xref: /openbmc/linux/fs/nfs/dir.c (revision 293d5b43)
1 /*
2  *  linux/fs/nfs/dir.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  nfs directory handling functions
7  *
8  * 10 Apr 1996	Added silly rename for unlink	--okir
9  * 28 Sep 1996	Improved directory cache --okir
10  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
11  *              Re-implemented silly rename for unlink, newly implemented
12  *              silly rename for nfs_rename() following the suggestions
13  *              of Olaf Kirch (okir) found in this file.
14  *              Following Linus comments on my original hack, this version
15  *              depends only on the dcache stuff and doesn't touch the inode
16  *              layer (iput() and friends).
17  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
18  */
19 
20 #include <linux/module.h>
21 #include <linux/time.h>
22 #include <linux/errno.h>
23 #include <linux/stat.h>
24 #include <linux/fcntl.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/mm.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/nfs_fs.h>
31 #include <linux/nfs_mount.h>
32 #include <linux/pagemap.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/swap.h>
37 #include <linux/sched.h>
38 #include <linux/kmemleak.h>
39 #include <linux/xattr.h>
40 
41 #include "delegation.h"
42 #include "iostat.h"
43 #include "internal.h"
44 #include "fscache.h"
45 
46 #include "nfstrace.h"
47 
48 /* #define NFS_DEBUG_VERBOSE 1 */
49 
50 static int nfs_opendir(struct inode *, struct file *);
51 static int nfs_closedir(struct inode *, struct file *);
52 static int nfs_readdir(struct file *, struct dir_context *);
53 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
54 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
55 static void nfs_readdir_clear_array(struct page*);
56 
57 const struct file_operations nfs_dir_operations = {
58 	.llseek		= nfs_llseek_dir,
59 	.read		= generic_read_dir,
60 	.iterate_shared	= nfs_readdir,
61 	.open		= nfs_opendir,
62 	.release	= nfs_closedir,
63 	.fsync		= nfs_fsync_dir,
64 };
65 
66 const struct address_space_operations nfs_dir_aops = {
67 	.freepage = nfs_readdir_clear_array,
68 };
69 
70 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
71 {
72 	struct nfs_inode *nfsi = NFS_I(dir);
73 	struct nfs_open_dir_context *ctx;
74 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
75 	if (ctx != NULL) {
76 		ctx->duped = 0;
77 		ctx->attr_gencount = nfsi->attr_gencount;
78 		ctx->dir_cookie = 0;
79 		ctx->dup_cookie = 0;
80 		ctx->cred = get_rpccred(cred);
81 		spin_lock(&dir->i_lock);
82 		list_add(&ctx->list, &nfsi->open_files);
83 		spin_unlock(&dir->i_lock);
84 		return ctx;
85 	}
86 	return  ERR_PTR(-ENOMEM);
87 }
88 
89 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
90 {
91 	spin_lock(&dir->i_lock);
92 	list_del(&ctx->list);
93 	spin_unlock(&dir->i_lock);
94 	put_rpccred(ctx->cred);
95 	kfree(ctx);
96 }
97 
98 /*
99  * Open file
100  */
101 static int
102 nfs_opendir(struct inode *inode, struct file *filp)
103 {
104 	int res = 0;
105 	struct nfs_open_dir_context *ctx;
106 	struct rpc_cred *cred;
107 
108 	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
109 
110 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
111 
112 	cred = rpc_lookup_cred();
113 	if (IS_ERR(cred))
114 		return PTR_ERR(cred);
115 	ctx = alloc_nfs_open_dir_context(inode, cred);
116 	if (IS_ERR(ctx)) {
117 		res = PTR_ERR(ctx);
118 		goto out;
119 	}
120 	filp->private_data = ctx;
121 	if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
122 		/* This is a mountpoint, so d_revalidate will never
123 		 * have been called, so we need to refresh the
124 		 * inode (for close-open consistency) ourselves.
125 		 */
126 		__nfs_revalidate_inode(NFS_SERVER(inode), inode);
127 	}
128 out:
129 	put_rpccred(cred);
130 	return res;
131 }
132 
133 static int
134 nfs_closedir(struct inode *inode, struct file *filp)
135 {
136 	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
137 	return 0;
138 }
139 
140 struct nfs_cache_array_entry {
141 	u64 cookie;
142 	u64 ino;
143 	struct qstr string;
144 	unsigned char d_type;
145 };
146 
147 struct nfs_cache_array {
148 	atomic_t refcount;
149 	int size;
150 	int eof_index;
151 	u64 last_cookie;
152 	struct nfs_cache_array_entry array[0];
153 };
154 
155 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
156 typedef struct {
157 	struct file	*file;
158 	struct page	*page;
159 	struct dir_context *ctx;
160 	unsigned long	page_index;
161 	u64		*dir_cookie;
162 	u64		last_cookie;
163 	loff_t		current_index;
164 	decode_dirent_t	decode;
165 
166 	unsigned long	timestamp;
167 	unsigned long	gencount;
168 	unsigned int	cache_entry_index;
169 	unsigned int	plus:1;
170 	unsigned int	eof:1;
171 } nfs_readdir_descriptor_t;
172 
173 /*
174  * The caller is responsible for calling nfs_readdir_release_array(page)
175  */
176 static
177 struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
178 {
179 	void *ptr;
180 	if (page == NULL)
181 		return ERR_PTR(-EIO);
182 	ptr = kmap(page);
183 	if (ptr == NULL)
184 		return ERR_PTR(-ENOMEM);
185 	return ptr;
186 }
187 
188 static
189 void nfs_readdir_release_array(struct page *page)
190 {
191 	kunmap(page);
192 }
193 
194 /*
195  * we are freeing strings created by nfs_add_to_readdir_array()
196  */
197 static
198 void nfs_readdir_clear_array(struct page *page)
199 {
200 	struct nfs_cache_array *array;
201 	int i;
202 
203 	array = kmap_atomic(page);
204 	if (atomic_dec_and_test(&array->refcount))
205 		for (i = 0; i < array->size; i++)
206 			kfree(array->array[i].string.name);
207 	kunmap_atomic(array);
208 }
209 
210 static bool grab_page(struct page *page)
211 {
212 	struct nfs_cache_array *array = kmap_atomic(page);
213 	bool res = atomic_inc_not_zero(&array->refcount);
214 	kunmap_atomic(array);
215 	return res;
216 }
217 
218 /*
219  * the caller is responsible for freeing qstr.name
220  * when called by nfs_readdir_add_to_array, the strings will be freed in
221  * nfs_clear_readdir_array()
222  */
223 static
224 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
225 {
226 	string->len = len;
227 	string->name = kmemdup(name, len, GFP_KERNEL);
228 	if (string->name == NULL)
229 		return -ENOMEM;
230 	/*
231 	 * Avoid a kmemleak false positive. The pointer to the name is stored
232 	 * in a page cache page which kmemleak does not scan.
233 	 */
234 	kmemleak_not_leak(string->name);
235 	string->hash = full_name_hash(NULL, name, len);
236 	return 0;
237 }
238 
239 static
240 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
241 {
242 	struct nfs_cache_array *array = nfs_readdir_get_array(page);
243 	struct nfs_cache_array_entry *cache_entry;
244 	int ret;
245 
246 	if (IS_ERR(array))
247 		return PTR_ERR(array);
248 
249 	cache_entry = &array->array[array->size];
250 
251 	/* Check that this entry lies within the page bounds */
252 	ret = -ENOSPC;
253 	if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
254 		goto out;
255 
256 	cache_entry->cookie = entry->prev_cookie;
257 	cache_entry->ino = entry->ino;
258 	cache_entry->d_type = entry->d_type;
259 	ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
260 	if (ret)
261 		goto out;
262 	array->last_cookie = entry->cookie;
263 	array->size++;
264 	if (entry->eof != 0)
265 		array->eof_index = array->size;
266 out:
267 	nfs_readdir_release_array(page);
268 	return ret;
269 }
270 
271 static
272 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
273 {
274 	loff_t diff = desc->ctx->pos - desc->current_index;
275 	unsigned int index;
276 
277 	if (diff < 0)
278 		goto out_eof;
279 	if (diff >= array->size) {
280 		if (array->eof_index >= 0)
281 			goto out_eof;
282 		return -EAGAIN;
283 	}
284 
285 	index = (unsigned int)diff;
286 	*desc->dir_cookie = array->array[index].cookie;
287 	desc->cache_entry_index = index;
288 	return 0;
289 out_eof:
290 	desc->eof = 1;
291 	return -EBADCOOKIE;
292 }
293 
294 static bool
295 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
296 {
297 	if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
298 		return false;
299 	smp_rmb();
300 	return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
301 }
302 
303 static
304 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
305 {
306 	int i;
307 	loff_t new_pos;
308 	int status = -EAGAIN;
309 
310 	for (i = 0; i < array->size; i++) {
311 		if (array->array[i].cookie == *desc->dir_cookie) {
312 			struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
313 			struct nfs_open_dir_context *ctx = desc->file->private_data;
314 
315 			new_pos = desc->current_index + i;
316 			if (ctx->attr_gencount != nfsi->attr_gencount ||
317 			    !nfs_readdir_inode_mapping_valid(nfsi)) {
318 				ctx->duped = 0;
319 				ctx->attr_gencount = nfsi->attr_gencount;
320 			} else if (new_pos < desc->ctx->pos) {
321 				if (ctx->duped > 0
322 				    && ctx->dup_cookie == *desc->dir_cookie) {
323 					if (printk_ratelimit()) {
324 						pr_notice("NFS: directory %pD2 contains a readdir loop."
325 								"Please contact your server vendor.  "
326 								"The file: %.*s has duplicate cookie %llu\n",
327 								desc->file, array->array[i].string.len,
328 								array->array[i].string.name, *desc->dir_cookie);
329 					}
330 					status = -ELOOP;
331 					goto out;
332 				}
333 				ctx->dup_cookie = *desc->dir_cookie;
334 				ctx->duped = -1;
335 			}
336 			desc->ctx->pos = new_pos;
337 			desc->cache_entry_index = i;
338 			return 0;
339 		}
340 	}
341 	if (array->eof_index >= 0) {
342 		status = -EBADCOOKIE;
343 		if (*desc->dir_cookie == array->last_cookie)
344 			desc->eof = 1;
345 	}
346 out:
347 	return status;
348 }
349 
350 static
351 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
352 {
353 	struct nfs_cache_array *array;
354 	int status;
355 
356 	array = nfs_readdir_get_array(desc->page);
357 	if (IS_ERR(array)) {
358 		status = PTR_ERR(array);
359 		goto out;
360 	}
361 
362 	if (*desc->dir_cookie == 0)
363 		status = nfs_readdir_search_for_pos(array, desc);
364 	else
365 		status = nfs_readdir_search_for_cookie(array, desc);
366 
367 	if (status == -EAGAIN) {
368 		desc->last_cookie = array->last_cookie;
369 		desc->current_index += array->size;
370 		desc->page_index++;
371 	}
372 	nfs_readdir_release_array(desc->page);
373 out:
374 	return status;
375 }
376 
377 /* Fill a page with xdr information before transferring to the cache page */
378 static
379 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
380 			struct nfs_entry *entry, struct file *file, struct inode *inode)
381 {
382 	struct nfs_open_dir_context *ctx = file->private_data;
383 	struct rpc_cred	*cred = ctx->cred;
384 	unsigned long	timestamp, gencount;
385 	int		error;
386 
387  again:
388 	timestamp = jiffies;
389 	gencount = nfs_inc_attr_generation_counter();
390 	error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
391 					  NFS_SERVER(inode)->dtsize, desc->plus);
392 	if (error < 0) {
393 		/* We requested READDIRPLUS, but the server doesn't grok it */
394 		if (error == -ENOTSUPP && desc->plus) {
395 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
396 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
397 			desc->plus = 0;
398 			goto again;
399 		}
400 		goto error;
401 	}
402 	desc->timestamp = timestamp;
403 	desc->gencount = gencount;
404 error:
405 	return error;
406 }
407 
408 static int xdr_decode(nfs_readdir_descriptor_t *desc,
409 		      struct nfs_entry *entry, struct xdr_stream *xdr)
410 {
411 	int error;
412 
413 	error = desc->decode(xdr, entry, desc->plus);
414 	if (error)
415 		return error;
416 	entry->fattr->time_start = desc->timestamp;
417 	entry->fattr->gencount = desc->gencount;
418 	return 0;
419 }
420 
421 /* Match file and dirent using either filehandle or fileid
422  * Note: caller is responsible for checking the fsid
423  */
424 static
425 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
426 {
427 	struct inode *inode;
428 	struct nfs_inode *nfsi;
429 
430 	if (d_really_is_negative(dentry))
431 		return 0;
432 
433 	inode = d_inode(dentry);
434 	if (is_bad_inode(inode) || NFS_STALE(inode))
435 		return 0;
436 
437 	nfsi = NFS_I(inode);
438 	if (entry->fattr->fileid == nfsi->fileid)
439 		return 1;
440 	if (nfs_compare_fh(entry->fh, &nfsi->fh) == 0)
441 		return 1;
442 	return 0;
443 }
444 
445 static
446 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
447 {
448 	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
449 		return false;
450 	if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
451 		return true;
452 	if (ctx->pos == 0)
453 		return true;
454 	return false;
455 }
456 
457 /*
458  * This function is called by the lookup code to request the use of
459  * readdirplus to accelerate any future lookups in the same
460  * directory.
461  */
462 static
463 void nfs_advise_use_readdirplus(struct inode *dir)
464 {
465 	set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags);
466 }
467 
468 /*
469  * This function is mainly for use by nfs_getattr().
470  *
471  * If this is an 'ls -l', we want to force use of readdirplus.
472  * Do this by checking if there is an active file descriptor
473  * and calling nfs_advise_use_readdirplus, then forcing a
474  * cache flush.
475  */
476 void nfs_force_use_readdirplus(struct inode *dir)
477 {
478 	if (!list_empty(&NFS_I(dir)->open_files)) {
479 		nfs_advise_use_readdirplus(dir);
480 		nfs_zap_mapping(dir, dir->i_mapping);
481 	}
482 }
483 
484 static
485 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
486 {
487 	struct qstr filename = QSTR_INIT(entry->name, entry->len);
488 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
489 	struct dentry *dentry;
490 	struct dentry *alias;
491 	struct inode *dir = d_inode(parent);
492 	struct inode *inode;
493 	int status;
494 
495 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
496 		return;
497 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
498 		return;
499 	if (filename.name[0] == '.') {
500 		if (filename.len == 1)
501 			return;
502 		if (filename.len == 2 && filename.name[1] == '.')
503 			return;
504 	}
505 	filename.hash = full_name_hash(parent, filename.name, filename.len);
506 
507 	dentry = d_lookup(parent, &filename);
508 again:
509 	if (!dentry) {
510 		dentry = d_alloc_parallel(parent, &filename, &wq);
511 		if (IS_ERR(dentry))
512 			return;
513 	}
514 	if (!d_in_lookup(dentry)) {
515 		/* Is there a mountpoint here? If so, just exit */
516 		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
517 					&entry->fattr->fsid))
518 			goto out;
519 		if (nfs_same_file(dentry, entry)) {
520 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
521 			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
522 			if (!status)
523 				nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
524 			goto out;
525 		} else {
526 			d_invalidate(dentry);
527 			dput(dentry);
528 			dentry = NULL;
529 			goto again;
530 		}
531 	}
532 
533 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
534 	alias = d_splice_alias(inode, dentry);
535 	d_lookup_done(dentry);
536 	if (alias) {
537 		if (IS_ERR(alias))
538 			goto out;
539 		dput(dentry);
540 		dentry = alias;
541 	}
542 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
543 out:
544 	dput(dentry);
545 }
546 
547 /* Perform conversion from xdr to cache array */
548 static
549 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
550 				struct page **xdr_pages, struct page *page, unsigned int buflen)
551 {
552 	struct xdr_stream stream;
553 	struct xdr_buf buf;
554 	struct page *scratch;
555 	struct nfs_cache_array *array;
556 	unsigned int count = 0;
557 	int status;
558 
559 	scratch = alloc_page(GFP_KERNEL);
560 	if (scratch == NULL)
561 		return -ENOMEM;
562 
563 	if (buflen == 0)
564 		goto out_nopages;
565 
566 	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
567 	xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
568 
569 	do {
570 		status = xdr_decode(desc, entry, &stream);
571 		if (status != 0) {
572 			if (status == -EAGAIN)
573 				status = 0;
574 			break;
575 		}
576 
577 		count++;
578 
579 		if (desc->plus != 0)
580 			nfs_prime_dcache(file_dentry(desc->file), entry);
581 
582 		status = nfs_readdir_add_to_array(entry, page);
583 		if (status != 0)
584 			break;
585 	} while (!entry->eof);
586 
587 out_nopages:
588 	if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
589 		array = nfs_readdir_get_array(page);
590 		if (!IS_ERR(array)) {
591 			array->eof_index = array->size;
592 			status = 0;
593 			nfs_readdir_release_array(page);
594 		} else
595 			status = PTR_ERR(array);
596 	}
597 
598 	put_page(scratch);
599 	return status;
600 }
601 
602 static
603 void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
604 {
605 	unsigned int i;
606 	for (i = 0; i < npages; i++)
607 		put_page(pages[i]);
608 }
609 
610 /*
611  * nfs_readdir_large_page will allocate pages that must be freed with a call
612  * to nfs_readdir_free_pagearray
613  */
614 static
615 int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
616 {
617 	unsigned int i;
618 
619 	for (i = 0; i < npages; i++) {
620 		struct page *page = alloc_page(GFP_KERNEL);
621 		if (page == NULL)
622 			goto out_freepages;
623 		pages[i] = page;
624 	}
625 	return 0;
626 
627 out_freepages:
628 	nfs_readdir_free_pages(pages, i);
629 	return -ENOMEM;
630 }
631 
632 static
633 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
634 {
635 	struct page *pages[NFS_MAX_READDIR_PAGES];
636 	struct nfs_entry entry;
637 	struct file	*file = desc->file;
638 	struct nfs_cache_array *array;
639 	int status = -ENOMEM;
640 	unsigned int array_size = ARRAY_SIZE(pages);
641 
642 	entry.prev_cookie = 0;
643 	entry.cookie = desc->last_cookie;
644 	entry.eof = 0;
645 	entry.fh = nfs_alloc_fhandle();
646 	entry.fattr = nfs_alloc_fattr();
647 	entry.server = NFS_SERVER(inode);
648 	if (entry.fh == NULL || entry.fattr == NULL)
649 		goto out;
650 
651 	entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
652 	if (IS_ERR(entry.label)) {
653 		status = PTR_ERR(entry.label);
654 		goto out;
655 	}
656 
657 	array = nfs_readdir_get_array(page);
658 	if (IS_ERR(array)) {
659 		status = PTR_ERR(array);
660 		goto out_label_free;
661 	}
662 	memset(array, 0, sizeof(struct nfs_cache_array));
663 	atomic_set(&array->refcount, 1);
664 	array->eof_index = -1;
665 
666 	status = nfs_readdir_alloc_pages(pages, array_size);
667 	if (status < 0)
668 		goto out_release_array;
669 	do {
670 		unsigned int pglen;
671 		status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
672 
673 		if (status < 0)
674 			break;
675 		pglen = status;
676 		status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
677 		if (status < 0) {
678 			if (status == -ENOSPC)
679 				status = 0;
680 			break;
681 		}
682 	} while (array->eof_index < 0);
683 
684 	nfs_readdir_free_pages(pages, array_size);
685 out_release_array:
686 	nfs_readdir_release_array(page);
687 out_label_free:
688 	nfs4_label_free(entry.label);
689 out:
690 	nfs_free_fattr(entry.fattr);
691 	nfs_free_fhandle(entry.fh);
692 	return status;
693 }
694 
695 /*
696  * Now we cache directories properly, by converting xdr information
697  * to an array that can be used for lookups later.  This results in
698  * fewer cache pages, since we can store more information on each page.
699  * We only need to convert from xdr once so future lookups are much simpler
700  */
701 static
702 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
703 {
704 	struct inode	*inode = file_inode(desc->file);
705 	int ret;
706 
707 	ret = nfs_readdir_xdr_to_array(desc, page, inode);
708 	if (ret < 0)
709 		goto error;
710 	SetPageUptodate(page);
711 
712 	if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
713 		/* Should never happen */
714 		nfs_zap_mapping(inode, inode->i_mapping);
715 	}
716 	unlock_page(page);
717 	return 0;
718  error:
719 	unlock_page(page);
720 	return ret;
721 }
722 
723 static
724 void cache_page_release(nfs_readdir_descriptor_t *desc)
725 {
726 	nfs_readdir_clear_array(desc->page);
727 	put_page(desc->page);
728 	desc->page = NULL;
729 }
730 
731 static
732 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
733 {
734 	struct page *page;
735 
736 	for (;;) {
737 		page = read_cache_page(desc->file->f_mapping,
738 			desc->page_index, (filler_t *)nfs_readdir_filler, desc);
739 		if (IS_ERR(page) || grab_page(page))
740 			break;
741 		put_page(page);
742 	}
743 	return page;
744 }
745 
746 /*
747  * Returns 0 if desc->dir_cookie was found on page desc->page_index
748  */
749 static
750 int find_cache_page(nfs_readdir_descriptor_t *desc)
751 {
752 	int res;
753 
754 	desc->page = get_cache_page(desc);
755 	if (IS_ERR(desc->page))
756 		return PTR_ERR(desc->page);
757 
758 	res = nfs_readdir_search_array(desc);
759 	if (res != 0)
760 		cache_page_release(desc);
761 	return res;
762 }
763 
764 /* Search for desc->dir_cookie from the beginning of the page cache */
765 static inline
766 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
767 {
768 	int res;
769 
770 	if (desc->page_index == 0) {
771 		desc->current_index = 0;
772 		desc->last_cookie = 0;
773 	}
774 	do {
775 		res = find_cache_page(desc);
776 	} while (res == -EAGAIN);
777 	return res;
778 }
779 
780 /*
781  * Once we've found the start of the dirent within a page: fill 'er up...
782  */
783 static
784 int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
785 {
786 	struct file	*file = desc->file;
787 	int i = 0;
788 	int res = 0;
789 	struct nfs_cache_array *array = NULL;
790 	struct nfs_open_dir_context *ctx = file->private_data;
791 
792 	array = nfs_readdir_get_array(desc->page);
793 	if (IS_ERR(array)) {
794 		res = PTR_ERR(array);
795 		goto out;
796 	}
797 
798 	for (i = desc->cache_entry_index; i < array->size; i++) {
799 		struct nfs_cache_array_entry *ent;
800 
801 		ent = &array->array[i];
802 		if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
803 		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
804 			desc->eof = 1;
805 			break;
806 		}
807 		desc->ctx->pos++;
808 		if (i < (array->size-1))
809 			*desc->dir_cookie = array->array[i+1].cookie;
810 		else
811 			*desc->dir_cookie = array->last_cookie;
812 		if (ctx->duped != 0)
813 			ctx->duped = 1;
814 	}
815 	if (array->eof_index >= 0)
816 		desc->eof = 1;
817 
818 	nfs_readdir_release_array(desc->page);
819 out:
820 	cache_page_release(desc);
821 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
822 			(unsigned long long)*desc->dir_cookie, res);
823 	return res;
824 }
825 
826 /*
827  * If we cannot find a cookie in our cache, we suspect that this is
828  * because it points to a deleted file, so we ask the server to return
829  * whatever it thinks is the next entry. We then feed this to filldir.
830  * If all goes well, we should then be able to find our way round the
831  * cache on the next call to readdir_search_pagecache();
832  *
833  * NOTE: we cannot add the anonymous page to the pagecache because
834  *	 the data it contains might not be page aligned. Besides,
835  *	 we should already have a complete representation of the
836  *	 directory in the page cache by the time we get here.
837  */
838 static inline
839 int uncached_readdir(nfs_readdir_descriptor_t *desc)
840 {
841 	struct page	*page = NULL;
842 	int		status;
843 	struct inode *inode = file_inode(desc->file);
844 	struct nfs_open_dir_context *ctx = desc->file->private_data;
845 
846 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
847 			(unsigned long long)*desc->dir_cookie);
848 
849 	page = alloc_page(GFP_HIGHUSER);
850 	if (!page) {
851 		status = -ENOMEM;
852 		goto out;
853 	}
854 
855 	desc->page_index = 0;
856 	desc->last_cookie = *desc->dir_cookie;
857 	desc->page = page;
858 	ctx->duped = 0;
859 
860 	status = nfs_readdir_xdr_to_array(desc, page, inode);
861 	if (status < 0)
862 		goto out_release;
863 
864 	status = nfs_do_filldir(desc);
865 
866  out:
867 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
868 			__func__, status);
869 	return status;
870  out_release:
871 	cache_page_release(desc);
872 	goto out;
873 }
874 
875 static bool nfs_dir_mapping_need_revalidate(struct inode *dir)
876 {
877 	struct nfs_inode *nfsi = NFS_I(dir);
878 
879 	if (nfs_attribute_cache_expired(dir))
880 		return true;
881 	if (nfsi->cache_validity & NFS_INO_INVALID_DATA)
882 		return true;
883 	return false;
884 }
885 
886 /* The file offset position represents the dirent entry number.  A
887    last cookie cache takes care of the common case of reading the
888    whole directory.
889  */
890 static int nfs_readdir(struct file *file, struct dir_context *ctx)
891 {
892 	struct dentry	*dentry = file_dentry(file);
893 	struct inode	*inode = d_inode(dentry);
894 	nfs_readdir_descriptor_t my_desc,
895 			*desc = &my_desc;
896 	struct nfs_open_dir_context *dir_ctx = file->private_data;
897 	int res = 0;
898 
899 	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
900 			file, (long long)ctx->pos);
901 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
902 
903 	/*
904 	 * ctx->pos points to the dirent entry number.
905 	 * *desc->dir_cookie has the cookie for the next entry. We have
906 	 * to either find the entry with the appropriate number or
907 	 * revalidate the cookie.
908 	 */
909 	memset(desc, 0, sizeof(*desc));
910 
911 	desc->file = file;
912 	desc->ctx = ctx;
913 	desc->dir_cookie = &dir_ctx->dir_cookie;
914 	desc->decode = NFS_PROTO(inode)->decode_dirent;
915 	desc->plus = nfs_use_readdirplus(inode, ctx) ? 1 : 0;
916 
917 	if (ctx->pos == 0 || nfs_dir_mapping_need_revalidate(inode))
918 		res = nfs_revalidate_mapping(inode, file->f_mapping);
919 	if (res < 0)
920 		goto out;
921 
922 	do {
923 		res = readdir_search_pagecache(desc);
924 
925 		if (res == -EBADCOOKIE) {
926 			res = 0;
927 			/* This means either end of directory */
928 			if (*desc->dir_cookie && desc->eof == 0) {
929 				/* Or that the server has 'lost' a cookie */
930 				res = uncached_readdir(desc);
931 				if (res == 0)
932 					continue;
933 			}
934 			break;
935 		}
936 		if (res == -ETOOSMALL && desc->plus) {
937 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
938 			nfs_zap_caches(inode);
939 			desc->page_index = 0;
940 			desc->plus = 0;
941 			desc->eof = 0;
942 			continue;
943 		}
944 		if (res < 0)
945 			break;
946 
947 		res = nfs_do_filldir(desc);
948 		if (res < 0)
949 			break;
950 	} while (!desc->eof);
951 out:
952 	if (res > 0)
953 		res = 0;
954 	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
955 	return res;
956 }
957 
958 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
959 {
960 	struct nfs_open_dir_context *dir_ctx = filp->private_data;
961 
962 	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
963 			filp, offset, whence);
964 
965 	switch (whence) {
966 		case 1:
967 			offset += filp->f_pos;
968 		case 0:
969 			if (offset >= 0)
970 				break;
971 		default:
972 			return -EINVAL;
973 	}
974 	if (offset != filp->f_pos) {
975 		filp->f_pos = offset;
976 		dir_ctx->dir_cookie = 0;
977 		dir_ctx->duped = 0;
978 	}
979 	return offset;
980 }
981 
982 /*
983  * All directory operations under NFS are synchronous, so fsync()
984  * is a dummy operation.
985  */
986 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
987 			 int datasync)
988 {
989 	struct inode *inode = file_inode(filp);
990 
991 	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
992 
993 	inode_lock(inode);
994 	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
995 	inode_unlock(inode);
996 	return 0;
997 }
998 
999 /**
1000  * nfs_force_lookup_revalidate - Mark the directory as having changed
1001  * @dir - pointer to directory inode
1002  *
1003  * This forces the revalidation code in nfs_lookup_revalidate() to do a
1004  * full lookup on all child dentries of 'dir' whenever a change occurs
1005  * on the server that might have invalidated our dcache.
1006  *
1007  * The caller should be holding dir->i_lock
1008  */
1009 void nfs_force_lookup_revalidate(struct inode *dir)
1010 {
1011 	NFS_I(dir)->cache_change_attribute++;
1012 }
1013 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1014 
1015 /*
1016  * A check for whether or not the parent directory has changed.
1017  * In the case it has, we assume that the dentries are untrustworthy
1018  * and may need to be looked up again.
1019  * If rcu_walk prevents us from performing a full check, return 0.
1020  */
1021 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1022 			      int rcu_walk)
1023 {
1024 	int ret;
1025 
1026 	if (IS_ROOT(dentry))
1027 		return 1;
1028 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1029 		return 0;
1030 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1031 		return 0;
1032 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1033 	if (rcu_walk)
1034 		ret = nfs_revalidate_inode_rcu(NFS_SERVER(dir), dir);
1035 	else
1036 		ret = nfs_revalidate_inode(NFS_SERVER(dir), dir);
1037 	if (ret < 0)
1038 		return 0;
1039 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1040 		return 0;
1041 	return 1;
1042 }
1043 
1044 /*
1045  * Use intent information to check whether or not we're going to do
1046  * an O_EXCL create using this path component.
1047  */
1048 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1049 {
1050 	if (NFS_PROTO(dir)->version == 2)
1051 		return 0;
1052 	return flags & LOOKUP_EXCL;
1053 }
1054 
1055 /*
1056  * Inode and filehandle revalidation for lookups.
1057  *
1058  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1059  * or if the intent information indicates that we're about to open this
1060  * particular file and the "nocto" mount flag is not set.
1061  *
1062  */
1063 static
1064 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1065 {
1066 	struct nfs_server *server = NFS_SERVER(inode);
1067 	int ret;
1068 
1069 	if (IS_AUTOMOUNT(inode))
1070 		return 0;
1071 	/* VFS wants an on-the-wire revalidation */
1072 	if (flags & LOOKUP_REVAL)
1073 		goto out_force;
1074 	/* This is an open(2) */
1075 	if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) &&
1076 	    (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
1077 		goto out_force;
1078 out:
1079 	return (inode->i_nlink == 0) ? -ENOENT : 0;
1080 out_force:
1081 	if (flags & LOOKUP_RCU)
1082 		return -ECHILD;
1083 	ret = __nfs_revalidate_inode(server, inode);
1084 	if (ret != 0)
1085 		return ret;
1086 	goto out;
1087 }
1088 
1089 /*
1090  * We judge how long we want to trust negative
1091  * dentries by looking at the parent inode mtime.
1092  *
1093  * If parent mtime has changed, we revalidate, else we wait for a
1094  * period corresponding to the parent's attribute cache timeout value.
1095  *
1096  * If LOOKUP_RCU prevents us from performing a full check, return 1
1097  * suggesting a reval is needed.
1098  */
1099 static inline
1100 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1101 		       unsigned int flags)
1102 {
1103 	/* Don't revalidate a negative dentry if we're creating a new file */
1104 	if (flags & LOOKUP_CREATE)
1105 		return 0;
1106 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1107 		return 1;
1108 	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1109 }
1110 
1111 /*
1112  * This is called every time the dcache has a lookup hit,
1113  * and we should check whether we can really trust that
1114  * lookup.
1115  *
1116  * NOTE! The hit can be a negative hit too, don't assume
1117  * we have an inode!
1118  *
1119  * If the parent directory is seen to have changed, we throw out the
1120  * cached dentry and do a new lookup.
1121  */
1122 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1123 {
1124 	struct inode *dir;
1125 	struct inode *inode;
1126 	struct dentry *parent;
1127 	struct nfs_fh *fhandle = NULL;
1128 	struct nfs_fattr *fattr = NULL;
1129 	struct nfs4_label *label = NULL;
1130 	int error;
1131 
1132 	if (flags & LOOKUP_RCU) {
1133 		parent = ACCESS_ONCE(dentry->d_parent);
1134 		dir = d_inode_rcu(parent);
1135 		if (!dir)
1136 			return -ECHILD;
1137 	} else {
1138 		parent = dget_parent(dentry);
1139 		dir = d_inode(parent);
1140 	}
1141 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1142 	inode = d_inode(dentry);
1143 
1144 	if (!inode) {
1145 		if (nfs_neg_need_reval(dir, dentry, flags)) {
1146 			if (flags & LOOKUP_RCU)
1147 				return -ECHILD;
1148 			goto out_bad;
1149 		}
1150 		goto out_valid_noent;
1151 	}
1152 
1153 	if (is_bad_inode(inode)) {
1154 		if (flags & LOOKUP_RCU)
1155 			return -ECHILD;
1156 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1157 				__func__, dentry);
1158 		goto out_bad;
1159 	}
1160 
1161 	if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1162 		goto out_set_verifier;
1163 
1164 	/* Force a full look up iff the parent directory has changed */
1165 	if (!nfs_is_exclusive_create(dir, flags) &&
1166 	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1167 
1168 		if (nfs_lookup_verify_inode(inode, flags)) {
1169 			if (flags & LOOKUP_RCU)
1170 				return -ECHILD;
1171 			goto out_zap_parent;
1172 		}
1173 		goto out_valid;
1174 	}
1175 
1176 	if (flags & LOOKUP_RCU)
1177 		return -ECHILD;
1178 
1179 	if (NFS_STALE(inode))
1180 		goto out_bad;
1181 
1182 	error = -ENOMEM;
1183 	fhandle = nfs_alloc_fhandle();
1184 	fattr = nfs_alloc_fattr();
1185 	if (fhandle == NULL || fattr == NULL)
1186 		goto out_error;
1187 
1188 	label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
1189 	if (IS_ERR(label))
1190 		goto out_error;
1191 
1192 	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1193 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1194 	trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1195 	if (error)
1196 		goto out_bad;
1197 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1198 		goto out_bad;
1199 	if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1200 		goto out_bad;
1201 
1202 	nfs_setsecurity(inode, fattr, label);
1203 
1204 	nfs_free_fattr(fattr);
1205 	nfs_free_fhandle(fhandle);
1206 	nfs4_label_free(label);
1207 
1208 out_set_verifier:
1209 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1210  out_valid:
1211 	/* Success: notify readdir to use READDIRPLUS */
1212 	nfs_advise_use_readdirplus(dir);
1213  out_valid_noent:
1214 	if (flags & LOOKUP_RCU) {
1215 		if (parent != ACCESS_ONCE(dentry->d_parent))
1216 			return -ECHILD;
1217 	} else
1218 		dput(parent);
1219 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1220 			__func__, dentry);
1221 	return 1;
1222 out_zap_parent:
1223 	nfs_zap_caches(dir);
1224  out_bad:
1225 	WARN_ON(flags & LOOKUP_RCU);
1226 	nfs_free_fattr(fattr);
1227 	nfs_free_fhandle(fhandle);
1228 	nfs4_label_free(label);
1229 	nfs_mark_for_revalidate(dir);
1230 	if (inode && S_ISDIR(inode->i_mode)) {
1231 		/* Purge readdir caches. */
1232 		nfs_zap_caches(inode);
1233 		/*
1234 		 * We can't d_drop the root of a disconnected tree:
1235 		 * its d_hash is on the s_anon list and d_drop() would hide
1236 		 * it from shrink_dcache_for_unmount(), leading to busy
1237 		 * inodes on unmount and further oopses.
1238 		 */
1239 		if (IS_ROOT(dentry))
1240 			goto out_valid;
1241 	}
1242 	dput(parent);
1243 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1244 			__func__, dentry);
1245 	return 0;
1246 out_error:
1247 	WARN_ON(flags & LOOKUP_RCU);
1248 	nfs_free_fattr(fattr);
1249 	nfs_free_fhandle(fhandle);
1250 	nfs4_label_free(label);
1251 	dput(parent);
1252 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1253 			__func__, dentry, error);
1254 	return error;
1255 }
1256 
1257 /*
1258  * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1259  * when we don't really care about the dentry name. This is called when a
1260  * pathwalk ends on a dentry that was not found via a normal lookup in the
1261  * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1262  *
1263  * In this situation, we just want to verify that the inode itself is OK
1264  * since the dentry might have changed on the server.
1265  */
1266 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1267 {
1268 	int error;
1269 	struct inode *inode = d_inode(dentry);
1270 
1271 	/*
1272 	 * I believe we can only get a negative dentry here in the case of a
1273 	 * procfs-style symlink. Just assume it's correct for now, but we may
1274 	 * eventually need to do something more here.
1275 	 */
1276 	if (!inode) {
1277 		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1278 				__func__, dentry);
1279 		return 1;
1280 	}
1281 
1282 	if (is_bad_inode(inode)) {
1283 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1284 				__func__, dentry);
1285 		return 0;
1286 	}
1287 
1288 	error = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1289 	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1290 			__func__, inode->i_ino, error ? "invalid" : "valid");
1291 	return !error;
1292 }
1293 
1294 /*
1295  * This is called from dput() when d_count is going to 0.
1296  */
1297 static int nfs_dentry_delete(const struct dentry *dentry)
1298 {
1299 	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1300 		dentry, dentry->d_flags);
1301 
1302 	/* Unhash any dentry with a stale inode */
1303 	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1304 		return 1;
1305 
1306 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1307 		/* Unhash it, so that ->d_iput() would be called */
1308 		return 1;
1309 	}
1310 	if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1311 		/* Unhash it, so that ancestors of killed async unlink
1312 		 * files will be cleaned up during umount */
1313 		return 1;
1314 	}
1315 	return 0;
1316 
1317 }
1318 
1319 /* Ensure that we revalidate inode->i_nlink */
1320 static void nfs_drop_nlink(struct inode *inode)
1321 {
1322 	spin_lock(&inode->i_lock);
1323 	/* drop the inode if we're reasonably sure this is the last link */
1324 	if (inode->i_nlink == 1)
1325 		clear_nlink(inode);
1326 	NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR;
1327 	spin_unlock(&inode->i_lock);
1328 }
1329 
1330 /*
1331  * Called when the dentry loses inode.
1332  * We use it to clean up silly-renamed files.
1333  */
1334 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1335 {
1336 	if (S_ISDIR(inode->i_mode))
1337 		/* drop any readdir cache as it could easily be old */
1338 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1339 
1340 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1341 		nfs_complete_unlink(dentry, inode);
1342 		nfs_drop_nlink(inode);
1343 	}
1344 	iput(inode);
1345 }
1346 
1347 static void nfs_d_release(struct dentry *dentry)
1348 {
1349 	/* free cached devname value, if it survived that far */
1350 	if (unlikely(dentry->d_fsdata)) {
1351 		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1352 			WARN_ON(1);
1353 		else
1354 			kfree(dentry->d_fsdata);
1355 	}
1356 }
1357 
1358 const struct dentry_operations nfs_dentry_operations = {
1359 	.d_revalidate	= nfs_lookup_revalidate,
1360 	.d_weak_revalidate	= nfs_weak_revalidate,
1361 	.d_delete	= nfs_dentry_delete,
1362 	.d_iput		= nfs_dentry_iput,
1363 	.d_automount	= nfs_d_automount,
1364 	.d_release	= nfs_d_release,
1365 };
1366 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1367 
1368 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1369 {
1370 	struct dentry *res;
1371 	struct inode *inode = NULL;
1372 	struct nfs_fh *fhandle = NULL;
1373 	struct nfs_fattr *fattr = NULL;
1374 	struct nfs4_label *label = NULL;
1375 	int error;
1376 
1377 	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1378 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1379 
1380 	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1381 		return ERR_PTR(-ENAMETOOLONG);
1382 
1383 	/*
1384 	 * If we're doing an exclusive create, optimize away the lookup
1385 	 * but don't hash the dentry.
1386 	 */
1387 	if (nfs_is_exclusive_create(dir, flags))
1388 		return NULL;
1389 
1390 	res = ERR_PTR(-ENOMEM);
1391 	fhandle = nfs_alloc_fhandle();
1392 	fattr = nfs_alloc_fattr();
1393 	if (fhandle == NULL || fattr == NULL)
1394 		goto out;
1395 
1396 	label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1397 	if (IS_ERR(label))
1398 		goto out;
1399 
1400 	trace_nfs_lookup_enter(dir, dentry, flags);
1401 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1402 	if (error == -ENOENT)
1403 		goto no_entry;
1404 	if (error < 0) {
1405 		res = ERR_PTR(error);
1406 		goto out_label;
1407 	}
1408 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1409 	res = ERR_CAST(inode);
1410 	if (IS_ERR(res))
1411 		goto out_label;
1412 
1413 	/* Success: notify readdir to use READDIRPLUS */
1414 	nfs_advise_use_readdirplus(dir);
1415 
1416 no_entry:
1417 	res = d_splice_alias(inode, dentry);
1418 	if (res != NULL) {
1419 		if (IS_ERR(res))
1420 			goto out_label;
1421 		dentry = res;
1422 	}
1423 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1424 out_label:
1425 	trace_nfs_lookup_exit(dir, dentry, flags, error);
1426 	nfs4_label_free(label);
1427 out:
1428 	nfs_free_fattr(fattr);
1429 	nfs_free_fhandle(fhandle);
1430 	return res;
1431 }
1432 EXPORT_SYMBOL_GPL(nfs_lookup);
1433 
1434 #if IS_ENABLED(CONFIG_NFS_V4)
1435 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1436 
1437 const struct dentry_operations nfs4_dentry_operations = {
1438 	.d_revalidate	= nfs4_lookup_revalidate,
1439 	.d_delete	= nfs_dentry_delete,
1440 	.d_iput		= nfs_dentry_iput,
1441 	.d_automount	= nfs_d_automount,
1442 	.d_release	= nfs_d_release,
1443 };
1444 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1445 
1446 static fmode_t flags_to_mode(int flags)
1447 {
1448 	fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1449 	if ((flags & O_ACCMODE) != O_WRONLY)
1450 		res |= FMODE_READ;
1451 	if ((flags & O_ACCMODE) != O_RDONLY)
1452 		res |= FMODE_WRITE;
1453 	return res;
1454 }
1455 
1456 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags)
1457 {
1458 	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags));
1459 }
1460 
1461 static int do_open(struct inode *inode, struct file *filp)
1462 {
1463 	nfs_fscache_open_file(inode, filp);
1464 	return 0;
1465 }
1466 
1467 static int nfs_finish_open(struct nfs_open_context *ctx,
1468 			   struct dentry *dentry,
1469 			   struct file *file, unsigned open_flags,
1470 			   int *opened)
1471 {
1472 	int err;
1473 
1474 	err = finish_open(file, dentry, do_open, opened);
1475 	if (err)
1476 		goto out;
1477 	nfs_file_set_open_context(file, ctx);
1478 
1479 out:
1480 	return err;
1481 }
1482 
1483 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1484 		    struct file *file, unsigned open_flags,
1485 		    umode_t mode, int *opened)
1486 {
1487 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1488 	struct nfs_open_context *ctx;
1489 	struct dentry *res;
1490 	struct iattr attr = { .ia_valid = ATTR_OPEN };
1491 	struct inode *inode;
1492 	unsigned int lookup_flags = 0;
1493 	bool switched = false;
1494 	int err;
1495 
1496 	/* Expect a negative dentry */
1497 	BUG_ON(d_inode(dentry));
1498 
1499 	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1500 			dir->i_sb->s_id, dir->i_ino, dentry);
1501 
1502 	err = nfs_check_flags(open_flags);
1503 	if (err)
1504 		return err;
1505 
1506 	/* NFS only supports OPEN on regular files */
1507 	if ((open_flags & O_DIRECTORY)) {
1508 		if (!d_in_lookup(dentry)) {
1509 			/*
1510 			 * Hashed negative dentry with O_DIRECTORY: dentry was
1511 			 * revalidated and is fine, no need to perform lookup
1512 			 * again
1513 			 */
1514 			return -ENOENT;
1515 		}
1516 		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1517 		goto no_open;
1518 	}
1519 
1520 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1521 		return -ENAMETOOLONG;
1522 
1523 	if (open_flags & O_CREAT) {
1524 		attr.ia_valid |= ATTR_MODE;
1525 		attr.ia_mode = mode & ~current_umask();
1526 	}
1527 	if (open_flags & O_TRUNC) {
1528 		attr.ia_valid |= ATTR_SIZE;
1529 		attr.ia_size = 0;
1530 	}
1531 
1532 	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1533 		d_drop(dentry);
1534 		switched = true;
1535 		dentry = d_alloc_parallel(dentry->d_parent,
1536 					  &dentry->d_name, &wq);
1537 		if (IS_ERR(dentry))
1538 			return PTR_ERR(dentry);
1539 		if (unlikely(!d_in_lookup(dentry)))
1540 			return finish_no_open(file, dentry);
1541 	}
1542 
1543 	ctx = create_nfs_open_context(dentry, open_flags);
1544 	err = PTR_ERR(ctx);
1545 	if (IS_ERR(ctx))
1546 		goto out;
1547 
1548 	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1549 	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, opened);
1550 	if (IS_ERR(inode)) {
1551 		err = PTR_ERR(inode);
1552 		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1553 		put_nfs_open_context(ctx);
1554 		d_drop(dentry);
1555 		switch (err) {
1556 		case -ENOENT:
1557 			d_add(dentry, NULL);
1558 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1559 			break;
1560 		case -EISDIR:
1561 		case -ENOTDIR:
1562 			goto no_open;
1563 		case -ELOOP:
1564 			if (!(open_flags & O_NOFOLLOW))
1565 				goto no_open;
1566 			break;
1567 			/* case -EINVAL: */
1568 		default:
1569 			break;
1570 		}
1571 		goto out;
1572 	}
1573 
1574 	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags, opened);
1575 	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1576 	put_nfs_open_context(ctx);
1577 out:
1578 	if (unlikely(switched)) {
1579 		d_lookup_done(dentry);
1580 		dput(dentry);
1581 	}
1582 	return err;
1583 
1584 no_open:
1585 	res = nfs_lookup(dir, dentry, lookup_flags);
1586 	if (switched) {
1587 		d_lookup_done(dentry);
1588 		if (!res)
1589 			res = dentry;
1590 		else
1591 			dput(dentry);
1592 	}
1593 	if (IS_ERR(res))
1594 		return PTR_ERR(res);
1595 	return finish_no_open(file, res);
1596 }
1597 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1598 
1599 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1600 {
1601 	struct inode *inode;
1602 	int ret = 0;
1603 
1604 	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1605 		goto no_open;
1606 	if (d_mountpoint(dentry))
1607 		goto no_open;
1608 	if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1)
1609 		goto no_open;
1610 
1611 	inode = d_inode(dentry);
1612 
1613 	/* We can't create new files in nfs_open_revalidate(), so we
1614 	 * optimize away revalidation of negative dentries.
1615 	 */
1616 	if (inode == NULL) {
1617 		struct dentry *parent;
1618 		struct inode *dir;
1619 
1620 		if (flags & LOOKUP_RCU) {
1621 			parent = ACCESS_ONCE(dentry->d_parent);
1622 			dir = d_inode_rcu(parent);
1623 			if (!dir)
1624 				return -ECHILD;
1625 		} else {
1626 			parent = dget_parent(dentry);
1627 			dir = d_inode(parent);
1628 		}
1629 		if (!nfs_neg_need_reval(dir, dentry, flags))
1630 			ret = 1;
1631 		else if (flags & LOOKUP_RCU)
1632 			ret = -ECHILD;
1633 		if (!(flags & LOOKUP_RCU))
1634 			dput(parent);
1635 		else if (parent != ACCESS_ONCE(dentry->d_parent))
1636 			return -ECHILD;
1637 		goto out;
1638 	}
1639 
1640 	/* NFS only supports OPEN on regular files */
1641 	if (!S_ISREG(inode->i_mode))
1642 		goto no_open;
1643 	/* We cannot do exclusive creation on a positive dentry */
1644 	if (flags & LOOKUP_EXCL)
1645 		goto no_open;
1646 
1647 	/* Let f_op->open() actually open (and revalidate) the file */
1648 	ret = 1;
1649 
1650 out:
1651 	return ret;
1652 
1653 no_open:
1654 	return nfs_lookup_revalidate(dentry, flags);
1655 }
1656 
1657 #endif /* CONFIG_NFSV4 */
1658 
1659 /*
1660  * Code common to create, mkdir, and mknod.
1661  */
1662 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1663 				struct nfs_fattr *fattr,
1664 				struct nfs4_label *label)
1665 {
1666 	struct dentry *parent = dget_parent(dentry);
1667 	struct inode *dir = d_inode(parent);
1668 	struct inode *inode;
1669 	int error = -EACCES;
1670 
1671 	d_drop(dentry);
1672 
1673 	/* We may have been initialized further down */
1674 	if (d_really_is_positive(dentry))
1675 		goto out;
1676 	if (fhandle->size == 0) {
1677 		error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1678 		if (error)
1679 			goto out_error;
1680 	}
1681 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1682 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1683 		struct nfs_server *server = NFS_SB(dentry->d_sb);
1684 		error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL);
1685 		if (error < 0)
1686 			goto out_error;
1687 	}
1688 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1689 	error = PTR_ERR(inode);
1690 	if (IS_ERR(inode))
1691 		goto out_error;
1692 	d_add(dentry, inode);
1693 out:
1694 	dput(parent);
1695 	return 0;
1696 out_error:
1697 	nfs_mark_for_revalidate(dir);
1698 	dput(parent);
1699 	return error;
1700 }
1701 EXPORT_SYMBOL_GPL(nfs_instantiate);
1702 
1703 /*
1704  * Following a failed create operation, we drop the dentry rather
1705  * than retain a negative dentry. This avoids a problem in the event
1706  * that the operation succeeded on the server, but an error in the
1707  * reply path made it appear to have failed.
1708  */
1709 int nfs_create(struct inode *dir, struct dentry *dentry,
1710 		umode_t mode, bool excl)
1711 {
1712 	struct iattr attr;
1713 	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1714 	int error;
1715 
1716 	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1717 			dir->i_sb->s_id, dir->i_ino, dentry);
1718 
1719 	attr.ia_mode = mode;
1720 	attr.ia_valid = ATTR_MODE;
1721 
1722 	trace_nfs_create_enter(dir, dentry, open_flags);
1723 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1724 	trace_nfs_create_exit(dir, dentry, open_flags, error);
1725 	if (error != 0)
1726 		goto out_err;
1727 	return 0;
1728 out_err:
1729 	d_drop(dentry);
1730 	return error;
1731 }
1732 EXPORT_SYMBOL_GPL(nfs_create);
1733 
1734 /*
1735  * See comments for nfs_proc_create regarding failed operations.
1736  */
1737 int
1738 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1739 {
1740 	struct iattr attr;
1741 	int status;
1742 
1743 	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1744 			dir->i_sb->s_id, dir->i_ino, dentry);
1745 
1746 	attr.ia_mode = mode;
1747 	attr.ia_valid = ATTR_MODE;
1748 
1749 	trace_nfs_mknod_enter(dir, dentry);
1750 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1751 	trace_nfs_mknod_exit(dir, dentry, status);
1752 	if (status != 0)
1753 		goto out_err;
1754 	return 0;
1755 out_err:
1756 	d_drop(dentry);
1757 	return status;
1758 }
1759 EXPORT_SYMBOL_GPL(nfs_mknod);
1760 
1761 /*
1762  * See comments for nfs_proc_create regarding failed operations.
1763  */
1764 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1765 {
1766 	struct iattr attr;
1767 	int error;
1768 
1769 	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1770 			dir->i_sb->s_id, dir->i_ino, dentry);
1771 
1772 	attr.ia_valid = ATTR_MODE;
1773 	attr.ia_mode = mode | S_IFDIR;
1774 
1775 	trace_nfs_mkdir_enter(dir, dentry);
1776 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1777 	trace_nfs_mkdir_exit(dir, dentry, error);
1778 	if (error != 0)
1779 		goto out_err;
1780 	return 0;
1781 out_err:
1782 	d_drop(dentry);
1783 	return error;
1784 }
1785 EXPORT_SYMBOL_GPL(nfs_mkdir);
1786 
1787 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1788 {
1789 	if (simple_positive(dentry))
1790 		d_delete(dentry);
1791 }
1792 
1793 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1794 {
1795 	int error;
1796 
1797 	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1798 			dir->i_sb->s_id, dir->i_ino, dentry);
1799 
1800 	trace_nfs_rmdir_enter(dir, dentry);
1801 	if (d_really_is_positive(dentry)) {
1802 		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1803 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1804 		/* Ensure the VFS deletes this inode */
1805 		switch (error) {
1806 		case 0:
1807 			clear_nlink(d_inode(dentry));
1808 			break;
1809 		case -ENOENT:
1810 			nfs_dentry_handle_enoent(dentry);
1811 		}
1812 		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1813 	} else
1814 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1815 	trace_nfs_rmdir_exit(dir, dentry, error);
1816 
1817 	return error;
1818 }
1819 EXPORT_SYMBOL_GPL(nfs_rmdir);
1820 
1821 /*
1822  * Remove a file after making sure there are no pending writes,
1823  * and after checking that the file has only one user.
1824  *
1825  * We invalidate the attribute cache and free the inode prior to the operation
1826  * to avoid possible races if the server reuses the inode.
1827  */
1828 static int nfs_safe_remove(struct dentry *dentry)
1829 {
1830 	struct inode *dir = d_inode(dentry->d_parent);
1831 	struct inode *inode = d_inode(dentry);
1832 	int error = -EBUSY;
1833 
1834 	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
1835 
1836 	/* If the dentry was sillyrenamed, we simply call d_delete() */
1837 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1838 		error = 0;
1839 		goto out;
1840 	}
1841 
1842 	trace_nfs_remove_enter(dir, dentry);
1843 	if (inode != NULL) {
1844 		NFS_PROTO(inode)->return_delegation(inode);
1845 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1846 		if (error == 0)
1847 			nfs_drop_nlink(inode);
1848 	} else
1849 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1850 	if (error == -ENOENT)
1851 		nfs_dentry_handle_enoent(dentry);
1852 	trace_nfs_remove_exit(dir, dentry, error);
1853 out:
1854 	return error;
1855 }
1856 
1857 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1858  *  belongs to an active ".nfs..." file and we return -EBUSY.
1859  *
1860  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1861  */
1862 int nfs_unlink(struct inode *dir, struct dentry *dentry)
1863 {
1864 	int error;
1865 	int need_rehash = 0;
1866 
1867 	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
1868 		dir->i_ino, dentry);
1869 
1870 	trace_nfs_unlink_enter(dir, dentry);
1871 	spin_lock(&dentry->d_lock);
1872 	if (d_count(dentry) > 1) {
1873 		spin_unlock(&dentry->d_lock);
1874 		/* Start asynchronous writeout of the inode */
1875 		write_inode_now(d_inode(dentry), 0);
1876 		error = nfs_sillyrename(dir, dentry);
1877 		goto out;
1878 	}
1879 	if (!d_unhashed(dentry)) {
1880 		__d_drop(dentry);
1881 		need_rehash = 1;
1882 	}
1883 	spin_unlock(&dentry->d_lock);
1884 	error = nfs_safe_remove(dentry);
1885 	if (!error || error == -ENOENT) {
1886 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1887 	} else if (need_rehash)
1888 		d_rehash(dentry);
1889 out:
1890 	trace_nfs_unlink_exit(dir, dentry, error);
1891 	return error;
1892 }
1893 EXPORT_SYMBOL_GPL(nfs_unlink);
1894 
1895 /*
1896  * To create a symbolic link, most file systems instantiate a new inode,
1897  * add a page to it containing the path, then write it out to the disk
1898  * using prepare_write/commit_write.
1899  *
1900  * Unfortunately the NFS client can't create the in-core inode first
1901  * because it needs a file handle to create an in-core inode (see
1902  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1903  * symlink request has completed on the server.
1904  *
1905  * So instead we allocate a raw page, copy the symname into it, then do
1906  * the SYMLINK request with the page as the buffer.  If it succeeds, we
1907  * now have a new file handle and can instantiate an in-core NFS inode
1908  * and move the raw page into its mapping.
1909  */
1910 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1911 {
1912 	struct page *page;
1913 	char *kaddr;
1914 	struct iattr attr;
1915 	unsigned int pathlen = strlen(symname);
1916 	int error;
1917 
1918 	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
1919 		dir->i_ino, dentry, symname);
1920 
1921 	if (pathlen > PAGE_SIZE)
1922 		return -ENAMETOOLONG;
1923 
1924 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
1925 	attr.ia_valid = ATTR_MODE;
1926 
1927 	page = alloc_page(GFP_USER);
1928 	if (!page)
1929 		return -ENOMEM;
1930 
1931 	kaddr = page_address(page);
1932 	memcpy(kaddr, symname, pathlen);
1933 	if (pathlen < PAGE_SIZE)
1934 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1935 
1936 	trace_nfs_symlink_enter(dir, dentry);
1937 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1938 	trace_nfs_symlink_exit(dir, dentry, error);
1939 	if (error != 0) {
1940 		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1941 			dir->i_sb->s_id, dir->i_ino,
1942 			dentry, symname, error);
1943 		d_drop(dentry);
1944 		__free_page(page);
1945 		return error;
1946 	}
1947 
1948 	/*
1949 	 * No big deal if we can't add this page to the page cache here.
1950 	 * READLINK will get the missing page from the server if needed.
1951 	 */
1952 	if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
1953 							GFP_KERNEL)) {
1954 		SetPageUptodate(page);
1955 		unlock_page(page);
1956 		/*
1957 		 * add_to_page_cache_lru() grabs an extra page refcount.
1958 		 * Drop it here to avoid leaking this page later.
1959 		 */
1960 		put_page(page);
1961 	} else
1962 		__free_page(page);
1963 
1964 	return 0;
1965 }
1966 EXPORT_SYMBOL_GPL(nfs_symlink);
1967 
1968 int
1969 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1970 {
1971 	struct inode *inode = d_inode(old_dentry);
1972 	int error;
1973 
1974 	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
1975 		old_dentry, dentry);
1976 
1977 	trace_nfs_link_enter(inode, dir, dentry);
1978 	NFS_PROTO(inode)->return_delegation(inode);
1979 
1980 	d_drop(dentry);
1981 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1982 	if (error == 0) {
1983 		ihold(inode);
1984 		d_add(dentry, inode);
1985 	}
1986 	trace_nfs_link_exit(inode, dir, dentry, error);
1987 	return error;
1988 }
1989 EXPORT_SYMBOL_GPL(nfs_link);
1990 
1991 /*
1992  * RENAME
1993  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1994  * different file handle for the same inode after a rename (e.g. when
1995  * moving to a different directory). A fail-safe method to do so would
1996  * be to look up old_dir/old_name, create a link to new_dir/new_name and
1997  * rename the old file using the sillyrename stuff. This way, the original
1998  * file in old_dir will go away when the last process iput()s the inode.
1999  *
2000  * FIXED.
2001  *
2002  * It actually works quite well. One needs to have the possibility for
2003  * at least one ".nfs..." file in each directory the file ever gets
2004  * moved or linked to which happens automagically with the new
2005  * implementation that only depends on the dcache stuff instead of
2006  * using the inode layer
2007  *
2008  * Unfortunately, things are a little more complicated than indicated
2009  * above. For a cross-directory move, we want to make sure we can get
2010  * rid of the old inode after the operation.  This means there must be
2011  * no pending writes (if it's a file), and the use count must be 1.
2012  * If these conditions are met, we can drop the dentries before doing
2013  * the rename.
2014  */
2015 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2016 		      struct inode *new_dir, struct dentry *new_dentry)
2017 {
2018 	struct inode *old_inode = d_inode(old_dentry);
2019 	struct inode *new_inode = d_inode(new_dentry);
2020 	struct dentry *dentry = NULL, *rehash = NULL;
2021 	struct rpc_task *task;
2022 	int error = -EBUSY;
2023 
2024 	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2025 		 old_dentry, new_dentry,
2026 		 d_count(new_dentry));
2027 
2028 	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2029 	/*
2030 	 * For non-directories, check whether the target is busy and if so,
2031 	 * make a copy of the dentry and then do a silly-rename. If the
2032 	 * silly-rename succeeds, the copied dentry is hashed and becomes
2033 	 * the new target.
2034 	 */
2035 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2036 		/*
2037 		 * To prevent any new references to the target during the
2038 		 * rename, we unhash the dentry in advance.
2039 		 */
2040 		if (!d_unhashed(new_dentry)) {
2041 			d_drop(new_dentry);
2042 			rehash = new_dentry;
2043 		}
2044 
2045 		if (d_count(new_dentry) > 2) {
2046 			int err;
2047 
2048 			/* copy the target dentry's name */
2049 			dentry = d_alloc(new_dentry->d_parent,
2050 					 &new_dentry->d_name);
2051 			if (!dentry)
2052 				goto out;
2053 
2054 			/* silly-rename the existing target ... */
2055 			err = nfs_sillyrename(new_dir, new_dentry);
2056 			if (err)
2057 				goto out;
2058 
2059 			new_dentry = dentry;
2060 			rehash = NULL;
2061 			new_inode = NULL;
2062 		}
2063 	}
2064 
2065 	NFS_PROTO(old_inode)->return_delegation(old_inode);
2066 	if (new_inode != NULL)
2067 		NFS_PROTO(new_inode)->return_delegation(new_inode);
2068 
2069 	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2070 	if (IS_ERR(task)) {
2071 		error = PTR_ERR(task);
2072 		goto out;
2073 	}
2074 
2075 	error = rpc_wait_for_completion_task(task);
2076 	if (error == 0)
2077 		error = task->tk_status;
2078 	rpc_put_task(task);
2079 	nfs_mark_for_revalidate(old_inode);
2080 out:
2081 	if (rehash)
2082 		d_rehash(rehash);
2083 	trace_nfs_rename_exit(old_dir, old_dentry,
2084 			new_dir, new_dentry, error);
2085 	if (!error) {
2086 		if (new_inode != NULL)
2087 			nfs_drop_nlink(new_inode);
2088 		d_move(old_dentry, new_dentry);
2089 		nfs_set_verifier(new_dentry,
2090 					nfs_save_change_attribute(new_dir));
2091 	} else if (error == -ENOENT)
2092 		nfs_dentry_handle_enoent(old_dentry);
2093 
2094 	/* new dentry created? */
2095 	if (dentry)
2096 		dput(dentry);
2097 	return error;
2098 }
2099 EXPORT_SYMBOL_GPL(nfs_rename);
2100 
2101 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2102 static LIST_HEAD(nfs_access_lru_list);
2103 static atomic_long_t nfs_access_nr_entries;
2104 
2105 static unsigned long nfs_access_max_cachesize = ULONG_MAX;
2106 module_param(nfs_access_max_cachesize, ulong, 0644);
2107 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2108 
2109 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2110 {
2111 	put_rpccred(entry->cred);
2112 	kfree_rcu(entry, rcu_head);
2113 	smp_mb__before_atomic();
2114 	atomic_long_dec(&nfs_access_nr_entries);
2115 	smp_mb__after_atomic();
2116 }
2117 
2118 static void nfs_access_free_list(struct list_head *head)
2119 {
2120 	struct nfs_access_entry *cache;
2121 
2122 	while (!list_empty(head)) {
2123 		cache = list_entry(head->next, struct nfs_access_entry, lru);
2124 		list_del(&cache->lru);
2125 		nfs_access_free_entry(cache);
2126 	}
2127 }
2128 
2129 static unsigned long
2130 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2131 {
2132 	LIST_HEAD(head);
2133 	struct nfs_inode *nfsi, *next;
2134 	struct nfs_access_entry *cache;
2135 	long freed = 0;
2136 
2137 	spin_lock(&nfs_access_lru_lock);
2138 	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2139 		struct inode *inode;
2140 
2141 		if (nr_to_scan-- == 0)
2142 			break;
2143 		inode = &nfsi->vfs_inode;
2144 		spin_lock(&inode->i_lock);
2145 		if (list_empty(&nfsi->access_cache_entry_lru))
2146 			goto remove_lru_entry;
2147 		cache = list_entry(nfsi->access_cache_entry_lru.next,
2148 				struct nfs_access_entry, lru);
2149 		list_move(&cache->lru, &head);
2150 		rb_erase(&cache->rb_node, &nfsi->access_cache);
2151 		freed++;
2152 		if (!list_empty(&nfsi->access_cache_entry_lru))
2153 			list_move_tail(&nfsi->access_cache_inode_lru,
2154 					&nfs_access_lru_list);
2155 		else {
2156 remove_lru_entry:
2157 			list_del_init(&nfsi->access_cache_inode_lru);
2158 			smp_mb__before_atomic();
2159 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2160 			smp_mb__after_atomic();
2161 		}
2162 		spin_unlock(&inode->i_lock);
2163 	}
2164 	spin_unlock(&nfs_access_lru_lock);
2165 	nfs_access_free_list(&head);
2166 	return freed;
2167 }
2168 
2169 unsigned long
2170 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2171 {
2172 	int nr_to_scan = sc->nr_to_scan;
2173 	gfp_t gfp_mask = sc->gfp_mask;
2174 
2175 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2176 		return SHRINK_STOP;
2177 	return nfs_do_access_cache_scan(nr_to_scan);
2178 }
2179 
2180 
2181 unsigned long
2182 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2183 {
2184 	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2185 }
2186 
2187 static void
2188 nfs_access_cache_enforce_limit(void)
2189 {
2190 	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2191 	unsigned long diff;
2192 	unsigned int nr_to_scan;
2193 
2194 	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2195 		return;
2196 	nr_to_scan = 100;
2197 	diff = nr_entries - nfs_access_max_cachesize;
2198 	if (diff < nr_to_scan)
2199 		nr_to_scan = diff;
2200 	nfs_do_access_cache_scan(nr_to_scan);
2201 }
2202 
2203 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2204 {
2205 	struct rb_root *root_node = &nfsi->access_cache;
2206 	struct rb_node *n;
2207 	struct nfs_access_entry *entry;
2208 
2209 	/* Unhook entries from the cache */
2210 	while ((n = rb_first(root_node)) != NULL) {
2211 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2212 		rb_erase(n, root_node);
2213 		list_move(&entry->lru, head);
2214 	}
2215 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2216 }
2217 
2218 void nfs_access_zap_cache(struct inode *inode)
2219 {
2220 	LIST_HEAD(head);
2221 
2222 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2223 		return;
2224 	/* Remove from global LRU init */
2225 	spin_lock(&nfs_access_lru_lock);
2226 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2227 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2228 
2229 	spin_lock(&inode->i_lock);
2230 	__nfs_access_zap_cache(NFS_I(inode), &head);
2231 	spin_unlock(&inode->i_lock);
2232 	spin_unlock(&nfs_access_lru_lock);
2233 	nfs_access_free_list(&head);
2234 }
2235 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2236 
2237 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2238 {
2239 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2240 	struct nfs_access_entry *entry;
2241 
2242 	while (n != NULL) {
2243 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2244 
2245 		if (cred < entry->cred)
2246 			n = n->rb_left;
2247 		else if (cred > entry->cred)
2248 			n = n->rb_right;
2249 		else
2250 			return entry;
2251 	}
2252 	return NULL;
2253 }
2254 
2255 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res, bool may_block)
2256 {
2257 	struct nfs_inode *nfsi = NFS_I(inode);
2258 	struct nfs_access_entry *cache;
2259 	bool retry = true;
2260 	int err;
2261 
2262 	spin_lock(&inode->i_lock);
2263 	for(;;) {
2264 		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2265 			goto out_zap;
2266 		cache = nfs_access_search_rbtree(inode, cred);
2267 		err = -ENOENT;
2268 		if (cache == NULL)
2269 			goto out;
2270 		/* Found an entry, is our attribute cache valid? */
2271 		if (!nfs_attribute_cache_expired(inode) &&
2272 		    !(nfsi->cache_validity & NFS_INO_INVALID_ATTR))
2273 			break;
2274 		err = -ECHILD;
2275 		if (!may_block)
2276 			goto out;
2277 		if (!retry)
2278 			goto out_zap;
2279 		spin_unlock(&inode->i_lock);
2280 		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2281 		if (err)
2282 			return err;
2283 		spin_lock(&inode->i_lock);
2284 		retry = false;
2285 	}
2286 	res->jiffies = cache->jiffies;
2287 	res->cred = cache->cred;
2288 	res->mask = cache->mask;
2289 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2290 	err = 0;
2291 out:
2292 	spin_unlock(&inode->i_lock);
2293 	return err;
2294 out_zap:
2295 	spin_unlock(&inode->i_lock);
2296 	nfs_access_zap_cache(inode);
2297 	return -ENOENT;
2298 }
2299 
2300 static int nfs_access_get_cached_rcu(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2301 {
2302 	/* Only check the most recently returned cache entry,
2303 	 * but do it without locking.
2304 	 */
2305 	struct nfs_inode *nfsi = NFS_I(inode);
2306 	struct nfs_access_entry *cache;
2307 	int err = -ECHILD;
2308 	struct list_head *lh;
2309 
2310 	rcu_read_lock();
2311 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2312 		goto out;
2313 	lh = rcu_dereference(nfsi->access_cache_entry_lru.prev);
2314 	cache = list_entry(lh, struct nfs_access_entry, lru);
2315 	if (lh == &nfsi->access_cache_entry_lru ||
2316 	    cred != cache->cred)
2317 		cache = NULL;
2318 	if (cache == NULL)
2319 		goto out;
2320 	err = nfs_revalidate_inode_rcu(NFS_SERVER(inode), inode);
2321 	if (err)
2322 		goto out;
2323 	res->jiffies = cache->jiffies;
2324 	res->cred = cache->cred;
2325 	res->mask = cache->mask;
2326 out:
2327 	rcu_read_unlock();
2328 	return err;
2329 }
2330 
2331 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2332 {
2333 	struct nfs_inode *nfsi = NFS_I(inode);
2334 	struct rb_root *root_node = &nfsi->access_cache;
2335 	struct rb_node **p = &root_node->rb_node;
2336 	struct rb_node *parent = NULL;
2337 	struct nfs_access_entry *entry;
2338 
2339 	spin_lock(&inode->i_lock);
2340 	while (*p != NULL) {
2341 		parent = *p;
2342 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2343 
2344 		if (set->cred < entry->cred)
2345 			p = &parent->rb_left;
2346 		else if (set->cred > entry->cred)
2347 			p = &parent->rb_right;
2348 		else
2349 			goto found;
2350 	}
2351 	rb_link_node(&set->rb_node, parent, p);
2352 	rb_insert_color(&set->rb_node, root_node);
2353 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2354 	spin_unlock(&inode->i_lock);
2355 	return;
2356 found:
2357 	rb_replace_node(parent, &set->rb_node, root_node);
2358 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2359 	list_del(&entry->lru);
2360 	spin_unlock(&inode->i_lock);
2361 	nfs_access_free_entry(entry);
2362 }
2363 
2364 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2365 {
2366 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2367 	if (cache == NULL)
2368 		return;
2369 	RB_CLEAR_NODE(&cache->rb_node);
2370 	cache->jiffies = set->jiffies;
2371 	cache->cred = get_rpccred(set->cred);
2372 	cache->mask = set->mask;
2373 
2374 	/* The above field assignments must be visible
2375 	 * before this item appears on the lru.  We cannot easily
2376 	 * use rcu_assign_pointer, so just force the memory barrier.
2377 	 */
2378 	smp_wmb();
2379 	nfs_access_add_rbtree(inode, cache);
2380 
2381 	/* Update accounting */
2382 	smp_mb__before_atomic();
2383 	atomic_long_inc(&nfs_access_nr_entries);
2384 	smp_mb__after_atomic();
2385 
2386 	/* Add inode to global LRU list */
2387 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2388 		spin_lock(&nfs_access_lru_lock);
2389 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2390 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2391 					&nfs_access_lru_list);
2392 		spin_unlock(&nfs_access_lru_lock);
2393 	}
2394 	nfs_access_cache_enforce_limit();
2395 }
2396 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2397 
2398 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2399 {
2400 	entry->mask = 0;
2401 	if (access_result & NFS4_ACCESS_READ)
2402 		entry->mask |= MAY_READ;
2403 	if (access_result &
2404 	    (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
2405 		entry->mask |= MAY_WRITE;
2406 	if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
2407 		entry->mask |= MAY_EXEC;
2408 }
2409 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2410 
2411 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2412 {
2413 	struct nfs_access_entry cache;
2414 	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2415 	int status;
2416 
2417 	trace_nfs_access_enter(inode);
2418 
2419 	status = nfs_access_get_cached_rcu(inode, cred, &cache);
2420 	if (status != 0)
2421 		status = nfs_access_get_cached(inode, cred, &cache, may_block);
2422 	if (status == 0)
2423 		goto out_cached;
2424 
2425 	status = -ECHILD;
2426 	if (!may_block)
2427 		goto out;
2428 
2429 	/* Be clever: ask server to check for all possible rights */
2430 	cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2431 	cache.cred = cred;
2432 	cache.jiffies = jiffies;
2433 	status = NFS_PROTO(inode)->access(inode, &cache);
2434 	if (status != 0) {
2435 		if (status == -ESTALE) {
2436 			nfs_zap_caches(inode);
2437 			if (!S_ISDIR(inode->i_mode))
2438 				set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2439 		}
2440 		goto out;
2441 	}
2442 	nfs_access_add_cache(inode, &cache);
2443 out_cached:
2444 	if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2445 		status = -EACCES;
2446 out:
2447 	trace_nfs_access_exit(inode, status);
2448 	return status;
2449 }
2450 
2451 static int nfs_open_permission_mask(int openflags)
2452 {
2453 	int mask = 0;
2454 
2455 	if (openflags & __FMODE_EXEC) {
2456 		/* ONLY check exec rights */
2457 		mask = MAY_EXEC;
2458 	} else {
2459 		if ((openflags & O_ACCMODE) != O_WRONLY)
2460 			mask |= MAY_READ;
2461 		if ((openflags & O_ACCMODE) != O_RDONLY)
2462 			mask |= MAY_WRITE;
2463 	}
2464 
2465 	return mask;
2466 }
2467 
2468 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2469 {
2470 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2471 }
2472 EXPORT_SYMBOL_GPL(nfs_may_open);
2473 
2474 static int nfs_execute_ok(struct inode *inode, int mask)
2475 {
2476 	struct nfs_server *server = NFS_SERVER(inode);
2477 	int ret;
2478 
2479 	if (mask & MAY_NOT_BLOCK)
2480 		ret = nfs_revalidate_inode_rcu(server, inode);
2481 	else
2482 		ret = nfs_revalidate_inode(server, inode);
2483 	if (ret == 0 && !execute_ok(inode))
2484 		ret = -EACCES;
2485 	return ret;
2486 }
2487 
2488 int nfs_permission(struct inode *inode, int mask)
2489 {
2490 	struct rpc_cred *cred;
2491 	int res = 0;
2492 
2493 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2494 
2495 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2496 		goto out;
2497 	/* Is this sys_access() ? */
2498 	if (mask & (MAY_ACCESS | MAY_CHDIR))
2499 		goto force_lookup;
2500 
2501 	switch (inode->i_mode & S_IFMT) {
2502 		case S_IFLNK:
2503 			goto out;
2504 		case S_IFREG:
2505 			if ((mask & MAY_OPEN) &&
2506 			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2507 				return 0;
2508 			break;
2509 		case S_IFDIR:
2510 			/*
2511 			 * Optimize away all write operations, since the server
2512 			 * will check permissions when we perform the op.
2513 			 */
2514 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2515 				goto out;
2516 	}
2517 
2518 force_lookup:
2519 	if (!NFS_PROTO(inode)->access)
2520 		goto out_notsup;
2521 
2522 	/* Always try fast lookups first */
2523 	rcu_read_lock();
2524 	cred = rpc_lookup_cred_nonblock();
2525 	if (!IS_ERR(cred))
2526 		res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK);
2527 	else
2528 		res = PTR_ERR(cred);
2529 	rcu_read_unlock();
2530 	if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) {
2531 		/* Fast lookup failed, try the slow way */
2532 		cred = rpc_lookup_cred();
2533 		if (!IS_ERR(cred)) {
2534 			res = nfs_do_access(inode, cred, mask);
2535 			put_rpccred(cred);
2536 		} else
2537 			res = PTR_ERR(cred);
2538 	}
2539 out:
2540 	if (!res && (mask & MAY_EXEC))
2541 		res = nfs_execute_ok(inode, mask);
2542 
2543 	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2544 		inode->i_sb->s_id, inode->i_ino, mask, res);
2545 	return res;
2546 out_notsup:
2547 	if (mask & MAY_NOT_BLOCK)
2548 		return -ECHILD;
2549 
2550 	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2551 	if (res == 0)
2552 		res = generic_permission(inode, mask);
2553 	goto out;
2554 }
2555 EXPORT_SYMBOL_GPL(nfs_permission);
2556 
2557 /*
2558  * Local variables:
2559  *  version-control: t
2560  *  kept-new-versions: 5
2561  * End:
2562  */
2563