1 /* 2 * linux/fs/nfs/dir.c 3 * 4 * Copyright (C) 1992 Rick Sladkey 5 * 6 * nfs directory handling functions 7 * 8 * 10 Apr 1996 Added silly rename for unlink --okir 9 * 28 Sep 1996 Improved directory cache --okir 10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de 11 * Re-implemented silly rename for unlink, newly implemented 12 * silly rename for nfs_rename() following the suggestions 13 * of Olaf Kirch (okir) found in this file. 14 * Following Linus comments on my original hack, this version 15 * depends only on the dcache stuff and doesn't touch the inode 16 * layer (iput() and friends). 17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM 18 */ 19 20 #include <linux/module.h> 21 #include <linux/time.h> 22 #include <linux/errno.h> 23 #include <linux/stat.h> 24 #include <linux/fcntl.h> 25 #include <linux/string.h> 26 #include <linux/kernel.h> 27 #include <linux/slab.h> 28 #include <linux/mm.h> 29 #include <linux/sunrpc/clnt.h> 30 #include <linux/nfs_fs.h> 31 #include <linux/nfs_mount.h> 32 #include <linux/pagemap.h> 33 #include <linux/pagevec.h> 34 #include <linux/namei.h> 35 #include <linux/mount.h> 36 #include <linux/swap.h> 37 #include <linux/sched.h> 38 #include <linux/kmemleak.h> 39 #include <linux/xattr.h> 40 41 #include "delegation.h" 42 #include "iostat.h" 43 #include "internal.h" 44 #include "fscache.h" 45 46 #include "nfstrace.h" 47 48 /* #define NFS_DEBUG_VERBOSE 1 */ 49 50 static int nfs_opendir(struct inode *, struct file *); 51 static int nfs_closedir(struct inode *, struct file *); 52 static int nfs_readdir(struct file *, struct dir_context *); 53 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int); 54 static loff_t nfs_llseek_dir(struct file *, loff_t, int); 55 static void nfs_readdir_clear_array(struct page*); 56 57 const struct file_operations nfs_dir_operations = { 58 .llseek = nfs_llseek_dir, 59 .read = generic_read_dir, 60 .iterate_shared = nfs_readdir, 61 .open = nfs_opendir, 62 .release = nfs_closedir, 63 .fsync = nfs_fsync_dir, 64 }; 65 66 const struct address_space_operations nfs_dir_aops = { 67 .freepage = nfs_readdir_clear_array, 68 }; 69 70 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred) 71 { 72 struct nfs_inode *nfsi = NFS_I(dir); 73 struct nfs_open_dir_context *ctx; 74 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); 75 if (ctx != NULL) { 76 ctx->duped = 0; 77 ctx->attr_gencount = nfsi->attr_gencount; 78 ctx->dir_cookie = 0; 79 ctx->dup_cookie = 0; 80 ctx->cred = get_rpccred(cred); 81 spin_lock(&dir->i_lock); 82 list_add(&ctx->list, &nfsi->open_files); 83 spin_unlock(&dir->i_lock); 84 return ctx; 85 } 86 return ERR_PTR(-ENOMEM); 87 } 88 89 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx) 90 { 91 spin_lock(&dir->i_lock); 92 list_del(&ctx->list); 93 spin_unlock(&dir->i_lock); 94 put_rpccred(ctx->cred); 95 kfree(ctx); 96 } 97 98 /* 99 * Open file 100 */ 101 static int 102 nfs_opendir(struct inode *inode, struct file *filp) 103 { 104 int res = 0; 105 struct nfs_open_dir_context *ctx; 106 struct rpc_cred *cred; 107 108 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp); 109 110 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 111 112 cred = rpc_lookup_cred(); 113 if (IS_ERR(cred)) 114 return PTR_ERR(cred); 115 ctx = alloc_nfs_open_dir_context(inode, cred); 116 if (IS_ERR(ctx)) { 117 res = PTR_ERR(ctx); 118 goto out; 119 } 120 filp->private_data = ctx; 121 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) { 122 /* This is a mountpoint, so d_revalidate will never 123 * have been called, so we need to refresh the 124 * inode (for close-open consistency) ourselves. 125 */ 126 __nfs_revalidate_inode(NFS_SERVER(inode), inode); 127 } 128 out: 129 put_rpccred(cred); 130 return res; 131 } 132 133 static int 134 nfs_closedir(struct inode *inode, struct file *filp) 135 { 136 put_nfs_open_dir_context(file_inode(filp), filp->private_data); 137 return 0; 138 } 139 140 struct nfs_cache_array_entry { 141 u64 cookie; 142 u64 ino; 143 struct qstr string; 144 unsigned char d_type; 145 }; 146 147 struct nfs_cache_array { 148 atomic_t refcount; 149 int size; 150 int eof_index; 151 u64 last_cookie; 152 struct nfs_cache_array_entry array[0]; 153 }; 154 155 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int); 156 typedef struct { 157 struct file *file; 158 struct page *page; 159 struct dir_context *ctx; 160 unsigned long page_index; 161 u64 *dir_cookie; 162 u64 last_cookie; 163 loff_t current_index; 164 decode_dirent_t decode; 165 166 unsigned long timestamp; 167 unsigned long gencount; 168 unsigned int cache_entry_index; 169 unsigned int plus:1; 170 unsigned int eof:1; 171 } nfs_readdir_descriptor_t; 172 173 /* 174 * The caller is responsible for calling nfs_readdir_release_array(page) 175 */ 176 static 177 struct nfs_cache_array *nfs_readdir_get_array(struct page *page) 178 { 179 void *ptr; 180 if (page == NULL) 181 return ERR_PTR(-EIO); 182 ptr = kmap(page); 183 if (ptr == NULL) 184 return ERR_PTR(-ENOMEM); 185 return ptr; 186 } 187 188 static 189 void nfs_readdir_release_array(struct page *page) 190 { 191 kunmap(page); 192 } 193 194 /* 195 * we are freeing strings created by nfs_add_to_readdir_array() 196 */ 197 static 198 void nfs_readdir_clear_array(struct page *page) 199 { 200 struct nfs_cache_array *array; 201 int i; 202 203 array = kmap_atomic(page); 204 if (atomic_dec_and_test(&array->refcount)) 205 for (i = 0; i < array->size; i++) 206 kfree(array->array[i].string.name); 207 kunmap_atomic(array); 208 } 209 210 static bool grab_page(struct page *page) 211 { 212 struct nfs_cache_array *array = kmap_atomic(page); 213 bool res = atomic_inc_not_zero(&array->refcount); 214 kunmap_atomic(array); 215 return res; 216 } 217 218 /* 219 * the caller is responsible for freeing qstr.name 220 * when called by nfs_readdir_add_to_array, the strings will be freed in 221 * nfs_clear_readdir_array() 222 */ 223 static 224 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len) 225 { 226 string->len = len; 227 string->name = kmemdup(name, len, GFP_KERNEL); 228 if (string->name == NULL) 229 return -ENOMEM; 230 /* 231 * Avoid a kmemleak false positive. The pointer to the name is stored 232 * in a page cache page which kmemleak does not scan. 233 */ 234 kmemleak_not_leak(string->name); 235 string->hash = full_name_hash(NULL, name, len); 236 return 0; 237 } 238 239 static 240 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page) 241 { 242 struct nfs_cache_array *array = nfs_readdir_get_array(page); 243 struct nfs_cache_array_entry *cache_entry; 244 int ret; 245 246 if (IS_ERR(array)) 247 return PTR_ERR(array); 248 249 cache_entry = &array->array[array->size]; 250 251 /* Check that this entry lies within the page bounds */ 252 ret = -ENOSPC; 253 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE) 254 goto out; 255 256 cache_entry->cookie = entry->prev_cookie; 257 cache_entry->ino = entry->ino; 258 cache_entry->d_type = entry->d_type; 259 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len); 260 if (ret) 261 goto out; 262 array->last_cookie = entry->cookie; 263 array->size++; 264 if (entry->eof != 0) 265 array->eof_index = array->size; 266 out: 267 nfs_readdir_release_array(page); 268 return ret; 269 } 270 271 static 272 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 273 { 274 loff_t diff = desc->ctx->pos - desc->current_index; 275 unsigned int index; 276 277 if (diff < 0) 278 goto out_eof; 279 if (diff >= array->size) { 280 if (array->eof_index >= 0) 281 goto out_eof; 282 return -EAGAIN; 283 } 284 285 index = (unsigned int)diff; 286 *desc->dir_cookie = array->array[index].cookie; 287 desc->cache_entry_index = index; 288 return 0; 289 out_eof: 290 desc->eof = 1; 291 return -EBADCOOKIE; 292 } 293 294 static bool 295 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi) 296 { 297 if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA)) 298 return false; 299 smp_rmb(); 300 return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags); 301 } 302 303 static 304 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 305 { 306 int i; 307 loff_t new_pos; 308 int status = -EAGAIN; 309 310 for (i = 0; i < array->size; i++) { 311 if (array->array[i].cookie == *desc->dir_cookie) { 312 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file)); 313 struct nfs_open_dir_context *ctx = desc->file->private_data; 314 315 new_pos = desc->current_index + i; 316 if (ctx->attr_gencount != nfsi->attr_gencount || 317 !nfs_readdir_inode_mapping_valid(nfsi)) { 318 ctx->duped = 0; 319 ctx->attr_gencount = nfsi->attr_gencount; 320 } else if (new_pos < desc->ctx->pos) { 321 if (ctx->duped > 0 322 && ctx->dup_cookie == *desc->dir_cookie) { 323 if (printk_ratelimit()) { 324 pr_notice("NFS: directory %pD2 contains a readdir loop." 325 "Please contact your server vendor. " 326 "The file: %.*s has duplicate cookie %llu\n", 327 desc->file, array->array[i].string.len, 328 array->array[i].string.name, *desc->dir_cookie); 329 } 330 status = -ELOOP; 331 goto out; 332 } 333 ctx->dup_cookie = *desc->dir_cookie; 334 ctx->duped = -1; 335 } 336 desc->ctx->pos = new_pos; 337 desc->cache_entry_index = i; 338 return 0; 339 } 340 } 341 if (array->eof_index >= 0) { 342 status = -EBADCOOKIE; 343 if (*desc->dir_cookie == array->last_cookie) 344 desc->eof = 1; 345 } 346 out: 347 return status; 348 } 349 350 static 351 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc) 352 { 353 struct nfs_cache_array *array; 354 int status; 355 356 array = nfs_readdir_get_array(desc->page); 357 if (IS_ERR(array)) { 358 status = PTR_ERR(array); 359 goto out; 360 } 361 362 if (*desc->dir_cookie == 0) 363 status = nfs_readdir_search_for_pos(array, desc); 364 else 365 status = nfs_readdir_search_for_cookie(array, desc); 366 367 if (status == -EAGAIN) { 368 desc->last_cookie = array->last_cookie; 369 desc->current_index += array->size; 370 desc->page_index++; 371 } 372 nfs_readdir_release_array(desc->page); 373 out: 374 return status; 375 } 376 377 /* Fill a page with xdr information before transferring to the cache page */ 378 static 379 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc, 380 struct nfs_entry *entry, struct file *file, struct inode *inode) 381 { 382 struct nfs_open_dir_context *ctx = file->private_data; 383 struct rpc_cred *cred = ctx->cred; 384 unsigned long timestamp, gencount; 385 int error; 386 387 again: 388 timestamp = jiffies; 389 gencount = nfs_inc_attr_generation_counter(); 390 error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages, 391 NFS_SERVER(inode)->dtsize, desc->plus); 392 if (error < 0) { 393 /* We requested READDIRPLUS, but the server doesn't grok it */ 394 if (error == -ENOTSUPP && desc->plus) { 395 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS; 396 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 397 desc->plus = 0; 398 goto again; 399 } 400 goto error; 401 } 402 desc->timestamp = timestamp; 403 desc->gencount = gencount; 404 error: 405 return error; 406 } 407 408 static int xdr_decode(nfs_readdir_descriptor_t *desc, 409 struct nfs_entry *entry, struct xdr_stream *xdr) 410 { 411 int error; 412 413 error = desc->decode(xdr, entry, desc->plus); 414 if (error) 415 return error; 416 entry->fattr->time_start = desc->timestamp; 417 entry->fattr->gencount = desc->gencount; 418 return 0; 419 } 420 421 /* Match file and dirent using either filehandle or fileid 422 * Note: caller is responsible for checking the fsid 423 */ 424 static 425 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry) 426 { 427 struct inode *inode; 428 struct nfs_inode *nfsi; 429 430 if (d_really_is_negative(dentry)) 431 return 0; 432 433 inode = d_inode(dentry); 434 if (is_bad_inode(inode) || NFS_STALE(inode)) 435 return 0; 436 437 nfsi = NFS_I(inode); 438 if (entry->fattr->fileid == nfsi->fileid) 439 return 1; 440 if (nfs_compare_fh(entry->fh, &nfsi->fh) == 0) 441 return 1; 442 return 0; 443 } 444 445 static 446 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx) 447 { 448 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS)) 449 return false; 450 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags)) 451 return true; 452 if (ctx->pos == 0) 453 return true; 454 return false; 455 } 456 457 /* 458 * This function is called by the lookup code to request the use of 459 * readdirplus to accelerate any future lookups in the same 460 * directory. 461 */ 462 static 463 void nfs_advise_use_readdirplus(struct inode *dir) 464 { 465 set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags); 466 } 467 468 /* 469 * This function is mainly for use by nfs_getattr(). 470 * 471 * If this is an 'ls -l', we want to force use of readdirplus. 472 * Do this by checking if there is an active file descriptor 473 * and calling nfs_advise_use_readdirplus, then forcing a 474 * cache flush. 475 */ 476 void nfs_force_use_readdirplus(struct inode *dir) 477 { 478 if (!list_empty(&NFS_I(dir)->open_files)) { 479 nfs_advise_use_readdirplus(dir); 480 nfs_zap_mapping(dir, dir->i_mapping); 481 } 482 } 483 484 static 485 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry) 486 { 487 struct qstr filename = QSTR_INIT(entry->name, entry->len); 488 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 489 struct dentry *dentry; 490 struct dentry *alias; 491 struct inode *dir = d_inode(parent); 492 struct inode *inode; 493 int status; 494 495 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID)) 496 return; 497 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID)) 498 return; 499 if (filename.name[0] == '.') { 500 if (filename.len == 1) 501 return; 502 if (filename.len == 2 && filename.name[1] == '.') 503 return; 504 } 505 filename.hash = full_name_hash(parent, filename.name, filename.len); 506 507 dentry = d_lookup(parent, &filename); 508 again: 509 if (!dentry) { 510 dentry = d_alloc_parallel(parent, &filename, &wq); 511 if (IS_ERR(dentry)) 512 return; 513 } 514 if (!d_in_lookup(dentry)) { 515 /* Is there a mountpoint here? If so, just exit */ 516 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid, 517 &entry->fattr->fsid)) 518 goto out; 519 if (nfs_same_file(dentry, entry)) { 520 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 521 status = nfs_refresh_inode(d_inode(dentry), entry->fattr); 522 if (!status) 523 nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label); 524 goto out; 525 } else { 526 d_invalidate(dentry); 527 dput(dentry); 528 dentry = NULL; 529 goto again; 530 } 531 } 532 533 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label); 534 alias = d_splice_alias(inode, dentry); 535 d_lookup_done(dentry); 536 if (alias) { 537 if (IS_ERR(alias)) 538 goto out; 539 dput(dentry); 540 dentry = alias; 541 } 542 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 543 out: 544 dput(dentry); 545 } 546 547 /* Perform conversion from xdr to cache array */ 548 static 549 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry, 550 struct page **xdr_pages, struct page *page, unsigned int buflen) 551 { 552 struct xdr_stream stream; 553 struct xdr_buf buf; 554 struct page *scratch; 555 struct nfs_cache_array *array; 556 unsigned int count = 0; 557 int status; 558 559 scratch = alloc_page(GFP_KERNEL); 560 if (scratch == NULL) 561 return -ENOMEM; 562 563 if (buflen == 0) 564 goto out_nopages; 565 566 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen); 567 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE); 568 569 do { 570 status = xdr_decode(desc, entry, &stream); 571 if (status != 0) { 572 if (status == -EAGAIN) 573 status = 0; 574 break; 575 } 576 577 count++; 578 579 if (desc->plus != 0) 580 nfs_prime_dcache(file_dentry(desc->file), entry); 581 582 status = nfs_readdir_add_to_array(entry, page); 583 if (status != 0) 584 break; 585 } while (!entry->eof); 586 587 out_nopages: 588 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) { 589 array = nfs_readdir_get_array(page); 590 if (!IS_ERR(array)) { 591 array->eof_index = array->size; 592 status = 0; 593 nfs_readdir_release_array(page); 594 } else 595 status = PTR_ERR(array); 596 } 597 598 put_page(scratch); 599 return status; 600 } 601 602 static 603 void nfs_readdir_free_pages(struct page **pages, unsigned int npages) 604 { 605 unsigned int i; 606 for (i = 0; i < npages; i++) 607 put_page(pages[i]); 608 } 609 610 /* 611 * nfs_readdir_large_page will allocate pages that must be freed with a call 612 * to nfs_readdir_free_pagearray 613 */ 614 static 615 int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages) 616 { 617 unsigned int i; 618 619 for (i = 0; i < npages; i++) { 620 struct page *page = alloc_page(GFP_KERNEL); 621 if (page == NULL) 622 goto out_freepages; 623 pages[i] = page; 624 } 625 return 0; 626 627 out_freepages: 628 nfs_readdir_free_pages(pages, i); 629 return -ENOMEM; 630 } 631 632 static 633 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode) 634 { 635 struct page *pages[NFS_MAX_READDIR_PAGES]; 636 struct nfs_entry entry; 637 struct file *file = desc->file; 638 struct nfs_cache_array *array; 639 int status = -ENOMEM; 640 unsigned int array_size = ARRAY_SIZE(pages); 641 642 entry.prev_cookie = 0; 643 entry.cookie = desc->last_cookie; 644 entry.eof = 0; 645 entry.fh = nfs_alloc_fhandle(); 646 entry.fattr = nfs_alloc_fattr(); 647 entry.server = NFS_SERVER(inode); 648 if (entry.fh == NULL || entry.fattr == NULL) 649 goto out; 650 651 entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT); 652 if (IS_ERR(entry.label)) { 653 status = PTR_ERR(entry.label); 654 goto out; 655 } 656 657 array = nfs_readdir_get_array(page); 658 if (IS_ERR(array)) { 659 status = PTR_ERR(array); 660 goto out_label_free; 661 } 662 memset(array, 0, sizeof(struct nfs_cache_array)); 663 atomic_set(&array->refcount, 1); 664 array->eof_index = -1; 665 666 status = nfs_readdir_alloc_pages(pages, array_size); 667 if (status < 0) 668 goto out_release_array; 669 do { 670 unsigned int pglen; 671 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode); 672 673 if (status < 0) 674 break; 675 pglen = status; 676 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen); 677 if (status < 0) { 678 if (status == -ENOSPC) 679 status = 0; 680 break; 681 } 682 } while (array->eof_index < 0); 683 684 nfs_readdir_free_pages(pages, array_size); 685 out_release_array: 686 nfs_readdir_release_array(page); 687 out_label_free: 688 nfs4_label_free(entry.label); 689 out: 690 nfs_free_fattr(entry.fattr); 691 nfs_free_fhandle(entry.fh); 692 return status; 693 } 694 695 /* 696 * Now we cache directories properly, by converting xdr information 697 * to an array that can be used for lookups later. This results in 698 * fewer cache pages, since we can store more information on each page. 699 * We only need to convert from xdr once so future lookups are much simpler 700 */ 701 static 702 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page) 703 { 704 struct inode *inode = file_inode(desc->file); 705 int ret; 706 707 ret = nfs_readdir_xdr_to_array(desc, page, inode); 708 if (ret < 0) 709 goto error; 710 SetPageUptodate(page); 711 712 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) { 713 /* Should never happen */ 714 nfs_zap_mapping(inode, inode->i_mapping); 715 } 716 unlock_page(page); 717 return 0; 718 error: 719 unlock_page(page); 720 return ret; 721 } 722 723 static 724 void cache_page_release(nfs_readdir_descriptor_t *desc) 725 { 726 nfs_readdir_clear_array(desc->page); 727 put_page(desc->page); 728 desc->page = NULL; 729 } 730 731 static 732 struct page *get_cache_page(nfs_readdir_descriptor_t *desc) 733 { 734 struct page *page; 735 736 for (;;) { 737 page = read_cache_page(desc->file->f_mapping, 738 desc->page_index, (filler_t *)nfs_readdir_filler, desc); 739 if (IS_ERR(page) || grab_page(page)) 740 break; 741 put_page(page); 742 } 743 return page; 744 } 745 746 /* 747 * Returns 0 if desc->dir_cookie was found on page desc->page_index 748 */ 749 static 750 int find_cache_page(nfs_readdir_descriptor_t *desc) 751 { 752 int res; 753 754 desc->page = get_cache_page(desc); 755 if (IS_ERR(desc->page)) 756 return PTR_ERR(desc->page); 757 758 res = nfs_readdir_search_array(desc); 759 if (res != 0) 760 cache_page_release(desc); 761 return res; 762 } 763 764 /* Search for desc->dir_cookie from the beginning of the page cache */ 765 static inline 766 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc) 767 { 768 int res; 769 770 if (desc->page_index == 0) { 771 desc->current_index = 0; 772 desc->last_cookie = 0; 773 } 774 do { 775 res = find_cache_page(desc); 776 } while (res == -EAGAIN); 777 return res; 778 } 779 780 /* 781 * Once we've found the start of the dirent within a page: fill 'er up... 782 */ 783 static 784 int nfs_do_filldir(nfs_readdir_descriptor_t *desc) 785 { 786 struct file *file = desc->file; 787 int i = 0; 788 int res = 0; 789 struct nfs_cache_array *array = NULL; 790 struct nfs_open_dir_context *ctx = file->private_data; 791 792 array = nfs_readdir_get_array(desc->page); 793 if (IS_ERR(array)) { 794 res = PTR_ERR(array); 795 goto out; 796 } 797 798 for (i = desc->cache_entry_index; i < array->size; i++) { 799 struct nfs_cache_array_entry *ent; 800 801 ent = &array->array[i]; 802 if (!dir_emit(desc->ctx, ent->string.name, ent->string.len, 803 nfs_compat_user_ino64(ent->ino), ent->d_type)) { 804 desc->eof = 1; 805 break; 806 } 807 desc->ctx->pos++; 808 if (i < (array->size-1)) 809 *desc->dir_cookie = array->array[i+1].cookie; 810 else 811 *desc->dir_cookie = array->last_cookie; 812 if (ctx->duped != 0) 813 ctx->duped = 1; 814 } 815 if (array->eof_index >= 0) 816 desc->eof = 1; 817 818 nfs_readdir_release_array(desc->page); 819 out: 820 cache_page_release(desc); 821 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n", 822 (unsigned long long)*desc->dir_cookie, res); 823 return res; 824 } 825 826 /* 827 * If we cannot find a cookie in our cache, we suspect that this is 828 * because it points to a deleted file, so we ask the server to return 829 * whatever it thinks is the next entry. We then feed this to filldir. 830 * If all goes well, we should then be able to find our way round the 831 * cache on the next call to readdir_search_pagecache(); 832 * 833 * NOTE: we cannot add the anonymous page to the pagecache because 834 * the data it contains might not be page aligned. Besides, 835 * we should already have a complete representation of the 836 * directory in the page cache by the time we get here. 837 */ 838 static inline 839 int uncached_readdir(nfs_readdir_descriptor_t *desc) 840 { 841 struct page *page = NULL; 842 int status; 843 struct inode *inode = file_inode(desc->file); 844 struct nfs_open_dir_context *ctx = desc->file->private_data; 845 846 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n", 847 (unsigned long long)*desc->dir_cookie); 848 849 page = alloc_page(GFP_HIGHUSER); 850 if (!page) { 851 status = -ENOMEM; 852 goto out; 853 } 854 855 desc->page_index = 0; 856 desc->last_cookie = *desc->dir_cookie; 857 desc->page = page; 858 ctx->duped = 0; 859 860 status = nfs_readdir_xdr_to_array(desc, page, inode); 861 if (status < 0) 862 goto out_release; 863 864 status = nfs_do_filldir(desc); 865 866 out: 867 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", 868 __func__, status); 869 return status; 870 out_release: 871 cache_page_release(desc); 872 goto out; 873 } 874 875 static bool nfs_dir_mapping_need_revalidate(struct inode *dir) 876 { 877 struct nfs_inode *nfsi = NFS_I(dir); 878 879 if (nfs_attribute_cache_expired(dir)) 880 return true; 881 if (nfsi->cache_validity & NFS_INO_INVALID_DATA) 882 return true; 883 return false; 884 } 885 886 /* The file offset position represents the dirent entry number. A 887 last cookie cache takes care of the common case of reading the 888 whole directory. 889 */ 890 static int nfs_readdir(struct file *file, struct dir_context *ctx) 891 { 892 struct dentry *dentry = file_dentry(file); 893 struct inode *inode = d_inode(dentry); 894 nfs_readdir_descriptor_t my_desc, 895 *desc = &my_desc; 896 struct nfs_open_dir_context *dir_ctx = file->private_data; 897 int res = 0; 898 899 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n", 900 file, (long long)ctx->pos); 901 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS); 902 903 /* 904 * ctx->pos points to the dirent entry number. 905 * *desc->dir_cookie has the cookie for the next entry. We have 906 * to either find the entry with the appropriate number or 907 * revalidate the cookie. 908 */ 909 memset(desc, 0, sizeof(*desc)); 910 911 desc->file = file; 912 desc->ctx = ctx; 913 desc->dir_cookie = &dir_ctx->dir_cookie; 914 desc->decode = NFS_PROTO(inode)->decode_dirent; 915 desc->plus = nfs_use_readdirplus(inode, ctx) ? 1 : 0; 916 917 if (ctx->pos == 0 || nfs_dir_mapping_need_revalidate(inode)) 918 res = nfs_revalidate_mapping(inode, file->f_mapping); 919 if (res < 0) 920 goto out; 921 922 do { 923 res = readdir_search_pagecache(desc); 924 925 if (res == -EBADCOOKIE) { 926 res = 0; 927 /* This means either end of directory */ 928 if (*desc->dir_cookie && desc->eof == 0) { 929 /* Or that the server has 'lost' a cookie */ 930 res = uncached_readdir(desc); 931 if (res == 0) 932 continue; 933 } 934 break; 935 } 936 if (res == -ETOOSMALL && desc->plus) { 937 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 938 nfs_zap_caches(inode); 939 desc->page_index = 0; 940 desc->plus = 0; 941 desc->eof = 0; 942 continue; 943 } 944 if (res < 0) 945 break; 946 947 res = nfs_do_filldir(desc); 948 if (res < 0) 949 break; 950 } while (!desc->eof); 951 out: 952 if (res > 0) 953 res = 0; 954 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res); 955 return res; 956 } 957 958 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence) 959 { 960 struct nfs_open_dir_context *dir_ctx = filp->private_data; 961 962 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n", 963 filp, offset, whence); 964 965 switch (whence) { 966 case 1: 967 offset += filp->f_pos; 968 case 0: 969 if (offset >= 0) 970 break; 971 default: 972 return -EINVAL; 973 } 974 if (offset != filp->f_pos) { 975 filp->f_pos = offset; 976 dir_ctx->dir_cookie = 0; 977 dir_ctx->duped = 0; 978 } 979 return offset; 980 } 981 982 /* 983 * All directory operations under NFS are synchronous, so fsync() 984 * is a dummy operation. 985 */ 986 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end, 987 int datasync) 988 { 989 struct inode *inode = file_inode(filp); 990 991 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync); 992 993 inode_lock(inode); 994 nfs_inc_stats(inode, NFSIOS_VFSFSYNC); 995 inode_unlock(inode); 996 return 0; 997 } 998 999 /** 1000 * nfs_force_lookup_revalidate - Mark the directory as having changed 1001 * @dir - pointer to directory inode 1002 * 1003 * This forces the revalidation code in nfs_lookup_revalidate() to do a 1004 * full lookup on all child dentries of 'dir' whenever a change occurs 1005 * on the server that might have invalidated our dcache. 1006 * 1007 * The caller should be holding dir->i_lock 1008 */ 1009 void nfs_force_lookup_revalidate(struct inode *dir) 1010 { 1011 NFS_I(dir)->cache_change_attribute++; 1012 } 1013 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate); 1014 1015 /* 1016 * A check for whether or not the parent directory has changed. 1017 * In the case it has, we assume that the dentries are untrustworthy 1018 * and may need to be looked up again. 1019 * If rcu_walk prevents us from performing a full check, return 0. 1020 */ 1021 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry, 1022 int rcu_walk) 1023 { 1024 int ret; 1025 1026 if (IS_ROOT(dentry)) 1027 return 1; 1028 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE) 1029 return 0; 1030 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 1031 return 0; 1032 /* Revalidate nfsi->cache_change_attribute before we declare a match */ 1033 if (rcu_walk) 1034 ret = nfs_revalidate_inode_rcu(NFS_SERVER(dir), dir); 1035 else 1036 ret = nfs_revalidate_inode(NFS_SERVER(dir), dir); 1037 if (ret < 0) 1038 return 0; 1039 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 1040 return 0; 1041 return 1; 1042 } 1043 1044 /* 1045 * Use intent information to check whether or not we're going to do 1046 * an O_EXCL create using this path component. 1047 */ 1048 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags) 1049 { 1050 if (NFS_PROTO(dir)->version == 2) 1051 return 0; 1052 return flags & LOOKUP_EXCL; 1053 } 1054 1055 /* 1056 * Inode and filehandle revalidation for lookups. 1057 * 1058 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL, 1059 * or if the intent information indicates that we're about to open this 1060 * particular file and the "nocto" mount flag is not set. 1061 * 1062 */ 1063 static 1064 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags) 1065 { 1066 struct nfs_server *server = NFS_SERVER(inode); 1067 int ret; 1068 1069 if (IS_AUTOMOUNT(inode)) 1070 return 0; 1071 /* VFS wants an on-the-wire revalidation */ 1072 if (flags & LOOKUP_REVAL) 1073 goto out_force; 1074 /* This is an open(2) */ 1075 if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) && 1076 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode))) 1077 goto out_force; 1078 out: 1079 return (inode->i_nlink == 0) ? -ENOENT : 0; 1080 out_force: 1081 if (flags & LOOKUP_RCU) 1082 return -ECHILD; 1083 ret = __nfs_revalidate_inode(server, inode); 1084 if (ret != 0) 1085 return ret; 1086 goto out; 1087 } 1088 1089 /* 1090 * We judge how long we want to trust negative 1091 * dentries by looking at the parent inode mtime. 1092 * 1093 * If parent mtime has changed, we revalidate, else we wait for a 1094 * period corresponding to the parent's attribute cache timeout value. 1095 * 1096 * If LOOKUP_RCU prevents us from performing a full check, return 1 1097 * suggesting a reval is needed. 1098 */ 1099 static inline 1100 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry, 1101 unsigned int flags) 1102 { 1103 /* Don't revalidate a negative dentry if we're creating a new file */ 1104 if (flags & LOOKUP_CREATE) 1105 return 0; 1106 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG) 1107 return 1; 1108 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU); 1109 } 1110 1111 /* 1112 * This is called every time the dcache has a lookup hit, 1113 * and we should check whether we can really trust that 1114 * lookup. 1115 * 1116 * NOTE! The hit can be a negative hit too, don't assume 1117 * we have an inode! 1118 * 1119 * If the parent directory is seen to have changed, we throw out the 1120 * cached dentry and do a new lookup. 1121 */ 1122 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1123 { 1124 struct inode *dir; 1125 struct inode *inode; 1126 struct dentry *parent; 1127 struct nfs_fh *fhandle = NULL; 1128 struct nfs_fattr *fattr = NULL; 1129 struct nfs4_label *label = NULL; 1130 int error; 1131 1132 if (flags & LOOKUP_RCU) { 1133 parent = ACCESS_ONCE(dentry->d_parent); 1134 dir = d_inode_rcu(parent); 1135 if (!dir) 1136 return -ECHILD; 1137 } else { 1138 parent = dget_parent(dentry); 1139 dir = d_inode(parent); 1140 } 1141 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE); 1142 inode = d_inode(dentry); 1143 1144 if (!inode) { 1145 if (nfs_neg_need_reval(dir, dentry, flags)) { 1146 if (flags & LOOKUP_RCU) 1147 return -ECHILD; 1148 goto out_bad; 1149 } 1150 goto out_valid_noent; 1151 } 1152 1153 if (is_bad_inode(inode)) { 1154 if (flags & LOOKUP_RCU) 1155 return -ECHILD; 1156 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1157 __func__, dentry); 1158 goto out_bad; 1159 } 1160 1161 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ)) 1162 goto out_set_verifier; 1163 1164 /* Force a full look up iff the parent directory has changed */ 1165 if (!nfs_is_exclusive_create(dir, flags) && 1166 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) { 1167 1168 if (nfs_lookup_verify_inode(inode, flags)) { 1169 if (flags & LOOKUP_RCU) 1170 return -ECHILD; 1171 goto out_zap_parent; 1172 } 1173 goto out_valid; 1174 } 1175 1176 if (flags & LOOKUP_RCU) 1177 return -ECHILD; 1178 1179 if (NFS_STALE(inode)) 1180 goto out_bad; 1181 1182 error = -ENOMEM; 1183 fhandle = nfs_alloc_fhandle(); 1184 fattr = nfs_alloc_fattr(); 1185 if (fhandle == NULL || fattr == NULL) 1186 goto out_error; 1187 1188 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT); 1189 if (IS_ERR(label)) 1190 goto out_error; 1191 1192 trace_nfs_lookup_revalidate_enter(dir, dentry, flags); 1193 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label); 1194 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error); 1195 if (error) 1196 goto out_bad; 1197 if (nfs_compare_fh(NFS_FH(inode), fhandle)) 1198 goto out_bad; 1199 if ((error = nfs_refresh_inode(inode, fattr)) != 0) 1200 goto out_bad; 1201 1202 nfs_setsecurity(inode, fattr, label); 1203 1204 nfs_free_fattr(fattr); 1205 nfs_free_fhandle(fhandle); 1206 nfs4_label_free(label); 1207 1208 out_set_verifier: 1209 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1210 out_valid: 1211 /* Success: notify readdir to use READDIRPLUS */ 1212 nfs_advise_use_readdirplus(dir); 1213 out_valid_noent: 1214 if (flags & LOOKUP_RCU) { 1215 if (parent != ACCESS_ONCE(dentry->d_parent)) 1216 return -ECHILD; 1217 } else 1218 dput(parent); 1219 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n", 1220 __func__, dentry); 1221 return 1; 1222 out_zap_parent: 1223 nfs_zap_caches(dir); 1224 out_bad: 1225 WARN_ON(flags & LOOKUP_RCU); 1226 nfs_free_fattr(fattr); 1227 nfs_free_fhandle(fhandle); 1228 nfs4_label_free(label); 1229 nfs_mark_for_revalidate(dir); 1230 if (inode && S_ISDIR(inode->i_mode)) { 1231 /* Purge readdir caches. */ 1232 nfs_zap_caches(inode); 1233 /* 1234 * We can't d_drop the root of a disconnected tree: 1235 * its d_hash is on the s_anon list and d_drop() would hide 1236 * it from shrink_dcache_for_unmount(), leading to busy 1237 * inodes on unmount and further oopses. 1238 */ 1239 if (IS_ROOT(dentry)) 1240 goto out_valid; 1241 } 1242 dput(parent); 1243 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n", 1244 __func__, dentry); 1245 return 0; 1246 out_error: 1247 WARN_ON(flags & LOOKUP_RCU); 1248 nfs_free_fattr(fattr); 1249 nfs_free_fhandle(fhandle); 1250 nfs4_label_free(label); 1251 dput(parent); 1252 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n", 1253 __func__, dentry, error); 1254 return error; 1255 } 1256 1257 /* 1258 * A weaker form of d_revalidate for revalidating just the d_inode(dentry) 1259 * when we don't really care about the dentry name. This is called when a 1260 * pathwalk ends on a dentry that was not found via a normal lookup in the 1261 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals). 1262 * 1263 * In this situation, we just want to verify that the inode itself is OK 1264 * since the dentry might have changed on the server. 1265 */ 1266 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags) 1267 { 1268 int error; 1269 struct inode *inode = d_inode(dentry); 1270 1271 /* 1272 * I believe we can only get a negative dentry here in the case of a 1273 * procfs-style symlink. Just assume it's correct for now, but we may 1274 * eventually need to do something more here. 1275 */ 1276 if (!inode) { 1277 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n", 1278 __func__, dentry); 1279 return 1; 1280 } 1281 1282 if (is_bad_inode(inode)) { 1283 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1284 __func__, dentry); 1285 return 0; 1286 } 1287 1288 error = nfs_revalidate_inode(NFS_SERVER(inode), inode); 1289 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n", 1290 __func__, inode->i_ino, error ? "invalid" : "valid"); 1291 return !error; 1292 } 1293 1294 /* 1295 * This is called from dput() when d_count is going to 0. 1296 */ 1297 static int nfs_dentry_delete(const struct dentry *dentry) 1298 { 1299 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n", 1300 dentry, dentry->d_flags); 1301 1302 /* Unhash any dentry with a stale inode */ 1303 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry))) 1304 return 1; 1305 1306 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1307 /* Unhash it, so that ->d_iput() would be called */ 1308 return 1; 1309 } 1310 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) { 1311 /* Unhash it, so that ancestors of killed async unlink 1312 * files will be cleaned up during umount */ 1313 return 1; 1314 } 1315 return 0; 1316 1317 } 1318 1319 /* Ensure that we revalidate inode->i_nlink */ 1320 static void nfs_drop_nlink(struct inode *inode) 1321 { 1322 spin_lock(&inode->i_lock); 1323 /* drop the inode if we're reasonably sure this is the last link */ 1324 if (inode->i_nlink == 1) 1325 clear_nlink(inode); 1326 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR; 1327 spin_unlock(&inode->i_lock); 1328 } 1329 1330 /* 1331 * Called when the dentry loses inode. 1332 * We use it to clean up silly-renamed files. 1333 */ 1334 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode) 1335 { 1336 if (S_ISDIR(inode->i_mode)) 1337 /* drop any readdir cache as it could easily be old */ 1338 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA; 1339 1340 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1341 nfs_complete_unlink(dentry, inode); 1342 nfs_drop_nlink(inode); 1343 } 1344 iput(inode); 1345 } 1346 1347 static void nfs_d_release(struct dentry *dentry) 1348 { 1349 /* free cached devname value, if it survived that far */ 1350 if (unlikely(dentry->d_fsdata)) { 1351 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1352 WARN_ON(1); 1353 else 1354 kfree(dentry->d_fsdata); 1355 } 1356 } 1357 1358 const struct dentry_operations nfs_dentry_operations = { 1359 .d_revalidate = nfs_lookup_revalidate, 1360 .d_weak_revalidate = nfs_weak_revalidate, 1361 .d_delete = nfs_dentry_delete, 1362 .d_iput = nfs_dentry_iput, 1363 .d_automount = nfs_d_automount, 1364 .d_release = nfs_d_release, 1365 }; 1366 EXPORT_SYMBOL_GPL(nfs_dentry_operations); 1367 1368 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 1369 { 1370 struct dentry *res; 1371 struct inode *inode = NULL; 1372 struct nfs_fh *fhandle = NULL; 1373 struct nfs_fattr *fattr = NULL; 1374 struct nfs4_label *label = NULL; 1375 int error; 1376 1377 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry); 1378 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP); 1379 1380 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen)) 1381 return ERR_PTR(-ENAMETOOLONG); 1382 1383 /* 1384 * If we're doing an exclusive create, optimize away the lookup 1385 * but don't hash the dentry. 1386 */ 1387 if (nfs_is_exclusive_create(dir, flags)) 1388 return NULL; 1389 1390 res = ERR_PTR(-ENOMEM); 1391 fhandle = nfs_alloc_fhandle(); 1392 fattr = nfs_alloc_fattr(); 1393 if (fhandle == NULL || fattr == NULL) 1394 goto out; 1395 1396 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT); 1397 if (IS_ERR(label)) 1398 goto out; 1399 1400 trace_nfs_lookup_enter(dir, dentry, flags); 1401 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label); 1402 if (error == -ENOENT) 1403 goto no_entry; 1404 if (error < 0) { 1405 res = ERR_PTR(error); 1406 goto out_label; 1407 } 1408 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label); 1409 res = ERR_CAST(inode); 1410 if (IS_ERR(res)) 1411 goto out_label; 1412 1413 /* Success: notify readdir to use READDIRPLUS */ 1414 nfs_advise_use_readdirplus(dir); 1415 1416 no_entry: 1417 res = d_splice_alias(inode, dentry); 1418 if (res != NULL) { 1419 if (IS_ERR(res)) 1420 goto out_label; 1421 dentry = res; 1422 } 1423 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1424 out_label: 1425 trace_nfs_lookup_exit(dir, dentry, flags, error); 1426 nfs4_label_free(label); 1427 out: 1428 nfs_free_fattr(fattr); 1429 nfs_free_fhandle(fhandle); 1430 return res; 1431 } 1432 EXPORT_SYMBOL_GPL(nfs_lookup); 1433 1434 #if IS_ENABLED(CONFIG_NFS_V4) 1435 static int nfs4_lookup_revalidate(struct dentry *, unsigned int); 1436 1437 const struct dentry_operations nfs4_dentry_operations = { 1438 .d_revalidate = nfs4_lookup_revalidate, 1439 .d_delete = nfs_dentry_delete, 1440 .d_iput = nfs_dentry_iput, 1441 .d_automount = nfs_d_automount, 1442 .d_release = nfs_d_release, 1443 }; 1444 EXPORT_SYMBOL_GPL(nfs4_dentry_operations); 1445 1446 static fmode_t flags_to_mode(int flags) 1447 { 1448 fmode_t res = (__force fmode_t)flags & FMODE_EXEC; 1449 if ((flags & O_ACCMODE) != O_WRONLY) 1450 res |= FMODE_READ; 1451 if ((flags & O_ACCMODE) != O_RDONLY) 1452 res |= FMODE_WRITE; 1453 return res; 1454 } 1455 1456 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags) 1457 { 1458 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags)); 1459 } 1460 1461 static int do_open(struct inode *inode, struct file *filp) 1462 { 1463 nfs_fscache_open_file(inode, filp); 1464 return 0; 1465 } 1466 1467 static int nfs_finish_open(struct nfs_open_context *ctx, 1468 struct dentry *dentry, 1469 struct file *file, unsigned open_flags, 1470 int *opened) 1471 { 1472 int err; 1473 1474 err = finish_open(file, dentry, do_open, opened); 1475 if (err) 1476 goto out; 1477 nfs_file_set_open_context(file, ctx); 1478 1479 out: 1480 return err; 1481 } 1482 1483 int nfs_atomic_open(struct inode *dir, struct dentry *dentry, 1484 struct file *file, unsigned open_flags, 1485 umode_t mode, int *opened) 1486 { 1487 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1488 struct nfs_open_context *ctx; 1489 struct dentry *res; 1490 struct iattr attr = { .ia_valid = ATTR_OPEN }; 1491 struct inode *inode; 1492 unsigned int lookup_flags = 0; 1493 bool switched = false; 1494 int err; 1495 1496 /* Expect a negative dentry */ 1497 BUG_ON(d_inode(dentry)); 1498 1499 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n", 1500 dir->i_sb->s_id, dir->i_ino, dentry); 1501 1502 err = nfs_check_flags(open_flags); 1503 if (err) 1504 return err; 1505 1506 /* NFS only supports OPEN on regular files */ 1507 if ((open_flags & O_DIRECTORY)) { 1508 if (!d_in_lookup(dentry)) { 1509 /* 1510 * Hashed negative dentry with O_DIRECTORY: dentry was 1511 * revalidated and is fine, no need to perform lookup 1512 * again 1513 */ 1514 return -ENOENT; 1515 } 1516 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY; 1517 goto no_open; 1518 } 1519 1520 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 1521 return -ENAMETOOLONG; 1522 1523 if (open_flags & O_CREAT) { 1524 attr.ia_valid |= ATTR_MODE; 1525 attr.ia_mode = mode & ~current_umask(); 1526 } 1527 if (open_flags & O_TRUNC) { 1528 attr.ia_valid |= ATTR_SIZE; 1529 attr.ia_size = 0; 1530 } 1531 1532 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) { 1533 d_drop(dentry); 1534 switched = true; 1535 dentry = d_alloc_parallel(dentry->d_parent, 1536 &dentry->d_name, &wq); 1537 if (IS_ERR(dentry)) 1538 return PTR_ERR(dentry); 1539 if (unlikely(!d_in_lookup(dentry))) 1540 return finish_no_open(file, dentry); 1541 } 1542 1543 ctx = create_nfs_open_context(dentry, open_flags); 1544 err = PTR_ERR(ctx); 1545 if (IS_ERR(ctx)) 1546 goto out; 1547 1548 trace_nfs_atomic_open_enter(dir, ctx, open_flags); 1549 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, opened); 1550 if (IS_ERR(inode)) { 1551 err = PTR_ERR(inode); 1552 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 1553 put_nfs_open_context(ctx); 1554 d_drop(dentry); 1555 switch (err) { 1556 case -ENOENT: 1557 d_add(dentry, NULL); 1558 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1559 break; 1560 case -EISDIR: 1561 case -ENOTDIR: 1562 goto no_open; 1563 case -ELOOP: 1564 if (!(open_flags & O_NOFOLLOW)) 1565 goto no_open; 1566 break; 1567 /* case -EINVAL: */ 1568 default: 1569 break; 1570 } 1571 goto out; 1572 } 1573 1574 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags, opened); 1575 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 1576 put_nfs_open_context(ctx); 1577 out: 1578 if (unlikely(switched)) { 1579 d_lookup_done(dentry); 1580 dput(dentry); 1581 } 1582 return err; 1583 1584 no_open: 1585 res = nfs_lookup(dir, dentry, lookup_flags); 1586 if (switched) { 1587 d_lookup_done(dentry); 1588 if (!res) 1589 res = dentry; 1590 else 1591 dput(dentry); 1592 } 1593 if (IS_ERR(res)) 1594 return PTR_ERR(res); 1595 return finish_no_open(file, res); 1596 } 1597 EXPORT_SYMBOL_GPL(nfs_atomic_open); 1598 1599 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1600 { 1601 struct inode *inode; 1602 int ret = 0; 1603 1604 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY)) 1605 goto no_open; 1606 if (d_mountpoint(dentry)) 1607 goto no_open; 1608 if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1) 1609 goto no_open; 1610 1611 inode = d_inode(dentry); 1612 1613 /* We can't create new files in nfs_open_revalidate(), so we 1614 * optimize away revalidation of negative dentries. 1615 */ 1616 if (inode == NULL) { 1617 struct dentry *parent; 1618 struct inode *dir; 1619 1620 if (flags & LOOKUP_RCU) { 1621 parent = ACCESS_ONCE(dentry->d_parent); 1622 dir = d_inode_rcu(parent); 1623 if (!dir) 1624 return -ECHILD; 1625 } else { 1626 parent = dget_parent(dentry); 1627 dir = d_inode(parent); 1628 } 1629 if (!nfs_neg_need_reval(dir, dentry, flags)) 1630 ret = 1; 1631 else if (flags & LOOKUP_RCU) 1632 ret = -ECHILD; 1633 if (!(flags & LOOKUP_RCU)) 1634 dput(parent); 1635 else if (parent != ACCESS_ONCE(dentry->d_parent)) 1636 return -ECHILD; 1637 goto out; 1638 } 1639 1640 /* NFS only supports OPEN on regular files */ 1641 if (!S_ISREG(inode->i_mode)) 1642 goto no_open; 1643 /* We cannot do exclusive creation on a positive dentry */ 1644 if (flags & LOOKUP_EXCL) 1645 goto no_open; 1646 1647 /* Let f_op->open() actually open (and revalidate) the file */ 1648 ret = 1; 1649 1650 out: 1651 return ret; 1652 1653 no_open: 1654 return nfs_lookup_revalidate(dentry, flags); 1655 } 1656 1657 #endif /* CONFIG_NFSV4 */ 1658 1659 /* 1660 * Code common to create, mkdir, and mknod. 1661 */ 1662 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle, 1663 struct nfs_fattr *fattr, 1664 struct nfs4_label *label) 1665 { 1666 struct dentry *parent = dget_parent(dentry); 1667 struct inode *dir = d_inode(parent); 1668 struct inode *inode; 1669 int error = -EACCES; 1670 1671 d_drop(dentry); 1672 1673 /* We may have been initialized further down */ 1674 if (d_really_is_positive(dentry)) 1675 goto out; 1676 if (fhandle->size == 0) { 1677 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL); 1678 if (error) 1679 goto out_error; 1680 } 1681 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1682 if (!(fattr->valid & NFS_ATTR_FATTR)) { 1683 struct nfs_server *server = NFS_SB(dentry->d_sb); 1684 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL); 1685 if (error < 0) 1686 goto out_error; 1687 } 1688 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label); 1689 error = PTR_ERR(inode); 1690 if (IS_ERR(inode)) 1691 goto out_error; 1692 d_add(dentry, inode); 1693 out: 1694 dput(parent); 1695 return 0; 1696 out_error: 1697 nfs_mark_for_revalidate(dir); 1698 dput(parent); 1699 return error; 1700 } 1701 EXPORT_SYMBOL_GPL(nfs_instantiate); 1702 1703 /* 1704 * Following a failed create operation, we drop the dentry rather 1705 * than retain a negative dentry. This avoids a problem in the event 1706 * that the operation succeeded on the server, but an error in the 1707 * reply path made it appear to have failed. 1708 */ 1709 int nfs_create(struct inode *dir, struct dentry *dentry, 1710 umode_t mode, bool excl) 1711 { 1712 struct iattr attr; 1713 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT; 1714 int error; 1715 1716 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n", 1717 dir->i_sb->s_id, dir->i_ino, dentry); 1718 1719 attr.ia_mode = mode; 1720 attr.ia_valid = ATTR_MODE; 1721 1722 trace_nfs_create_enter(dir, dentry, open_flags); 1723 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags); 1724 trace_nfs_create_exit(dir, dentry, open_flags, error); 1725 if (error != 0) 1726 goto out_err; 1727 return 0; 1728 out_err: 1729 d_drop(dentry); 1730 return error; 1731 } 1732 EXPORT_SYMBOL_GPL(nfs_create); 1733 1734 /* 1735 * See comments for nfs_proc_create regarding failed operations. 1736 */ 1737 int 1738 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev) 1739 { 1740 struct iattr attr; 1741 int status; 1742 1743 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n", 1744 dir->i_sb->s_id, dir->i_ino, dentry); 1745 1746 attr.ia_mode = mode; 1747 attr.ia_valid = ATTR_MODE; 1748 1749 trace_nfs_mknod_enter(dir, dentry); 1750 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev); 1751 trace_nfs_mknod_exit(dir, dentry, status); 1752 if (status != 0) 1753 goto out_err; 1754 return 0; 1755 out_err: 1756 d_drop(dentry); 1757 return status; 1758 } 1759 EXPORT_SYMBOL_GPL(nfs_mknod); 1760 1761 /* 1762 * See comments for nfs_proc_create regarding failed operations. 1763 */ 1764 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1765 { 1766 struct iattr attr; 1767 int error; 1768 1769 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n", 1770 dir->i_sb->s_id, dir->i_ino, dentry); 1771 1772 attr.ia_valid = ATTR_MODE; 1773 attr.ia_mode = mode | S_IFDIR; 1774 1775 trace_nfs_mkdir_enter(dir, dentry); 1776 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr); 1777 trace_nfs_mkdir_exit(dir, dentry, error); 1778 if (error != 0) 1779 goto out_err; 1780 return 0; 1781 out_err: 1782 d_drop(dentry); 1783 return error; 1784 } 1785 EXPORT_SYMBOL_GPL(nfs_mkdir); 1786 1787 static void nfs_dentry_handle_enoent(struct dentry *dentry) 1788 { 1789 if (simple_positive(dentry)) 1790 d_delete(dentry); 1791 } 1792 1793 int nfs_rmdir(struct inode *dir, struct dentry *dentry) 1794 { 1795 int error; 1796 1797 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n", 1798 dir->i_sb->s_id, dir->i_ino, dentry); 1799 1800 trace_nfs_rmdir_enter(dir, dentry); 1801 if (d_really_is_positive(dentry)) { 1802 down_write(&NFS_I(d_inode(dentry))->rmdir_sem); 1803 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1804 /* Ensure the VFS deletes this inode */ 1805 switch (error) { 1806 case 0: 1807 clear_nlink(d_inode(dentry)); 1808 break; 1809 case -ENOENT: 1810 nfs_dentry_handle_enoent(dentry); 1811 } 1812 up_write(&NFS_I(d_inode(dentry))->rmdir_sem); 1813 } else 1814 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 1815 trace_nfs_rmdir_exit(dir, dentry, error); 1816 1817 return error; 1818 } 1819 EXPORT_SYMBOL_GPL(nfs_rmdir); 1820 1821 /* 1822 * Remove a file after making sure there are no pending writes, 1823 * and after checking that the file has only one user. 1824 * 1825 * We invalidate the attribute cache and free the inode prior to the operation 1826 * to avoid possible races if the server reuses the inode. 1827 */ 1828 static int nfs_safe_remove(struct dentry *dentry) 1829 { 1830 struct inode *dir = d_inode(dentry->d_parent); 1831 struct inode *inode = d_inode(dentry); 1832 int error = -EBUSY; 1833 1834 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry); 1835 1836 /* If the dentry was sillyrenamed, we simply call d_delete() */ 1837 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1838 error = 0; 1839 goto out; 1840 } 1841 1842 trace_nfs_remove_enter(dir, dentry); 1843 if (inode != NULL) { 1844 NFS_PROTO(inode)->return_delegation(inode); 1845 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name); 1846 if (error == 0) 1847 nfs_drop_nlink(inode); 1848 } else 1849 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name); 1850 if (error == -ENOENT) 1851 nfs_dentry_handle_enoent(dentry); 1852 trace_nfs_remove_exit(dir, dentry, error); 1853 out: 1854 return error; 1855 } 1856 1857 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode 1858 * belongs to an active ".nfs..." file and we return -EBUSY. 1859 * 1860 * If sillyrename() returns 0, we do nothing, otherwise we unlink. 1861 */ 1862 int nfs_unlink(struct inode *dir, struct dentry *dentry) 1863 { 1864 int error; 1865 int need_rehash = 0; 1866 1867 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id, 1868 dir->i_ino, dentry); 1869 1870 trace_nfs_unlink_enter(dir, dentry); 1871 spin_lock(&dentry->d_lock); 1872 if (d_count(dentry) > 1) { 1873 spin_unlock(&dentry->d_lock); 1874 /* Start asynchronous writeout of the inode */ 1875 write_inode_now(d_inode(dentry), 0); 1876 error = nfs_sillyrename(dir, dentry); 1877 goto out; 1878 } 1879 if (!d_unhashed(dentry)) { 1880 __d_drop(dentry); 1881 need_rehash = 1; 1882 } 1883 spin_unlock(&dentry->d_lock); 1884 error = nfs_safe_remove(dentry); 1885 if (!error || error == -ENOENT) { 1886 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1887 } else if (need_rehash) 1888 d_rehash(dentry); 1889 out: 1890 trace_nfs_unlink_exit(dir, dentry, error); 1891 return error; 1892 } 1893 EXPORT_SYMBOL_GPL(nfs_unlink); 1894 1895 /* 1896 * To create a symbolic link, most file systems instantiate a new inode, 1897 * add a page to it containing the path, then write it out to the disk 1898 * using prepare_write/commit_write. 1899 * 1900 * Unfortunately the NFS client can't create the in-core inode first 1901 * because it needs a file handle to create an in-core inode (see 1902 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the 1903 * symlink request has completed on the server. 1904 * 1905 * So instead we allocate a raw page, copy the symname into it, then do 1906 * the SYMLINK request with the page as the buffer. If it succeeds, we 1907 * now have a new file handle and can instantiate an in-core NFS inode 1908 * and move the raw page into its mapping. 1909 */ 1910 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 1911 { 1912 struct page *page; 1913 char *kaddr; 1914 struct iattr attr; 1915 unsigned int pathlen = strlen(symname); 1916 int error; 1917 1918 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id, 1919 dir->i_ino, dentry, symname); 1920 1921 if (pathlen > PAGE_SIZE) 1922 return -ENAMETOOLONG; 1923 1924 attr.ia_mode = S_IFLNK | S_IRWXUGO; 1925 attr.ia_valid = ATTR_MODE; 1926 1927 page = alloc_page(GFP_USER); 1928 if (!page) 1929 return -ENOMEM; 1930 1931 kaddr = page_address(page); 1932 memcpy(kaddr, symname, pathlen); 1933 if (pathlen < PAGE_SIZE) 1934 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen); 1935 1936 trace_nfs_symlink_enter(dir, dentry); 1937 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr); 1938 trace_nfs_symlink_exit(dir, dentry, error); 1939 if (error != 0) { 1940 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n", 1941 dir->i_sb->s_id, dir->i_ino, 1942 dentry, symname, error); 1943 d_drop(dentry); 1944 __free_page(page); 1945 return error; 1946 } 1947 1948 /* 1949 * No big deal if we can't add this page to the page cache here. 1950 * READLINK will get the missing page from the server if needed. 1951 */ 1952 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0, 1953 GFP_KERNEL)) { 1954 SetPageUptodate(page); 1955 unlock_page(page); 1956 /* 1957 * add_to_page_cache_lru() grabs an extra page refcount. 1958 * Drop it here to avoid leaking this page later. 1959 */ 1960 put_page(page); 1961 } else 1962 __free_page(page); 1963 1964 return 0; 1965 } 1966 EXPORT_SYMBOL_GPL(nfs_symlink); 1967 1968 int 1969 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 1970 { 1971 struct inode *inode = d_inode(old_dentry); 1972 int error; 1973 1974 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n", 1975 old_dentry, dentry); 1976 1977 trace_nfs_link_enter(inode, dir, dentry); 1978 NFS_PROTO(inode)->return_delegation(inode); 1979 1980 d_drop(dentry); 1981 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name); 1982 if (error == 0) { 1983 ihold(inode); 1984 d_add(dentry, inode); 1985 } 1986 trace_nfs_link_exit(inode, dir, dentry, error); 1987 return error; 1988 } 1989 EXPORT_SYMBOL_GPL(nfs_link); 1990 1991 /* 1992 * RENAME 1993 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a 1994 * different file handle for the same inode after a rename (e.g. when 1995 * moving to a different directory). A fail-safe method to do so would 1996 * be to look up old_dir/old_name, create a link to new_dir/new_name and 1997 * rename the old file using the sillyrename stuff. This way, the original 1998 * file in old_dir will go away when the last process iput()s the inode. 1999 * 2000 * FIXED. 2001 * 2002 * It actually works quite well. One needs to have the possibility for 2003 * at least one ".nfs..." file in each directory the file ever gets 2004 * moved or linked to which happens automagically with the new 2005 * implementation that only depends on the dcache stuff instead of 2006 * using the inode layer 2007 * 2008 * Unfortunately, things are a little more complicated than indicated 2009 * above. For a cross-directory move, we want to make sure we can get 2010 * rid of the old inode after the operation. This means there must be 2011 * no pending writes (if it's a file), and the use count must be 1. 2012 * If these conditions are met, we can drop the dentries before doing 2013 * the rename. 2014 */ 2015 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry, 2016 struct inode *new_dir, struct dentry *new_dentry) 2017 { 2018 struct inode *old_inode = d_inode(old_dentry); 2019 struct inode *new_inode = d_inode(new_dentry); 2020 struct dentry *dentry = NULL, *rehash = NULL; 2021 struct rpc_task *task; 2022 int error = -EBUSY; 2023 2024 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n", 2025 old_dentry, new_dentry, 2026 d_count(new_dentry)); 2027 2028 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry); 2029 /* 2030 * For non-directories, check whether the target is busy and if so, 2031 * make a copy of the dentry and then do a silly-rename. If the 2032 * silly-rename succeeds, the copied dentry is hashed and becomes 2033 * the new target. 2034 */ 2035 if (new_inode && !S_ISDIR(new_inode->i_mode)) { 2036 /* 2037 * To prevent any new references to the target during the 2038 * rename, we unhash the dentry in advance. 2039 */ 2040 if (!d_unhashed(new_dentry)) { 2041 d_drop(new_dentry); 2042 rehash = new_dentry; 2043 } 2044 2045 if (d_count(new_dentry) > 2) { 2046 int err; 2047 2048 /* copy the target dentry's name */ 2049 dentry = d_alloc(new_dentry->d_parent, 2050 &new_dentry->d_name); 2051 if (!dentry) 2052 goto out; 2053 2054 /* silly-rename the existing target ... */ 2055 err = nfs_sillyrename(new_dir, new_dentry); 2056 if (err) 2057 goto out; 2058 2059 new_dentry = dentry; 2060 rehash = NULL; 2061 new_inode = NULL; 2062 } 2063 } 2064 2065 NFS_PROTO(old_inode)->return_delegation(old_inode); 2066 if (new_inode != NULL) 2067 NFS_PROTO(new_inode)->return_delegation(new_inode); 2068 2069 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL); 2070 if (IS_ERR(task)) { 2071 error = PTR_ERR(task); 2072 goto out; 2073 } 2074 2075 error = rpc_wait_for_completion_task(task); 2076 if (error == 0) 2077 error = task->tk_status; 2078 rpc_put_task(task); 2079 nfs_mark_for_revalidate(old_inode); 2080 out: 2081 if (rehash) 2082 d_rehash(rehash); 2083 trace_nfs_rename_exit(old_dir, old_dentry, 2084 new_dir, new_dentry, error); 2085 if (!error) { 2086 if (new_inode != NULL) 2087 nfs_drop_nlink(new_inode); 2088 d_move(old_dentry, new_dentry); 2089 nfs_set_verifier(new_dentry, 2090 nfs_save_change_attribute(new_dir)); 2091 } else if (error == -ENOENT) 2092 nfs_dentry_handle_enoent(old_dentry); 2093 2094 /* new dentry created? */ 2095 if (dentry) 2096 dput(dentry); 2097 return error; 2098 } 2099 EXPORT_SYMBOL_GPL(nfs_rename); 2100 2101 static DEFINE_SPINLOCK(nfs_access_lru_lock); 2102 static LIST_HEAD(nfs_access_lru_list); 2103 static atomic_long_t nfs_access_nr_entries; 2104 2105 static unsigned long nfs_access_max_cachesize = ULONG_MAX; 2106 module_param(nfs_access_max_cachesize, ulong, 0644); 2107 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length"); 2108 2109 static void nfs_access_free_entry(struct nfs_access_entry *entry) 2110 { 2111 put_rpccred(entry->cred); 2112 kfree_rcu(entry, rcu_head); 2113 smp_mb__before_atomic(); 2114 atomic_long_dec(&nfs_access_nr_entries); 2115 smp_mb__after_atomic(); 2116 } 2117 2118 static void nfs_access_free_list(struct list_head *head) 2119 { 2120 struct nfs_access_entry *cache; 2121 2122 while (!list_empty(head)) { 2123 cache = list_entry(head->next, struct nfs_access_entry, lru); 2124 list_del(&cache->lru); 2125 nfs_access_free_entry(cache); 2126 } 2127 } 2128 2129 static unsigned long 2130 nfs_do_access_cache_scan(unsigned int nr_to_scan) 2131 { 2132 LIST_HEAD(head); 2133 struct nfs_inode *nfsi, *next; 2134 struct nfs_access_entry *cache; 2135 long freed = 0; 2136 2137 spin_lock(&nfs_access_lru_lock); 2138 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) { 2139 struct inode *inode; 2140 2141 if (nr_to_scan-- == 0) 2142 break; 2143 inode = &nfsi->vfs_inode; 2144 spin_lock(&inode->i_lock); 2145 if (list_empty(&nfsi->access_cache_entry_lru)) 2146 goto remove_lru_entry; 2147 cache = list_entry(nfsi->access_cache_entry_lru.next, 2148 struct nfs_access_entry, lru); 2149 list_move(&cache->lru, &head); 2150 rb_erase(&cache->rb_node, &nfsi->access_cache); 2151 freed++; 2152 if (!list_empty(&nfsi->access_cache_entry_lru)) 2153 list_move_tail(&nfsi->access_cache_inode_lru, 2154 &nfs_access_lru_list); 2155 else { 2156 remove_lru_entry: 2157 list_del_init(&nfsi->access_cache_inode_lru); 2158 smp_mb__before_atomic(); 2159 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags); 2160 smp_mb__after_atomic(); 2161 } 2162 spin_unlock(&inode->i_lock); 2163 } 2164 spin_unlock(&nfs_access_lru_lock); 2165 nfs_access_free_list(&head); 2166 return freed; 2167 } 2168 2169 unsigned long 2170 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc) 2171 { 2172 int nr_to_scan = sc->nr_to_scan; 2173 gfp_t gfp_mask = sc->gfp_mask; 2174 2175 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL) 2176 return SHRINK_STOP; 2177 return nfs_do_access_cache_scan(nr_to_scan); 2178 } 2179 2180 2181 unsigned long 2182 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc) 2183 { 2184 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries)); 2185 } 2186 2187 static void 2188 nfs_access_cache_enforce_limit(void) 2189 { 2190 long nr_entries = atomic_long_read(&nfs_access_nr_entries); 2191 unsigned long diff; 2192 unsigned int nr_to_scan; 2193 2194 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize) 2195 return; 2196 nr_to_scan = 100; 2197 diff = nr_entries - nfs_access_max_cachesize; 2198 if (diff < nr_to_scan) 2199 nr_to_scan = diff; 2200 nfs_do_access_cache_scan(nr_to_scan); 2201 } 2202 2203 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head) 2204 { 2205 struct rb_root *root_node = &nfsi->access_cache; 2206 struct rb_node *n; 2207 struct nfs_access_entry *entry; 2208 2209 /* Unhook entries from the cache */ 2210 while ((n = rb_first(root_node)) != NULL) { 2211 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2212 rb_erase(n, root_node); 2213 list_move(&entry->lru, head); 2214 } 2215 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS; 2216 } 2217 2218 void nfs_access_zap_cache(struct inode *inode) 2219 { 2220 LIST_HEAD(head); 2221 2222 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0) 2223 return; 2224 /* Remove from global LRU init */ 2225 spin_lock(&nfs_access_lru_lock); 2226 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2227 list_del_init(&NFS_I(inode)->access_cache_inode_lru); 2228 2229 spin_lock(&inode->i_lock); 2230 __nfs_access_zap_cache(NFS_I(inode), &head); 2231 spin_unlock(&inode->i_lock); 2232 spin_unlock(&nfs_access_lru_lock); 2233 nfs_access_free_list(&head); 2234 } 2235 EXPORT_SYMBOL_GPL(nfs_access_zap_cache); 2236 2237 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred) 2238 { 2239 struct rb_node *n = NFS_I(inode)->access_cache.rb_node; 2240 struct nfs_access_entry *entry; 2241 2242 while (n != NULL) { 2243 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2244 2245 if (cred < entry->cred) 2246 n = n->rb_left; 2247 else if (cred > entry->cred) 2248 n = n->rb_right; 2249 else 2250 return entry; 2251 } 2252 return NULL; 2253 } 2254 2255 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res, bool may_block) 2256 { 2257 struct nfs_inode *nfsi = NFS_I(inode); 2258 struct nfs_access_entry *cache; 2259 bool retry = true; 2260 int err; 2261 2262 spin_lock(&inode->i_lock); 2263 for(;;) { 2264 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2265 goto out_zap; 2266 cache = nfs_access_search_rbtree(inode, cred); 2267 err = -ENOENT; 2268 if (cache == NULL) 2269 goto out; 2270 /* Found an entry, is our attribute cache valid? */ 2271 if (!nfs_attribute_cache_expired(inode) && 2272 !(nfsi->cache_validity & NFS_INO_INVALID_ATTR)) 2273 break; 2274 err = -ECHILD; 2275 if (!may_block) 2276 goto out; 2277 if (!retry) 2278 goto out_zap; 2279 spin_unlock(&inode->i_lock); 2280 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode); 2281 if (err) 2282 return err; 2283 spin_lock(&inode->i_lock); 2284 retry = false; 2285 } 2286 res->jiffies = cache->jiffies; 2287 res->cred = cache->cred; 2288 res->mask = cache->mask; 2289 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru); 2290 err = 0; 2291 out: 2292 spin_unlock(&inode->i_lock); 2293 return err; 2294 out_zap: 2295 spin_unlock(&inode->i_lock); 2296 nfs_access_zap_cache(inode); 2297 return -ENOENT; 2298 } 2299 2300 static int nfs_access_get_cached_rcu(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res) 2301 { 2302 /* Only check the most recently returned cache entry, 2303 * but do it without locking. 2304 */ 2305 struct nfs_inode *nfsi = NFS_I(inode); 2306 struct nfs_access_entry *cache; 2307 int err = -ECHILD; 2308 struct list_head *lh; 2309 2310 rcu_read_lock(); 2311 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2312 goto out; 2313 lh = rcu_dereference(nfsi->access_cache_entry_lru.prev); 2314 cache = list_entry(lh, struct nfs_access_entry, lru); 2315 if (lh == &nfsi->access_cache_entry_lru || 2316 cred != cache->cred) 2317 cache = NULL; 2318 if (cache == NULL) 2319 goto out; 2320 err = nfs_revalidate_inode_rcu(NFS_SERVER(inode), inode); 2321 if (err) 2322 goto out; 2323 res->jiffies = cache->jiffies; 2324 res->cred = cache->cred; 2325 res->mask = cache->mask; 2326 out: 2327 rcu_read_unlock(); 2328 return err; 2329 } 2330 2331 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set) 2332 { 2333 struct nfs_inode *nfsi = NFS_I(inode); 2334 struct rb_root *root_node = &nfsi->access_cache; 2335 struct rb_node **p = &root_node->rb_node; 2336 struct rb_node *parent = NULL; 2337 struct nfs_access_entry *entry; 2338 2339 spin_lock(&inode->i_lock); 2340 while (*p != NULL) { 2341 parent = *p; 2342 entry = rb_entry(parent, struct nfs_access_entry, rb_node); 2343 2344 if (set->cred < entry->cred) 2345 p = &parent->rb_left; 2346 else if (set->cred > entry->cred) 2347 p = &parent->rb_right; 2348 else 2349 goto found; 2350 } 2351 rb_link_node(&set->rb_node, parent, p); 2352 rb_insert_color(&set->rb_node, root_node); 2353 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2354 spin_unlock(&inode->i_lock); 2355 return; 2356 found: 2357 rb_replace_node(parent, &set->rb_node, root_node); 2358 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2359 list_del(&entry->lru); 2360 spin_unlock(&inode->i_lock); 2361 nfs_access_free_entry(entry); 2362 } 2363 2364 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set) 2365 { 2366 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL); 2367 if (cache == NULL) 2368 return; 2369 RB_CLEAR_NODE(&cache->rb_node); 2370 cache->jiffies = set->jiffies; 2371 cache->cred = get_rpccred(set->cred); 2372 cache->mask = set->mask; 2373 2374 /* The above field assignments must be visible 2375 * before this item appears on the lru. We cannot easily 2376 * use rcu_assign_pointer, so just force the memory barrier. 2377 */ 2378 smp_wmb(); 2379 nfs_access_add_rbtree(inode, cache); 2380 2381 /* Update accounting */ 2382 smp_mb__before_atomic(); 2383 atomic_long_inc(&nfs_access_nr_entries); 2384 smp_mb__after_atomic(); 2385 2386 /* Add inode to global LRU list */ 2387 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) { 2388 spin_lock(&nfs_access_lru_lock); 2389 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2390 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, 2391 &nfs_access_lru_list); 2392 spin_unlock(&nfs_access_lru_lock); 2393 } 2394 nfs_access_cache_enforce_limit(); 2395 } 2396 EXPORT_SYMBOL_GPL(nfs_access_add_cache); 2397 2398 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result) 2399 { 2400 entry->mask = 0; 2401 if (access_result & NFS4_ACCESS_READ) 2402 entry->mask |= MAY_READ; 2403 if (access_result & 2404 (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE)) 2405 entry->mask |= MAY_WRITE; 2406 if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE)) 2407 entry->mask |= MAY_EXEC; 2408 } 2409 EXPORT_SYMBOL_GPL(nfs_access_set_mask); 2410 2411 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask) 2412 { 2413 struct nfs_access_entry cache; 2414 bool may_block = (mask & MAY_NOT_BLOCK) == 0; 2415 int status; 2416 2417 trace_nfs_access_enter(inode); 2418 2419 status = nfs_access_get_cached_rcu(inode, cred, &cache); 2420 if (status != 0) 2421 status = nfs_access_get_cached(inode, cred, &cache, may_block); 2422 if (status == 0) 2423 goto out_cached; 2424 2425 status = -ECHILD; 2426 if (!may_block) 2427 goto out; 2428 2429 /* Be clever: ask server to check for all possible rights */ 2430 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ; 2431 cache.cred = cred; 2432 cache.jiffies = jiffies; 2433 status = NFS_PROTO(inode)->access(inode, &cache); 2434 if (status != 0) { 2435 if (status == -ESTALE) { 2436 nfs_zap_caches(inode); 2437 if (!S_ISDIR(inode->i_mode)) 2438 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags); 2439 } 2440 goto out; 2441 } 2442 nfs_access_add_cache(inode, &cache); 2443 out_cached: 2444 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0) 2445 status = -EACCES; 2446 out: 2447 trace_nfs_access_exit(inode, status); 2448 return status; 2449 } 2450 2451 static int nfs_open_permission_mask(int openflags) 2452 { 2453 int mask = 0; 2454 2455 if (openflags & __FMODE_EXEC) { 2456 /* ONLY check exec rights */ 2457 mask = MAY_EXEC; 2458 } else { 2459 if ((openflags & O_ACCMODE) != O_WRONLY) 2460 mask |= MAY_READ; 2461 if ((openflags & O_ACCMODE) != O_RDONLY) 2462 mask |= MAY_WRITE; 2463 } 2464 2465 return mask; 2466 } 2467 2468 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags) 2469 { 2470 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags)); 2471 } 2472 EXPORT_SYMBOL_GPL(nfs_may_open); 2473 2474 static int nfs_execute_ok(struct inode *inode, int mask) 2475 { 2476 struct nfs_server *server = NFS_SERVER(inode); 2477 int ret; 2478 2479 if (mask & MAY_NOT_BLOCK) 2480 ret = nfs_revalidate_inode_rcu(server, inode); 2481 else 2482 ret = nfs_revalidate_inode(server, inode); 2483 if (ret == 0 && !execute_ok(inode)) 2484 ret = -EACCES; 2485 return ret; 2486 } 2487 2488 int nfs_permission(struct inode *inode, int mask) 2489 { 2490 struct rpc_cred *cred; 2491 int res = 0; 2492 2493 nfs_inc_stats(inode, NFSIOS_VFSACCESS); 2494 2495 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 2496 goto out; 2497 /* Is this sys_access() ? */ 2498 if (mask & (MAY_ACCESS | MAY_CHDIR)) 2499 goto force_lookup; 2500 2501 switch (inode->i_mode & S_IFMT) { 2502 case S_IFLNK: 2503 goto out; 2504 case S_IFREG: 2505 if ((mask & MAY_OPEN) && 2506 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)) 2507 return 0; 2508 break; 2509 case S_IFDIR: 2510 /* 2511 * Optimize away all write operations, since the server 2512 * will check permissions when we perform the op. 2513 */ 2514 if ((mask & MAY_WRITE) && !(mask & MAY_READ)) 2515 goto out; 2516 } 2517 2518 force_lookup: 2519 if (!NFS_PROTO(inode)->access) 2520 goto out_notsup; 2521 2522 /* Always try fast lookups first */ 2523 rcu_read_lock(); 2524 cred = rpc_lookup_cred_nonblock(); 2525 if (!IS_ERR(cred)) 2526 res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK); 2527 else 2528 res = PTR_ERR(cred); 2529 rcu_read_unlock(); 2530 if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) { 2531 /* Fast lookup failed, try the slow way */ 2532 cred = rpc_lookup_cred(); 2533 if (!IS_ERR(cred)) { 2534 res = nfs_do_access(inode, cred, mask); 2535 put_rpccred(cred); 2536 } else 2537 res = PTR_ERR(cred); 2538 } 2539 out: 2540 if (!res && (mask & MAY_EXEC)) 2541 res = nfs_execute_ok(inode, mask); 2542 2543 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n", 2544 inode->i_sb->s_id, inode->i_ino, mask, res); 2545 return res; 2546 out_notsup: 2547 if (mask & MAY_NOT_BLOCK) 2548 return -ECHILD; 2549 2550 res = nfs_revalidate_inode(NFS_SERVER(inode), inode); 2551 if (res == 0) 2552 res = generic_permission(inode, mask); 2553 goto out; 2554 } 2555 EXPORT_SYMBOL_GPL(nfs_permission); 2556 2557 /* 2558 * Local variables: 2559 * version-control: t 2560 * kept-new-versions: 5 2561 * End: 2562 */ 2563