xref: /openbmc/linux/fs/nfs/dir.c (revision 2dd6532e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/nfs/dir.c
4  *
5  *  Copyright (C) 1992  Rick Sladkey
6  *
7  *  nfs directory handling functions
8  *
9  * 10 Apr 1996	Added silly rename for unlink	--okir
10  * 28 Sep 1996	Improved directory cache --okir
11  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
12  *              Re-implemented silly rename for unlink, newly implemented
13  *              silly rename for nfs_rename() following the suggestions
14  *              of Olaf Kirch (okir) found in this file.
15  *              Following Linus comments on my original hack, this version
16  *              depends only on the dcache stuff and doesn't touch the inode
17  *              layer (iput() and friends).
18  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
19  */
20 
21 #include <linux/compat.h>
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/errno.h>
25 #include <linux/stat.h>
26 #include <linux/fcntl.h>
27 #include <linux/string.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/mm.h>
31 #include <linux/sunrpc/clnt.h>
32 #include <linux/nfs_fs.h>
33 #include <linux/nfs_mount.h>
34 #include <linux/pagemap.h>
35 #include <linux/pagevec.h>
36 #include <linux/namei.h>
37 #include <linux/mount.h>
38 #include <linux/swap.h>
39 #include <linux/sched.h>
40 #include <linux/kmemleak.h>
41 #include <linux/xattr.h>
42 #include <linux/hash.h>
43 
44 #include "delegation.h"
45 #include "iostat.h"
46 #include "internal.h"
47 #include "fscache.h"
48 
49 #include "nfstrace.h"
50 
51 /* #define NFS_DEBUG_VERBOSE 1 */
52 
53 static int nfs_opendir(struct inode *, struct file *);
54 static int nfs_closedir(struct inode *, struct file *);
55 static int nfs_readdir(struct file *, struct dir_context *);
56 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
57 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
58 static void nfs_readdir_free_folio(struct folio *);
59 
60 const struct file_operations nfs_dir_operations = {
61 	.llseek		= nfs_llseek_dir,
62 	.read		= generic_read_dir,
63 	.iterate_shared	= nfs_readdir,
64 	.open		= nfs_opendir,
65 	.release	= nfs_closedir,
66 	.fsync		= nfs_fsync_dir,
67 };
68 
69 const struct address_space_operations nfs_dir_aops = {
70 	.free_folio = nfs_readdir_free_folio,
71 };
72 
73 #define NFS_INIT_DTSIZE PAGE_SIZE
74 
75 static struct nfs_open_dir_context *
76 alloc_nfs_open_dir_context(struct inode *dir)
77 {
78 	struct nfs_inode *nfsi = NFS_I(dir);
79 	struct nfs_open_dir_context *ctx;
80 
81 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL_ACCOUNT);
82 	if (ctx != NULL) {
83 		ctx->attr_gencount = nfsi->attr_gencount;
84 		ctx->dtsize = NFS_INIT_DTSIZE;
85 		spin_lock(&dir->i_lock);
86 		if (list_empty(&nfsi->open_files) &&
87 		    (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
88 			nfs_set_cache_invalid(dir,
89 					      NFS_INO_INVALID_DATA |
90 						      NFS_INO_REVAL_FORCED);
91 		list_add_tail_rcu(&ctx->list, &nfsi->open_files);
92 		memcpy(ctx->verf, nfsi->cookieverf, sizeof(ctx->verf));
93 		spin_unlock(&dir->i_lock);
94 		return ctx;
95 	}
96 	return  ERR_PTR(-ENOMEM);
97 }
98 
99 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
100 {
101 	spin_lock(&dir->i_lock);
102 	list_del_rcu(&ctx->list);
103 	spin_unlock(&dir->i_lock);
104 	kfree_rcu(ctx, rcu_head);
105 }
106 
107 /*
108  * Open file
109  */
110 static int
111 nfs_opendir(struct inode *inode, struct file *filp)
112 {
113 	int res = 0;
114 	struct nfs_open_dir_context *ctx;
115 
116 	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
117 
118 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
119 
120 	ctx = alloc_nfs_open_dir_context(inode);
121 	if (IS_ERR(ctx)) {
122 		res = PTR_ERR(ctx);
123 		goto out;
124 	}
125 	filp->private_data = ctx;
126 out:
127 	return res;
128 }
129 
130 static int
131 nfs_closedir(struct inode *inode, struct file *filp)
132 {
133 	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
134 	return 0;
135 }
136 
137 struct nfs_cache_array_entry {
138 	u64 cookie;
139 	u64 ino;
140 	const char *name;
141 	unsigned int name_len;
142 	unsigned char d_type;
143 };
144 
145 struct nfs_cache_array {
146 	u64 change_attr;
147 	u64 last_cookie;
148 	unsigned int size;
149 	unsigned char page_full : 1,
150 		      page_is_eof : 1,
151 		      cookies_are_ordered : 1;
152 	struct nfs_cache_array_entry array[];
153 };
154 
155 struct nfs_readdir_descriptor {
156 	struct file	*file;
157 	struct page	*page;
158 	struct dir_context *ctx;
159 	pgoff_t		page_index;
160 	pgoff_t		page_index_max;
161 	u64		dir_cookie;
162 	u64		last_cookie;
163 	loff_t		current_index;
164 
165 	__be32		verf[NFS_DIR_VERIFIER_SIZE];
166 	unsigned long	dir_verifier;
167 	unsigned long	timestamp;
168 	unsigned long	gencount;
169 	unsigned long	attr_gencount;
170 	unsigned int	cache_entry_index;
171 	unsigned int	buffer_fills;
172 	unsigned int	dtsize;
173 	bool clear_cache;
174 	bool plus;
175 	bool eob;
176 	bool eof;
177 };
178 
179 static void nfs_set_dtsize(struct nfs_readdir_descriptor *desc, unsigned int sz)
180 {
181 	struct nfs_server *server = NFS_SERVER(file_inode(desc->file));
182 	unsigned int maxsize = server->dtsize;
183 
184 	if (sz > maxsize)
185 		sz = maxsize;
186 	if (sz < NFS_MIN_FILE_IO_SIZE)
187 		sz = NFS_MIN_FILE_IO_SIZE;
188 	desc->dtsize = sz;
189 }
190 
191 static void nfs_shrink_dtsize(struct nfs_readdir_descriptor *desc)
192 {
193 	nfs_set_dtsize(desc, desc->dtsize >> 1);
194 }
195 
196 static void nfs_grow_dtsize(struct nfs_readdir_descriptor *desc)
197 {
198 	nfs_set_dtsize(desc, desc->dtsize << 1);
199 }
200 
201 static void nfs_readdir_page_init_array(struct page *page, u64 last_cookie,
202 					u64 change_attr)
203 {
204 	struct nfs_cache_array *array;
205 
206 	array = kmap_atomic(page);
207 	array->change_attr = change_attr;
208 	array->last_cookie = last_cookie;
209 	array->size = 0;
210 	array->page_full = 0;
211 	array->page_is_eof = 0;
212 	array->cookies_are_ordered = 1;
213 	kunmap_atomic(array);
214 }
215 
216 /*
217  * we are freeing strings created by nfs_add_to_readdir_array()
218  */
219 static void nfs_readdir_clear_array(struct page *page)
220 {
221 	struct nfs_cache_array *array;
222 	unsigned int i;
223 
224 	array = kmap_atomic(page);
225 	for (i = 0; i < array->size; i++)
226 		kfree(array->array[i].name);
227 	array->size = 0;
228 	kunmap_atomic(array);
229 }
230 
231 static void nfs_readdir_free_folio(struct folio *folio)
232 {
233 	nfs_readdir_clear_array(&folio->page);
234 }
235 
236 static void nfs_readdir_page_reinit_array(struct page *page, u64 last_cookie,
237 					  u64 change_attr)
238 {
239 	nfs_readdir_clear_array(page);
240 	nfs_readdir_page_init_array(page, last_cookie, change_attr);
241 }
242 
243 static struct page *
244 nfs_readdir_page_array_alloc(u64 last_cookie, gfp_t gfp_flags)
245 {
246 	struct page *page = alloc_page(gfp_flags);
247 	if (page)
248 		nfs_readdir_page_init_array(page, last_cookie, 0);
249 	return page;
250 }
251 
252 static void nfs_readdir_page_array_free(struct page *page)
253 {
254 	if (page) {
255 		nfs_readdir_clear_array(page);
256 		put_page(page);
257 	}
258 }
259 
260 static u64 nfs_readdir_array_index_cookie(struct nfs_cache_array *array)
261 {
262 	return array->size == 0 ? array->last_cookie : array->array[0].cookie;
263 }
264 
265 static void nfs_readdir_array_set_eof(struct nfs_cache_array *array)
266 {
267 	array->page_is_eof = 1;
268 	array->page_full = 1;
269 }
270 
271 static bool nfs_readdir_array_is_full(struct nfs_cache_array *array)
272 {
273 	return array->page_full;
274 }
275 
276 /*
277  * the caller is responsible for freeing qstr.name
278  * when called by nfs_readdir_add_to_array, the strings will be freed in
279  * nfs_clear_readdir_array()
280  */
281 static const char *nfs_readdir_copy_name(const char *name, unsigned int len)
282 {
283 	const char *ret = kmemdup_nul(name, len, GFP_KERNEL);
284 
285 	/*
286 	 * Avoid a kmemleak false positive. The pointer to the name is stored
287 	 * in a page cache page which kmemleak does not scan.
288 	 */
289 	if (ret != NULL)
290 		kmemleak_not_leak(ret);
291 	return ret;
292 }
293 
294 static size_t nfs_readdir_array_maxentries(void)
295 {
296 	return (PAGE_SIZE - sizeof(struct nfs_cache_array)) /
297 	       sizeof(struct nfs_cache_array_entry);
298 }
299 
300 /*
301  * Check that the next array entry lies entirely within the page bounds
302  */
303 static int nfs_readdir_array_can_expand(struct nfs_cache_array *array)
304 {
305 	if (array->page_full)
306 		return -ENOSPC;
307 	if (array->size == nfs_readdir_array_maxentries()) {
308 		array->page_full = 1;
309 		return -ENOSPC;
310 	}
311 	return 0;
312 }
313 
314 static int nfs_readdir_page_array_append(struct page *page,
315 					 const struct nfs_entry *entry,
316 					 u64 *cookie)
317 {
318 	struct nfs_cache_array *array;
319 	struct nfs_cache_array_entry *cache_entry;
320 	const char *name;
321 	int ret = -ENOMEM;
322 
323 	name = nfs_readdir_copy_name(entry->name, entry->len);
324 
325 	array = kmap_atomic(page);
326 	if (!name)
327 		goto out;
328 	ret = nfs_readdir_array_can_expand(array);
329 	if (ret) {
330 		kfree(name);
331 		goto out;
332 	}
333 
334 	cache_entry = &array->array[array->size];
335 	cache_entry->cookie = array->last_cookie;
336 	cache_entry->ino = entry->ino;
337 	cache_entry->d_type = entry->d_type;
338 	cache_entry->name_len = entry->len;
339 	cache_entry->name = name;
340 	array->last_cookie = entry->cookie;
341 	if (array->last_cookie <= cache_entry->cookie)
342 		array->cookies_are_ordered = 0;
343 	array->size++;
344 	if (entry->eof != 0)
345 		nfs_readdir_array_set_eof(array);
346 out:
347 	*cookie = array->last_cookie;
348 	kunmap_atomic(array);
349 	return ret;
350 }
351 
352 #define NFS_READDIR_COOKIE_MASK (U32_MAX >> 14)
353 /*
354  * Hash algorithm allowing content addressible access to sequences
355  * of directory cookies. Content is addressed by the value of the
356  * cookie index of the first readdir entry in a page.
357  *
358  * We select only the first 18 bits to avoid issues with excessive
359  * memory use for the page cache XArray. 18 bits should allow the caching
360  * of 262144 pages of sequences of readdir entries. Since each page holds
361  * 127 readdir entries for a typical 64-bit system, that works out to a
362  * cache of ~ 33 million entries per directory.
363  */
364 static pgoff_t nfs_readdir_page_cookie_hash(u64 cookie)
365 {
366 	if (cookie == 0)
367 		return 0;
368 	return hash_64(cookie, 18);
369 }
370 
371 static bool nfs_readdir_page_validate(struct page *page, u64 last_cookie,
372 				      u64 change_attr)
373 {
374 	struct nfs_cache_array *array = kmap_atomic(page);
375 	int ret = true;
376 
377 	if (array->change_attr != change_attr)
378 		ret = false;
379 	if (nfs_readdir_array_index_cookie(array) != last_cookie)
380 		ret = false;
381 	kunmap_atomic(array);
382 	return ret;
383 }
384 
385 static void nfs_readdir_page_unlock_and_put(struct page *page)
386 {
387 	unlock_page(page);
388 	put_page(page);
389 }
390 
391 static void nfs_readdir_page_init_and_validate(struct page *page, u64 cookie,
392 					       u64 change_attr)
393 {
394 	if (PageUptodate(page)) {
395 		if (nfs_readdir_page_validate(page, cookie, change_attr))
396 			return;
397 		nfs_readdir_clear_array(page);
398 	}
399 	nfs_readdir_page_init_array(page, cookie, change_attr);
400 	SetPageUptodate(page);
401 }
402 
403 static struct page *nfs_readdir_page_get_locked(struct address_space *mapping,
404 						u64 cookie, u64 change_attr)
405 {
406 	pgoff_t index = nfs_readdir_page_cookie_hash(cookie);
407 	struct page *page;
408 
409 	page = grab_cache_page(mapping, index);
410 	if (!page)
411 		return NULL;
412 	nfs_readdir_page_init_and_validate(page, cookie, change_attr);
413 	return page;
414 }
415 
416 static u64 nfs_readdir_page_last_cookie(struct page *page)
417 {
418 	struct nfs_cache_array *array;
419 	u64 ret;
420 
421 	array = kmap_atomic(page);
422 	ret = array->last_cookie;
423 	kunmap_atomic(array);
424 	return ret;
425 }
426 
427 static bool nfs_readdir_page_needs_filling(struct page *page)
428 {
429 	struct nfs_cache_array *array;
430 	bool ret;
431 
432 	array = kmap_atomic(page);
433 	ret = !nfs_readdir_array_is_full(array);
434 	kunmap_atomic(array);
435 	return ret;
436 }
437 
438 static void nfs_readdir_page_set_eof(struct page *page)
439 {
440 	struct nfs_cache_array *array;
441 
442 	array = kmap_atomic(page);
443 	nfs_readdir_array_set_eof(array);
444 	kunmap_atomic(array);
445 }
446 
447 static struct page *nfs_readdir_page_get_next(struct address_space *mapping,
448 					      u64 cookie, u64 change_attr)
449 {
450 	pgoff_t index = nfs_readdir_page_cookie_hash(cookie);
451 	struct page *page;
452 
453 	page = grab_cache_page_nowait(mapping, index);
454 	if (!page)
455 		return NULL;
456 	nfs_readdir_page_init_and_validate(page, cookie, change_attr);
457 	if (nfs_readdir_page_last_cookie(page) != cookie)
458 		nfs_readdir_page_reinit_array(page, cookie, change_attr);
459 	return page;
460 }
461 
462 static inline
463 int is_32bit_api(void)
464 {
465 #ifdef CONFIG_COMPAT
466 	return in_compat_syscall();
467 #else
468 	return (BITS_PER_LONG == 32);
469 #endif
470 }
471 
472 static
473 bool nfs_readdir_use_cookie(const struct file *filp)
474 {
475 	if ((filp->f_mode & FMODE_32BITHASH) ||
476 	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
477 		return false;
478 	return true;
479 }
480 
481 static void nfs_readdir_seek_next_array(struct nfs_cache_array *array,
482 					struct nfs_readdir_descriptor *desc)
483 {
484 	if (array->page_full) {
485 		desc->last_cookie = array->last_cookie;
486 		desc->current_index += array->size;
487 		desc->cache_entry_index = 0;
488 		desc->page_index++;
489 	} else
490 		desc->last_cookie = nfs_readdir_array_index_cookie(array);
491 }
492 
493 static void nfs_readdir_rewind_search(struct nfs_readdir_descriptor *desc)
494 {
495 	desc->current_index = 0;
496 	desc->last_cookie = 0;
497 	desc->page_index = 0;
498 }
499 
500 static int nfs_readdir_search_for_pos(struct nfs_cache_array *array,
501 				      struct nfs_readdir_descriptor *desc)
502 {
503 	loff_t diff = desc->ctx->pos - desc->current_index;
504 	unsigned int index;
505 
506 	if (diff < 0)
507 		goto out_eof;
508 	if (diff >= array->size) {
509 		if (array->page_is_eof)
510 			goto out_eof;
511 		nfs_readdir_seek_next_array(array, desc);
512 		return -EAGAIN;
513 	}
514 
515 	index = (unsigned int)diff;
516 	desc->dir_cookie = array->array[index].cookie;
517 	desc->cache_entry_index = index;
518 	return 0;
519 out_eof:
520 	desc->eof = true;
521 	return -EBADCOOKIE;
522 }
523 
524 static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array,
525 					      u64 cookie)
526 {
527 	if (!array->cookies_are_ordered)
528 		return true;
529 	/* Optimisation for monotonically increasing cookies */
530 	if (cookie >= array->last_cookie)
531 		return false;
532 	if (array->size && cookie < array->array[0].cookie)
533 		return false;
534 	return true;
535 }
536 
537 static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array,
538 					 struct nfs_readdir_descriptor *desc)
539 {
540 	unsigned int i;
541 	int status = -EAGAIN;
542 
543 	if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie))
544 		goto check_eof;
545 
546 	for (i = 0; i < array->size; i++) {
547 		if (array->array[i].cookie == desc->dir_cookie) {
548 			if (nfs_readdir_use_cookie(desc->file))
549 				desc->ctx->pos = desc->dir_cookie;
550 			else
551 				desc->ctx->pos = desc->current_index + i;
552 			desc->cache_entry_index = i;
553 			return 0;
554 		}
555 	}
556 check_eof:
557 	if (array->page_is_eof) {
558 		status = -EBADCOOKIE;
559 		if (desc->dir_cookie == array->last_cookie)
560 			desc->eof = true;
561 	} else
562 		nfs_readdir_seek_next_array(array, desc);
563 	return status;
564 }
565 
566 static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc)
567 {
568 	struct nfs_cache_array *array;
569 	int status;
570 
571 	array = kmap_atomic(desc->page);
572 
573 	if (desc->dir_cookie == 0)
574 		status = nfs_readdir_search_for_pos(array, desc);
575 	else
576 		status = nfs_readdir_search_for_cookie(array, desc);
577 
578 	kunmap_atomic(array);
579 	return status;
580 }
581 
582 /* Fill a page with xdr information before transferring to the cache page */
583 static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc,
584 				  __be32 *verf, u64 cookie,
585 				  struct page **pages, size_t bufsize,
586 				  __be32 *verf_res)
587 {
588 	struct inode *inode = file_inode(desc->file);
589 	struct nfs_readdir_arg arg = {
590 		.dentry = file_dentry(desc->file),
591 		.cred = desc->file->f_cred,
592 		.verf = verf,
593 		.cookie = cookie,
594 		.pages = pages,
595 		.page_len = bufsize,
596 		.plus = desc->plus,
597 	};
598 	struct nfs_readdir_res res = {
599 		.verf = verf_res,
600 	};
601 	unsigned long	timestamp, gencount;
602 	int		error;
603 
604  again:
605 	timestamp = jiffies;
606 	gencount = nfs_inc_attr_generation_counter();
607 	desc->dir_verifier = nfs_save_change_attribute(inode);
608 	error = NFS_PROTO(inode)->readdir(&arg, &res);
609 	if (error < 0) {
610 		/* We requested READDIRPLUS, but the server doesn't grok it */
611 		if (error == -ENOTSUPP && desc->plus) {
612 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
613 			desc->plus = arg.plus = false;
614 			goto again;
615 		}
616 		goto error;
617 	}
618 	desc->timestamp = timestamp;
619 	desc->gencount = gencount;
620 error:
621 	return error;
622 }
623 
624 static int xdr_decode(struct nfs_readdir_descriptor *desc,
625 		      struct nfs_entry *entry, struct xdr_stream *xdr)
626 {
627 	struct inode *inode = file_inode(desc->file);
628 	int error;
629 
630 	error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
631 	if (error)
632 		return error;
633 	entry->fattr->time_start = desc->timestamp;
634 	entry->fattr->gencount = desc->gencount;
635 	return 0;
636 }
637 
638 /* Match file and dirent using either filehandle or fileid
639  * Note: caller is responsible for checking the fsid
640  */
641 static
642 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
643 {
644 	struct inode *inode;
645 	struct nfs_inode *nfsi;
646 
647 	if (d_really_is_negative(dentry))
648 		return 0;
649 
650 	inode = d_inode(dentry);
651 	if (is_bad_inode(inode) || NFS_STALE(inode))
652 		return 0;
653 
654 	nfsi = NFS_I(inode);
655 	if (entry->fattr->fileid != nfsi->fileid)
656 		return 0;
657 	if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
658 		return 0;
659 	return 1;
660 }
661 
662 #define NFS_READDIR_CACHE_USAGE_THRESHOLD (8UL)
663 
664 static bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx,
665 				unsigned int cache_hits,
666 				unsigned int cache_misses)
667 {
668 	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
669 		return false;
670 	if (ctx->pos == 0 ||
671 	    cache_hits + cache_misses > NFS_READDIR_CACHE_USAGE_THRESHOLD)
672 		return true;
673 	return false;
674 }
675 
676 /*
677  * This function is called by the getattr code to request the
678  * use of readdirplus to accelerate any future lookups in the same
679  * directory.
680  */
681 void nfs_readdir_record_entry_cache_hit(struct inode *dir)
682 {
683 	struct nfs_inode *nfsi = NFS_I(dir);
684 	struct nfs_open_dir_context *ctx;
685 
686 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
687 	    S_ISDIR(dir->i_mode)) {
688 		rcu_read_lock();
689 		list_for_each_entry_rcu (ctx, &nfsi->open_files, list)
690 			atomic_inc(&ctx->cache_hits);
691 		rcu_read_unlock();
692 	}
693 }
694 
695 /*
696  * This function is mainly for use by nfs_getattr().
697  *
698  * If this is an 'ls -l', we want to force use of readdirplus.
699  */
700 void nfs_readdir_record_entry_cache_miss(struct inode *dir)
701 {
702 	struct nfs_inode *nfsi = NFS_I(dir);
703 	struct nfs_open_dir_context *ctx;
704 
705 	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
706 	    S_ISDIR(dir->i_mode)) {
707 		rcu_read_lock();
708 		list_for_each_entry_rcu (ctx, &nfsi->open_files, list)
709 			atomic_inc(&ctx->cache_misses);
710 		rcu_read_unlock();
711 	}
712 }
713 
714 static void nfs_lookup_advise_force_readdirplus(struct inode *dir,
715 						unsigned int flags)
716 {
717 	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
718 		return;
719 	if (flags & (LOOKUP_EXCL | LOOKUP_PARENT | LOOKUP_REVAL))
720 		return;
721 	nfs_readdir_record_entry_cache_miss(dir);
722 }
723 
724 static
725 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
726 		unsigned long dir_verifier)
727 {
728 	struct qstr filename = QSTR_INIT(entry->name, entry->len);
729 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
730 	struct dentry *dentry;
731 	struct dentry *alias;
732 	struct inode *inode;
733 	int status;
734 
735 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
736 		return;
737 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
738 		return;
739 	if (filename.len == 0)
740 		return;
741 	/* Validate that the name doesn't contain any illegal '\0' */
742 	if (strnlen(filename.name, filename.len) != filename.len)
743 		return;
744 	/* ...or '/' */
745 	if (strnchr(filename.name, filename.len, '/'))
746 		return;
747 	if (filename.name[0] == '.') {
748 		if (filename.len == 1)
749 			return;
750 		if (filename.len == 2 && filename.name[1] == '.')
751 			return;
752 	}
753 	filename.hash = full_name_hash(parent, filename.name, filename.len);
754 
755 	dentry = d_lookup(parent, &filename);
756 again:
757 	if (!dentry) {
758 		dentry = d_alloc_parallel(parent, &filename, &wq);
759 		if (IS_ERR(dentry))
760 			return;
761 	}
762 	if (!d_in_lookup(dentry)) {
763 		/* Is there a mountpoint here? If so, just exit */
764 		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
765 					&entry->fattr->fsid))
766 			goto out;
767 		if (nfs_same_file(dentry, entry)) {
768 			if (!entry->fh->size)
769 				goto out;
770 			nfs_set_verifier(dentry, dir_verifier);
771 			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
772 			if (!status)
773 				nfs_setsecurity(d_inode(dentry), entry->fattr);
774 			trace_nfs_readdir_lookup_revalidate(d_inode(parent),
775 							    dentry, 0, status);
776 			goto out;
777 		} else {
778 			trace_nfs_readdir_lookup_revalidate_failed(
779 				d_inode(parent), dentry, 0);
780 			d_invalidate(dentry);
781 			dput(dentry);
782 			dentry = NULL;
783 			goto again;
784 		}
785 	}
786 	if (!entry->fh->size) {
787 		d_lookup_done(dentry);
788 		goto out;
789 	}
790 
791 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
792 	alias = d_splice_alias(inode, dentry);
793 	d_lookup_done(dentry);
794 	if (alias) {
795 		if (IS_ERR(alias))
796 			goto out;
797 		dput(dentry);
798 		dentry = alias;
799 	}
800 	nfs_set_verifier(dentry, dir_verifier);
801 	trace_nfs_readdir_lookup(d_inode(parent), dentry, 0);
802 out:
803 	dput(dentry);
804 }
805 
806 static int nfs_readdir_entry_decode(struct nfs_readdir_descriptor *desc,
807 				    struct nfs_entry *entry,
808 				    struct xdr_stream *stream)
809 {
810 	int ret;
811 
812 	if (entry->fattr->label)
813 		entry->fattr->label->len = NFS4_MAXLABELLEN;
814 	ret = xdr_decode(desc, entry, stream);
815 	if (ret || !desc->plus)
816 		return ret;
817 	nfs_prime_dcache(file_dentry(desc->file), entry, desc->dir_verifier);
818 	return 0;
819 }
820 
821 /* Perform conversion from xdr to cache array */
822 static int nfs_readdir_page_filler(struct nfs_readdir_descriptor *desc,
823 				   struct nfs_entry *entry,
824 				   struct page **xdr_pages, unsigned int buflen,
825 				   struct page **arrays, size_t narrays,
826 				   u64 change_attr)
827 {
828 	struct address_space *mapping = desc->file->f_mapping;
829 	struct xdr_stream stream;
830 	struct xdr_buf buf;
831 	struct page *scratch, *new, *page = *arrays;
832 	u64 cookie;
833 	int status;
834 
835 	scratch = alloc_page(GFP_KERNEL);
836 	if (scratch == NULL)
837 		return -ENOMEM;
838 
839 	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
840 	xdr_set_scratch_page(&stream, scratch);
841 
842 	do {
843 		status = nfs_readdir_entry_decode(desc, entry, &stream);
844 		if (status != 0)
845 			break;
846 
847 		status = nfs_readdir_page_array_append(page, entry, &cookie);
848 		if (status != -ENOSPC)
849 			continue;
850 
851 		if (page->mapping != mapping) {
852 			if (!--narrays)
853 				break;
854 			new = nfs_readdir_page_array_alloc(cookie, GFP_KERNEL);
855 			if (!new)
856 				break;
857 			arrays++;
858 			*arrays = page = new;
859 		} else {
860 			new = nfs_readdir_page_get_next(mapping, cookie,
861 							change_attr);
862 			if (!new)
863 				break;
864 			if (page != *arrays)
865 				nfs_readdir_page_unlock_and_put(page);
866 			page = new;
867 		}
868 		desc->page_index_max++;
869 		status = nfs_readdir_page_array_append(page, entry, &cookie);
870 	} while (!status && !entry->eof);
871 
872 	switch (status) {
873 	case -EBADCOOKIE:
874 		if (!entry->eof)
875 			break;
876 		nfs_readdir_page_set_eof(page);
877 		fallthrough;
878 	case -EAGAIN:
879 		status = 0;
880 		break;
881 	case -ENOSPC:
882 		status = 0;
883 		if (!desc->plus)
884 			break;
885 		while (!nfs_readdir_entry_decode(desc, entry, &stream))
886 			;
887 	}
888 
889 	if (page != *arrays)
890 		nfs_readdir_page_unlock_and_put(page);
891 
892 	put_page(scratch);
893 	return status;
894 }
895 
896 static void nfs_readdir_free_pages(struct page **pages, size_t npages)
897 {
898 	while (npages--)
899 		put_page(pages[npages]);
900 	kfree(pages);
901 }
902 
903 /*
904  * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
905  * to nfs_readdir_free_pages()
906  */
907 static struct page **nfs_readdir_alloc_pages(size_t npages)
908 {
909 	struct page **pages;
910 	size_t i;
911 
912 	pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL);
913 	if (!pages)
914 		return NULL;
915 	for (i = 0; i < npages; i++) {
916 		struct page *page = alloc_page(GFP_KERNEL);
917 		if (page == NULL)
918 			goto out_freepages;
919 		pages[i] = page;
920 	}
921 	return pages;
922 
923 out_freepages:
924 	nfs_readdir_free_pages(pages, i);
925 	return NULL;
926 }
927 
928 static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc,
929 				    __be32 *verf_arg, __be32 *verf_res,
930 				    struct page **arrays, size_t narrays)
931 {
932 	u64 change_attr;
933 	struct page **pages;
934 	struct page *page = *arrays;
935 	struct nfs_entry *entry;
936 	size_t array_size;
937 	struct inode *inode = file_inode(desc->file);
938 	unsigned int dtsize = desc->dtsize;
939 	unsigned int pglen;
940 	int status = -ENOMEM;
941 
942 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
943 	if (!entry)
944 		return -ENOMEM;
945 	entry->cookie = nfs_readdir_page_last_cookie(page);
946 	entry->fh = nfs_alloc_fhandle();
947 	entry->fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
948 	entry->server = NFS_SERVER(inode);
949 	if (entry->fh == NULL || entry->fattr == NULL)
950 		goto out;
951 
952 	array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT;
953 	pages = nfs_readdir_alloc_pages(array_size);
954 	if (!pages)
955 		goto out;
956 
957 	change_attr = inode_peek_iversion_raw(inode);
958 	status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie, pages,
959 					dtsize, verf_res);
960 	if (status < 0)
961 		goto free_pages;
962 
963 	pglen = status;
964 	if (pglen != 0)
965 		status = nfs_readdir_page_filler(desc, entry, pages, pglen,
966 						 arrays, narrays, change_attr);
967 	else
968 		nfs_readdir_page_set_eof(page);
969 	desc->buffer_fills++;
970 
971 free_pages:
972 	nfs_readdir_free_pages(pages, array_size);
973 out:
974 	nfs_free_fattr(entry->fattr);
975 	nfs_free_fhandle(entry->fh);
976 	kfree(entry);
977 	return status;
978 }
979 
980 static void nfs_readdir_page_put(struct nfs_readdir_descriptor *desc)
981 {
982 	put_page(desc->page);
983 	desc->page = NULL;
984 }
985 
986 static void
987 nfs_readdir_page_unlock_and_put_cached(struct nfs_readdir_descriptor *desc)
988 {
989 	unlock_page(desc->page);
990 	nfs_readdir_page_put(desc);
991 }
992 
993 static struct page *
994 nfs_readdir_page_get_cached(struct nfs_readdir_descriptor *desc)
995 {
996 	struct address_space *mapping = desc->file->f_mapping;
997 	u64 change_attr = inode_peek_iversion_raw(mapping->host);
998 	u64 cookie = desc->last_cookie;
999 	struct page *page;
1000 
1001 	page = nfs_readdir_page_get_locked(mapping, cookie, change_attr);
1002 	if (!page)
1003 		return NULL;
1004 	if (desc->clear_cache && !nfs_readdir_page_needs_filling(page))
1005 		nfs_readdir_page_reinit_array(page, cookie, change_attr);
1006 	return page;
1007 }
1008 
1009 /*
1010  * Returns 0 if desc->dir_cookie was found on page desc->page_index
1011  * and locks the page to prevent removal from the page cache.
1012  */
1013 static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc)
1014 {
1015 	struct inode *inode = file_inode(desc->file);
1016 	struct nfs_inode *nfsi = NFS_I(inode);
1017 	__be32 verf[NFS_DIR_VERIFIER_SIZE];
1018 	int res;
1019 
1020 	desc->page = nfs_readdir_page_get_cached(desc);
1021 	if (!desc->page)
1022 		return -ENOMEM;
1023 	if (nfs_readdir_page_needs_filling(desc->page)) {
1024 		/* Grow the dtsize if we had to go back for more pages */
1025 		if (desc->page_index == desc->page_index_max)
1026 			nfs_grow_dtsize(desc);
1027 		desc->page_index_max = desc->page_index;
1028 		trace_nfs_readdir_cache_fill(desc->file, nfsi->cookieverf,
1029 					     desc->last_cookie,
1030 					     desc->page->index, desc->dtsize);
1031 		res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf,
1032 					       &desc->page, 1);
1033 		if (res < 0) {
1034 			nfs_readdir_page_unlock_and_put_cached(desc);
1035 			trace_nfs_readdir_cache_fill_done(inode, res);
1036 			if (res == -EBADCOOKIE || res == -ENOTSYNC) {
1037 				invalidate_inode_pages2(desc->file->f_mapping);
1038 				nfs_readdir_rewind_search(desc);
1039 				trace_nfs_readdir_invalidate_cache_range(
1040 					inode, 0, MAX_LFS_FILESIZE);
1041 				return -EAGAIN;
1042 			}
1043 			return res;
1044 		}
1045 		/*
1046 		 * Set the cookie verifier if the page cache was empty
1047 		 */
1048 		if (desc->last_cookie == 0 &&
1049 		    memcmp(nfsi->cookieverf, verf, sizeof(nfsi->cookieverf))) {
1050 			memcpy(nfsi->cookieverf, verf,
1051 			       sizeof(nfsi->cookieverf));
1052 			invalidate_inode_pages2_range(desc->file->f_mapping, 1,
1053 						      -1);
1054 			trace_nfs_readdir_invalidate_cache_range(
1055 				inode, 1, MAX_LFS_FILESIZE);
1056 		}
1057 		desc->clear_cache = false;
1058 	}
1059 	res = nfs_readdir_search_array(desc);
1060 	if (res == 0)
1061 		return 0;
1062 	nfs_readdir_page_unlock_and_put_cached(desc);
1063 	return res;
1064 }
1065 
1066 /* Search for desc->dir_cookie from the beginning of the page cache */
1067 static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc)
1068 {
1069 	int res;
1070 
1071 	do {
1072 		res = find_and_lock_cache_page(desc);
1073 	} while (res == -EAGAIN);
1074 	return res;
1075 }
1076 
1077 /*
1078  * Once we've found the start of the dirent within a page: fill 'er up...
1079  */
1080 static void nfs_do_filldir(struct nfs_readdir_descriptor *desc,
1081 			   const __be32 *verf)
1082 {
1083 	struct file	*file = desc->file;
1084 	struct nfs_cache_array *array;
1085 	unsigned int i;
1086 
1087 	array = kmap(desc->page);
1088 	for (i = desc->cache_entry_index; i < array->size; i++) {
1089 		struct nfs_cache_array_entry *ent;
1090 
1091 		ent = &array->array[i];
1092 		if (!dir_emit(desc->ctx, ent->name, ent->name_len,
1093 		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
1094 			desc->eob = true;
1095 			break;
1096 		}
1097 		memcpy(desc->verf, verf, sizeof(desc->verf));
1098 		if (i == array->size - 1) {
1099 			desc->dir_cookie = array->last_cookie;
1100 			nfs_readdir_seek_next_array(array, desc);
1101 		} else {
1102 			desc->dir_cookie = array->array[i + 1].cookie;
1103 			desc->last_cookie = array->array[0].cookie;
1104 		}
1105 		if (nfs_readdir_use_cookie(file))
1106 			desc->ctx->pos = desc->dir_cookie;
1107 		else
1108 			desc->ctx->pos++;
1109 	}
1110 	if (array->page_is_eof)
1111 		desc->eof = !desc->eob;
1112 
1113 	kunmap(desc->page);
1114 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n",
1115 			(unsigned long long)desc->dir_cookie);
1116 }
1117 
1118 /*
1119  * If we cannot find a cookie in our cache, we suspect that this is
1120  * because it points to a deleted file, so we ask the server to return
1121  * whatever it thinks is the next entry. We then feed this to filldir.
1122  * If all goes well, we should then be able to find our way round the
1123  * cache on the next call to readdir_search_pagecache();
1124  *
1125  * NOTE: we cannot add the anonymous page to the pagecache because
1126  *	 the data it contains might not be page aligned. Besides,
1127  *	 we should already have a complete representation of the
1128  *	 directory in the page cache by the time we get here.
1129  */
1130 static int uncached_readdir(struct nfs_readdir_descriptor *desc)
1131 {
1132 	struct page	**arrays;
1133 	size_t		i, sz = 512;
1134 	__be32		verf[NFS_DIR_VERIFIER_SIZE];
1135 	int		status = -ENOMEM;
1136 
1137 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n",
1138 			(unsigned long long)desc->dir_cookie);
1139 
1140 	arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL);
1141 	if (!arrays)
1142 		goto out;
1143 	arrays[0] = nfs_readdir_page_array_alloc(desc->dir_cookie, GFP_KERNEL);
1144 	if (!arrays[0])
1145 		goto out;
1146 
1147 	desc->page_index = 0;
1148 	desc->cache_entry_index = 0;
1149 	desc->last_cookie = desc->dir_cookie;
1150 	desc->page_index_max = 0;
1151 
1152 	trace_nfs_readdir_uncached(desc->file, desc->verf, desc->last_cookie,
1153 				   -1, desc->dtsize);
1154 
1155 	status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz);
1156 	if (status < 0) {
1157 		trace_nfs_readdir_uncached_done(file_inode(desc->file), status);
1158 		goto out_free;
1159 	}
1160 
1161 	for (i = 0; !desc->eob && i < sz && arrays[i]; i++) {
1162 		desc->page = arrays[i];
1163 		nfs_do_filldir(desc, verf);
1164 	}
1165 	desc->page = NULL;
1166 
1167 	/*
1168 	 * Grow the dtsize if we have to go back for more pages,
1169 	 * or shrink it if we're reading too many.
1170 	 */
1171 	if (!desc->eof) {
1172 		if (!desc->eob)
1173 			nfs_grow_dtsize(desc);
1174 		else if (desc->buffer_fills == 1 &&
1175 			 i < (desc->page_index_max >> 1))
1176 			nfs_shrink_dtsize(desc);
1177 	}
1178 out_free:
1179 	for (i = 0; i < sz && arrays[i]; i++)
1180 		nfs_readdir_page_array_free(arrays[i]);
1181 out:
1182 	if (!nfs_readdir_use_cookie(desc->file))
1183 		nfs_readdir_rewind_search(desc);
1184 	desc->page_index_max = -1;
1185 	kfree(arrays);
1186 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
1187 	return status;
1188 }
1189 
1190 #define NFS_READDIR_CACHE_MISS_THRESHOLD (16UL)
1191 
1192 static bool nfs_readdir_handle_cache_misses(struct inode *inode,
1193 					    struct nfs_readdir_descriptor *desc,
1194 					    unsigned int cache_misses,
1195 					    bool force_clear)
1196 {
1197 	if (desc->ctx->pos == 0 || !desc->plus)
1198 		return false;
1199 	if (cache_misses <= NFS_READDIR_CACHE_MISS_THRESHOLD && !force_clear)
1200 		return false;
1201 	trace_nfs_readdir_force_readdirplus(inode);
1202 	return true;
1203 }
1204 
1205 /* The file offset position represents the dirent entry number.  A
1206    last cookie cache takes care of the common case of reading the
1207    whole directory.
1208  */
1209 static int nfs_readdir(struct file *file, struct dir_context *ctx)
1210 {
1211 	struct dentry	*dentry = file_dentry(file);
1212 	struct inode	*inode = d_inode(dentry);
1213 	struct nfs_inode *nfsi = NFS_I(inode);
1214 	struct nfs_open_dir_context *dir_ctx = file->private_data;
1215 	struct nfs_readdir_descriptor *desc;
1216 	unsigned int cache_hits, cache_misses;
1217 	bool force_clear;
1218 	int res;
1219 
1220 	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
1221 			file, (long long)ctx->pos);
1222 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
1223 
1224 	/*
1225 	 * ctx->pos points to the dirent entry number.
1226 	 * *desc->dir_cookie has the cookie for the next entry. We have
1227 	 * to either find the entry with the appropriate number or
1228 	 * revalidate the cookie.
1229 	 */
1230 	nfs_revalidate_mapping(inode, file->f_mapping);
1231 
1232 	res = -ENOMEM;
1233 	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
1234 	if (!desc)
1235 		goto out;
1236 	desc->file = file;
1237 	desc->ctx = ctx;
1238 	desc->page_index_max = -1;
1239 
1240 	spin_lock(&file->f_lock);
1241 	desc->dir_cookie = dir_ctx->dir_cookie;
1242 	desc->page_index = dir_ctx->page_index;
1243 	desc->last_cookie = dir_ctx->last_cookie;
1244 	desc->attr_gencount = dir_ctx->attr_gencount;
1245 	desc->eof = dir_ctx->eof;
1246 	nfs_set_dtsize(desc, dir_ctx->dtsize);
1247 	memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf));
1248 	cache_hits = atomic_xchg(&dir_ctx->cache_hits, 0);
1249 	cache_misses = atomic_xchg(&dir_ctx->cache_misses, 0);
1250 	force_clear = dir_ctx->force_clear;
1251 	spin_unlock(&file->f_lock);
1252 
1253 	if (desc->eof) {
1254 		res = 0;
1255 		goto out_free;
1256 	}
1257 
1258 	desc->plus = nfs_use_readdirplus(inode, ctx, cache_hits, cache_misses);
1259 	force_clear = nfs_readdir_handle_cache_misses(inode, desc, cache_misses,
1260 						      force_clear);
1261 	desc->clear_cache = force_clear;
1262 
1263 	do {
1264 		res = readdir_search_pagecache(desc);
1265 
1266 		if (res == -EBADCOOKIE) {
1267 			res = 0;
1268 			/* This means either end of directory */
1269 			if (desc->dir_cookie && !desc->eof) {
1270 				/* Or that the server has 'lost' a cookie */
1271 				res = uncached_readdir(desc);
1272 				if (res == 0)
1273 					continue;
1274 				if (res == -EBADCOOKIE || res == -ENOTSYNC)
1275 					res = 0;
1276 			}
1277 			break;
1278 		}
1279 		if (res == -ETOOSMALL && desc->plus) {
1280 			nfs_zap_caches(inode);
1281 			desc->plus = false;
1282 			desc->eof = false;
1283 			continue;
1284 		}
1285 		if (res < 0)
1286 			break;
1287 
1288 		nfs_do_filldir(desc, nfsi->cookieverf);
1289 		nfs_readdir_page_unlock_and_put_cached(desc);
1290 		if (desc->page_index == desc->page_index_max)
1291 			desc->clear_cache = force_clear;
1292 	} while (!desc->eob && !desc->eof);
1293 
1294 	spin_lock(&file->f_lock);
1295 	dir_ctx->dir_cookie = desc->dir_cookie;
1296 	dir_ctx->last_cookie = desc->last_cookie;
1297 	dir_ctx->attr_gencount = desc->attr_gencount;
1298 	dir_ctx->page_index = desc->page_index;
1299 	dir_ctx->force_clear = force_clear;
1300 	dir_ctx->eof = desc->eof;
1301 	dir_ctx->dtsize = desc->dtsize;
1302 	memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf));
1303 	spin_unlock(&file->f_lock);
1304 out_free:
1305 	kfree(desc);
1306 
1307 out:
1308 	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
1309 	return res;
1310 }
1311 
1312 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
1313 {
1314 	struct nfs_open_dir_context *dir_ctx = filp->private_data;
1315 
1316 	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
1317 			filp, offset, whence);
1318 
1319 	switch (whence) {
1320 	default:
1321 		return -EINVAL;
1322 	case SEEK_SET:
1323 		if (offset < 0)
1324 			return -EINVAL;
1325 		spin_lock(&filp->f_lock);
1326 		break;
1327 	case SEEK_CUR:
1328 		if (offset == 0)
1329 			return filp->f_pos;
1330 		spin_lock(&filp->f_lock);
1331 		offset += filp->f_pos;
1332 		if (offset < 0) {
1333 			spin_unlock(&filp->f_lock);
1334 			return -EINVAL;
1335 		}
1336 	}
1337 	if (offset != filp->f_pos) {
1338 		filp->f_pos = offset;
1339 		dir_ctx->page_index = 0;
1340 		if (!nfs_readdir_use_cookie(filp)) {
1341 			dir_ctx->dir_cookie = 0;
1342 			dir_ctx->last_cookie = 0;
1343 		} else {
1344 			dir_ctx->dir_cookie = offset;
1345 			dir_ctx->last_cookie = offset;
1346 		}
1347 		dir_ctx->eof = false;
1348 	}
1349 	spin_unlock(&filp->f_lock);
1350 	return offset;
1351 }
1352 
1353 /*
1354  * All directory operations under NFS are synchronous, so fsync()
1355  * is a dummy operation.
1356  */
1357 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1358 			 int datasync)
1359 {
1360 	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1361 
1362 	nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC);
1363 	return 0;
1364 }
1365 
1366 /**
1367  * nfs_force_lookup_revalidate - Mark the directory as having changed
1368  * @dir: pointer to directory inode
1369  *
1370  * This forces the revalidation code in nfs_lookup_revalidate() to do a
1371  * full lookup on all child dentries of 'dir' whenever a change occurs
1372  * on the server that might have invalidated our dcache.
1373  *
1374  * Note that we reserve bit '0' as a tag to let us know when a dentry
1375  * was revalidated while holding a delegation on its inode.
1376  *
1377  * The caller should be holding dir->i_lock
1378  */
1379 void nfs_force_lookup_revalidate(struct inode *dir)
1380 {
1381 	NFS_I(dir)->cache_change_attribute += 2;
1382 }
1383 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1384 
1385 /**
1386  * nfs_verify_change_attribute - Detects NFS remote directory changes
1387  * @dir: pointer to parent directory inode
1388  * @verf: previously saved change attribute
1389  *
1390  * Return "false" if the verifiers doesn't match the change attribute.
1391  * This would usually indicate that the directory contents have changed on
1392  * the server, and that any dentries need revalidating.
1393  */
1394 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1395 {
1396 	return (verf & ~1UL) == nfs_save_change_attribute(dir);
1397 }
1398 
1399 static void nfs_set_verifier_delegated(unsigned long *verf)
1400 {
1401 	*verf |= 1UL;
1402 }
1403 
1404 #if IS_ENABLED(CONFIG_NFS_V4)
1405 static void nfs_unset_verifier_delegated(unsigned long *verf)
1406 {
1407 	*verf &= ~1UL;
1408 }
1409 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1410 
1411 static bool nfs_test_verifier_delegated(unsigned long verf)
1412 {
1413 	return verf & 1;
1414 }
1415 
1416 static bool nfs_verifier_is_delegated(struct dentry *dentry)
1417 {
1418 	return nfs_test_verifier_delegated(dentry->d_time);
1419 }
1420 
1421 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1422 {
1423 	struct inode *inode = d_inode(dentry);
1424 	struct inode *dir = d_inode(dentry->d_parent);
1425 
1426 	if (!nfs_verify_change_attribute(dir, verf))
1427 		return;
1428 	if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
1429 		nfs_set_verifier_delegated(&verf);
1430 	dentry->d_time = verf;
1431 }
1432 
1433 /**
1434  * nfs_set_verifier - save a parent directory verifier in the dentry
1435  * @dentry: pointer to dentry
1436  * @verf: verifier to save
1437  *
1438  * Saves the parent directory verifier in @dentry. If the inode has
1439  * a delegation, we also tag the dentry as having been revalidated
1440  * while holding a delegation so that we know we don't have to
1441  * look it up again after a directory change.
1442  */
1443 void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1444 {
1445 
1446 	spin_lock(&dentry->d_lock);
1447 	nfs_set_verifier_locked(dentry, verf);
1448 	spin_unlock(&dentry->d_lock);
1449 }
1450 EXPORT_SYMBOL_GPL(nfs_set_verifier);
1451 
1452 #if IS_ENABLED(CONFIG_NFS_V4)
1453 /**
1454  * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1455  * @inode: pointer to inode
1456  *
1457  * Iterates through the dentries in the inode alias list and clears
1458  * the tag used to indicate that the dentry has been revalidated
1459  * while holding a delegation.
1460  * This function is intended for use when the delegation is being
1461  * returned or revoked.
1462  */
1463 void nfs_clear_verifier_delegated(struct inode *inode)
1464 {
1465 	struct dentry *alias;
1466 
1467 	if (!inode)
1468 		return;
1469 	spin_lock(&inode->i_lock);
1470 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1471 		spin_lock(&alias->d_lock);
1472 		nfs_unset_verifier_delegated(&alias->d_time);
1473 		spin_unlock(&alias->d_lock);
1474 	}
1475 	spin_unlock(&inode->i_lock);
1476 }
1477 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1478 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1479 
1480 static int nfs_dentry_verify_change(struct inode *dir, struct dentry *dentry)
1481 {
1482 	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE) &&
1483 	    d_really_is_negative(dentry))
1484 		return dentry->d_time == inode_peek_iversion_raw(dir);
1485 	return nfs_verify_change_attribute(dir, dentry->d_time);
1486 }
1487 
1488 /*
1489  * A check for whether or not the parent directory has changed.
1490  * In the case it has, we assume that the dentries are untrustworthy
1491  * and may need to be looked up again.
1492  * If rcu_walk prevents us from performing a full check, return 0.
1493  */
1494 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1495 			      int rcu_walk)
1496 {
1497 	if (IS_ROOT(dentry))
1498 		return 1;
1499 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1500 		return 0;
1501 	if (!nfs_dentry_verify_change(dir, dentry))
1502 		return 0;
1503 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1504 	if (nfs_mapping_need_revalidate_inode(dir)) {
1505 		if (rcu_walk)
1506 			return 0;
1507 		if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1508 			return 0;
1509 	}
1510 	if (!nfs_dentry_verify_change(dir, dentry))
1511 		return 0;
1512 	return 1;
1513 }
1514 
1515 /*
1516  * Use intent information to check whether or not we're going to do
1517  * an O_EXCL create using this path component.
1518  */
1519 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1520 {
1521 	if (NFS_PROTO(dir)->version == 2)
1522 		return 0;
1523 	return flags & LOOKUP_EXCL;
1524 }
1525 
1526 /*
1527  * Inode and filehandle revalidation for lookups.
1528  *
1529  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1530  * or if the intent information indicates that we're about to open this
1531  * particular file and the "nocto" mount flag is not set.
1532  *
1533  */
1534 static
1535 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1536 {
1537 	struct nfs_server *server = NFS_SERVER(inode);
1538 	int ret;
1539 
1540 	if (IS_AUTOMOUNT(inode))
1541 		return 0;
1542 
1543 	if (flags & LOOKUP_OPEN) {
1544 		switch (inode->i_mode & S_IFMT) {
1545 		case S_IFREG:
1546 			/* A NFSv4 OPEN will revalidate later */
1547 			if (server->caps & NFS_CAP_ATOMIC_OPEN)
1548 				goto out;
1549 			fallthrough;
1550 		case S_IFDIR:
1551 			if (server->flags & NFS_MOUNT_NOCTO)
1552 				break;
1553 			/* NFS close-to-open cache consistency validation */
1554 			goto out_force;
1555 		}
1556 	}
1557 
1558 	/* VFS wants an on-the-wire revalidation */
1559 	if (flags & LOOKUP_REVAL)
1560 		goto out_force;
1561 out:
1562 	if (inode->i_nlink > 0 ||
1563 	    (inode->i_nlink == 0 &&
1564 	     test_bit(NFS_INO_PRESERVE_UNLINKED, &NFS_I(inode)->flags)))
1565 		return 0;
1566 	else
1567 		return -ESTALE;
1568 out_force:
1569 	if (flags & LOOKUP_RCU)
1570 		return -ECHILD;
1571 	ret = __nfs_revalidate_inode(server, inode);
1572 	if (ret != 0)
1573 		return ret;
1574 	goto out;
1575 }
1576 
1577 static void nfs_mark_dir_for_revalidate(struct inode *inode)
1578 {
1579 	spin_lock(&inode->i_lock);
1580 	nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE);
1581 	spin_unlock(&inode->i_lock);
1582 }
1583 
1584 /*
1585  * We judge how long we want to trust negative
1586  * dentries by looking at the parent inode mtime.
1587  *
1588  * If parent mtime has changed, we revalidate, else we wait for a
1589  * period corresponding to the parent's attribute cache timeout value.
1590  *
1591  * If LOOKUP_RCU prevents us from performing a full check, return 1
1592  * suggesting a reval is needed.
1593  *
1594  * Note that when creating a new file, or looking up a rename target,
1595  * then it shouldn't be necessary to revalidate a negative dentry.
1596  */
1597 static inline
1598 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1599 		       unsigned int flags)
1600 {
1601 	if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1602 		return 0;
1603 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1604 		return 1;
1605 	/* Case insensitive server? Revalidate negative dentries */
1606 	if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1607 		return 1;
1608 	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1609 }
1610 
1611 static int
1612 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1613 			   struct inode *inode, int error)
1614 {
1615 	switch (error) {
1616 	case 1:
1617 		break;
1618 	case 0:
1619 		/*
1620 		 * We can't d_drop the root of a disconnected tree:
1621 		 * its d_hash is on the s_anon list and d_drop() would hide
1622 		 * it from shrink_dcache_for_unmount(), leading to busy
1623 		 * inodes on unmount and further oopses.
1624 		 */
1625 		if (inode && IS_ROOT(dentry))
1626 			error = 1;
1627 		break;
1628 	}
1629 	trace_nfs_lookup_revalidate_exit(dir, dentry, 0, error);
1630 	return error;
1631 }
1632 
1633 static int
1634 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1635 			       unsigned int flags)
1636 {
1637 	int ret = 1;
1638 	if (nfs_neg_need_reval(dir, dentry, flags)) {
1639 		if (flags & LOOKUP_RCU)
1640 			return -ECHILD;
1641 		ret = 0;
1642 	}
1643 	return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1644 }
1645 
1646 static int
1647 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1648 				struct inode *inode)
1649 {
1650 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1651 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1652 }
1653 
1654 static int nfs_lookup_revalidate_dentry(struct inode *dir,
1655 					struct dentry *dentry,
1656 					struct inode *inode, unsigned int flags)
1657 {
1658 	struct nfs_fh *fhandle;
1659 	struct nfs_fattr *fattr;
1660 	unsigned long dir_verifier;
1661 	int ret;
1662 
1663 	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1664 
1665 	ret = -ENOMEM;
1666 	fhandle = nfs_alloc_fhandle();
1667 	fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
1668 	if (fhandle == NULL || fattr == NULL)
1669 		goto out;
1670 
1671 	dir_verifier = nfs_save_change_attribute(dir);
1672 	ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1673 	if (ret < 0) {
1674 		switch (ret) {
1675 		case -ESTALE:
1676 		case -ENOENT:
1677 			ret = 0;
1678 			break;
1679 		case -ETIMEDOUT:
1680 			if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1681 				ret = 1;
1682 		}
1683 		goto out;
1684 	}
1685 
1686 	/* Request help from readdirplus */
1687 	nfs_lookup_advise_force_readdirplus(dir, flags);
1688 
1689 	ret = 0;
1690 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1691 		goto out;
1692 	if (nfs_refresh_inode(inode, fattr) < 0)
1693 		goto out;
1694 
1695 	nfs_setsecurity(inode, fattr);
1696 	nfs_set_verifier(dentry, dir_verifier);
1697 
1698 	ret = 1;
1699 out:
1700 	nfs_free_fattr(fattr);
1701 	nfs_free_fhandle(fhandle);
1702 
1703 	/*
1704 	 * If the lookup failed despite the dentry change attribute being
1705 	 * a match, then we should revalidate the directory cache.
1706 	 */
1707 	if (!ret && nfs_dentry_verify_change(dir, dentry))
1708 		nfs_mark_dir_for_revalidate(dir);
1709 	return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1710 }
1711 
1712 /*
1713  * This is called every time the dcache has a lookup hit,
1714  * and we should check whether we can really trust that
1715  * lookup.
1716  *
1717  * NOTE! The hit can be a negative hit too, don't assume
1718  * we have an inode!
1719  *
1720  * If the parent directory is seen to have changed, we throw out the
1721  * cached dentry and do a new lookup.
1722  */
1723 static int
1724 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1725 			 unsigned int flags)
1726 {
1727 	struct inode *inode;
1728 	int error;
1729 
1730 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1731 	inode = d_inode(dentry);
1732 
1733 	if (!inode)
1734 		return nfs_lookup_revalidate_negative(dir, dentry, flags);
1735 
1736 	if (is_bad_inode(inode)) {
1737 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1738 				__func__, dentry);
1739 		goto out_bad;
1740 	}
1741 
1742 	if (nfs_verifier_is_delegated(dentry))
1743 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1744 
1745 	/* Force a full look up iff the parent directory has changed */
1746 	if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1747 	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1748 		error = nfs_lookup_verify_inode(inode, flags);
1749 		if (error) {
1750 			if (error == -ESTALE)
1751 				nfs_mark_dir_for_revalidate(dir);
1752 			goto out_bad;
1753 		}
1754 		goto out_valid;
1755 	}
1756 
1757 	if (flags & LOOKUP_RCU)
1758 		return -ECHILD;
1759 
1760 	if (NFS_STALE(inode))
1761 		goto out_bad;
1762 
1763 	return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags);
1764 out_valid:
1765 	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1766 out_bad:
1767 	if (flags & LOOKUP_RCU)
1768 		return -ECHILD;
1769 	return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1770 }
1771 
1772 static int
1773 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1774 			int (*reval)(struct inode *, struct dentry *, unsigned int))
1775 {
1776 	struct dentry *parent;
1777 	struct inode *dir;
1778 	int ret;
1779 
1780 	if (flags & LOOKUP_RCU) {
1781 		parent = READ_ONCE(dentry->d_parent);
1782 		dir = d_inode_rcu(parent);
1783 		if (!dir)
1784 			return -ECHILD;
1785 		ret = reval(dir, dentry, flags);
1786 		if (parent != READ_ONCE(dentry->d_parent))
1787 			return -ECHILD;
1788 	} else {
1789 		parent = dget_parent(dentry);
1790 		ret = reval(d_inode(parent), dentry, flags);
1791 		dput(parent);
1792 	}
1793 	return ret;
1794 }
1795 
1796 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1797 {
1798 	return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1799 }
1800 
1801 /*
1802  * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1803  * when we don't really care about the dentry name. This is called when a
1804  * pathwalk ends on a dentry that was not found via a normal lookup in the
1805  * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1806  *
1807  * In this situation, we just want to verify that the inode itself is OK
1808  * since the dentry might have changed on the server.
1809  */
1810 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1811 {
1812 	struct inode *inode = d_inode(dentry);
1813 	int error = 0;
1814 
1815 	/*
1816 	 * I believe we can only get a negative dentry here in the case of a
1817 	 * procfs-style symlink. Just assume it's correct for now, but we may
1818 	 * eventually need to do something more here.
1819 	 */
1820 	if (!inode) {
1821 		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1822 				__func__, dentry);
1823 		return 1;
1824 	}
1825 
1826 	if (is_bad_inode(inode)) {
1827 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1828 				__func__, dentry);
1829 		return 0;
1830 	}
1831 
1832 	error = nfs_lookup_verify_inode(inode, flags);
1833 	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1834 			__func__, inode->i_ino, error ? "invalid" : "valid");
1835 	return !error;
1836 }
1837 
1838 /*
1839  * This is called from dput() when d_count is going to 0.
1840  */
1841 static int nfs_dentry_delete(const struct dentry *dentry)
1842 {
1843 	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1844 		dentry, dentry->d_flags);
1845 
1846 	/* Unhash any dentry with a stale inode */
1847 	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1848 		return 1;
1849 
1850 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1851 		/* Unhash it, so that ->d_iput() would be called */
1852 		return 1;
1853 	}
1854 	if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1855 		/* Unhash it, so that ancestors of killed async unlink
1856 		 * files will be cleaned up during umount */
1857 		return 1;
1858 	}
1859 	return 0;
1860 
1861 }
1862 
1863 /* Ensure that we revalidate inode->i_nlink */
1864 static void nfs_drop_nlink(struct inode *inode)
1865 {
1866 	spin_lock(&inode->i_lock);
1867 	/* drop the inode if we're reasonably sure this is the last link */
1868 	if (inode->i_nlink > 0)
1869 		drop_nlink(inode);
1870 	NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1871 	nfs_set_cache_invalid(
1872 		inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME |
1873 			       NFS_INO_INVALID_NLINK);
1874 	spin_unlock(&inode->i_lock);
1875 }
1876 
1877 /*
1878  * Called when the dentry loses inode.
1879  * We use it to clean up silly-renamed files.
1880  */
1881 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1882 {
1883 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1884 		nfs_complete_unlink(dentry, inode);
1885 		nfs_drop_nlink(inode);
1886 	}
1887 	iput(inode);
1888 }
1889 
1890 static void nfs_d_release(struct dentry *dentry)
1891 {
1892 	/* free cached devname value, if it survived that far */
1893 	if (unlikely(dentry->d_fsdata)) {
1894 		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1895 			WARN_ON(1);
1896 		else
1897 			kfree(dentry->d_fsdata);
1898 	}
1899 }
1900 
1901 const struct dentry_operations nfs_dentry_operations = {
1902 	.d_revalidate	= nfs_lookup_revalidate,
1903 	.d_weak_revalidate	= nfs_weak_revalidate,
1904 	.d_delete	= nfs_dentry_delete,
1905 	.d_iput		= nfs_dentry_iput,
1906 	.d_automount	= nfs_d_automount,
1907 	.d_release	= nfs_d_release,
1908 };
1909 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1910 
1911 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1912 {
1913 	struct dentry *res;
1914 	struct inode *inode = NULL;
1915 	struct nfs_fh *fhandle = NULL;
1916 	struct nfs_fattr *fattr = NULL;
1917 	unsigned long dir_verifier;
1918 	int error;
1919 
1920 	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1921 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1922 
1923 	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1924 		return ERR_PTR(-ENAMETOOLONG);
1925 
1926 	/*
1927 	 * If we're doing an exclusive create, optimize away the lookup
1928 	 * but don't hash the dentry.
1929 	 */
1930 	if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1931 		return NULL;
1932 
1933 	res = ERR_PTR(-ENOMEM);
1934 	fhandle = nfs_alloc_fhandle();
1935 	fattr = nfs_alloc_fattr_with_label(NFS_SERVER(dir));
1936 	if (fhandle == NULL || fattr == NULL)
1937 		goto out;
1938 
1939 	dir_verifier = nfs_save_change_attribute(dir);
1940 	trace_nfs_lookup_enter(dir, dentry, flags);
1941 	error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1942 	if (error == -ENOENT) {
1943 		if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1944 			dir_verifier = inode_peek_iversion_raw(dir);
1945 		goto no_entry;
1946 	}
1947 	if (error < 0) {
1948 		res = ERR_PTR(error);
1949 		goto out;
1950 	}
1951 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1952 	res = ERR_CAST(inode);
1953 	if (IS_ERR(res))
1954 		goto out;
1955 
1956 	/* Notify readdir to use READDIRPLUS */
1957 	nfs_lookup_advise_force_readdirplus(dir, flags);
1958 
1959 no_entry:
1960 	res = d_splice_alias(inode, dentry);
1961 	if (res != NULL) {
1962 		if (IS_ERR(res))
1963 			goto out;
1964 		dentry = res;
1965 	}
1966 	nfs_set_verifier(dentry, dir_verifier);
1967 out:
1968 	trace_nfs_lookup_exit(dir, dentry, flags, PTR_ERR_OR_ZERO(res));
1969 	nfs_free_fattr(fattr);
1970 	nfs_free_fhandle(fhandle);
1971 	return res;
1972 }
1973 EXPORT_SYMBOL_GPL(nfs_lookup);
1974 
1975 void nfs_d_prune_case_insensitive_aliases(struct inode *inode)
1976 {
1977 	/* Case insensitive server? Revalidate dentries */
1978 	if (inode && nfs_server_capable(inode, NFS_CAP_CASE_INSENSITIVE))
1979 		d_prune_aliases(inode);
1980 }
1981 EXPORT_SYMBOL_GPL(nfs_d_prune_case_insensitive_aliases);
1982 
1983 #if IS_ENABLED(CONFIG_NFS_V4)
1984 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1985 
1986 const struct dentry_operations nfs4_dentry_operations = {
1987 	.d_revalidate	= nfs4_lookup_revalidate,
1988 	.d_weak_revalidate	= nfs_weak_revalidate,
1989 	.d_delete	= nfs_dentry_delete,
1990 	.d_iput		= nfs_dentry_iput,
1991 	.d_automount	= nfs_d_automount,
1992 	.d_release	= nfs_d_release,
1993 };
1994 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1995 
1996 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1997 {
1998 	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1999 }
2000 
2001 static int do_open(struct inode *inode, struct file *filp)
2002 {
2003 	nfs_fscache_open_file(inode, filp);
2004 	return 0;
2005 }
2006 
2007 static int nfs_finish_open(struct nfs_open_context *ctx,
2008 			   struct dentry *dentry,
2009 			   struct file *file, unsigned open_flags)
2010 {
2011 	int err;
2012 
2013 	err = finish_open(file, dentry, do_open);
2014 	if (err)
2015 		goto out;
2016 	if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
2017 		nfs_file_set_open_context(file, ctx);
2018 	else
2019 		err = -EOPENSTALE;
2020 out:
2021 	return err;
2022 }
2023 
2024 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
2025 		    struct file *file, unsigned open_flags,
2026 		    umode_t mode)
2027 {
2028 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2029 	struct nfs_open_context *ctx;
2030 	struct dentry *res;
2031 	struct iattr attr = { .ia_valid = ATTR_OPEN };
2032 	struct inode *inode;
2033 	unsigned int lookup_flags = 0;
2034 	unsigned long dir_verifier;
2035 	bool switched = false;
2036 	int created = 0;
2037 	int err;
2038 
2039 	/* Expect a negative dentry */
2040 	BUG_ON(d_inode(dentry));
2041 
2042 	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
2043 			dir->i_sb->s_id, dir->i_ino, dentry);
2044 
2045 	err = nfs_check_flags(open_flags);
2046 	if (err)
2047 		return err;
2048 
2049 	/* NFS only supports OPEN on regular files */
2050 	if ((open_flags & O_DIRECTORY)) {
2051 		if (!d_in_lookup(dentry)) {
2052 			/*
2053 			 * Hashed negative dentry with O_DIRECTORY: dentry was
2054 			 * revalidated and is fine, no need to perform lookup
2055 			 * again
2056 			 */
2057 			return -ENOENT;
2058 		}
2059 		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
2060 		goto no_open;
2061 	}
2062 
2063 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
2064 		return -ENAMETOOLONG;
2065 
2066 	if (open_flags & O_CREAT) {
2067 		struct nfs_server *server = NFS_SERVER(dir);
2068 
2069 		if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
2070 			mode &= ~current_umask();
2071 
2072 		attr.ia_valid |= ATTR_MODE;
2073 		attr.ia_mode = mode;
2074 	}
2075 	if (open_flags & O_TRUNC) {
2076 		attr.ia_valid |= ATTR_SIZE;
2077 		attr.ia_size = 0;
2078 	}
2079 
2080 	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
2081 		d_drop(dentry);
2082 		switched = true;
2083 		dentry = d_alloc_parallel(dentry->d_parent,
2084 					  &dentry->d_name, &wq);
2085 		if (IS_ERR(dentry))
2086 			return PTR_ERR(dentry);
2087 		if (unlikely(!d_in_lookup(dentry)))
2088 			return finish_no_open(file, dentry);
2089 	}
2090 
2091 	ctx = create_nfs_open_context(dentry, open_flags, file);
2092 	err = PTR_ERR(ctx);
2093 	if (IS_ERR(ctx))
2094 		goto out;
2095 
2096 	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
2097 	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
2098 	if (created)
2099 		file->f_mode |= FMODE_CREATED;
2100 	if (IS_ERR(inode)) {
2101 		err = PTR_ERR(inode);
2102 		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2103 		put_nfs_open_context(ctx);
2104 		d_drop(dentry);
2105 		switch (err) {
2106 		case -ENOENT:
2107 			d_splice_alias(NULL, dentry);
2108 			if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
2109 				dir_verifier = inode_peek_iversion_raw(dir);
2110 			else
2111 				dir_verifier = nfs_save_change_attribute(dir);
2112 			nfs_set_verifier(dentry, dir_verifier);
2113 			break;
2114 		case -EISDIR:
2115 		case -ENOTDIR:
2116 			goto no_open;
2117 		case -ELOOP:
2118 			if (!(open_flags & O_NOFOLLOW))
2119 				goto no_open;
2120 			break;
2121 			/* case -EINVAL: */
2122 		default:
2123 			break;
2124 		}
2125 		goto out;
2126 	}
2127 	file->f_mode |= FMODE_CAN_ODIRECT;
2128 
2129 	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
2130 	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2131 	put_nfs_open_context(ctx);
2132 out:
2133 	if (unlikely(switched)) {
2134 		d_lookup_done(dentry);
2135 		dput(dentry);
2136 	}
2137 	return err;
2138 
2139 no_open:
2140 	res = nfs_lookup(dir, dentry, lookup_flags);
2141 	if (!res) {
2142 		inode = d_inode(dentry);
2143 		if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2144 		    !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)))
2145 			res = ERR_PTR(-ENOTDIR);
2146 		else if (inode && S_ISREG(inode->i_mode))
2147 			res = ERR_PTR(-EOPENSTALE);
2148 	} else if (!IS_ERR(res)) {
2149 		inode = d_inode(res);
2150 		if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2151 		    !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) {
2152 			dput(res);
2153 			res = ERR_PTR(-ENOTDIR);
2154 		} else if (inode && S_ISREG(inode->i_mode)) {
2155 			dput(res);
2156 			res = ERR_PTR(-EOPENSTALE);
2157 		}
2158 	}
2159 	if (switched) {
2160 		d_lookup_done(dentry);
2161 		if (!res)
2162 			res = dentry;
2163 		else
2164 			dput(dentry);
2165 	}
2166 	if (IS_ERR(res))
2167 		return PTR_ERR(res);
2168 	return finish_no_open(file, res);
2169 }
2170 EXPORT_SYMBOL_GPL(nfs_atomic_open);
2171 
2172 static int
2173 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
2174 			  unsigned int flags)
2175 {
2176 	struct inode *inode;
2177 
2178 	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
2179 		goto full_reval;
2180 	if (d_mountpoint(dentry))
2181 		goto full_reval;
2182 
2183 	inode = d_inode(dentry);
2184 
2185 	/* We can't create new files in nfs_open_revalidate(), so we
2186 	 * optimize away revalidation of negative dentries.
2187 	 */
2188 	if (inode == NULL)
2189 		goto full_reval;
2190 
2191 	if (nfs_verifier_is_delegated(dentry))
2192 		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
2193 
2194 	/* NFS only supports OPEN on regular files */
2195 	if (!S_ISREG(inode->i_mode))
2196 		goto full_reval;
2197 
2198 	/* We cannot do exclusive creation on a positive dentry */
2199 	if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
2200 		goto reval_dentry;
2201 
2202 	/* Check if the directory changed */
2203 	if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
2204 		goto reval_dentry;
2205 
2206 	/* Let f_op->open() actually open (and revalidate) the file */
2207 	return 1;
2208 reval_dentry:
2209 	if (flags & LOOKUP_RCU)
2210 		return -ECHILD;
2211 	return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags);
2212 
2213 full_reval:
2214 	return nfs_do_lookup_revalidate(dir, dentry, flags);
2215 }
2216 
2217 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
2218 {
2219 	return __nfs_lookup_revalidate(dentry, flags,
2220 			nfs4_do_lookup_revalidate);
2221 }
2222 
2223 #endif /* CONFIG_NFSV4 */
2224 
2225 struct dentry *
2226 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
2227 				struct nfs_fattr *fattr)
2228 {
2229 	struct dentry *parent = dget_parent(dentry);
2230 	struct inode *dir = d_inode(parent);
2231 	struct inode *inode;
2232 	struct dentry *d;
2233 	int error;
2234 
2235 	d_drop(dentry);
2236 
2237 	if (fhandle->size == 0) {
2238 		error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
2239 		if (error)
2240 			goto out_error;
2241 	}
2242 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2243 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
2244 		struct nfs_server *server = NFS_SB(dentry->d_sb);
2245 		error = server->nfs_client->rpc_ops->getattr(server, fhandle,
2246 				fattr, NULL);
2247 		if (error < 0)
2248 			goto out_error;
2249 	}
2250 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
2251 	d = d_splice_alias(inode, dentry);
2252 out:
2253 	dput(parent);
2254 	return d;
2255 out_error:
2256 	d = ERR_PTR(error);
2257 	goto out;
2258 }
2259 EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
2260 
2261 /*
2262  * Code common to create, mkdir, and mknod.
2263  */
2264 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
2265 				struct nfs_fattr *fattr)
2266 {
2267 	struct dentry *d;
2268 
2269 	d = nfs_add_or_obtain(dentry, fhandle, fattr);
2270 	if (IS_ERR(d))
2271 		return PTR_ERR(d);
2272 
2273 	/* Callers don't care */
2274 	dput(d);
2275 	return 0;
2276 }
2277 EXPORT_SYMBOL_GPL(nfs_instantiate);
2278 
2279 /*
2280  * Following a failed create operation, we drop the dentry rather
2281  * than retain a negative dentry. This avoids a problem in the event
2282  * that the operation succeeded on the server, but an error in the
2283  * reply path made it appear to have failed.
2284  */
2285 int nfs_create(struct user_namespace *mnt_userns, struct inode *dir,
2286 	       struct dentry *dentry, umode_t mode, bool excl)
2287 {
2288 	struct iattr attr;
2289 	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
2290 	int error;
2291 
2292 	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
2293 			dir->i_sb->s_id, dir->i_ino, dentry);
2294 
2295 	attr.ia_mode = mode;
2296 	attr.ia_valid = ATTR_MODE;
2297 
2298 	trace_nfs_create_enter(dir, dentry, open_flags);
2299 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
2300 	trace_nfs_create_exit(dir, dentry, open_flags, error);
2301 	if (error != 0)
2302 		goto out_err;
2303 	return 0;
2304 out_err:
2305 	d_drop(dentry);
2306 	return error;
2307 }
2308 EXPORT_SYMBOL_GPL(nfs_create);
2309 
2310 /*
2311  * See comments for nfs_proc_create regarding failed operations.
2312  */
2313 int
2314 nfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2315 	  struct dentry *dentry, umode_t mode, dev_t rdev)
2316 {
2317 	struct iattr attr;
2318 	int status;
2319 
2320 	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
2321 			dir->i_sb->s_id, dir->i_ino, dentry);
2322 
2323 	attr.ia_mode = mode;
2324 	attr.ia_valid = ATTR_MODE;
2325 
2326 	trace_nfs_mknod_enter(dir, dentry);
2327 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
2328 	trace_nfs_mknod_exit(dir, dentry, status);
2329 	if (status != 0)
2330 		goto out_err;
2331 	return 0;
2332 out_err:
2333 	d_drop(dentry);
2334 	return status;
2335 }
2336 EXPORT_SYMBOL_GPL(nfs_mknod);
2337 
2338 /*
2339  * See comments for nfs_proc_create regarding failed operations.
2340  */
2341 int nfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2342 	      struct dentry *dentry, umode_t mode)
2343 {
2344 	struct iattr attr;
2345 	int error;
2346 
2347 	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
2348 			dir->i_sb->s_id, dir->i_ino, dentry);
2349 
2350 	attr.ia_valid = ATTR_MODE;
2351 	attr.ia_mode = mode | S_IFDIR;
2352 
2353 	trace_nfs_mkdir_enter(dir, dentry);
2354 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
2355 	trace_nfs_mkdir_exit(dir, dentry, error);
2356 	if (error != 0)
2357 		goto out_err;
2358 	return 0;
2359 out_err:
2360 	d_drop(dentry);
2361 	return error;
2362 }
2363 EXPORT_SYMBOL_GPL(nfs_mkdir);
2364 
2365 static void nfs_dentry_handle_enoent(struct dentry *dentry)
2366 {
2367 	if (simple_positive(dentry))
2368 		d_delete(dentry);
2369 }
2370 
2371 static void nfs_dentry_remove_handle_error(struct inode *dir,
2372 					   struct dentry *dentry, int error)
2373 {
2374 	switch (error) {
2375 	case -ENOENT:
2376 		d_delete(dentry);
2377 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2378 		break;
2379 	case 0:
2380 		nfs_d_prune_case_insensitive_aliases(d_inode(dentry));
2381 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2382 	}
2383 }
2384 
2385 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
2386 {
2387 	int error;
2388 
2389 	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
2390 			dir->i_sb->s_id, dir->i_ino, dentry);
2391 
2392 	trace_nfs_rmdir_enter(dir, dentry);
2393 	if (d_really_is_positive(dentry)) {
2394 		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2395 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2396 		/* Ensure the VFS deletes this inode */
2397 		switch (error) {
2398 		case 0:
2399 			clear_nlink(d_inode(dentry));
2400 			break;
2401 		case -ENOENT:
2402 			nfs_dentry_handle_enoent(dentry);
2403 		}
2404 		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2405 	} else
2406 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2407 	nfs_dentry_remove_handle_error(dir, dentry, error);
2408 	trace_nfs_rmdir_exit(dir, dentry, error);
2409 
2410 	return error;
2411 }
2412 EXPORT_SYMBOL_GPL(nfs_rmdir);
2413 
2414 /*
2415  * Remove a file after making sure there are no pending writes,
2416  * and after checking that the file has only one user.
2417  *
2418  * We invalidate the attribute cache and free the inode prior to the operation
2419  * to avoid possible races if the server reuses the inode.
2420  */
2421 static int nfs_safe_remove(struct dentry *dentry)
2422 {
2423 	struct inode *dir = d_inode(dentry->d_parent);
2424 	struct inode *inode = d_inode(dentry);
2425 	int error = -EBUSY;
2426 
2427 	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2428 
2429 	/* If the dentry was sillyrenamed, we simply call d_delete() */
2430 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2431 		error = 0;
2432 		goto out;
2433 	}
2434 
2435 	trace_nfs_remove_enter(dir, dentry);
2436 	if (inode != NULL) {
2437 		error = NFS_PROTO(dir)->remove(dir, dentry);
2438 		if (error == 0)
2439 			nfs_drop_nlink(inode);
2440 	} else
2441 		error = NFS_PROTO(dir)->remove(dir, dentry);
2442 	if (error == -ENOENT)
2443 		nfs_dentry_handle_enoent(dentry);
2444 	trace_nfs_remove_exit(dir, dentry, error);
2445 out:
2446 	return error;
2447 }
2448 
2449 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
2450  *  belongs to an active ".nfs..." file and we return -EBUSY.
2451  *
2452  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
2453  */
2454 int nfs_unlink(struct inode *dir, struct dentry *dentry)
2455 {
2456 	int error;
2457 	int need_rehash = 0;
2458 
2459 	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2460 		dir->i_ino, dentry);
2461 
2462 	trace_nfs_unlink_enter(dir, dentry);
2463 	spin_lock(&dentry->d_lock);
2464 	if (d_count(dentry) > 1 && !test_bit(NFS_INO_PRESERVE_UNLINKED,
2465 					     &NFS_I(d_inode(dentry))->flags)) {
2466 		spin_unlock(&dentry->d_lock);
2467 		/* Start asynchronous writeout of the inode */
2468 		write_inode_now(d_inode(dentry), 0);
2469 		error = nfs_sillyrename(dir, dentry);
2470 		goto out;
2471 	}
2472 	if (!d_unhashed(dentry)) {
2473 		__d_drop(dentry);
2474 		need_rehash = 1;
2475 	}
2476 	spin_unlock(&dentry->d_lock);
2477 	error = nfs_safe_remove(dentry);
2478 	nfs_dentry_remove_handle_error(dir, dentry, error);
2479 	if (need_rehash)
2480 		d_rehash(dentry);
2481 out:
2482 	trace_nfs_unlink_exit(dir, dentry, error);
2483 	return error;
2484 }
2485 EXPORT_SYMBOL_GPL(nfs_unlink);
2486 
2487 /*
2488  * To create a symbolic link, most file systems instantiate a new inode,
2489  * add a page to it containing the path, then write it out to the disk
2490  * using prepare_write/commit_write.
2491  *
2492  * Unfortunately the NFS client can't create the in-core inode first
2493  * because it needs a file handle to create an in-core inode (see
2494  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
2495  * symlink request has completed on the server.
2496  *
2497  * So instead we allocate a raw page, copy the symname into it, then do
2498  * the SYMLINK request with the page as the buffer.  If it succeeds, we
2499  * now have a new file handle and can instantiate an in-core NFS inode
2500  * and move the raw page into its mapping.
2501  */
2502 int nfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
2503 		struct dentry *dentry, const char *symname)
2504 {
2505 	struct page *page;
2506 	char *kaddr;
2507 	struct iattr attr;
2508 	unsigned int pathlen = strlen(symname);
2509 	int error;
2510 
2511 	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2512 		dir->i_ino, dentry, symname);
2513 
2514 	if (pathlen > PAGE_SIZE)
2515 		return -ENAMETOOLONG;
2516 
2517 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
2518 	attr.ia_valid = ATTR_MODE;
2519 
2520 	page = alloc_page(GFP_USER);
2521 	if (!page)
2522 		return -ENOMEM;
2523 
2524 	kaddr = page_address(page);
2525 	memcpy(kaddr, symname, pathlen);
2526 	if (pathlen < PAGE_SIZE)
2527 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2528 
2529 	trace_nfs_symlink_enter(dir, dentry);
2530 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
2531 	trace_nfs_symlink_exit(dir, dentry, error);
2532 	if (error != 0) {
2533 		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2534 			dir->i_sb->s_id, dir->i_ino,
2535 			dentry, symname, error);
2536 		d_drop(dentry);
2537 		__free_page(page);
2538 		return error;
2539 	}
2540 
2541 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2542 
2543 	/*
2544 	 * No big deal if we can't add this page to the page cache here.
2545 	 * READLINK will get the missing page from the server if needed.
2546 	 */
2547 	if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2548 							GFP_KERNEL)) {
2549 		SetPageUptodate(page);
2550 		unlock_page(page);
2551 		/*
2552 		 * add_to_page_cache_lru() grabs an extra page refcount.
2553 		 * Drop it here to avoid leaking this page later.
2554 		 */
2555 		put_page(page);
2556 	} else
2557 		__free_page(page);
2558 
2559 	return 0;
2560 }
2561 EXPORT_SYMBOL_GPL(nfs_symlink);
2562 
2563 int
2564 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2565 {
2566 	struct inode *inode = d_inode(old_dentry);
2567 	int error;
2568 
2569 	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2570 		old_dentry, dentry);
2571 
2572 	trace_nfs_link_enter(inode, dir, dentry);
2573 	d_drop(dentry);
2574 	if (S_ISREG(inode->i_mode))
2575 		nfs_sync_inode(inode);
2576 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2577 	if (error == 0) {
2578 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2579 		ihold(inode);
2580 		d_add(dentry, inode);
2581 	}
2582 	trace_nfs_link_exit(inode, dir, dentry, error);
2583 	return error;
2584 }
2585 EXPORT_SYMBOL_GPL(nfs_link);
2586 
2587 /*
2588  * RENAME
2589  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2590  * different file handle for the same inode after a rename (e.g. when
2591  * moving to a different directory). A fail-safe method to do so would
2592  * be to look up old_dir/old_name, create a link to new_dir/new_name and
2593  * rename the old file using the sillyrename stuff. This way, the original
2594  * file in old_dir will go away when the last process iput()s the inode.
2595  *
2596  * FIXED.
2597  *
2598  * It actually works quite well. One needs to have the possibility for
2599  * at least one ".nfs..." file in each directory the file ever gets
2600  * moved or linked to which happens automagically with the new
2601  * implementation that only depends on the dcache stuff instead of
2602  * using the inode layer
2603  *
2604  * Unfortunately, things are a little more complicated than indicated
2605  * above. For a cross-directory move, we want to make sure we can get
2606  * rid of the old inode after the operation.  This means there must be
2607  * no pending writes (if it's a file), and the use count must be 1.
2608  * If these conditions are met, we can drop the dentries before doing
2609  * the rename.
2610  */
2611 int nfs_rename(struct user_namespace *mnt_userns, struct inode *old_dir,
2612 	       struct dentry *old_dentry, struct inode *new_dir,
2613 	       struct dentry *new_dentry, unsigned int flags)
2614 {
2615 	struct inode *old_inode = d_inode(old_dentry);
2616 	struct inode *new_inode = d_inode(new_dentry);
2617 	struct dentry *dentry = NULL, *rehash = NULL;
2618 	struct rpc_task *task;
2619 	int error = -EBUSY;
2620 
2621 	if (flags)
2622 		return -EINVAL;
2623 
2624 	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2625 		 old_dentry, new_dentry,
2626 		 d_count(new_dentry));
2627 
2628 	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2629 	/*
2630 	 * For non-directories, check whether the target is busy and if so,
2631 	 * make a copy of the dentry and then do a silly-rename. If the
2632 	 * silly-rename succeeds, the copied dentry is hashed and becomes
2633 	 * the new target.
2634 	 */
2635 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2636 		/*
2637 		 * To prevent any new references to the target during the
2638 		 * rename, we unhash the dentry in advance.
2639 		 */
2640 		if (!d_unhashed(new_dentry)) {
2641 			d_drop(new_dentry);
2642 			rehash = new_dentry;
2643 		}
2644 
2645 		if (d_count(new_dentry) > 2) {
2646 			int err;
2647 
2648 			/* copy the target dentry's name */
2649 			dentry = d_alloc(new_dentry->d_parent,
2650 					 &new_dentry->d_name);
2651 			if (!dentry)
2652 				goto out;
2653 
2654 			/* silly-rename the existing target ... */
2655 			err = nfs_sillyrename(new_dir, new_dentry);
2656 			if (err)
2657 				goto out;
2658 
2659 			new_dentry = dentry;
2660 			rehash = NULL;
2661 			new_inode = NULL;
2662 		}
2663 	}
2664 
2665 	if (S_ISREG(old_inode->i_mode))
2666 		nfs_sync_inode(old_inode);
2667 	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2668 	if (IS_ERR(task)) {
2669 		error = PTR_ERR(task);
2670 		goto out;
2671 	}
2672 
2673 	error = rpc_wait_for_completion_task(task);
2674 	if (error != 0) {
2675 		((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2676 		/* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2677 		smp_wmb();
2678 	} else
2679 		error = task->tk_status;
2680 	rpc_put_task(task);
2681 	/* Ensure the inode attributes are revalidated */
2682 	if (error == 0) {
2683 		spin_lock(&old_inode->i_lock);
2684 		NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2685 		nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE |
2686 							 NFS_INO_INVALID_CTIME |
2687 							 NFS_INO_REVAL_FORCED);
2688 		spin_unlock(&old_inode->i_lock);
2689 	}
2690 out:
2691 	if (rehash)
2692 		d_rehash(rehash);
2693 	trace_nfs_rename_exit(old_dir, old_dentry,
2694 			new_dir, new_dentry, error);
2695 	if (!error) {
2696 		if (new_inode != NULL)
2697 			nfs_drop_nlink(new_inode);
2698 		/*
2699 		 * The d_move() should be here instead of in an async RPC completion
2700 		 * handler because we need the proper locks to move the dentry.  If
2701 		 * we're interrupted by a signal, the async RPC completion handler
2702 		 * should mark the directories for revalidation.
2703 		 */
2704 		d_move(old_dentry, new_dentry);
2705 		nfs_set_verifier(old_dentry,
2706 					nfs_save_change_attribute(new_dir));
2707 	} else if (error == -ENOENT)
2708 		nfs_dentry_handle_enoent(old_dentry);
2709 
2710 	/* new dentry created? */
2711 	if (dentry)
2712 		dput(dentry);
2713 	return error;
2714 }
2715 EXPORT_SYMBOL_GPL(nfs_rename);
2716 
2717 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2718 static LIST_HEAD(nfs_access_lru_list);
2719 static atomic_long_t nfs_access_nr_entries;
2720 
2721 static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2722 module_param(nfs_access_max_cachesize, ulong, 0644);
2723 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2724 
2725 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2726 {
2727 	put_group_info(entry->group_info);
2728 	kfree_rcu(entry, rcu_head);
2729 	smp_mb__before_atomic();
2730 	atomic_long_dec(&nfs_access_nr_entries);
2731 	smp_mb__after_atomic();
2732 }
2733 
2734 static void nfs_access_free_list(struct list_head *head)
2735 {
2736 	struct nfs_access_entry *cache;
2737 
2738 	while (!list_empty(head)) {
2739 		cache = list_entry(head->next, struct nfs_access_entry, lru);
2740 		list_del(&cache->lru);
2741 		nfs_access_free_entry(cache);
2742 	}
2743 }
2744 
2745 static unsigned long
2746 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2747 {
2748 	LIST_HEAD(head);
2749 	struct nfs_inode *nfsi, *next;
2750 	struct nfs_access_entry *cache;
2751 	long freed = 0;
2752 
2753 	spin_lock(&nfs_access_lru_lock);
2754 	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2755 		struct inode *inode;
2756 
2757 		if (nr_to_scan-- == 0)
2758 			break;
2759 		inode = &nfsi->vfs_inode;
2760 		spin_lock(&inode->i_lock);
2761 		if (list_empty(&nfsi->access_cache_entry_lru))
2762 			goto remove_lru_entry;
2763 		cache = list_entry(nfsi->access_cache_entry_lru.next,
2764 				struct nfs_access_entry, lru);
2765 		list_move(&cache->lru, &head);
2766 		rb_erase(&cache->rb_node, &nfsi->access_cache);
2767 		freed++;
2768 		if (!list_empty(&nfsi->access_cache_entry_lru))
2769 			list_move_tail(&nfsi->access_cache_inode_lru,
2770 					&nfs_access_lru_list);
2771 		else {
2772 remove_lru_entry:
2773 			list_del_init(&nfsi->access_cache_inode_lru);
2774 			smp_mb__before_atomic();
2775 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2776 			smp_mb__after_atomic();
2777 		}
2778 		spin_unlock(&inode->i_lock);
2779 	}
2780 	spin_unlock(&nfs_access_lru_lock);
2781 	nfs_access_free_list(&head);
2782 	return freed;
2783 }
2784 
2785 unsigned long
2786 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2787 {
2788 	int nr_to_scan = sc->nr_to_scan;
2789 	gfp_t gfp_mask = sc->gfp_mask;
2790 
2791 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2792 		return SHRINK_STOP;
2793 	return nfs_do_access_cache_scan(nr_to_scan);
2794 }
2795 
2796 
2797 unsigned long
2798 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2799 {
2800 	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2801 }
2802 
2803 static void
2804 nfs_access_cache_enforce_limit(void)
2805 {
2806 	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2807 	unsigned long diff;
2808 	unsigned int nr_to_scan;
2809 
2810 	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2811 		return;
2812 	nr_to_scan = 100;
2813 	diff = nr_entries - nfs_access_max_cachesize;
2814 	if (diff < nr_to_scan)
2815 		nr_to_scan = diff;
2816 	nfs_do_access_cache_scan(nr_to_scan);
2817 }
2818 
2819 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2820 {
2821 	struct rb_root *root_node = &nfsi->access_cache;
2822 	struct rb_node *n;
2823 	struct nfs_access_entry *entry;
2824 
2825 	/* Unhook entries from the cache */
2826 	while ((n = rb_first(root_node)) != NULL) {
2827 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2828 		rb_erase(n, root_node);
2829 		list_move(&entry->lru, head);
2830 	}
2831 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2832 }
2833 
2834 void nfs_access_zap_cache(struct inode *inode)
2835 {
2836 	LIST_HEAD(head);
2837 
2838 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2839 		return;
2840 	/* Remove from global LRU init */
2841 	spin_lock(&nfs_access_lru_lock);
2842 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2843 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2844 
2845 	spin_lock(&inode->i_lock);
2846 	__nfs_access_zap_cache(NFS_I(inode), &head);
2847 	spin_unlock(&inode->i_lock);
2848 	spin_unlock(&nfs_access_lru_lock);
2849 	nfs_access_free_list(&head);
2850 }
2851 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2852 
2853 static int access_cmp(const struct cred *a, const struct nfs_access_entry *b)
2854 {
2855 	struct group_info *ga, *gb;
2856 	int g;
2857 
2858 	if (uid_lt(a->fsuid, b->fsuid))
2859 		return -1;
2860 	if (uid_gt(a->fsuid, b->fsuid))
2861 		return 1;
2862 
2863 	if (gid_lt(a->fsgid, b->fsgid))
2864 		return -1;
2865 	if (gid_gt(a->fsgid, b->fsgid))
2866 		return 1;
2867 
2868 	ga = a->group_info;
2869 	gb = b->group_info;
2870 	if (ga == gb)
2871 		return 0;
2872 	if (ga == NULL)
2873 		return -1;
2874 	if (gb == NULL)
2875 		return 1;
2876 	if (ga->ngroups < gb->ngroups)
2877 		return -1;
2878 	if (ga->ngroups > gb->ngroups)
2879 		return 1;
2880 
2881 	for (g = 0; g < ga->ngroups; g++) {
2882 		if (gid_lt(ga->gid[g], gb->gid[g]))
2883 			return -1;
2884 		if (gid_gt(ga->gid[g], gb->gid[g]))
2885 			return 1;
2886 	}
2887 	return 0;
2888 }
2889 
2890 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2891 {
2892 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2893 
2894 	while (n != NULL) {
2895 		struct nfs_access_entry *entry =
2896 			rb_entry(n, struct nfs_access_entry, rb_node);
2897 		int cmp = access_cmp(cred, entry);
2898 
2899 		if (cmp < 0)
2900 			n = n->rb_left;
2901 		else if (cmp > 0)
2902 			n = n->rb_right;
2903 		else
2904 			return entry;
2905 	}
2906 	return NULL;
2907 }
2908 
2909 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, u32 *mask, bool may_block)
2910 {
2911 	struct nfs_inode *nfsi = NFS_I(inode);
2912 	struct nfs_access_entry *cache;
2913 	bool retry = true;
2914 	int err;
2915 
2916 	spin_lock(&inode->i_lock);
2917 	for(;;) {
2918 		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2919 			goto out_zap;
2920 		cache = nfs_access_search_rbtree(inode, cred);
2921 		err = -ENOENT;
2922 		if (cache == NULL)
2923 			goto out;
2924 		/* Found an entry, is our attribute cache valid? */
2925 		if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2926 			break;
2927 		if (!retry)
2928 			break;
2929 		err = -ECHILD;
2930 		if (!may_block)
2931 			goto out;
2932 		spin_unlock(&inode->i_lock);
2933 		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2934 		if (err)
2935 			return err;
2936 		spin_lock(&inode->i_lock);
2937 		retry = false;
2938 	}
2939 	*mask = cache->mask;
2940 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2941 	err = 0;
2942 out:
2943 	spin_unlock(&inode->i_lock);
2944 	return err;
2945 out_zap:
2946 	spin_unlock(&inode->i_lock);
2947 	nfs_access_zap_cache(inode);
2948 	return -ENOENT;
2949 }
2950 
2951 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, u32 *mask)
2952 {
2953 	/* Only check the most recently returned cache entry,
2954 	 * but do it without locking.
2955 	 */
2956 	struct nfs_inode *nfsi = NFS_I(inode);
2957 	struct nfs_access_entry *cache;
2958 	int err = -ECHILD;
2959 	struct list_head *lh;
2960 
2961 	rcu_read_lock();
2962 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2963 		goto out;
2964 	lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
2965 	cache = list_entry(lh, struct nfs_access_entry, lru);
2966 	if (lh == &nfsi->access_cache_entry_lru ||
2967 	    access_cmp(cred, cache) != 0)
2968 		cache = NULL;
2969 	if (cache == NULL)
2970 		goto out;
2971 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2972 		goto out;
2973 	*mask = cache->mask;
2974 	err = 0;
2975 out:
2976 	rcu_read_unlock();
2977 	return err;
2978 }
2979 
2980 int nfs_access_get_cached(struct inode *inode, const struct cred *cred,
2981 			  u32 *mask, bool may_block)
2982 {
2983 	int status;
2984 
2985 	status = nfs_access_get_cached_rcu(inode, cred, mask);
2986 	if (status != 0)
2987 		status = nfs_access_get_cached_locked(inode, cred, mask,
2988 		    may_block);
2989 
2990 	return status;
2991 }
2992 EXPORT_SYMBOL_GPL(nfs_access_get_cached);
2993 
2994 static void nfs_access_add_rbtree(struct inode *inode,
2995 				  struct nfs_access_entry *set,
2996 				  const struct cred *cred)
2997 {
2998 	struct nfs_inode *nfsi = NFS_I(inode);
2999 	struct rb_root *root_node = &nfsi->access_cache;
3000 	struct rb_node **p = &root_node->rb_node;
3001 	struct rb_node *parent = NULL;
3002 	struct nfs_access_entry *entry;
3003 	int cmp;
3004 
3005 	spin_lock(&inode->i_lock);
3006 	while (*p != NULL) {
3007 		parent = *p;
3008 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
3009 		cmp = access_cmp(cred, entry);
3010 
3011 		if (cmp < 0)
3012 			p = &parent->rb_left;
3013 		else if (cmp > 0)
3014 			p = &parent->rb_right;
3015 		else
3016 			goto found;
3017 	}
3018 	rb_link_node(&set->rb_node, parent, p);
3019 	rb_insert_color(&set->rb_node, root_node);
3020 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
3021 	spin_unlock(&inode->i_lock);
3022 	return;
3023 found:
3024 	rb_replace_node(parent, &set->rb_node, root_node);
3025 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
3026 	list_del(&entry->lru);
3027 	spin_unlock(&inode->i_lock);
3028 	nfs_access_free_entry(entry);
3029 }
3030 
3031 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set,
3032 			  const struct cred *cred)
3033 {
3034 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
3035 	if (cache == NULL)
3036 		return;
3037 	RB_CLEAR_NODE(&cache->rb_node);
3038 	cache->fsuid = cred->fsuid;
3039 	cache->fsgid = cred->fsgid;
3040 	cache->group_info = get_group_info(cred->group_info);
3041 	cache->mask = set->mask;
3042 
3043 	/* The above field assignments must be visible
3044 	 * before this item appears on the lru.  We cannot easily
3045 	 * use rcu_assign_pointer, so just force the memory barrier.
3046 	 */
3047 	smp_wmb();
3048 	nfs_access_add_rbtree(inode, cache, cred);
3049 
3050 	/* Update accounting */
3051 	smp_mb__before_atomic();
3052 	atomic_long_inc(&nfs_access_nr_entries);
3053 	smp_mb__after_atomic();
3054 
3055 	/* Add inode to global LRU list */
3056 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
3057 		spin_lock(&nfs_access_lru_lock);
3058 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
3059 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
3060 					&nfs_access_lru_list);
3061 		spin_unlock(&nfs_access_lru_lock);
3062 	}
3063 	nfs_access_cache_enforce_limit();
3064 }
3065 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
3066 
3067 #define NFS_MAY_READ (NFS_ACCESS_READ)
3068 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
3069 		NFS_ACCESS_EXTEND | \
3070 		NFS_ACCESS_DELETE)
3071 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
3072 		NFS_ACCESS_EXTEND)
3073 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
3074 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
3075 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
3076 static int
3077 nfs_access_calc_mask(u32 access_result, umode_t umode)
3078 {
3079 	int mask = 0;
3080 
3081 	if (access_result & NFS_MAY_READ)
3082 		mask |= MAY_READ;
3083 	if (S_ISDIR(umode)) {
3084 		if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
3085 			mask |= MAY_WRITE;
3086 		if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
3087 			mask |= MAY_EXEC;
3088 	} else if (S_ISREG(umode)) {
3089 		if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
3090 			mask |= MAY_WRITE;
3091 		if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
3092 			mask |= MAY_EXEC;
3093 	} else if (access_result & NFS_MAY_WRITE)
3094 			mask |= MAY_WRITE;
3095 	return mask;
3096 }
3097 
3098 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
3099 {
3100 	entry->mask = access_result;
3101 }
3102 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
3103 
3104 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
3105 {
3106 	struct nfs_access_entry cache;
3107 	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
3108 	int cache_mask = -1;
3109 	int status;
3110 
3111 	trace_nfs_access_enter(inode);
3112 
3113 	status = nfs_access_get_cached(inode, cred, &cache.mask, may_block);
3114 	if (status == 0)
3115 		goto out_cached;
3116 
3117 	status = -ECHILD;
3118 	if (!may_block)
3119 		goto out;
3120 
3121 	/*
3122 	 * Determine which access bits we want to ask for...
3123 	 */
3124 	cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND |
3125 		     nfs_access_xattr_mask(NFS_SERVER(inode));
3126 	if (S_ISDIR(inode->i_mode))
3127 		cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
3128 	else
3129 		cache.mask |= NFS_ACCESS_EXECUTE;
3130 	status = NFS_PROTO(inode)->access(inode, &cache, cred);
3131 	if (status != 0) {
3132 		if (status == -ESTALE) {
3133 			if (!S_ISDIR(inode->i_mode))
3134 				nfs_set_inode_stale(inode);
3135 			else
3136 				nfs_zap_caches(inode);
3137 		}
3138 		goto out;
3139 	}
3140 	nfs_access_add_cache(inode, &cache, cred);
3141 out_cached:
3142 	cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
3143 	if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
3144 		status = -EACCES;
3145 out:
3146 	trace_nfs_access_exit(inode, mask, cache_mask, status);
3147 	return status;
3148 }
3149 
3150 static int nfs_open_permission_mask(int openflags)
3151 {
3152 	int mask = 0;
3153 
3154 	if (openflags & __FMODE_EXEC) {
3155 		/* ONLY check exec rights */
3156 		mask = MAY_EXEC;
3157 	} else {
3158 		if ((openflags & O_ACCMODE) != O_WRONLY)
3159 			mask |= MAY_READ;
3160 		if ((openflags & O_ACCMODE) != O_RDONLY)
3161 			mask |= MAY_WRITE;
3162 	}
3163 
3164 	return mask;
3165 }
3166 
3167 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
3168 {
3169 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
3170 }
3171 EXPORT_SYMBOL_GPL(nfs_may_open);
3172 
3173 static int nfs_execute_ok(struct inode *inode, int mask)
3174 {
3175 	struct nfs_server *server = NFS_SERVER(inode);
3176 	int ret = 0;
3177 
3178 	if (S_ISDIR(inode->i_mode))
3179 		return 0;
3180 	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) {
3181 		if (mask & MAY_NOT_BLOCK)
3182 			return -ECHILD;
3183 		ret = __nfs_revalidate_inode(server, inode);
3184 	}
3185 	if (ret == 0 && !execute_ok(inode))
3186 		ret = -EACCES;
3187 	return ret;
3188 }
3189 
3190 int nfs_permission(struct user_namespace *mnt_userns,
3191 		   struct inode *inode,
3192 		   int mask)
3193 {
3194 	const struct cred *cred = current_cred();
3195 	int res = 0;
3196 
3197 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
3198 
3199 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
3200 		goto out;
3201 	/* Is this sys_access() ? */
3202 	if (mask & (MAY_ACCESS | MAY_CHDIR))
3203 		goto force_lookup;
3204 
3205 	switch (inode->i_mode & S_IFMT) {
3206 		case S_IFLNK:
3207 			goto out;
3208 		case S_IFREG:
3209 			if ((mask & MAY_OPEN) &&
3210 			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
3211 				return 0;
3212 			break;
3213 		case S_IFDIR:
3214 			/*
3215 			 * Optimize away all write operations, since the server
3216 			 * will check permissions when we perform the op.
3217 			 */
3218 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
3219 				goto out;
3220 	}
3221 
3222 force_lookup:
3223 	if (!NFS_PROTO(inode)->access)
3224 		goto out_notsup;
3225 
3226 	res = nfs_do_access(inode, cred, mask);
3227 out:
3228 	if (!res && (mask & MAY_EXEC))
3229 		res = nfs_execute_ok(inode, mask);
3230 
3231 	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
3232 		inode->i_sb->s_id, inode->i_ino, mask, res);
3233 	return res;
3234 out_notsup:
3235 	if (mask & MAY_NOT_BLOCK)
3236 		return -ECHILD;
3237 
3238 	res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE |
3239 						  NFS_INO_INVALID_OTHER);
3240 	if (res == 0)
3241 		res = generic_permission(&init_user_ns, inode, mask);
3242 	goto out;
3243 }
3244 EXPORT_SYMBOL_GPL(nfs_permission);
3245