1160 {
1161 	if (S_ISDIR(inode->i_mode))
1162 		/* drop any readdir cache as it could easily be old */
1163 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1164 
1165 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1166 		drop_nlink(inode);
1167 		nfs_complete_unlink(dentry, inode);
1168 	}
1169 	iput(inode);
1170 }
1171 
1172 const struct dentry_operations nfs_dentry_operations = {
1173 	.d_revalidate	= nfs_lookup_revalidate,
1174 	.d_delete	= nfs_dentry_delete,
1175 	.d_iput		= nfs_dentry_iput,
1176 	.d_automount	= nfs_d_automount,
1177 };
1178 
1179 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
1180 {
1181 	struct dentry *res;
1182 	struct dentry *parent;
1183 	struct inode *inode = NULL;
1184 	struct nfs_fh *fhandle = NULL;
1185 	struct nfs_fattr *fattr = NULL;
1186 	int error;
1187 
1188 	dfprintk(VFS, "NFS: lookup(%s/%s)\n",
1189 		dentry->d_parent->d_name.name, dentry->d_name.name);
1190 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1191 
1192 	res = ERR_PTR(-ENAMETOOLONG);
1193 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1194 		goto out;
1195 
1196 	/*
1197 	 * If we're doing an exclusive create, optimize away the lookup
1198 	 * but don't hash the dentry.
1199 	 */
1200 	if (nfs_is_exclusive_create(dir, nd)) {
1201 		d_instantiate(dentry, NULL);
1202 		res = NULL;
1203 		goto out;
1204 	}
1205 
1206 	res = ERR_PTR(-ENOMEM);
1207 	fhandle = nfs_alloc_fhandle();
1208 	fattr = nfs_alloc_fattr();
1209 	if (fhandle == NULL || fattr == NULL)
1210 		goto out;
1211 
1212 	parent = dentry->d_parent;
1213 	/* Protect against concurrent sillydeletes */
1214 	nfs_block_sillyrename(parent);
1215 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1216 	if (error == -ENOENT)
1217 		goto no_entry;
1218 	if (error < 0) {
1219 		res = ERR_PTR(error);
1220 		goto out_unblock_sillyrename;
1221 	}
1222 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1223 	res = ERR_CAST(inode);
1224 	if (IS_ERR(res))
1225 		goto out_unblock_sillyrename;
1226 
1227 no_entry:
1228 	res = d_materialise_unique(dentry, inode);
1229 	if (res != NULL) {
1230 		if (IS_ERR(res))
1231 			goto out_unblock_sillyrename;
1232 		dentry = res;
1233 	}
1234 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1235 out_unblock_sillyrename:
1236 	nfs_unblock_sillyrename(parent);
1237 out:
1238 	nfs_free_fattr(fattr);
1239 	nfs_free_fhandle(fhandle);
1240 	return res;
1241 }
1242 
1243 #ifdef CONFIG_NFS_V4
1244 static int nfs_open_revalidate(struct dentry *, struct nameidata *);
1245 
1246 const struct dentry_operations nfs4_dentry_operations = {
1247 	.d_revalidate	= nfs_open_revalidate,
1248 	.d_delete	= nfs_dentry_delete,
1249 	.d_iput		= nfs_dentry_iput,
1250 	.d_automount	= nfs_d_automount,
1251 };
1252 
1253 /*
1254  * Use intent information to determine whether we need to substitute
1255  * the NFSv4-style stateful OPEN for the LOOKUP call
1256  */
1257 static int is_atomic_open(struct nameidata *nd)
1258 {
1259 	if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
1260 		return 0;
1261 	/* NFS does not (yet) have a stateful open for directories */
1262 	if (nd->flags & LOOKUP_DIRECTORY)
1263 		return 0;
1264 	/* Are we trying to write to a read only partition? */
1265 	if (__mnt_is_readonly(nd->path.mnt) &&
1266 	    (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE)))
1267 		return 0;
1268 	return 1;
1269 }
1270 
1271 static struct nfs_open_context *nameidata_to_nfs_open_context(struct dentry *dentry, struct nameidata *nd)
1272 {
1273 	struct path path = {
1274 		.mnt = nd->path.mnt,
1275 		.dentry = dentry,
1276 	};
1277 	struct nfs_open_context *ctx;
1278 	struct rpc_cred *cred;
1279 	fmode_t fmode = nd->intent.open.flags & (FMODE_READ | FMODE_WRITE | FMODE_EXEC);
1280 
1281 	cred = rpc_lookup_cred();
1282 	if (IS_ERR(cred))
1283 		return ERR_CAST(cred);
1284 	ctx = alloc_nfs_open_context(&path, cred, fmode);
1285 	put_rpccred(cred);
1286 	if (ctx == NULL)
1287 		return ERR_PTR(-ENOMEM);
1288 	return ctx;
1289 }
1290 
1291 static int do_open(struct inode *inode, struct file *filp)
1292 {
1293 	nfs_fscache_set_inode_cookie(inode, filp);
1294 	return 0;
1295 }
1296 
1297 static int nfs_intent_set_file(struct nameidata *nd, struct nfs_open_context *ctx)
1298 {
1299 	struct file *filp;
1300 	int ret = 0;
1301 
1302 	/* If the open_intent is for execute, we have an extra check to make */
1303 	if (ctx->mode & FMODE_EXEC) {
1304 		ret = nfs_may_open(ctx->path.dentry->d_inode,
1305 				ctx->cred,
1306 				nd->intent.open.flags);
1307 		if (ret < 0)
1308 			goto out;
1309 	}
1310 	filp = lookup_instantiate_filp(nd, ctx->path.dentry, do_open);
1311 	if (IS_ERR(filp))
1312 		ret = PTR_ERR(filp);
1313 	else
1314 		nfs_file_set_open_context(filp, ctx);
1315 out:
1316 	put_nfs_open_context(ctx);
1317 	return ret;
1318 }
1319 
1320 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
1321 {
1322 	struct nfs_open_context *ctx;
1323 	struct iattr attr;
1324 	struct dentry *res = NULL;
1325 	struct inode *inode;
1326 	int open_flags;
1327 	int err;
1328 
1329 	dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
1330 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1331 
1332 	/* Check that we are indeed trying to open this file */
1333 	if (!is_atomic_open(nd))
1334 		goto no_open;
1335 
1336 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
1337 		res = ERR_PTR(-ENAMETOOLONG);
1338 		goto out;
1339 	}
1340 
1341 	/* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash
1342 	 * the dentry. */
1343 	if (nd->flags & LOOKUP_EXCL) {
1344 		d_instantiate(dentry, NULL);
1345 		goto out;
1346 	}
1347 
1348 	ctx = nameidata_to_nfs_open_context(dentry, nd);
1349 	res = ERR_CAST(ctx);
1350 	if (IS_ERR(ctx))
1351 		goto out;
1352 
1353 	open_flags = nd->intent.open.flags;
1354 	if (nd->flags & LOOKUP_CREATE) {
1355 		attr.ia_mode = nd->intent.open.create_mode;
1356 		attr.ia_valid = ATTR_MODE;
1357 		attr.ia_mode &= ~current_umask();
1358 	} else {
1359 		open_flags &= ~(O_EXCL | O_CREAT);
1360 		attr.ia_valid = 0;
1361 	}
1362 
1363 	/* Open the file on the server */
1364 	nfs_block_sillyrename(dentry->d_parent);
1365 	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr);
1366 	if (IS_ERR(inode)) {
1367 		nfs_unblock_sillyrename(dentry->d_parent);
1368 		put_nfs_open_context(ctx);
1369 		switch (PTR_ERR(inode)) {
1370 			/* Make a negative dentry */
1371 			case -ENOENT:
1372 				d_add(dentry, NULL);
1373 				res = NULL;
1374 				goto out;
1375 			/* This turned out not to be a regular file */
1376 			case -ENOTDIR:
1377 				goto no_open;
1378 			case -ELOOP:
1379 				if (!(nd->intent.open.flags & O_NOFOLLOW))
1380 					goto no_open;
1381 			/* case -EISDIR: */
1382 			/* case -EINVAL: */
1383 			default:
1384 				res = ERR_CAST(inode);
1385 				goto out;
1386 		}
1387 	}
1388 	res = d_add_unique(dentry, inode);
1389 	nfs_unblock_sillyrename(dentry->d_parent);
1390 	if (res != NULL) {
1391 		dput(ctx->path.dentry);
1392 		ctx->path.dentry = dget(res);
1393 		dentry = res;
1394 	}
1395 	err = nfs_intent_set_file(nd, ctx);
1396 	if (err < 0) {
1397 		if (res != NULL)
1398 			dput(res);
1399 		return ERR_PTR(err);
1400 	}
1401 out:
1402 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1403 	return res;
1404 no_open:
1405 	return nfs_lookup(dir, dentry, nd);
1406 }
1407 
1408 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1409 {
1410 	struct dentry *parent = NULL;
1411 	struct inode *inode;
1412 	struct inode *dir;
1413 	struct nfs_open_context *ctx;
1414 	int openflags, ret = 0;
1415 
1416 	if (nd->flags & LOOKUP_RCU)
1417 		return -ECHILD;
1418 
1419 	inode = dentry->d_inode;
1420 	if (!is_atomic_open(nd) || d_mountpoint(dentry))
1421 		goto no_open;
1422 
1423 	parent = dget_parent(dentry);
1424 	dir = parent->d_inode;
1425 
1426 	/* We can't create new files in nfs_open_revalidate(), so we
1427 	 * optimize away revalidation of negative dentries.
1428 	 */
1429 	if (inode == NULL) {
1430 		if (!nfs_neg_need_reval(dir, dentry, nd))
1431 			ret = 1;
1432 		goto out;
1433 	}
1434 
1435 	/* NFS only supports OPEN on regular files */
1436 	if (!S_ISREG(inode->i_mode))
1437 		goto no_open_dput;
1438 	openflags = nd->intent.open.flags;
1439 	/* We cannot do exclusive creation on a positive dentry */
1440 	if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1441 		goto no_open_dput;
1442 	/* We can't create new files, or truncate existing ones here */
1443 	openflags &= ~(O_CREAT|O_EXCL|O_TRUNC);
1444 
1445 	ctx = nameidata_to_nfs_open_context(dentry, nd);
1446 	ret = PTR_ERR(ctx);
1447 	if (IS_ERR(ctx))
1448 		goto out;
1449 	/*
1450 	 * Note: we're not holding inode->i_mutex and so may be racing with
1451 	 * operations that change the directory. We therefore save the
1452 	 * change attribute *before* we do the RPC call.
1453 	 */
1454 	inode = NFS_PROTO(dir)->open_context(dir, ctx, openflags, NULL);
1455 	if (IS_ERR(inode)) {
1456 		ret = PTR_ERR(inode);
1457 		switch (ret) {
1458 		case -EPERM:
1459 		case -EACCES:
1460 		case -EDQUOT:
1461 		case -ENOSPC:
1462 		case -EROFS:
1463 			goto out_put_ctx;
1464 		default:
1465 			goto out_drop;
1466 		}
1467 	}
1468 	iput(inode);
1469 	if (inode != dentry->d_inode)
1470 		goto out_drop;
1471 
1472 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1473 	ret = nfs_intent_set_file(nd, ctx);
1474 	if (ret >= 0)
1475 		ret = 1;
1476 out:
1477 	dput(parent);
1478 	return ret;
1479 out_drop:
1480 	d_drop(dentry);
1481 	ret = 0;
1482 out_put_ctx:
1483 	put_nfs_open_context(ctx);
1484 	goto out;
1485 
1486 no_open_dput:
1487 	dput(parent);
1488 no_open:
1489 	return nfs_lookup_revalidate(dentry, nd);
1490 }
1491 
1492 static int nfs_open_create(struct inode *dir, struct dentry *dentry, int mode,
1493 		struct nameidata *nd)
1494 {
1495 	struct nfs_open_context *ctx = NULL;
1496 	struct iattr attr;
1497 	int error;
1498 	int open_flags = 0;
1499 
1500 	dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1501 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1502 
1503 	attr.ia_mode = mode;
1504 	attr.ia_valid = ATTR_MODE;
1505 
1506 	if ((nd->flags & LOOKUP_CREATE) != 0) {
1507 		open_flags = nd->intent.open.flags;
1508 
1509 		ctx = nameidata_to_nfs_open_context(dentry, nd);
1510 		error = PTR_ERR(ctx);
1511 		if (IS_ERR(ctx))
1512 			goto out_err_drop;
1513 	}
1514 
1515 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, ctx);
1516 	if (error != 0)
1517 		goto out_put_ctx;
1518 	if (ctx != NULL) {
1519 		error = nfs_intent_set_file(nd, ctx);
1520 		if (error < 0)
1521 			goto out_err;
1522 	}
1523 	return 0;
1524 out_put_ctx:
1525 	if (ctx != NULL)
1526 		put_nfs_open_context(ctx);
1527 out_err_drop:
1528 	d_drop(dentry);
1529 out_err:
1530 	return error;
1531 }
1532 
1533 #endif /* CONFIG_NFSV4 */
1534 
1535 /*
1536  * Code common to create, mkdir, and mknod.
1537  */
1538 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1539 				struct nfs_fattr *fattr)
1540 {
1541 	struct dentry *parent = dget_parent(dentry);
1542 	struct inode *dir = parent->d_inode;
1543 	struct inode *inode;
1544 	int error = -EACCES;
1545 
1546 	d_drop(dentry);
1547 
1548 	/* We may have been initialized further down */
1549 	if (dentry->d_inode)
1550 		goto out;
1551 	if (fhandle->size == 0) {
1552 		error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1553 		if (error)
1554 			goto out_error;
1555 	}
1556 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1557 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1558 		struct nfs_server *server = NFS_SB(dentry->d_sb);
1559 		error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1560 		if (error < 0)
1561 			goto out_error;
1562 	}
1563 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1564 	error = PTR_ERR(inode);
1565 	if (IS_ERR(inode))
1566 		goto out_error;
1567 	d_add(dentry, inode);
1568 out:
1569 	dput(parent);
1570 	return 0;
1571 out_error:
1572 	nfs_mark_for_revalidate(dir);
1573 	dput(parent);
1574 	return error;
1575 }
1576 
1577 /*
1578  * Following a failed create operation, we drop the dentry rather
1579  * than retain a negative dentry. This avoids a problem in the event
1580  * that the operation succeeded on the server, but an error in the
1581  * reply path made it appear to have failed.
1582  */
1583 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode,
1584 		struct nameidata *nd)
1585 {
1586 	struct iattr attr;
1587 	int error;
1588 	int open_flags = 0;
1589 
1590 	dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1591 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1592 
1593 	attr.ia_mode = mode;
1594 	attr.ia_valid = ATTR_MODE;
1595 
1596 	if ((nd->flags & LOOKUP_CREATE) != 0)
1597 		open_flags = nd->intent.open.flags;
1598 
1599 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, NULL);
1600 	if (error != 0)
1601 		goto out_err;
1602 	return 0;
1603 out_err:
1604 	d_drop(dentry);
1605 	return error;
1606 }
1607 
1608 /*
1609  * See comments for nfs_proc_create regarding failed operations.
1610  */
1611 static int
1612 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev)
1613 {
1614 	struct iattr attr;
1615 	int status;
1616 
1617 	dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1618 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1619 
1620 	if (!new_valid_dev(rdev))
1621 		return -EINVAL;
1622 
1623 	attr.ia_mode = mode;
1624 	attr.ia_valid = ATTR_MODE;
1625 
1626 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1627 	if (status != 0)
1628 		goto out_err;
1629 	return 0;
1630 out_err:
1631 	d_drop(dentry);
1632 	return status;
1633 }
1634 
1635 /*
1636  * See comments for nfs_proc_create regarding failed operations.
1637  */
1638 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1639 {
1640 	struct iattr attr;
1641 	int error;
1642 
1643 	dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1644 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1645 
1646 	attr.ia_valid = ATTR_MODE;
1647 	attr.ia_mode = mode | S_IFDIR;
1648 
1649 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1650 	if (error != 0)
1651 		goto out_err;
1652 	return 0;
1653 out_err:
1654 	d_drop(dentry);
1655 	return error;
1656 }
1657 
1658 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1659 {
1660 	if (dentry->d_inode != NULL && !d_unhashed(dentry))
1661 		d_delete(dentry);
1662 }
1663 
1664 static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1665 {
1666 	int error;
1667 
1668 	dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1669 			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1670 
1671 	error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1672 	/* Ensure the VFS deletes this inode */
1673 	if (error == 0 && dentry->d_inode != NULL)
1674 		clear_nlink(dentry->d_inode);
1675 	else if (error == -ENOENT)
1676 		nfs_dentry_handle_enoent(dentry);
1677 
1678 	return error;
1679 }
1680 
1681 /*
1682  * Remove a file after making sure there are no pending writes,
1683  * and after checking that the file has only one user.
1684  *
1685  * We invalidate the attribute cache and free the inode prior to the operation
1686  * to avoid possible races if the server reuses the inode.
1687  */
1688 static int nfs_safe_remove(struct dentry *dentry)
1689 {
1690 	struct inode *dir = dentry->d_parent->d_inode;
1691 	struct inode *inode = dentry->d_inode;
1692 	int error = -EBUSY;
1693 
1694 	dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1695 		dentry->d_parent->d_name.name, dentry->d_name.name);
1696 
1697 	/* If the dentry was sillyrenamed, we simply call d_delete() */
1698 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1699 		error = 0;
1700 		goto out;
1701 	}
1702 
1703 	if (inode != NULL) {
1704 		nfs_inode_return_delegation(inode);
1705 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1706 		/* The VFS may want to delete this inode */
1707 		if (error == 0)
1708 			nfs_drop_nlink(inode);
1709 		nfs_mark_for_revalidate(inode);
1710 	} else
1711 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1712 	if (error == -ENOENT)
1713 		nfs_dentry_handle_enoent(dentry);
1714 out:
1715 	return error;
1716 }
1717 
1718 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1719  *  belongs to an active ".nfs..." file and we return -EBUSY.
1720  *
1721  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1722  */
1723 static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1724 {
1725 	int error;
1726 	int need_rehash = 0;
1727 
1728 	dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1729 		dir->i_ino, dentry->d_name.name);
1730 
1731 	spin_lock(&dentry->d_lock);
1732 	if (dentry->d_count > 1) {
1733 		spin_unlock(&dentry->d_lock);
1734 		/* Start asynchronous writeout of the inode */
1735 		write_inode_now(dentry->d_inode, 0);
1736 		error = nfs_sillyrename(dir, dentry);
1737 		return error;
1738 	}
1739 	if (!d_unhashed(dentry)) {
1740 		__d_drop(dentry);
1741 		need_rehash = 1;
1742 	}
1743 	spin_unlock(&dentry->d_lock);
1744 	error = nfs_safe_remove(dentry);
1745 	if (!error || error == -ENOENT) {
1746 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1747 	} else if (need_rehash)
1748 		d_rehash(dentry);
1749 	return error;
1750 }
1751 
1752 /*
1753  * To create a symbolic link, most file systems instantiate a new inode,
1754  * add a page to it containing the path, then write it out to the disk
1755  * using prepare_write/commit_write.
1756  *
1757  * Unfortunately the NFS client can't create the in-core inode first
1758  * because it needs a file handle to create an in-core inode (see
1759  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1760  * symlink request has completed on the server.
1761  *
1762  * So instead we allocate a raw page, copy the symname into it, then do
1763  * the SYMLINK request with the page as the buffer.  If it succeeds, we
1764  * now have a new file handle and can instantiate an in-core NFS inode
1765  * and move the raw page into its mapping.
1766  */
1767 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1768 {
1769 	struct pagevec lru_pvec;
1770 	struct page *page;
1771 	char *kaddr;
1772 	struct iattr attr;
1773 	unsigned int pathlen = strlen(symname);
1774 	int error;
1775 
1776 	dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1777 		dir->i_ino, dentry->d_name.name, symname);
1778 
1779 	if (pathlen > PAGE_SIZE)
1780 		return -ENAMETOOLONG;
1781 
1782 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
1783 	attr.ia_valid = ATTR_MODE;
1784 
1785 	page = alloc_page(GFP_HIGHUSER);
1786 	if (!page)
1787 		return -ENOMEM;
1788 
1789 	kaddr = kmap_atomic(page, KM_USER0);
1790 	memcpy(kaddr, symname, pathlen);
1791 	if (pathlen < PAGE_SIZE)
1792 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1793 	kunmap_atomic(kaddr, KM_USER0);
1794 
1795 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1796 	if (error != 0) {
1797 		dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1798 			dir->i_sb->s_id, dir->i_ino,
1799 			dentry->d_name.name, symname, error);
1800 		d_drop(dentry);
1801 		__free_page(page);
1802 		return error;
1803 	}
1804 
1805 	/*
1806 	 * No big deal if we can't add this page to the page cache here.
1807 	 * READLINK will get the missing page from the server if needed.
1808 	 */
1809 	pagevec_init(&lru_pvec, 0);
1810 	if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1811 							GFP_KERNEL)) {
1812 		pagevec_add(&lru_pvec, page);
1813 		pagevec_lru_add_file(&lru_pvec);
1814 		SetPageUptodate(page);
1815 		unlock_page(page);
1816 	} else
1817 		__free_page(page);
1818 
1819 	return 0;
1820 }
1821 
1822 static int
1823 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1824 {
1825 	struct inode *inode = old_dentry->d_inode;
1826 	int error;
1827 
1828 	dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1829 		old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1830 		dentry->d_parent->d_name.name, dentry->d_name.name);
1831 
1832 	nfs_inode_return_delegation(inode);
1833 
1834 	d_drop(dentry);
1835 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1836 	if (error == 0) {
1837 		ihold(inode);
1838 		d_add(dentry, inode);
1839 	}
1840 	return error;
1841 }
1842 
1843 /*
1844  * RENAME
1845  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1846  * different file handle for the same inode after a rename (e.g. when
1847  * moving to a different directory). A fail-safe method to do so would
1848  * be to look up old_dir/old_name, create a link to new_dir/new_name and
1849  * rename the old file using the sillyrename stuff. This way, the original
1850  * file in old_dir will go away when the last process iput()s the inode.
1851  *
1852  * FIXED.
1853  *
1854  * It actually works quite well. One needs to have the possibility for
1855  * at least one ".nfs..." file in each directory the file ever gets
1856  * moved or linked to which happens automagically with the new
1857  * implementation that only depends on the dcache stuff instead of
1858  * using the inode layer
1859  *
1860  * Unfortunately, things are a little more complicated than indicated
1861  * above. For a cross-directory move, we want to make sure we can get
1862  * rid of the old inode after the operation.  This means there must be
1863  * no pending writes (if it's a file), and the use count must be 1.
1864  * If these conditions are met, we can drop the dentries before doing
1865  * the rename.
1866  */
1867 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1868 		      struct inode *new_dir, struct dentry *new_dentry)
1869 {
1870 	struct inode *old_inode = old_dentry->d_inode;
1871 	struct inode *new_inode = new_dentry->d_inode;
1872 	struct dentry *dentry = NULL, *rehash = NULL;
1873 	int error = -EBUSY;
1874 
1875 	dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1876 		 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1877 		 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1878 		 new_dentry->d_count);
1879 
1880 	/*
1881 	 * For non-directories, check whether the target is busy and if so,
1882 	 * make a copy of the dentry and then do a silly-rename. If the
1883 	 * silly-rename succeeds, the copied dentry is hashed and becomes
1884 	 * the new target.
1885 	 */
1886 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
1887 		/*
1888 		 * To prevent any new references to the target during the
1889 		 * rename, we unhash the dentry in advance.
1890 		 */
1891 		if (!d_unhashed(new_dentry)) {
1892 			d_drop(new_dentry);
1893 			rehash = new_dentry;
1894 		}
1895 
1896 		if (new_dentry->d_count > 2) {
1897 			int err;
1898 
1899 			/* copy the target dentry's name */
1900 			dentry = d_alloc(new_dentry->d_parent,
1901 					 &new_dentry->d_name);
1902 			if (!dentry)
1903 				goto out;
1904 
1905 			/* silly-rename the existing target ... */
1906 			err = nfs_sillyrename(new_dir, new_dentry);
1907 			if (err)
1908 				goto out;
1909 
1910 			new_dentry = dentry;
1911 			rehash = NULL;
1912 			new_inode = NULL;
1913 		}
1914 	}
1915 
1916 	nfs_inode_return_delegation(old_inode);
1917 	if (new_inode != NULL)
1918 		nfs_inode_return_delegation(new_inode);
1919 
1920 	error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1921 					   new_dir, &new_dentry->d_name);
1922 	nfs_mark_for_revalidate(old_inode);
1923 out:
1924 	if (rehash)
1925 		d_rehash(rehash);
1926 	if (!error) {
1927 		if (new_inode != NULL)
1928 			nfs_drop_nlink(new_inode);
1929 		d_move(old_dentry, new_dentry);
1930 		nfs_set_verifier(new_dentry,
1931 					nfs_save_change_attribute(new_dir));
1932 	} else if (error == -ENOENT)
1933 		nfs_dentry_handle_enoent(old_dentry);
1934 
1935 	/* new dentry created? */
1936 	if (dentry)
1937 		dput(dentry);
1938 	return error;
1939 }
1940 
1941 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1942 static LIST_HEAD(nfs_access_lru_list);
1943 static atomic_long_t nfs_access_nr_entries;
1944 
1945 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1946 {
1947 	put_rpccred(entry->cred);
1948 	kfree(entry);
1949 	smp_mb__before_atomic_dec();
1950 	atomic_long_dec(&nfs_access_nr_entries);
1951 	smp_mb__after_atomic_dec();
1952 }
1953 
1954 static void nfs_access_free_list(struct list_head *head)
1955 {
1956 	struct nfs_access_entry *cache;
1957 
1958 	while (!list_empty(head)) {
1959 		cache = list_entry(head->next, struct nfs_access_entry, lru);
1960 		list_del(&cache->lru);
1961 		nfs_access_free_entry(cache);
1962 	}
1963 }
1964 
1965 int nfs_access_cache_shrinker(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
1966 {
1967 	LIST_HEAD(head);
1968 	struct nfs_inode *nfsi, *next;
1969 	struct nfs_access_entry *cache;
1970 
1971 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
1972 		return (nr_to_scan == 0) ? 0 : -1;
1973 
1974 	spin_lock(&nfs_access_lru_lock);
1975 	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
1976 		struct inode *inode;
1977 
1978 		if (nr_to_scan-- == 0)
1979 			break;
1980 		inode = &nfsi->vfs_inode;
1981 		spin_lock(&inode->i_lock);
1982 		if (list_empty(&nfsi->access_cache_entry_lru))
1983 			goto remove_lru_entry;
1984 		cache = list_entry(nfsi->access_cache_entry_lru.next,
1985 				struct nfs_access_entry, lru);
1986 		list_move(&cache->lru, &head);
1987 		rb_erase(&cache->rb_node, &nfsi->access_cache);
1988 		if (!list_empty(&nfsi->access_cache_entry_lru))
1989 			list_move_tail(&nfsi->access_cache_inode_lru,
1990 					&nfs_access_lru_list);
1991 		else {
1992 remove_lru_entry:
1993 			list_del_init(&nfsi->access_cache_inode_lru);
1994 			smp_mb__before_clear_bit();
1995 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1996 			smp_mb__after_clear_bit();
1997 		}
1998 		spin_unlock(&inode->i_lock);
1999 	}
2000 	spin_unlock(&nfs_access_lru_lock);
2001 	nfs_access_free_list(&head);
2002 	return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
2003 }
2004 
2005 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2006 {
2007 	struct rb_root *root_node = &nfsi->access_cache;
2008 	struct rb_node *n;
2009 	struct nfs_access_entry *entry;
2010 
2011 	/* Unhook entries from the cache */
2012 	while ((n = rb_first(root_node)) != NULL) {
2013 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2014 		rb_erase(n, root_node);
2015 		list_move(&entry->lru, head);
2016 	}
2017 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2018 }
2019 
2020 void nfs_access_zap_cache(struct inode *inode)
2021 {
2022 	LIST_HEAD(head);
2023 
2024 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2025 		return;
2026 	/* Remove from global LRU init */
2027 	spin_lock(&nfs_access_lru_lock);
2028 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2029 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2030 
2031 	spin_lock(&inode->i_lock);
2032 	__nfs_access_zap_cache(NFS_I(inode), &head);
2033 	spin_unlock(&inode->i_lock);
2034 	spin_unlock(&nfs_access_lru_lock);
2035 	nfs_access_free_list(&head);
2036 }
2037 
2038 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2039 {
2040 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2041 	struct nfs_access_entry *entry;
2042 
2043 	while (n != NULL) {
2044 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2045 
2046 		if (cred < entry->cred)
2047 			n = n->rb_left;
2048 		else if (cred > entry->cred)
2049 			n = n->rb_right;
2050 		else
2051 			return entry;
2052 	}
2053 	return NULL;
2054 }
2055 
2056 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2057 {
2058 	struct nfs_inode *nfsi = NFS_I(inode);
2059 	struct nfs_access_entry *cache;
2060 	int err = -ENOENT;
2061 
2062 	spin_lock(&inode->i_lock);
2063 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2064 		goto out_zap;
2065 	cache = nfs_access_search_rbtree(inode, cred);
2066 	if (cache == NULL)
2067 		goto out;
2068 	if (!nfs_have_delegated_attributes(inode) &&
2069 	    !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2070 		goto out_stale;
2071 	res->jiffies = cache->jiffies;
2072 	res->cred = cache->cred;
2073 	res->mask = cache->mask;
2074 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2075 	err = 0;
2076 out:
2077 	spin_unlock(&inode->i_lock);
2078 	return err;
2079 out_stale:
2080 	rb_erase(&cache->rb_node, &nfsi->access_cache);
2081 	list_del(&cache->lru);
2082 	spin_unlock(&inode->i_lock);
2083 	nfs_access_free_entry(cache);
2084 	return -ENOENT;
2085 out_zap:
2086 	spin_unlock(&inode->i_lock);
2087 	nfs_access_zap_cache(inode);
2088 	return -ENOENT;
2089 }
2090 
2091 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2092 {
2093 	struct nfs_inode *nfsi = NFS_I(inode);
2094 	struct rb_root *root_node = &nfsi->access_cache;
2095 	struct rb_node **p = &root_node->rb_node;
2096 	struct rb_node *parent = NULL;
2097 	struct nfs_access_entry *entry;
2098 
2099 	spin_lock(&inode->i_lock);
2100 	while (*p != NULL) {
2101 		parent = *p;
2102 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2103 
2104 		if (set->cred < entry->cred)
2105 			p = &parent->rb_left;
2106 		else if (set->cred > entry->cred)
2107 			p = &parent->rb_right;
2108 		else
2109 			goto found;
2110 	}
2111 	rb_link_node(&set->rb_node, parent, p);
2112 	rb_insert_color(&set->rb_node, root_node);
2113 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2114 	spin_unlock(&inode->i_lock);
2115 	return;
2116 found:
2117 	rb_replace_node(parent, &set->rb_node, root_node);
2118 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2119 	list_del(&entry->lru);
2120 	spin_unlock(&inode->i_lock);
2121 	nfs_access_free_entry(entry);
2122 }
2123 
2124 static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2125 {
2126 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2127 	if (cache == NULL)
2128 		return;
2129 	RB_CLEAR_NODE(&cache->rb_node);
2130 	cache->jiffies = set->jiffies;
2131 	cache->cred = get_rpccred(set->cred);
2132 	cache->mask = set->mask;
2133 
2134 	nfs_access_add_rbtree(inode, cache);
2135 
2136 	/* Update accounting */
2137 	smp_mb__before_atomic_inc();
2138 	atomic_long_inc(&nfs_access_nr_entries);
2139 	smp_mb__after_atomic_inc();
2140 
2141 	/* Add inode to global LRU list */
2142 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2143 		spin_lock(&nfs_access_lru_lock);
2144 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2145 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2146 					&nfs_access_lru_list);
2147 		spin_unlock(&nfs_access_lru_lock);
2148 	}
2149 }
2150 
2151 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2152 {
2153 	struct nfs_access_entry cache;
2154 	int status;
2155 
2156 	status = nfs_access_get_cached(inode, cred, &cache);
2157 	if (status == 0)
2158 		goto out;
2159 
2160 	/* Be clever: ask server to check for all possible rights */
2161 	cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2162 	cache.cred = cred;
2163 	cache.jiffies = jiffies;
2164 	status = NFS_PROTO(inode)->access(inode, &cache);
2165 	if (status != 0) {
2166 		if (status == -ESTALE) {
2167 			nfs_zap_caches(inode);
2168 			if (!S_ISDIR(inode->i_mode))
2169 				set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2170 		}
2171 		return status;
2172 	}
2173 	nfs_access_add_cache(inode, &cache);
2174 out:
2175 	if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2176 		return 0;
2177 	return -EACCES;
2178 }
2179 
2180 static int nfs_open_permission_mask(int openflags)
2181 {
2182 	int mask = 0;
2183 
2184 	if (openflags & FMODE_READ)
2185 		mask |= MAY_READ;
2186 	if (openflags & FMODE_WRITE)
2187 		mask |= MAY_WRITE;
2188 	if (openflags & FMODE_EXEC)
2189 		mask |= MAY_EXEC;
2190 	return mask;
2191 }
2192 
2193 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2194 {
2195 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2196 }
2197 
2198 int nfs_permission(struct inode *inode, int mask, unsigned int flags)
2199 {
2200 	struct rpc_cred *cred;
2201 	int res = 0;
2202 
2203 	if (flags & IPERM_FLAG_RCU)
2204 		return -ECHILD;
2205 
2206 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2207 
2208 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2209 		goto out;
2210 	/* Is this sys_access() ? */
2211 	if (mask & (MAY_ACCESS | MAY_CHDIR))
2212 		goto force_lookup;
2213 
2214 	switch (inode->i_mode & S_IFMT) {
2215 		case S_IFLNK:
2216 			goto out;
2217 		case S_IFREG:
2218 			/* NFSv4 has atomic_open... */
2219 			if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
2220 					&& (mask & MAY_OPEN)
2221 					&& !(mask & MAY_EXEC))
2222 				goto out;
2223 			break;
2224 		case S_IFDIR:
2225 			/*
2226 			 * Optimize away all write operations, since the server
2227 			 * will check permissions when we perform the op.
2228 			 */
2229 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2230 				goto out;
2231 	}
2232 
2233 force_lookup:
2234 	if (!NFS_PROTO(inode)->access)
2235 		goto out_notsup;
2236 
2237 	cred = rpc_lookup_cred();
2238 	if (!IS_ERR(cred)) {
2239 		res = nfs_do_access(inode, cred, mask);
2240 		put_rpccred(cred);
2241 	} else
2242 		res = PTR_ERR(cred);
2243 out:
2244 	if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
2245 		res = -EACCES;
2246 
2247 	dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
2248 		inode->i_sb->s_id, inode->i_ino, mask, res);
2249 	return res;
2250 out_notsup:
2251 	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2252 	if (res == 0)
2253 		res = generic_permission(inode, mask, flags, NULL);
2254 	goto out;
2255 }
2256 
2257 /*
2258  * Local variables:
2259  *  version-control: t
2260  *  kept-new-versions: 5
2261  * End:
2262  */
2263